xref: /linux/mm/damon/vaddr.c (revision 572af9f284669d31d9175122bbef9bc62cea8ded)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * DAMON Primitives for Virtual Address Spaces
4  *
5  * Author: SeongJae Park <sj@kernel.org>
6  */
7 
8 #define pr_fmt(fmt) "damon-va: " fmt
9 
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mman.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/page_idle.h>
15 #include <linux/pagewalk.h>
16 #include <linux/sched/mm.h>
17 
18 #include "ops-common.h"
19 
20 #ifdef CONFIG_DAMON_VADDR_KUNIT_TEST
21 #undef DAMON_MIN_REGION
22 #define DAMON_MIN_REGION 1
23 #endif
24 
25 /*
26  * 't->pid' should be the pointer to the relevant 'struct pid' having reference
27  * count.  Caller must put the returned task, unless it is NULL.
28  */
29 static inline struct task_struct *damon_get_task_struct(struct damon_target *t)
30 {
31 	return get_pid_task(t->pid, PIDTYPE_PID);
32 }
33 
34 /*
35  * Get the mm_struct of the given target
36  *
37  * Caller _must_ put the mm_struct after use, unless it is NULL.
38  *
39  * Returns the mm_struct of the target on success, NULL on failure
40  */
41 static struct mm_struct *damon_get_mm(struct damon_target *t)
42 {
43 	struct task_struct *task;
44 	struct mm_struct *mm;
45 
46 	task = damon_get_task_struct(t);
47 	if (!task)
48 		return NULL;
49 
50 	mm = get_task_mm(task);
51 	put_task_struct(task);
52 	return mm;
53 }
54 
55 /*
56  * Functions for the initial monitoring target regions construction
57  */
58 
59 /*
60  * Size-evenly split a region into 'nr_pieces' small regions
61  *
62  * Returns 0 on success, or negative error code otherwise.
63  */
64 static int damon_va_evenly_split_region(struct damon_target *t,
65 		struct damon_region *r, unsigned int nr_pieces)
66 {
67 	unsigned long sz_orig, sz_piece, orig_end;
68 	struct damon_region *n = NULL, *next;
69 	unsigned long start;
70 	unsigned int i;
71 
72 	if (!r || !nr_pieces)
73 		return -EINVAL;
74 
75 	if (nr_pieces == 1)
76 		return 0;
77 
78 	orig_end = r->ar.end;
79 	sz_orig = damon_sz_region(r);
80 	sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, DAMON_MIN_REGION);
81 
82 	if (!sz_piece)
83 		return -EINVAL;
84 
85 	r->ar.end = r->ar.start + sz_piece;
86 	next = damon_next_region(r);
87 	for (start = r->ar.end, i = 1; i < nr_pieces; start += sz_piece, i++) {
88 		n = damon_new_region(start, start + sz_piece);
89 		if (!n)
90 			return -ENOMEM;
91 		damon_insert_region(n, r, next, t);
92 		r = n;
93 	}
94 	/* complement last region for possible rounding error */
95 	if (n)
96 		n->ar.end = orig_end;
97 
98 	return 0;
99 }
100 
101 static unsigned long sz_range(struct damon_addr_range *r)
102 {
103 	return r->end - r->start;
104 }
105 
106 /*
107  * Find three regions separated by two biggest unmapped regions
108  *
109  * vma		the head vma of the target address space
110  * regions	an array of three address ranges that results will be saved
111  *
112  * This function receives an address space and finds three regions in it which
113  * separated by the two biggest unmapped regions in the space.  Please refer to
114  * below comments of '__damon_va_init_regions()' function to know why this is
115  * necessary.
116  *
117  * Returns 0 if success, or negative error code otherwise.
118  */
119 static int __damon_va_three_regions(struct mm_struct *mm,
120 				       struct damon_addr_range regions[3])
121 {
122 	struct damon_addr_range first_gap = {0}, second_gap = {0};
123 	VMA_ITERATOR(vmi, mm, 0);
124 	struct vm_area_struct *vma, *prev = NULL;
125 	unsigned long start;
126 
127 	/*
128 	 * Find the two biggest gaps so that first_gap > second_gap > others.
129 	 * If this is too slow, it can be optimised to examine the maple
130 	 * tree gaps.
131 	 */
132 	rcu_read_lock();
133 	for_each_vma(vmi, vma) {
134 		unsigned long gap;
135 
136 		if (!prev) {
137 			start = vma->vm_start;
138 			goto next;
139 		}
140 		gap = vma->vm_start - prev->vm_end;
141 
142 		if (gap > sz_range(&first_gap)) {
143 			second_gap = first_gap;
144 			first_gap.start = prev->vm_end;
145 			first_gap.end = vma->vm_start;
146 		} else if (gap > sz_range(&second_gap)) {
147 			second_gap.start = prev->vm_end;
148 			second_gap.end = vma->vm_start;
149 		}
150 next:
151 		prev = vma;
152 	}
153 	rcu_read_unlock();
154 
155 	if (!sz_range(&second_gap) || !sz_range(&first_gap))
156 		return -EINVAL;
157 
158 	/* Sort the two biggest gaps by address */
159 	if (first_gap.start > second_gap.start)
160 		swap(first_gap, second_gap);
161 
162 	/* Store the result */
163 	regions[0].start = ALIGN(start, DAMON_MIN_REGION);
164 	regions[0].end = ALIGN(first_gap.start, DAMON_MIN_REGION);
165 	regions[1].start = ALIGN(first_gap.end, DAMON_MIN_REGION);
166 	regions[1].end = ALIGN(second_gap.start, DAMON_MIN_REGION);
167 	regions[2].start = ALIGN(second_gap.end, DAMON_MIN_REGION);
168 	regions[2].end = ALIGN(prev->vm_end, DAMON_MIN_REGION);
169 
170 	return 0;
171 }
172 
173 /*
174  * Get the three regions in the given target (task)
175  *
176  * Returns 0 on success, negative error code otherwise.
177  */
178 static int damon_va_three_regions(struct damon_target *t,
179 				struct damon_addr_range regions[3])
180 {
181 	struct mm_struct *mm;
182 	int rc;
183 
184 	mm = damon_get_mm(t);
185 	if (!mm)
186 		return -EINVAL;
187 
188 	mmap_read_lock(mm);
189 	rc = __damon_va_three_regions(mm, regions);
190 	mmap_read_unlock(mm);
191 
192 	mmput(mm);
193 	return rc;
194 }
195 
196 /*
197  * Initialize the monitoring target regions for the given target (task)
198  *
199  * t	the given target
200  *
201  * Because only a number of small portions of the entire address space
202  * is actually mapped to the memory and accessed, monitoring the unmapped
203  * regions is wasteful.  That said, because we can deal with small noises,
204  * tracking every mapping is not strictly required but could even incur a high
205  * overhead if the mapping frequently changes or the number of mappings is
206  * high.  The adaptive regions adjustment mechanism will further help to deal
207  * with the noise by simply identifying the unmapped areas as a region that
208  * has no access.  Moreover, applying the real mappings that would have many
209  * unmapped areas inside will make the adaptive mechanism quite complex.  That
210  * said, too huge unmapped areas inside the monitoring target should be removed
211  * to not take the time for the adaptive mechanism.
212  *
213  * For the reason, we convert the complex mappings to three distinct regions
214  * that cover every mapped area of the address space.  Also the two gaps
215  * between the three regions are the two biggest unmapped areas in the given
216  * address space.  In detail, this function first identifies the start and the
217  * end of the mappings and the two biggest unmapped areas of the address space.
218  * Then, it constructs the three regions as below:
219  *
220  *     [mappings[0]->start, big_two_unmapped_areas[0]->start)
221  *     [big_two_unmapped_areas[0]->end, big_two_unmapped_areas[1]->start)
222  *     [big_two_unmapped_areas[1]->end, mappings[nr_mappings - 1]->end)
223  *
224  * As usual memory map of processes is as below, the gap between the heap and
225  * the uppermost mmap()-ed region, and the gap between the lowermost mmap()-ed
226  * region and the stack will be two biggest unmapped regions.  Because these
227  * gaps are exceptionally huge areas in usual address space, excluding these
228  * two biggest unmapped regions will be sufficient to make a trade-off.
229  *
230  *   <heap>
231  *   <BIG UNMAPPED REGION 1>
232  *   <uppermost mmap()-ed region>
233  *   (other mmap()-ed regions and small unmapped regions)
234  *   <lowermost mmap()-ed region>
235  *   <BIG UNMAPPED REGION 2>
236  *   <stack>
237  */
238 static void __damon_va_init_regions(struct damon_ctx *ctx,
239 				     struct damon_target *t)
240 {
241 	struct damon_target *ti;
242 	struct damon_region *r;
243 	struct damon_addr_range regions[3];
244 	unsigned long sz = 0, nr_pieces;
245 	int i, tidx = 0;
246 
247 	if (damon_va_three_regions(t, regions)) {
248 		damon_for_each_target(ti, ctx) {
249 			if (ti == t)
250 				break;
251 			tidx++;
252 		}
253 		pr_debug("Failed to get three regions of %dth target\n", tidx);
254 		return;
255 	}
256 
257 	for (i = 0; i < 3; i++)
258 		sz += regions[i].end - regions[i].start;
259 	if (ctx->attrs.min_nr_regions)
260 		sz /= ctx->attrs.min_nr_regions;
261 	if (sz < DAMON_MIN_REGION)
262 		sz = DAMON_MIN_REGION;
263 
264 	/* Set the initial three regions of the target */
265 	for (i = 0; i < 3; i++) {
266 		r = damon_new_region(regions[i].start, regions[i].end);
267 		if (!r) {
268 			pr_err("%d'th init region creation failed\n", i);
269 			return;
270 		}
271 		damon_add_region(r, t);
272 
273 		nr_pieces = (regions[i].end - regions[i].start) / sz;
274 		damon_va_evenly_split_region(t, r, nr_pieces);
275 	}
276 }
277 
278 /* Initialize '->regions_list' of every target (task) */
279 static void damon_va_init(struct damon_ctx *ctx)
280 {
281 	struct damon_target *t;
282 
283 	damon_for_each_target(t, ctx) {
284 		/* the user may set the target regions as they want */
285 		if (!damon_nr_regions(t))
286 			__damon_va_init_regions(ctx, t);
287 	}
288 }
289 
290 /*
291  * Update regions for current memory mappings
292  */
293 static void damon_va_update(struct damon_ctx *ctx)
294 {
295 	struct damon_addr_range three_regions[3];
296 	struct damon_target *t;
297 
298 	damon_for_each_target(t, ctx) {
299 		if (damon_va_three_regions(t, three_regions))
300 			continue;
301 		damon_set_regions(t, three_regions, 3);
302 	}
303 }
304 
305 static int damon_mkold_pmd_entry(pmd_t *pmd, unsigned long addr,
306 		unsigned long next, struct mm_walk *walk)
307 {
308 	pte_t *pte;
309 	pmd_t pmde;
310 	spinlock_t *ptl;
311 
312 	if (pmd_trans_huge(pmdp_get(pmd))) {
313 		ptl = pmd_lock(walk->mm, pmd);
314 		pmde = pmdp_get(pmd);
315 
316 		if (!pmd_present(pmde)) {
317 			spin_unlock(ptl);
318 			return 0;
319 		}
320 
321 		if (pmd_trans_huge(pmde)) {
322 			damon_pmdp_mkold(pmd, walk->vma, addr);
323 			spin_unlock(ptl);
324 			return 0;
325 		}
326 		spin_unlock(ptl);
327 	}
328 
329 	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
330 	if (!pte) {
331 		walk->action = ACTION_AGAIN;
332 		return 0;
333 	}
334 	if (!pte_present(ptep_get(pte)))
335 		goto out;
336 	damon_ptep_mkold(pte, walk->vma, addr);
337 out:
338 	pte_unmap_unlock(pte, ptl);
339 	return 0;
340 }
341 
342 #ifdef CONFIG_HUGETLB_PAGE
343 static void damon_hugetlb_mkold(pte_t *pte, struct mm_struct *mm,
344 				struct vm_area_struct *vma, unsigned long addr)
345 {
346 	bool referenced = false;
347 	pte_t entry = huge_ptep_get(mm, addr, pte);
348 	struct folio *folio = pfn_folio(pte_pfn(entry));
349 	unsigned long psize = huge_page_size(hstate_vma(vma));
350 
351 	folio_get(folio);
352 
353 	if (pte_young(entry)) {
354 		referenced = true;
355 		entry = pte_mkold(entry);
356 		set_huge_pte_at(mm, addr, pte, entry, psize);
357 	}
358 
359 	if (mmu_notifier_clear_young(mm, addr,
360 				     addr + huge_page_size(hstate_vma(vma))))
361 		referenced = true;
362 
363 	if (referenced)
364 		folio_set_young(folio);
365 
366 	folio_set_idle(folio);
367 	folio_put(folio);
368 }
369 
370 static int damon_mkold_hugetlb_entry(pte_t *pte, unsigned long hmask,
371 				     unsigned long addr, unsigned long end,
372 				     struct mm_walk *walk)
373 {
374 	struct hstate *h = hstate_vma(walk->vma);
375 	spinlock_t *ptl;
376 	pte_t entry;
377 
378 	ptl = huge_pte_lock(h, walk->mm, pte);
379 	entry = huge_ptep_get(walk->mm, addr, pte);
380 	if (!pte_present(entry))
381 		goto out;
382 
383 	damon_hugetlb_mkold(pte, walk->mm, walk->vma, addr);
384 
385 out:
386 	spin_unlock(ptl);
387 	return 0;
388 }
389 #else
390 #define damon_mkold_hugetlb_entry NULL
391 #endif /* CONFIG_HUGETLB_PAGE */
392 
393 static const struct mm_walk_ops damon_mkold_ops = {
394 	.pmd_entry = damon_mkold_pmd_entry,
395 	.hugetlb_entry = damon_mkold_hugetlb_entry,
396 	.walk_lock = PGWALK_RDLOCK,
397 };
398 
399 static void damon_va_mkold(struct mm_struct *mm, unsigned long addr)
400 {
401 	mmap_read_lock(mm);
402 	walk_page_range(mm, addr, addr + 1, &damon_mkold_ops, NULL);
403 	mmap_read_unlock(mm);
404 }
405 
406 /*
407  * Functions for the access checking of the regions
408  */
409 
410 static void __damon_va_prepare_access_check(struct mm_struct *mm,
411 					struct damon_region *r)
412 {
413 	r->sampling_addr = damon_rand(r->ar.start, r->ar.end);
414 
415 	damon_va_mkold(mm, r->sampling_addr);
416 }
417 
418 static void damon_va_prepare_access_checks(struct damon_ctx *ctx)
419 {
420 	struct damon_target *t;
421 	struct mm_struct *mm;
422 	struct damon_region *r;
423 
424 	damon_for_each_target(t, ctx) {
425 		mm = damon_get_mm(t);
426 		if (!mm)
427 			continue;
428 		damon_for_each_region(r, t)
429 			__damon_va_prepare_access_check(mm, r);
430 		mmput(mm);
431 	}
432 }
433 
434 struct damon_young_walk_private {
435 	/* size of the folio for the access checked virtual memory address */
436 	unsigned long *folio_sz;
437 	bool young;
438 };
439 
440 static int damon_young_pmd_entry(pmd_t *pmd, unsigned long addr,
441 		unsigned long next, struct mm_walk *walk)
442 {
443 	pte_t *pte;
444 	pte_t ptent;
445 	spinlock_t *ptl;
446 	struct folio *folio;
447 	struct damon_young_walk_private *priv = walk->private;
448 
449 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
450 	if (pmd_trans_huge(pmdp_get(pmd))) {
451 		pmd_t pmde;
452 
453 		ptl = pmd_lock(walk->mm, pmd);
454 		pmde = pmdp_get(pmd);
455 
456 		if (!pmd_present(pmde)) {
457 			spin_unlock(ptl);
458 			return 0;
459 		}
460 
461 		if (!pmd_trans_huge(pmde)) {
462 			spin_unlock(ptl);
463 			goto regular_page;
464 		}
465 		folio = damon_get_folio(pmd_pfn(pmde));
466 		if (!folio)
467 			goto huge_out;
468 		if (pmd_young(pmde) || !folio_test_idle(folio) ||
469 					mmu_notifier_test_young(walk->mm,
470 						addr))
471 			priv->young = true;
472 		*priv->folio_sz = HPAGE_PMD_SIZE;
473 		folio_put(folio);
474 huge_out:
475 		spin_unlock(ptl);
476 		return 0;
477 	}
478 
479 regular_page:
480 #endif	/* CONFIG_TRANSPARENT_HUGEPAGE */
481 
482 	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
483 	if (!pte) {
484 		walk->action = ACTION_AGAIN;
485 		return 0;
486 	}
487 	ptent = ptep_get(pte);
488 	if (!pte_present(ptent))
489 		goto out;
490 	folio = damon_get_folio(pte_pfn(ptent));
491 	if (!folio)
492 		goto out;
493 	if (pte_young(ptent) || !folio_test_idle(folio) ||
494 			mmu_notifier_test_young(walk->mm, addr))
495 		priv->young = true;
496 	*priv->folio_sz = folio_size(folio);
497 	folio_put(folio);
498 out:
499 	pte_unmap_unlock(pte, ptl);
500 	return 0;
501 }
502 
503 #ifdef CONFIG_HUGETLB_PAGE
504 static int damon_young_hugetlb_entry(pte_t *pte, unsigned long hmask,
505 				     unsigned long addr, unsigned long end,
506 				     struct mm_walk *walk)
507 {
508 	struct damon_young_walk_private *priv = walk->private;
509 	struct hstate *h = hstate_vma(walk->vma);
510 	struct folio *folio;
511 	spinlock_t *ptl;
512 	pte_t entry;
513 
514 	ptl = huge_pte_lock(h, walk->mm, pte);
515 	entry = huge_ptep_get(walk->mm, addr, pte);
516 	if (!pte_present(entry))
517 		goto out;
518 
519 	folio = pfn_folio(pte_pfn(entry));
520 	folio_get(folio);
521 
522 	if (pte_young(entry) || !folio_test_idle(folio) ||
523 	    mmu_notifier_test_young(walk->mm, addr))
524 		priv->young = true;
525 	*priv->folio_sz = huge_page_size(h);
526 
527 	folio_put(folio);
528 
529 out:
530 	spin_unlock(ptl);
531 	return 0;
532 }
533 #else
534 #define damon_young_hugetlb_entry NULL
535 #endif /* CONFIG_HUGETLB_PAGE */
536 
537 static const struct mm_walk_ops damon_young_ops = {
538 	.pmd_entry = damon_young_pmd_entry,
539 	.hugetlb_entry = damon_young_hugetlb_entry,
540 	.walk_lock = PGWALK_RDLOCK,
541 };
542 
543 static bool damon_va_young(struct mm_struct *mm, unsigned long addr,
544 		unsigned long *folio_sz)
545 {
546 	struct damon_young_walk_private arg = {
547 		.folio_sz = folio_sz,
548 		.young = false,
549 	};
550 
551 	mmap_read_lock(mm);
552 	walk_page_range(mm, addr, addr + 1, &damon_young_ops, &arg);
553 	mmap_read_unlock(mm);
554 	return arg.young;
555 }
556 
557 /*
558  * Check whether the region was accessed after the last preparation
559  *
560  * mm	'mm_struct' for the given virtual address space
561  * r	the region to be checked
562  */
563 static void __damon_va_check_access(struct mm_struct *mm,
564 				struct damon_region *r, bool same_target,
565 				struct damon_attrs *attrs)
566 {
567 	static unsigned long last_addr;
568 	static unsigned long last_folio_sz = PAGE_SIZE;
569 	static bool last_accessed;
570 
571 	if (!mm) {
572 		damon_update_region_access_rate(r, false, attrs);
573 		return;
574 	}
575 
576 	/* If the region is in the last checked page, reuse the result */
577 	if (same_target && (ALIGN_DOWN(last_addr, last_folio_sz) ==
578 				ALIGN_DOWN(r->sampling_addr, last_folio_sz))) {
579 		damon_update_region_access_rate(r, last_accessed, attrs);
580 		return;
581 	}
582 
583 	last_accessed = damon_va_young(mm, r->sampling_addr, &last_folio_sz);
584 	damon_update_region_access_rate(r, last_accessed, attrs);
585 
586 	last_addr = r->sampling_addr;
587 }
588 
589 static unsigned int damon_va_check_accesses(struct damon_ctx *ctx)
590 {
591 	struct damon_target *t;
592 	struct mm_struct *mm;
593 	struct damon_region *r;
594 	unsigned int max_nr_accesses = 0;
595 	bool same_target;
596 
597 	damon_for_each_target(t, ctx) {
598 		mm = damon_get_mm(t);
599 		same_target = false;
600 		damon_for_each_region(r, t) {
601 			__damon_va_check_access(mm, r, same_target,
602 					&ctx->attrs);
603 			max_nr_accesses = max(r->nr_accesses, max_nr_accesses);
604 			same_target = true;
605 		}
606 		if (mm)
607 			mmput(mm);
608 	}
609 
610 	return max_nr_accesses;
611 }
612 
613 /*
614  * Functions for the target validity check and cleanup
615  */
616 
617 static bool damon_va_target_valid(struct damon_target *t)
618 {
619 	struct task_struct *task;
620 
621 	task = damon_get_task_struct(t);
622 	if (task) {
623 		put_task_struct(task);
624 		return true;
625 	}
626 
627 	return false;
628 }
629 
630 #ifndef CONFIG_ADVISE_SYSCALLS
631 static unsigned long damos_madvise(struct damon_target *target,
632 		struct damon_region *r, int behavior)
633 {
634 	return 0;
635 }
636 #else
637 static unsigned long damos_madvise(struct damon_target *target,
638 		struct damon_region *r, int behavior)
639 {
640 	struct mm_struct *mm;
641 	unsigned long start = PAGE_ALIGN(r->ar.start);
642 	unsigned long len = PAGE_ALIGN(damon_sz_region(r));
643 	unsigned long applied;
644 
645 	mm = damon_get_mm(target);
646 	if (!mm)
647 		return 0;
648 
649 	applied = do_madvise(mm, start, len, behavior) ? 0 : len;
650 	mmput(mm);
651 
652 	return applied;
653 }
654 #endif	/* CONFIG_ADVISE_SYSCALLS */
655 
656 static unsigned long damon_va_apply_scheme(struct damon_ctx *ctx,
657 		struct damon_target *t, struct damon_region *r,
658 		struct damos *scheme)
659 {
660 	int madv_action;
661 
662 	switch (scheme->action) {
663 	case DAMOS_WILLNEED:
664 		madv_action = MADV_WILLNEED;
665 		break;
666 	case DAMOS_COLD:
667 		madv_action = MADV_COLD;
668 		break;
669 	case DAMOS_PAGEOUT:
670 		madv_action = MADV_PAGEOUT;
671 		break;
672 	case DAMOS_HUGEPAGE:
673 		madv_action = MADV_HUGEPAGE;
674 		break;
675 	case DAMOS_NOHUGEPAGE:
676 		madv_action = MADV_NOHUGEPAGE;
677 		break;
678 	case DAMOS_STAT:
679 		return 0;
680 	default:
681 		/*
682 		 * DAMOS actions that are not yet supported by 'vaddr'.
683 		 */
684 		return 0;
685 	}
686 
687 	return damos_madvise(t, r, madv_action);
688 }
689 
690 static int damon_va_scheme_score(struct damon_ctx *context,
691 		struct damon_target *t, struct damon_region *r,
692 		struct damos *scheme)
693 {
694 
695 	switch (scheme->action) {
696 	case DAMOS_PAGEOUT:
697 		return damon_cold_score(context, r, scheme);
698 	default:
699 		break;
700 	}
701 
702 	return DAMOS_MAX_SCORE;
703 }
704 
705 static int __init damon_va_initcall(void)
706 {
707 	struct damon_operations ops = {
708 		.id = DAMON_OPS_VADDR,
709 		.init = damon_va_init,
710 		.update = damon_va_update,
711 		.prepare_access_checks = damon_va_prepare_access_checks,
712 		.check_accesses = damon_va_check_accesses,
713 		.reset_aggregated = NULL,
714 		.target_valid = damon_va_target_valid,
715 		.cleanup = NULL,
716 		.apply_scheme = damon_va_apply_scheme,
717 		.get_scheme_score = damon_va_scheme_score,
718 	};
719 	/* ops for fixed virtual address ranges */
720 	struct damon_operations ops_fvaddr = ops;
721 	int err;
722 
723 	/* Don't set the monitoring target regions for the entire mapping */
724 	ops_fvaddr.id = DAMON_OPS_FVADDR;
725 	ops_fvaddr.init = NULL;
726 	ops_fvaddr.update = NULL;
727 
728 	err = damon_register_ops(&ops);
729 	if (err)
730 		return err;
731 	return damon_register_ops(&ops_fvaddr);
732 };
733 
734 subsys_initcall(damon_va_initcall);
735 
736 #include "tests/vaddr-kunit.h"
737