1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * DAMON Primitives for Virtual Address Spaces 4 * 5 * Author: SeongJae Park <sjpark@amazon.de> 6 */ 7 8 #define pr_fmt(fmt) "damon-va: " fmt 9 10 #include <asm-generic/mman-common.h> 11 #include <linux/highmem.h> 12 #include <linux/hugetlb.h> 13 #include <linux/mmu_notifier.h> 14 #include <linux/page_idle.h> 15 #include <linux/pagewalk.h> 16 #include <linux/sched/mm.h> 17 18 #include "ops-common.h" 19 20 #ifdef CONFIG_DAMON_VADDR_KUNIT_TEST 21 #undef DAMON_MIN_REGION 22 #define DAMON_MIN_REGION 1 23 #endif 24 25 /* 26 * 't->pid' should be the pointer to the relevant 'struct pid' having reference 27 * count. Caller must put the returned task, unless it is NULL. 28 */ 29 static inline struct task_struct *damon_get_task_struct(struct damon_target *t) 30 { 31 return get_pid_task(t->pid, PIDTYPE_PID); 32 } 33 34 /* 35 * Get the mm_struct of the given target 36 * 37 * Caller _must_ put the mm_struct after use, unless it is NULL. 38 * 39 * Returns the mm_struct of the target on success, NULL on failure 40 */ 41 static struct mm_struct *damon_get_mm(struct damon_target *t) 42 { 43 struct task_struct *task; 44 struct mm_struct *mm; 45 46 task = damon_get_task_struct(t); 47 if (!task) 48 return NULL; 49 50 mm = get_task_mm(task); 51 put_task_struct(task); 52 return mm; 53 } 54 55 /* 56 * Functions for the initial monitoring target regions construction 57 */ 58 59 /* 60 * Size-evenly split a region into 'nr_pieces' small regions 61 * 62 * Returns 0 on success, or negative error code otherwise. 63 */ 64 static int damon_va_evenly_split_region(struct damon_target *t, 65 struct damon_region *r, unsigned int nr_pieces) 66 { 67 unsigned long sz_orig, sz_piece, orig_end; 68 struct damon_region *n = NULL, *next; 69 unsigned long start; 70 71 if (!r || !nr_pieces) 72 return -EINVAL; 73 74 orig_end = r->ar.end; 75 sz_orig = r->ar.end - r->ar.start; 76 sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, DAMON_MIN_REGION); 77 78 if (!sz_piece) 79 return -EINVAL; 80 81 r->ar.end = r->ar.start + sz_piece; 82 next = damon_next_region(r); 83 for (start = r->ar.end; start + sz_piece <= orig_end; 84 start += sz_piece) { 85 n = damon_new_region(start, start + sz_piece); 86 if (!n) 87 return -ENOMEM; 88 damon_insert_region(n, r, next, t); 89 r = n; 90 } 91 /* complement last region for possible rounding error */ 92 if (n) 93 n->ar.end = orig_end; 94 95 return 0; 96 } 97 98 static unsigned long sz_range(struct damon_addr_range *r) 99 { 100 return r->end - r->start; 101 } 102 103 /* 104 * Find three regions separated by two biggest unmapped regions 105 * 106 * vma the head vma of the target address space 107 * regions an array of three address ranges that results will be saved 108 * 109 * This function receives an address space and finds three regions in it which 110 * separated by the two biggest unmapped regions in the space. Please refer to 111 * below comments of '__damon_va_init_regions()' function to know why this is 112 * necessary. 113 * 114 * Returns 0 if success, or negative error code otherwise. 115 */ 116 static int __damon_va_three_regions(struct vm_area_struct *vma, 117 struct damon_addr_range regions[3]) 118 { 119 struct damon_addr_range gap = {0}, first_gap = {0}, second_gap = {0}; 120 struct vm_area_struct *last_vma = NULL; 121 unsigned long start = 0; 122 struct rb_root rbroot; 123 124 /* Find two biggest gaps so that first_gap > second_gap > others */ 125 for (; vma; vma = vma->vm_next) { 126 if (!last_vma) { 127 start = vma->vm_start; 128 goto next; 129 } 130 131 if (vma->rb_subtree_gap <= sz_range(&second_gap)) { 132 rbroot.rb_node = &vma->vm_rb; 133 vma = rb_entry(rb_last(&rbroot), 134 struct vm_area_struct, vm_rb); 135 goto next; 136 } 137 138 gap.start = last_vma->vm_end; 139 gap.end = vma->vm_start; 140 if (sz_range(&gap) > sz_range(&second_gap)) { 141 swap(gap, second_gap); 142 if (sz_range(&second_gap) > sz_range(&first_gap)) 143 swap(second_gap, first_gap); 144 } 145 next: 146 last_vma = vma; 147 } 148 149 if (!sz_range(&second_gap) || !sz_range(&first_gap)) 150 return -EINVAL; 151 152 /* Sort the two biggest gaps by address */ 153 if (first_gap.start > second_gap.start) 154 swap(first_gap, second_gap); 155 156 /* Store the result */ 157 regions[0].start = ALIGN(start, DAMON_MIN_REGION); 158 regions[0].end = ALIGN(first_gap.start, DAMON_MIN_REGION); 159 regions[1].start = ALIGN(first_gap.end, DAMON_MIN_REGION); 160 regions[1].end = ALIGN(second_gap.start, DAMON_MIN_REGION); 161 regions[2].start = ALIGN(second_gap.end, DAMON_MIN_REGION); 162 regions[2].end = ALIGN(last_vma->vm_end, DAMON_MIN_REGION); 163 164 return 0; 165 } 166 167 /* 168 * Get the three regions in the given target (task) 169 * 170 * Returns 0 on success, negative error code otherwise. 171 */ 172 static int damon_va_three_regions(struct damon_target *t, 173 struct damon_addr_range regions[3]) 174 { 175 struct mm_struct *mm; 176 int rc; 177 178 mm = damon_get_mm(t); 179 if (!mm) 180 return -EINVAL; 181 182 mmap_read_lock(mm); 183 rc = __damon_va_three_regions(mm->mmap, regions); 184 mmap_read_unlock(mm); 185 186 mmput(mm); 187 return rc; 188 } 189 190 /* 191 * Initialize the monitoring target regions for the given target (task) 192 * 193 * t the given target 194 * 195 * Because only a number of small portions of the entire address space 196 * is actually mapped to the memory and accessed, monitoring the unmapped 197 * regions is wasteful. That said, because we can deal with small noises, 198 * tracking every mapping is not strictly required but could even incur a high 199 * overhead if the mapping frequently changes or the number of mappings is 200 * high. The adaptive regions adjustment mechanism will further help to deal 201 * with the noise by simply identifying the unmapped areas as a region that 202 * has no access. Moreover, applying the real mappings that would have many 203 * unmapped areas inside will make the adaptive mechanism quite complex. That 204 * said, too huge unmapped areas inside the monitoring target should be removed 205 * to not take the time for the adaptive mechanism. 206 * 207 * For the reason, we convert the complex mappings to three distinct regions 208 * that cover every mapped area of the address space. Also the two gaps 209 * between the three regions are the two biggest unmapped areas in the given 210 * address space. In detail, this function first identifies the start and the 211 * end of the mappings and the two biggest unmapped areas of the address space. 212 * Then, it constructs the three regions as below: 213 * 214 * [mappings[0]->start, big_two_unmapped_areas[0]->start) 215 * [big_two_unmapped_areas[0]->end, big_two_unmapped_areas[1]->start) 216 * [big_two_unmapped_areas[1]->end, mappings[nr_mappings - 1]->end) 217 * 218 * As usual memory map of processes is as below, the gap between the heap and 219 * the uppermost mmap()-ed region, and the gap between the lowermost mmap()-ed 220 * region and the stack will be two biggest unmapped regions. Because these 221 * gaps are exceptionally huge areas in usual address space, excluding these 222 * two biggest unmapped regions will be sufficient to make a trade-off. 223 * 224 * <heap> 225 * <BIG UNMAPPED REGION 1> 226 * <uppermost mmap()-ed region> 227 * (other mmap()-ed regions and small unmapped regions) 228 * <lowermost mmap()-ed region> 229 * <BIG UNMAPPED REGION 2> 230 * <stack> 231 */ 232 static void __damon_va_init_regions(struct damon_ctx *ctx, 233 struct damon_target *t) 234 { 235 struct damon_target *ti; 236 struct damon_region *r; 237 struct damon_addr_range regions[3]; 238 unsigned long sz = 0, nr_pieces; 239 int i, tidx = 0; 240 241 if (damon_va_three_regions(t, regions)) { 242 damon_for_each_target(ti, ctx) { 243 if (ti == t) 244 break; 245 tidx++; 246 } 247 pr_debug("Failed to get three regions of %dth target\n", tidx); 248 return; 249 } 250 251 for (i = 0; i < 3; i++) 252 sz += regions[i].end - regions[i].start; 253 if (ctx->min_nr_regions) 254 sz /= ctx->min_nr_regions; 255 if (sz < DAMON_MIN_REGION) 256 sz = DAMON_MIN_REGION; 257 258 /* Set the initial three regions of the target */ 259 for (i = 0; i < 3; i++) { 260 r = damon_new_region(regions[i].start, regions[i].end); 261 if (!r) { 262 pr_err("%d'th init region creation failed\n", i); 263 return; 264 } 265 damon_add_region(r, t); 266 267 nr_pieces = (regions[i].end - regions[i].start) / sz; 268 damon_va_evenly_split_region(t, r, nr_pieces); 269 } 270 } 271 272 /* Initialize '->regions_list' of every target (task) */ 273 static void damon_va_init(struct damon_ctx *ctx) 274 { 275 struct damon_target *t; 276 277 damon_for_each_target(t, ctx) { 278 /* the user may set the target regions as they want */ 279 if (!damon_nr_regions(t)) 280 __damon_va_init_regions(ctx, t); 281 } 282 } 283 284 /* 285 * Functions for the dynamic monitoring target regions update 286 */ 287 288 /* 289 * Check whether a region is intersecting an address range 290 * 291 * Returns true if it is. 292 */ 293 static bool damon_intersect(struct damon_region *r, 294 struct damon_addr_range *re) 295 { 296 return !(r->ar.end <= re->start || re->end <= r->ar.start); 297 } 298 299 /* 300 * Update damon regions for the three big regions of the given target 301 * 302 * t the given target 303 * bregions the three big regions of the target 304 */ 305 static void damon_va_apply_three_regions(struct damon_target *t, 306 struct damon_addr_range bregions[3]) 307 { 308 struct damon_region *r, *next; 309 unsigned int i; 310 311 /* Remove regions which are not in the three big regions now */ 312 damon_for_each_region_safe(r, next, t) { 313 for (i = 0; i < 3; i++) { 314 if (damon_intersect(r, &bregions[i])) 315 break; 316 } 317 if (i == 3) 318 damon_destroy_region(r, t); 319 } 320 321 /* Adjust intersecting regions to fit with the three big regions */ 322 for (i = 0; i < 3; i++) { 323 struct damon_region *first = NULL, *last; 324 struct damon_region *newr; 325 struct damon_addr_range *br; 326 327 br = &bregions[i]; 328 /* Get the first and last regions which intersects with br */ 329 damon_for_each_region(r, t) { 330 if (damon_intersect(r, br)) { 331 if (!first) 332 first = r; 333 last = r; 334 } 335 if (r->ar.start >= br->end) 336 break; 337 } 338 if (!first) { 339 /* no damon_region intersects with this big region */ 340 newr = damon_new_region( 341 ALIGN_DOWN(br->start, 342 DAMON_MIN_REGION), 343 ALIGN(br->end, DAMON_MIN_REGION)); 344 if (!newr) 345 continue; 346 damon_insert_region(newr, damon_prev_region(r), r, t); 347 } else { 348 first->ar.start = ALIGN_DOWN(br->start, 349 DAMON_MIN_REGION); 350 last->ar.end = ALIGN(br->end, DAMON_MIN_REGION); 351 } 352 } 353 } 354 355 /* 356 * Update regions for current memory mappings 357 */ 358 static void damon_va_update(struct damon_ctx *ctx) 359 { 360 struct damon_addr_range three_regions[3]; 361 struct damon_target *t; 362 363 damon_for_each_target(t, ctx) { 364 if (damon_va_three_regions(t, three_regions)) 365 continue; 366 damon_va_apply_three_regions(t, three_regions); 367 } 368 } 369 370 static int damon_mkold_pmd_entry(pmd_t *pmd, unsigned long addr, 371 unsigned long next, struct mm_walk *walk) 372 { 373 pte_t *pte; 374 spinlock_t *ptl; 375 376 if (pmd_huge(*pmd)) { 377 ptl = pmd_lock(walk->mm, pmd); 378 if (pmd_huge(*pmd)) { 379 damon_pmdp_mkold(pmd, walk->mm, addr); 380 spin_unlock(ptl); 381 return 0; 382 } 383 spin_unlock(ptl); 384 } 385 386 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 387 return 0; 388 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 389 if (!pte_present(*pte)) 390 goto out; 391 damon_ptep_mkold(pte, walk->mm, addr); 392 out: 393 pte_unmap_unlock(pte, ptl); 394 return 0; 395 } 396 397 #ifdef CONFIG_HUGETLB_PAGE 398 static void damon_hugetlb_mkold(pte_t *pte, struct mm_struct *mm, 399 struct vm_area_struct *vma, unsigned long addr) 400 { 401 bool referenced = false; 402 pte_t entry = huge_ptep_get(pte); 403 struct page *page = pte_page(entry); 404 405 get_page(page); 406 407 if (pte_young(entry)) { 408 referenced = true; 409 entry = pte_mkold(entry); 410 huge_ptep_set_access_flags(vma, addr, pte, entry, 411 vma->vm_flags & VM_WRITE); 412 } 413 414 #ifdef CONFIG_MMU_NOTIFIER 415 if (mmu_notifier_clear_young(mm, addr, 416 addr + huge_page_size(hstate_vma(vma)))) 417 referenced = true; 418 #endif /* CONFIG_MMU_NOTIFIER */ 419 420 if (referenced) 421 set_page_young(page); 422 423 set_page_idle(page); 424 put_page(page); 425 } 426 427 static int damon_mkold_hugetlb_entry(pte_t *pte, unsigned long hmask, 428 unsigned long addr, unsigned long end, 429 struct mm_walk *walk) 430 { 431 struct hstate *h = hstate_vma(walk->vma); 432 spinlock_t *ptl; 433 pte_t entry; 434 435 ptl = huge_pte_lock(h, walk->mm, pte); 436 entry = huge_ptep_get(pte); 437 if (!pte_present(entry)) 438 goto out; 439 440 damon_hugetlb_mkold(pte, walk->mm, walk->vma, addr); 441 442 out: 443 spin_unlock(ptl); 444 return 0; 445 } 446 #else 447 #define damon_mkold_hugetlb_entry NULL 448 #endif /* CONFIG_HUGETLB_PAGE */ 449 450 static const struct mm_walk_ops damon_mkold_ops = { 451 .pmd_entry = damon_mkold_pmd_entry, 452 .hugetlb_entry = damon_mkold_hugetlb_entry, 453 }; 454 455 static void damon_va_mkold(struct mm_struct *mm, unsigned long addr) 456 { 457 mmap_read_lock(mm); 458 walk_page_range(mm, addr, addr + 1, &damon_mkold_ops, NULL); 459 mmap_read_unlock(mm); 460 } 461 462 /* 463 * Functions for the access checking of the regions 464 */ 465 466 static void __damon_va_prepare_access_check(struct damon_ctx *ctx, 467 struct mm_struct *mm, struct damon_region *r) 468 { 469 r->sampling_addr = damon_rand(r->ar.start, r->ar.end); 470 471 damon_va_mkold(mm, r->sampling_addr); 472 } 473 474 static void damon_va_prepare_access_checks(struct damon_ctx *ctx) 475 { 476 struct damon_target *t; 477 struct mm_struct *mm; 478 struct damon_region *r; 479 480 damon_for_each_target(t, ctx) { 481 mm = damon_get_mm(t); 482 if (!mm) 483 continue; 484 damon_for_each_region(r, t) 485 __damon_va_prepare_access_check(ctx, mm, r); 486 mmput(mm); 487 } 488 } 489 490 struct damon_young_walk_private { 491 unsigned long *page_sz; 492 bool young; 493 }; 494 495 static int damon_young_pmd_entry(pmd_t *pmd, unsigned long addr, 496 unsigned long next, struct mm_walk *walk) 497 { 498 pte_t *pte; 499 spinlock_t *ptl; 500 struct page *page; 501 struct damon_young_walk_private *priv = walk->private; 502 503 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 504 if (pmd_huge(*pmd)) { 505 ptl = pmd_lock(walk->mm, pmd); 506 if (!pmd_huge(*pmd)) { 507 spin_unlock(ptl); 508 goto regular_page; 509 } 510 page = damon_get_page(pmd_pfn(*pmd)); 511 if (!page) 512 goto huge_out; 513 if (pmd_young(*pmd) || !page_is_idle(page) || 514 mmu_notifier_test_young(walk->mm, 515 addr)) { 516 *priv->page_sz = ((1UL) << HPAGE_PMD_SHIFT); 517 priv->young = true; 518 } 519 put_page(page); 520 huge_out: 521 spin_unlock(ptl); 522 return 0; 523 } 524 525 regular_page: 526 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 527 528 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 529 return -EINVAL; 530 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 531 if (!pte_present(*pte)) 532 goto out; 533 page = damon_get_page(pte_pfn(*pte)); 534 if (!page) 535 goto out; 536 if (pte_young(*pte) || !page_is_idle(page) || 537 mmu_notifier_test_young(walk->mm, addr)) { 538 *priv->page_sz = PAGE_SIZE; 539 priv->young = true; 540 } 541 put_page(page); 542 out: 543 pte_unmap_unlock(pte, ptl); 544 return 0; 545 } 546 547 #ifdef CONFIG_HUGETLB_PAGE 548 static int damon_young_hugetlb_entry(pte_t *pte, unsigned long hmask, 549 unsigned long addr, unsigned long end, 550 struct mm_walk *walk) 551 { 552 struct damon_young_walk_private *priv = walk->private; 553 struct hstate *h = hstate_vma(walk->vma); 554 struct page *page; 555 spinlock_t *ptl; 556 pte_t entry; 557 558 ptl = huge_pte_lock(h, walk->mm, pte); 559 entry = huge_ptep_get(pte); 560 if (!pte_present(entry)) 561 goto out; 562 563 page = pte_page(entry); 564 get_page(page); 565 566 if (pte_young(entry) || !page_is_idle(page) || 567 mmu_notifier_test_young(walk->mm, addr)) { 568 *priv->page_sz = huge_page_size(h); 569 priv->young = true; 570 } 571 572 put_page(page); 573 574 out: 575 spin_unlock(ptl); 576 return 0; 577 } 578 #else 579 #define damon_young_hugetlb_entry NULL 580 #endif /* CONFIG_HUGETLB_PAGE */ 581 582 static const struct mm_walk_ops damon_young_ops = { 583 .pmd_entry = damon_young_pmd_entry, 584 .hugetlb_entry = damon_young_hugetlb_entry, 585 }; 586 587 static bool damon_va_young(struct mm_struct *mm, unsigned long addr, 588 unsigned long *page_sz) 589 { 590 struct damon_young_walk_private arg = { 591 .page_sz = page_sz, 592 .young = false, 593 }; 594 595 mmap_read_lock(mm); 596 walk_page_range(mm, addr, addr + 1, &damon_young_ops, &arg); 597 mmap_read_unlock(mm); 598 return arg.young; 599 } 600 601 /* 602 * Check whether the region was accessed after the last preparation 603 * 604 * mm 'mm_struct' for the given virtual address space 605 * r the region to be checked 606 */ 607 static void __damon_va_check_access(struct damon_ctx *ctx, 608 struct mm_struct *mm, struct damon_region *r) 609 { 610 static struct mm_struct *last_mm; 611 static unsigned long last_addr; 612 static unsigned long last_page_sz = PAGE_SIZE; 613 static bool last_accessed; 614 615 /* If the region is in the last checked page, reuse the result */ 616 if (mm == last_mm && (ALIGN_DOWN(last_addr, last_page_sz) == 617 ALIGN_DOWN(r->sampling_addr, last_page_sz))) { 618 if (last_accessed) 619 r->nr_accesses++; 620 return; 621 } 622 623 last_accessed = damon_va_young(mm, r->sampling_addr, &last_page_sz); 624 if (last_accessed) 625 r->nr_accesses++; 626 627 last_mm = mm; 628 last_addr = r->sampling_addr; 629 } 630 631 static unsigned int damon_va_check_accesses(struct damon_ctx *ctx) 632 { 633 struct damon_target *t; 634 struct mm_struct *mm; 635 struct damon_region *r; 636 unsigned int max_nr_accesses = 0; 637 638 damon_for_each_target(t, ctx) { 639 mm = damon_get_mm(t); 640 if (!mm) 641 continue; 642 damon_for_each_region(r, t) { 643 __damon_va_check_access(ctx, mm, r); 644 max_nr_accesses = max(r->nr_accesses, max_nr_accesses); 645 } 646 mmput(mm); 647 } 648 649 return max_nr_accesses; 650 } 651 652 /* 653 * Functions for the target validity check and cleanup 654 */ 655 656 static bool damon_va_target_valid(void *target) 657 { 658 struct damon_target *t = target; 659 struct task_struct *task; 660 661 task = damon_get_task_struct(t); 662 if (task) { 663 put_task_struct(task); 664 return true; 665 } 666 667 return false; 668 } 669 670 #ifndef CONFIG_ADVISE_SYSCALLS 671 static unsigned long damos_madvise(struct damon_target *target, 672 struct damon_region *r, int behavior) 673 { 674 return 0; 675 } 676 #else 677 static unsigned long damos_madvise(struct damon_target *target, 678 struct damon_region *r, int behavior) 679 { 680 struct mm_struct *mm; 681 unsigned long start = PAGE_ALIGN(r->ar.start); 682 unsigned long len = PAGE_ALIGN(r->ar.end - r->ar.start); 683 unsigned long applied; 684 685 mm = damon_get_mm(target); 686 if (!mm) 687 return 0; 688 689 applied = do_madvise(mm, start, len, behavior) ? 0 : len; 690 mmput(mm); 691 692 return applied; 693 } 694 #endif /* CONFIG_ADVISE_SYSCALLS */ 695 696 static unsigned long damon_va_apply_scheme(struct damon_ctx *ctx, 697 struct damon_target *t, struct damon_region *r, 698 struct damos *scheme) 699 { 700 int madv_action; 701 702 switch (scheme->action) { 703 case DAMOS_WILLNEED: 704 madv_action = MADV_WILLNEED; 705 break; 706 case DAMOS_COLD: 707 madv_action = MADV_COLD; 708 break; 709 case DAMOS_PAGEOUT: 710 madv_action = MADV_PAGEOUT; 711 break; 712 case DAMOS_HUGEPAGE: 713 madv_action = MADV_HUGEPAGE; 714 break; 715 case DAMOS_NOHUGEPAGE: 716 madv_action = MADV_NOHUGEPAGE; 717 break; 718 case DAMOS_STAT: 719 return 0; 720 default: 721 return 0; 722 } 723 724 return damos_madvise(t, r, madv_action); 725 } 726 727 static int damon_va_scheme_score(struct damon_ctx *context, 728 struct damon_target *t, struct damon_region *r, 729 struct damos *scheme) 730 { 731 732 switch (scheme->action) { 733 case DAMOS_PAGEOUT: 734 return damon_pageout_score(context, r, scheme); 735 default: 736 break; 737 } 738 739 return DAMOS_MAX_SCORE; 740 } 741 742 static int __init damon_va_initcall(void) 743 { 744 struct damon_operations ops = { 745 .id = DAMON_OPS_VADDR, 746 .init = damon_va_init, 747 .update = damon_va_update, 748 .prepare_access_checks = damon_va_prepare_access_checks, 749 .check_accesses = damon_va_check_accesses, 750 .reset_aggregated = NULL, 751 .target_valid = damon_va_target_valid, 752 .cleanup = NULL, 753 .apply_scheme = damon_va_apply_scheme, 754 .get_scheme_score = damon_va_scheme_score, 755 }; 756 757 return damon_register_ops(&ops); 758 }; 759 760 subsys_initcall(damon_va_initcall); 761 762 #include "vaddr-test.h" 763