1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * DAMON Code for Virtual Address Spaces 4 * 5 * Author: SeongJae Park <sj@kernel.org> 6 */ 7 8 #define pr_fmt(fmt) "damon-va: " fmt 9 10 #include <linux/highmem.h> 11 #include <linux/hugetlb.h> 12 #include <linux/mman.h> 13 #include <linux/mmu_notifier.h> 14 #include <linux/page_idle.h> 15 #include <linux/pagewalk.h> 16 #include <linux/sched/mm.h> 17 18 #include "../internal.h" 19 #include "ops-common.h" 20 21 #ifdef CONFIG_DAMON_VADDR_KUNIT_TEST 22 #undef DAMON_MIN_REGION 23 #define DAMON_MIN_REGION 1 24 #endif 25 26 /* 27 * 't->pid' should be the pointer to the relevant 'struct pid' having reference 28 * count. Caller must put the returned task, unless it is NULL. 29 */ 30 static inline struct task_struct *damon_get_task_struct(struct damon_target *t) 31 { 32 return get_pid_task(t->pid, PIDTYPE_PID); 33 } 34 35 /* 36 * Get the mm_struct of the given target 37 * 38 * Caller _must_ put the mm_struct after use, unless it is NULL. 39 * 40 * Returns the mm_struct of the target on success, NULL on failure 41 */ 42 static struct mm_struct *damon_get_mm(struct damon_target *t) 43 { 44 struct task_struct *task; 45 struct mm_struct *mm; 46 47 task = damon_get_task_struct(t); 48 if (!task) 49 return NULL; 50 51 mm = get_task_mm(task); 52 put_task_struct(task); 53 return mm; 54 } 55 56 /* 57 * Functions for the initial monitoring target regions construction 58 */ 59 60 /* 61 * Size-evenly split a region into 'nr_pieces' small regions 62 * 63 * Returns 0 on success, or negative error code otherwise. 64 */ 65 static int damon_va_evenly_split_region(struct damon_target *t, 66 struct damon_region *r, unsigned int nr_pieces) 67 { 68 unsigned long sz_orig, sz_piece, orig_end; 69 struct damon_region *n = NULL, *next; 70 unsigned long start; 71 unsigned int i; 72 73 if (!r || !nr_pieces) 74 return -EINVAL; 75 76 if (nr_pieces == 1) 77 return 0; 78 79 orig_end = r->ar.end; 80 sz_orig = damon_sz_region(r); 81 sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, DAMON_MIN_REGION); 82 83 if (!sz_piece) 84 return -EINVAL; 85 86 r->ar.end = r->ar.start + sz_piece; 87 next = damon_next_region(r); 88 for (start = r->ar.end, i = 1; i < nr_pieces; start += sz_piece, i++) { 89 n = damon_new_region(start, start + sz_piece); 90 if (!n) 91 return -ENOMEM; 92 damon_insert_region(n, r, next, t); 93 r = n; 94 } 95 /* complement last region for possible rounding error */ 96 if (n) 97 n->ar.end = orig_end; 98 99 return 0; 100 } 101 102 static unsigned long sz_range(struct damon_addr_range *r) 103 { 104 return r->end - r->start; 105 } 106 107 /* 108 * Find three regions separated by two biggest unmapped regions 109 * 110 * vma the head vma of the target address space 111 * regions an array of three address ranges that results will be saved 112 * 113 * This function receives an address space and finds three regions in it which 114 * separated by the two biggest unmapped regions in the space. Please refer to 115 * below comments of '__damon_va_init_regions()' function to know why this is 116 * necessary. 117 * 118 * Returns 0 if success, or negative error code otherwise. 119 */ 120 static int __damon_va_three_regions(struct mm_struct *mm, 121 struct damon_addr_range regions[3]) 122 { 123 struct damon_addr_range first_gap = {0}, second_gap = {0}; 124 VMA_ITERATOR(vmi, mm, 0); 125 struct vm_area_struct *vma, *prev = NULL; 126 unsigned long start; 127 128 /* 129 * Find the two biggest gaps so that first_gap > second_gap > others. 130 * If this is too slow, it can be optimised to examine the maple 131 * tree gaps. 132 */ 133 rcu_read_lock(); 134 for_each_vma(vmi, vma) { 135 unsigned long gap; 136 137 if (!prev) { 138 start = vma->vm_start; 139 goto next; 140 } 141 gap = vma->vm_start - prev->vm_end; 142 143 if (gap > sz_range(&first_gap)) { 144 second_gap = first_gap; 145 first_gap.start = prev->vm_end; 146 first_gap.end = vma->vm_start; 147 } else if (gap > sz_range(&second_gap)) { 148 second_gap.start = prev->vm_end; 149 second_gap.end = vma->vm_start; 150 } 151 next: 152 prev = vma; 153 } 154 rcu_read_unlock(); 155 156 if (!sz_range(&second_gap) || !sz_range(&first_gap)) 157 return -EINVAL; 158 159 /* Sort the two biggest gaps by address */ 160 if (first_gap.start > second_gap.start) 161 swap(first_gap, second_gap); 162 163 /* Store the result */ 164 regions[0].start = ALIGN(start, DAMON_MIN_REGION); 165 regions[0].end = ALIGN(first_gap.start, DAMON_MIN_REGION); 166 regions[1].start = ALIGN(first_gap.end, DAMON_MIN_REGION); 167 regions[1].end = ALIGN(second_gap.start, DAMON_MIN_REGION); 168 regions[2].start = ALIGN(second_gap.end, DAMON_MIN_REGION); 169 regions[2].end = ALIGN(prev->vm_end, DAMON_MIN_REGION); 170 171 return 0; 172 } 173 174 /* 175 * Get the three regions in the given target (task) 176 * 177 * Returns 0 on success, negative error code otherwise. 178 */ 179 static int damon_va_three_regions(struct damon_target *t, 180 struct damon_addr_range regions[3]) 181 { 182 struct mm_struct *mm; 183 int rc; 184 185 mm = damon_get_mm(t); 186 if (!mm) 187 return -EINVAL; 188 189 mmap_read_lock(mm); 190 rc = __damon_va_three_regions(mm, regions); 191 mmap_read_unlock(mm); 192 193 mmput(mm); 194 return rc; 195 } 196 197 /* 198 * Initialize the monitoring target regions for the given target (task) 199 * 200 * t the given target 201 * 202 * Because only a number of small portions of the entire address space 203 * is actually mapped to the memory and accessed, monitoring the unmapped 204 * regions is wasteful. That said, because we can deal with small noises, 205 * tracking every mapping is not strictly required but could even incur a high 206 * overhead if the mapping frequently changes or the number of mappings is 207 * high. The adaptive regions adjustment mechanism will further help to deal 208 * with the noise by simply identifying the unmapped areas as a region that 209 * has no access. Moreover, applying the real mappings that would have many 210 * unmapped areas inside will make the adaptive mechanism quite complex. That 211 * said, too huge unmapped areas inside the monitoring target should be removed 212 * to not take the time for the adaptive mechanism. 213 * 214 * For the reason, we convert the complex mappings to three distinct regions 215 * that cover every mapped area of the address space. Also the two gaps 216 * between the three regions are the two biggest unmapped areas in the given 217 * address space. In detail, this function first identifies the start and the 218 * end of the mappings and the two biggest unmapped areas of the address space. 219 * Then, it constructs the three regions as below: 220 * 221 * [mappings[0]->start, big_two_unmapped_areas[0]->start) 222 * [big_two_unmapped_areas[0]->end, big_two_unmapped_areas[1]->start) 223 * [big_two_unmapped_areas[1]->end, mappings[nr_mappings - 1]->end) 224 * 225 * As usual memory map of processes is as below, the gap between the heap and 226 * the uppermost mmap()-ed region, and the gap between the lowermost mmap()-ed 227 * region and the stack will be two biggest unmapped regions. Because these 228 * gaps are exceptionally huge areas in usual address space, excluding these 229 * two biggest unmapped regions will be sufficient to make a trade-off. 230 * 231 * <heap> 232 * <BIG UNMAPPED REGION 1> 233 * <uppermost mmap()-ed region> 234 * (other mmap()-ed regions and small unmapped regions) 235 * <lowermost mmap()-ed region> 236 * <BIG UNMAPPED REGION 2> 237 * <stack> 238 */ 239 static void __damon_va_init_regions(struct damon_ctx *ctx, 240 struct damon_target *t) 241 { 242 struct damon_target *ti; 243 struct damon_region *r; 244 struct damon_addr_range regions[3]; 245 unsigned long sz = 0, nr_pieces; 246 int i, tidx = 0; 247 248 if (damon_va_three_regions(t, regions)) { 249 damon_for_each_target(ti, ctx) { 250 if (ti == t) 251 break; 252 tidx++; 253 } 254 pr_debug("Failed to get three regions of %dth target\n", tidx); 255 return; 256 } 257 258 for (i = 0; i < 3; i++) 259 sz += regions[i].end - regions[i].start; 260 if (ctx->attrs.min_nr_regions) 261 sz /= ctx->attrs.min_nr_regions; 262 if (sz < DAMON_MIN_REGION) 263 sz = DAMON_MIN_REGION; 264 265 /* Set the initial three regions of the target */ 266 for (i = 0; i < 3; i++) { 267 r = damon_new_region(regions[i].start, regions[i].end); 268 if (!r) { 269 pr_err("%d'th init region creation failed\n", i); 270 return; 271 } 272 damon_add_region(r, t); 273 274 nr_pieces = (regions[i].end - regions[i].start) / sz; 275 damon_va_evenly_split_region(t, r, nr_pieces); 276 } 277 } 278 279 /* Initialize '->regions_list' of every target (task) */ 280 static void damon_va_init(struct damon_ctx *ctx) 281 { 282 struct damon_target *t; 283 284 damon_for_each_target(t, ctx) { 285 /* the user may set the target regions as they want */ 286 if (!damon_nr_regions(t)) 287 __damon_va_init_regions(ctx, t); 288 } 289 } 290 291 /* 292 * Update regions for current memory mappings 293 */ 294 static void damon_va_update(struct damon_ctx *ctx) 295 { 296 struct damon_addr_range three_regions[3]; 297 struct damon_target *t; 298 299 damon_for_each_target(t, ctx) { 300 if (damon_va_three_regions(t, three_regions)) 301 continue; 302 damon_set_regions(t, three_regions, 3); 303 } 304 } 305 306 static int damon_mkold_pmd_entry(pmd_t *pmd, unsigned long addr, 307 unsigned long next, struct mm_walk *walk) 308 { 309 pte_t *pte; 310 pmd_t pmde; 311 spinlock_t *ptl; 312 313 if (pmd_trans_huge(pmdp_get(pmd))) { 314 ptl = pmd_lock(walk->mm, pmd); 315 pmde = pmdp_get(pmd); 316 317 if (!pmd_present(pmde)) { 318 spin_unlock(ptl); 319 return 0; 320 } 321 322 if (pmd_trans_huge(pmde)) { 323 damon_pmdp_mkold(pmd, walk->vma, addr); 324 spin_unlock(ptl); 325 return 0; 326 } 327 spin_unlock(ptl); 328 } 329 330 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 331 if (!pte) { 332 walk->action = ACTION_AGAIN; 333 return 0; 334 } 335 if (!pte_present(ptep_get(pte))) 336 goto out; 337 damon_ptep_mkold(pte, walk->vma, addr); 338 out: 339 pte_unmap_unlock(pte, ptl); 340 return 0; 341 } 342 343 #ifdef CONFIG_HUGETLB_PAGE 344 static void damon_hugetlb_mkold(pte_t *pte, struct mm_struct *mm, 345 struct vm_area_struct *vma, unsigned long addr) 346 { 347 bool referenced = false; 348 pte_t entry = huge_ptep_get(mm, addr, pte); 349 struct folio *folio = pfn_folio(pte_pfn(entry)); 350 unsigned long psize = huge_page_size(hstate_vma(vma)); 351 352 folio_get(folio); 353 354 if (pte_young(entry)) { 355 referenced = true; 356 entry = pte_mkold(entry); 357 set_huge_pte_at(mm, addr, pte, entry, psize); 358 } 359 360 if (mmu_notifier_clear_young(mm, addr, 361 addr + huge_page_size(hstate_vma(vma)))) 362 referenced = true; 363 364 if (referenced) 365 folio_set_young(folio); 366 367 folio_set_idle(folio); 368 folio_put(folio); 369 } 370 371 static int damon_mkold_hugetlb_entry(pte_t *pte, unsigned long hmask, 372 unsigned long addr, unsigned long end, 373 struct mm_walk *walk) 374 { 375 struct hstate *h = hstate_vma(walk->vma); 376 spinlock_t *ptl; 377 pte_t entry; 378 379 ptl = huge_pte_lock(h, walk->mm, pte); 380 entry = huge_ptep_get(walk->mm, addr, pte); 381 if (!pte_present(entry)) 382 goto out; 383 384 damon_hugetlb_mkold(pte, walk->mm, walk->vma, addr); 385 386 out: 387 spin_unlock(ptl); 388 return 0; 389 } 390 #else 391 #define damon_mkold_hugetlb_entry NULL 392 #endif /* CONFIG_HUGETLB_PAGE */ 393 394 static const struct mm_walk_ops damon_mkold_ops = { 395 .pmd_entry = damon_mkold_pmd_entry, 396 .hugetlb_entry = damon_mkold_hugetlb_entry, 397 .walk_lock = PGWALK_RDLOCK, 398 }; 399 400 static void damon_va_mkold(struct mm_struct *mm, unsigned long addr) 401 { 402 mmap_read_lock(mm); 403 walk_page_range(mm, addr, addr + 1, &damon_mkold_ops, NULL); 404 mmap_read_unlock(mm); 405 } 406 407 /* 408 * Functions for the access checking of the regions 409 */ 410 411 static void __damon_va_prepare_access_check(struct mm_struct *mm, 412 struct damon_region *r) 413 { 414 r->sampling_addr = damon_rand(r->ar.start, r->ar.end); 415 416 damon_va_mkold(mm, r->sampling_addr); 417 } 418 419 static void damon_va_prepare_access_checks(struct damon_ctx *ctx) 420 { 421 struct damon_target *t; 422 struct mm_struct *mm; 423 struct damon_region *r; 424 425 damon_for_each_target(t, ctx) { 426 mm = damon_get_mm(t); 427 if (!mm) 428 continue; 429 damon_for_each_region(r, t) 430 __damon_va_prepare_access_check(mm, r); 431 mmput(mm); 432 } 433 } 434 435 struct damon_young_walk_private { 436 /* size of the folio for the access checked virtual memory address */ 437 unsigned long *folio_sz; 438 bool young; 439 }; 440 441 static int damon_young_pmd_entry(pmd_t *pmd, unsigned long addr, 442 unsigned long next, struct mm_walk *walk) 443 { 444 pte_t *pte; 445 pte_t ptent; 446 spinlock_t *ptl; 447 struct folio *folio; 448 struct damon_young_walk_private *priv = walk->private; 449 450 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 451 if (pmd_trans_huge(pmdp_get(pmd))) { 452 pmd_t pmde; 453 454 ptl = pmd_lock(walk->mm, pmd); 455 pmde = pmdp_get(pmd); 456 457 if (!pmd_present(pmde)) { 458 spin_unlock(ptl); 459 return 0; 460 } 461 462 if (!pmd_trans_huge(pmde)) { 463 spin_unlock(ptl); 464 goto regular_page; 465 } 466 folio = damon_get_folio(pmd_pfn(pmde)); 467 if (!folio) 468 goto huge_out; 469 if (pmd_young(pmde) || !folio_test_idle(folio) || 470 mmu_notifier_test_young(walk->mm, 471 addr)) 472 priv->young = true; 473 *priv->folio_sz = HPAGE_PMD_SIZE; 474 folio_put(folio); 475 huge_out: 476 spin_unlock(ptl); 477 return 0; 478 } 479 480 regular_page: 481 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 482 483 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 484 if (!pte) { 485 walk->action = ACTION_AGAIN; 486 return 0; 487 } 488 ptent = ptep_get(pte); 489 if (!pte_present(ptent)) 490 goto out; 491 folio = damon_get_folio(pte_pfn(ptent)); 492 if (!folio) 493 goto out; 494 if (pte_young(ptent) || !folio_test_idle(folio) || 495 mmu_notifier_test_young(walk->mm, addr)) 496 priv->young = true; 497 *priv->folio_sz = folio_size(folio); 498 folio_put(folio); 499 out: 500 pte_unmap_unlock(pte, ptl); 501 return 0; 502 } 503 504 #ifdef CONFIG_HUGETLB_PAGE 505 static int damon_young_hugetlb_entry(pte_t *pte, unsigned long hmask, 506 unsigned long addr, unsigned long end, 507 struct mm_walk *walk) 508 { 509 struct damon_young_walk_private *priv = walk->private; 510 struct hstate *h = hstate_vma(walk->vma); 511 struct folio *folio; 512 spinlock_t *ptl; 513 pte_t entry; 514 515 ptl = huge_pte_lock(h, walk->mm, pte); 516 entry = huge_ptep_get(walk->mm, addr, pte); 517 if (!pte_present(entry)) 518 goto out; 519 520 folio = pfn_folio(pte_pfn(entry)); 521 folio_get(folio); 522 523 if (pte_young(entry) || !folio_test_idle(folio) || 524 mmu_notifier_test_young(walk->mm, addr)) 525 priv->young = true; 526 *priv->folio_sz = huge_page_size(h); 527 528 folio_put(folio); 529 530 out: 531 spin_unlock(ptl); 532 return 0; 533 } 534 #else 535 #define damon_young_hugetlb_entry NULL 536 #endif /* CONFIG_HUGETLB_PAGE */ 537 538 static const struct mm_walk_ops damon_young_ops = { 539 .pmd_entry = damon_young_pmd_entry, 540 .hugetlb_entry = damon_young_hugetlb_entry, 541 .walk_lock = PGWALK_RDLOCK, 542 }; 543 544 static bool damon_va_young(struct mm_struct *mm, unsigned long addr, 545 unsigned long *folio_sz) 546 { 547 struct damon_young_walk_private arg = { 548 .folio_sz = folio_sz, 549 .young = false, 550 }; 551 552 mmap_read_lock(mm); 553 walk_page_range(mm, addr, addr + 1, &damon_young_ops, &arg); 554 mmap_read_unlock(mm); 555 return arg.young; 556 } 557 558 /* 559 * Check whether the region was accessed after the last preparation 560 * 561 * mm 'mm_struct' for the given virtual address space 562 * r the region to be checked 563 */ 564 static void __damon_va_check_access(struct mm_struct *mm, 565 struct damon_region *r, bool same_target, 566 struct damon_attrs *attrs) 567 { 568 static unsigned long last_addr; 569 static unsigned long last_folio_sz = PAGE_SIZE; 570 static bool last_accessed; 571 572 if (!mm) { 573 damon_update_region_access_rate(r, false, attrs); 574 return; 575 } 576 577 /* If the region is in the last checked page, reuse the result */ 578 if (same_target && (ALIGN_DOWN(last_addr, last_folio_sz) == 579 ALIGN_DOWN(r->sampling_addr, last_folio_sz))) { 580 damon_update_region_access_rate(r, last_accessed, attrs); 581 return; 582 } 583 584 last_accessed = damon_va_young(mm, r->sampling_addr, &last_folio_sz); 585 damon_update_region_access_rate(r, last_accessed, attrs); 586 587 last_addr = r->sampling_addr; 588 } 589 590 static unsigned int damon_va_check_accesses(struct damon_ctx *ctx) 591 { 592 struct damon_target *t; 593 struct mm_struct *mm; 594 struct damon_region *r; 595 unsigned int max_nr_accesses = 0; 596 bool same_target; 597 598 damon_for_each_target(t, ctx) { 599 mm = damon_get_mm(t); 600 same_target = false; 601 damon_for_each_region(r, t) { 602 __damon_va_check_access(mm, r, same_target, 603 &ctx->attrs); 604 max_nr_accesses = max(r->nr_accesses, max_nr_accesses); 605 same_target = true; 606 } 607 if (mm) 608 mmput(mm); 609 } 610 611 return max_nr_accesses; 612 } 613 614 static bool damos_va_filter_young_match(struct damos_filter *filter, 615 struct folio *folio, struct vm_area_struct *vma, 616 unsigned long addr, pte_t *ptep, pmd_t *pmdp) 617 { 618 bool young = false; 619 620 if (ptep) 621 young = pte_young(ptep_get(ptep)); 622 else if (pmdp) 623 young = pmd_young(pmdp_get(pmdp)); 624 625 young = young || !folio_test_idle(folio) || 626 mmu_notifier_test_young(vma->vm_mm, addr); 627 628 if (young && ptep) 629 damon_ptep_mkold(ptep, vma, addr); 630 else if (young && pmdp) 631 damon_pmdp_mkold(pmdp, vma, addr); 632 633 return young == filter->matching; 634 } 635 636 static bool damos_va_filter_out(struct damos *scheme, struct folio *folio, 637 struct vm_area_struct *vma, unsigned long addr, 638 pte_t *ptep, pmd_t *pmdp) 639 { 640 struct damos_filter *filter; 641 bool matched; 642 643 if (scheme->core_filters_allowed) 644 return false; 645 646 damos_for_each_ops_filter(filter, scheme) { 647 /* 648 * damos_folio_filter_match checks the young filter by doing an 649 * rmap on the folio to find its page table. However, being the 650 * vaddr scheme, we have direct access to the page tables, so 651 * use that instead. 652 */ 653 if (filter->type == DAMOS_FILTER_TYPE_YOUNG) 654 matched = damos_va_filter_young_match(filter, folio, 655 vma, addr, ptep, pmdp); 656 else 657 matched = damos_folio_filter_match(filter, folio); 658 659 if (matched) 660 return !filter->allow; 661 } 662 return scheme->ops_filters_default_reject; 663 } 664 665 struct damos_va_migrate_private { 666 struct list_head *migration_lists; 667 struct damos *scheme; 668 }; 669 670 /* 671 * Place the given folio in the migration_list corresponding to where the folio 672 * should be migrated. 673 * 674 * The algorithm used here is similar to weighted_interleave_nid() 675 */ 676 static void damos_va_migrate_dests_add(struct folio *folio, 677 struct vm_area_struct *vma, unsigned long addr, 678 struct damos_migrate_dests *dests, 679 struct list_head *migration_lists) 680 { 681 pgoff_t ilx; 682 int order; 683 unsigned int target; 684 unsigned int weight_total = 0; 685 int i; 686 687 /* 688 * If dests is empty, there is only one migration list corresponding 689 * to s->target_nid. 690 */ 691 if (!dests->nr_dests) { 692 i = 0; 693 goto isolate; 694 } 695 696 order = folio_order(folio); 697 ilx = vma->vm_pgoff >> order; 698 ilx += (addr - vma->vm_start) >> (PAGE_SHIFT + order); 699 700 for (i = 0; i < dests->nr_dests; i++) 701 weight_total += dests->weight_arr[i]; 702 703 /* If the total weights are somehow 0, don't migrate at all */ 704 if (!weight_total) 705 return; 706 707 target = ilx % weight_total; 708 for (i = 0; i < dests->nr_dests; i++) { 709 if (target < dests->weight_arr[i]) 710 break; 711 target -= dests->weight_arr[i]; 712 } 713 714 /* If the folio is already in the right node, don't do anything */ 715 if (folio_nid(folio) == dests->node_id_arr[i]) 716 return; 717 718 isolate: 719 if (!folio_isolate_lru(folio)) 720 return; 721 722 list_add(&folio->lru, &migration_lists[i]); 723 } 724 725 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 726 static int damos_va_migrate_pmd_entry(pmd_t *pmd, unsigned long addr, 727 unsigned long next, struct mm_walk *walk) 728 { 729 struct damos_va_migrate_private *priv = walk->private; 730 struct list_head *migration_lists = priv->migration_lists; 731 struct damos *s = priv->scheme; 732 struct damos_migrate_dests *dests = &s->migrate_dests; 733 struct folio *folio; 734 spinlock_t *ptl; 735 pmd_t pmde; 736 737 ptl = pmd_lock(walk->mm, pmd); 738 pmde = pmdp_get(pmd); 739 740 if (!pmd_present(pmde) || !pmd_trans_huge(pmde)) 741 goto unlock; 742 743 /* Tell page walk code to not split the PMD */ 744 walk->action = ACTION_CONTINUE; 745 746 folio = damon_get_folio(pmd_pfn(pmde)); 747 if (!folio) 748 goto unlock; 749 750 if (damos_va_filter_out(s, folio, walk->vma, addr, NULL, pmd)) 751 goto put_folio; 752 753 damos_va_migrate_dests_add(folio, walk->vma, addr, dests, 754 migration_lists); 755 756 put_folio: 757 folio_put(folio); 758 unlock: 759 spin_unlock(ptl); 760 return 0; 761 } 762 #else 763 #define damos_va_migrate_pmd_entry NULL 764 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 765 766 static int damos_va_migrate_pte_entry(pte_t *pte, unsigned long addr, 767 unsigned long next, struct mm_walk *walk) 768 { 769 struct damos_va_migrate_private *priv = walk->private; 770 struct list_head *migration_lists = priv->migration_lists; 771 struct damos *s = priv->scheme; 772 struct damos_migrate_dests *dests = &s->migrate_dests; 773 struct folio *folio; 774 pte_t ptent; 775 776 ptent = ptep_get(pte); 777 if (pte_none(ptent) || !pte_present(ptent)) 778 return 0; 779 780 folio = damon_get_folio(pte_pfn(ptent)); 781 if (!folio) 782 return 0; 783 784 if (damos_va_filter_out(s, folio, walk->vma, addr, pte, NULL)) 785 goto put_folio; 786 787 damos_va_migrate_dests_add(folio, walk->vma, addr, dests, 788 migration_lists); 789 790 put_folio: 791 folio_put(folio); 792 return 0; 793 } 794 795 /* 796 * Functions for the target validity check and cleanup 797 */ 798 799 static bool damon_va_target_valid(struct damon_target *t) 800 { 801 struct task_struct *task; 802 803 task = damon_get_task_struct(t); 804 if (task) { 805 put_task_struct(task); 806 return true; 807 } 808 809 return false; 810 } 811 812 static void damon_va_cleanup_target(struct damon_target *t) 813 { 814 put_pid(t->pid); 815 } 816 817 #ifndef CONFIG_ADVISE_SYSCALLS 818 static unsigned long damos_madvise(struct damon_target *target, 819 struct damon_region *r, int behavior) 820 { 821 return 0; 822 } 823 #else 824 static unsigned long damos_madvise(struct damon_target *target, 825 struct damon_region *r, int behavior) 826 { 827 struct mm_struct *mm; 828 unsigned long start = PAGE_ALIGN(r->ar.start); 829 unsigned long len = PAGE_ALIGN(damon_sz_region(r)); 830 unsigned long applied; 831 832 mm = damon_get_mm(target); 833 if (!mm) 834 return 0; 835 836 applied = do_madvise(mm, start, len, behavior) ? 0 : len; 837 mmput(mm); 838 839 return applied; 840 } 841 #endif /* CONFIG_ADVISE_SYSCALLS */ 842 843 static unsigned long damos_va_migrate(struct damon_target *target, 844 struct damon_region *r, struct damos *s, 845 unsigned long *sz_filter_passed) 846 { 847 LIST_HEAD(folio_list); 848 struct damos_va_migrate_private priv; 849 struct mm_struct *mm; 850 int nr_dests; 851 int nid; 852 bool use_target_nid; 853 unsigned long applied = 0; 854 struct damos_migrate_dests *dests = &s->migrate_dests; 855 struct mm_walk_ops walk_ops = { 856 .pmd_entry = damos_va_migrate_pmd_entry, 857 .pte_entry = damos_va_migrate_pte_entry, 858 .walk_lock = PGWALK_RDLOCK, 859 }; 860 861 use_target_nid = dests->nr_dests == 0; 862 nr_dests = use_target_nid ? 1 : dests->nr_dests; 863 priv.scheme = s; 864 priv.migration_lists = kmalloc_array(nr_dests, 865 sizeof(*priv.migration_lists), GFP_KERNEL); 866 if (!priv.migration_lists) 867 return 0; 868 869 for (int i = 0; i < nr_dests; i++) 870 INIT_LIST_HEAD(&priv.migration_lists[i]); 871 872 873 mm = damon_get_mm(target); 874 if (!mm) 875 goto free_lists; 876 877 mmap_read_lock(mm); 878 walk_page_range(mm, r->ar.start, r->ar.end, &walk_ops, &priv); 879 mmap_read_unlock(mm); 880 mmput(mm); 881 882 for (int i = 0; i < nr_dests; i++) { 883 nid = use_target_nid ? s->target_nid : dests->node_id_arr[i]; 884 applied += damon_migrate_pages(&priv.migration_lists[i], nid); 885 cond_resched(); 886 } 887 888 free_lists: 889 kfree(priv.migration_lists); 890 return applied * PAGE_SIZE; 891 } 892 893 static unsigned long damon_va_apply_scheme(struct damon_ctx *ctx, 894 struct damon_target *t, struct damon_region *r, 895 struct damos *scheme, unsigned long *sz_filter_passed) 896 { 897 int madv_action; 898 899 switch (scheme->action) { 900 case DAMOS_WILLNEED: 901 madv_action = MADV_WILLNEED; 902 break; 903 case DAMOS_COLD: 904 madv_action = MADV_COLD; 905 break; 906 case DAMOS_PAGEOUT: 907 madv_action = MADV_PAGEOUT; 908 break; 909 case DAMOS_HUGEPAGE: 910 madv_action = MADV_HUGEPAGE; 911 break; 912 case DAMOS_NOHUGEPAGE: 913 madv_action = MADV_NOHUGEPAGE; 914 break; 915 case DAMOS_MIGRATE_HOT: 916 case DAMOS_MIGRATE_COLD: 917 return damos_va_migrate(t, r, scheme, sz_filter_passed); 918 case DAMOS_STAT: 919 return 0; 920 default: 921 /* 922 * DAMOS actions that are not yet supported by 'vaddr'. 923 */ 924 return 0; 925 } 926 927 return damos_madvise(t, r, madv_action); 928 } 929 930 static int damon_va_scheme_score(struct damon_ctx *context, 931 struct damon_target *t, struct damon_region *r, 932 struct damos *scheme) 933 { 934 935 switch (scheme->action) { 936 case DAMOS_PAGEOUT: 937 return damon_cold_score(context, r, scheme); 938 case DAMOS_MIGRATE_HOT: 939 return damon_hot_score(context, r, scheme); 940 case DAMOS_MIGRATE_COLD: 941 return damon_cold_score(context, r, scheme); 942 default: 943 break; 944 } 945 946 return DAMOS_MAX_SCORE; 947 } 948 949 static int __init damon_va_initcall(void) 950 { 951 struct damon_operations ops = { 952 .id = DAMON_OPS_VADDR, 953 .init = damon_va_init, 954 .update = damon_va_update, 955 .prepare_access_checks = damon_va_prepare_access_checks, 956 .check_accesses = damon_va_check_accesses, 957 .target_valid = damon_va_target_valid, 958 .cleanup_target = damon_va_cleanup_target, 959 .cleanup = NULL, 960 .apply_scheme = damon_va_apply_scheme, 961 .get_scheme_score = damon_va_scheme_score, 962 }; 963 /* ops for fixed virtual address ranges */ 964 struct damon_operations ops_fvaddr = ops; 965 int err; 966 967 /* Don't set the monitoring target regions for the entire mapping */ 968 ops_fvaddr.id = DAMON_OPS_FVADDR; 969 ops_fvaddr.init = NULL; 970 ops_fvaddr.update = NULL; 971 972 err = damon_register_ops(&ops); 973 if (err) 974 return err; 975 return damon_register_ops(&ops_fvaddr); 976 }; 977 978 subsys_initcall(damon_va_initcall); 979 980 #include "tests/vaddr-kunit.h" 981