xref: /linux/mm/damon/ops-common.c (revision d206cef03c4827984e6ac88a9472b70c41f5b28d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common Primitives for Data Access Monitoring
4  *
5  * Author: SeongJae Park <sj@kernel.org>
6  */
7 
8 #include <linux/mmu_notifier.h>
9 #include <linux/page_idle.h>
10 #include <linux/pagemap.h>
11 #include <linux/rmap.h>
12 
13 #include "ops-common.h"
14 
15 /*
16  * Get an online page for a pfn if it's in the LRU list.  Otherwise, returns
17  * NULL.
18  *
19  * The body of this function is stolen from the 'page_idle_get_page()'.  We
20  * steal rather than reuse it because the code is quite simple.
21  */
22 struct page *damon_get_page(unsigned long pfn)
23 {
24 	struct page *page = pfn_to_online_page(pfn);
25 
26 	if (!page || !PageLRU(page) || !get_page_unless_zero(page))
27 		return NULL;
28 
29 	if (unlikely(!PageLRU(page))) {
30 		put_page(page);
31 		page = NULL;
32 	}
33 	return page;
34 }
35 
36 void damon_ptep_mkold(pte_t *pte, struct mm_struct *mm, unsigned long addr)
37 {
38 	bool referenced = false;
39 	struct page *page = damon_get_page(pte_pfn(*pte));
40 
41 	if (!page)
42 		return;
43 
44 	if (pte_young(*pte)) {
45 		referenced = true;
46 		*pte = pte_mkold(*pte);
47 	}
48 
49 #ifdef CONFIG_MMU_NOTIFIER
50 	if (mmu_notifier_clear_young(mm, addr, addr + PAGE_SIZE))
51 		referenced = true;
52 #endif /* CONFIG_MMU_NOTIFIER */
53 
54 	if (referenced)
55 		set_page_young(page);
56 
57 	set_page_idle(page);
58 	put_page(page);
59 }
60 
61 void damon_pmdp_mkold(pmd_t *pmd, struct mm_struct *mm, unsigned long addr)
62 {
63 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
64 	bool referenced = false;
65 	struct page *page = damon_get_page(pmd_pfn(*pmd));
66 
67 	if (!page)
68 		return;
69 
70 	if (pmd_young(*pmd)) {
71 		referenced = true;
72 		*pmd = pmd_mkold(*pmd);
73 	}
74 
75 #ifdef CONFIG_MMU_NOTIFIER
76 	if (mmu_notifier_clear_young(mm, addr, addr + HPAGE_PMD_SIZE))
77 		referenced = true;
78 #endif /* CONFIG_MMU_NOTIFIER */
79 
80 	if (referenced)
81 		set_page_young(page);
82 
83 	set_page_idle(page);
84 	put_page(page);
85 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
86 }
87 
88 #define DAMON_MAX_SUBSCORE	(100)
89 #define DAMON_MAX_AGE_IN_LOG	(32)
90 
91 int damon_pageout_score(struct damon_ctx *c, struct damon_region *r,
92 			struct damos *s)
93 {
94 	unsigned int max_nr_accesses;
95 	int freq_subscore;
96 	unsigned int age_in_sec;
97 	int age_in_log, age_subscore;
98 	unsigned int freq_weight = s->quota.weight_nr_accesses;
99 	unsigned int age_weight = s->quota.weight_age;
100 	int hotness;
101 
102 	max_nr_accesses = c->aggr_interval / c->sample_interval;
103 	freq_subscore = r->nr_accesses * DAMON_MAX_SUBSCORE / max_nr_accesses;
104 
105 	age_in_sec = (unsigned long)r->age * c->aggr_interval / 1000000;
106 	for (age_in_log = 0; age_in_log < DAMON_MAX_AGE_IN_LOG && age_in_sec;
107 			age_in_log++, age_in_sec >>= 1)
108 		;
109 
110 	/* If frequency is 0, higher age means it's colder */
111 	if (freq_subscore == 0)
112 		age_in_log *= -1;
113 
114 	/*
115 	 * Now age_in_log is in [-DAMON_MAX_AGE_IN_LOG, DAMON_MAX_AGE_IN_LOG].
116 	 * Scale it to be in [0, 100] and set it as age subscore.
117 	 */
118 	age_in_log += DAMON_MAX_AGE_IN_LOG;
119 	age_subscore = age_in_log * DAMON_MAX_SUBSCORE /
120 		DAMON_MAX_AGE_IN_LOG / 2;
121 
122 	hotness = (freq_weight * freq_subscore + age_weight * age_subscore);
123 	if (freq_weight + age_weight)
124 		hotness /= freq_weight + age_weight;
125 	/*
126 	 * Transform it to fit in [0, DAMOS_MAX_SCORE]
127 	 */
128 	hotness = hotness * DAMOS_MAX_SCORE / DAMON_MAX_SUBSCORE;
129 
130 	/* Return coldness of the region */
131 	return DAMOS_MAX_SCORE - hotness;
132 }
133 
134 int damon_hot_score(struct damon_ctx *c, struct damon_region *r,
135 			struct damos *s)
136 {
137 	unsigned int max_nr_accesses;
138 	int freq_subscore;
139 	unsigned int age_in_sec;
140 	int age_in_log, age_subscore;
141 	unsigned int freq_weight = s->quota.weight_nr_accesses;
142 	unsigned int age_weight = s->quota.weight_age;
143 	int hotness;
144 
145 	max_nr_accesses = c->aggr_interval / c->sample_interval;
146 	freq_subscore = r->nr_accesses * DAMON_MAX_SUBSCORE / max_nr_accesses;
147 
148 	age_in_sec = (unsigned long)r->age * c->aggr_interval / 1000000;
149 	for (age_in_log = 0; age_in_log < DAMON_MAX_AGE_IN_LOG && age_in_sec;
150 			age_in_log++, age_in_sec >>= 1)
151 		;
152 
153 	/* If frequency is 0, higher age means it's colder */
154 	if (freq_subscore == 0)
155 		age_in_log *= -1;
156 
157 	/*
158 	 * Now age_in_log is in [-DAMON_MAX_AGE_IN_LOG, DAMON_MAX_AGE_IN_LOG].
159 	 * Scale it to be in [0, 100] and set it as age subscore.
160 	 */
161 	age_in_log += DAMON_MAX_AGE_IN_LOG;
162 	age_subscore = age_in_log * DAMON_MAX_SUBSCORE /
163 		DAMON_MAX_AGE_IN_LOG / 2;
164 
165 	hotness = (freq_weight * freq_subscore + age_weight * age_subscore);
166 	if (freq_weight + age_weight)
167 		hotness /= freq_weight + age_weight;
168 	/*
169 	 * Transform it to fit in [0, DAMOS_MAX_SCORE]
170 	 */
171 	hotness = hotness * DAMOS_MAX_SCORE / DAMON_MAX_SUBSCORE;
172 
173 	return hotness;
174 }
175