1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Data Access Monitor 4 * 5 * Author: SeongJae Park <sjpark@amazon.de> 6 */ 7 8 #define pr_fmt(fmt) "damon: " fmt 9 10 #include <linux/damon.h> 11 #include <linux/delay.h> 12 #include <linux/kthread.h> 13 #include <linux/mm.h> 14 #include <linux/slab.h> 15 #include <linux/string.h> 16 17 #define CREATE_TRACE_POINTS 18 #include <trace/events/damon.h> 19 20 #ifdef CONFIG_DAMON_KUNIT_TEST 21 #undef DAMON_MIN_REGION 22 #define DAMON_MIN_REGION 1 23 #endif 24 25 static DEFINE_MUTEX(damon_lock); 26 static int nr_running_ctxs; 27 static bool running_exclusive_ctxs; 28 29 static DEFINE_MUTEX(damon_ops_lock); 30 static struct damon_operations damon_registered_ops[NR_DAMON_OPS]; 31 32 static struct kmem_cache *damon_region_cache __ro_after_init; 33 34 /* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */ 35 static bool __damon_is_registered_ops(enum damon_ops_id id) 36 { 37 struct damon_operations empty_ops = {}; 38 39 if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops))) 40 return false; 41 return true; 42 } 43 44 /** 45 * damon_is_registered_ops() - Check if a given damon_operations is registered. 46 * @id: Id of the damon_operations to check if registered. 47 * 48 * Return: true if the ops is set, false otherwise. 49 */ 50 bool damon_is_registered_ops(enum damon_ops_id id) 51 { 52 bool registered; 53 54 if (id >= NR_DAMON_OPS) 55 return false; 56 mutex_lock(&damon_ops_lock); 57 registered = __damon_is_registered_ops(id); 58 mutex_unlock(&damon_ops_lock); 59 return registered; 60 } 61 62 /** 63 * damon_register_ops() - Register a monitoring operations set to DAMON. 64 * @ops: monitoring operations set to register. 65 * 66 * This function registers a monitoring operations set of valid &struct 67 * damon_operations->id so that others can find and use them later. 68 * 69 * Return: 0 on success, negative error code otherwise. 70 */ 71 int damon_register_ops(struct damon_operations *ops) 72 { 73 int err = 0; 74 75 if (ops->id >= NR_DAMON_OPS) 76 return -EINVAL; 77 mutex_lock(&damon_ops_lock); 78 /* Fail for already registered ops */ 79 if (__damon_is_registered_ops(ops->id)) { 80 err = -EINVAL; 81 goto out; 82 } 83 damon_registered_ops[ops->id] = *ops; 84 out: 85 mutex_unlock(&damon_ops_lock); 86 return err; 87 } 88 89 /** 90 * damon_select_ops() - Select a monitoring operations to use with the context. 91 * @ctx: monitoring context to use the operations. 92 * @id: id of the registered monitoring operations to select. 93 * 94 * This function finds registered monitoring operations set of @id and make 95 * @ctx to use it. 96 * 97 * Return: 0 on success, negative error code otherwise. 98 */ 99 int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id) 100 { 101 int err = 0; 102 103 if (id >= NR_DAMON_OPS) 104 return -EINVAL; 105 106 mutex_lock(&damon_ops_lock); 107 if (!__damon_is_registered_ops(id)) 108 err = -EINVAL; 109 else 110 ctx->ops = damon_registered_ops[id]; 111 mutex_unlock(&damon_ops_lock); 112 return err; 113 } 114 115 /* 116 * Construct a damon_region struct 117 * 118 * Returns the pointer to the new struct if success, or NULL otherwise 119 */ 120 struct damon_region *damon_new_region(unsigned long start, unsigned long end) 121 { 122 struct damon_region *region; 123 124 region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL); 125 if (!region) 126 return NULL; 127 128 region->ar.start = start; 129 region->ar.end = end; 130 region->nr_accesses = 0; 131 INIT_LIST_HEAD(®ion->list); 132 133 region->age = 0; 134 region->last_nr_accesses = 0; 135 136 return region; 137 } 138 139 void damon_add_region(struct damon_region *r, struct damon_target *t) 140 { 141 list_add_tail(&r->list, &t->regions_list); 142 t->nr_regions++; 143 } 144 145 static void damon_del_region(struct damon_region *r, struct damon_target *t) 146 { 147 list_del(&r->list); 148 t->nr_regions--; 149 } 150 151 static void damon_free_region(struct damon_region *r) 152 { 153 kmem_cache_free(damon_region_cache, r); 154 } 155 156 void damon_destroy_region(struct damon_region *r, struct damon_target *t) 157 { 158 damon_del_region(r, t); 159 damon_free_region(r); 160 } 161 162 /* 163 * Check whether a region is intersecting an address range 164 * 165 * Returns true if it is. 166 */ 167 static bool damon_intersect(struct damon_region *r, 168 struct damon_addr_range *re) 169 { 170 return !(r->ar.end <= re->start || re->end <= r->ar.start); 171 } 172 173 /* 174 * Fill holes in regions with new regions. 175 */ 176 static int damon_fill_regions_holes(struct damon_region *first, 177 struct damon_region *last, struct damon_target *t) 178 { 179 struct damon_region *r = first; 180 181 damon_for_each_region_from(r, t) { 182 struct damon_region *next, *newr; 183 184 if (r == last) 185 break; 186 next = damon_next_region(r); 187 if (r->ar.end != next->ar.start) { 188 newr = damon_new_region(r->ar.end, next->ar.start); 189 if (!newr) 190 return -ENOMEM; 191 damon_insert_region(newr, r, next, t); 192 } 193 } 194 return 0; 195 } 196 197 /* 198 * damon_set_regions() - Set regions of a target for given address ranges. 199 * @t: the given target. 200 * @ranges: array of new monitoring target ranges. 201 * @nr_ranges: length of @ranges. 202 * 203 * This function adds new regions to, or modify existing regions of a 204 * monitoring target to fit in specific ranges. 205 * 206 * Return: 0 if success, or negative error code otherwise. 207 */ 208 int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges, 209 unsigned int nr_ranges) 210 { 211 struct damon_region *r, *next; 212 unsigned int i; 213 int err; 214 215 /* Remove regions which are not in the new ranges */ 216 damon_for_each_region_safe(r, next, t) { 217 for (i = 0; i < nr_ranges; i++) { 218 if (damon_intersect(r, &ranges[i])) 219 break; 220 } 221 if (i == nr_ranges) 222 damon_destroy_region(r, t); 223 } 224 225 r = damon_first_region(t); 226 /* Add new regions or resize existing regions to fit in the ranges */ 227 for (i = 0; i < nr_ranges; i++) { 228 struct damon_region *first = NULL, *last, *newr; 229 struct damon_addr_range *range; 230 231 range = &ranges[i]; 232 /* Get the first/last regions intersecting with the range */ 233 damon_for_each_region_from(r, t) { 234 if (damon_intersect(r, range)) { 235 if (!first) 236 first = r; 237 last = r; 238 } 239 if (r->ar.start >= range->end) 240 break; 241 } 242 if (!first) { 243 /* no region intersects with this range */ 244 newr = damon_new_region( 245 ALIGN_DOWN(range->start, 246 DAMON_MIN_REGION), 247 ALIGN(range->end, DAMON_MIN_REGION)); 248 if (!newr) 249 return -ENOMEM; 250 damon_insert_region(newr, damon_prev_region(r), r, t); 251 } else { 252 /* resize intersecting regions to fit in this range */ 253 first->ar.start = ALIGN_DOWN(range->start, 254 DAMON_MIN_REGION); 255 last->ar.end = ALIGN(range->end, DAMON_MIN_REGION); 256 257 /* fill possible holes in the range */ 258 err = damon_fill_regions_holes(first, last, t); 259 if (err) 260 return err; 261 } 262 } 263 return 0; 264 } 265 266 struct damos_filter *damos_new_filter(enum damos_filter_type type, 267 bool matching) 268 { 269 struct damos_filter *filter; 270 271 filter = kmalloc(sizeof(*filter), GFP_KERNEL); 272 if (!filter) 273 return NULL; 274 filter->type = type; 275 filter->matching = matching; 276 INIT_LIST_HEAD(&filter->list); 277 return filter; 278 } 279 280 void damos_add_filter(struct damos *s, struct damos_filter *f) 281 { 282 list_add_tail(&f->list, &s->filters); 283 } 284 285 static void damos_del_filter(struct damos_filter *f) 286 { 287 list_del(&f->list); 288 } 289 290 static void damos_free_filter(struct damos_filter *f) 291 { 292 kfree(f); 293 } 294 295 void damos_destroy_filter(struct damos_filter *f) 296 { 297 damos_del_filter(f); 298 damos_free_filter(f); 299 } 300 301 /* initialize private fields of damos_quota and return the pointer */ 302 static struct damos_quota *damos_quota_init_priv(struct damos_quota *quota) 303 { 304 quota->total_charged_sz = 0; 305 quota->total_charged_ns = 0; 306 quota->esz = 0; 307 quota->charged_sz = 0; 308 quota->charged_from = 0; 309 quota->charge_target_from = NULL; 310 quota->charge_addr_from = 0; 311 return quota; 312 } 313 314 struct damos *damon_new_scheme(struct damos_access_pattern *pattern, 315 enum damos_action action, struct damos_quota *quota, 316 struct damos_watermarks *wmarks) 317 { 318 struct damos *scheme; 319 320 scheme = kmalloc(sizeof(*scheme), GFP_KERNEL); 321 if (!scheme) 322 return NULL; 323 scheme->pattern = *pattern; 324 scheme->action = action; 325 INIT_LIST_HEAD(&scheme->filters); 326 scheme->stat = (struct damos_stat){}; 327 INIT_LIST_HEAD(&scheme->list); 328 329 scheme->quota = *(damos_quota_init_priv(quota)); 330 331 scheme->wmarks = *wmarks; 332 scheme->wmarks.activated = true; 333 334 return scheme; 335 } 336 337 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s) 338 { 339 list_add_tail(&s->list, &ctx->schemes); 340 } 341 342 static void damon_del_scheme(struct damos *s) 343 { 344 list_del(&s->list); 345 } 346 347 static void damon_free_scheme(struct damos *s) 348 { 349 kfree(s); 350 } 351 352 void damon_destroy_scheme(struct damos *s) 353 { 354 struct damos_filter *f, *next; 355 356 damos_for_each_filter_safe(f, next, s) 357 damos_destroy_filter(f); 358 damon_del_scheme(s); 359 damon_free_scheme(s); 360 } 361 362 /* 363 * Construct a damon_target struct 364 * 365 * Returns the pointer to the new struct if success, or NULL otherwise 366 */ 367 struct damon_target *damon_new_target(void) 368 { 369 struct damon_target *t; 370 371 t = kmalloc(sizeof(*t), GFP_KERNEL); 372 if (!t) 373 return NULL; 374 375 t->pid = NULL; 376 t->nr_regions = 0; 377 INIT_LIST_HEAD(&t->regions_list); 378 INIT_LIST_HEAD(&t->list); 379 380 return t; 381 } 382 383 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t) 384 { 385 list_add_tail(&t->list, &ctx->adaptive_targets); 386 } 387 388 bool damon_targets_empty(struct damon_ctx *ctx) 389 { 390 return list_empty(&ctx->adaptive_targets); 391 } 392 393 static void damon_del_target(struct damon_target *t) 394 { 395 list_del(&t->list); 396 } 397 398 void damon_free_target(struct damon_target *t) 399 { 400 struct damon_region *r, *next; 401 402 damon_for_each_region_safe(r, next, t) 403 damon_free_region(r); 404 kfree(t); 405 } 406 407 void damon_destroy_target(struct damon_target *t) 408 { 409 damon_del_target(t); 410 damon_free_target(t); 411 } 412 413 unsigned int damon_nr_regions(struct damon_target *t) 414 { 415 return t->nr_regions; 416 } 417 418 struct damon_ctx *damon_new_ctx(void) 419 { 420 struct damon_ctx *ctx; 421 422 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 423 if (!ctx) 424 return NULL; 425 426 ctx->attrs.sample_interval = 5 * 1000; 427 ctx->attrs.aggr_interval = 100 * 1000; 428 ctx->attrs.ops_update_interval = 60 * 1000 * 1000; 429 430 ktime_get_coarse_ts64(&ctx->last_aggregation); 431 ctx->last_ops_update = ctx->last_aggregation; 432 433 mutex_init(&ctx->kdamond_lock); 434 435 ctx->attrs.min_nr_regions = 10; 436 ctx->attrs.max_nr_regions = 1000; 437 438 INIT_LIST_HEAD(&ctx->adaptive_targets); 439 INIT_LIST_HEAD(&ctx->schemes); 440 441 return ctx; 442 } 443 444 static void damon_destroy_targets(struct damon_ctx *ctx) 445 { 446 struct damon_target *t, *next_t; 447 448 if (ctx->ops.cleanup) { 449 ctx->ops.cleanup(ctx); 450 return; 451 } 452 453 damon_for_each_target_safe(t, next_t, ctx) 454 damon_destroy_target(t); 455 } 456 457 void damon_destroy_ctx(struct damon_ctx *ctx) 458 { 459 struct damos *s, *next_s; 460 461 damon_destroy_targets(ctx); 462 463 damon_for_each_scheme_safe(s, next_s, ctx) 464 damon_destroy_scheme(s); 465 466 kfree(ctx); 467 } 468 469 static unsigned int damon_age_for_new_attrs(unsigned int age, 470 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs) 471 { 472 return age * old_attrs->aggr_interval / new_attrs->aggr_interval; 473 } 474 475 /* convert access ratio in bp (per 10,000) to nr_accesses */ 476 static unsigned int damon_accesses_bp_to_nr_accesses( 477 unsigned int accesses_bp, struct damon_attrs *attrs) 478 { 479 unsigned int max_nr_accesses = 480 attrs->aggr_interval / attrs->sample_interval; 481 482 return accesses_bp * max_nr_accesses / 10000; 483 } 484 485 /* convert nr_accesses to access ratio in bp (per 10,000) */ 486 static unsigned int damon_nr_accesses_to_accesses_bp( 487 unsigned int nr_accesses, struct damon_attrs *attrs) 488 { 489 unsigned int max_nr_accesses = 490 attrs->aggr_interval / attrs->sample_interval; 491 492 return nr_accesses * 10000 / max_nr_accesses; 493 } 494 495 static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses, 496 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs) 497 { 498 return damon_accesses_bp_to_nr_accesses( 499 damon_nr_accesses_to_accesses_bp( 500 nr_accesses, old_attrs), 501 new_attrs); 502 } 503 504 static void damon_update_monitoring_result(struct damon_region *r, 505 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs) 506 { 507 r->nr_accesses = damon_nr_accesses_for_new_attrs(r->nr_accesses, 508 old_attrs, new_attrs); 509 r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs); 510 } 511 512 /* 513 * region->nr_accesses is the number of sampling intervals in the last 514 * aggregation interval that access to the region has found, and region->age is 515 * the number of aggregation intervals that its access pattern has maintained. 516 * For the reason, the real meaning of the two fields depend on current 517 * sampling interval and aggregation interval. This function updates 518 * ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs. 519 */ 520 static void damon_update_monitoring_results(struct damon_ctx *ctx, 521 struct damon_attrs *new_attrs) 522 { 523 struct damon_attrs *old_attrs = &ctx->attrs; 524 struct damon_target *t; 525 struct damon_region *r; 526 527 /* if any interval is zero, simply forgive conversion */ 528 if (!old_attrs->sample_interval || !old_attrs->aggr_interval || 529 !new_attrs->sample_interval || 530 !new_attrs->aggr_interval) 531 return; 532 533 damon_for_each_target(t, ctx) 534 damon_for_each_region(r, t) 535 damon_update_monitoring_result( 536 r, old_attrs, new_attrs); 537 } 538 539 /** 540 * damon_set_attrs() - Set attributes for the monitoring. 541 * @ctx: monitoring context 542 * @attrs: monitoring attributes 543 * 544 * This function should not be called while the kdamond is running. 545 * Every time interval is in micro-seconds. 546 * 547 * Return: 0 on success, negative error code otherwise. 548 */ 549 int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs) 550 { 551 if (attrs->min_nr_regions < 3) 552 return -EINVAL; 553 if (attrs->min_nr_regions > attrs->max_nr_regions) 554 return -EINVAL; 555 if (attrs->sample_interval > attrs->aggr_interval) 556 return -EINVAL; 557 558 damon_update_monitoring_results(ctx, attrs); 559 ctx->attrs = *attrs; 560 return 0; 561 } 562 563 /** 564 * damon_set_schemes() - Set data access monitoring based operation schemes. 565 * @ctx: monitoring context 566 * @schemes: array of the schemes 567 * @nr_schemes: number of entries in @schemes 568 * 569 * This function should not be called while the kdamond of the context is 570 * running. 571 */ 572 void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes, 573 ssize_t nr_schemes) 574 { 575 struct damos *s, *next; 576 ssize_t i; 577 578 damon_for_each_scheme_safe(s, next, ctx) 579 damon_destroy_scheme(s); 580 for (i = 0; i < nr_schemes; i++) 581 damon_add_scheme(ctx, schemes[i]); 582 } 583 584 /** 585 * damon_nr_running_ctxs() - Return number of currently running contexts. 586 */ 587 int damon_nr_running_ctxs(void) 588 { 589 int nr_ctxs; 590 591 mutex_lock(&damon_lock); 592 nr_ctxs = nr_running_ctxs; 593 mutex_unlock(&damon_lock); 594 595 return nr_ctxs; 596 } 597 598 /* Returns the size upper limit for each monitoring region */ 599 static unsigned long damon_region_sz_limit(struct damon_ctx *ctx) 600 { 601 struct damon_target *t; 602 struct damon_region *r; 603 unsigned long sz = 0; 604 605 damon_for_each_target(t, ctx) { 606 damon_for_each_region(r, t) 607 sz += damon_sz_region(r); 608 } 609 610 if (ctx->attrs.min_nr_regions) 611 sz /= ctx->attrs.min_nr_regions; 612 if (sz < DAMON_MIN_REGION) 613 sz = DAMON_MIN_REGION; 614 615 return sz; 616 } 617 618 static int kdamond_fn(void *data); 619 620 /* 621 * __damon_start() - Starts monitoring with given context. 622 * @ctx: monitoring context 623 * 624 * This function should be called while damon_lock is hold. 625 * 626 * Return: 0 on success, negative error code otherwise. 627 */ 628 static int __damon_start(struct damon_ctx *ctx) 629 { 630 int err = -EBUSY; 631 632 mutex_lock(&ctx->kdamond_lock); 633 if (!ctx->kdamond) { 634 err = 0; 635 ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d", 636 nr_running_ctxs); 637 if (IS_ERR(ctx->kdamond)) { 638 err = PTR_ERR(ctx->kdamond); 639 ctx->kdamond = NULL; 640 } 641 } 642 mutex_unlock(&ctx->kdamond_lock); 643 644 return err; 645 } 646 647 /** 648 * damon_start() - Starts the monitorings for a given group of contexts. 649 * @ctxs: an array of the pointers for contexts to start monitoring 650 * @nr_ctxs: size of @ctxs 651 * @exclusive: exclusiveness of this contexts group 652 * 653 * This function starts a group of monitoring threads for a group of monitoring 654 * contexts. One thread per each context is created and run in parallel. The 655 * caller should handle synchronization between the threads by itself. If 656 * @exclusive is true and a group of threads that created by other 657 * 'damon_start()' call is currently running, this function does nothing but 658 * returns -EBUSY. 659 * 660 * Return: 0 on success, negative error code otherwise. 661 */ 662 int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive) 663 { 664 int i; 665 int err = 0; 666 667 mutex_lock(&damon_lock); 668 if ((exclusive && nr_running_ctxs) || 669 (!exclusive && running_exclusive_ctxs)) { 670 mutex_unlock(&damon_lock); 671 return -EBUSY; 672 } 673 674 for (i = 0; i < nr_ctxs; i++) { 675 err = __damon_start(ctxs[i]); 676 if (err) 677 break; 678 nr_running_ctxs++; 679 } 680 if (exclusive && nr_running_ctxs) 681 running_exclusive_ctxs = true; 682 mutex_unlock(&damon_lock); 683 684 return err; 685 } 686 687 /* 688 * __damon_stop() - Stops monitoring of a given context. 689 * @ctx: monitoring context 690 * 691 * Return: 0 on success, negative error code otherwise. 692 */ 693 static int __damon_stop(struct damon_ctx *ctx) 694 { 695 struct task_struct *tsk; 696 697 mutex_lock(&ctx->kdamond_lock); 698 tsk = ctx->kdamond; 699 if (tsk) { 700 get_task_struct(tsk); 701 mutex_unlock(&ctx->kdamond_lock); 702 kthread_stop(tsk); 703 put_task_struct(tsk); 704 return 0; 705 } 706 mutex_unlock(&ctx->kdamond_lock); 707 708 return -EPERM; 709 } 710 711 /** 712 * damon_stop() - Stops the monitorings for a given group of contexts. 713 * @ctxs: an array of the pointers for contexts to stop monitoring 714 * @nr_ctxs: size of @ctxs 715 * 716 * Return: 0 on success, negative error code otherwise. 717 */ 718 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs) 719 { 720 int i, err = 0; 721 722 for (i = 0; i < nr_ctxs; i++) { 723 /* nr_running_ctxs is decremented in kdamond_fn */ 724 err = __damon_stop(ctxs[i]); 725 if (err) 726 break; 727 } 728 return err; 729 } 730 731 /* 732 * damon_check_reset_time_interval() - Check if a time interval is elapsed. 733 * @baseline: the time to check whether the interval has elapsed since 734 * @interval: the time interval (microseconds) 735 * 736 * See whether the given time interval has passed since the given baseline 737 * time. If so, it also updates the baseline to current time for next check. 738 * 739 * Return: true if the time interval has passed, or false otherwise. 740 */ 741 static bool damon_check_reset_time_interval(struct timespec64 *baseline, 742 unsigned long interval) 743 { 744 struct timespec64 now; 745 746 ktime_get_coarse_ts64(&now); 747 if ((timespec64_to_ns(&now) - timespec64_to_ns(baseline)) < 748 interval * 1000) 749 return false; 750 *baseline = now; 751 return true; 752 } 753 754 /* 755 * Check whether it is time to flush the aggregated information 756 */ 757 static bool kdamond_aggregate_interval_passed(struct damon_ctx *ctx) 758 { 759 return damon_check_reset_time_interval(&ctx->last_aggregation, 760 ctx->attrs.aggr_interval); 761 } 762 763 /* 764 * Reset the aggregated monitoring results ('nr_accesses' of each region). 765 */ 766 static void kdamond_reset_aggregated(struct damon_ctx *c) 767 { 768 struct damon_target *t; 769 unsigned int ti = 0; /* target's index */ 770 771 damon_for_each_target(t, c) { 772 struct damon_region *r; 773 774 damon_for_each_region(r, t) { 775 trace_damon_aggregated(t, ti, r, damon_nr_regions(t)); 776 r->last_nr_accesses = r->nr_accesses; 777 r->nr_accesses = 0; 778 } 779 ti++; 780 } 781 } 782 783 static void damon_split_region_at(struct damon_target *t, 784 struct damon_region *r, unsigned long sz_r); 785 786 static bool __damos_valid_target(struct damon_region *r, struct damos *s) 787 { 788 unsigned long sz; 789 790 sz = damon_sz_region(r); 791 return s->pattern.min_sz_region <= sz && 792 sz <= s->pattern.max_sz_region && 793 s->pattern.min_nr_accesses <= r->nr_accesses && 794 r->nr_accesses <= s->pattern.max_nr_accesses && 795 s->pattern.min_age_region <= r->age && 796 r->age <= s->pattern.max_age_region; 797 } 798 799 static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t, 800 struct damon_region *r, struct damos *s) 801 { 802 bool ret = __damos_valid_target(r, s); 803 804 if (!ret || !s->quota.esz || !c->ops.get_scheme_score) 805 return ret; 806 807 return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score; 808 } 809 810 /* 811 * damos_skip_charged_region() - Check if the given region or starting part of 812 * it is already charged for the DAMOS quota. 813 * @t: The target of the region. 814 * @rp: The pointer to the region. 815 * @s: The scheme to be applied. 816 * 817 * If a quota of a scheme has exceeded in a quota charge window, the scheme's 818 * action would applied to only a part of the target access pattern fulfilling 819 * regions. To avoid applying the scheme action to only already applied 820 * regions, DAMON skips applying the scheme action to the regions that charged 821 * in the previous charge window. 822 * 823 * This function checks if a given region should be skipped or not for the 824 * reason. If only the starting part of the region has previously charged, 825 * this function splits the region into two so that the second one covers the 826 * area that not charged in the previous charge widnow and saves the second 827 * region in *rp and returns false, so that the caller can apply DAMON action 828 * to the second one. 829 * 830 * Return: true if the region should be entirely skipped, false otherwise. 831 */ 832 static bool damos_skip_charged_region(struct damon_target *t, 833 struct damon_region **rp, struct damos *s) 834 { 835 struct damon_region *r = *rp; 836 struct damos_quota *quota = &s->quota; 837 unsigned long sz_to_skip; 838 839 /* Skip previously charged regions */ 840 if (quota->charge_target_from) { 841 if (t != quota->charge_target_from) 842 return true; 843 if (r == damon_last_region(t)) { 844 quota->charge_target_from = NULL; 845 quota->charge_addr_from = 0; 846 return true; 847 } 848 if (quota->charge_addr_from && 849 r->ar.end <= quota->charge_addr_from) 850 return true; 851 852 if (quota->charge_addr_from && r->ar.start < 853 quota->charge_addr_from) { 854 sz_to_skip = ALIGN_DOWN(quota->charge_addr_from - 855 r->ar.start, DAMON_MIN_REGION); 856 if (!sz_to_skip) { 857 if (damon_sz_region(r) <= DAMON_MIN_REGION) 858 return true; 859 sz_to_skip = DAMON_MIN_REGION; 860 } 861 damon_split_region_at(t, r, sz_to_skip); 862 r = damon_next_region(r); 863 *rp = r; 864 } 865 quota->charge_target_from = NULL; 866 quota->charge_addr_from = 0; 867 } 868 return false; 869 } 870 871 static void damos_update_stat(struct damos *s, 872 unsigned long sz_tried, unsigned long sz_applied) 873 { 874 s->stat.nr_tried++; 875 s->stat.sz_tried += sz_tried; 876 if (sz_applied) 877 s->stat.nr_applied++; 878 s->stat.sz_applied += sz_applied; 879 } 880 881 static bool __damos_filter_out(struct damon_ctx *ctx, struct damon_target *t, 882 struct damon_region *r, struct damos_filter *filter) 883 { 884 bool matched = false; 885 struct damon_target *ti; 886 int target_idx = 0; 887 unsigned long start, end; 888 889 switch (filter->type) { 890 case DAMOS_FILTER_TYPE_TARGET: 891 damon_for_each_target(ti, ctx) { 892 if (ti == t) 893 break; 894 target_idx++; 895 } 896 matched = target_idx == filter->target_idx; 897 break; 898 case DAMOS_FILTER_TYPE_ADDR: 899 start = ALIGN_DOWN(filter->addr_range.start, DAMON_MIN_REGION); 900 end = ALIGN_DOWN(filter->addr_range.end, DAMON_MIN_REGION); 901 902 /* inside the range */ 903 if (start <= r->ar.start && r->ar.end <= end) { 904 matched = true; 905 break; 906 } 907 /* outside of the range */ 908 if (r->ar.end <= start || end <= r->ar.start) { 909 matched = false; 910 break; 911 } 912 /* start before the range and overlap */ 913 if (r->ar.start < start) { 914 damon_split_region_at(t, r, start - r->ar.start); 915 matched = false; 916 break; 917 } 918 /* start inside the range */ 919 damon_split_region_at(t, r, end - r->ar.start); 920 matched = true; 921 break; 922 default: 923 break; 924 } 925 926 return matched == filter->matching; 927 } 928 929 static bool damos_filter_out(struct damon_ctx *ctx, struct damon_target *t, 930 struct damon_region *r, struct damos *s) 931 { 932 struct damos_filter *filter; 933 934 damos_for_each_filter(filter, s) { 935 if (__damos_filter_out(ctx, t, r, filter)) 936 return true; 937 } 938 return false; 939 } 940 941 static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t, 942 struct damon_region *r, struct damos *s) 943 { 944 struct damos_quota *quota = &s->quota; 945 unsigned long sz = damon_sz_region(r); 946 struct timespec64 begin, end; 947 unsigned long sz_applied = 0; 948 int err = 0; 949 950 if (c->ops.apply_scheme) { 951 if (quota->esz && quota->charged_sz + sz > quota->esz) { 952 sz = ALIGN_DOWN(quota->esz - quota->charged_sz, 953 DAMON_MIN_REGION); 954 if (!sz) 955 goto update_stat; 956 damon_split_region_at(t, r, sz); 957 } 958 if (damos_filter_out(c, t, r, s)) 959 return; 960 ktime_get_coarse_ts64(&begin); 961 if (c->callback.before_damos_apply) 962 err = c->callback.before_damos_apply(c, t, r, s); 963 if (!err) 964 sz_applied = c->ops.apply_scheme(c, t, r, s); 965 ktime_get_coarse_ts64(&end); 966 quota->total_charged_ns += timespec64_to_ns(&end) - 967 timespec64_to_ns(&begin); 968 quota->charged_sz += sz; 969 if (quota->esz && quota->charged_sz >= quota->esz) { 970 quota->charge_target_from = t; 971 quota->charge_addr_from = r->ar.end + 1; 972 } 973 } 974 if (s->action != DAMOS_STAT) 975 r->age = 0; 976 977 update_stat: 978 damos_update_stat(s, sz, sz_applied); 979 } 980 981 static void damon_do_apply_schemes(struct damon_ctx *c, 982 struct damon_target *t, 983 struct damon_region *r) 984 { 985 struct damos *s; 986 987 damon_for_each_scheme(s, c) { 988 struct damos_quota *quota = &s->quota; 989 990 if (!s->wmarks.activated) 991 continue; 992 993 /* Check the quota */ 994 if (quota->esz && quota->charged_sz >= quota->esz) 995 continue; 996 997 if (damos_skip_charged_region(t, &r, s)) 998 continue; 999 1000 if (!damos_valid_target(c, t, r, s)) 1001 continue; 1002 1003 damos_apply_scheme(c, t, r, s); 1004 } 1005 } 1006 1007 /* Shouldn't be called if quota->ms and quota->sz are zero */ 1008 static void damos_set_effective_quota(struct damos_quota *quota) 1009 { 1010 unsigned long throughput; 1011 unsigned long esz; 1012 1013 if (!quota->ms) { 1014 quota->esz = quota->sz; 1015 return; 1016 } 1017 1018 if (quota->total_charged_ns) 1019 throughput = quota->total_charged_sz * 1000000 / 1020 quota->total_charged_ns; 1021 else 1022 throughput = PAGE_SIZE * 1024; 1023 esz = throughput * quota->ms; 1024 1025 if (quota->sz && quota->sz < esz) 1026 esz = quota->sz; 1027 quota->esz = esz; 1028 } 1029 1030 static void damos_adjust_quota(struct damon_ctx *c, struct damos *s) 1031 { 1032 struct damos_quota *quota = &s->quota; 1033 struct damon_target *t; 1034 struct damon_region *r; 1035 unsigned long cumulated_sz; 1036 unsigned int score, max_score = 0; 1037 1038 if (!quota->ms && !quota->sz) 1039 return; 1040 1041 /* New charge window starts */ 1042 if (time_after_eq(jiffies, quota->charged_from + 1043 msecs_to_jiffies(quota->reset_interval))) { 1044 if (quota->esz && quota->charged_sz >= quota->esz) 1045 s->stat.qt_exceeds++; 1046 quota->total_charged_sz += quota->charged_sz; 1047 quota->charged_from = jiffies; 1048 quota->charged_sz = 0; 1049 damos_set_effective_quota(quota); 1050 } 1051 1052 if (!c->ops.get_scheme_score) 1053 return; 1054 1055 /* Fill up the score histogram */ 1056 memset(quota->histogram, 0, sizeof(quota->histogram)); 1057 damon_for_each_target(t, c) { 1058 damon_for_each_region(r, t) { 1059 if (!__damos_valid_target(r, s)) 1060 continue; 1061 score = c->ops.get_scheme_score(c, t, r, s); 1062 quota->histogram[score] += damon_sz_region(r); 1063 if (score > max_score) 1064 max_score = score; 1065 } 1066 } 1067 1068 /* Set the min score limit */ 1069 for (cumulated_sz = 0, score = max_score; ; score--) { 1070 cumulated_sz += quota->histogram[score]; 1071 if (cumulated_sz >= quota->esz || !score) 1072 break; 1073 } 1074 quota->min_score = score; 1075 } 1076 1077 static void kdamond_apply_schemes(struct damon_ctx *c) 1078 { 1079 struct damon_target *t; 1080 struct damon_region *r, *next_r; 1081 struct damos *s; 1082 1083 damon_for_each_scheme(s, c) { 1084 if (!s->wmarks.activated) 1085 continue; 1086 1087 damos_adjust_quota(c, s); 1088 } 1089 1090 damon_for_each_target(t, c) { 1091 damon_for_each_region_safe(r, next_r, t) 1092 damon_do_apply_schemes(c, t, r); 1093 } 1094 } 1095 1096 /* 1097 * Merge two adjacent regions into one region 1098 */ 1099 static void damon_merge_two_regions(struct damon_target *t, 1100 struct damon_region *l, struct damon_region *r) 1101 { 1102 unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r); 1103 1104 l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) / 1105 (sz_l + sz_r); 1106 l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r); 1107 l->ar.end = r->ar.end; 1108 damon_destroy_region(r, t); 1109 } 1110 1111 /* 1112 * Merge adjacent regions having similar access frequencies 1113 * 1114 * t target affected by this merge operation 1115 * thres '->nr_accesses' diff threshold for the merge 1116 * sz_limit size upper limit of each region 1117 */ 1118 static void damon_merge_regions_of(struct damon_target *t, unsigned int thres, 1119 unsigned long sz_limit) 1120 { 1121 struct damon_region *r, *prev = NULL, *next; 1122 1123 damon_for_each_region_safe(r, next, t) { 1124 if (abs(r->nr_accesses - r->last_nr_accesses) > thres) 1125 r->age = 0; 1126 else 1127 r->age++; 1128 1129 if (prev && prev->ar.end == r->ar.start && 1130 abs(prev->nr_accesses - r->nr_accesses) <= thres && 1131 damon_sz_region(prev) + damon_sz_region(r) <= sz_limit) 1132 damon_merge_two_regions(t, prev, r); 1133 else 1134 prev = r; 1135 } 1136 } 1137 1138 /* 1139 * Merge adjacent regions having similar access frequencies 1140 * 1141 * threshold '->nr_accesses' diff threshold for the merge 1142 * sz_limit size upper limit of each region 1143 * 1144 * This function merges monitoring target regions which are adjacent and their 1145 * access frequencies are similar. This is for minimizing the monitoring 1146 * overhead under the dynamically changeable access pattern. If a merge was 1147 * unnecessarily made, later 'kdamond_split_regions()' will revert it. 1148 */ 1149 static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold, 1150 unsigned long sz_limit) 1151 { 1152 struct damon_target *t; 1153 1154 damon_for_each_target(t, c) 1155 damon_merge_regions_of(t, threshold, sz_limit); 1156 } 1157 1158 /* 1159 * Split a region in two 1160 * 1161 * r the region to be split 1162 * sz_r size of the first sub-region that will be made 1163 */ 1164 static void damon_split_region_at(struct damon_target *t, 1165 struct damon_region *r, unsigned long sz_r) 1166 { 1167 struct damon_region *new; 1168 1169 new = damon_new_region(r->ar.start + sz_r, r->ar.end); 1170 if (!new) 1171 return; 1172 1173 r->ar.end = new->ar.start; 1174 1175 new->age = r->age; 1176 new->last_nr_accesses = r->last_nr_accesses; 1177 1178 damon_insert_region(new, r, damon_next_region(r), t); 1179 } 1180 1181 /* Split every region in the given target into 'nr_subs' regions */ 1182 static void damon_split_regions_of(struct damon_target *t, int nr_subs) 1183 { 1184 struct damon_region *r, *next; 1185 unsigned long sz_region, sz_sub = 0; 1186 int i; 1187 1188 damon_for_each_region_safe(r, next, t) { 1189 sz_region = damon_sz_region(r); 1190 1191 for (i = 0; i < nr_subs - 1 && 1192 sz_region > 2 * DAMON_MIN_REGION; i++) { 1193 /* 1194 * Randomly select size of left sub-region to be at 1195 * least 10 percent and at most 90% of original region 1196 */ 1197 sz_sub = ALIGN_DOWN(damon_rand(1, 10) * 1198 sz_region / 10, DAMON_MIN_REGION); 1199 /* Do not allow blank region */ 1200 if (sz_sub == 0 || sz_sub >= sz_region) 1201 continue; 1202 1203 damon_split_region_at(t, r, sz_sub); 1204 sz_region = sz_sub; 1205 } 1206 } 1207 } 1208 1209 /* 1210 * Split every target region into randomly-sized small regions 1211 * 1212 * This function splits every target region into random-sized small regions if 1213 * current total number of the regions is equal or smaller than half of the 1214 * user-specified maximum number of regions. This is for maximizing the 1215 * monitoring accuracy under the dynamically changeable access patterns. If a 1216 * split was unnecessarily made, later 'kdamond_merge_regions()' will revert 1217 * it. 1218 */ 1219 static void kdamond_split_regions(struct damon_ctx *ctx) 1220 { 1221 struct damon_target *t; 1222 unsigned int nr_regions = 0; 1223 static unsigned int last_nr_regions; 1224 int nr_subregions = 2; 1225 1226 damon_for_each_target(t, ctx) 1227 nr_regions += damon_nr_regions(t); 1228 1229 if (nr_regions > ctx->attrs.max_nr_regions / 2) 1230 return; 1231 1232 /* Maybe the middle of the region has different access frequency */ 1233 if (last_nr_regions == nr_regions && 1234 nr_regions < ctx->attrs.max_nr_regions / 3) 1235 nr_subregions = 3; 1236 1237 damon_for_each_target(t, ctx) 1238 damon_split_regions_of(t, nr_subregions); 1239 1240 last_nr_regions = nr_regions; 1241 } 1242 1243 /* 1244 * Check whether it is time to check and apply the operations-related data 1245 * structures. 1246 * 1247 * Returns true if it is. 1248 */ 1249 static bool kdamond_need_update_operations(struct damon_ctx *ctx) 1250 { 1251 return damon_check_reset_time_interval(&ctx->last_ops_update, 1252 ctx->attrs.ops_update_interval); 1253 } 1254 1255 /* 1256 * Check whether current monitoring should be stopped 1257 * 1258 * The monitoring is stopped when either the user requested to stop, or all 1259 * monitoring targets are invalid. 1260 * 1261 * Returns true if need to stop current monitoring. 1262 */ 1263 static bool kdamond_need_stop(struct damon_ctx *ctx) 1264 { 1265 struct damon_target *t; 1266 1267 if (kthread_should_stop()) 1268 return true; 1269 1270 if (!ctx->ops.target_valid) 1271 return false; 1272 1273 damon_for_each_target(t, ctx) { 1274 if (ctx->ops.target_valid(t)) 1275 return false; 1276 } 1277 1278 return true; 1279 } 1280 1281 static unsigned long damos_wmark_metric_value(enum damos_wmark_metric metric) 1282 { 1283 struct sysinfo i; 1284 1285 switch (metric) { 1286 case DAMOS_WMARK_FREE_MEM_RATE: 1287 si_meminfo(&i); 1288 return i.freeram * 1000 / i.totalram; 1289 default: 1290 break; 1291 } 1292 return -EINVAL; 1293 } 1294 1295 /* 1296 * Returns zero if the scheme is active. Else, returns time to wait for next 1297 * watermark check in micro-seconds. 1298 */ 1299 static unsigned long damos_wmark_wait_us(struct damos *scheme) 1300 { 1301 unsigned long metric; 1302 1303 if (scheme->wmarks.metric == DAMOS_WMARK_NONE) 1304 return 0; 1305 1306 metric = damos_wmark_metric_value(scheme->wmarks.metric); 1307 /* higher than high watermark or lower than low watermark */ 1308 if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) { 1309 if (scheme->wmarks.activated) 1310 pr_debug("deactivate a scheme (%d) for %s wmark\n", 1311 scheme->action, 1312 metric > scheme->wmarks.high ? 1313 "high" : "low"); 1314 scheme->wmarks.activated = false; 1315 return scheme->wmarks.interval; 1316 } 1317 1318 /* inactive and higher than middle watermark */ 1319 if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) && 1320 !scheme->wmarks.activated) 1321 return scheme->wmarks.interval; 1322 1323 if (!scheme->wmarks.activated) 1324 pr_debug("activate a scheme (%d)\n", scheme->action); 1325 scheme->wmarks.activated = true; 1326 return 0; 1327 } 1328 1329 static void kdamond_usleep(unsigned long usecs) 1330 { 1331 /* See Documentation/timers/timers-howto.rst for the thresholds */ 1332 if (usecs > 20 * USEC_PER_MSEC) 1333 schedule_timeout_idle(usecs_to_jiffies(usecs)); 1334 else 1335 usleep_idle_range(usecs, usecs + 1); 1336 } 1337 1338 /* Returns negative error code if it's not activated but should return */ 1339 static int kdamond_wait_activation(struct damon_ctx *ctx) 1340 { 1341 struct damos *s; 1342 unsigned long wait_time; 1343 unsigned long min_wait_time = 0; 1344 bool init_wait_time = false; 1345 1346 while (!kdamond_need_stop(ctx)) { 1347 damon_for_each_scheme(s, ctx) { 1348 wait_time = damos_wmark_wait_us(s); 1349 if (!init_wait_time || wait_time < min_wait_time) { 1350 init_wait_time = true; 1351 min_wait_time = wait_time; 1352 } 1353 } 1354 if (!min_wait_time) 1355 return 0; 1356 1357 kdamond_usleep(min_wait_time); 1358 1359 if (ctx->callback.after_wmarks_check && 1360 ctx->callback.after_wmarks_check(ctx)) 1361 break; 1362 } 1363 return -EBUSY; 1364 } 1365 1366 /* 1367 * The monitoring daemon that runs as a kernel thread 1368 */ 1369 static int kdamond_fn(void *data) 1370 { 1371 struct damon_ctx *ctx = data; 1372 struct damon_target *t; 1373 struct damon_region *r, *next; 1374 unsigned int max_nr_accesses = 0; 1375 unsigned long sz_limit = 0; 1376 1377 pr_debug("kdamond (%d) starts\n", current->pid); 1378 1379 if (ctx->ops.init) 1380 ctx->ops.init(ctx); 1381 if (ctx->callback.before_start && ctx->callback.before_start(ctx)) 1382 goto done; 1383 1384 sz_limit = damon_region_sz_limit(ctx); 1385 1386 while (!kdamond_need_stop(ctx)) { 1387 if (kdamond_wait_activation(ctx)) 1388 break; 1389 1390 if (ctx->ops.prepare_access_checks) 1391 ctx->ops.prepare_access_checks(ctx); 1392 if (ctx->callback.after_sampling && 1393 ctx->callback.after_sampling(ctx)) 1394 break; 1395 1396 kdamond_usleep(ctx->attrs.sample_interval); 1397 1398 if (ctx->ops.check_accesses) 1399 max_nr_accesses = ctx->ops.check_accesses(ctx); 1400 1401 if (kdamond_aggregate_interval_passed(ctx)) { 1402 kdamond_merge_regions(ctx, 1403 max_nr_accesses / 10, 1404 sz_limit); 1405 if (ctx->callback.after_aggregation && 1406 ctx->callback.after_aggregation(ctx)) 1407 break; 1408 if (!list_empty(&ctx->schemes)) 1409 kdamond_apply_schemes(ctx); 1410 kdamond_reset_aggregated(ctx); 1411 kdamond_split_regions(ctx); 1412 if (ctx->ops.reset_aggregated) 1413 ctx->ops.reset_aggregated(ctx); 1414 } 1415 1416 if (kdamond_need_update_operations(ctx)) { 1417 if (ctx->ops.update) 1418 ctx->ops.update(ctx); 1419 sz_limit = damon_region_sz_limit(ctx); 1420 } 1421 } 1422 done: 1423 damon_for_each_target(t, ctx) { 1424 damon_for_each_region_safe(r, next, t) 1425 damon_destroy_region(r, t); 1426 } 1427 1428 if (ctx->callback.before_terminate) 1429 ctx->callback.before_terminate(ctx); 1430 if (ctx->ops.cleanup) 1431 ctx->ops.cleanup(ctx); 1432 1433 pr_debug("kdamond (%d) finishes\n", current->pid); 1434 mutex_lock(&ctx->kdamond_lock); 1435 ctx->kdamond = NULL; 1436 mutex_unlock(&ctx->kdamond_lock); 1437 1438 mutex_lock(&damon_lock); 1439 nr_running_ctxs--; 1440 if (!nr_running_ctxs && running_exclusive_ctxs) 1441 running_exclusive_ctxs = false; 1442 mutex_unlock(&damon_lock); 1443 1444 return 0; 1445 } 1446 1447 /* 1448 * struct damon_system_ram_region - System RAM resource address region of 1449 * [@start, @end). 1450 * @start: Start address of the region (inclusive). 1451 * @end: End address of the region (exclusive). 1452 */ 1453 struct damon_system_ram_region { 1454 unsigned long start; 1455 unsigned long end; 1456 }; 1457 1458 static int walk_system_ram(struct resource *res, void *arg) 1459 { 1460 struct damon_system_ram_region *a = arg; 1461 1462 if (a->end - a->start < resource_size(res)) { 1463 a->start = res->start; 1464 a->end = res->end; 1465 } 1466 return 0; 1467 } 1468 1469 /* 1470 * Find biggest 'System RAM' resource and store its start and end address in 1471 * @start and @end, respectively. If no System RAM is found, returns false. 1472 */ 1473 static bool damon_find_biggest_system_ram(unsigned long *start, 1474 unsigned long *end) 1475 1476 { 1477 struct damon_system_ram_region arg = {}; 1478 1479 walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram); 1480 if (arg.end <= arg.start) 1481 return false; 1482 1483 *start = arg.start; 1484 *end = arg.end; 1485 return true; 1486 } 1487 1488 /** 1489 * damon_set_region_biggest_system_ram_default() - Set the region of the given 1490 * monitoring target as requested, or biggest 'System RAM'. 1491 * @t: The monitoring target to set the region. 1492 * @start: The pointer to the start address of the region. 1493 * @end: The pointer to the end address of the region. 1494 * 1495 * This function sets the region of @t as requested by @start and @end. If the 1496 * values of @start and @end are zero, however, this function finds the biggest 1497 * 'System RAM' resource and sets the region to cover the resource. In the 1498 * latter case, this function saves the start and end addresses of the resource 1499 * in @start and @end, respectively. 1500 * 1501 * Return: 0 on success, negative error code otherwise. 1502 */ 1503 int damon_set_region_biggest_system_ram_default(struct damon_target *t, 1504 unsigned long *start, unsigned long *end) 1505 { 1506 struct damon_addr_range addr_range; 1507 1508 if (*start > *end) 1509 return -EINVAL; 1510 1511 if (!*start && !*end && 1512 !damon_find_biggest_system_ram(start, end)) 1513 return -EINVAL; 1514 1515 addr_range.start = *start; 1516 addr_range.end = *end; 1517 return damon_set_regions(t, &addr_range, 1); 1518 } 1519 1520 static int __init damon_init(void) 1521 { 1522 damon_region_cache = KMEM_CACHE(damon_region, 0); 1523 if (unlikely(!damon_region_cache)) { 1524 pr_err("creating damon_region_cache fails\n"); 1525 return -ENOMEM; 1526 } 1527 1528 return 0; 1529 } 1530 1531 subsys_initcall(damon_init); 1532 1533 #include "core-test.h" 1534