1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Data Access Monitor 4 * 5 * Author: SeongJae Park <sj@kernel.org> 6 */ 7 8 #define pr_fmt(fmt) "damon: " fmt 9 10 #include <linux/damon.h> 11 #include <linux/delay.h> 12 #include <linux/kthread.h> 13 #include <linux/mm.h> 14 #include <linux/psi.h> 15 #include <linux/slab.h> 16 #include <linux/string.h> 17 #include <linux/string_choices.h> 18 19 #define CREATE_TRACE_POINTS 20 #include <trace/events/damon.h> 21 22 #ifdef CONFIG_DAMON_KUNIT_TEST 23 #undef DAMON_MIN_REGION 24 #define DAMON_MIN_REGION 1 25 #endif 26 27 static DEFINE_MUTEX(damon_lock); 28 static int nr_running_ctxs; 29 static bool running_exclusive_ctxs; 30 31 static DEFINE_MUTEX(damon_ops_lock); 32 static struct damon_operations damon_registered_ops[NR_DAMON_OPS]; 33 34 static struct kmem_cache *damon_region_cache __ro_after_init; 35 36 /* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */ 37 static bool __damon_is_registered_ops(enum damon_ops_id id) 38 { 39 struct damon_operations empty_ops = {}; 40 41 if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops))) 42 return false; 43 return true; 44 } 45 46 /** 47 * damon_is_registered_ops() - Check if a given damon_operations is registered. 48 * @id: Id of the damon_operations to check if registered. 49 * 50 * Return: true if the ops is set, false otherwise. 51 */ 52 bool damon_is_registered_ops(enum damon_ops_id id) 53 { 54 bool registered; 55 56 if (id >= NR_DAMON_OPS) 57 return false; 58 mutex_lock(&damon_ops_lock); 59 registered = __damon_is_registered_ops(id); 60 mutex_unlock(&damon_ops_lock); 61 return registered; 62 } 63 64 /** 65 * damon_register_ops() - Register a monitoring operations set to DAMON. 66 * @ops: monitoring operations set to register. 67 * 68 * This function registers a monitoring operations set of valid &struct 69 * damon_operations->id so that others can find and use them later. 70 * 71 * Return: 0 on success, negative error code otherwise. 72 */ 73 int damon_register_ops(struct damon_operations *ops) 74 { 75 int err = 0; 76 77 if (ops->id >= NR_DAMON_OPS) 78 return -EINVAL; 79 mutex_lock(&damon_ops_lock); 80 /* Fail for already registered ops */ 81 if (__damon_is_registered_ops(ops->id)) { 82 err = -EINVAL; 83 goto out; 84 } 85 damon_registered_ops[ops->id] = *ops; 86 out: 87 mutex_unlock(&damon_ops_lock); 88 return err; 89 } 90 91 /** 92 * damon_select_ops() - Select a monitoring operations to use with the context. 93 * @ctx: monitoring context to use the operations. 94 * @id: id of the registered monitoring operations to select. 95 * 96 * This function finds registered monitoring operations set of @id and make 97 * @ctx to use it. 98 * 99 * Return: 0 on success, negative error code otherwise. 100 */ 101 int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id) 102 { 103 int err = 0; 104 105 if (id >= NR_DAMON_OPS) 106 return -EINVAL; 107 108 mutex_lock(&damon_ops_lock); 109 if (!__damon_is_registered_ops(id)) 110 err = -EINVAL; 111 else 112 ctx->ops = damon_registered_ops[id]; 113 mutex_unlock(&damon_ops_lock); 114 return err; 115 } 116 117 /* 118 * Construct a damon_region struct 119 * 120 * Returns the pointer to the new struct if success, or NULL otherwise 121 */ 122 struct damon_region *damon_new_region(unsigned long start, unsigned long end) 123 { 124 struct damon_region *region; 125 126 region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL); 127 if (!region) 128 return NULL; 129 130 region->ar.start = start; 131 region->ar.end = end; 132 region->nr_accesses = 0; 133 region->nr_accesses_bp = 0; 134 INIT_LIST_HEAD(®ion->list); 135 136 region->age = 0; 137 region->last_nr_accesses = 0; 138 139 return region; 140 } 141 142 void damon_add_region(struct damon_region *r, struct damon_target *t) 143 { 144 list_add_tail(&r->list, &t->regions_list); 145 t->nr_regions++; 146 } 147 148 static void damon_del_region(struct damon_region *r, struct damon_target *t) 149 { 150 list_del(&r->list); 151 t->nr_regions--; 152 } 153 154 static void damon_free_region(struct damon_region *r) 155 { 156 kmem_cache_free(damon_region_cache, r); 157 } 158 159 void damon_destroy_region(struct damon_region *r, struct damon_target *t) 160 { 161 damon_del_region(r, t); 162 damon_free_region(r); 163 } 164 165 /* 166 * Check whether a region is intersecting an address range 167 * 168 * Returns true if it is. 169 */ 170 static bool damon_intersect(struct damon_region *r, 171 struct damon_addr_range *re) 172 { 173 return !(r->ar.end <= re->start || re->end <= r->ar.start); 174 } 175 176 /* 177 * Fill holes in regions with new regions. 178 */ 179 static int damon_fill_regions_holes(struct damon_region *first, 180 struct damon_region *last, struct damon_target *t) 181 { 182 struct damon_region *r = first; 183 184 damon_for_each_region_from(r, t) { 185 struct damon_region *next, *newr; 186 187 if (r == last) 188 break; 189 next = damon_next_region(r); 190 if (r->ar.end != next->ar.start) { 191 newr = damon_new_region(r->ar.end, next->ar.start); 192 if (!newr) 193 return -ENOMEM; 194 damon_insert_region(newr, r, next, t); 195 } 196 } 197 return 0; 198 } 199 200 /* 201 * damon_set_regions() - Set regions of a target for given address ranges. 202 * @t: the given target. 203 * @ranges: array of new monitoring target ranges. 204 * @nr_ranges: length of @ranges. 205 * 206 * This function adds new regions to, or modify existing regions of a 207 * monitoring target to fit in specific ranges. 208 * 209 * Return: 0 if success, or negative error code otherwise. 210 */ 211 int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges, 212 unsigned int nr_ranges) 213 { 214 struct damon_region *r, *next; 215 unsigned int i; 216 int err; 217 218 /* Remove regions which are not in the new ranges */ 219 damon_for_each_region_safe(r, next, t) { 220 for (i = 0; i < nr_ranges; i++) { 221 if (damon_intersect(r, &ranges[i])) 222 break; 223 } 224 if (i == nr_ranges) 225 damon_destroy_region(r, t); 226 } 227 228 r = damon_first_region(t); 229 /* Add new regions or resize existing regions to fit in the ranges */ 230 for (i = 0; i < nr_ranges; i++) { 231 struct damon_region *first = NULL, *last, *newr; 232 struct damon_addr_range *range; 233 234 range = &ranges[i]; 235 /* Get the first/last regions intersecting with the range */ 236 damon_for_each_region_from(r, t) { 237 if (damon_intersect(r, range)) { 238 if (!first) 239 first = r; 240 last = r; 241 } 242 if (r->ar.start >= range->end) 243 break; 244 } 245 if (!first) { 246 /* no region intersects with this range */ 247 newr = damon_new_region( 248 ALIGN_DOWN(range->start, 249 DAMON_MIN_REGION), 250 ALIGN(range->end, DAMON_MIN_REGION)); 251 if (!newr) 252 return -ENOMEM; 253 damon_insert_region(newr, damon_prev_region(r), r, t); 254 } else { 255 /* resize intersecting regions to fit in this range */ 256 first->ar.start = ALIGN_DOWN(range->start, 257 DAMON_MIN_REGION); 258 last->ar.end = ALIGN(range->end, DAMON_MIN_REGION); 259 260 /* fill possible holes in the range */ 261 err = damon_fill_regions_holes(first, last, t); 262 if (err) 263 return err; 264 } 265 } 266 return 0; 267 } 268 269 struct damos_filter *damos_new_filter(enum damos_filter_type type, 270 bool matching, bool allow) 271 { 272 struct damos_filter *filter; 273 274 filter = kmalloc(sizeof(*filter), GFP_KERNEL); 275 if (!filter) 276 return NULL; 277 filter->type = type; 278 filter->matching = matching; 279 filter->allow = allow; 280 INIT_LIST_HEAD(&filter->list); 281 return filter; 282 } 283 284 void damos_add_filter(struct damos *s, struct damos_filter *f) 285 { 286 list_add_tail(&f->list, &s->filters); 287 } 288 289 static void damos_del_filter(struct damos_filter *f) 290 { 291 list_del(&f->list); 292 } 293 294 static void damos_free_filter(struct damos_filter *f) 295 { 296 kfree(f); 297 } 298 299 void damos_destroy_filter(struct damos_filter *f) 300 { 301 damos_del_filter(f); 302 damos_free_filter(f); 303 } 304 305 struct damos_quota_goal *damos_new_quota_goal( 306 enum damos_quota_goal_metric metric, 307 unsigned long target_value) 308 { 309 struct damos_quota_goal *goal; 310 311 goal = kmalloc(sizeof(*goal), GFP_KERNEL); 312 if (!goal) 313 return NULL; 314 goal->metric = metric; 315 goal->target_value = target_value; 316 INIT_LIST_HEAD(&goal->list); 317 return goal; 318 } 319 320 void damos_add_quota_goal(struct damos_quota *q, struct damos_quota_goal *g) 321 { 322 list_add_tail(&g->list, &q->goals); 323 } 324 325 static void damos_del_quota_goal(struct damos_quota_goal *g) 326 { 327 list_del(&g->list); 328 } 329 330 static void damos_free_quota_goal(struct damos_quota_goal *g) 331 { 332 kfree(g); 333 } 334 335 void damos_destroy_quota_goal(struct damos_quota_goal *g) 336 { 337 damos_del_quota_goal(g); 338 damos_free_quota_goal(g); 339 } 340 341 /* initialize fields of @quota that normally API users wouldn't set */ 342 static struct damos_quota *damos_quota_init(struct damos_quota *quota) 343 { 344 quota->esz = 0; 345 quota->total_charged_sz = 0; 346 quota->total_charged_ns = 0; 347 quota->charged_sz = 0; 348 quota->charged_from = 0; 349 quota->charge_target_from = NULL; 350 quota->charge_addr_from = 0; 351 quota->esz_bp = 0; 352 return quota; 353 } 354 355 struct damos *damon_new_scheme(struct damos_access_pattern *pattern, 356 enum damos_action action, 357 unsigned long apply_interval_us, 358 struct damos_quota *quota, 359 struct damos_watermarks *wmarks, 360 int target_nid) 361 { 362 struct damos *scheme; 363 364 scheme = kmalloc(sizeof(*scheme), GFP_KERNEL); 365 if (!scheme) 366 return NULL; 367 scheme->pattern = *pattern; 368 scheme->action = action; 369 scheme->apply_interval_us = apply_interval_us; 370 /* 371 * next_apply_sis will be set when kdamond starts. While kdamond is 372 * running, it will also updated when it is added to the DAMON context, 373 * or damon_attrs are updated. 374 */ 375 scheme->next_apply_sis = 0; 376 INIT_LIST_HEAD(&scheme->filters); 377 scheme->stat = (struct damos_stat){}; 378 INIT_LIST_HEAD(&scheme->list); 379 380 scheme->quota = *(damos_quota_init(quota)); 381 /* quota.goals should be separately set by caller */ 382 INIT_LIST_HEAD(&scheme->quota.goals); 383 384 scheme->wmarks = *wmarks; 385 scheme->wmarks.activated = true; 386 387 scheme->target_nid = target_nid; 388 389 return scheme; 390 } 391 392 static void damos_set_next_apply_sis(struct damos *s, struct damon_ctx *ctx) 393 { 394 unsigned long sample_interval = ctx->attrs.sample_interval ? 395 ctx->attrs.sample_interval : 1; 396 unsigned long apply_interval = s->apply_interval_us ? 397 s->apply_interval_us : ctx->attrs.aggr_interval; 398 399 s->next_apply_sis = ctx->passed_sample_intervals + 400 apply_interval / sample_interval; 401 } 402 403 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s) 404 { 405 list_add_tail(&s->list, &ctx->schemes); 406 damos_set_next_apply_sis(s, ctx); 407 } 408 409 static void damon_del_scheme(struct damos *s) 410 { 411 list_del(&s->list); 412 } 413 414 static void damon_free_scheme(struct damos *s) 415 { 416 kfree(s); 417 } 418 419 void damon_destroy_scheme(struct damos *s) 420 { 421 struct damos_quota_goal *g, *g_next; 422 struct damos_filter *f, *next; 423 424 damos_for_each_quota_goal_safe(g, g_next, &s->quota) 425 damos_destroy_quota_goal(g); 426 427 damos_for_each_filter_safe(f, next, s) 428 damos_destroy_filter(f); 429 damon_del_scheme(s); 430 damon_free_scheme(s); 431 } 432 433 /* 434 * Construct a damon_target struct 435 * 436 * Returns the pointer to the new struct if success, or NULL otherwise 437 */ 438 struct damon_target *damon_new_target(void) 439 { 440 struct damon_target *t; 441 442 t = kmalloc(sizeof(*t), GFP_KERNEL); 443 if (!t) 444 return NULL; 445 446 t->pid = NULL; 447 t->nr_regions = 0; 448 INIT_LIST_HEAD(&t->regions_list); 449 INIT_LIST_HEAD(&t->list); 450 451 return t; 452 } 453 454 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t) 455 { 456 list_add_tail(&t->list, &ctx->adaptive_targets); 457 } 458 459 bool damon_targets_empty(struct damon_ctx *ctx) 460 { 461 return list_empty(&ctx->adaptive_targets); 462 } 463 464 static void damon_del_target(struct damon_target *t) 465 { 466 list_del(&t->list); 467 } 468 469 void damon_free_target(struct damon_target *t) 470 { 471 struct damon_region *r, *next; 472 473 damon_for_each_region_safe(r, next, t) 474 damon_free_region(r); 475 kfree(t); 476 } 477 478 void damon_destroy_target(struct damon_target *t) 479 { 480 damon_del_target(t); 481 damon_free_target(t); 482 } 483 484 unsigned int damon_nr_regions(struct damon_target *t) 485 { 486 return t->nr_regions; 487 } 488 489 struct damon_ctx *damon_new_ctx(void) 490 { 491 struct damon_ctx *ctx; 492 493 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 494 if (!ctx) 495 return NULL; 496 497 init_completion(&ctx->kdamond_started); 498 499 ctx->attrs.sample_interval = 5 * 1000; 500 ctx->attrs.aggr_interval = 100 * 1000; 501 ctx->attrs.ops_update_interval = 60 * 1000 * 1000; 502 503 ctx->passed_sample_intervals = 0; 504 /* These will be set from kdamond_init_intervals_sis() */ 505 ctx->next_aggregation_sis = 0; 506 ctx->next_ops_update_sis = 0; 507 508 mutex_init(&ctx->kdamond_lock); 509 mutex_init(&ctx->call_control_lock); 510 mutex_init(&ctx->walk_control_lock); 511 512 ctx->attrs.min_nr_regions = 10; 513 ctx->attrs.max_nr_regions = 1000; 514 515 INIT_LIST_HEAD(&ctx->adaptive_targets); 516 INIT_LIST_HEAD(&ctx->schemes); 517 518 return ctx; 519 } 520 521 static void damon_destroy_targets(struct damon_ctx *ctx) 522 { 523 struct damon_target *t, *next_t; 524 525 if (ctx->ops.cleanup) { 526 ctx->ops.cleanup(ctx); 527 return; 528 } 529 530 damon_for_each_target_safe(t, next_t, ctx) 531 damon_destroy_target(t); 532 } 533 534 void damon_destroy_ctx(struct damon_ctx *ctx) 535 { 536 struct damos *s, *next_s; 537 538 damon_destroy_targets(ctx); 539 540 damon_for_each_scheme_safe(s, next_s, ctx) 541 damon_destroy_scheme(s); 542 543 kfree(ctx); 544 } 545 546 static unsigned int damon_age_for_new_attrs(unsigned int age, 547 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs) 548 { 549 return age * old_attrs->aggr_interval / new_attrs->aggr_interval; 550 } 551 552 /* convert access ratio in bp (per 10,000) to nr_accesses */ 553 static unsigned int damon_accesses_bp_to_nr_accesses( 554 unsigned int accesses_bp, struct damon_attrs *attrs) 555 { 556 return accesses_bp * damon_max_nr_accesses(attrs) / 10000; 557 } 558 559 /* 560 * Convert nr_accesses to access ratio in bp (per 10,000). 561 * 562 * Callers should ensure attrs.aggr_interval is not zero, like 563 * damon_update_monitoring_results() does . Otherwise, divide-by-zero would 564 * happen. 565 */ 566 static unsigned int damon_nr_accesses_to_accesses_bp( 567 unsigned int nr_accesses, struct damon_attrs *attrs) 568 { 569 return nr_accesses * 10000 / damon_max_nr_accesses(attrs); 570 } 571 572 static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses, 573 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs) 574 { 575 return damon_accesses_bp_to_nr_accesses( 576 damon_nr_accesses_to_accesses_bp( 577 nr_accesses, old_attrs), 578 new_attrs); 579 } 580 581 static void damon_update_monitoring_result(struct damon_region *r, 582 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs) 583 { 584 r->nr_accesses = damon_nr_accesses_for_new_attrs(r->nr_accesses, 585 old_attrs, new_attrs); 586 r->nr_accesses_bp = r->nr_accesses * 10000; 587 r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs); 588 } 589 590 /* 591 * region->nr_accesses is the number of sampling intervals in the last 592 * aggregation interval that access to the region has found, and region->age is 593 * the number of aggregation intervals that its access pattern has maintained. 594 * For the reason, the real meaning of the two fields depend on current 595 * sampling interval and aggregation interval. This function updates 596 * ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs. 597 */ 598 static void damon_update_monitoring_results(struct damon_ctx *ctx, 599 struct damon_attrs *new_attrs) 600 { 601 struct damon_attrs *old_attrs = &ctx->attrs; 602 struct damon_target *t; 603 struct damon_region *r; 604 605 /* if any interval is zero, simply forgive conversion */ 606 if (!old_attrs->sample_interval || !old_attrs->aggr_interval || 607 !new_attrs->sample_interval || 608 !new_attrs->aggr_interval) 609 return; 610 611 damon_for_each_target(t, ctx) 612 damon_for_each_region(r, t) 613 damon_update_monitoring_result( 614 r, old_attrs, new_attrs); 615 } 616 617 /** 618 * damon_set_attrs() - Set attributes for the monitoring. 619 * @ctx: monitoring context 620 * @attrs: monitoring attributes 621 * 622 * This function should be called while the kdamond is not running, or an 623 * access check results aggregation is not ongoing (e.g., from 624 * &struct damon_callback->after_aggregation or 625 * &struct damon_callback->after_wmarks_check callbacks). 626 * 627 * Every time interval is in micro-seconds. 628 * 629 * Return: 0 on success, negative error code otherwise. 630 */ 631 int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs) 632 { 633 unsigned long sample_interval = attrs->sample_interval ? 634 attrs->sample_interval : 1; 635 struct damos *s; 636 637 if (attrs->min_nr_regions < 3) 638 return -EINVAL; 639 if (attrs->min_nr_regions > attrs->max_nr_regions) 640 return -EINVAL; 641 if (attrs->sample_interval > attrs->aggr_interval) 642 return -EINVAL; 643 644 ctx->next_aggregation_sis = ctx->passed_sample_intervals + 645 attrs->aggr_interval / sample_interval; 646 ctx->next_ops_update_sis = ctx->passed_sample_intervals + 647 attrs->ops_update_interval / sample_interval; 648 649 damon_update_monitoring_results(ctx, attrs); 650 ctx->attrs = *attrs; 651 652 damon_for_each_scheme(s, ctx) 653 damos_set_next_apply_sis(s, ctx); 654 655 return 0; 656 } 657 658 /** 659 * damon_set_schemes() - Set data access monitoring based operation schemes. 660 * @ctx: monitoring context 661 * @schemes: array of the schemes 662 * @nr_schemes: number of entries in @schemes 663 * 664 * This function should not be called while the kdamond of the context is 665 * running. 666 */ 667 void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes, 668 ssize_t nr_schemes) 669 { 670 struct damos *s, *next; 671 ssize_t i; 672 673 damon_for_each_scheme_safe(s, next, ctx) 674 damon_destroy_scheme(s); 675 for (i = 0; i < nr_schemes; i++) 676 damon_add_scheme(ctx, schemes[i]); 677 } 678 679 static struct damos_quota_goal *damos_nth_quota_goal( 680 int n, struct damos_quota *q) 681 { 682 struct damos_quota_goal *goal; 683 int i = 0; 684 685 damos_for_each_quota_goal(goal, q) { 686 if (i++ == n) 687 return goal; 688 } 689 return NULL; 690 } 691 692 static void damos_commit_quota_goal( 693 struct damos_quota_goal *dst, struct damos_quota_goal *src) 694 { 695 dst->metric = src->metric; 696 dst->target_value = src->target_value; 697 if (dst->metric == DAMOS_QUOTA_USER_INPUT) 698 dst->current_value = src->current_value; 699 /* keep last_psi_total as is, since it will be updated in next cycle */ 700 } 701 702 /** 703 * damos_commit_quota_goals() - Commit DAMOS quota goals to another quota. 704 * @dst: The commit destination DAMOS quota. 705 * @src: The commit source DAMOS quota. 706 * 707 * Copies user-specified parameters for quota goals from @src to @dst. Users 708 * should use this function for quota goals-level parameters update of running 709 * DAMON contexts, instead of manual in-place updates. 710 * 711 * This function should be called from parameters-update safe context, like 712 * DAMON callbacks. 713 */ 714 int damos_commit_quota_goals(struct damos_quota *dst, struct damos_quota *src) 715 { 716 struct damos_quota_goal *dst_goal, *next, *src_goal, *new_goal; 717 int i = 0, j = 0; 718 719 damos_for_each_quota_goal_safe(dst_goal, next, dst) { 720 src_goal = damos_nth_quota_goal(i++, src); 721 if (src_goal) 722 damos_commit_quota_goal(dst_goal, src_goal); 723 else 724 damos_destroy_quota_goal(dst_goal); 725 } 726 damos_for_each_quota_goal_safe(src_goal, next, src) { 727 if (j++ < i) 728 continue; 729 new_goal = damos_new_quota_goal( 730 src_goal->metric, src_goal->target_value); 731 if (!new_goal) 732 return -ENOMEM; 733 damos_add_quota_goal(dst, new_goal); 734 } 735 return 0; 736 } 737 738 static int damos_commit_quota(struct damos_quota *dst, struct damos_quota *src) 739 { 740 int err; 741 742 dst->reset_interval = src->reset_interval; 743 dst->ms = src->ms; 744 dst->sz = src->sz; 745 err = damos_commit_quota_goals(dst, src); 746 if (err) 747 return err; 748 dst->weight_sz = src->weight_sz; 749 dst->weight_nr_accesses = src->weight_nr_accesses; 750 dst->weight_age = src->weight_age; 751 return 0; 752 } 753 754 static struct damos_filter *damos_nth_filter(int n, struct damos *s) 755 { 756 struct damos_filter *filter; 757 int i = 0; 758 759 damos_for_each_filter(filter, s) { 760 if (i++ == n) 761 return filter; 762 } 763 return NULL; 764 } 765 766 static void damos_commit_filter_arg( 767 struct damos_filter *dst, struct damos_filter *src) 768 { 769 switch (dst->type) { 770 case DAMOS_FILTER_TYPE_MEMCG: 771 dst->memcg_id = src->memcg_id; 772 break; 773 case DAMOS_FILTER_TYPE_ADDR: 774 dst->addr_range = src->addr_range; 775 break; 776 case DAMOS_FILTER_TYPE_TARGET: 777 dst->target_idx = src->target_idx; 778 break; 779 default: 780 break; 781 } 782 } 783 784 static void damos_commit_filter( 785 struct damos_filter *dst, struct damos_filter *src) 786 { 787 dst->type = src->type; 788 dst->matching = src->matching; 789 damos_commit_filter_arg(dst, src); 790 } 791 792 static int damos_commit_filters(struct damos *dst, struct damos *src) 793 { 794 struct damos_filter *dst_filter, *next, *src_filter, *new_filter; 795 int i = 0, j = 0; 796 797 damos_for_each_filter_safe(dst_filter, next, dst) { 798 src_filter = damos_nth_filter(i++, src); 799 if (src_filter) 800 damos_commit_filter(dst_filter, src_filter); 801 else 802 damos_destroy_filter(dst_filter); 803 } 804 805 damos_for_each_filter_safe(src_filter, next, src) { 806 if (j++ < i) 807 continue; 808 809 new_filter = damos_new_filter( 810 src_filter->type, src_filter->matching, 811 src_filter->allow); 812 if (!new_filter) 813 return -ENOMEM; 814 damos_commit_filter_arg(new_filter, src_filter); 815 damos_add_filter(dst, new_filter); 816 } 817 return 0; 818 } 819 820 static struct damos *damon_nth_scheme(int n, struct damon_ctx *ctx) 821 { 822 struct damos *s; 823 int i = 0; 824 825 damon_for_each_scheme(s, ctx) { 826 if (i++ == n) 827 return s; 828 } 829 return NULL; 830 } 831 832 static int damos_commit(struct damos *dst, struct damos *src) 833 { 834 int err; 835 836 dst->pattern = src->pattern; 837 dst->action = src->action; 838 dst->apply_interval_us = src->apply_interval_us; 839 840 err = damos_commit_quota(&dst->quota, &src->quota); 841 if (err) 842 return err; 843 844 dst->wmarks = src->wmarks; 845 846 err = damos_commit_filters(dst, src); 847 return err; 848 } 849 850 static int damon_commit_schemes(struct damon_ctx *dst, struct damon_ctx *src) 851 { 852 struct damos *dst_scheme, *next, *src_scheme, *new_scheme; 853 int i = 0, j = 0, err; 854 855 damon_for_each_scheme_safe(dst_scheme, next, dst) { 856 src_scheme = damon_nth_scheme(i++, src); 857 if (src_scheme) { 858 err = damos_commit(dst_scheme, src_scheme); 859 if (err) 860 return err; 861 } else { 862 damon_destroy_scheme(dst_scheme); 863 } 864 } 865 866 damon_for_each_scheme_safe(src_scheme, next, src) { 867 if (j++ < i) 868 continue; 869 new_scheme = damon_new_scheme(&src_scheme->pattern, 870 src_scheme->action, 871 src_scheme->apply_interval_us, 872 &src_scheme->quota, &src_scheme->wmarks, 873 NUMA_NO_NODE); 874 if (!new_scheme) 875 return -ENOMEM; 876 err = damos_commit(new_scheme, src_scheme); 877 if (err) { 878 damon_destroy_scheme(new_scheme); 879 return err; 880 } 881 damon_add_scheme(dst, new_scheme); 882 } 883 return 0; 884 } 885 886 static struct damon_target *damon_nth_target(int n, struct damon_ctx *ctx) 887 { 888 struct damon_target *t; 889 int i = 0; 890 891 damon_for_each_target(t, ctx) { 892 if (i++ == n) 893 return t; 894 } 895 return NULL; 896 } 897 898 /* 899 * The caller should ensure the regions of @src are 900 * 1. valid (end >= src) and 901 * 2. sorted by starting address. 902 * 903 * If @src has no region, @dst keeps current regions. 904 */ 905 static int damon_commit_target_regions( 906 struct damon_target *dst, struct damon_target *src) 907 { 908 struct damon_region *src_region; 909 struct damon_addr_range *ranges; 910 int i = 0, err; 911 912 damon_for_each_region(src_region, src) 913 i++; 914 if (!i) 915 return 0; 916 917 ranges = kmalloc_array(i, sizeof(*ranges), GFP_KERNEL | __GFP_NOWARN); 918 if (!ranges) 919 return -ENOMEM; 920 i = 0; 921 damon_for_each_region(src_region, src) 922 ranges[i++] = src_region->ar; 923 err = damon_set_regions(dst, ranges, i); 924 kfree(ranges); 925 return err; 926 } 927 928 static int damon_commit_target( 929 struct damon_target *dst, bool dst_has_pid, 930 struct damon_target *src, bool src_has_pid) 931 { 932 int err; 933 934 err = damon_commit_target_regions(dst, src); 935 if (err) 936 return err; 937 if (dst_has_pid) 938 put_pid(dst->pid); 939 if (src_has_pid) 940 get_pid(src->pid); 941 dst->pid = src->pid; 942 return 0; 943 } 944 945 static int damon_commit_targets( 946 struct damon_ctx *dst, struct damon_ctx *src) 947 { 948 struct damon_target *dst_target, *next, *src_target, *new_target; 949 int i = 0, j = 0, err; 950 951 damon_for_each_target_safe(dst_target, next, dst) { 952 src_target = damon_nth_target(i++, src); 953 if (src_target) { 954 err = damon_commit_target( 955 dst_target, damon_target_has_pid(dst), 956 src_target, damon_target_has_pid(src)); 957 if (err) 958 return err; 959 } else { 960 if (damon_target_has_pid(dst)) 961 put_pid(dst_target->pid); 962 damon_destroy_target(dst_target); 963 } 964 } 965 966 damon_for_each_target_safe(src_target, next, src) { 967 if (j++ < i) 968 continue; 969 new_target = damon_new_target(); 970 if (!new_target) 971 return -ENOMEM; 972 err = damon_commit_target(new_target, false, 973 src_target, damon_target_has_pid(src)); 974 if (err) { 975 damon_destroy_target(new_target); 976 return err; 977 } 978 damon_add_target(dst, new_target); 979 } 980 return 0; 981 } 982 983 /** 984 * damon_commit_ctx() - Commit parameters of a DAMON context to another. 985 * @dst: The commit destination DAMON context. 986 * @src: The commit source DAMON context. 987 * 988 * This function copies user-specified parameters from @src to @dst and update 989 * the internal status and results accordingly. Users should use this function 990 * for context-level parameters update of running context, instead of manual 991 * in-place updates. 992 * 993 * This function should be called from parameters-update safe context, like 994 * DAMON callbacks. 995 */ 996 int damon_commit_ctx(struct damon_ctx *dst, struct damon_ctx *src) 997 { 998 int err; 999 1000 err = damon_commit_schemes(dst, src); 1001 if (err) 1002 return err; 1003 err = damon_commit_targets(dst, src); 1004 if (err) 1005 return err; 1006 /* 1007 * schemes and targets should be updated first, since 1008 * 1. damon_set_attrs() updates monitoring results of targets and 1009 * next_apply_sis of schemes, and 1010 * 2. ops update should be done after pid handling is done (target 1011 * committing require putting pids). 1012 */ 1013 err = damon_set_attrs(dst, &src->attrs); 1014 if (err) 1015 return err; 1016 dst->ops = src->ops; 1017 1018 return 0; 1019 } 1020 1021 /** 1022 * damon_nr_running_ctxs() - Return number of currently running contexts. 1023 */ 1024 int damon_nr_running_ctxs(void) 1025 { 1026 int nr_ctxs; 1027 1028 mutex_lock(&damon_lock); 1029 nr_ctxs = nr_running_ctxs; 1030 mutex_unlock(&damon_lock); 1031 1032 return nr_ctxs; 1033 } 1034 1035 /* Returns the size upper limit for each monitoring region */ 1036 static unsigned long damon_region_sz_limit(struct damon_ctx *ctx) 1037 { 1038 struct damon_target *t; 1039 struct damon_region *r; 1040 unsigned long sz = 0; 1041 1042 damon_for_each_target(t, ctx) { 1043 damon_for_each_region(r, t) 1044 sz += damon_sz_region(r); 1045 } 1046 1047 if (ctx->attrs.min_nr_regions) 1048 sz /= ctx->attrs.min_nr_regions; 1049 if (sz < DAMON_MIN_REGION) 1050 sz = DAMON_MIN_REGION; 1051 1052 return sz; 1053 } 1054 1055 static int kdamond_fn(void *data); 1056 1057 /* 1058 * __damon_start() - Starts monitoring with given context. 1059 * @ctx: monitoring context 1060 * 1061 * This function should be called while damon_lock is hold. 1062 * 1063 * Return: 0 on success, negative error code otherwise. 1064 */ 1065 static int __damon_start(struct damon_ctx *ctx) 1066 { 1067 int err = -EBUSY; 1068 1069 mutex_lock(&ctx->kdamond_lock); 1070 if (!ctx->kdamond) { 1071 err = 0; 1072 reinit_completion(&ctx->kdamond_started); 1073 ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d", 1074 nr_running_ctxs); 1075 if (IS_ERR(ctx->kdamond)) { 1076 err = PTR_ERR(ctx->kdamond); 1077 ctx->kdamond = NULL; 1078 } else { 1079 wait_for_completion(&ctx->kdamond_started); 1080 } 1081 } 1082 mutex_unlock(&ctx->kdamond_lock); 1083 1084 return err; 1085 } 1086 1087 /** 1088 * damon_start() - Starts the monitorings for a given group of contexts. 1089 * @ctxs: an array of the pointers for contexts to start monitoring 1090 * @nr_ctxs: size of @ctxs 1091 * @exclusive: exclusiveness of this contexts group 1092 * 1093 * This function starts a group of monitoring threads for a group of monitoring 1094 * contexts. One thread per each context is created and run in parallel. The 1095 * caller should handle synchronization between the threads by itself. If 1096 * @exclusive is true and a group of threads that created by other 1097 * 'damon_start()' call is currently running, this function does nothing but 1098 * returns -EBUSY. 1099 * 1100 * Return: 0 on success, negative error code otherwise. 1101 */ 1102 int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive) 1103 { 1104 int i; 1105 int err = 0; 1106 1107 mutex_lock(&damon_lock); 1108 if ((exclusive && nr_running_ctxs) || 1109 (!exclusive && running_exclusive_ctxs)) { 1110 mutex_unlock(&damon_lock); 1111 return -EBUSY; 1112 } 1113 1114 for (i = 0; i < nr_ctxs; i++) { 1115 err = __damon_start(ctxs[i]); 1116 if (err) 1117 break; 1118 nr_running_ctxs++; 1119 } 1120 if (exclusive && nr_running_ctxs) 1121 running_exclusive_ctxs = true; 1122 mutex_unlock(&damon_lock); 1123 1124 return err; 1125 } 1126 1127 /* 1128 * __damon_stop() - Stops monitoring of a given context. 1129 * @ctx: monitoring context 1130 * 1131 * Return: 0 on success, negative error code otherwise. 1132 */ 1133 static int __damon_stop(struct damon_ctx *ctx) 1134 { 1135 struct task_struct *tsk; 1136 1137 mutex_lock(&ctx->kdamond_lock); 1138 tsk = ctx->kdamond; 1139 if (tsk) { 1140 get_task_struct(tsk); 1141 mutex_unlock(&ctx->kdamond_lock); 1142 kthread_stop_put(tsk); 1143 return 0; 1144 } 1145 mutex_unlock(&ctx->kdamond_lock); 1146 1147 return -EPERM; 1148 } 1149 1150 /** 1151 * damon_stop() - Stops the monitorings for a given group of contexts. 1152 * @ctxs: an array of the pointers for contexts to stop monitoring 1153 * @nr_ctxs: size of @ctxs 1154 * 1155 * Return: 0 on success, negative error code otherwise. 1156 */ 1157 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs) 1158 { 1159 int i, err = 0; 1160 1161 for (i = 0; i < nr_ctxs; i++) { 1162 /* nr_running_ctxs is decremented in kdamond_fn */ 1163 err = __damon_stop(ctxs[i]); 1164 if (err) 1165 break; 1166 } 1167 return err; 1168 } 1169 1170 static bool damon_is_running(struct damon_ctx *ctx) 1171 { 1172 bool running; 1173 1174 mutex_lock(&ctx->kdamond_lock); 1175 running = ctx->kdamond != NULL; 1176 mutex_unlock(&ctx->kdamond_lock); 1177 return running; 1178 } 1179 1180 /** 1181 * damon_call() - Invoke a given function on DAMON worker thread (kdamond). 1182 * @ctx: DAMON context to call the function for. 1183 * @control: Control variable of the call request. 1184 * 1185 * Ask DAMON worker thread (kdamond) of @ctx to call a function with an 1186 * argument data that respectively passed via &damon_call_control->fn and 1187 * &damon_call_control->data of @control, and wait until the kdamond finishes 1188 * handling of the request. 1189 * 1190 * The kdamond executes the function with the argument in the main loop, just 1191 * after a sampling of the iteration is finished. The function can hence 1192 * safely access the internal data of the &struct damon_ctx without additional 1193 * synchronization. The return value of the function will be saved in 1194 * &damon_call_control->return_code. 1195 * 1196 * Return: 0 on success, negative error code otherwise. 1197 */ 1198 int damon_call(struct damon_ctx *ctx, struct damon_call_control *control) 1199 { 1200 init_completion(&control->completion); 1201 control->canceled = false; 1202 1203 mutex_lock(&ctx->call_control_lock); 1204 if (ctx->call_control) { 1205 mutex_unlock(&ctx->call_control_lock); 1206 return -EBUSY; 1207 } 1208 ctx->call_control = control; 1209 mutex_unlock(&ctx->call_control_lock); 1210 if (!damon_is_running(ctx)) 1211 return -EINVAL; 1212 wait_for_completion(&control->completion); 1213 if (control->canceled) 1214 return -ECANCELED; 1215 return 0; 1216 } 1217 1218 /** 1219 * damos_walk() - Invoke a given functions while DAMOS walk regions. 1220 * @ctx: DAMON context to call the functions for. 1221 * @control: Control variable of the walk request. 1222 * 1223 * Ask DAMON worker thread (kdamond) of @ctx to call a function for each region 1224 * that the kdamond will apply DAMOS action to, and wait until the kdamond 1225 * finishes handling of the request. 1226 * 1227 * The kdamond executes the given function in the main loop, for each region 1228 * just after it applied any DAMOS actions of @ctx to it. The invocation is 1229 * made only within one &damos->apply_interval_us since damos_walk() 1230 * invocation, for each scheme. The given callback function can hence safely 1231 * access the internal data of &struct damon_ctx and &struct damon_region that 1232 * each of the scheme will apply the action for next interval, without 1233 * additional synchronizations against the kdamond. If every scheme of @ctx 1234 * passed at least one &damos->apply_interval_us, kdamond marks the request as 1235 * completed so that damos_walk() can wakeup and return. 1236 * 1237 * Return: 0 on success, negative error code otherwise. 1238 */ 1239 int damos_walk(struct damon_ctx *ctx, struct damos_walk_control *control) 1240 { 1241 init_completion(&control->completion); 1242 control->canceled = false; 1243 mutex_lock(&ctx->walk_control_lock); 1244 if (ctx->walk_control) { 1245 mutex_unlock(&ctx->walk_control_lock); 1246 return -EBUSY; 1247 } 1248 ctx->walk_control = control; 1249 mutex_unlock(&ctx->walk_control_lock); 1250 if (!damon_is_running(ctx)) 1251 return -EINVAL; 1252 wait_for_completion(&control->completion); 1253 if (control->canceled) 1254 return -ECANCELED; 1255 return 0; 1256 } 1257 1258 /* 1259 * Reset the aggregated monitoring results ('nr_accesses' of each region). 1260 */ 1261 static void kdamond_reset_aggregated(struct damon_ctx *c) 1262 { 1263 struct damon_target *t; 1264 unsigned int ti = 0; /* target's index */ 1265 1266 damon_for_each_target(t, c) { 1267 struct damon_region *r; 1268 1269 damon_for_each_region(r, t) { 1270 trace_damon_aggregated(ti, r, damon_nr_regions(t)); 1271 r->last_nr_accesses = r->nr_accesses; 1272 r->nr_accesses = 0; 1273 } 1274 ti++; 1275 } 1276 } 1277 1278 static void damon_split_region_at(struct damon_target *t, 1279 struct damon_region *r, unsigned long sz_r); 1280 1281 static bool __damos_valid_target(struct damon_region *r, struct damos *s) 1282 { 1283 unsigned long sz; 1284 unsigned int nr_accesses = r->nr_accesses_bp / 10000; 1285 1286 sz = damon_sz_region(r); 1287 return s->pattern.min_sz_region <= sz && 1288 sz <= s->pattern.max_sz_region && 1289 s->pattern.min_nr_accesses <= nr_accesses && 1290 nr_accesses <= s->pattern.max_nr_accesses && 1291 s->pattern.min_age_region <= r->age && 1292 r->age <= s->pattern.max_age_region; 1293 } 1294 1295 static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t, 1296 struct damon_region *r, struct damos *s) 1297 { 1298 bool ret = __damos_valid_target(r, s); 1299 1300 if (!ret || !s->quota.esz || !c->ops.get_scheme_score) 1301 return ret; 1302 1303 return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score; 1304 } 1305 1306 /* 1307 * damos_skip_charged_region() - Check if the given region or starting part of 1308 * it is already charged for the DAMOS quota. 1309 * @t: The target of the region. 1310 * @rp: The pointer to the region. 1311 * @s: The scheme to be applied. 1312 * 1313 * If a quota of a scheme has exceeded in a quota charge window, the scheme's 1314 * action would applied to only a part of the target access pattern fulfilling 1315 * regions. To avoid applying the scheme action to only already applied 1316 * regions, DAMON skips applying the scheme action to the regions that charged 1317 * in the previous charge window. 1318 * 1319 * This function checks if a given region should be skipped or not for the 1320 * reason. If only the starting part of the region has previously charged, 1321 * this function splits the region into two so that the second one covers the 1322 * area that not charged in the previous charge widnow and saves the second 1323 * region in *rp and returns false, so that the caller can apply DAMON action 1324 * to the second one. 1325 * 1326 * Return: true if the region should be entirely skipped, false otherwise. 1327 */ 1328 static bool damos_skip_charged_region(struct damon_target *t, 1329 struct damon_region **rp, struct damos *s) 1330 { 1331 struct damon_region *r = *rp; 1332 struct damos_quota *quota = &s->quota; 1333 unsigned long sz_to_skip; 1334 1335 /* Skip previously charged regions */ 1336 if (quota->charge_target_from) { 1337 if (t != quota->charge_target_from) 1338 return true; 1339 if (r == damon_last_region(t)) { 1340 quota->charge_target_from = NULL; 1341 quota->charge_addr_from = 0; 1342 return true; 1343 } 1344 if (quota->charge_addr_from && 1345 r->ar.end <= quota->charge_addr_from) 1346 return true; 1347 1348 if (quota->charge_addr_from && r->ar.start < 1349 quota->charge_addr_from) { 1350 sz_to_skip = ALIGN_DOWN(quota->charge_addr_from - 1351 r->ar.start, DAMON_MIN_REGION); 1352 if (!sz_to_skip) { 1353 if (damon_sz_region(r) <= DAMON_MIN_REGION) 1354 return true; 1355 sz_to_skip = DAMON_MIN_REGION; 1356 } 1357 damon_split_region_at(t, r, sz_to_skip); 1358 r = damon_next_region(r); 1359 *rp = r; 1360 } 1361 quota->charge_target_from = NULL; 1362 quota->charge_addr_from = 0; 1363 } 1364 return false; 1365 } 1366 1367 static void damos_update_stat(struct damos *s, 1368 unsigned long sz_tried, unsigned long sz_applied, 1369 unsigned long sz_ops_filter_passed) 1370 { 1371 s->stat.nr_tried++; 1372 s->stat.sz_tried += sz_tried; 1373 if (sz_applied) 1374 s->stat.nr_applied++; 1375 s->stat.sz_applied += sz_applied; 1376 s->stat.sz_ops_filter_passed += sz_ops_filter_passed; 1377 } 1378 1379 static bool damos_filter_match(struct damon_ctx *ctx, struct damon_target *t, 1380 struct damon_region *r, struct damos_filter *filter) 1381 { 1382 bool matched = false; 1383 struct damon_target *ti; 1384 int target_idx = 0; 1385 unsigned long start, end; 1386 1387 switch (filter->type) { 1388 case DAMOS_FILTER_TYPE_TARGET: 1389 damon_for_each_target(ti, ctx) { 1390 if (ti == t) 1391 break; 1392 target_idx++; 1393 } 1394 matched = target_idx == filter->target_idx; 1395 break; 1396 case DAMOS_FILTER_TYPE_ADDR: 1397 start = ALIGN_DOWN(filter->addr_range.start, DAMON_MIN_REGION); 1398 end = ALIGN_DOWN(filter->addr_range.end, DAMON_MIN_REGION); 1399 1400 /* inside the range */ 1401 if (start <= r->ar.start && r->ar.end <= end) { 1402 matched = true; 1403 break; 1404 } 1405 /* outside of the range */ 1406 if (r->ar.end <= start || end <= r->ar.start) { 1407 matched = false; 1408 break; 1409 } 1410 /* start before the range and overlap */ 1411 if (r->ar.start < start) { 1412 damon_split_region_at(t, r, start - r->ar.start); 1413 matched = false; 1414 break; 1415 } 1416 /* start inside the range */ 1417 damon_split_region_at(t, r, end - r->ar.start); 1418 matched = true; 1419 break; 1420 default: 1421 return false; 1422 } 1423 1424 return matched == filter->matching; 1425 } 1426 1427 static bool damos_filter_out(struct damon_ctx *ctx, struct damon_target *t, 1428 struct damon_region *r, struct damos *s) 1429 { 1430 struct damos_filter *filter; 1431 1432 damos_for_each_filter(filter, s) { 1433 if (damos_filter_match(ctx, t, r, filter)) 1434 return !filter->allow; 1435 } 1436 return false; 1437 } 1438 1439 /* 1440 * damos_walk_call_walk() - Call &damos_walk_control->walk_fn. 1441 * @ctx: The context of &damon_ctx->walk_control. 1442 * @t: The monitoring target of @r that @s will be applied. 1443 * @r: The region of @t that @s will be applied. 1444 * @s: The scheme of @ctx that will be applied to @r. 1445 * 1446 * This function is called from kdamond whenever it asked the operation set to 1447 * apply a DAMOS scheme action to a region. If a DAMOS walk request is 1448 * installed by damos_walk() and not yet uninstalled, invoke it. 1449 */ 1450 static void damos_walk_call_walk(struct damon_ctx *ctx, struct damon_target *t, 1451 struct damon_region *r, struct damos *s, 1452 unsigned long sz_filter_passed) 1453 { 1454 struct damos_walk_control *control; 1455 1456 mutex_lock(&ctx->walk_control_lock); 1457 control = ctx->walk_control; 1458 mutex_unlock(&ctx->walk_control_lock); 1459 if (!control) 1460 return; 1461 control->walk_fn(control->data, ctx, t, r, s, sz_filter_passed); 1462 } 1463 1464 /* 1465 * damos_walk_complete() - Complete DAMOS walk request if all walks are done. 1466 * @ctx: The context of &damon_ctx->walk_control. 1467 * @s: A scheme of @ctx that all walks are now done. 1468 * 1469 * This function is called when kdamond finished applying the action of a DAMOS 1470 * scheme to all regions that eligible for the given &damos->apply_interval_us. 1471 * If every scheme of @ctx including @s now finished walking for at least one 1472 * &damos->apply_interval_us, this function makrs the handling of the given 1473 * DAMOS walk request is done, so that damos_walk() can wake up and return. 1474 */ 1475 static void damos_walk_complete(struct damon_ctx *ctx, struct damos *s) 1476 { 1477 struct damos *siter; 1478 struct damos_walk_control *control; 1479 1480 mutex_lock(&ctx->walk_control_lock); 1481 control = ctx->walk_control; 1482 mutex_unlock(&ctx->walk_control_lock); 1483 if (!control) 1484 return; 1485 1486 s->walk_completed = true; 1487 /* if all schemes completed, signal completion to walker */ 1488 damon_for_each_scheme(siter, ctx) { 1489 if (!siter->walk_completed) 1490 return; 1491 } 1492 complete(&control->completion); 1493 mutex_lock(&ctx->walk_control_lock); 1494 ctx->walk_control = NULL; 1495 mutex_unlock(&ctx->walk_control_lock); 1496 } 1497 1498 /* 1499 * damos_walk_cancel() - Cancel the current DAMOS walk request. 1500 * @ctx: The context of &damon_ctx->walk_control. 1501 * 1502 * This function is called when @ctx is deactivated by DAMOS watermarks, DAMOS 1503 * walk is requested but there is no DAMOS scheme to walk for, or the kdamond 1504 * is already out of the main loop and therefore gonna be terminated, and hence 1505 * cannot continue the walks. This function therefore marks the walk request 1506 * as canceled, so that damos_walk() can wake up and return. 1507 */ 1508 static void damos_walk_cancel(struct damon_ctx *ctx) 1509 { 1510 struct damos_walk_control *control; 1511 1512 mutex_lock(&ctx->walk_control_lock); 1513 control = ctx->walk_control; 1514 mutex_unlock(&ctx->walk_control_lock); 1515 1516 if (!control) 1517 return; 1518 control->canceled = true; 1519 complete(&control->completion); 1520 mutex_lock(&ctx->walk_control_lock); 1521 ctx->walk_control = NULL; 1522 mutex_unlock(&ctx->walk_control_lock); 1523 } 1524 1525 static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t, 1526 struct damon_region *r, struct damos *s) 1527 { 1528 struct damos_quota *quota = &s->quota; 1529 unsigned long sz = damon_sz_region(r); 1530 struct timespec64 begin, end; 1531 unsigned long sz_applied = 0; 1532 unsigned long sz_ops_filter_passed = 0; 1533 int err = 0; 1534 /* 1535 * We plan to support multiple context per kdamond, as DAMON sysfs 1536 * implies with 'nr_contexts' file. Nevertheless, only single context 1537 * per kdamond is supported for now. So, we can simply use '0' context 1538 * index here. 1539 */ 1540 unsigned int cidx = 0; 1541 struct damos *siter; /* schemes iterator */ 1542 unsigned int sidx = 0; 1543 struct damon_target *titer; /* targets iterator */ 1544 unsigned int tidx = 0; 1545 bool do_trace = false; 1546 1547 /* get indices for trace_damos_before_apply() */ 1548 if (trace_damos_before_apply_enabled()) { 1549 damon_for_each_scheme(siter, c) { 1550 if (siter == s) 1551 break; 1552 sidx++; 1553 } 1554 damon_for_each_target(titer, c) { 1555 if (titer == t) 1556 break; 1557 tidx++; 1558 } 1559 do_trace = true; 1560 } 1561 1562 if (c->ops.apply_scheme) { 1563 if (quota->esz && quota->charged_sz + sz > quota->esz) { 1564 sz = ALIGN_DOWN(quota->esz - quota->charged_sz, 1565 DAMON_MIN_REGION); 1566 if (!sz) 1567 goto update_stat; 1568 damon_split_region_at(t, r, sz); 1569 } 1570 if (damos_filter_out(c, t, r, s)) 1571 return; 1572 ktime_get_coarse_ts64(&begin); 1573 if (c->callback.before_damos_apply) 1574 err = c->callback.before_damos_apply(c, t, r, s); 1575 if (!err) { 1576 trace_damos_before_apply(cidx, sidx, tidx, r, 1577 damon_nr_regions(t), do_trace); 1578 sz_applied = c->ops.apply_scheme(c, t, r, s, 1579 &sz_ops_filter_passed); 1580 } 1581 damos_walk_call_walk(c, t, r, s, sz_ops_filter_passed); 1582 ktime_get_coarse_ts64(&end); 1583 quota->total_charged_ns += timespec64_to_ns(&end) - 1584 timespec64_to_ns(&begin); 1585 quota->charged_sz += sz; 1586 if (quota->esz && quota->charged_sz >= quota->esz) { 1587 quota->charge_target_from = t; 1588 quota->charge_addr_from = r->ar.end + 1; 1589 } 1590 } 1591 if (s->action != DAMOS_STAT) 1592 r->age = 0; 1593 1594 update_stat: 1595 damos_update_stat(s, sz, sz_applied, sz_ops_filter_passed); 1596 } 1597 1598 static void damon_do_apply_schemes(struct damon_ctx *c, 1599 struct damon_target *t, 1600 struct damon_region *r) 1601 { 1602 struct damos *s; 1603 1604 damon_for_each_scheme(s, c) { 1605 struct damos_quota *quota = &s->quota; 1606 1607 if (c->passed_sample_intervals < s->next_apply_sis) 1608 continue; 1609 1610 if (!s->wmarks.activated) 1611 continue; 1612 1613 /* Check the quota */ 1614 if (quota->esz && quota->charged_sz >= quota->esz) 1615 continue; 1616 1617 if (damos_skip_charged_region(t, &r, s)) 1618 continue; 1619 1620 if (!damos_valid_target(c, t, r, s)) 1621 continue; 1622 1623 damos_apply_scheme(c, t, r, s); 1624 } 1625 } 1626 1627 /* 1628 * damon_feed_loop_next_input() - get next input to achieve a target score. 1629 * @last_input The last input. 1630 * @score Current score that made with @last_input. 1631 * 1632 * Calculate next input to achieve the target score, based on the last input 1633 * and current score. Assuming the input and the score are positively 1634 * proportional, calculate how much compensation should be added to or 1635 * subtracted from the last input as a proportion of the last input. Avoid 1636 * next input always being zero by setting it non-zero always. In short form 1637 * (assuming support of float and signed calculations), the algorithm is as 1638 * below. 1639 * 1640 * next_input = max(last_input * ((goal - current) / goal + 1), 1) 1641 * 1642 * For simple implementation, we assume the target score is always 10,000. The 1643 * caller should adjust @score for this. 1644 * 1645 * Returns next input that assumed to achieve the target score. 1646 */ 1647 static unsigned long damon_feed_loop_next_input(unsigned long last_input, 1648 unsigned long score) 1649 { 1650 const unsigned long goal = 10000; 1651 /* Set minimum input as 10000 to avoid compensation be zero */ 1652 const unsigned long min_input = 10000; 1653 unsigned long score_goal_diff, compensation; 1654 bool over_achieving = score > goal; 1655 1656 if (score == goal) 1657 return last_input; 1658 if (score >= goal * 2) 1659 return min_input; 1660 1661 if (over_achieving) 1662 score_goal_diff = score - goal; 1663 else 1664 score_goal_diff = goal - score; 1665 1666 if (last_input < ULONG_MAX / score_goal_diff) 1667 compensation = last_input * score_goal_diff / goal; 1668 else 1669 compensation = last_input / goal * score_goal_diff; 1670 1671 if (over_achieving) 1672 return max(last_input - compensation, min_input); 1673 if (last_input < ULONG_MAX - compensation) 1674 return last_input + compensation; 1675 return ULONG_MAX; 1676 } 1677 1678 #ifdef CONFIG_PSI 1679 1680 static u64 damos_get_some_mem_psi_total(void) 1681 { 1682 if (static_branch_likely(&psi_disabled)) 1683 return 0; 1684 return div_u64(psi_system.total[PSI_AVGS][PSI_MEM * 2], 1685 NSEC_PER_USEC); 1686 } 1687 1688 #else /* CONFIG_PSI */ 1689 1690 static inline u64 damos_get_some_mem_psi_total(void) 1691 { 1692 return 0; 1693 }; 1694 1695 #endif /* CONFIG_PSI */ 1696 1697 static void damos_set_quota_goal_current_value(struct damos_quota_goal *goal) 1698 { 1699 u64 now_psi_total; 1700 1701 switch (goal->metric) { 1702 case DAMOS_QUOTA_USER_INPUT: 1703 /* User should already set goal->current_value */ 1704 break; 1705 case DAMOS_QUOTA_SOME_MEM_PSI_US: 1706 now_psi_total = damos_get_some_mem_psi_total(); 1707 goal->current_value = now_psi_total - goal->last_psi_total; 1708 goal->last_psi_total = now_psi_total; 1709 break; 1710 default: 1711 break; 1712 } 1713 } 1714 1715 /* Return the highest score since it makes schemes least aggressive */ 1716 static unsigned long damos_quota_score(struct damos_quota *quota) 1717 { 1718 struct damos_quota_goal *goal; 1719 unsigned long highest_score = 0; 1720 1721 damos_for_each_quota_goal(goal, quota) { 1722 damos_set_quota_goal_current_value(goal); 1723 highest_score = max(highest_score, 1724 goal->current_value * 10000 / 1725 goal->target_value); 1726 } 1727 1728 return highest_score; 1729 } 1730 1731 /* 1732 * Called only if quota->ms, or quota->sz are set, or quota->goals is not empty 1733 */ 1734 static void damos_set_effective_quota(struct damos_quota *quota) 1735 { 1736 unsigned long throughput; 1737 unsigned long esz = ULONG_MAX; 1738 1739 if (!quota->ms && list_empty("a->goals)) { 1740 quota->esz = quota->sz; 1741 return; 1742 } 1743 1744 if (!list_empty("a->goals)) { 1745 unsigned long score = damos_quota_score(quota); 1746 1747 quota->esz_bp = damon_feed_loop_next_input( 1748 max(quota->esz_bp, 10000UL), 1749 score); 1750 esz = quota->esz_bp / 10000; 1751 } 1752 1753 if (quota->ms) { 1754 if (quota->total_charged_ns) 1755 throughput = quota->total_charged_sz * 1000000 / 1756 quota->total_charged_ns; 1757 else 1758 throughput = PAGE_SIZE * 1024; 1759 esz = min(throughput * quota->ms, esz); 1760 } 1761 1762 if (quota->sz && quota->sz < esz) 1763 esz = quota->sz; 1764 1765 quota->esz = esz; 1766 } 1767 1768 static void damos_adjust_quota(struct damon_ctx *c, struct damos *s) 1769 { 1770 struct damos_quota *quota = &s->quota; 1771 struct damon_target *t; 1772 struct damon_region *r; 1773 unsigned long cumulated_sz; 1774 unsigned int score, max_score = 0; 1775 1776 if (!quota->ms && !quota->sz && list_empty("a->goals)) 1777 return; 1778 1779 /* New charge window starts */ 1780 if (time_after_eq(jiffies, quota->charged_from + 1781 msecs_to_jiffies(quota->reset_interval))) { 1782 if (quota->esz && quota->charged_sz >= quota->esz) 1783 s->stat.qt_exceeds++; 1784 quota->total_charged_sz += quota->charged_sz; 1785 quota->charged_from = jiffies; 1786 quota->charged_sz = 0; 1787 damos_set_effective_quota(quota); 1788 } 1789 1790 if (!c->ops.get_scheme_score) 1791 return; 1792 1793 /* Fill up the score histogram */ 1794 memset(c->regions_score_histogram, 0, 1795 sizeof(*c->regions_score_histogram) * 1796 (DAMOS_MAX_SCORE + 1)); 1797 damon_for_each_target(t, c) { 1798 damon_for_each_region(r, t) { 1799 if (!__damos_valid_target(r, s)) 1800 continue; 1801 score = c->ops.get_scheme_score(c, t, r, s); 1802 c->regions_score_histogram[score] += 1803 damon_sz_region(r); 1804 if (score > max_score) 1805 max_score = score; 1806 } 1807 } 1808 1809 /* Set the min score limit */ 1810 for (cumulated_sz = 0, score = max_score; ; score--) { 1811 cumulated_sz += c->regions_score_histogram[score]; 1812 if (cumulated_sz >= quota->esz || !score) 1813 break; 1814 } 1815 quota->min_score = score; 1816 } 1817 1818 static void kdamond_apply_schemes(struct damon_ctx *c) 1819 { 1820 struct damon_target *t; 1821 struct damon_region *r, *next_r; 1822 struct damos *s; 1823 unsigned long sample_interval = c->attrs.sample_interval ? 1824 c->attrs.sample_interval : 1; 1825 bool has_schemes_to_apply = false; 1826 1827 damon_for_each_scheme(s, c) { 1828 if (c->passed_sample_intervals < s->next_apply_sis) 1829 continue; 1830 1831 if (!s->wmarks.activated) 1832 continue; 1833 1834 has_schemes_to_apply = true; 1835 1836 damos_adjust_quota(c, s); 1837 } 1838 1839 if (!has_schemes_to_apply) 1840 return; 1841 1842 damon_for_each_target(t, c) { 1843 damon_for_each_region_safe(r, next_r, t) 1844 damon_do_apply_schemes(c, t, r); 1845 } 1846 1847 damon_for_each_scheme(s, c) { 1848 if (c->passed_sample_intervals < s->next_apply_sis) 1849 continue; 1850 damos_walk_complete(c, s); 1851 s->next_apply_sis = c->passed_sample_intervals + 1852 (s->apply_interval_us ? s->apply_interval_us : 1853 c->attrs.aggr_interval) / sample_interval; 1854 } 1855 } 1856 1857 /* 1858 * Merge two adjacent regions into one region 1859 */ 1860 static void damon_merge_two_regions(struct damon_target *t, 1861 struct damon_region *l, struct damon_region *r) 1862 { 1863 unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r); 1864 1865 l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) / 1866 (sz_l + sz_r); 1867 l->nr_accesses_bp = l->nr_accesses * 10000; 1868 l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r); 1869 l->ar.end = r->ar.end; 1870 damon_destroy_region(r, t); 1871 } 1872 1873 /* 1874 * Merge adjacent regions having similar access frequencies 1875 * 1876 * t target affected by this merge operation 1877 * thres '->nr_accesses' diff threshold for the merge 1878 * sz_limit size upper limit of each region 1879 */ 1880 static void damon_merge_regions_of(struct damon_target *t, unsigned int thres, 1881 unsigned long sz_limit) 1882 { 1883 struct damon_region *r, *prev = NULL, *next; 1884 1885 damon_for_each_region_safe(r, next, t) { 1886 if (abs(r->nr_accesses - r->last_nr_accesses) > thres) 1887 r->age = 0; 1888 else 1889 r->age++; 1890 1891 if (prev && prev->ar.end == r->ar.start && 1892 abs(prev->nr_accesses - r->nr_accesses) <= thres && 1893 damon_sz_region(prev) + damon_sz_region(r) <= sz_limit) 1894 damon_merge_two_regions(t, prev, r); 1895 else 1896 prev = r; 1897 } 1898 } 1899 1900 /* 1901 * Merge adjacent regions having similar access frequencies 1902 * 1903 * threshold '->nr_accesses' diff threshold for the merge 1904 * sz_limit size upper limit of each region 1905 * 1906 * This function merges monitoring target regions which are adjacent and their 1907 * access frequencies are similar. This is for minimizing the monitoring 1908 * overhead under the dynamically changeable access pattern. If a merge was 1909 * unnecessarily made, later 'kdamond_split_regions()' will revert it. 1910 * 1911 * The total number of regions could be higher than the user-defined limit, 1912 * max_nr_regions for some cases. For example, the user can update 1913 * max_nr_regions to a number that lower than the current number of regions 1914 * while DAMON is running. For such a case, repeat merging until the limit is 1915 * met while increasing @threshold up to possible maximum level. 1916 */ 1917 static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold, 1918 unsigned long sz_limit) 1919 { 1920 struct damon_target *t; 1921 unsigned int nr_regions; 1922 unsigned int max_thres; 1923 1924 max_thres = c->attrs.aggr_interval / 1925 (c->attrs.sample_interval ? c->attrs.sample_interval : 1); 1926 do { 1927 nr_regions = 0; 1928 damon_for_each_target(t, c) { 1929 damon_merge_regions_of(t, threshold, sz_limit); 1930 nr_regions += damon_nr_regions(t); 1931 } 1932 threshold = max(1, threshold * 2); 1933 } while (nr_regions > c->attrs.max_nr_regions && 1934 threshold / 2 < max_thres); 1935 } 1936 1937 /* 1938 * Split a region in two 1939 * 1940 * r the region to be split 1941 * sz_r size of the first sub-region that will be made 1942 */ 1943 static void damon_split_region_at(struct damon_target *t, 1944 struct damon_region *r, unsigned long sz_r) 1945 { 1946 struct damon_region *new; 1947 1948 new = damon_new_region(r->ar.start + sz_r, r->ar.end); 1949 if (!new) 1950 return; 1951 1952 r->ar.end = new->ar.start; 1953 1954 new->age = r->age; 1955 new->last_nr_accesses = r->last_nr_accesses; 1956 new->nr_accesses_bp = r->nr_accesses_bp; 1957 new->nr_accesses = r->nr_accesses; 1958 1959 damon_insert_region(new, r, damon_next_region(r), t); 1960 } 1961 1962 /* Split every region in the given target into 'nr_subs' regions */ 1963 static void damon_split_regions_of(struct damon_target *t, int nr_subs) 1964 { 1965 struct damon_region *r, *next; 1966 unsigned long sz_region, sz_sub = 0; 1967 int i; 1968 1969 damon_for_each_region_safe(r, next, t) { 1970 sz_region = damon_sz_region(r); 1971 1972 for (i = 0; i < nr_subs - 1 && 1973 sz_region > 2 * DAMON_MIN_REGION; i++) { 1974 /* 1975 * Randomly select size of left sub-region to be at 1976 * least 10 percent and at most 90% of original region 1977 */ 1978 sz_sub = ALIGN_DOWN(damon_rand(1, 10) * 1979 sz_region / 10, DAMON_MIN_REGION); 1980 /* Do not allow blank region */ 1981 if (sz_sub == 0 || sz_sub >= sz_region) 1982 continue; 1983 1984 damon_split_region_at(t, r, sz_sub); 1985 sz_region = sz_sub; 1986 } 1987 } 1988 } 1989 1990 /* 1991 * Split every target region into randomly-sized small regions 1992 * 1993 * This function splits every target region into random-sized small regions if 1994 * current total number of the regions is equal or smaller than half of the 1995 * user-specified maximum number of regions. This is for maximizing the 1996 * monitoring accuracy under the dynamically changeable access patterns. If a 1997 * split was unnecessarily made, later 'kdamond_merge_regions()' will revert 1998 * it. 1999 */ 2000 static void kdamond_split_regions(struct damon_ctx *ctx) 2001 { 2002 struct damon_target *t; 2003 unsigned int nr_regions = 0; 2004 static unsigned int last_nr_regions; 2005 int nr_subregions = 2; 2006 2007 damon_for_each_target(t, ctx) 2008 nr_regions += damon_nr_regions(t); 2009 2010 if (nr_regions > ctx->attrs.max_nr_regions / 2) 2011 return; 2012 2013 /* Maybe the middle of the region has different access frequency */ 2014 if (last_nr_regions == nr_regions && 2015 nr_regions < ctx->attrs.max_nr_regions / 3) 2016 nr_subregions = 3; 2017 2018 damon_for_each_target(t, ctx) 2019 damon_split_regions_of(t, nr_subregions); 2020 2021 last_nr_regions = nr_regions; 2022 } 2023 2024 /* 2025 * Check whether current monitoring should be stopped 2026 * 2027 * The monitoring is stopped when either the user requested to stop, or all 2028 * monitoring targets are invalid. 2029 * 2030 * Returns true if need to stop current monitoring. 2031 */ 2032 static bool kdamond_need_stop(struct damon_ctx *ctx) 2033 { 2034 struct damon_target *t; 2035 2036 if (kthread_should_stop()) 2037 return true; 2038 2039 if (!ctx->ops.target_valid) 2040 return false; 2041 2042 damon_for_each_target(t, ctx) { 2043 if (ctx->ops.target_valid(t)) 2044 return false; 2045 } 2046 2047 return true; 2048 } 2049 2050 static int damos_get_wmark_metric_value(enum damos_wmark_metric metric, 2051 unsigned long *metric_value) 2052 { 2053 switch (metric) { 2054 case DAMOS_WMARK_FREE_MEM_RATE: 2055 *metric_value = global_zone_page_state(NR_FREE_PAGES) * 1000 / 2056 totalram_pages(); 2057 return 0; 2058 default: 2059 break; 2060 } 2061 return -EINVAL; 2062 } 2063 2064 /* 2065 * Returns zero if the scheme is active. Else, returns time to wait for next 2066 * watermark check in micro-seconds. 2067 */ 2068 static unsigned long damos_wmark_wait_us(struct damos *scheme) 2069 { 2070 unsigned long metric; 2071 2072 if (damos_get_wmark_metric_value(scheme->wmarks.metric, &metric)) 2073 return 0; 2074 2075 /* higher than high watermark or lower than low watermark */ 2076 if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) { 2077 if (scheme->wmarks.activated) 2078 pr_debug("deactivate a scheme (%d) for %s wmark\n", 2079 scheme->action, 2080 str_high_low(metric > scheme->wmarks.high)); 2081 scheme->wmarks.activated = false; 2082 return scheme->wmarks.interval; 2083 } 2084 2085 /* inactive and higher than middle watermark */ 2086 if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) && 2087 !scheme->wmarks.activated) 2088 return scheme->wmarks.interval; 2089 2090 if (!scheme->wmarks.activated) 2091 pr_debug("activate a scheme (%d)\n", scheme->action); 2092 scheme->wmarks.activated = true; 2093 return 0; 2094 } 2095 2096 static void kdamond_usleep(unsigned long usecs) 2097 { 2098 if (usecs >= USLEEP_RANGE_UPPER_BOUND) 2099 schedule_timeout_idle(usecs_to_jiffies(usecs)); 2100 else 2101 usleep_range_idle(usecs, usecs + 1); 2102 } 2103 2104 /* 2105 * kdamond_call() - handle damon_call_control. 2106 * @ctx: The &struct damon_ctx of the kdamond. 2107 * @cancel: Whether to cancel the invocation of the function. 2108 * 2109 * If there is a &struct damon_call_control request that registered via 2110 * &damon_call() on @ctx, do or cancel the invocation of the function depending 2111 * on @cancel. @cancel is set when the kdamond is deactivated by DAMOS 2112 * watermarks, or the kdamond is already out of the main loop and therefore 2113 * will be terminated. 2114 */ 2115 static void kdamond_call(struct damon_ctx *ctx, bool cancel) 2116 { 2117 struct damon_call_control *control; 2118 int ret = 0; 2119 2120 mutex_lock(&ctx->call_control_lock); 2121 control = ctx->call_control; 2122 mutex_unlock(&ctx->call_control_lock); 2123 if (!control) 2124 return; 2125 if (cancel) { 2126 control->canceled = true; 2127 } else { 2128 ret = control->fn(control->data); 2129 control->return_code = ret; 2130 } 2131 complete(&control->completion); 2132 mutex_lock(&ctx->call_control_lock); 2133 ctx->call_control = NULL; 2134 mutex_unlock(&ctx->call_control_lock); 2135 } 2136 2137 /* Returns negative error code if it's not activated but should return */ 2138 static int kdamond_wait_activation(struct damon_ctx *ctx) 2139 { 2140 struct damos *s; 2141 unsigned long wait_time; 2142 unsigned long min_wait_time = 0; 2143 bool init_wait_time = false; 2144 2145 while (!kdamond_need_stop(ctx)) { 2146 damon_for_each_scheme(s, ctx) { 2147 wait_time = damos_wmark_wait_us(s); 2148 if (!init_wait_time || wait_time < min_wait_time) { 2149 init_wait_time = true; 2150 min_wait_time = wait_time; 2151 } 2152 } 2153 if (!min_wait_time) 2154 return 0; 2155 2156 kdamond_usleep(min_wait_time); 2157 2158 if (ctx->callback.after_wmarks_check && 2159 ctx->callback.after_wmarks_check(ctx)) 2160 break; 2161 kdamond_call(ctx, true); 2162 damos_walk_cancel(ctx); 2163 } 2164 return -EBUSY; 2165 } 2166 2167 static void kdamond_init_intervals_sis(struct damon_ctx *ctx) 2168 { 2169 unsigned long sample_interval = ctx->attrs.sample_interval ? 2170 ctx->attrs.sample_interval : 1; 2171 unsigned long apply_interval; 2172 struct damos *scheme; 2173 2174 ctx->passed_sample_intervals = 0; 2175 ctx->next_aggregation_sis = ctx->attrs.aggr_interval / sample_interval; 2176 ctx->next_ops_update_sis = ctx->attrs.ops_update_interval / 2177 sample_interval; 2178 2179 damon_for_each_scheme(scheme, ctx) { 2180 apply_interval = scheme->apply_interval_us ? 2181 scheme->apply_interval_us : ctx->attrs.aggr_interval; 2182 scheme->next_apply_sis = apply_interval / sample_interval; 2183 } 2184 } 2185 2186 /* 2187 * The monitoring daemon that runs as a kernel thread 2188 */ 2189 static int kdamond_fn(void *data) 2190 { 2191 struct damon_ctx *ctx = data; 2192 struct damon_target *t; 2193 struct damon_region *r, *next; 2194 unsigned int max_nr_accesses = 0; 2195 unsigned long sz_limit = 0; 2196 2197 pr_debug("kdamond (%d) starts\n", current->pid); 2198 2199 complete(&ctx->kdamond_started); 2200 kdamond_init_intervals_sis(ctx); 2201 2202 if (ctx->ops.init) 2203 ctx->ops.init(ctx); 2204 if (ctx->callback.before_start && ctx->callback.before_start(ctx)) 2205 goto done; 2206 ctx->regions_score_histogram = kmalloc_array(DAMOS_MAX_SCORE + 1, 2207 sizeof(*ctx->regions_score_histogram), GFP_KERNEL); 2208 if (!ctx->regions_score_histogram) 2209 goto done; 2210 2211 sz_limit = damon_region_sz_limit(ctx); 2212 2213 while (!kdamond_need_stop(ctx)) { 2214 /* 2215 * ctx->attrs and ctx->next_{aggregation,ops_update}_sis could 2216 * be changed from after_wmarks_check() or after_aggregation() 2217 * callbacks. Read the values here, and use those for this 2218 * iteration. That is, damon_set_attrs() updated new values 2219 * are respected from next iteration. 2220 */ 2221 unsigned long next_aggregation_sis = ctx->next_aggregation_sis; 2222 unsigned long next_ops_update_sis = ctx->next_ops_update_sis; 2223 unsigned long sample_interval = ctx->attrs.sample_interval; 2224 2225 if (kdamond_wait_activation(ctx)) 2226 break; 2227 2228 if (ctx->ops.prepare_access_checks) 2229 ctx->ops.prepare_access_checks(ctx); 2230 if (ctx->callback.after_sampling && 2231 ctx->callback.after_sampling(ctx)) 2232 break; 2233 kdamond_call(ctx, false); 2234 2235 kdamond_usleep(sample_interval); 2236 ctx->passed_sample_intervals++; 2237 2238 if (ctx->ops.check_accesses) 2239 max_nr_accesses = ctx->ops.check_accesses(ctx); 2240 2241 if (ctx->passed_sample_intervals >= next_aggregation_sis) { 2242 kdamond_merge_regions(ctx, 2243 max_nr_accesses / 10, 2244 sz_limit); 2245 if (ctx->callback.after_aggregation && 2246 ctx->callback.after_aggregation(ctx)) 2247 break; 2248 } 2249 2250 /* 2251 * do kdamond_apply_schemes() after kdamond_merge_regions() if 2252 * possible, to reduce overhead 2253 */ 2254 if (!list_empty(&ctx->schemes)) 2255 kdamond_apply_schemes(ctx); 2256 else 2257 damos_walk_cancel(ctx); 2258 2259 sample_interval = ctx->attrs.sample_interval ? 2260 ctx->attrs.sample_interval : 1; 2261 if (ctx->passed_sample_intervals >= next_aggregation_sis) { 2262 ctx->next_aggregation_sis = next_aggregation_sis + 2263 ctx->attrs.aggr_interval / sample_interval; 2264 2265 kdamond_reset_aggregated(ctx); 2266 kdamond_split_regions(ctx); 2267 if (ctx->ops.reset_aggregated) 2268 ctx->ops.reset_aggregated(ctx); 2269 } 2270 2271 if (ctx->passed_sample_intervals >= next_ops_update_sis) { 2272 ctx->next_ops_update_sis = next_ops_update_sis + 2273 ctx->attrs.ops_update_interval / 2274 sample_interval; 2275 if (ctx->ops.update) 2276 ctx->ops.update(ctx); 2277 sz_limit = damon_region_sz_limit(ctx); 2278 } 2279 } 2280 done: 2281 damon_for_each_target(t, ctx) { 2282 damon_for_each_region_safe(r, next, t) 2283 damon_destroy_region(r, t); 2284 } 2285 2286 if (ctx->callback.before_terminate) 2287 ctx->callback.before_terminate(ctx); 2288 if (ctx->ops.cleanup) 2289 ctx->ops.cleanup(ctx); 2290 kfree(ctx->regions_score_histogram); 2291 2292 pr_debug("kdamond (%d) finishes\n", current->pid); 2293 mutex_lock(&ctx->kdamond_lock); 2294 ctx->kdamond = NULL; 2295 mutex_unlock(&ctx->kdamond_lock); 2296 2297 kdamond_call(ctx, true); 2298 damos_walk_cancel(ctx); 2299 2300 mutex_lock(&damon_lock); 2301 nr_running_ctxs--; 2302 if (!nr_running_ctxs && running_exclusive_ctxs) 2303 running_exclusive_ctxs = false; 2304 mutex_unlock(&damon_lock); 2305 2306 return 0; 2307 } 2308 2309 /* 2310 * struct damon_system_ram_region - System RAM resource address region of 2311 * [@start, @end). 2312 * @start: Start address of the region (inclusive). 2313 * @end: End address of the region (exclusive). 2314 */ 2315 struct damon_system_ram_region { 2316 unsigned long start; 2317 unsigned long end; 2318 }; 2319 2320 static int walk_system_ram(struct resource *res, void *arg) 2321 { 2322 struct damon_system_ram_region *a = arg; 2323 2324 if (a->end - a->start < resource_size(res)) { 2325 a->start = res->start; 2326 a->end = res->end; 2327 } 2328 return 0; 2329 } 2330 2331 /* 2332 * Find biggest 'System RAM' resource and store its start and end address in 2333 * @start and @end, respectively. If no System RAM is found, returns false. 2334 */ 2335 static bool damon_find_biggest_system_ram(unsigned long *start, 2336 unsigned long *end) 2337 2338 { 2339 struct damon_system_ram_region arg = {}; 2340 2341 walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram); 2342 if (arg.end <= arg.start) 2343 return false; 2344 2345 *start = arg.start; 2346 *end = arg.end; 2347 return true; 2348 } 2349 2350 /** 2351 * damon_set_region_biggest_system_ram_default() - Set the region of the given 2352 * monitoring target as requested, or biggest 'System RAM'. 2353 * @t: The monitoring target to set the region. 2354 * @start: The pointer to the start address of the region. 2355 * @end: The pointer to the end address of the region. 2356 * 2357 * This function sets the region of @t as requested by @start and @end. If the 2358 * values of @start and @end are zero, however, this function finds the biggest 2359 * 'System RAM' resource and sets the region to cover the resource. In the 2360 * latter case, this function saves the start and end addresses of the resource 2361 * in @start and @end, respectively. 2362 * 2363 * Return: 0 on success, negative error code otherwise. 2364 */ 2365 int damon_set_region_biggest_system_ram_default(struct damon_target *t, 2366 unsigned long *start, unsigned long *end) 2367 { 2368 struct damon_addr_range addr_range; 2369 2370 if (*start > *end) 2371 return -EINVAL; 2372 2373 if (!*start && !*end && 2374 !damon_find_biggest_system_ram(start, end)) 2375 return -EINVAL; 2376 2377 addr_range.start = *start; 2378 addr_range.end = *end; 2379 return damon_set_regions(t, &addr_range, 1); 2380 } 2381 2382 /* 2383 * damon_moving_sum() - Calculate an inferred moving sum value. 2384 * @mvsum: Inferred sum of the last @len_window values. 2385 * @nomvsum: Non-moving sum of the last discrete @len_window window values. 2386 * @len_window: The number of last values to take care of. 2387 * @new_value: New value that will be added to the pseudo moving sum. 2388 * 2389 * Moving sum (moving average * window size) is good for handling noise, but 2390 * the cost of keeping past values can be high for arbitrary window size. This 2391 * function implements a lightweight pseudo moving sum function that doesn't 2392 * keep the past window values. 2393 * 2394 * It simply assumes there was no noise in the past, and get the no-noise 2395 * assumed past value to drop from @nomvsum and @len_window. @nomvsum is a 2396 * non-moving sum of the last window. For example, if @len_window is 10 and we 2397 * have 25 values, @nomvsum is the sum of the 11th to 20th values of the 25 2398 * values. Hence, this function simply drops @nomvsum / @len_window from 2399 * given @mvsum and add @new_value. 2400 * 2401 * For example, if @len_window is 10 and @nomvsum is 50, the last 10 values for 2402 * the last window could be vary, e.g., 0, 10, 0, 10, 0, 10, 0, 0, 0, 20. For 2403 * calculating next moving sum with a new value, we should drop 0 from 50 and 2404 * add the new value. However, this function assumes it got value 5 for each 2405 * of the last ten times. Based on the assumption, when the next value is 2406 * measured, it drops the assumed past value, 5 from the current sum, and add 2407 * the new value to get the updated pseduo-moving average. 2408 * 2409 * This means the value could have errors, but the errors will be disappeared 2410 * for every @len_window aligned calls. For example, if @len_window is 10, the 2411 * pseudo moving sum with 11th value to 19th value would have an error. But 2412 * the sum with 20th value will not have the error. 2413 * 2414 * Return: Pseudo-moving average after getting the @new_value. 2415 */ 2416 static unsigned int damon_moving_sum(unsigned int mvsum, unsigned int nomvsum, 2417 unsigned int len_window, unsigned int new_value) 2418 { 2419 return mvsum - nomvsum / len_window + new_value; 2420 } 2421 2422 /** 2423 * damon_update_region_access_rate() - Update the access rate of a region. 2424 * @r: The DAMON region to update for its access check result. 2425 * @accessed: Whether the region has accessed during last sampling interval. 2426 * @attrs: The damon_attrs of the DAMON context. 2427 * 2428 * Update the access rate of a region with the region's last sampling interval 2429 * access check result. 2430 * 2431 * Usually this will be called by &damon_operations->check_accesses callback. 2432 */ 2433 void damon_update_region_access_rate(struct damon_region *r, bool accessed, 2434 struct damon_attrs *attrs) 2435 { 2436 unsigned int len_window = 1; 2437 2438 /* 2439 * sample_interval can be zero, but cannot be larger than 2440 * aggr_interval, owing to validation of damon_set_attrs(). 2441 */ 2442 if (attrs->sample_interval) 2443 len_window = damon_max_nr_accesses(attrs); 2444 r->nr_accesses_bp = damon_moving_sum(r->nr_accesses_bp, 2445 r->last_nr_accesses * 10000, len_window, 2446 accessed ? 10000 : 0); 2447 2448 if (accessed) 2449 r->nr_accesses++; 2450 } 2451 2452 static int __init damon_init(void) 2453 { 2454 damon_region_cache = KMEM_CACHE(damon_region, 0); 2455 if (unlikely(!damon_region_cache)) { 2456 pr_err("creating damon_region_cache fails\n"); 2457 return -ENOMEM; 2458 } 2459 2460 return 0; 2461 } 2462 2463 subsys_initcall(damon_init); 2464 2465 #include "tests/core-kunit.h" 2466