xref: /linux/mm/damon/core.c (revision c6df6213a95fa9674cc48d77042141942dd0809b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Data Access Monitor
4  *
5  * Author: SeongJae Park <sj@kernel.org>
6  */
7 
8 #define pr_fmt(fmt) "damon: " fmt
9 
10 #include <linux/damon.h>
11 #include <linux/delay.h>
12 #include <linux/kthread.h>
13 #include <linux/mm.h>
14 #include <linux/psi.h>
15 #include <linux/slab.h>
16 #include <linux/string.h>
17 
18 #define CREATE_TRACE_POINTS
19 #include <trace/events/damon.h>
20 
21 #ifdef CONFIG_DAMON_KUNIT_TEST
22 #undef DAMON_MIN_REGION
23 #define DAMON_MIN_REGION 1
24 #endif
25 
26 static DEFINE_MUTEX(damon_lock);
27 static int nr_running_ctxs;
28 static bool running_exclusive_ctxs;
29 
30 static DEFINE_MUTEX(damon_ops_lock);
31 static struct damon_operations damon_registered_ops[NR_DAMON_OPS];
32 
33 static struct kmem_cache *damon_region_cache __ro_after_init;
34 
35 /* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */
36 static bool __damon_is_registered_ops(enum damon_ops_id id)
37 {
38 	struct damon_operations empty_ops = {};
39 
40 	if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops)))
41 		return false;
42 	return true;
43 }
44 
45 /**
46  * damon_is_registered_ops() - Check if a given damon_operations is registered.
47  * @id:	Id of the damon_operations to check if registered.
48  *
49  * Return: true if the ops is set, false otherwise.
50  */
51 bool damon_is_registered_ops(enum damon_ops_id id)
52 {
53 	bool registered;
54 
55 	if (id >= NR_DAMON_OPS)
56 		return false;
57 	mutex_lock(&damon_ops_lock);
58 	registered = __damon_is_registered_ops(id);
59 	mutex_unlock(&damon_ops_lock);
60 	return registered;
61 }
62 
63 /**
64  * damon_register_ops() - Register a monitoring operations set to DAMON.
65  * @ops:	monitoring operations set to register.
66  *
67  * This function registers a monitoring operations set of valid &struct
68  * damon_operations->id so that others can find and use them later.
69  *
70  * Return: 0 on success, negative error code otherwise.
71  */
72 int damon_register_ops(struct damon_operations *ops)
73 {
74 	int err = 0;
75 
76 	if (ops->id >= NR_DAMON_OPS)
77 		return -EINVAL;
78 	mutex_lock(&damon_ops_lock);
79 	/* Fail for already registered ops */
80 	if (__damon_is_registered_ops(ops->id)) {
81 		err = -EINVAL;
82 		goto out;
83 	}
84 	damon_registered_ops[ops->id] = *ops;
85 out:
86 	mutex_unlock(&damon_ops_lock);
87 	return err;
88 }
89 
90 /**
91  * damon_select_ops() - Select a monitoring operations to use with the context.
92  * @ctx:	monitoring context to use the operations.
93  * @id:		id of the registered monitoring operations to select.
94  *
95  * This function finds registered monitoring operations set of @id and make
96  * @ctx to use it.
97  *
98  * Return: 0 on success, negative error code otherwise.
99  */
100 int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id)
101 {
102 	int err = 0;
103 
104 	if (id >= NR_DAMON_OPS)
105 		return -EINVAL;
106 
107 	mutex_lock(&damon_ops_lock);
108 	if (!__damon_is_registered_ops(id))
109 		err = -EINVAL;
110 	else
111 		ctx->ops = damon_registered_ops[id];
112 	mutex_unlock(&damon_ops_lock);
113 	return err;
114 }
115 
116 /*
117  * Construct a damon_region struct
118  *
119  * Returns the pointer to the new struct if success, or NULL otherwise
120  */
121 struct damon_region *damon_new_region(unsigned long start, unsigned long end)
122 {
123 	struct damon_region *region;
124 
125 	region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL);
126 	if (!region)
127 		return NULL;
128 
129 	region->ar.start = start;
130 	region->ar.end = end;
131 	region->nr_accesses = 0;
132 	region->nr_accesses_bp = 0;
133 	INIT_LIST_HEAD(&region->list);
134 
135 	region->age = 0;
136 	region->last_nr_accesses = 0;
137 
138 	return region;
139 }
140 
141 void damon_add_region(struct damon_region *r, struct damon_target *t)
142 {
143 	list_add_tail(&r->list, &t->regions_list);
144 	t->nr_regions++;
145 }
146 
147 static void damon_del_region(struct damon_region *r, struct damon_target *t)
148 {
149 	list_del(&r->list);
150 	t->nr_regions--;
151 }
152 
153 static void damon_free_region(struct damon_region *r)
154 {
155 	kmem_cache_free(damon_region_cache, r);
156 }
157 
158 void damon_destroy_region(struct damon_region *r, struct damon_target *t)
159 {
160 	damon_del_region(r, t);
161 	damon_free_region(r);
162 }
163 
164 /*
165  * Check whether a region is intersecting an address range
166  *
167  * Returns true if it is.
168  */
169 static bool damon_intersect(struct damon_region *r,
170 		struct damon_addr_range *re)
171 {
172 	return !(r->ar.end <= re->start || re->end <= r->ar.start);
173 }
174 
175 /*
176  * Fill holes in regions with new regions.
177  */
178 static int damon_fill_regions_holes(struct damon_region *first,
179 		struct damon_region *last, struct damon_target *t)
180 {
181 	struct damon_region *r = first;
182 
183 	damon_for_each_region_from(r, t) {
184 		struct damon_region *next, *newr;
185 
186 		if (r == last)
187 			break;
188 		next = damon_next_region(r);
189 		if (r->ar.end != next->ar.start) {
190 			newr = damon_new_region(r->ar.end, next->ar.start);
191 			if (!newr)
192 				return -ENOMEM;
193 			damon_insert_region(newr, r, next, t);
194 		}
195 	}
196 	return 0;
197 }
198 
199 /*
200  * damon_set_regions() - Set regions of a target for given address ranges.
201  * @t:		the given target.
202  * @ranges:	array of new monitoring target ranges.
203  * @nr_ranges:	length of @ranges.
204  *
205  * This function adds new regions to, or modify existing regions of a
206  * monitoring target to fit in specific ranges.
207  *
208  * Return: 0 if success, or negative error code otherwise.
209  */
210 int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges,
211 		unsigned int nr_ranges)
212 {
213 	struct damon_region *r, *next;
214 	unsigned int i;
215 	int err;
216 
217 	/* Remove regions which are not in the new ranges */
218 	damon_for_each_region_safe(r, next, t) {
219 		for (i = 0; i < nr_ranges; i++) {
220 			if (damon_intersect(r, &ranges[i]))
221 				break;
222 		}
223 		if (i == nr_ranges)
224 			damon_destroy_region(r, t);
225 	}
226 
227 	r = damon_first_region(t);
228 	/* Add new regions or resize existing regions to fit in the ranges */
229 	for (i = 0; i < nr_ranges; i++) {
230 		struct damon_region *first = NULL, *last, *newr;
231 		struct damon_addr_range *range;
232 
233 		range = &ranges[i];
234 		/* Get the first/last regions intersecting with the range */
235 		damon_for_each_region_from(r, t) {
236 			if (damon_intersect(r, range)) {
237 				if (!first)
238 					first = r;
239 				last = r;
240 			}
241 			if (r->ar.start >= range->end)
242 				break;
243 		}
244 		if (!first) {
245 			/* no region intersects with this range */
246 			newr = damon_new_region(
247 					ALIGN_DOWN(range->start,
248 						DAMON_MIN_REGION),
249 					ALIGN(range->end, DAMON_MIN_REGION));
250 			if (!newr)
251 				return -ENOMEM;
252 			damon_insert_region(newr, damon_prev_region(r), r, t);
253 		} else {
254 			/* resize intersecting regions to fit in this range */
255 			first->ar.start = ALIGN_DOWN(range->start,
256 					DAMON_MIN_REGION);
257 			last->ar.end = ALIGN(range->end, DAMON_MIN_REGION);
258 
259 			/* fill possible holes in the range */
260 			err = damon_fill_regions_holes(first, last, t);
261 			if (err)
262 				return err;
263 		}
264 	}
265 	return 0;
266 }
267 
268 struct damos_filter *damos_new_filter(enum damos_filter_type type,
269 		bool matching)
270 {
271 	struct damos_filter *filter;
272 
273 	filter = kmalloc(sizeof(*filter), GFP_KERNEL);
274 	if (!filter)
275 		return NULL;
276 	filter->type = type;
277 	filter->matching = matching;
278 	INIT_LIST_HEAD(&filter->list);
279 	return filter;
280 }
281 
282 void damos_add_filter(struct damos *s, struct damos_filter *f)
283 {
284 	list_add_tail(&f->list, &s->filters);
285 }
286 
287 static void damos_del_filter(struct damos_filter *f)
288 {
289 	list_del(&f->list);
290 }
291 
292 static void damos_free_filter(struct damos_filter *f)
293 {
294 	kfree(f);
295 }
296 
297 void damos_destroy_filter(struct damos_filter *f)
298 {
299 	damos_del_filter(f);
300 	damos_free_filter(f);
301 }
302 
303 struct damos_quota_goal *damos_new_quota_goal(
304 		enum damos_quota_goal_metric metric,
305 		unsigned long target_value)
306 {
307 	struct damos_quota_goal *goal;
308 
309 	goal = kmalloc(sizeof(*goal), GFP_KERNEL);
310 	if (!goal)
311 		return NULL;
312 	goal->metric = metric;
313 	goal->target_value = target_value;
314 	INIT_LIST_HEAD(&goal->list);
315 	return goal;
316 }
317 
318 void damos_add_quota_goal(struct damos_quota *q, struct damos_quota_goal *g)
319 {
320 	list_add_tail(&g->list, &q->goals);
321 }
322 
323 static void damos_del_quota_goal(struct damos_quota_goal *g)
324 {
325 	list_del(&g->list);
326 }
327 
328 static void damos_free_quota_goal(struct damos_quota_goal *g)
329 {
330 	kfree(g);
331 }
332 
333 void damos_destroy_quota_goal(struct damos_quota_goal *g)
334 {
335 	damos_del_quota_goal(g);
336 	damos_free_quota_goal(g);
337 }
338 
339 /* initialize fields of @quota that normally API users wouldn't set */
340 static struct damos_quota *damos_quota_init(struct damos_quota *quota)
341 {
342 	quota->esz = 0;
343 	quota->total_charged_sz = 0;
344 	quota->total_charged_ns = 0;
345 	quota->charged_sz = 0;
346 	quota->charged_from = 0;
347 	quota->charge_target_from = NULL;
348 	quota->charge_addr_from = 0;
349 	quota->esz_bp = 0;
350 	return quota;
351 }
352 
353 struct damos *damon_new_scheme(struct damos_access_pattern *pattern,
354 			enum damos_action action,
355 			unsigned long apply_interval_us,
356 			struct damos_quota *quota,
357 			struct damos_watermarks *wmarks,
358 			int target_nid)
359 {
360 	struct damos *scheme;
361 
362 	scheme = kmalloc(sizeof(*scheme), GFP_KERNEL);
363 	if (!scheme)
364 		return NULL;
365 	scheme->pattern = *pattern;
366 	scheme->action = action;
367 	scheme->apply_interval_us = apply_interval_us;
368 	/*
369 	 * next_apply_sis will be set when kdamond starts.  While kdamond is
370 	 * running, it will also updated when it is added to the DAMON context,
371 	 * or damon_attrs are updated.
372 	 */
373 	scheme->next_apply_sis = 0;
374 	INIT_LIST_HEAD(&scheme->filters);
375 	scheme->stat = (struct damos_stat){};
376 	INIT_LIST_HEAD(&scheme->list);
377 
378 	scheme->quota = *(damos_quota_init(quota));
379 	/* quota.goals should be separately set by caller */
380 	INIT_LIST_HEAD(&scheme->quota.goals);
381 
382 	scheme->wmarks = *wmarks;
383 	scheme->wmarks.activated = true;
384 
385 	scheme->target_nid = target_nid;
386 
387 	return scheme;
388 }
389 
390 static void damos_set_next_apply_sis(struct damos *s, struct damon_ctx *ctx)
391 {
392 	unsigned long sample_interval = ctx->attrs.sample_interval ?
393 		ctx->attrs.sample_interval : 1;
394 	unsigned long apply_interval = s->apply_interval_us ?
395 		s->apply_interval_us : ctx->attrs.aggr_interval;
396 
397 	s->next_apply_sis = ctx->passed_sample_intervals +
398 		apply_interval / sample_interval;
399 }
400 
401 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s)
402 {
403 	list_add_tail(&s->list, &ctx->schemes);
404 	damos_set_next_apply_sis(s, ctx);
405 }
406 
407 static void damon_del_scheme(struct damos *s)
408 {
409 	list_del(&s->list);
410 }
411 
412 static void damon_free_scheme(struct damos *s)
413 {
414 	kfree(s);
415 }
416 
417 void damon_destroy_scheme(struct damos *s)
418 {
419 	struct damos_quota_goal *g, *g_next;
420 	struct damos_filter *f, *next;
421 
422 	damos_for_each_quota_goal_safe(g, g_next, &s->quota)
423 		damos_destroy_quota_goal(g);
424 
425 	damos_for_each_filter_safe(f, next, s)
426 		damos_destroy_filter(f);
427 	damon_del_scheme(s);
428 	damon_free_scheme(s);
429 }
430 
431 /*
432  * Construct a damon_target struct
433  *
434  * Returns the pointer to the new struct if success, or NULL otherwise
435  */
436 struct damon_target *damon_new_target(void)
437 {
438 	struct damon_target *t;
439 
440 	t = kmalloc(sizeof(*t), GFP_KERNEL);
441 	if (!t)
442 		return NULL;
443 
444 	t->pid = NULL;
445 	t->nr_regions = 0;
446 	INIT_LIST_HEAD(&t->regions_list);
447 	INIT_LIST_HEAD(&t->list);
448 
449 	return t;
450 }
451 
452 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t)
453 {
454 	list_add_tail(&t->list, &ctx->adaptive_targets);
455 }
456 
457 bool damon_targets_empty(struct damon_ctx *ctx)
458 {
459 	return list_empty(&ctx->adaptive_targets);
460 }
461 
462 static void damon_del_target(struct damon_target *t)
463 {
464 	list_del(&t->list);
465 }
466 
467 void damon_free_target(struct damon_target *t)
468 {
469 	struct damon_region *r, *next;
470 
471 	damon_for_each_region_safe(r, next, t)
472 		damon_free_region(r);
473 	kfree(t);
474 }
475 
476 void damon_destroy_target(struct damon_target *t)
477 {
478 	damon_del_target(t);
479 	damon_free_target(t);
480 }
481 
482 unsigned int damon_nr_regions(struct damon_target *t)
483 {
484 	return t->nr_regions;
485 }
486 
487 struct damon_ctx *damon_new_ctx(void)
488 {
489 	struct damon_ctx *ctx;
490 
491 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
492 	if (!ctx)
493 		return NULL;
494 
495 	init_completion(&ctx->kdamond_started);
496 
497 	ctx->attrs.sample_interval = 5 * 1000;
498 	ctx->attrs.aggr_interval = 100 * 1000;
499 	ctx->attrs.ops_update_interval = 60 * 1000 * 1000;
500 
501 	ctx->passed_sample_intervals = 0;
502 	/* These will be set from kdamond_init_intervals_sis() */
503 	ctx->next_aggregation_sis = 0;
504 	ctx->next_ops_update_sis = 0;
505 
506 	mutex_init(&ctx->kdamond_lock);
507 
508 	ctx->attrs.min_nr_regions = 10;
509 	ctx->attrs.max_nr_regions = 1000;
510 
511 	INIT_LIST_HEAD(&ctx->adaptive_targets);
512 	INIT_LIST_HEAD(&ctx->schemes);
513 
514 	return ctx;
515 }
516 
517 static void damon_destroy_targets(struct damon_ctx *ctx)
518 {
519 	struct damon_target *t, *next_t;
520 
521 	if (ctx->ops.cleanup) {
522 		ctx->ops.cleanup(ctx);
523 		return;
524 	}
525 
526 	damon_for_each_target_safe(t, next_t, ctx)
527 		damon_destroy_target(t);
528 }
529 
530 void damon_destroy_ctx(struct damon_ctx *ctx)
531 {
532 	struct damos *s, *next_s;
533 
534 	damon_destroy_targets(ctx);
535 
536 	damon_for_each_scheme_safe(s, next_s, ctx)
537 		damon_destroy_scheme(s);
538 
539 	kfree(ctx);
540 }
541 
542 static unsigned int damon_age_for_new_attrs(unsigned int age,
543 		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
544 {
545 	return age * old_attrs->aggr_interval / new_attrs->aggr_interval;
546 }
547 
548 /* convert access ratio in bp (per 10,000) to nr_accesses */
549 static unsigned int damon_accesses_bp_to_nr_accesses(
550 		unsigned int accesses_bp, struct damon_attrs *attrs)
551 {
552 	return accesses_bp * damon_max_nr_accesses(attrs) / 10000;
553 }
554 
555 /* convert nr_accesses to access ratio in bp (per 10,000) */
556 static unsigned int damon_nr_accesses_to_accesses_bp(
557 		unsigned int nr_accesses, struct damon_attrs *attrs)
558 {
559 	return nr_accesses * 10000 / damon_max_nr_accesses(attrs);
560 }
561 
562 static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,
563 		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
564 {
565 	return damon_accesses_bp_to_nr_accesses(
566 			damon_nr_accesses_to_accesses_bp(
567 				nr_accesses, old_attrs),
568 			new_attrs);
569 }
570 
571 static void damon_update_monitoring_result(struct damon_region *r,
572 		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
573 {
574 	r->nr_accesses = damon_nr_accesses_for_new_attrs(r->nr_accesses,
575 			old_attrs, new_attrs);
576 	r->nr_accesses_bp = r->nr_accesses * 10000;
577 	r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs);
578 }
579 
580 /*
581  * region->nr_accesses is the number of sampling intervals in the last
582  * aggregation interval that access to the region has found, and region->age is
583  * the number of aggregation intervals that its access pattern has maintained.
584  * For the reason, the real meaning of the two fields depend on current
585  * sampling interval and aggregation interval.  This function updates
586  * ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs.
587  */
588 static void damon_update_monitoring_results(struct damon_ctx *ctx,
589 		struct damon_attrs *new_attrs)
590 {
591 	struct damon_attrs *old_attrs = &ctx->attrs;
592 	struct damon_target *t;
593 	struct damon_region *r;
594 
595 	/* if any interval is zero, simply forgive conversion */
596 	if (!old_attrs->sample_interval || !old_attrs->aggr_interval ||
597 			!new_attrs->sample_interval ||
598 			!new_attrs->aggr_interval)
599 		return;
600 
601 	damon_for_each_target(t, ctx)
602 		damon_for_each_region(r, t)
603 			damon_update_monitoring_result(
604 					r, old_attrs, new_attrs);
605 }
606 
607 /**
608  * damon_set_attrs() - Set attributes for the monitoring.
609  * @ctx:		monitoring context
610  * @attrs:		monitoring attributes
611  *
612  * This function should be called while the kdamond is not running, or an
613  * access check results aggregation is not ongoing (e.g., from
614  * &struct damon_callback->after_aggregation or
615  * &struct damon_callback->after_wmarks_check callbacks).
616  *
617  * Every time interval is in micro-seconds.
618  *
619  * Return: 0 on success, negative error code otherwise.
620  */
621 int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs)
622 {
623 	unsigned long sample_interval = attrs->sample_interval ?
624 		attrs->sample_interval : 1;
625 	struct damos *s;
626 
627 	if (attrs->min_nr_regions < 3)
628 		return -EINVAL;
629 	if (attrs->min_nr_regions > attrs->max_nr_regions)
630 		return -EINVAL;
631 	if (attrs->sample_interval > attrs->aggr_interval)
632 		return -EINVAL;
633 
634 	ctx->next_aggregation_sis = ctx->passed_sample_intervals +
635 		attrs->aggr_interval / sample_interval;
636 	ctx->next_ops_update_sis = ctx->passed_sample_intervals +
637 		attrs->ops_update_interval / sample_interval;
638 
639 	damon_update_monitoring_results(ctx, attrs);
640 	ctx->attrs = *attrs;
641 
642 	damon_for_each_scheme(s, ctx)
643 		damos_set_next_apply_sis(s, ctx);
644 
645 	return 0;
646 }
647 
648 /**
649  * damon_set_schemes() - Set data access monitoring based operation schemes.
650  * @ctx:	monitoring context
651  * @schemes:	array of the schemes
652  * @nr_schemes:	number of entries in @schemes
653  *
654  * This function should not be called while the kdamond of the context is
655  * running.
656  */
657 void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes,
658 			ssize_t nr_schemes)
659 {
660 	struct damos *s, *next;
661 	ssize_t i;
662 
663 	damon_for_each_scheme_safe(s, next, ctx)
664 		damon_destroy_scheme(s);
665 	for (i = 0; i < nr_schemes; i++)
666 		damon_add_scheme(ctx, schemes[i]);
667 }
668 
669 static struct damos_quota_goal *damos_nth_quota_goal(
670 		int n, struct damos_quota *q)
671 {
672 	struct damos_quota_goal *goal;
673 	int i = 0;
674 
675 	damos_for_each_quota_goal(goal, q) {
676 		if (i++ == n)
677 			return goal;
678 	}
679 	return NULL;
680 }
681 
682 static void damos_commit_quota_goal(
683 		struct damos_quota_goal *dst, struct damos_quota_goal *src)
684 {
685 	dst->metric = src->metric;
686 	dst->target_value = src->target_value;
687 	if (dst->metric == DAMOS_QUOTA_USER_INPUT)
688 		dst->current_value = src->current_value;
689 	/* keep last_psi_total as is, since it will be updated in next cycle */
690 }
691 
692 /**
693  * damos_commit_quota_goals() - Commit DAMOS quota goals to another quota.
694  * @dst:	The commit destination DAMOS quota.
695  * @src:	The commit source DAMOS quota.
696  *
697  * Copies user-specified parameters for quota goals from @src to @dst.  Users
698  * should use this function for quota goals-level parameters update of running
699  * DAMON contexts, instead of manual in-place updates.
700  *
701  * This function should be called from parameters-update safe context, like
702  * DAMON callbacks.
703  */
704 int damos_commit_quota_goals(struct damos_quota *dst, struct damos_quota *src)
705 {
706 	struct damos_quota_goal *dst_goal, *next, *src_goal, *new_goal;
707 	int i = 0, j = 0;
708 
709 	damos_for_each_quota_goal_safe(dst_goal, next, dst) {
710 		src_goal = damos_nth_quota_goal(i++, src);
711 		if (src_goal)
712 			damos_commit_quota_goal(dst_goal, src_goal);
713 		else
714 			damos_destroy_quota_goal(dst_goal);
715 	}
716 	damos_for_each_quota_goal_safe(src_goal, next, src) {
717 		if (j++ < i)
718 			continue;
719 		new_goal = damos_new_quota_goal(
720 				src_goal->metric, src_goal->target_value);
721 		if (!new_goal)
722 			return -ENOMEM;
723 		damos_add_quota_goal(dst, new_goal);
724 	}
725 	return 0;
726 }
727 
728 static int damos_commit_quota(struct damos_quota *dst, struct damos_quota *src)
729 {
730 	int err;
731 
732 	dst->reset_interval = src->reset_interval;
733 	dst->ms = src->ms;
734 	dst->sz = src->sz;
735 	err = damos_commit_quota_goals(dst, src);
736 	if (err)
737 		return err;
738 	dst->weight_sz = src->weight_sz;
739 	dst->weight_nr_accesses = src->weight_nr_accesses;
740 	dst->weight_age = src->weight_age;
741 	return 0;
742 }
743 
744 static struct damos_filter *damos_nth_filter(int n, struct damos *s)
745 {
746 	struct damos_filter *filter;
747 	int i = 0;
748 
749 	damos_for_each_filter(filter, s) {
750 		if (i++ == n)
751 			return filter;
752 	}
753 	return NULL;
754 }
755 
756 static void damos_commit_filter_arg(
757 		struct damos_filter *dst, struct damos_filter *src)
758 {
759 	switch (dst->type) {
760 	case DAMOS_FILTER_TYPE_MEMCG:
761 		dst->memcg_id = src->memcg_id;
762 		break;
763 	case DAMOS_FILTER_TYPE_ADDR:
764 		dst->addr_range = src->addr_range;
765 		break;
766 	case DAMOS_FILTER_TYPE_TARGET:
767 		dst->target_idx = src->target_idx;
768 		break;
769 	default:
770 		break;
771 	}
772 }
773 
774 static void damos_commit_filter(
775 		struct damos_filter *dst, struct damos_filter *src)
776 {
777 	dst->type = src->type;
778 	dst->matching = src->matching;
779 	damos_commit_filter_arg(dst, src);
780 }
781 
782 static int damos_commit_filters(struct damos *dst, struct damos *src)
783 {
784 	struct damos_filter *dst_filter, *next, *src_filter, *new_filter;
785 	int i = 0, j = 0;
786 
787 	damos_for_each_filter_safe(dst_filter, next, dst) {
788 		src_filter = damos_nth_filter(i++, src);
789 		if (src_filter)
790 			damos_commit_filter(dst_filter, src_filter);
791 		else
792 			damos_destroy_filter(dst_filter);
793 	}
794 
795 	damos_for_each_filter_safe(src_filter, next, src) {
796 		if (j++ < i)
797 			continue;
798 
799 		new_filter = damos_new_filter(
800 				src_filter->type, src_filter->matching);
801 		if (!new_filter)
802 			return -ENOMEM;
803 		damos_commit_filter_arg(new_filter, src_filter);
804 		damos_add_filter(dst, new_filter);
805 	}
806 	return 0;
807 }
808 
809 static struct damos *damon_nth_scheme(int n, struct damon_ctx *ctx)
810 {
811 	struct damos *s;
812 	int i = 0;
813 
814 	damon_for_each_scheme(s, ctx) {
815 		if (i++ == n)
816 			return s;
817 	}
818 	return NULL;
819 }
820 
821 static int damos_commit(struct damos *dst, struct damos *src)
822 {
823 	int err;
824 
825 	dst->pattern = src->pattern;
826 	dst->action = src->action;
827 	dst->apply_interval_us = src->apply_interval_us;
828 
829 	err = damos_commit_quota(&dst->quota, &src->quota);
830 	if (err)
831 		return err;
832 
833 	dst->wmarks = src->wmarks;
834 
835 	err = damos_commit_filters(dst, src);
836 	return err;
837 }
838 
839 static int damon_commit_schemes(struct damon_ctx *dst, struct damon_ctx *src)
840 {
841 	struct damos *dst_scheme, *next, *src_scheme, *new_scheme;
842 	int i = 0, j = 0, err;
843 
844 	damon_for_each_scheme_safe(dst_scheme, next, dst) {
845 		src_scheme = damon_nth_scheme(i++, src);
846 		if (src_scheme) {
847 			err = damos_commit(dst_scheme, src_scheme);
848 			if (err)
849 				return err;
850 		} else {
851 			damon_destroy_scheme(dst_scheme);
852 		}
853 	}
854 
855 	damon_for_each_scheme_safe(src_scheme, next, src) {
856 		if (j++ < i)
857 			continue;
858 		new_scheme = damon_new_scheme(&src_scheme->pattern,
859 				src_scheme->action,
860 				src_scheme->apply_interval_us,
861 				&src_scheme->quota, &src_scheme->wmarks,
862 				NUMA_NO_NODE);
863 		if (!new_scheme)
864 			return -ENOMEM;
865 		damon_add_scheme(dst, new_scheme);
866 	}
867 	return 0;
868 }
869 
870 static struct damon_target *damon_nth_target(int n, struct damon_ctx *ctx)
871 {
872 	struct damon_target *t;
873 	int i = 0;
874 
875 	damon_for_each_target(t, ctx) {
876 		if (i++ == n)
877 			return t;
878 	}
879 	return NULL;
880 }
881 
882 /*
883  * The caller should ensure the regions of @src are
884  * 1. valid (end >= src) and
885  * 2. sorted by starting address.
886  *
887  * If @src has no region, @dst keeps current regions.
888  */
889 static int damon_commit_target_regions(
890 		struct damon_target *dst, struct damon_target *src)
891 {
892 	struct damon_region *src_region;
893 	struct damon_addr_range *ranges;
894 	int i = 0, err;
895 
896 	damon_for_each_region(src_region, src)
897 		i++;
898 	if (!i)
899 		return 0;
900 
901 	ranges = kmalloc_array(i, sizeof(*ranges), GFP_KERNEL | __GFP_NOWARN);
902 	if (!ranges)
903 		return -ENOMEM;
904 	i = 0;
905 	damon_for_each_region(src_region, src)
906 		ranges[i++] = src_region->ar;
907 	err = damon_set_regions(dst, ranges, i);
908 	kfree(ranges);
909 	return err;
910 }
911 
912 static int damon_commit_target(
913 		struct damon_target *dst, bool dst_has_pid,
914 		struct damon_target *src, bool src_has_pid)
915 {
916 	int err;
917 
918 	err = damon_commit_target_regions(dst, src);
919 	if (err)
920 		return err;
921 	if (dst_has_pid)
922 		put_pid(dst->pid);
923 	if (src_has_pid)
924 		get_pid(src->pid);
925 	dst->pid = src->pid;
926 	return 0;
927 }
928 
929 static int damon_commit_targets(
930 		struct damon_ctx *dst, struct damon_ctx *src)
931 {
932 	struct damon_target *dst_target, *next, *src_target, *new_target;
933 	int i = 0, j = 0, err;
934 
935 	damon_for_each_target_safe(dst_target, next, dst) {
936 		src_target = damon_nth_target(i++, src);
937 		if (src_target) {
938 			err = damon_commit_target(
939 					dst_target, damon_target_has_pid(dst),
940 					src_target, damon_target_has_pid(src));
941 			if (err)
942 				return err;
943 		} else {
944 			if (damon_target_has_pid(dst))
945 				put_pid(dst_target->pid);
946 			damon_destroy_target(dst_target);
947 		}
948 	}
949 
950 	damon_for_each_target_safe(src_target, next, src) {
951 		if (j++ < i)
952 			continue;
953 		new_target = damon_new_target();
954 		if (!new_target)
955 			return -ENOMEM;
956 		err = damon_commit_target(new_target, false,
957 				src_target, damon_target_has_pid(src));
958 		if (err)
959 			return err;
960 	}
961 	return 0;
962 }
963 
964 /**
965  * damon_commit_ctx() - Commit parameters of a DAMON context to another.
966  * @dst:	The commit destination DAMON context.
967  * @src:	The commit source DAMON context.
968  *
969  * This function copies user-specified parameters from @src to @dst and update
970  * the internal status and results accordingly.  Users should use this function
971  * for context-level parameters update of running context, instead of manual
972  * in-place updates.
973  *
974  * This function should be called from parameters-update safe context, like
975  * DAMON callbacks.
976  */
977 int damon_commit_ctx(struct damon_ctx *dst, struct damon_ctx *src)
978 {
979 	int err;
980 
981 	err = damon_commit_schemes(dst, src);
982 	if (err)
983 		return err;
984 	err = damon_commit_targets(dst, src);
985 	if (err)
986 		return err;
987 	/*
988 	 * schemes and targets should be updated first, since
989 	 * 1. damon_set_attrs() updates monitoring results of targets and
990 	 * next_apply_sis of schemes, and
991 	 * 2. ops update should be done after pid handling is done (target
992 	 *    committing require putting pids).
993 	 */
994 	err = damon_set_attrs(dst, &src->attrs);
995 	if (err)
996 		return err;
997 	dst->ops = src->ops;
998 
999 	return 0;
1000 }
1001 
1002 /**
1003  * damon_nr_running_ctxs() - Return number of currently running contexts.
1004  */
1005 int damon_nr_running_ctxs(void)
1006 {
1007 	int nr_ctxs;
1008 
1009 	mutex_lock(&damon_lock);
1010 	nr_ctxs = nr_running_ctxs;
1011 	mutex_unlock(&damon_lock);
1012 
1013 	return nr_ctxs;
1014 }
1015 
1016 /* Returns the size upper limit for each monitoring region */
1017 static unsigned long damon_region_sz_limit(struct damon_ctx *ctx)
1018 {
1019 	struct damon_target *t;
1020 	struct damon_region *r;
1021 	unsigned long sz = 0;
1022 
1023 	damon_for_each_target(t, ctx) {
1024 		damon_for_each_region(r, t)
1025 			sz += damon_sz_region(r);
1026 	}
1027 
1028 	if (ctx->attrs.min_nr_regions)
1029 		sz /= ctx->attrs.min_nr_regions;
1030 	if (sz < DAMON_MIN_REGION)
1031 		sz = DAMON_MIN_REGION;
1032 
1033 	return sz;
1034 }
1035 
1036 static int kdamond_fn(void *data);
1037 
1038 /*
1039  * __damon_start() - Starts monitoring with given context.
1040  * @ctx:	monitoring context
1041  *
1042  * This function should be called while damon_lock is hold.
1043  *
1044  * Return: 0 on success, negative error code otherwise.
1045  */
1046 static int __damon_start(struct damon_ctx *ctx)
1047 {
1048 	int err = -EBUSY;
1049 
1050 	mutex_lock(&ctx->kdamond_lock);
1051 	if (!ctx->kdamond) {
1052 		err = 0;
1053 		reinit_completion(&ctx->kdamond_started);
1054 		ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d",
1055 				nr_running_ctxs);
1056 		if (IS_ERR(ctx->kdamond)) {
1057 			err = PTR_ERR(ctx->kdamond);
1058 			ctx->kdamond = NULL;
1059 		} else {
1060 			wait_for_completion(&ctx->kdamond_started);
1061 		}
1062 	}
1063 	mutex_unlock(&ctx->kdamond_lock);
1064 
1065 	return err;
1066 }
1067 
1068 /**
1069  * damon_start() - Starts the monitorings for a given group of contexts.
1070  * @ctxs:	an array of the pointers for contexts to start monitoring
1071  * @nr_ctxs:	size of @ctxs
1072  * @exclusive:	exclusiveness of this contexts group
1073  *
1074  * This function starts a group of monitoring threads for a group of monitoring
1075  * contexts.  One thread per each context is created and run in parallel.  The
1076  * caller should handle synchronization between the threads by itself.  If
1077  * @exclusive is true and a group of threads that created by other
1078  * 'damon_start()' call is currently running, this function does nothing but
1079  * returns -EBUSY.
1080  *
1081  * Return: 0 on success, negative error code otherwise.
1082  */
1083 int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive)
1084 {
1085 	int i;
1086 	int err = 0;
1087 
1088 	mutex_lock(&damon_lock);
1089 	if ((exclusive && nr_running_ctxs) ||
1090 			(!exclusive && running_exclusive_ctxs)) {
1091 		mutex_unlock(&damon_lock);
1092 		return -EBUSY;
1093 	}
1094 
1095 	for (i = 0; i < nr_ctxs; i++) {
1096 		err = __damon_start(ctxs[i]);
1097 		if (err)
1098 			break;
1099 		nr_running_ctxs++;
1100 	}
1101 	if (exclusive && nr_running_ctxs)
1102 		running_exclusive_ctxs = true;
1103 	mutex_unlock(&damon_lock);
1104 
1105 	return err;
1106 }
1107 
1108 /*
1109  * __damon_stop() - Stops monitoring of a given context.
1110  * @ctx:	monitoring context
1111  *
1112  * Return: 0 on success, negative error code otherwise.
1113  */
1114 static int __damon_stop(struct damon_ctx *ctx)
1115 {
1116 	struct task_struct *tsk;
1117 
1118 	mutex_lock(&ctx->kdamond_lock);
1119 	tsk = ctx->kdamond;
1120 	if (tsk) {
1121 		get_task_struct(tsk);
1122 		mutex_unlock(&ctx->kdamond_lock);
1123 		kthread_stop_put(tsk);
1124 		return 0;
1125 	}
1126 	mutex_unlock(&ctx->kdamond_lock);
1127 
1128 	return -EPERM;
1129 }
1130 
1131 /**
1132  * damon_stop() - Stops the monitorings for a given group of contexts.
1133  * @ctxs:	an array of the pointers for contexts to stop monitoring
1134  * @nr_ctxs:	size of @ctxs
1135  *
1136  * Return: 0 on success, negative error code otherwise.
1137  */
1138 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs)
1139 {
1140 	int i, err = 0;
1141 
1142 	for (i = 0; i < nr_ctxs; i++) {
1143 		/* nr_running_ctxs is decremented in kdamond_fn */
1144 		err = __damon_stop(ctxs[i]);
1145 		if (err)
1146 			break;
1147 	}
1148 	return err;
1149 }
1150 
1151 /*
1152  * Reset the aggregated monitoring results ('nr_accesses' of each region).
1153  */
1154 static void kdamond_reset_aggregated(struct damon_ctx *c)
1155 {
1156 	struct damon_target *t;
1157 	unsigned int ti = 0;	/* target's index */
1158 
1159 	damon_for_each_target(t, c) {
1160 		struct damon_region *r;
1161 
1162 		damon_for_each_region(r, t) {
1163 			trace_damon_aggregated(ti, r, damon_nr_regions(t));
1164 			r->last_nr_accesses = r->nr_accesses;
1165 			r->nr_accesses = 0;
1166 		}
1167 		ti++;
1168 	}
1169 }
1170 
1171 static void damon_split_region_at(struct damon_target *t,
1172 				  struct damon_region *r, unsigned long sz_r);
1173 
1174 static bool __damos_valid_target(struct damon_region *r, struct damos *s)
1175 {
1176 	unsigned long sz;
1177 	unsigned int nr_accesses = r->nr_accesses_bp / 10000;
1178 
1179 	sz = damon_sz_region(r);
1180 	return s->pattern.min_sz_region <= sz &&
1181 		sz <= s->pattern.max_sz_region &&
1182 		s->pattern.min_nr_accesses <= nr_accesses &&
1183 		nr_accesses <= s->pattern.max_nr_accesses &&
1184 		s->pattern.min_age_region <= r->age &&
1185 		r->age <= s->pattern.max_age_region;
1186 }
1187 
1188 static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t,
1189 		struct damon_region *r, struct damos *s)
1190 {
1191 	bool ret = __damos_valid_target(r, s);
1192 
1193 	if (!ret || !s->quota.esz || !c->ops.get_scheme_score)
1194 		return ret;
1195 
1196 	return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score;
1197 }
1198 
1199 /*
1200  * damos_skip_charged_region() - Check if the given region or starting part of
1201  * it is already charged for the DAMOS quota.
1202  * @t:	The target of the region.
1203  * @rp:	The pointer to the region.
1204  * @s:	The scheme to be applied.
1205  *
1206  * If a quota of a scheme has exceeded in a quota charge window, the scheme's
1207  * action would applied to only a part of the target access pattern fulfilling
1208  * regions.  To avoid applying the scheme action to only already applied
1209  * regions, DAMON skips applying the scheme action to the regions that charged
1210  * in the previous charge window.
1211  *
1212  * This function checks if a given region should be skipped or not for the
1213  * reason.  If only the starting part of the region has previously charged,
1214  * this function splits the region into two so that the second one covers the
1215  * area that not charged in the previous charge widnow and saves the second
1216  * region in *rp and returns false, so that the caller can apply DAMON action
1217  * to the second one.
1218  *
1219  * Return: true if the region should be entirely skipped, false otherwise.
1220  */
1221 static bool damos_skip_charged_region(struct damon_target *t,
1222 		struct damon_region **rp, struct damos *s)
1223 {
1224 	struct damon_region *r = *rp;
1225 	struct damos_quota *quota = &s->quota;
1226 	unsigned long sz_to_skip;
1227 
1228 	/* Skip previously charged regions */
1229 	if (quota->charge_target_from) {
1230 		if (t != quota->charge_target_from)
1231 			return true;
1232 		if (r == damon_last_region(t)) {
1233 			quota->charge_target_from = NULL;
1234 			quota->charge_addr_from = 0;
1235 			return true;
1236 		}
1237 		if (quota->charge_addr_from &&
1238 				r->ar.end <= quota->charge_addr_from)
1239 			return true;
1240 
1241 		if (quota->charge_addr_from && r->ar.start <
1242 				quota->charge_addr_from) {
1243 			sz_to_skip = ALIGN_DOWN(quota->charge_addr_from -
1244 					r->ar.start, DAMON_MIN_REGION);
1245 			if (!sz_to_skip) {
1246 				if (damon_sz_region(r) <= DAMON_MIN_REGION)
1247 					return true;
1248 				sz_to_skip = DAMON_MIN_REGION;
1249 			}
1250 			damon_split_region_at(t, r, sz_to_skip);
1251 			r = damon_next_region(r);
1252 			*rp = r;
1253 		}
1254 		quota->charge_target_from = NULL;
1255 		quota->charge_addr_from = 0;
1256 	}
1257 	return false;
1258 }
1259 
1260 static void damos_update_stat(struct damos *s,
1261 		unsigned long sz_tried, unsigned long sz_applied)
1262 {
1263 	s->stat.nr_tried++;
1264 	s->stat.sz_tried += sz_tried;
1265 	if (sz_applied)
1266 		s->stat.nr_applied++;
1267 	s->stat.sz_applied += sz_applied;
1268 }
1269 
1270 static bool __damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
1271 		struct damon_region *r, struct damos_filter *filter)
1272 {
1273 	bool matched = false;
1274 	struct damon_target *ti;
1275 	int target_idx = 0;
1276 	unsigned long start, end;
1277 
1278 	switch (filter->type) {
1279 	case DAMOS_FILTER_TYPE_TARGET:
1280 		damon_for_each_target(ti, ctx) {
1281 			if (ti == t)
1282 				break;
1283 			target_idx++;
1284 		}
1285 		matched = target_idx == filter->target_idx;
1286 		break;
1287 	case DAMOS_FILTER_TYPE_ADDR:
1288 		start = ALIGN_DOWN(filter->addr_range.start, DAMON_MIN_REGION);
1289 		end = ALIGN_DOWN(filter->addr_range.end, DAMON_MIN_REGION);
1290 
1291 		/* inside the range */
1292 		if (start <= r->ar.start && r->ar.end <= end) {
1293 			matched = true;
1294 			break;
1295 		}
1296 		/* outside of the range */
1297 		if (r->ar.end <= start || end <= r->ar.start) {
1298 			matched = false;
1299 			break;
1300 		}
1301 		/* start before the range and overlap */
1302 		if (r->ar.start < start) {
1303 			damon_split_region_at(t, r, start - r->ar.start);
1304 			matched = false;
1305 			break;
1306 		}
1307 		/* start inside the range */
1308 		damon_split_region_at(t, r, end - r->ar.start);
1309 		matched = true;
1310 		break;
1311 	default:
1312 		return false;
1313 	}
1314 
1315 	return matched == filter->matching;
1316 }
1317 
1318 static bool damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
1319 		struct damon_region *r, struct damos *s)
1320 {
1321 	struct damos_filter *filter;
1322 
1323 	damos_for_each_filter(filter, s) {
1324 		if (__damos_filter_out(ctx, t, r, filter))
1325 			return true;
1326 	}
1327 	return false;
1328 }
1329 
1330 static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t,
1331 		struct damon_region *r, struct damos *s)
1332 {
1333 	struct damos_quota *quota = &s->quota;
1334 	unsigned long sz = damon_sz_region(r);
1335 	struct timespec64 begin, end;
1336 	unsigned long sz_applied = 0;
1337 	int err = 0;
1338 	/*
1339 	 * We plan to support multiple context per kdamond, as DAMON sysfs
1340 	 * implies with 'nr_contexts' file.  Nevertheless, only single context
1341 	 * per kdamond is supported for now.  So, we can simply use '0' context
1342 	 * index here.
1343 	 */
1344 	unsigned int cidx = 0;
1345 	struct damos *siter;		/* schemes iterator */
1346 	unsigned int sidx = 0;
1347 	struct damon_target *titer;	/* targets iterator */
1348 	unsigned int tidx = 0;
1349 	bool do_trace = false;
1350 
1351 	/* get indices for trace_damos_before_apply() */
1352 	if (trace_damos_before_apply_enabled()) {
1353 		damon_for_each_scheme(siter, c) {
1354 			if (siter == s)
1355 				break;
1356 			sidx++;
1357 		}
1358 		damon_for_each_target(titer, c) {
1359 			if (titer == t)
1360 				break;
1361 			tidx++;
1362 		}
1363 		do_trace = true;
1364 	}
1365 
1366 	if (c->ops.apply_scheme) {
1367 		if (quota->esz && quota->charged_sz + sz > quota->esz) {
1368 			sz = ALIGN_DOWN(quota->esz - quota->charged_sz,
1369 					DAMON_MIN_REGION);
1370 			if (!sz)
1371 				goto update_stat;
1372 			damon_split_region_at(t, r, sz);
1373 		}
1374 		if (damos_filter_out(c, t, r, s))
1375 			return;
1376 		ktime_get_coarse_ts64(&begin);
1377 		if (c->callback.before_damos_apply)
1378 			err = c->callback.before_damos_apply(c, t, r, s);
1379 		if (!err) {
1380 			trace_damos_before_apply(cidx, sidx, tidx, r,
1381 					damon_nr_regions(t), do_trace);
1382 			sz_applied = c->ops.apply_scheme(c, t, r, s);
1383 		}
1384 		ktime_get_coarse_ts64(&end);
1385 		quota->total_charged_ns += timespec64_to_ns(&end) -
1386 			timespec64_to_ns(&begin);
1387 		quota->charged_sz += sz;
1388 		if (quota->esz && quota->charged_sz >= quota->esz) {
1389 			quota->charge_target_from = t;
1390 			quota->charge_addr_from = r->ar.end + 1;
1391 		}
1392 	}
1393 	if (s->action != DAMOS_STAT)
1394 		r->age = 0;
1395 
1396 update_stat:
1397 	damos_update_stat(s, sz, sz_applied);
1398 }
1399 
1400 static void damon_do_apply_schemes(struct damon_ctx *c,
1401 				   struct damon_target *t,
1402 				   struct damon_region *r)
1403 {
1404 	struct damos *s;
1405 
1406 	damon_for_each_scheme(s, c) {
1407 		struct damos_quota *quota = &s->quota;
1408 
1409 		if (c->passed_sample_intervals != s->next_apply_sis)
1410 			continue;
1411 
1412 		if (!s->wmarks.activated)
1413 			continue;
1414 
1415 		/* Check the quota */
1416 		if (quota->esz && quota->charged_sz >= quota->esz)
1417 			continue;
1418 
1419 		if (damos_skip_charged_region(t, &r, s))
1420 			continue;
1421 
1422 		if (!damos_valid_target(c, t, r, s))
1423 			continue;
1424 
1425 		damos_apply_scheme(c, t, r, s);
1426 	}
1427 }
1428 
1429 /*
1430  * damon_feed_loop_next_input() - get next input to achieve a target score.
1431  * @last_input	The last input.
1432  * @score	Current score that made with @last_input.
1433  *
1434  * Calculate next input to achieve the target score, based on the last input
1435  * and current score.  Assuming the input and the score are positively
1436  * proportional, calculate how much compensation should be added to or
1437  * subtracted from the last input as a proportion of the last input.  Avoid
1438  * next input always being zero by setting it non-zero always.  In short form
1439  * (assuming support of float and signed calculations), the algorithm is as
1440  * below.
1441  *
1442  * next_input = max(last_input * ((goal - current) / goal + 1), 1)
1443  *
1444  * For simple implementation, we assume the target score is always 10,000.  The
1445  * caller should adjust @score for this.
1446  *
1447  * Returns next input that assumed to achieve the target score.
1448  */
1449 static unsigned long damon_feed_loop_next_input(unsigned long last_input,
1450 		unsigned long score)
1451 {
1452 	const unsigned long goal = 10000;
1453 	unsigned long score_goal_diff = max(goal, score) - min(goal, score);
1454 	unsigned long score_goal_diff_bp = score_goal_diff * 10000 / goal;
1455 	unsigned long compensation = last_input * score_goal_diff_bp / 10000;
1456 	/* Set minimum input as 10000 to avoid compensation be zero */
1457 	const unsigned long min_input = 10000;
1458 
1459 	if (goal > score)
1460 		return last_input + compensation;
1461 	if (last_input > compensation + min_input)
1462 		return last_input - compensation;
1463 	return min_input;
1464 }
1465 
1466 #ifdef CONFIG_PSI
1467 
1468 static u64 damos_get_some_mem_psi_total(void)
1469 {
1470 	if (static_branch_likely(&psi_disabled))
1471 		return 0;
1472 	return div_u64(psi_system.total[PSI_AVGS][PSI_MEM * 2],
1473 			NSEC_PER_USEC);
1474 }
1475 
1476 #else	/* CONFIG_PSI */
1477 
1478 static inline u64 damos_get_some_mem_psi_total(void)
1479 {
1480 	return 0;
1481 };
1482 
1483 #endif	/* CONFIG_PSI */
1484 
1485 static void damos_set_quota_goal_current_value(struct damos_quota_goal *goal)
1486 {
1487 	u64 now_psi_total;
1488 
1489 	switch (goal->metric) {
1490 	case DAMOS_QUOTA_USER_INPUT:
1491 		/* User should already set goal->current_value */
1492 		break;
1493 	case DAMOS_QUOTA_SOME_MEM_PSI_US:
1494 		now_psi_total = damos_get_some_mem_psi_total();
1495 		goal->current_value = now_psi_total - goal->last_psi_total;
1496 		goal->last_psi_total = now_psi_total;
1497 		break;
1498 	default:
1499 		break;
1500 	}
1501 }
1502 
1503 /* Return the highest score since it makes schemes least aggressive */
1504 static unsigned long damos_quota_score(struct damos_quota *quota)
1505 {
1506 	struct damos_quota_goal *goal;
1507 	unsigned long highest_score = 0;
1508 
1509 	damos_for_each_quota_goal(goal, quota) {
1510 		damos_set_quota_goal_current_value(goal);
1511 		highest_score = max(highest_score,
1512 				goal->current_value * 10000 /
1513 				goal->target_value);
1514 	}
1515 
1516 	return highest_score;
1517 }
1518 
1519 /*
1520  * Called only if quota->ms, or quota->sz are set, or quota->goals is not empty
1521  */
1522 static void damos_set_effective_quota(struct damos_quota *quota)
1523 {
1524 	unsigned long throughput;
1525 	unsigned long esz;
1526 
1527 	if (!quota->ms && list_empty(&quota->goals)) {
1528 		quota->esz = quota->sz;
1529 		return;
1530 	}
1531 
1532 	if (!list_empty(&quota->goals)) {
1533 		unsigned long score = damos_quota_score(quota);
1534 
1535 		quota->esz_bp = damon_feed_loop_next_input(
1536 				max(quota->esz_bp, 10000UL),
1537 				score);
1538 		esz = quota->esz_bp / 10000;
1539 	}
1540 
1541 	if (quota->ms) {
1542 		if (quota->total_charged_ns)
1543 			throughput = quota->total_charged_sz * 1000000 /
1544 				quota->total_charged_ns;
1545 		else
1546 			throughput = PAGE_SIZE * 1024;
1547 		if (!list_empty(&quota->goals))
1548 			esz = min(throughput * quota->ms, esz);
1549 		else
1550 			esz = throughput * quota->ms;
1551 	}
1552 
1553 	if (quota->sz && quota->sz < esz)
1554 		esz = quota->sz;
1555 
1556 	quota->esz = esz;
1557 }
1558 
1559 static void damos_adjust_quota(struct damon_ctx *c, struct damos *s)
1560 {
1561 	struct damos_quota *quota = &s->quota;
1562 	struct damon_target *t;
1563 	struct damon_region *r;
1564 	unsigned long cumulated_sz;
1565 	unsigned int score, max_score = 0;
1566 
1567 	if (!quota->ms && !quota->sz && list_empty(&quota->goals))
1568 		return;
1569 
1570 	/* New charge window starts */
1571 	if (time_after_eq(jiffies, quota->charged_from +
1572 				msecs_to_jiffies(quota->reset_interval))) {
1573 		if (quota->esz && quota->charged_sz >= quota->esz)
1574 			s->stat.qt_exceeds++;
1575 		quota->total_charged_sz += quota->charged_sz;
1576 		quota->charged_from = jiffies;
1577 		quota->charged_sz = 0;
1578 		damos_set_effective_quota(quota);
1579 	}
1580 
1581 	if (!c->ops.get_scheme_score)
1582 		return;
1583 
1584 	/* Fill up the score histogram */
1585 	memset(quota->histogram, 0, sizeof(quota->histogram));
1586 	damon_for_each_target(t, c) {
1587 		damon_for_each_region(r, t) {
1588 			if (!__damos_valid_target(r, s))
1589 				continue;
1590 			score = c->ops.get_scheme_score(c, t, r, s);
1591 			quota->histogram[score] += damon_sz_region(r);
1592 			if (score > max_score)
1593 				max_score = score;
1594 		}
1595 	}
1596 
1597 	/* Set the min score limit */
1598 	for (cumulated_sz = 0, score = max_score; ; score--) {
1599 		cumulated_sz += quota->histogram[score];
1600 		if (cumulated_sz >= quota->esz || !score)
1601 			break;
1602 	}
1603 	quota->min_score = score;
1604 }
1605 
1606 static void kdamond_apply_schemes(struct damon_ctx *c)
1607 {
1608 	struct damon_target *t;
1609 	struct damon_region *r, *next_r;
1610 	struct damos *s;
1611 	unsigned long sample_interval = c->attrs.sample_interval ?
1612 		c->attrs.sample_interval : 1;
1613 	bool has_schemes_to_apply = false;
1614 
1615 	damon_for_each_scheme(s, c) {
1616 		if (c->passed_sample_intervals != s->next_apply_sis)
1617 			continue;
1618 
1619 		if (!s->wmarks.activated)
1620 			continue;
1621 
1622 		has_schemes_to_apply = true;
1623 
1624 		damos_adjust_quota(c, s);
1625 	}
1626 
1627 	if (!has_schemes_to_apply)
1628 		return;
1629 
1630 	damon_for_each_target(t, c) {
1631 		damon_for_each_region_safe(r, next_r, t)
1632 			damon_do_apply_schemes(c, t, r);
1633 	}
1634 
1635 	damon_for_each_scheme(s, c) {
1636 		if (c->passed_sample_intervals != s->next_apply_sis)
1637 			continue;
1638 		s->next_apply_sis +=
1639 			(s->apply_interval_us ? s->apply_interval_us :
1640 			 c->attrs.aggr_interval) / sample_interval;
1641 	}
1642 }
1643 
1644 /*
1645  * Merge two adjacent regions into one region
1646  */
1647 static void damon_merge_two_regions(struct damon_target *t,
1648 		struct damon_region *l, struct damon_region *r)
1649 {
1650 	unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r);
1651 
1652 	l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) /
1653 			(sz_l + sz_r);
1654 	l->nr_accesses_bp = l->nr_accesses * 10000;
1655 	l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r);
1656 	l->ar.end = r->ar.end;
1657 	damon_destroy_region(r, t);
1658 }
1659 
1660 /*
1661  * Merge adjacent regions having similar access frequencies
1662  *
1663  * t		target affected by this merge operation
1664  * thres	'->nr_accesses' diff threshold for the merge
1665  * sz_limit	size upper limit of each region
1666  */
1667 static void damon_merge_regions_of(struct damon_target *t, unsigned int thres,
1668 				   unsigned long sz_limit)
1669 {
1670 	struct damon_region *r, *prev = NULL, *next;
1671 
1672 	damon_for_each_region_safe(r, next, t) {
1673 		if (abs(r->nr_accesses - r->last_nr_accesses) > thres)
1674 			r->age = 0;
1675 		else
1676 			r->age++;
1677 
1678 		if (prev && prev->ar.end == r->ar.start &&
1679 		    abs(prev->nr_accesses - r->nr_accesses) <= thres &&
1680 		    damon_sz_region(prev) + damon_sz_region(r) <= sz_limit)
1681 			damon_merge_two_regions(t, prev, r);
1682 		else
1683 			prev = r;
1684 	}
1685 }
1686 
1687 /*
1688  * Merge adjacent regions having similar access frequencies
1689  *
1690  * threshold	'->nr_accesses' diff threshold for the merge
1691  * sz_limit	size upper limit of each region
1692  *
1693  * This function merges monitoring target regions which are adjacent and their
1694  * access frequencies are similar.  This is for minimizing the monitoring
1695  * overhead under the dynamically changeable access pattern.  If a merge was
1696  * unnecessarily made, later 'kdamond_split_regions()' will revert it.
1697  *
1698  * The total number of regions could be higher than the user-defined limit,
1699  * max_nr_regions for some cases.  For example, the user can update
1700  * max_nr_regions to a number that lower than the current number of regions
1701  * while DAMON is running.  For such a case, repeat merging until the limit is
1702  * met while increasing @threshold up to possible maximum level.
1703  */
1704 static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold,
1705 				  unsigned long sz_limit)
1706 {
1707 	struct damon_target *t;
1708 	unsigned int nr_regions;
1709 	unsigned int max_thres;
1710 
1711 	max_thres = c->attrs.aggr_interval /
1712 		(c->attrs.sample_interval ?  c->attrs.sample_interval : 1);
1713 	do {
1714 		nr_regions = 0;
1715 		damon_for_each_target(t, c) {
1716 			damon_merge_regions_of(t, threshold, sz_limit);
1717 			nr_regions += damon_nr_regions(t);
1718 		}
1719 		threshold = max(1, threshold * 2);
1720 	} while (nr_regions > c->attrs.max_nr_regions &&
1721 			threshold / 2 < max_thres);
1722 }
1723 
1724 /*
1725  * Split a region in two
1726  *
1727  * r		the region to be split
1728  * sz_r		size of the first sub-region that will be made
1729  */
1730 static void damon_split_region_at(struct damon_target *t,
1731 				  struct damon_region *r, unsigned long sz_r)
1732 {
1733 	struct damon_region *new;
1734 
1735 	new = damon_new_region(r->ar.start + sz_r, r->ar.end);
1736 	if (!new)
1737 		return;
1738 
1739 	r->ar.end = new->ar.start;
1740 
1741 	new->age = r->age;
1742 	new->last_nr_accesses = r->last_nr_accesses;
1743 	new->nr_accesses_bp = r->nr_accesses_bp;
1744 	new->nr_accesses = r->nr_accesses;
1745 
1746 	damon_insert_region(new, r, damon_next_region(r), t);
1747 }
1748 
1749 /* Split every region in the given target into 'nr_subs' regions */
1750 static void damon_split_regions_of(struct damon_target *t, int nr_subs)
1751 {
1752 	struct damon_region *r, *next;
1753 	unsigned long sz_region, sz_sub = 0;
1754 	int i;
1755 
1756 	damon_for_each_region_safe(r, next, t) {
1757 		sz_region = damon_sz_region(r);
1758 
1759 		for (i = 0; i < nr_subs - 1 &&
1760 				sz_region > 2 * DAMON_MIN_REGION; i++) {
1761 			/*
1762 			 * Randomly select size of left sub-region to be at
1763 			 * least 10 percent and at most 90% of original region
1764 			 */
1765 			sz_sub = ALIGN_DOWN(damon_rand(1, 10) *
1766 					sz_region / 10, DAMON_MIN_REGION);
1767 			/* Do not allow blank region */
1768 			if (sz_sub == 0 || sz_sub >= sz_region)
1769 				continue;
1770 
1771 			damon_split_region_at(t, r, sz_sub);
1772 			sz_region = sz_sub;
1773 		}
1774 	}
1775 }
1776 
1777 /*
1778  * Split every target region into randomly-sized small regions
1779  *
1780  * This function splits every target region into random-sized small regions if
1781  * current total number of the regions is equal or smaller than half of the
1782  * user-specified maximum number of regions.  This is for maximizing the
1783  * monitoring accuracy under the dynamically changeable access patterns.  If a
1784  * split was unnecessarily made, later 'kdamond_merge_regions()' will revert
1785  * it.
1786  */
1787 static void kdamond_split_regions(struct damon_ctx *ctx)
1788 {
1789 	struct damon_target *t;
1790 	unsigned int nr_regions = 0;
1791 	static unsigned int last_nr_regions;
1792 	int nr_subregions = 2;
1793 
1794 	damon_for_each_target(t, ctx)
1795 		nr_regions += damon_nr_regions(t);
1796 
1797 	if (nr_regions > ctx->attrs.max_nr_regions / 2)
1798 		return;
1799 
1800 	/* Maybe the middle of the region has different access frequency */
1801 	if (last_nr_regions == nr_regions &&
1802 			nr_regions < ctx->attrs.max_nr_regions / 3)
1803 		nr_subregions = 3;
1804 
1805 	damon_for_each_target(t, ctx)
1806 		damon_split_regions_of(t, nr_subregions);
1807 
1808 	last_nr_regions = nr_regions;
1809 }
1810 
1811 /*
1812  * Check whether current monitoring should be stopped
1813  *
1814  * The monitoring is stopped when either the user requested to stop, or all
1815  * monitoring targets are invalid.
1816  *
1817  * Returns true if need to stop current monitoring.
1818  */
1819 static bool kdamond_need_stop(struct damon_ctx *ctx)
1820 {
1821 	struct damon_target *t;
1822 
1823 	if (kthread_should_stop())
1824 		return true;
1825 
1826 	if (!ctx->ops.target_valid)
1827 		return false;
1828 
1829 	damon_for_each_target(t, ctx) {
1830 		if (ctx->ops.target_valid(t))
1831 			return false;
1832 	}
1833 
1834 	return true;
1835 }
1836 
1837 static int damos_get_wmark_metric_value(enum damos_wmark_metric metric,
1838 					unsigned long *metric_value)
1839 {
1840 	switch (metric) {
1841 	case DAMOS_WMARK_FREE_MEM_RATE:
1842 		*metric_value = global_zone_page_state(NR_FREE_PAGES) * 1000 /
1843 		       totalram_pages();
1844 		return 0;
1845 	default:
1846 		break;
1847 	}
1848 	return -EINVAL;
1849 }
1850 
1851 /*
1852  * Returns zero if the scheme is active.  Else, returns time to wait for next
1853  * watermark check in micro-seconds.
1854  */
1855 static unsigned long damos_wmark_wait_us(struct damos *scheme)
1856 {
1857 	unsigned long metric;
1858 
1859 	if (damos_get_wmark_metric_value(scheme->wmarks.metric, &metric))
1860 		return 0;
1861 
1862 	/* higher than high watermark or lower than low watermark */
1863 	if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) {
1864 		if (scheme->wmarks.activated)
1865 			pr_debug("deactivate a scheme (%d) for %s wmark\n",
1866 					scheme->action,
1867 					metric > scheme->wmarks.high ?
1868 					"high" : "low");
1869 		scheme->wmarks.activated = false;
1870 		return scheme->wmarks.interval;
1871 	}
1872 
1873 	/* inactive and higher than middle watermark */
1874 	if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) &&
1875 			!scheme->wmarks.activated)
1876 		return scheme->wmarks.interval;
1877 
1878 	if (!scheme->wmarks.activated)
1879 		pr_debug("activate a scheme (%d)\n", scheme->action);
1880 	scheme->wmarks.activated = true;
1881 	return 0;
1882 }
1883 
1884 static void kdamond_usleep(unsigned long usecs)
1885 {
1886 	/* See Documentation/timers/timers-howto.rst for the thresholds */
1887 	if (usecs > 20 * USEC_PER_MSEC)
1888 		schedule_timeout_idle(usecs_to_jiffies(usecs));
1889 	else
1890 		usleep_idle_range(usecs, usecs + 1);
1891 }
1892 
1893 /* Returns negative error code if it's not activated but should return */
1894 static int kdamond_wait_activation(struct damon_ctx *ctx)
1895 {
1896 	struct damos *s;
1897 	unsigned long wait_time;
1898 	unsigned long min_wait_time = 0;
1899 	bool init_wait_time = false;
1900 
1901 	while (!kdamond_need_stop(ctx)) {
1902 		damon_for_each_scheme(s, ctx) {
1903 			wait_time = damos_wmark_wait_us(s);
1904 			if (!init_wait_time || wait_time < min_wait_time) {
1905 				init_wait_time = true;
1906 				min_wait_time = wait_time;
1907 			}
1908 		}
1909 		if (!min_wait_time)
1910 			return 0;
1911 
1912 		kdamond_usleep(min_wait_time);
1913 
1914 		if (ctx->callback.after_wmarks_check &&
1915 				ctx->callback.after_wmarks_check(ctx))
1916 			break;
1917 	}
1918 	return -EBUSY;
1919 }
1920 
1921 static void kdamond_init_intervals_sis(struct damon_ctx *ctx)
1922 {
1923 	unsigned long sample_interval = ctx->attrs.sample_interval ?
1924 		ctx->attrs.sample_interval : 1;
1925 	unsigned long apply_interval;
1926 	struct damos *scheme;
1927 
1928 	ctx->passed_sample_intervals = 0;
1929 	ctx->next_aggregation_sis = ctx->attrs.aggr_interval / sample_interval;
1930 	ctx->next_ops_update_sis = ctx->attrs.ops_update_interval /
1931 		sample_interval;
1932 
1933 	damon_for_each_scheme(scheme, ctx) {
1934 		apply_interval = scheme->apply_interval_us ?
1935 			scheme->apply_interval_us : ctx->attrs.aggr_interval;
1936 		scheme->next_apply_sis = apply_interval / sample_interval;
1937 	}
1938 }
1939 
1940 /*
1941  * The monitoring daemon that runs as a kernel thread
1942  */
1943 static int kdamond_fn(void *data)
1944 {
1945 	struct damon_ctx *ctx = data;
1946 	struct damon_target *t;
1947 	struct damon_region *r, *next;
1948 	unsigned int max_nr_accesses = 0;
1949 	unsigned long sz_limit = 0;
1950 
1951 	pr_debug("kdamond (%d) starts\n", current->pid);
1952 
1953 	complete(&ctx->kdamond_started);
1954 	kdamond_init_intervals_sis(ctx);
1955 
1956 	if (ctx->ops.init)
1957 		ctx->ops.init(ctx);
1958 	if (ctx->callback.before_start && ctx->callback.before_start(ctx))
1959 		goto done;
1960 
1961 	sz_limit = damon_region_sz_limit(ctx);
1962 
1963 	while (!kdamond_need_stop(ctx)) {
1964 		/*
1965 		 * ctx->attrs and ctx->next_{aggregation,ops_update}_sis could
1966 		 * be changed from after_wmarks_check() or after_aggregation()
1967 		 * callbacks.  Read the values here, and use those for this
1968 		 * iteration.  That is, damon_set_attrs() updated new values
1969 		 * are respected from next iteration.
1970 		 */
1971 		unsigned long next_aggregation_sis = ctx->next_aggregation_sis;
1972 		unsigned long next_ops_update_sis = ctx->next_ops_update_sis;
1973 		unsigned long sample_interval = ctx->attrs.sample_interval;
1974 
1975 		if (kdamond_wait_activation(ctx))
1976 			break;
1977 
1978 		if (ctx->ops.prepare_access_checks)
1979 			ctx->ops.prepare_access_checks(ctx);
1980 		if (ctx->callback.after_sampling &&
1981 				ctx->callback.after_sampling(ctx))
1982 			break;
1983 
1984 		kdamond_usleep(sample_interval);
1985 		ctx->passed_sample_intervals++;
1986 
1987 		if (ctx->ops.check_accesses)
1988 			max_nr_accesses = ctx->ops.check_accesses(ctx);
1989 
1990 		if (ctx->passed_sample_intervals == next_aggregation_sis) {
1991 			kdamond_merge_regions(ctx,
1992 					max_nr_accesses / 10,
1993 					sz_limit);
1994 			if (ctx->callback.after_aggregation &&
1995 					ctx->callback.after_aggregation(ctx))
1996 				break;
1997 		}
1998 
1999 		/*
2000 		 * do kdamond_apply_schemes() after kdamond_merge_regions() if
2001 		 * possible, to reduce overhead
2002 		 */
2003 		if (!list_empty(&ctx->schemes))
2004 			kdamond_apply_schemes(ctx);
2005 
2006 		sample_interval = ctx->attrs.sample_interval ?
2007 			ctx->attrs.sample_interval : 1;
2008 		if (ctx->passed_sample_intervals == next_aggregation_sis) {
2009 			ctx->next_aggregation_sis = next_aggregation_sis +
2010 				ctx->attrs.aggr_interval / sample_interval;
2011 
2012 			kdamond_reset_aggregated(ctx);
2013 			kdamond_split_regions(ctx);
2014 			if (ctx->ops.reset_aggregated)
2015 				ctx->ops.reset_aggregated(ctx);
2016 		}
2017 
2018 		if (ctx->passed_sample_intervals == next_ops_update_sis) {
2019 			ctx->next_ops_update_sis = next_ops_update_sis +
2020 				ctx->attrs.ops_update_interval /
2021 				sample_interval;
2022 			if (ctx->ops.update)
2023 				ctx->ops.update(ctx);
2024 			sz_limit = damon_region_sz_limit(ctx);
2025 		}
2026 	}
2027 done:
2028 	damon_for_each_target(t, ctx) {
2029 		damon_for_each_region_safe(r, next, t)
2030 			damon_destroy_region(r, t);
2031 	}
2032 
2033 	if (ctx->callback.before_terminate)
2034 		ctx->callback.before_terminate(ctx);
2035 	if (ctx->ops.cleanup)
2036 		ctx->ops.cleanup(ctx);
2037 
2038 	pr_debug("kdamond (%d) finishes\n", current->pid);
2039 	mutex_lock(&ctx->kdamond_lock);
2040 	ctx->kdamond = NULL;
2041 	mutex_unlock(&ctx->kdamond_lock);
2042 
2043 	mutex_lock(&damon_lock);
2044 	nr_running_ctxs--;
2045 	if (!nr_running_ctxs && running_exclusive_ctxs)
2046 		running_exclusive_ctxs = false;
2047 	mutex_unlock(&damon_lock);
2048 
2049 	return 0;
2050 }
2051 
2052 /*
2053  * struct damon_system_ram_region - System RAM resource address region of
2054  *				    [@start, @end).
2055  * @start:	Start address of the region (inclusive).
2056  * @end:	End address of the region (exclusive).
2057  */
2058 struct damon_system_ram_region {
2059 	unsigned long start;
2060 	unsigned long end;
2061 };
2062 
2063 static int walk_system_ram(struct resource *res, void *arg)
2064 {
2065 	struct damon_system_ram_region *a = arg;
2066 
2067 	if (a->end - a->start < resource_size(res)) {
2068 		a->start = res->start;
2069 		a->end = res->end;
2070 	}
2071 	return 0;
2072 }
2073 
2074 /*
2075  * Find biggest 'System RAM' resource and store its start and end address in
2076  * @start and @end, respectively.  If no System RAM is found, returns false.
2077  */
2078 static bool damon_find_biggest_system_ram(unsigned long *start,
2079 						unsigned long *end)
2080 
2081 {
2082 	struct damon_system_ram_region arg = {};
2083 
2084 	walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram);
2085 	if (arg.end <= arg.start)
2086 		return false;
2087 
2088 	*start = arg.start;
2089 	*end = arg.end;
2090 	return true;
2091 }
2092 
2093 /**
2094  * damon_set_region_biggest_system_ram_default() - Set the region of the given
2095  * monitoring target as requested, or biggest 'System RAM'.
2096  * @t:		The monitoring target to set the region.
2097  * @start:	The pointer to the start address of the region.
2098  * @end:	The pointer to the end address of the region.
2099  *
2100  * This function sets the region of @t as requested by @start and @end.  If the
2101  * values of @start and @end are zero, however, this function finds the biggest
2102  * 'System RAM' resource and sets the region to cover the resource.  In the
2103  * latter case, this function saves the start and end addresses of the resource
2104  * in @start and @end, respectively.
2105  *
2106  * Return: 0 on success, negative error code otherwise.
2107  */
2108 int damon_set_region_biggest_system_ram_default(struct damon_target *t,
2109 			unsigned long *start, unsigned long *end)
2110 {
2111 	struct damon_addr_range addr_range;
2112 
2113 	if (*start > *end)
2114 		return -EINVAL;
2115 
2116 	if (!*start && !*end &&
2117 		!damon_find_biggest_system_ram(start, end))
2118 		return -EINVAL;
2119 
2120 	addr_range.start = *start;
2121 	addr_range.end = *end;
2122 	return damon_set_regions(t, &addr_range, 1);
2123 }
2124 
2125 /*
2126  * damon_moving_sum() - Calculate an inferred moving sum value.
2127  * @mvsum:	Inferred sum of the last @len_window values.
2128  * @nomvsum:	Non-moving sum of the last discrete @len_window window values.
2129  * @len_window:	The number of last values to take care of.
2130  * @new_value:	New value that will be added to the pseudo moving sum.
2131  *
2132  * Moving sum (moving average * window size) is good for handling noise, but
2133  * the cost of keeping past values can be high for arbitrary window size.  This
2134  * function implements a lightweight pseudo moving sum function that doesn't
2135  * keep the past window values.
2136  *
2137  * It simply assumes there was no noise in the past, and get the no-noise
2138  * assumed past value to drop from @nomvsum and @len_window.  @nomvsum is a
2139  * non-moving sum of the last window.  For example, if @len_window is 10 and we
2140  * have 25 values, @nomvsum is the sum of the 11th to 20th values of the 25
2141  * values.  Hence, this function simply drops @nomvsum / @len_window from
2142  * given @mvsum and add @new_value.
2143  *
2144  * For example, if @len_window is 10 and @nomvsum is 50, the last 10 values for
2145  * the last window could be vary, e.g., 0, 10, 0, 10, 0, 10, 0, 0, 0, 20.  For
2146  * calculating next moving sum with a new value, we should drop 0 from 50 and
2147  * add the new value.  However, this function assumes it got value 5 for each
2148  * of the last ten times.  Based on the assumption, when the next value is
2149  * measured, it drops the assumed past value, 5 from the current sum, and add
2150  * the new value to get the updated pseduo-moving average.
2151  *
2152  * This means the value could have errors, but the errors will be disappeared
2153  * for every @len_window aligned calls.  For example, if @len_window is 10, the
2154  * pseudo moving sum with 11th value to 19th value would have an error.  But
2155  * the sum with 20th value will not have the error.
2156  *
2157  * Return: Pseudo-moving average after getting the @new_value.
2158  */
2159 static unsigned int damon_moving_sum(unsigned int mvsum, unsigned int nomvsum,
2160 		unsigned int len_window, unsigned int new_value)
2161 {
2162 	return mvsum - nomvsum / len_window + new_value;
2163 }
2164 
2165 /**
2166  * damon_update_region_access_rate() - Update the access rate of a region.
2167  * @r:		The DAMON region to update for its access check result.
2168  * @accessed:	Whether the region has accessed during last sampling interval.
2169  * @attrs:	The damon_attrs of the DAMON context.
2170  *
2171  * Update the access rate of a region with the region's last sampling interval
2172  * access check result.
2173  *
2174  * Usually this will be called by &damon_operations->check_accesses callback.
2175  */
2176 void damon_update_region_access_rate(struct damon_region *r, bool accessed,
2177 		struct damon_attrs *attrs)
2178 {
2179 	unsigned int len_window = 1;
2180 
2181 	/*
2182 	 * sample_interval can be zero, but cannot be larger than
2183 	 * aggr_interval, owing to validation of damon_set_attrs().
2184 	 */
2185 	if (attrs->sample_interval)
2186 		len_window = damon_max_nr_accesses(attrs);
2187 	r->nr_accesses_bp = damon_moving_sum(r->nr_accesses_bp,
2188 			r->last_nr_accesses * 10000, len_window,
2189 			accessed ? 10000 : 0);
2190 
2191 	if (accessed)
2192 		r->nr_accesses++;
2193 }
2194 
2195 static int __init damon_init(void)
2196 {
2197 	damon_region_cache = KMEM_CACHE(damon_region, 0);
2198 	if (unlikely(!damon_region_cache)) {
2199 		pr_err("creating damon_region_cache fails\n");
2200 		return -ENOMEM;
2201 	}
2202 
2203 	return 0;
2204 }
2205 
2206 subsys_initcall(damon_init);
2207 
2208 #include "core-test.h"
2209