xref: /linux/mm/damon/core.c (revision c27dfca4555bf74dd7dd7161d8ef2790ec1c7283)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Data Access Monitor
4  *
5  * Author: SeongJae Park <sjpark@amazon.de>
6  */
7 
8 #define pr_fmt(fmt) "damon: " fmt
9 
10 #include <linux/damon.h>
11 #include <linux/delay.h>
12 #include <linux/kthread.h>
13 #include <linux/mm.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16 
17 #define CREATE_TRACE_POINTS
18 #include <trace/events/damon.h>
19 
20 #ifdef CONFIG_DAMON_KUNIT_TEST
21 #undef DAMON_MIN_REGION
22 #define DAMON_MIN_REGION 1
23 #endif
24 
25 static DEFINE_MUTEX(damon_lock);
26 static int nr_running_ctxs;
27 static bool running_exclusive_ctxs;
28 
29 static DEFINE_MUTEX(damon_ops_lock);
30 static struct damon_operations damon_registered_ops[NR_DAMON_OPS];
31 
32 static struct kmem_cache *damon_region_cache __ro_after_init;
33 
34 /* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */
35 static bool __damon_is_registered_ops(enum damon_ops_id id)
36 {
37 	struct damon_operations empty_ops = {};
38 
39 	if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops)))
40 		return false;
41 	return true;
42 }
43 
44 /**
45  * damon_is_registered_ops() - Check if a given damon_operations is registered.
46  * @id:	Id of the damon_operations to check if registered.
47  *
48  * Return: true if the ops is set, false otherwise.
49  */
50 bool damon_is_registered_ops(enum damon_ops_id id)
51 {
52 	bool registered;
53 
54 	if (id >= NR_DAMON_OPS)
55 		return false;
56 	mutex_lock(&damon_ops_lock);
57 	registered = __damon_is_registered_ops(id);
58 	mutex_unlock(&damon_ops_lock);
59 	return registered;
60 }
61 
62 /**
63  * damon_register_ops() - Register a monitoring operations set to DAMON.
64  * @ops:	monitoring operations set to register.
65  *
66  * This function registers a monitoring operations set of valid &struct
67  * damon_operations->id so that others can find and use them later.
68  *
69  * Return: 0 on success, negative error code otherwise.
70  */
71 int damon_register_ops(struct damon_operations *ops)
72 {
73 	int err = 0;
74 
75 	if (ops->id >= NR_DAMON_OPS)
76 		return -EINVAL;
77 	mutex_lock(&damon_ops_lock);
78 	/* Fail for already registered ops */
79 	if (__damon_is_registered_ops(ops->id)) {
80 		err = -EINVAL;
81 		goto out;
82 	}
83 	damon_registered_ops[ops->id] = *ops;
84 out:
85 	mutex_unlock(&damon_ops_lock);
86 	return err;
87 }
88 
89 /**
90  * damon_select_ops() - Select a monitoring operations to use with the context.
91  * @ctx:	monitoring context to use the operations.
92  * @id:		id of the registered monitoring operations to select.
93  *
94  * This function finds registered monitoring operations set of @id and make
95  * @ctx to use it.
96  *
97  * Return: 0 on success, negative error code otherwise.
98  */
99 int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id)
100 {
101 	int err = 0;
102 
103 	if (id >= NR_DAMON_OPS)
104 		return -EINVAL;
105 
106 	mutex_lock(&damon_ops_lock);
107 	if (!__damon_is_registered_ops(id))
108 		err = -EINVAL;
109 	else
110 		ctx->ops = damon_registered_ops[id];
111 	mutex_unlock(&damon_ops_lock);
112 	return err;
113 }
114 
115 /*
116  * Construct a damon_region struct
117  *
118  * Returns the pointer to the new struct if success, or NULL otherwise
119  */
120 struct damon_region *damon_new_region(unsigned long start, unsigned long end)
121 {
122 	struct damon_region *region;
123 
124 	region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL);
125 	if (!region)
126 		return NULL;
127 
128 	region->ar.start = start;
129 	region->ar.end = end;
130 	region->nr_accesses = 0;
131 	region->nr_accesses_bp = 0;
132 	INIT_LIST_HEAD(&region->list);
133 
134 	region->age = 0;
135 	region->last_nr_accesses = 0;
136 
137 	return region;
138 }
139 
140 void damon_add_region(struct damon_region *r, struct damon_target *t)
141 {
142 	list_add_tail(&r->list, &t->regions_list);
143 	t->nr_regions++;
144 }
145 
146 static void damon_del_region(struct damon_region *r, struct damon_target *t)
147 {
148 	list_del(&r->list);
149 	t->nr_regions--;
150 }
151 
152 static void damon_free_region(struct damon_region *r)
153 {
154 	kmem_cache_free(damon_region_cache, r);
155 }
156 
157 void damon_destroy_region(struct damon_region *r, struct damon_target *t)
158 {
159 	damon_del_region(r, t);
160 	damon_free_region(r);
161 }
162 
163 /*
164  * Check whether a region is intersecting an address range
165  *
166  * Returns true if it is.
167  */
168 static bool damon_intersect(struct damon_region *r,
169 		struct damon_addr_range *re)
170 {
171 	return !(r->ar.end <= re->start || re->end <= r->ar.start);
172 }
173 
174 /*
175  * Fill holes in regions with new regions.
176  */
177 static int damon_fill_regions_holes(struct damon_region *first,
178 		struct damon_region *last, struct damon_target *t)
179 {
180 	struct damon_region *r = first;
181 
182 	damon_for_each_region_from(r, t) {
183 		struct damon_region *next, *newr;
184 
185 		if (r == last)
186 			break;
187 		next = damon_next_region(r);
188 		if (r->ar.end != next->ar.start) {
189 			newr = damon_new_region(r->ar.end, next->ar.start);
190 			if (!newr)
191 				return -ENOMEM;
192 			damon_insert_region(newr, r, next, t);
193 		}
194 	}
195 	return 0;
196 }
197 
198 /*
199  * damon_set_regions() - Set regions of a target for given address ranges.
200  * @t:		the given target.
201  * @ranges:	array of new monitoring target ranges.
202  * @nr_ranges:	length of @ranges.
203  *
204  * This function adds new regions to, or modify existing regions of a
205  * monitoring target to fit in specific ranges.
206  *
207  * Return: 0 if success, or negative error code otherwise.
208  */
209 int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges,
210 		unsigned int nr_ranges)
211 {
212 	struct damon_region *r, *next;
213 	unsigned int i;
214 	int err;
215 
216 	/* Remove regions which are not in the new ranges */
217 	damon_for_each_region_safe(r, next, t) {
218 		for (i = 0; i < nr_ranges; i++) {
219 			if (damon_intersect(r, &ranges[i]))
220 				break;
221 		}
222 		if (i == nr_ranges)
223 			damon_destroy_region(r, t);
224 	}
225 
226 	r = damon_first_region(t);
227 	/* Add new regions or resize existing regions to fit in the ranges */
228 	for (i = 0; i < nr_ranges; i++) {
229 		struct damon_region *first = NULL, *last, *newr;
230 		struct damon_addr_range *range;
231 
232 		range = &ranges[i];
233 		/* Get the first/last regions intersecting with the range */
234 		damon_for_each_region_from(r, t) {
235 			if (damon_intersect(r, range)) {
236 				if (!first)
237 					first = r;
238 				last = r;
239 			}
240 			if (r->ar.start >= range->end)
241 				break;
242 		}
243 		if (!first) {
244 			/* no region intersects with this range */
245 			newr = damon_new_region(
246 					ALIGN_DOWN(range->start,
247 						DAMON_MIN_REGION),
248 					ALIGN(range->end, DAMON_MIN_REGION));
249 			if (!newr)
250 				return -ENOMEM;
251 			damon_insert_region(newr, damon_prev_region(r), r, t);
252 		} else {
253 			/* resize intersecting regions to fit in this range */
254 			first->ar.start = ALIGN_DOWN(range->start,
255 					DAMON_MIN_REGION);
256 			last->ar.end = ALIGN(range->end, DAMON_MIN_REGION);
257 
258 			/* fill possible holes in the range */
259 			err = damon_fill_regions_holes(first, last, t);
260 			if (err)
261 				return err;
262 		}
263 	}
264 	return 0;
265 }
266 
267 struct damos_filter *damos_new_filter(enum damos_filter_type type,
268 		bool matching)
269 {
270 	struct damos_filter *filter;
271 
272 	filter = kmalloc(sizeof(*filter), GFP_KERNEL);
273 	if (!filter)
274 		return NULL;
275 	filter->type = type;
276 	filter->matching = matching;
277 	INIT_LIST_HEAD(&filter->list);
278 	return filter;
279 }
280 
281 void damos_add_filter(struct damos *s, struct damos_filter *f)
282 {
283 	list_add_tail(&f->list, &s->filters);
284 }
285 
286 static void damos_del_filter(struct damos_filter *f)
287 {
288 	list_del(&f->list);
289 }
290 
291 static void damos_free_filter(struct damos_filter *f)
292 {
293 	kfree(f);
294 }
295 
296 void damos_destroy_filter(struct damos_filter *f)
297 {
298 	damos_del_filter(f);
299 	damos_free_filter(f);
300 }
301 
302 /* initialize private fields of damos_quota and return the pointer */
303 static struct damos_quota *damos_quota_init_priv(struct damos_quota *quota)
304 {
305 	quota->total_charged_sz = 0;
306 	quota->total_charged_ns = 0;
307 	quota->esz = 0;
308 	quota->charged_sz = 0;
309 	quota->charged_from = 0;
310 	quota->charge_target_from = NULL;
311 	quota->charge_addr_from = 0;
312 	return quota;
313 }
314 
315 struct damos *damon_new_scheme(struct damos_access_pattern *pattern,
316 			enum damos_action action,
317 			unsigned long apply_interval_us,
318 			struct damos_quota *quota,
319 			struct damos_watermarks *wmarks)
320 {
321 	struct damos *scheme;
322 
323 	scheme = kmalloc(sizeof(*scheme), GFP_KERNEL);
324 	if (!scheme)
325 		return NULL;
326 	scheme->pattern = *pattern;
327 	scheme->action = action;
328 	scheme->apply_interval_us = apply_interval_us;
329 	/*
330 	 * next_apply_sis will be set when kdamond starts.  While kdamond is
331 	 * running, it will also updated when it is added to the DAMON context,
332 	 * or damon_attrs are updated.
333 	 */
334 	scheme->next_apply_sis = 0;
335 	INIT_LIST_HEAD(&scheme->filters);
336 	scheme->stat = (struct damos_stat){};
337 	INIT_LIST_HEAD(&scheme->list);
338 
339 	scheme->quota = *(damos_quota_init_priv(quota));
340 
341 	scheme->wmarks = *wmarks;
342 	scheme->wmarks.activated = true;
343 
344 	return scheme;
345 }
346 
347 static void damos_set_next_apply_sis(struct damos *s, struct damon_ctx *ctx)
348 {
349 	unsigned long sample_interval = ctx->attrs.sample_interval ?
350 		ctx->attrs.sample_interval : 1;
351 	unsigned long apply_interval = s->apply_interval_us ?
352 		s->apply_interval_us : ctx->attrs.aggr_interval;
353 
354 	s->next_apply_sis = ctx->passed_sample_intervals +
355 		apply_interval / sample_interval;
356 }
357 
358 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s)
359 {
360 	list_add_tail(&s->list, &ctx->schemes);
361 	damos_set_next_apply_sis(s, ctx);
362 }
363 
364 static void damon_del_scheme(struct damos *s)
365 {
366 	list_del(&s->list);
367 }
368 
369 static void damon_free_scheme(struct damos *s)
370 {
371 	kfree(s);
372 }
373 
374 void damon_destroy_scheme(struct damos *s)
375 {
376 	struct damos_filter *f, *next;
377 
378 	damos_for_each_filter_safe(f, next, s)
379 		damos_destroy_filter(f);
380 	damon_del_scheme(s);
381 	damon_free_scheme(s);
382 }
383 
384 /*
385  * Construct a damon_target struct
386  *
387  * Returns the pointer to the new struct if success, or NULL otherwise
388  */
389 struct damon_target *damon_new_target(void)
390 {
391 	struct damon_target *t;
392 
393 	t = kmalloc(sizeof(*t), GFP_KERNEL);
394 	if (!t)
395 		return NULL;
396 
397 	t->pid = NULL;
398 	t->nr_regions = 0;
399 	INIT_LIST_HEAD(&t->regions_list);
400 	INIT_LIST_HEAD(&t->list);
401 
402 	return t;
403 }
404 
405 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t)
406 {
407 	list_add_tail(&t->list, &ctx->adaptive_targets);
408 }
409 
410 bool damon_targets_empty(struct damon_ctx *ctx)
411 {
412 	return list_empty(&ctx->adaptive_targets);
413 }
414 
415 static void damon_del_target(struct damon_target *t)
416 {
417 	list_del(&t->list);
418 }
419 
420 void damon_free_target(struct damon_target *t)
421 {
422 	struct damon_region *r, *next;
423 
424 	damon_for_each_region_safe(r, next, t)
425 		damon_free_region(r);
426 	kfree(t);
427 }
428 
429 void damon_destroy_target(struct damon_target *t)
430 {
431 	damon_del_target(t);
432 	damon_free_target(t);
433 }
434 
435 unsigned int damon_nr_regions(struct damon_target *t)
436 {
437 	return t->nr_regions;
438 }
439 
440 struct damon_ctx *damon_new_ctx(void)
441 {
442 	struct damon_ctx *ctx;
443 
444 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
445 	if (!ctx)
446 		return NULL;
447 
448 	ctx->attrs.sample_interval = 5 * 1000;
449 	ctx->attrs.aggr_interval = 100 * 1000;
450 	ctx->attrs.ops_update_interval = 60 * 1000 * 1000;
451 
452 	ctx->passed_sample_intervals = 0;
453 	/* These will be set from kdamond_init_intervals_sis() */
454 	ctx->next_aggregation_sis = 0;
455 	ctx->next_ops_update_sis = 0;
456 
457 	mutex_init(&ctx->kdamond_lock);
458 
459 	ctx->attrs.min_nr_regions = 10;
460 	ctx->attrs.max_nr_regions = 1000;
461 
462 	INIT_LIST_HEAD(&ctx->adaptive_targets);
463 	INIT_LIST_HEAD(&ctx->schemes);
464 
465 	return ctx;
466 }
467 
468 static void damon_destroy_targets(struct damon_ctx *ctx)
469 {
470 	struct damon_target *t, *next_t;
471 
472 	if (ctx->ops.cleanup) {
473 		ctx->ops.cleanup(ctx);
474 		return;
475 	}
476 
477 	damon_for_each_target_safe(t, next_t, ctx)
478 		damon_destroy_target(t);
479 }
480 
481 void damon_destroy_ctx(struct damon_ctx *ctx)
482 {
483 	struct damos *s, *next_s;
484 
485 	damon_destroy_targets(ctx);
486 
487 	damon_for_each_scheme_safe(s, next_s, ctx)
488 		damon_destroy_scheme(s);
489 
490 	kfree(ctx);
491 }
492 
493 static unsigned int damon_age_for_new_attrs(unsigned int age,
494 		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
495 {
496 	return age * old_attrs->aggr_interval / new_attrs->aggr_interval;
497 }
498 
499 /* convert access ratio in bp (per 10,000) to nr_accesses */
500 static unsigned int damon_accesses_bp_to_nr_accesses(
501 		unsigned int accesses_bp, struct damon_attrs *attrs)
502 {
503 	return accesses_bp * damon_max_nr_accesses(attrs) / 10000;
504 }
505 
506 /* convert nr_accesses to access ratio in bp (per 10,000) */
507 static unsigned int damon_nr_accesses_to_accesses_bp(
508 		unsigned int nr_accesses, struct damon_attrs *attrs)
509 {
510 	return nr_accesses * 10000 / damon_max_nr_accesses(attrs);
511 }
512 
513 static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,
514 		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
515 {
516 	return damon_accesses_bp_to_nr_accesses(
517 			damon_nr_accesses_to_accesses_bp(
518 				nr_accesses, old_attrs),
519 			new_attrs);
520 }
521 
522 static void damon_update_monitoring_result(struct damon_region *r,
523 		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
524 {
525 	r->nr_accesses = damon_nr_accesses_for_new_attrs(r->nr_accesses,
526 			old_attrs, new_attrs);
527 	r->nr_accesses_bp = r->nr_accesses * 10000;
528 	r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs);
529 }
530 
531 /*
532  * region->nr_accesses is the number of sampling intervals in the last
533  * aggregation interval that access to the region has found, and region->age is
534  * the number of aggregation intervals that its access pattern has maintained.
535  * For the reason, the real meaning of the two fields depend on current
536  * sampling interval and aggregation interval.  This function updates
537  * ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs.
538  */
539 static void damon_update_monitoring_results(struct damon_ctx *ctx,
540 		struct damon_attrs *new_attrs)
541 {
542 	struct damon_attrs *old_attrs = &ctx->attrs;
543 	struct damon_target *t;
544 	struct damon_region *r;
545 
546 	/* if any interval is zero, simply forgive conversion */
547 	if (!old_attrs->sample_interval || !old_attrs->aggr_interval ||
548 			!new_attrs->sample_interval ||
549 			!new_attrs->aggr_interval)
550 		return;
551 
552 	damon_for_each_target(t, ctx)
553 		damon_for_each_region(r, t)
554 			damon_update_monitoring_result(
555 					r, old_attrs, new_attrs);
556 }
557 
558 /**
559  * damon_set_attrs() - Set attributes for the monitoring.
560  * @ctx:		monitoring context
561  * @attrs:		monitoring attributes
562  *
563  * This function should be called while the kdamond is not running, or an
564  * access check results aggregation is not ongoing (e.g., from
565  * &struct damon_callback->after_aggregation or
566  * &struct damon_callback->after_wmarks_check callbacks).
567  *
568  * Every time interval is in micro-seconds.
569  *
570  * Return: 0 on success, negative error code otherwise.
571  */
572 int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs)
573 {
574 	unsigned long sample_interval = attrs->sample_interval ?
575 		attrs->sample_interval : 1;
576 	struct damos *s;
577 
578 	if (attrs->min_nr_regions < 3)
579 		return -EINVAL;
580 	if (attrs->min_nr_regions > attrs->max_nr_regions)
581 		return -EINVAL;
582 	if (attrs->sample_interval > attrs->aggr_interval)
583 		return -EINVAL;
584 
585 	ctx->next_aggregation_sis = ctx->passed_sample_intervals +
586 		attrs->aggr_interval / sample_interval;
587 	ctx->next_ops_update_sis = ctx->passed_sample_intervals +
588 		attrs->ops_update_interval / sample_interval;
589 
590 	damon_update_monitoring_results(ctx, attrs);
591 	ctx->attrs = *attrs;
592 
593 	damon_for_each_scheme(s, ctx)
594 		damos_set_next_apply_sis(s, ctx);
595 
596 	return 0;
597 }
598 
599 /**
600  * damon_set_schemes() - Set data access monitoring based operation schemes.
601  * @ctx:	monitoring context
602  * @schemes:	array of the schemes
603  * @nr_schemes:	number of entries in @schemes
604  *
605  * This function should not be called while the kdamond of the context is
606  * running.
607  */
608 void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes,
609 			ssize_t nr_schemes)
610 {
611 	struct damos *s, *next;
612 	ssize_t i;
613 
614 	damon_for_each_scheme_safe(s, next, ctx)
615 		damon_destroy_scheme(s);
616 	for (i = 0; i < nr_schemes; i++)
617 		damon_add_scheme(ctx, schemes[i]);
618 }
619 
620 /**
621  * damon_nr_running_ctxs() - Return number of currently running contexts.
622  */
623 int damon_nr_running_ctxs(void)
624 {
625 	int nr_ctxs;
626 
627 	mutex_lock(&damon_lock);
628 	nr_ctxs = nr_running_ctxs;
629 	mutex_unlock(&damon_lock);
630 
631 	return nr_ctxs;
632 }
633 
634 /* Returns the size upper limit for each monitoring region */
635 static unsigned long damon_region_sz_limit(struct damon_ctx *ctx)
636 {
637 	struct damon_target *t;
638 	struct damon_region *r;
639 	unsigned long sz = 0;
640 
641 	damon_for_each_target(t, ctx) {
642 		damon_for_each_region(r, t)
643 			sz += damon_sz_region(r);
644 	}
645 
646 	if (ctx->attrs.min_nr_regions)
647 		sz /= ctx->attrs.min_nr_regions;
648 	if (sz < DAMON_MIN_REGION)
649 		sz = DAMON_MIN_REGION;
650 
651 	return sz;
652 }
653 
654 static int kdamond_fn(void *data);
655 
656 /*
657  * __damon_start() - Starts monitoring with given context.
658  * @ctx:	monitoring context
659  *
660  * This function should be called while damon_lock is hold.
661  *
662  * Return: 0 on success, negative error code otherwise.
663  */
664 static int __damon_start(struct damon_ctx *ctx)
665 {
666 	int err = -EBUSY;
667 
668 	mutex_lock(&ctx->kdamond_lock);
669 	if (!ctx->kdamond) {
670 		err = 0;
671 		ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d",
672 				nr_running_ctxs);
673 		if (IS_ERR(ctx->kdamond)) {
674 			err = PTR_ERR(ctx->kdamond);
675 			ctx->kdamond = NULL;
676 		}
677 	}
678 	mutex_unlock(&ctx->kdamond_lock);
679 
680 	return err;
681 }
682 
683 /**
684  * damon_start() - Starts the monitorings for a given group of contexts.
685  * @ctxs:	an array of the pointers for contexts to start monitoring
686  * @nr_ctxs:	size of @ctxs
687  * @exclusive:	exclusiveness of this contexts group
688  *
689  * This function starts a group of monitoring threads for a group of monitoring
690  * contexts.  One thread per each context is created and run in parallel.  The
691  * caller should handle synchronization between the threads by itself.  If
692  * @exclusive is true and a group of threads that created by other
693  * 'damon_start()' call is currently running, this function does nothing but
694  * returns -EBUSY.
695  *
696  * Return: 0 on success, negative error code otherwise.
697  */
698 int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive)
699 {
700 	int i;
701 	int err = 0;
702 
703 	mutex_lock(&damon_lock);
704 	if ((exclusive && nr_running_ctxs) ||
705 			(!exclusive && running_exclusive_ctxs)) {
706 		mutex_unlock(&damon_lock);
707 		return -EBUSY;
708 	}
709 
710 	for (i = 0; i < nr_ctxs; i++) {
711 		err = __damon_start(ctxs[i]);
712 		if (err)
713 			break;
714 		nr_running_ctxs++;
715 	}
716 	if (exclusive && nr_running_ctxs)
717 		running_exclusive_ctxs = true;
718 	mutex_unlock(&damon_lock);
719 
720 	return err;
721 }
722 
723 /*
724  * __damon_stop() - Stops monitoring of a given context.
725  * @ctx:	monitoring context
726  *
727  * Return: 0 on success, negative error code otherwise.
728  */
729 static int __damon_stop(struct damon_ctx *ctx)
730 {
731 	struct task_struct *tsk;
732 
733 	mutex_lock(&ctx->kdamond_lock);
734 	tsk = ctx->kdamond;
735 	if (tsk) {
736 		get_task_struct(tsk);
737 		mutex_unlock(&ctx->kdamond_lock);
738 		kthread_stop_put(tsk);
739 		return 0;
740 	}
741 	mutex_unlock(&ctx->kdamond_lock);
742 
743 	return -EPERM;
744 }
745 
746 /**
747  * damon_stop() - Stops the monitorings for a given group of contexts.
748  * @ctxs:	an array of the pointers for contexts to stop monitoring
749  * @nr_ctxs:	size of @ctxs
750  *
751  * Return: 0 on success, negative error code otherwise.
752  */
753 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs)
754 {
755 	int i, err = 0;
756 
757 	for (i = 0; i < nr_ctxs; i++) {
758 		/* nr_running_ctxs is decremented in kdamond_fn */
759 		err = __damon_stop(ctxs[i]);
760 		if (err)
761 			break;
762 	}
763 	return err;
764 }
765 
766 /*
767  * Reset the aggregated monitoring results ('nr_accesses' of each region).
768  */
769 static void kdamond_reset_aggregated(struct damon_ctx *c)
770 {
771 	struct damon_target *t;
772 	unsigned int ti = 0;	/* target's index */
773 
774 	damon_for_each_target(t, c) {
775 		struct damon_region *r;
776 
777 		damon_for_each_region(r, t) {
778 			trace_damon_aggregated(ti, r, damon_nr_regions(t));
779 			r->last_nr_accesses = r->nr_accesses;
780 			r->nr_accesses = 0;
781 		}
782 		ti++;
783 	}
784 }
785 
786 static void damon_split_region_at(struct damon_target *t,
787 				  struct damon_region *r, unsigned long sz_r);
788 
789 static bool __damos_valid_target(struct damon_region *r, struct damos *s)
790 {
791 	unsigned long sz;
792 	unsigned int nr_accesses = r->nr_accesses_bp / 10000;
793 
794 	sz = damon_sz_region(r);
795 	return s->pattern.min_sz_region <= sz &&
796 		sz <= s->pattern.max_sz_region &&
797 		s->pattern.min_nr_accesses <= nr_accesses &&
798 		nr_accesses <= s->pattern.max_nr_accesses &&
799 		s->pattern.min_age_region <= r->age &&
800 		r->age <= s->pattern.max_age_region;
801 }
802 
803 static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t,
804 		struct damon_region *r, struct damos *s)
805 {
806 	bool ret = __damos_valid_target(r, s);
807 
808 	if (!ret || !s->quota.esz || !c->ops.get_scheme_score)
809 		return ret;
810 
811 	return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score;
812 }
813 
814 /*
815  * damos_skip_charged_region() - Check if the given region or starting part of
816  * it is already charged for the DAMOS quota.
817  * @t:	The target of the region.
818  * @rp:	The pointer to the region.
819  * @s:	The scheme to be applied.
820  *
821  * If a quota of a scheme has exceeded in a quota charge window, the scheme's
822  * action would applied to only a part of the target access pattern fulfilling
823  * regions.  To avoid applying the scheme action to only already applied
824  * regions, DAMON skips applying the scheme action to the regions that charged
825  * in the previous charge window.
826  *
827  * This function checks if a given region should be skipped or not for the
828  * reason.  If only the starting part of the region has previously charged,
829  * this function splits the region into two so that the second one covers the
830  * area that not charged in the previous charge widnow and saves the second
831  * region in *rp and returns false, so that the caller can apply DAMON action
832  * to the second one.
833  *
834  * Return: true if the region should be entirely skipped, false otherwise.
835  */
836 static bool damos_skip_charged_region(struct damon_target *t,
837 		struct damon_region **rp, struct damos *s)
838 {
839 	struct damon_region *r = *rp;
840 	struct damos_quota *quota = &s->quota;
841 	unsigned long sz_to_skip;
842 
843 	/* Skip previously charged regions */
844 	if (quota->charge_target_from) {
845 		if (t != quota->charge_target_from)
846 			return true;
847 		if (r == damon_last_region(t)) {
848 			quota->charge_target_from = NULL;
849 			quota->charge_addr_from = 0;
850 			return true;
851 		}
852 		if (quota->charge_addr_from &&
853 				r->ar.end <= quota->charge_addr_from)
854 			return true;
855 
856 		if (quota->charge_addr_from && r->ar.start <
857 				quota->charge_addr_from) {
858 			sz_to_skip = ALIGN_DOWN(quota->charge_addr_from -
859 					r->ar.start, DAMON_MIN_REGION);
860 			if (!sz_to_skip) {
861 				if (damon_sz_region(r) <= DAMON_MIN_REGION)
862 					return true;
863 				sz_to_skip = DAMON_MIN_REGION;
864 			}
865 			damon_split_region_at(t, r, sz_to_skip);
866 			r = damon_next_region(r);
867 			*rp = r;
868 		}
869 		quota->charge_target_from = NULL;
870 		quota->charge_addr_from = 0;
871 	}
872 	return false;
873 }
874 
875 static void damos_update_stat(struct damos *s,
876 		unsigned long sz_tried, unsigned long sz_applied)
877 {
878 	s->stat.nr_tried++;
879 	s->stat.sz_tried += sz_tried;
880 	if (sz_applied)
881 		s->stat.nr_applied++;
882 	s->stat.sz_applied += sz_applied;
883 }
884 
885 static bool __damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
886 		struct damon_region *r, struct damos_filter *filter)
887 {
888 	bool matched = false;
889 	struct damon_target *ti;
890 	int target_idx = 0;
891 	unsigned long start, end;
892 
893 	switch (filter->type) {
894 	case DAMOS_FILTER_TYPE_TARGET:
895 		damon_for_each_target(ti, ctx) {
896 			if (ti == t)
897 				break;
898 			target_idx++;
899 		}
900 		matched = target_idx == filter->target_idx;
901 		break;
902 	case DAMOS_FILTER_TYPE_ADDR:
903 		start = ALIGN_DOWN(filter->addr_range.start, DAMON_MIN_REGION);
904 		end = ALIGN_DOWN(filter->addr_range.end, DAMON_MIN_REGION);
905 
906 		/* inside the range */
907 		if (start <= r->ar.start && r->ar.end <= end) {
908 			matched = true;
909 			break;
910 		}
911 		/* outside of the range */
912 		if (r->ar.end <= start || end <= r->ar.start) {
913 			matched = false;
914 			break;
915 		}
916 		/* start before the range and overlap */
917 		if (r->ar.start < start) {
918 			damon_split_region_at(t, r, start - r->ar.start);
919 			matched = false;
920 			break;
921 		}
922 		/* start inside the range */
923 		damon_split_region_at(t, r, end - r->ar.start);
924 		matched = true;
925 		break;
926 	default:
927 		return false;
928 	}
929 
930 	return matched == filter->matching;
931 }
932 
933 static bool damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
934 		struct damon_region *r, struct damos *s)
935 {
936 	struct damos_filter *filter;
937 
938 	damos_for_each_filter(filter, s) {
939 		if (__damos_filter_out(ctx, t, r, filter))
940 			return true;
941 	}
942 	return false;
943 }
944 
945 static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t,
946 		struct damon_region *r, struct damos *s)
947 {
948 	struct damos_quota *quota = &s->quota;
949 	unsigned long sz = damon_sz_region(r);
950 	struct timespec64 begin, end;
951 	unsigned long sz_applied = 0;
952 	int err = 0;
953 	/*
954 	 * We plan to support multiple context per kdamond, as DAMON sysfs
955 	 * implies with 'nr_contexts' file.  Nevertheless, only single context
956 	 * per kdamond is supported for now.  So, we can simply use '0' context
957 	 * index here.
958 	 */
959 	unsigned int cidx = 0;
960 	struct damos *siter;		/* schemes iterator */
961 	unsigned int sidx = 0;
962 	struct damon_target *titer;	/* targets iterator */
963 	unsigned int tidx = 0;
964 	bool do_trace = false;
965 
966 	/* get indices for trace_damos_before_apply() */
967 	if (trace_damos_before_apply_enabled()) {
968 		damon_for_each_scheme(siter, c) {
969 			if (siter == s)
970 				break;
971 			sidx++;
972 		}
973 		damon_for_each_target(titer, c) {
974 			if (titer == t)
975 				break;
976 			tidx++;
977 		}
978 		do_trace = true;
979 	}
980 
981 	if (c->ops.apply_scheme) {
982 		if (quota->esz && quota->charged_sz + sz > quota->esz) {
983 			sz = ALIGN_DOWN(quota->esz - quota->charged_sz,
984 					DAMON_MIN_REGION);
985 			if (!sz)
986 				goto update_stat;
987 			damon_split_region_at(t, r, sz);
988 		}
989 		if (damos_filter_out(c, t, r, s))
990 			return;
991 		ktime_get_coarse_ts64(&begin);
992 		if (c->callback.before_damos_apply)
993 			err = c->callback.before_damos_apply(c, t, r, s);
994 		if (!err) {
995 			trace_damos_before_apply(cidx, sidx, tidx, r,
996 					damon_nr_regions(t), do_trace);
997 			sz_applied = c->ops.apply_scheme(c, t, r, s);
998 		}
999 		ktime_get_coarse_ts64(&end);
1000 		quota->total_charged_ns += timespec64_to_ns(&end) -
1001 			timespec64_to_ns(&begin);
1002 		quota->charged_sz += sz;
1003 		if (quota->esz && quota->charged_sz >= quota->esz) {
1004 			quota->charge_target_from = t;
1005 			quota->charge_addr_from = r->ar.end + 1;
1006 		}
1007 	}
1008 	if (s->action != DAMOS_STAT)
1009 		r->age = 0;
1010 
1011 update_stat:
1012 	damos_update_stat(s, sz, sz_applied);
1013 }
1014 
1015 static void damon_do_apply_schemes(struct damon_ctx *c,
1016 				   struct damon_target *t,
1017 				   struct damon_region *r)
1018 {
1019 	struct damos *s;
1020 
1021 	damon_for_each_scheme(s, c) {
1022 		struct damos_quota *quota = &s->quota;
1023 
1024 		if (!s->wmarks.activated)
1025 			continue;
1026 
1027 		/* Check the quota */
1028 		if (quota->esz && quota->charged_sz >= quota->esz)
1029 			continue;
1030 
1031 		if (damos_skip_charged_region(t, &r, s))
1032 			continue;
1033 
1034 		if (!damos_valid_target(c, t, r, s))
1035 			continue;
1036 
1037 		damos_apply_scheme(c, t, r, s);
1038 	}
1039 }
1040 
1041 /* Shouldn't be called if quota->ms and quota->sz are zero */
1042 static void damos_set_effective_quota(struct damos_quota *quota)
1043 {
1044 	unsigned long throughput;
1045 	unsigned long esz;
1046 
1047 	if (!quota->ms) {
1048 		quota->esz = quota->sz;
1049 		return;
1050 	}
1051 
1052 	if (quota->total_charged_ns)
1053 		throughput = quota->total_charged_sz * 1000000 /
1054 			quota->total_charged_ns;
1055 	else
1056 		throughput = PAGE_SIZE * 1024;
1057 	esz = throughput * quota->ms;
1058 
1059 	if (quota->sz && quota->sz < esz)
1060 		esz = quota->sz;
1061 	quota->esz = esz;
1062 }
1063 
1064 static void damos_adjust_quota(struct damon_ctx *c, struct damos *s)
1065 {
1066 	struct damos_quota *quota = &s->quota;
1067 	struct damon_target *t;
1068 	struct damon_region *r;
1069 	unsigned long cumulated_sz;
1070 	unsigned int score, max_score = 0;
1071 
1072 	if (!quota->ms && !quota->sz)
1073 		return;
1074 
1075 	/* New charge window starts */
1076 	if (time_after_eq(jiffies, quota->charged_from +
1077 				msecs_to_jiffies(quota->reset_interval))) {
1078 		if (quota->esz && quota->charged_sz >= quota->esz)
1079 			s->stat.qt_exceeds++;
1080 		quota->total_charged_sz += quota->charged_sz;
1081 		quota->charged_from = jiffies;
1082 		quota->charged_sz = 0;
1083 		damos_set_effective_quota(quota);
1084 	}
1085 
1086 	if (!c->ops.get_scheme_score)
1087 		return;
1088 
1089 	/* Fill up the score histogram */
1090 	memset(quota->histogram, 0, sizeof(quota->histogram));
1091 	damon_for_each_target(t, c) {
1092 		damon_for_each_region(r, t) {
1093 			if (!__damos_valid_target(r, s))
1094 				continue;
1095 			score = c->ops.get_scheme_score(c, t, r, s);
1096 			quota->histogram[score] += damon_sz_region(r);
1097 			if (score > max_score)
1098 				max_score = score;
1099 		}
1100 	}
1101 
1102 	/* Set the min score limit */
1103 	for (cumulated_sz = 0, score = max_score; ; score--) {
1104 		cumulated_sz += quota->histogram[score];
1105 		if (cumulated_sz >= quota->esz || !score)
1106 			break;
1107 	}
1108 	quota->min_score = score;
1109 }
1110 
1111 static void kdamond_apply_schemes(struct damon_ctx *c)
1112 {
1113 	struct damon_target *t;
1114 	struct damon_region *r, *next_r;
1115 	struct damos *s;
1116 	unsigned long sample_interval = c->attrs.sample_interval ?
1117 		c->attrs.sample_interval : 1;
1118 	bool has_schemes_to_apply = false;
1119 
1120 	damon_for_each_scheme(s, c) {
1121 		if (c->passed_sample_intervals != s->next_apply_sis)
1122 			continue;
1123 
1124 		s->next_apply_sis +=
1125 			(s->apply_interval_us ? s->apply_interval_us :
1126 			 c->attrs.aggr_interval) / sample_interval;
1127 
1128 		if (!s->wmarks.activated)
1129 			continue;
1130 
1131 		has_schemes_to_apply = true;
1132 
1133 		damos_adjust_quota(c, s);
1134 	}
1135 
1136 	if (!has_schemes_to_apply)
1137 		return;
1138 
1139 	damon_for_each_target(t, c) {
1140 		damon_for_each_region_safe(r, next_r, t)
1141 			damon_do_apply_schemes(c, t, r);
1142 	}
1143 }
1144 
1145 /*
1146  * Merge two adjacent regions into one region
1147  */
1148 static void damon_merge_two_regions(struct damon_target *t,
1149 		struct damon_region *l, struct damon_region *r)
1150 {
1151 	unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r);
1152 
1153 	l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) /
1154 			(sz_l + sz_r);
1155 	l->nr_accesses_bp = l->nr_accesses * 10000;
1156 	l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r);
1157 	l->ar.end = r->ar.end;
1158 	damon_destroy_region(r, t);
1159 }
1160 
1161 /*
1162  * Merge adjacent regions having similar access frequencies
1163  *
1164  * t		target affected by this merge operation
1165  * thres	'->nr_accesses' diff threshold for the merge
1166  * sz_limit	size upper limit of each region
1167  */
1168 static void damon_merge_regions_of(struct damon_target *t, unsigned int thres,
1169 				   unsigned long sz_limit)
1170 {
1171 	struct damon_region *r, *prev = NULL, *next;
1172 
1173 	damon_for_each_region_safe(r, next, t) {
1174 		if (abs(r->nr_accesses - r->last_nr_accesses) > thres)
1175 			r->age = 0;
1176 		else
1177 			r->age++;
1178 
1179 		if (prev && prev->ar.end == r->ar.start &&
1180 		    abs(prev->nr_accesses - r->nr_accesses) <= thres &&
1181 		    damon_sz_region(prev) + damon_sz_region(r) <= sz_limit)
1182 			damon_merge_two_regions(t, prev, r);
1183 		else
1184 			prev = r;
1185 	}
1186 }
1187 
1188 /*
1189  * Merge adjacent regions having similar access frequencies
1190  *
1191  * threshold	'->nr_accesses' diff threshold for the merge
1192  * sz_limit	size upper limit of each region
1193  *
1194  * This function merges monitoring target regions which are adjacent and their
1195  * access frequencies are similar.  This is for minimizing the monitoring
1196  * overhead under the dynamically changeable access pattern.  If a merge was
1197  * unnecessarily made, later 'kdamond_split_regions()' will revert it.
1198  */
1199 static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold,
1200 				  unsigned long sz_limit)
1201 {
1202 	struct damon_target *t;
1203 
1204 	damon_for_each_target(t, c)
1205 		damon_merge_regions_of(t, threshold, sz_limit);
1206 }
1207 
1208 /*
1209  * Split a region in two
1210  *
1211  * r		the region to be split
1212  * sz_r		size of the first sub-region that will be made
1213  */
1214 static void damon_split_region_at(struct damon_target *t,
1215 				  struct damon_region *r, unsigned long sz_r)
1216 {
1217 	struct damon_region *new;
1218 
1219 	new = damon_new_region(r->ar.start + sz_r, r->ar.end);
1220 	if (!new)
1221 		return;
1222 
1223 	r->ar.end = new->ar.start;
1224 
1225 	new->age = r->age;
1226 	new->last_nr_accesses = r->last_nr_accesses;
1227 	new->nr_accesses_bp = r->nr_accesses_bp;
1228 	new->nr_accesses = r->nr_accesses;
1229 
1230 	damon_insert_region(new, r, damon_next_region(r), t);
1231 }
1232 
1233 /* Split every region in the given target into 'nr_subs' regions */
1234 static void damon_split_regions_of(struct damon_target *t, int nr_subs)
1235 {
1236 	struct damon_region *r, *next;
1237 	unsigned long sz_region, sz_sub = 0;
1238 	int i;
1239 
1240 	damon_for_each_region_safe(r, next, t) {
1241 		sz_region = damon_sz_region(r);
1242 
1243 		for (i = 0; i < nr_subs - 1 &&
1244 				sz_region > 2 * DAMON_MIN_REGION; i++) {
1245 			/*
1246 			 * Randomly select size of left sub-region to be at
1247 			 * least 10 percent and at most 90% of original region
1248 			 */
1249 			sz_sub = ALIGN_DOWN(damon_rand(1, 10) *
1250 					sz_region / 10, DAMON_MIN_REGION);
1251 			/* Do not allow blank region */
1252 			if (sz_sub == 0 || sz_sub >= sz_region)
1253 				continue;
1254 
1255 			damon_split_region_at(t, r, sz_sub);
1256 			sz_region = sz_sub;
1257 		}
1258 	}
1259 }
1260 
1261 /*
1262  * Split every target region into randomly-sized small regions
1263  *
1264  * This function splits every target region into random-sized small regions if
1265  * current total number of the regions is equal or smaller than half of the
1266  * user-specified maximum number of regions.  This is for maximizing the
1267  * monitoring accuracy under the dynamically changeable access patterns.  If a
1268  * split was unnecessarily made, later 'kdamond_merge_regions()' will revert
1269  * it.
1270  */
1271 static void kdamond_split_regions(struct damon_ctx *ctx)
1272 {
1273 	struct damon_target *t;
1274 	unsigned int nr_regions = 0;
1275 	static unsigned int last_nr_regions;
1276 	int nr_subregions = 2;
1277 
1278 	damon_for_each_target(t, ctx)
1279 		nr_regions += damon_nr_regions(t);
1280 
1281 	if (nr_regions > ctx->attrs.max_nr_regions / 2)
1282 		return;
1283 
1284 	/* Maybe the middle of the region has different access frequency */
1285 	if (last_nr_regions == nr_regions &&
1286 			nr_regions < ctx->attrs.max_nr_regions / 3)
1287 		nr_subregions = 3;
1288 
1289 	damon_for_each_target(t, ctx)
1290 		damon_split_regions_of(t, nr_subregions);
1291 
1292 	last_nr_regions = nr_regions;
1293 }
1294 
1295 /*
1296  * Check whether current monitoring should be stopped
1297  *
1298  * The monitoring is stopped when either the user requested to stop, or all
1299  * monitoring targets are invalid.
1300  *
1301  * Returns true if need to stop current monitoring.
1302  */
1303 static bool kdamond_need_stop(struct damon_ctx *ctx)
1304 {
1305 	struct damon_target *t;
1306 
1307 	if (kthread_should_stop())
1308 		return true;
1309 
1310 	if (!ctx->ops.target_valid)
1311 		return false;
1312 
1313 	damon_for_each_target(t, ctx) {
1314 		if (ctx->ops.target_valid(t))
1315 			return false;
1316 	}
1317 
1318 	return true;
1319 }
1320 
1321 static unsigned long damos_wmark_metric_value(enum damos_wmark_metric metric)
1322 {
1323 	switch (metric) {
1324 	case DAMOS_WMARK_FREE_MEM_RATE:
1325 		return global_zone_page_state(NR_FREE_PAGES) * 1000 /
1326 		       totalram_pages();
1327 	default:
1328 		break;
1329 	}
1330 	return -EINVAL;
1331 }
1332 
1333 /*
1334  * Returns zero if the scheme is active.  Else, returns time to wait for next
1335  * watermark check in micro-seconds.
1336  */
1337 static unsigned long damos_wmark_wait_us(struct damos *scheme)
1338 {
1339 	unsigned long metric;
1340 
1341 	if (scheme->wmarks.metric == DAMOS_WMARK_NONE)
1342 		return 0;
1343 
1344 	metric = damos_wmark_metric_value(scheme->wmarks.metric);
1345 	/* higher than high watermark or lower than low watermark */
1346 	if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) {
1347 		if (scheme->wmarks.activated)
1348 			pr_debug("deactivate a scheme (%d) for %s wmark\n",
1349 					scheme->action,
1350 					metric > scheme->wmarks.high ?
1351 					"high" : "low");
1352 		scheme->wmarks.activated = false;
1353 		return scheme->wmarks.interval;
1354 	}
1355 
1356 	/* inactive and higher than middle watermark */
1357 	if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) &&
1358 			!scheme->wmarks.activated)
1359 		return scheme->wmarks.interval;
1360 
1361 	if (!scheme->wmarks.activated)
1362 		pr_debug("activate a scheme (%d)\n", scheme->action);
1363 	scheme->wmarks.activated = true;
1364 	return 0;
1365 }
1366 
1367 static void kdamond_usleep(unsigned long usecs)
1368 {
1369 	/* See Documentation/timers/timers-howto.rst for the thresholds */
1370 	if (usecs > 20 * USEC_PER_MSEC)
1371 		schedule_timeout_idle(usecs_to_jiffies(usecs));
1372 	else
1373 		usleep_idle_range(usecs, usecs + 1);
1374 }
1375 
1376 /* Returns negative error code if it's not activated but should return */
1377 static int kdamond_wait_activation(struct damon_ctx *ctx)
1378 {
1379 	struct damos *s;
1380 	unsigned long wait_time;
1381 	unsigned long min_wait_time = 0;
1382 	bool init_wait_time = false;
1383 
1384 	while (!kdamond_need_stop(ctx)) {
1385 		damon_for_each_scheme(s, ctx) {
1386 			wait_time = damos_wmark_wait_us(s);
1387 			if (!init_wait_time || wait_time < min_wait_time) {
1388 				init_wait_time = true;
1389 				min_wait_time = wait_time;
1390 			}
1391 		}
1392 		if (!min_wait_time)
1393 			return 0;
1394 
1395 		kdamond_usleep(min_wait_time);
1396 
1397 		if (ctx->callback.after_wmarks_check &&
1398 				ctx->callback.after_wmarks_check(ctx))
1399 			break;
1400 	}
1401 	return -EBUSY;
1402 }
1403 
1404 static void kdamond_init_intervals_sis(struct damon_ctx *ctx)
1405 {
1406 	unsigned long sample_interval = ctx->attrs.sample_interval ?
1407 		ctx->attrs.sample_interval : 1;
1408 	unsigned long apply_interval;
1409 	struct damos *scheme;
1410 
1411 	ctx->passed_sample_intervals = 0;
1412 	ctx->next_aggregation_sis = ctx->attrs.aggr_interval / sample_interval;
1413 	ctx->next_ops_update_sis = ctx->attrs.ops_update_interval /
1414 		sample_interval;
1415 
1416 	damon_for_each_scheme(scheme, ctx) {
1417 		apply_interval = scheme->apply_interval_us ?
1418 			scheme->apply_interval_us : ctx->attrs.aggr_interval;
1419 		scheme->next_apply_sis = apply_interval / sample_interval;
1420 	}
1421 }
1422 
1423 /*
1424  * The monitoring daemon that runs as a kernel thread
1425  */
1426 static int kdamond_fn(void *data)
1427 {
1428 	struct damon_ctx *ctx = data;
1429 	struct damon_target *t;
1430 	struct damon_region *r, *next;
1431 	unsigned int max_nr_accesses = 0;
1432 	unsigned long sz_limit = 0;
1433 
1434 	pr_debug("kdamond (%d) starts\n", current->pid);
1435 
1436 	kdamond_init_intervals_sis(ctx);
1437 
1438 	if (ctx->ops.init)
1439 		ctx->ops.init(ctx);
1440 	if (ctx->callback.before_start && ctx->callback.before_start(ctx))
1441 		goto done;
1442 
1443 	sz_limit = damon_region_sz_limit(ctx);
1444 
1445 	while (!kdamond_need_stop(ctx)) {
1446 		/*
1447 		 * ctx->attrs and ctx->next_{aggregation,ops_update}_sis could
1448 		 * be changed from after_wmarks_check() or after_aggregation()
1449 		 * callbacks.  Read the values here, and use those for this
1450 		 * iteration.  That is, damon_set_attrs() updated new values
1451 		 * are respected from next iteration.
1452 		 */
1453 		unsigned long next_aggregation_sis = ctx->next_aggregation_sis;
1454 		unsigned long next_ops_update_sis = ctx->next_ops_update_sis;
1455 		unsigned long sample_interval = ctx->attrs.sample_interval;
1456 
1457 		if (kdamond_wait_activation(ctx))
1458 			break;
1459 
1460 		if (ctx->ops.prepare_access_checks)
1461 			ctx->ops.prepare_access_checks(ctx);
1462 		if (ctx->callback.after_sampling &&
1463 				ctx->callback.after_sampling(ctx))
1464 			break;
1465 
1466 		kdamond_usleep(sample_interval);
1467 		ctx->passed_sample_intervals++;
1468 
1469 		if (ctx->ops.check_accesses)
1470 			max_nr_accesses = ctx->ops.check_accesses(ctx);
1471 
1472 		if (ctx->passed_sample_intervals == next_aggregation_sis) {
1473 			kdamond_merge_regions(ctx,
1474 					max_nr_accesses / 10,
1475 					sz_limit);
1476 			if (ctx->callback.after_aggregation &&
1477 					ctx->callback.after_aggregation(ctx))
1478 				break;
1479 		}
1480 
1481 		/*
1482 		 * do kdamond_apply_schemes() after kdamond_merge_regions() if
1483 		 * possible, to reduce overhead
1484 		 */
1485 		if (!list_empty(&ctx->schemes))
1486 			kdamond_apply_schemes(ctx);
1487 
1488 		sample_interval = ctx->attrs.sample_interval ?
1489 			ctx->attrs.sample_interval : 1;
1490 		if (ctx->passed_sample_intervals == next_aggregation_sis) {
1491 			ctx->next_aggregation_sis = next_aggregation_sis +
1492 				ctx->attrs.aggr_interval / sample_interval;
1493 
1494 			kdamond_reset_aggregated(ctx);
1495 			kdamond_split_regions(ctx);
1496 			if (ctx->ops.reset_aggregated)
1497 				ctx->ops.reset_aggregated(ctx);
1498 		}
1499 
1500 		if (ctx->passed_sample_intervals == next_ops_update_sis) {
1501 			ctx->next_ops_update_sis = next_ops_update_sis +
1502 				ctx->attrs.ops_update_interval /
1503 				sample_interval;
1504 			if (ctx->ops.update)
1505 				ctx->ops.update(ctx);
1506 			sz_limit = damon_region_sz_limit(ctx);
1507 		}
1508 	}
1509 done:
1510 	damon_for_each_target(t, ctx) {
1511 		damon_for_each_region_safe(r, next, t)
1512 			damon_destroy_region(r, t);
1513 	}
1514 
1515 	if (ctx->callback.before_terminate)
1516 		ctx->callback.before_terminate(ctx);
1517 	if (ctx->ops.cleanup)
1518 		ctx->ops.cleanup(ctx);
1519 
1520 	pr_debug("kdamond (%d) finishes\n", current->pid);
1521 	mutex_lock(&ctx->kdamond_lock);
1522 	ctx->kdamond = NULL;
1523 	mutex_unlock(&ctx->kdamond_lock);
1524 
1525 	mutex_lock(&damon_lock);
1526 	nr_running_ctxs--;
1527 	if (!nr_running_ctxs && running_exclusive_ctxs)
1528 		running_exclusive_ctxs = false;
1529 	mutex_unlock(&damon_lock);
1530 
1531 	return 0;
1532 }
1533 
1534 /*
1535  * struct damon_system_ram_region - System RAM resource address region of
1536  *				    [@start, @end).
1537  * @start:	Start address of the region (inclusive).
1538  * @end:	End address of the region (exclusive).
1539  */
1540 struct damon_system_ram_region {
1541 	unsigned long start;
1542 	unsigned long end;
1543 };
1544 
1545 static int walk_system_ram(struct resource *res, void *arg)
1546 {
1547 	struct damon_system_ram_region *a = arg;
1548 
1549 	if (a->end - a->start < resource_size(res)) {
1550 		a->start = res->start;
1551 		a->end = res->end;
1552 	}
1553 	return 0;
1554 }
1555 
1556 /*
1557  * Find biggest 'System RAM' resource and store its start and end address in
1558  * @start and @end, respectively.  If no System RAM is found, returns false.
1559  */
1560 static bool damon_find_biggest_system_ram(unsigned long *start,
1561 						unsigned long *end)
1562 
1563 {
1564 	struct damon_system_ram_region arg = {};
1565 
1566 	walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram);
1567 	if (arg.end <= arg.start)
1568 		return false;
1569 
1570 	*start = arg.start;
1571 	*end = arg.end;
1572 	return true;
1573 }
1574 
1575 /**
1576  * damon_set_region_biggest_system_ram_default() - Set the region of the given
1577  * monitoring target as requested, or biggest 'System RAM'.
1578  * @t:		The monitoring target to set the region.
1579  * @start:	The pointer to the start address of the region.
1580  * @end:	The pointer to the end address of the region.
1581  *
1582  * This function sets the region of @t as requested by @start and @end.  If the
1583  * values of @start and @end are zero, however, this function finds the biggest
1584  * 'System RAM' resource and sets the region to cover the resource.  In the
1585  * latter case, this function saves the start and end addresses of the resource
1586  * in @start and @end, respectively.
1587  *
1588  * Return: 0 on success, negative error code otherwise.
1589  */
1590 int damon_set_region_biggest_system_ram_default(struct damon_target *t,
1591 			unsigned long *start, unsigned long *end)
1592 {
1593 	struct damon_addr_range addr_range;
1594 
1595 	if (*start > *end)
1596 		return -EINVAL;
1597 
1598 	if (!*start && !*end &&
1599 		!damon_find_biggest_system_ram(start, end))
1600 		return -EINVAL;
1601 
1602 	addr_range.start = *start;
1603 	addr_range.end = *end;
1604 	return damon_set_regions(t, &addr_range, 1);
1605 }
1606 
1607 /*
1608  * damon_moving_sum() - Calculate an inferred moving sum value.
1609  * @mvsum:	Inferred sum of the last @len_window values.
1610  * @nomvsum:	Non-moving sum of the last discrete @len_window window values.
1611  * @len_window:	The number of last values to take care of.
1612  * @new_value:	New value that will be added to the pseudo moving sum.
1613  *
1614  * Moving sum (moving average * window size) is good for handling noise, but
1615  * the cost of keeping past values can be high for arbitrary window size.  This
1616  * function implements a lightweight pseudo moving sum function that doesn't
1617  * keep the past window values.
1618  *
1619  * It simply assumes there was no noise in the past, and get the no-noise
1620  * assumed past value to drop from @nomvsum and @len_window.  @nomvsum is a
1621  * non-moving sum of the last window.  For example, if @len_window is 10 and we
1622  * have 25 values, @nomvsum is the sum of the 11th to 20th values of the 25
1623  * values.  Hence, this function simply drops @nomvsum / @len_window from
1624  * given @mvsum and add @new_value.
1625  *
1626  * For example, if @len_window is 10 and @nomvsum is 50, the last 10 values for
1627  * the last window could be vary, e.g., 0, 10, 0, 10, 0, 10, 0, 0, 0, 20.  For
1628  * calculating next moving sum with a new value, we should drop 0 from 50 and
1629  * add the new value.  However, this function assumes it got value 5 for each
1630  * of the last ten times.  Based on the assumption, when the next value is
1631  * measured, it drops the assumed past value, 5 from the current sum, and add
1632  * the new value to get the updated pseduo-moving average.
1633  *
1634  * This means the value could have errors, but the errors will be disappeared
1635  * for every @len_window aligned calls.  For example, if @len_window is 10, the
1636  * pseudo moving sum with 11th value to 19th value would have an error.  But
1637  * the sum with 20th value will not have the error.
1638  *
1639  * Return: Pseudo-moving average after getting the @new_value.
1640  */
1641 static unsigned int damon_moving_sum(unsigned int mvsum, unsigned int nomvsum,
1642 		unsigned int len_window, unsigned int new_value)
1643 {
1644 	return mvsum - nomvsum / len_window + new_value;
1645 }
1646 
1647 /**
1648  * damon_update_region_access_rate() - Update the access rate of a region.
1649  * @r:		The DAMON region to update for its access check result.
1650  * @accessed:	Whether the region has accessed during last sampling interval.
1651  * @attrs:	The damon_attrs of the DAMON context.
1652  *
1653  * Update the access rate of a region with the region's last sampling interval
1654  * access check result.
1655  *
1656  * Usually this will be called by &damon_operations->check_accesses callback.
1657  */
1658 void damon_update_region_access_rate(struct damon_region *r, bool accessed,
1659 		struct damon_attrs *attrs)
1660 {
1661 	unsigned int len_window = 1;
1662 
1663 	/*
1664 	 * sample_interval can be zero, but cannot be larger than
1665 	 * aggr_interval, owing to validation of damon_set_attrs().
1666 	 */
1667 	if (attrs->sample_interval)
1668 		len_window = damon_max_nr_accesses(attrs);
1669 	r->nr_accesses_bp = damon_moving_sum(r->nr_accesses_bp,
1670 			r->last_nr_accesses * 10000, len_window,
1671 			accessed ? 10000 : 0);
1672 
1673 	if (accessed)
1674 		r->nr_accesses++;
1675 }
1676 
1677 static int __init damon_init(void)
1678 {
1679 	damon_region_cache = KMEM_CACHE(damon_region, 0);
1680 	if (unlikely(!damon_region_cache)) {
1681 		pr_err("creating damon_region_cache fails\n");
1682 		return -ENOMEM;
1683 	}
1684 
1685 	return 0;
1686 }
1687 
1688 subsys_initcall(damon_init);
1689 
1690 #include "core-test.h"
1691