1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Data Access Monitor 4 * 5 * Author: SeongJae Park <sj@kernel.org> 6 */ 7 8 #define pr_fmt(fmt) "damon: " fmt 9 10 #include <linux/damon.h> 11 #include <linux/delay.h> 12 #include <linux/kthread.h> 13 #include <linux/mm.h> 14 #include <linux/psi.h> 15 #include <linux/slab.h> 16 #include <linux/string.h> 17 #include <linux/string_choices.h> 18 19 #define CREATE_TRACE_POINTS 20 #include <trace/events/damon.h> 21 22 #ifdef CONFIG_DAMON_KUNIT_TEST 23 #undef DAMON_MIN_REGION 24 #define DAMON_MIN_REGION 1 25 #endif 26 27 static DEFINE_MUTEX(damon_lock); 28 static int nr_running_ctxs; 29 static bool running_exclusive_ctxs; 30 31 static DEFINE_MUTEX(damon_ops_lock); 32 static struct damon_operations damon_registered_ops[NR_DAMON_OPS]; 33 34 static struct kmem_cache *damon_region_cache __ro_after_init; 35 36 /* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */ 37 static bool __damon_is_registered_ops(enum damon_ops_id id) 38 { 39 struct damon_operations empty_ops = {}; 40 41 if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops))) 42 return false; 43 return true; 44 } 45 46 /** 47 * damon_is_registered_ops() - Check if a given damon_operations is registered. 48 * @id: Id of the damon_operations to check if registered. 49 * 50 * Return: true if the ops is set, false otherwise. 51 */ 52 bool damon_is_registered_ops(enum damon_ops_id id) 53 { 54 bool registered; 55 56 if (id >= NR_DAMON_OPS) 57 return false; 58 mutex_lock(&damon_ops_lock); 59 registered = __damon_is_registered_ops(id); 60 mutex_unlock(&damon_ops_lock); 61 return registered; 62 } 63 64 /** 65 * damon_register_ops() - Register a monitoring operations set to DAMON. 66 * @ops: monitoring operations set to register. 67 * 68 * This function registers a monitoring operations set of valid &struct 69 * damon_operations->id so that others can find and use them later. 70 * 71 * Return: 0 on success, negative error code otherwise. 72 */ 73 int damon_register_ops(struct damon_operations *ops) 74 { 75 int err = 0; 76 77 if (ops->id >= NR_DAMON_OPS) 78 return -EINVAL; 79 80 mutex_lock(&damon_ops_lock); 81 /* Fail for already registered ops */ 82 if (__damon_is_registered_ops(ops->id)) 83 err = -EINVAL; 84 else 85 damon_registered_ops[ops->id] = *ops; 86 mutex_unlock(&damon_ops_lock); 87 return err; 88 } 89 90 /** 91 * damon_select_ops() - Select a monitoring operations to use with the context. 92 * @ctx: monitoring context to use the operations. 93 * @id: id of the registered monitoring operations to select. 94 * 95 * This function finds registered monitoring operations set of @id and make 96 * @ctx to use it. 97 * 98 * Return: 0 on success, negative error code otherwise. 99 */ 100 int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id) 101 { 102 int err = 0; 103 104 if (id >= NR_DAMON_OPS) 105 return -EINVAL; 106 107 mutex_lock(&damon_ops_lock); 108 if (!__damon_is_registered_ops(id)) 109 err = -EINVAL; 110 else 111 ctx->ops = damon_registered_ops[id]; 112 mutex_unlock(&damon_ops_lock); 113 return err; 114 } 115 116 /* 117 * Construct a damon_region struct 118 * 119 * Returns the pointer to the new struct if success, or NULL otherwise 120 */ 121 struct damon_region *damon_new_region(unsigned long start, unsigned long end) 122 { 123 struct damon_region *region; 124 125 region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL); 126 if (!region) 127 return NULL; 128 129 region->ar.start = start; 130 region->ar.end = end; 131 region->nr_accesses = 0; 132 region->nr_accesses_bp = 0; 133 INIT_LIST_HEAD(®ion->list); 134 135 region->age = 0; 136 region->last_nr_accesses = 0; 137 138 return region; 139 } 140 141 void damon_add_region(struct damon_region *r, struct damon_target *t) 142 { 143 list_add_tail(&r->list, &t->regions_list); 144 t->nr_regions++; 145 } 146 147 static void damon_del_region(struct damon_region *r, struct damon_target *t) 148 { 149 list_del(&r->list); 150 t->nr_regions--; 151 } 152 153 static void damon_free_region(struct damon_region *r) 154 { 155 kmem_cache_free(damon_region_cache, r); 156 } 157 158 void damon_destroy_region(struct damon_region *r, struct damon_target *t) 159 { 160 damon_del_region(r, t); 161 damon_free_region(r); 162 } 163 164 /* 165 * Check whether a region is intersecting an address range 166 * 167 * Returns true if it is. 168 */ 169 static bool damon_intersect(struct damon_region *r, 170 struct damon_addr_range *re) 171 { 172 return !(r->ar.end <= re->start || re->end <= r->ar.start); 173 } 174 175 /* 176 * Fill holes in regions with new regions. 177 */ 178 static int damon_fill_regions_holes(struct damon_region *first, 179 struct damon_region *last, struct damon_target *t) 180 { 181 struct damon_region *r = first; 182 183 damon_for_each_region_from(r, t) { 184 struct damon_region *next, *newr; 185 186 if (r == last) 187 break; 188 next = damon_next_region(r); 189 if (r->ar.end != next->ar.start) { 190 newr = damon_new_region(r->ar.end, next->ar.start); 191 if (!newr) 192 return -ENOMEM; 193 damon_insert_region(newr, r, next, t); 194 } 195 } 196 return 0; 197 } 198 199 /* 200 * damon_set_regions() - Set regions of a target for given address ranges. 201 * @t: the given target. 202 * @ranges: array of new monitoring target ranges. 203 * @nr_ranges: length of @ranges. 204 * 205 * This function adds new regions to, or modify existing regions of a 206 * monitoring target to fit in specific ranges. 207 * 208 * Return: 0 if success, or negative error code otherwise. 209 */ 210 int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges, 211 unsigned int nr_ranges) 212 { 213 struct damon_region *r, *next; 214 unsigned int i; 215 int err; 216 217 /* Remove regions which are not in the new ranges */ 218 damon_for_each_region_safe(r, next, t) { 219 for (i = 0; i < nr_ranges; i++) { 220 if (damon_intersect(r, &ranges[i])) 221 break; 222 } 223 if (i == nr_ranges) 224 damon_destroy_region(r, t); 225 } 226 227 r = damon_first_region(t); 228 /* Add new regions or resize existing regions to fit in the ranges */ 229 for (i = 0; i < nr_ranges; i++) { 230 struct damon_region *first = NULL, *last, *newr; 231 struct damon_addr_range *range; 232 233 range = &ranges[i]; 234 /* Get the first/last regions intersecting with the range */ 235 damon_for_each_region_from(r, t) { 236 if (damon_intersect(r, range)) { 237 if (!first) 238 first = r; 239 last = r; 240 } 241 if (r->ar.start >= range->end) 242 break; 243 } 244 if (!first) { 245 /* no region intersects with this range */ 246 newr = damon_new_region( 247 ALIGN_DOWN(range->start, 248 DAMON_MIN_REGION), 249 ALIGN(range->end, DAMON_MIN_REGION)); 250 if (!newr) 251 return -ENOMEM; 252 damon_insert_region(newr, damon_prev_region(r), r, t); 253 } else { 254 /* resize intersecting regions to fit in this range */ 255 first->ar.start = ALIGN_DOWN(range->start, 256 DAMON_MIN_REGION); 257 last->ar.end = ALIGN(range->end, DAMON_MIN_REGION); 258 259 /* fill possible holes in the range */ 260 err = damon_fill_regions_holes(first, last, t); 261 if (err) 262 return err; 263 } 264 } 265 return 0; 266 } 267 268 struct damos_filter *damos_new_filter(enum damos_filter_type type, 269 bool matching, bool allow) 270 { 271 struct damos_filter *filter; 272 273 filter = kmalloc(sizeof(*filter), GFP_KERNEL); 274 if (!filter) 275 return NULL; 276 filter->type = type; 277 filter->matching = matching; 278 filter->allow = allow; 279 INIT_LIST_HEAD(&filter->list); 280 return filter; 281 } 282 283 /** 284 * damos_filter_for_ops() - Return if the filter is ops-hndled one. 285 * @type: type of the filter. 286 * 287 * Return: true if the filter of @type needs to be handled by ops layer, false 288 * otherwise. 289 */ 290 bool damos_filter_for_ops(enum damos_filter_type type) 291 { 292 switch (type) { 293 case DAMOS_FILTER_TYPE_ADDR: 294 case DAMOS_FILTER_TYPE_TARGET: 295 return false; 296 default: 297 break; 298 } 299 return true; 300 } 301 302 void damos_add_filter(struct damos *s, struct damos_filter *f) 303 { 304 if (damos_filter_for_ops(f->type)) 305 list_add_tail(&f->list, &s->ops_filters); 306 else 307 list_add_tail(&f->list, &s->filters); 308 } 309 310 static void damos_del_filter(struct damos_filter *f) 311 { 312 list_del(&f->list); 313 } 314 315 static void damos_free_filter(struct damos_filter *f) 316 { 317 kfree(f); 318 } 319 320 void damos_destroy_filter(struct damos_filter *f) 321 { 322 damos_del_filter(f); 323 damos_free_filter(f); 324 } 325 326 struct damos_quota_goal *damos_new_quota_goal( 327 enum damos_quota_goal_metric metric, 328 unsigned long target_value) 329 { 330 struct damos_quota_goal *goal; 331 332 goal = kmalloc(sizeof(*goal), GFP_KERNEL); 333 if (!goal) 334 return NULL; 335 goal->metric = metric; 336 goal->target_value = target_value; 337 INIT_LIST_HEAD(&goal->list); 338 return goal; 339 } 340 341 void damos_add_quota_goal(struct damos_quota *q, struct damos_quota_goal *g) 342 { 343 list_add_tail(&g->list, &q->goals); 344 } 345 346 static void damos_del_quota_goal(struct damos_quota_goal *g) 347 { 348 list_del(&g->list); 349 } 350 351 static void damos_free_quota_goal(struct damos_quota_goal *g) 352 { 353 kfree(g); 354 } 355 356 void damos_destroy_quota_goal(struct damos_quota_goal *g) 357 { 358 damos_del_quota_goal(g); 359 damos_free_quota_goal(g); 360 } 361 362 /* initialize fields of @quota that normally API users wouldn't set */ 363 static struct damos_quota *damos_quota_init(struct damos_quota *quota) 364 { 365 quota->esz = 0; 366 quota->total_charged_sz = 0; 367 quota->total_charged_ns = 0; 368 quota->charged_sz = 0; 369 quota->charged_from = 0; 370 quota->charge_target_from = NULL; 371 quota->charge_addr_from = 0; 372 quota->esz_bp = 0; 373 return quota; 374 } 375 376 struct damos *damon_new_scheme(struct damos_access_pattern *pattern, 377 enum damos_action action, 378 unsigned long apply_interval_us, 379 struct damos_quota *quota, 380 struct damos_watermarks *wmarks, 381 int target_nid) 382 { 383 struct damos *scheme; 384 385 scheme = kmalloc(sizeof(*scheme), GFP_KERNEL); 386 if (!scheme) 387 return NULL; 388 scheme->pattern = *pattern; 389 scheme->action = action; 390 scheme->apply_interval_us = apply_interval_us; 391 /* 392 * next_apply_sis will be set when kdamond starts. While kdamond is 393 * running, it will also updated when it is added to the DAMON context, 394 * or damon_attrs are updated. 395 */ 396 scheme->next_apply_sis = 0; 397 scheme->walk_completed = false; 398 INIT_LIST_HEAD(&scheme->filters); 399 INIT_LIST_HEAD(&scheme->ops_filters); 400 scheme->stat = (struct damos_stat){}; 401 INIT_LIST_HEAD(&scheme->list); 402 403 scheme->quota = *(damos_quota_init(quota)); 404 /* quota.goals should be separately set by caller */ 405 INIT_LIST_HEAD(&scheme->quota.goals); 406 407 scheme->wmarks = *wmarks; 408 scheme->wmarks.activated = true; 409 410 scheme->migrate_dests = (struct damos_migrate_dests){}; 411 scheme->target_nid = target_nid; 412 413 return scheme; 414 } 415 416 static void damos_set_next_apply_sis(struct damos *s, struct damon_ctx *ctx) 417 { 418 unsigned long sample_interval = ctx->attrs.sample_interval ? 419 ctx->attrs.sample_interval : 1; 420 unsigned long apply_interval = s->apply_interval_us ? 421 s->apply_interval_us : ctx->attrs.aggr_interval; 422 423 s->next_apply_sis = ctx->passed_sample_intervals + 424 apply_interval / sample_interval; 425 } 426 427 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s) 428 { 429 list_add_tail(&s->list, &ctx->schemes); 430 damos_set_next_apply_sis(s, ctx); 431 } 432 433 static void damon_del_scheme(struct damos *s) 434 { 435 list_del(&s->list); 436 } 437 438 static void damon_free_scheme(struct damos *s) 439 { 440 kfree(s); 441 } 442 443 void damon_destroy_scheme(struct damos *s) 444 { 445 struct damos_quota_goal *g, *g_next; 446 struct damos_filter *f, *next; 447 448 damos_for_each_quota_goal_safe(g, g_next, &s->quota) 449 damos_destroy_quota_goal(g); 450 451 damos_for_each_filter_safe(f, next, s) 452 damos_destroy_filter(f); 453 454 kfree(s->migrate_dests.node_id_arr); 455 kfree(s->migrate_dests.weight_arr); 456 damon_del_scheme(s); 457 damon_free_scheme(s); 458 } 459 460 /* 461 * Construct a damon_target struct 462 * 463 * Returns the pointer to the new struct if success, or NULL otherwise 464 */ 465 struct damon_target *damon_new_target(void) 466 { 467 struct damon_target *t; 468 469 t = kmalloc(sizeof(*t), GFP_KERNEL); 470 if (!t) 471 return NULL; 472 473 t->pid = NULL; 474 t->nr_regions = 0; 475 INIT_LIST_HEAD(&t->regions_list); 476 INIT_LIST_HEAD(&t->list); 477 478 return t; 479 } 480 481 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t) 482 { 483 list_add_tail(&t->list, &ctx->adaptive_targets); 484 } 485 486 bool damon_targets_empty(struct damon_ctx *ctx) 487 { 488 return list_empty(&ctx->adaptive_targets); 489 } 490 491 static void damon_del_target(struct damon_target *t) 492 { 493 list_del(&t->list); 494 } 495 496 void damon_free_target(struct damon_target *t) 497 { 498 struct damon_region *r, *next; 499 500 damon_for_each_region_safe(r, next, t) 501 damon_free_region(r); 502 kfree(t); 503 } 504 505 void damon_destroy_target(struct damon_target *t, struct damon_ctx *ctx) 506 { 507 508 if (ctx && ctx->ops.cleanup_target) 509 ctx->ops.cleanup_target(t); 510 511 damon_del_target(t); 512 damon_free_target(t); 513 } 514 515 unsigned int damon_nr_regions(struct damon_target *t) 516 { 517 return t->nr_regions; 518 } 519 520 struct damon_ctx *damon_new_ctx(void) 521 { 522 struct damon_ctx *ctx; 523 524 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 525 if (!ctx) 526 return NULL; 527 528 init_completion(&ctx->kdamond_started); 529 530 ctx->attrs.sample_interval = 5 * 1000; 531 ctx->attrs.aggr_interval = 100 * 1000; 532 ctx->attrs.ops_update_interval = 60 * 1000 * 1000; 533 534 ctx->passed_sample_intervals = 0; 535 /* These will be set from kdamond_init_ctx() */ 536 ctx->next_aggregation_sis = 0; 537 ctx->next_ops_update_sis = 0; 538 539 mutex_init(&ctx->kdamond_lock); 540 INIT_LIST_HEAD(&ctx->call_controls); 541 mutex_init(&ctx->call_controls_lock); 542 mutex_init(&ctx->walk_control_lock); 543 544 ctx->attrs.min_nr_regions = 10; 545 ctx->attrs.max_nr_regions = 1000; 546 547 INIT_LIST_HEAD(&ctx->adaptive_targets); 548 INIT_LIST_HEAD(&ctx->schemes); 549 550 return ctx; 551 } 552 553 static void damon_destroy_targets(struct damon_ctx *ctx) 554 { 555 struct damon_target *t, *next_t; 556 557 damon_for_each_target_safe(t, next_t, ctx) 558 damon_destroy_target(t, ctx); 559 } 560 561 void damon_destroy_ctx(struct damon_ctx *ctx) 562 { 563 struct damos *s, *next_s; 564 565 damon_destroy_targets(ctx); 566 567 damon_for_each_scheme_safe(s, next_s, ctx) 568 damon_destroy_scheme(s); 569 570 kfree(ctx); 571 } 572 573 static unsigned int damon_age_for_new_attrs(unsigned int age, 574 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs) 575 { 576 return age * old_attrs->aggr_interval / new_attrs->aggr_interval; 577 } 578 579 /* convert access ratio in bp (per 10,000) to nr_accesses */ 580 static unsigned int damon_accesses_bp_to_nr_accesses( 581 unsigned int accesses_bp, struct damon_attrs *attrs) 582 { 583 return accesses_bp * damon_max_nr_accesses(attrs) / 10000; 584 } 585 586 /* 587 * Convert nr_accesses to access ratio in bp (per 10,000). 588 * 589 * Callers should ensure attrs.aggr_interval is not zero, like 590 * damon_update_monitoring_results() does . Otherwise, divide-by-zero would 591 * happen. 592 */ 593 static unsigned int damon_nr_accesses_to_accesses_bp( 594 unsigned int nr_accesses, struct damon_attrs *attrs) 595 { 596 return nr_accesses * 10000 / damon_max_nr_accesses(attrs); 597 } 598 599 static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses, 600 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs) 601 { 602 return damon_accesses_bp_to_nr_accesses( 603 damon_nr_accesses_to_accesses_bp( 604 nr_accesses, old_attrs), 605 new_attrs); 606 } 607 608 static void damon_update_monitoring_result(struct damon_region *r, 609 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs, 610 bool aggregating) 611 { 612 if (!aggregating) { 613 r->nr_accesses = damon_nr_accesses_for_new_attrs( 614 r->nr_accesses, old_attrs, new_attrs); 615 r->nr_accesses_bp = r->nr_accesses * 10000; 616 } else { 617 /* 618 * if this is called in the middle of the aggregation, reset 619 * the aggregations we made so far for this aggregation 620 * interval. In other words, make the status like 621 * kdamond_reset_aggregated() is called. 622 */ 623 r->last_nr_accesses = damon_nr_accesses_for_new_attrs( 624 r->last_nr_accesses, old_attrs, new_attrs); 625 r->nr_accesses_bp = r->last_nr_accesses * 10000; 626 r->nr_accesses = 0; 627 } 628 r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs); 629 } 630 631 /* 632 * region->nr_accesses is the number of sampling intervals in the last 633 * aggregation interval that access to the region has found, and region->age is 634 * the number of aggregation intervals that its access pattern has maintained. 635 * For the reason, the real meaning of the two fields depend on current 636 * sampling interval and aggregation interval. This function updates 637 * ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs. 638 */ 639 static void damon_update_monitoring_results(struct damon_ctx *ctx, 640 struct damon_attrs *new_attrs, bool aggregating) 641 { 642 struct damon_attrs *old_attrs = &ctx->attrs; 643 struct damon_target *t; 644 struct damon_region *r; 645 646 /* if any interval is zero, simply forgive conversion */ 647 if (!old_attrs->sample_interval || !old_attrs->aggr_interval || 648 !new_attrs->sample_interval || 649 !new_attrs->aggr_interval) 650 return; 651 652 damon_for_each_target(t, ctx) 653 damon_for_each_region(r, t) 654 damon_update_monitoring_result( 655 r, old_attrs, new_attrs, aggregating); 656 } 657 658 /* 659 * damon_valid_intervals_goal() - return if the intervals goal of @attrs is 660 * valid. 661 */ 662 static bool damon_valid_intervals_goal(struct damon_attrs *attrs) 663 { 664 struct damon_intervals_goal *goal = &attrs->intervals_goal; 665 666 /* tuning is disabled */ 667 if (!goal->aggrs) 668 return true; 669 if (goal->min_sample_us > goal->max_sample_us) 670 return false; 671 if (attrs->sample_interval < goal->min_sample_us || 672 goal->max_sample_us < attrs->sample_interval) 673 return false; 674 return true; 675 } 676 677 /** 678 * damon_set_attrs() - Set attributes for the monitoring. 679 * @ctx: monitoring context 680 * @attrs: monitoring attributes 681 * 682 * This function should be called while the kdamond is not running, an access 683 * check results aggregation is not ongoing (e.g., from damon_call(). 684 * 685 * Every time interval is in micro-seconds. 686 * 687 * Return: 0 on success, negative error code otherwise. 688 */ 689 int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs) 690 { 691 unsigned long sample_interval = attrs->sample_interval ? 692 attrs->sample_interval : 1; 693 struct damos *s; 694 bool aggregating = ctx->passed_sample_intervals < 695 ctx->next_aggregation_sis; 696 697 if (!damon_valid_intervals_goal(attrs)) 698 return -EINVAL; 699 700 if (attrs->min_nr_regions < 3) 701 return -EINVAL; 702 if (attrs->min_nr_regions > attrs->max_nr_regions) 703 return -EINVAL; 704 if (attrs->sample_interval > attrs->aggr_interval) 705 return -EINVAL; 706 707 /* calls from core-external doesn't set this. */ 708 if (!attrs->aggr_samples) 709 attrs->aggr_samples = attrs->aggr_interval / sample_interval; 710 711 ctx->next_aggregation_sis = ctx->passed_sample_intervals + 712 attrs->aggr_interval / sample_interval; 713 ctx->next_ops_update_sis = ctx->passed_sample_intervals + 714 attrs->ops_update_interval / sample_interval; 715 716 damon_update_monitoring_results(ctx, attrs, aggregating); 717 ctx->attrs = *attrs; 718 719 damon_for_each_scheme(s, ctx) 720 damos_set_next_apply_sis(s, ctx); 721 722 return 0; 723 } 724 725 /** 726 * damon_set_schemes() - Set data access monitoring based operation schemes. 727 * @ctx: monitoring context 728 * @schemes: array of the schemes 729 * @nr_schemes: number of entries in @schemes 730 * 731 * This function should not be called while the kdamond of the context is 732 * running. 733 */ 734 void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes, 735 ssize_t nr_schemes) 736 { 737 struct damos *s, *next; 738 ssize_t i; 739 740 damon_for_each_scheme_safe(s, next, ctx) 741 damon_destroy_scheme(s); 742 for (i = 0; i < nr_schemes; i++) 743 damon_add_scheme(ctx, schemes[i]); 744 } 745 746 static struct damos_quota_goal *damos_nth_quota_goal( 747 int n, struct damos_quota *q) 748 { 749 struct damos_quota_goal *goal; 750 int i = 0; 751 752 damos_for_each_quota_goal(goal, q) { 753 if (i++ == n) 754 return goal; 755 } 756 return NULL; 757 } 758 759 static void damos_commit_quota_goal_union( 760 struct damos_quota_goal *dst, struct damos_quota_goal *src) 761 { 762 switch (dst->metric) { 763 case DAMOS_QUOTA_NODE_MEM_USED_BP: 764 case DAMOS_QUOTA_NODE_MEM_FREE_BP: 765 dst->nid = src->nid; 766 break; 767 default: 768 break; 769 } 770 } 771 772 static void damos_commit_quota_goal( 773 struct damos_quota_goal *dst, struct damos_quota_goal *src) 774 { 775 dst->metric = src->metric; 776 dst->target_value = src->target_value; 777 if (dst->metric == DAMOS_QUOTA_USER_INPUT) 778 dst->current_value = src->current_value; 779 /* keep last_psi_total as is, since it will be updated in next cycle */ 780 damos_commit_quota_goal_union(dst, src); 781 } 782 783 /** 784 * damos_commit_quota_goals() - Commit DAMOS quota goals to another quota. 785 * @dst: The commit destination DAMOS quota. 786 * @src: The commit source DAMOS quota. 787 * 788 * Copies user-specified parameters for quota goals from @src to @dst. Users 789 * should use this function for quota goals-level parameters update of running 790 * DAMON contexts, instead of manual in-place updates. 791 * 792 * This function should be called from parameters-update safe context, like 793 * damon_call(). 794 */ 795 int damos_commit_quota_goals(struct damos_quota *dst, struct damos_quota *src) 796 { 797 struct damos_quota_goal *dst_goal, *next, *src_goal, *new_goal; 798 int i = 0, j = 0; 799 800 damos_for_each_quota_goal_safe(dst_goal, next, dst) { 801 src_goal = damos_nth_quota_goal(i++, src); 802 if (src_goal) 803 damos_commit_quota_goal(dst_goal, src_goal); 804 else 805 damos_destroy_quota_goal(dst_goal); 806 } 807 damos_for_each_quota_goal_safe(src_goal, next, src) { 808 if (j++ < i) 809 continue; 810 new_goal = damos_new_quota_goal( 811 src_goal->metric, src_goal->target_value); 812 if (!new_goal) 813 return -ENOMEM; 814 damos_commit_quota_goal_union(new_goal, src_goal); 815 damos_add_quota_goal(dst, new_goal); 816 } 817 return 0; 818 } 819 820 static int damos_commit_quota(struct damos_quota *dst, struct damos_quota *src) 821 { 822 int err; 823 824 dst->reset_interval = src->reset_interval; 825 dst->ms = src->ms; 826 dst->sz = src->sz; 827 err = damos_commit_quota_goals(dst, src); 828 if (err) 829 return err; 830 dst->weight_sz = src->weight_sz; 831 dst->weight_nr_accesses = src->weight_nr_accesses; 832 dst->weight_age = src->weight_age; 833 return 0; 834 } 835 836 static struct damos_filter *damos_nth_filter(int n, struct damos *s) 837 { 838 struct damos_filter *filter; 839 int i = 0; 840 841 damos_for_each_filter(filter, s) { 842 if (i++ == n) 843 return filter; 844 } 845 return NULL; 846 } 847 848 static struct damos_filter *damos_nth_ops_filter(int n, struct damos *s) 849 { 850 struct damos_filter *filter; 851 int i = 0; 852 853 damos_for_each_ops_filter(filter, s) { 854 if (i++ == n) 855 return filter; 856 } 857 return NULL; 858 } 859 860 static void damos_commit_filter_arg( 861 struct damos_filter *dst, struct damos_filter *src) 862 { 863 switch (dst->type) { 864 case DAMOS_FILTER_TYPE_MEMCG: 865 dst->memcg_id = src->memcg_id; 866 break; 867 case DAMOS_FILTER_TYPE_ADDR: 868 dst->addr_range = src->addr_range; 869 break; 870 case DAMOS_FILTER_TYPE_TARGET: 871 dst->target_idx = src->target_idx; 872 break; 873 case DAMOS_FILTER_TYPE_HUGEPAGE_SIZE: 874 dst->sz_range = src->sz_range; 875 break; 876 default: 877 break; 878 } 879 } 880 881 static void damos_commit_filter( 882 struct damos_filter *dst, struct damos_filter *src) 883 { 884 dst->type = src->type; 885 dst->matching = src->matching; 886 dst->allow = src->allow; 887 damos_commit_filter_arg(dst, src); 888 } 889 890 static int damos_commit_core_filters(struct damos *dst, struct damos *src) 891 { 892 struct damos_filter *dst_filter, *next, *src_filter, *new_filter; 893 int i = 0, j = 0; 894 895 damos_for_each_filter_safe(dst_filter, next, dst) { 896 src_filter = damos_nth_filter(i++, src); 897 if (src_filter) 898 damos_commit_filter(dst_filter, src_filter); 899 else 900 damos_destroy_filter(dst_filter); 901 } 902 903 damos_for_each_filter_safe(src_filter, next, src) { 904 if (j++ < i) 905 continue; 906 907 new_filter = damos_new_filter( 908 src_filter->type, src_filter->matching, 909 src_filter->allow); 910 if (!new_filter) 911 return -ENOMEM; 912 damos_commit_filter_arg(new_filter, src_filter); 913 damos_add_filter(dst, new_filter); 914 } 915 return 0; 916 } 917 918 static int damos_commit_ops_filters(struct damos *dst, struct damos *src) 919 { 920 struct damos_filter *dst_filter, *next, *src_filter, *new_filter; 921 int i = 0, j = 0; 922 923 damos_for_each_ops_filter_safe(dst_filter, next, dst) { 924 src_filter = damos_nth_ops_filter(i++, src); 925 if (src_filter) 926 damos_commit_filter(dst_filter, src_filter); 927 else 928 damos_destroy_filter(dst_filter); 929 } 930 931 damos_for_each_ops_filter_safe(src_filter, next, src) { 932 if (j++ < i) 933 continue; 934 935 new_filter = damos_new_filter( 936 src_filter->type, src_filter->matching, 937 src_filter->allow); 938 if (!new_filter) 939 return -ENOMEM; 940 damos_commit_filter_arg(new_filter, src_filter); 941 damos_add_filter(dst, new_filter); 942 } 943 return 0; 944 } 945 946 /** 947 * damos_filters_default_reject() - decide whether to reject memory that didn't 948 * match with any given filter. 949 * @filters: Given DAMOS filters of a group. 950 */ 951 static bool damos_filters_default_reject(struct list_head *filters) 952 { 953 struct damos_filter *last_filter; 954 955 if (list_empty(filters)) 956 return false; 957 last_filter = list_last_entry(filters, struct damos_filter, list); 958 return last_filter->allow; 959 } 960 961 static void damos_set_filters_default_reject(struct damos *s) 962 { 963 if (!list_empty(&s->ops_filters)) 964 s->core_filters_default_reject = false; 965 else 966 s->core_filters_default_reject = 967 damos_filters_default_reject(&s->filters); 968 s->ops_filters_default_reject = 969 damos_filters_default_reject(&s->ops_filters); 970 } 971 972 static int damos_commit_dests(struct damos *dst, struct damos *src) 973 { 974 struct damos_migrate_dests *dst_dests, *src_dests; 975 976 dst_dests = &dst->migrate_dests; 977 src_dests = &src->migrate_dests; 978 979 if (dst_dests->nr_dests != src_dests->nr_dests) { 980 kfree(dst_dests->node_id_arr); 981 kfree(dst_dests->weight_arr); 982 983 dst_dests->node_id_arr = kmalloc_array(src_dests->nr_dests, 984 sizeof(*dst_dests->node_id_arr), GFP_KERNEL); 985 if (!dst_dests->node_id_arr) { 986 dst_dests->weight_arr = NULL; 987 return -ENOMEM; 988 } 989 990 dst_dests->weight_arr = kmalloc_array(src_dests->nr_dests, 991 sizeof(*dst_dests->weight_arr), GFP_KERNEL); 992 if (!dst_dests->weight_arr) { 993 /* ->node_id_arr will be freed by scheme destruction */ 994 return -ENOMEM; 995 } 996 } 997 998 dst_dests->nr_dests = src_dests->nr_dests; 999 for (int i = 0; i < src_dests->nr_dests; i++) { 1000 dst_dests->node_id_arr[i] = src_dests->node_id_arr[i]; 1001 dst_dests->weight_arr[i] = src_dests->weight_arr[i]; 1002 } 1003 1004 return 0; 1005 } 1006 1007 static int damos_commit_filters(struct damos *dst, struct damos *src) 1008 { 1009 int err; 1010 1011 err = damos_commit_core_filters(dst, src); 1012 if (err) 1013 return err; 1014 err = damos_commit_ops_filters(dst, src); 1015 if (err) 1016 return err; 1017 damos_set_filters_default_reject(dst); 1018 return 0; 1019 } 1020 1021 static struct damos *damon_nth_scheme(int n, struct damon_ctx *ctx) 1022 { 1023 struct damos *s; 1024 int i = 0; 1025 1026 damon_for_each_scheme(s, ctx) { 1027 if (i++ == n) 1028 return s; 1029 } 1030 return NULL; 1031 } 1032 1033 static int damos_commit(struct damos *dst, struct damos *src) 1034 { 1035 int err; 1036 1037 dst->pattern = src->pattern; 1038 dst->action = src->action; 1039 dst->apply_interval_us = src->apply_interval_us; 1040 1041 err = damos_commit_quota(&dst->quota, &src->quota); 1042 if (err) 1043 return err; 1044 1045 dst->wmarks = src->wmarks; 1046 dst->target_nid = src->target_nid; 1047 1048 err = damos_commit_dests(dst, src); 1049 if (err) 1050 return err; 1051 1052 err = damos_commit_filters(dst, src); 1053 return err; 1054 } 1055 1056 static int damon_commit_schemes(struct damon_ctx *dst, struct damon_ctx *src) 1057 { 1058 struct damos *dst_scheme, *next, *src_scheme, *new_scheme; 1059 int i = 0, j = 0, err; 1060 1061 damon_for_each_scheme_safe(dst_scheme, next, dst) { 1062 src_scheme = damon_nth_scheme(i++, src); 1063 if (src_scheme) { 1064 err = damos_commit(dst_scheme, src_scheme); 1065 if (err) 1066 return err; 1067 } else { 1068 damon_destroy_scheme(dst_scheme); 1069 } 1070 } 1071 1072 damon_for_each_scheme_safe(src_scheme, next, src) { 1073 if (j++ < i) 1074 continue; 1075 new_scheme = damon_new_scheme(&src_scheme->pattern, 1076 src_scheme->action, 1077 src_scheme->apply_interval_us, 1078 &src_scheme->quota, &src_scheme->wmarks, 1079 NUMA_NO_NODE); 1080 if (!new_scheme) 1081 return -ENOMEM; 1082 err = damos_commit(new_scheme, src_scheme); 1083 if (err) { 1084 damon_destroy_scheme(new_scheme); 1085 return err; 1086 } 1087 damon_add_scheme(dst, new_scheme); 1088 } 1089 return 0; 1090 } 1091 1092 static struct damon_target *damon_nth_target(int n, struct damon_ctx *ctx) 1093 { 1094 struct damon_target *t; 1095 int i = 0; 1096 1097 damon_for_each_target(t, ctx) { 1098 if (i++ == n) 1099 return t; 1100 } 1101 return NULL; 1102 } 1103 1104 /* 1105 * The caller should ensure the regions of @src are 1106 * 1. valid (end >= src) and 1107 * 2. sorted by starting address. 1108 * 1109 * If @src has no region, @dst keeps current regions. 1110 */ 1111 static int damon_commit_target_regions( 1112 struct damon_target *dst, struct damon_target *src) 1113 { 1114 struct damon_region *src_region; 1115 struct damon_addr_range *ranges; 1116 int i = 0, err; 1117 1118 damon_for_each_region(src_region, src) 1119 i++; 1120 if (!i) 1121 return 0; 1122 1123 ranges = kmalloc_array(i, sizeof(*ranges), GFP_KERNEL | __GFP_NOWARN); 1124 if (!ranges) 1125 return -ENOMEM; 1126 i = 0; 1127 damon_for_each_region(src_region, src) 1128 ranges[i++] = src_region->ar; 1129 err = damon_set_regions(dst, ranges, i); 1130 kfree(ranges); 1131 return err; 1132 } 1133 1134 static int damon_commit_target( 1135 struct damon_target *dst, bool dst_has_pid, 1136 struct damon_target *src, bool src_has_pid) 1137 { 1138 int err; 1139 1140 err = damon_commit_target_regions(dst, src); 1141 if (err) 1142 return err; 1143 if (dst_has_pid) 1144 put_pid(dst->pid); 1145 if (src_has_pid) 1146 get_pid(src->pid); 1147 dst->pid = src->pid; 1148 return 0; 1149 } 1150 1151 static int damon_commit_targets( 1152 struct damon_ctx *dst, struct damon_ctx *src) 1153 { 1154 struct damon_target *dst_target, *next, *src_target, *new_target; 1155 int i = 0, j = 0, err; 1156 1157 damon_for_each_target_safe(dst_target, next, dst) { 1158 src_target = damon_nth_target(i++, src); 1159 if (src_target) { 1160 err = damon_commit_target( 1161 dst_target, damon_target_has_pid(dst), 1162 src_target, damon_target_has_pid(src)); 1163 if (err) 1164 return err; 1165 } else { 1166 struct damos *s; 1167 1168 damon_destroy_target(dst_target, dst); 1169 damon_for_each_scheme(s, dst) { 1170 if (s->quota.charge_target_from == dst_target) { 1171 s->quota.charge_target_from = NULL; 1172 s->quota.charge_addr_from = 0; 1173 } 1174 } 1175 } 1176 } 1177 1178 damon_for_each_target_safe(src_target, next, src) { 1179 if (j++ < i) 1180 continue; 1181 new_target = damon_new_target(); 1182 if (!new_target) 1183 return -ENOMEM; 1184 err = damon_commit_target(new_target, false, 1185 src_target, damon_target_has_pid(src)); 1186 if (err) { 1187 damon_destroy_target(new_target, NULL); 1188 return err; 1189 } 1190 damon_add_target(dst, new_target); 1191 } 1192 return 0; 1193 } 1194 1195 /** 1196 * damon_commit_ctx() - Commit parameters of a DAMON context to another. 1197 * @dst: The commit destination DAMON context. 1198 * @src: The commit source DAMON context. 1199 * 1200 * This function copies user-specified parameters from @src to @dst and update 1201 * the internal status and results accordingly. Users should use this function 1202 * for context-level parameters update of running context, instead of manual 1203 * in-place updates. 1204 * 1205 * This function should be called from parameters-update safe context, like 1206 * damon_call(). 1207 */ 1208 int damon_commit_ctx(struct damon_ctx *dst, struct damon_ctx *src) 1209 { 1210 int err; 1211 1212 err = damon_commit_schemes(dst, src); 1213 if (err) 1214 return err; 1215 err = damon_commit_targets(dst, src); 1216 if (err) 1217 return err; 1218 /* 1219 * schemes and targets should be updated first, since 1220 * 1. damon_set_attrs() updates monitoring results of targets and 1221 * next_apply_sis of schemes, and 1222 * 2. ops update should be done after pid handling is done (target 1223 * committing require putting pids). 1224 */ 1225 err = damon_set_attrs(dst, &src->attrs); 1226 if (err) 1227 return err; 1228 dst->ops = src->ops; 1229 1230 return 0; 1231 } 1232 1233 /** 1234 * damon_nr_running_ctxs() - Return number of currently running contexts. 1235 */ 1236 int damon_nr_running_ctxs(void) 1237 { 1238 int nr_ctxs; 1239 1240 mutex_lock(&damon_lock); 1241 nr_ctxs = nr_running_ctxs; 1242 mutex_unlock(&damon_lock); 1243 1244 return nr_ctxs; 1245 } 1246 1247 /* Returns the size upper limit for each monitoring region */ 1248 static unsigned long damon_region_sz_limit(struct damon_ctx *ctx) 1249 { 1250 struct damon_target *t; 1251 struct damon_region *r; 1252 unsigned long sz = 0; 1253 1254 damon_for_each_target(t, ctx) { 1255 damon_for_each_region(r, t) 1256 sz += damon_sz_region(r); 1257 } 1258 1259 if (ctx->attrs.min_nr_regions) 1260 sz /= ctx->attrs.min_nr_regions; 1261 if (sz < DAMON_MIN_REGION) 1262 sz = DAMON_MIN_REGION; 1263 1264 return sz; 1265 } 1266 1267 static int kdamond_fn(void *data); 1268 1269 /* 1270 * __damon_start() - Starts monitoring with given context. 1271 * @ctx: monitoring context 1272 * 1273 * This function should be called while damon_lock is hold. 1274 * 1275 * Return: 0 on success, negative error code otherwise. 1276 */ 1277 static int __damon_start(struct damon_ctx *ctx) 1278 { 1279 int err = -EBUSY; 1280 1281 mutex_lock(&ctx->kdamond_lock); 1282 if (!ctx->kdamond) { 1283 err = 0; 1284 reinit_completion(&ctx->kdamond_started); 1285 ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d", 1286 nr_running_ctxs); 1287 if (IS_ERR(ctx->kdamond)) { 1288 err = PTR_ERR(ctx->kdamond); 1289 ctx->kdamond = NULL; 1290 } else { 1291 wait_for_completion(&ctx->kdamond_started); 1292 } 1293 } 1294 mutex_unlock(&ctx->kdamond_lock); 1295 1296 return err; 1297 } 1298 1299 /** 1300 * damon_start() - Starts the monitorings for a given group of contexts. 1301 * @ctxs: an array of the pointers for contexts to start monitoring 1302 * @nr_ctxs: size of @ctxs 1303 * @exclusive: exclusiveness of this contexts group 1304 * 1305 * This function starts a group of monitoring threads for a group of monitoring 1306 * contexts. One thread per each context is created and run in parallel. The 1307 * caller should handle synchronization between the threads by itself. If 1308 * @exclusive is true and a group of threads that created by other 1309 * 'damon_start()' call is currently running, this function does nothing but 1310 * returns -EBUSY. 1311 * 1312 * Return: 0 on success, negative error code otherwise. 1313 */ 1314 int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive) 1315 { 1316 int i; 1317 int err = 0; 1318 1319 mutex_lock(&damon_lock); 1320 if ((exclusive && nr_running_ctxs) || 1321 (!exclusive && running_exclusive_ctxs)) { 1322 mutex_unlock(&damon_lock); 1323 return -EBUSY; 1324 } 1325 1326 for (i = 0; i < nr_ctxs; i++) { 1327 err = __damon_start(ctxs[i]); 1328 if (err) 1329 break; 1330 nr_running_ctxs++; 1331 } 1332 if (exclusive && nr_running_ctxs) 1333 running_exclusive_ctxs = true; 1334 mutex_unlock(&damon_lock); 1335 1336 return err; 1337 } 1338 1339 /* 1340 * __damon_stop() - Stops monitoring of a given context. 1341 * @ctx: monitoring context 1342 * 1343 * Return: 0 on success, negative error code otherwise. 1344 */ 1345 static int __damon_stop(struct damon_ctx *ctx) 1346 { 1347 struct task_struct *tsk; 1348 1349 mutex_lock(&ctx->kdamond_lock); 1350 tsk = ctx->kdamond; 1351 if (tsk) { 1352 get_task_struct(tsk); 1353 mutex_unlock(&ctx->kdamond_lock); 1354 kthread_stop_put(tsk); 1355 return 0; 1356 } 1357 mutex_unlock(&ctx->kdamond_lock); 1358 1359 return -EPERM; 1360 } 1361 1362 /** 1363 * damon_stop() - Stops the monitorings for a given group of contexts. 1364 * @ctxs: an array of the pointers for contexts to stop monitoring 1365 * @nr_ctxs: size of @ctxs 1366 * 1367 * Return: 0 on success, negative error code otherwise. 1368 */ 1369 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs) 1370 { 1371 int i, err = 0; 1372 1373 for (i = 0; i < nr_ctxs; i++) { 1374 /* nr_running_ctxs is decremented in kdamond_fn */ 1375 err = __damon_stop(ctxs[i]); 1376 if (err) 1377 break; 1378 } 1379 return err; 1380 } 1381 1382 /** 1383 * damon_is_running() - Returns if a given DAMON context is running. 1384 * @ctx: The DAMON context to see if running. 1385 * 1386 * Return: true if @ctx is running, false otherwise. 1387 */ 1388 bool damon_is_running(struct damon_ctx *ctx) 1389 { 1390 bool running; 1391 1392 mutex_lock(&ctx->kdamond_lock); 1393 running = ctx->kdamond != NULL; 1394 mutex_unlock(&ctx->kdamond_lock); 1395 return running; 1396 } 1397 1398 /** 1399 * damon_call() - Invoke a given function on DAMON worker thread (kdamond). 1400 * @ctx: DAMON context to call the function for. 1401 * @control: Control variable of the call request. 1402 * 1403 * Ask DAMON worker thread (kdamond) of @ctx to call a function with an 1404 * argument data that respectively passed via &damon_call_control->fn and 1405 * &damon_call_control->data of @control. If &damon_call_control->repeat of 1406 * @control is set, further wait until the kdamond finishes handling of the 1407 * request. Otherwise, return as soon as the request is made. 1408 * 1409 * The kdamond executes the function with the argument in the main loop, just 1410 * after a sampling of the iteration is finished. The function can hence 1411 * safely access the internal data of the &struct damon_ctx without additional 1412 * synchronization. The return value of the function will be saved in 1413 * &damon_call_control->return_code. 1414 * 1415 * Return: 0 on success, negative error code otherwise. 1416 */ 1417 int damon_call(struct damon_ctx *ctx, struct damon_call_control *control) 1418 { 1419 if (!control->repeat) 1420 init_completion(&control->completion); 1421 control->canceled = false; 1422 INIT_LIST_HEAD(&control->list); 1423 1424 mutex_lock(&ctx->call_controls_lock); 1425 list_add_tail(&ctx->call_controls, &control->list); 1426 mutex_unlock(&ctx->call_controls_lock); 1427 if (!damon_is_running(ctx)) 1428 return -EINVAL; 1429 if (control->repeat) 1430 return 0; 1431 wait_for_completion(&control->completion); 1432 if (control->canceled) 1433 return -ECANCELED; 1434 return 0; 1435 } 1436 1437 /** 1438 * damos_walk() - Invoke a given functions while DAMOS walk regions. 1439 * @ctx: DAMON context to call the functions for. 1440 * @control: Control variable of the walk request. 1441 * 1442 * Ask DAMON worker thread (kdamond) of @ctx to call a function for each region 1443 * that the kdamond will apply DAMOS action to, and wait until the kdamond 1444 * finishes handling of the request. 1445 * 1446 * The kdamond executes the given function in the main loop, for each region 1447 * just after it applied any DAMOS actions of @ctx to it. The invocation is 1448 * made only within one &damos->apply_interval_us since damos_walk() 1449 * invocation, for each scheme. The given callback function can hence safely 1450 * access the internal data of &struct damon_ctx and &struct damon_region that 1451 * each of the scheme will apply the action for next interval, without 1452 * additional synchronizations against the kdamond. If every scheme of @ctx 1453 * passed at least one &damos->apply_interval_us, kdamond marks the request as 1454 * completed so that damos_walk() can wakeup and return. 1455 * 1456 * Return: 0 on success, negative error code otherwise. 1457 */ 1458 int damos_walk(struct damon_ctx *ctx, struct damos_walk_control *control) 1459 { 1460 init_completion(&control->completion); 1461 control->canceled = false; 1462 mutex_lock(&ctx->walk_control_lock); 1463 if (ctx->walk_control) { 1464 mutex_unlock(&ctx->walk_control_lock); 1465 return -EBUSY; 1466 } 1467 ctx->walk_control = control; 1468 mutex_unlock(&ctx->walk_control_lock); 1469 if (!damon_is_running(ctx)) 1470 return -EINVAL; 1471 wait_for_completion(&control->completion); 1472 if (control->canceled) 1473 return -ECANCELED; 1474 return 0; 1475 } 1476 1477 /* 1478 * Warn and fix corrupted ->nr_accesses[_bp] for investigations and preventing 1479 * the problem being propagated. 1480 */ 1481 static void damon_warn_fix_nr_accesses_corruption(struct damon_region *r) 1482 { 1483 if (r->nr_accesses_bp == r->nr_accesses * 10000) 1484 return; 1485 WARN_ONCE(true, "invalid nr_accesses_bp at reset: %u %u\n", 1486 r->nr_accesses_bp, r->nr_accesses); 1487 r->nr_accesses_bp = r->nr_accesses * 10000; 1488 } 1489 1490 /* 1491 * Reset the aggregated monitoring results ('nr_accesses' of each region). 1492 */ 1493 static void kdamond_reset_aggregated(struct damon_ctx *c) 1494 { 1495 struct damon_target *t; 1496 unsigned int ti = 0; /* target's index */ 1497 1498 damon_for_each_target(t, c) { 1499 struct damon_region *r; 1500 1501 damon_for_each_region(r, t) { 1502 trace_damon_aggregated(ti, r, damon_nr_regions(t)); 1503 damon_warn_fix_nr_accesses_corruption(r); 1504 r->last_nr_accesses = r->nr_accesses; 1505 r->nr_accesses = 0; 1506 } 1507 ti++; 1508 } 1509 } 1510 1511 static unsigned long damon_get_intervals_score(struct damon_ctx *c) 1512 { 1513 struct damon_target *t; 1514 struct damon_region *r; 1515 unsigned long sz_region, max_access_events = 0, access_events = 0; 1516 unsigned long target_access_events; 1517 unsigned long goal_bp = c->attrs.intervals_goal.access_bp; 1518 1519 damon_for_each_target(t, c) { 1520 damon_for_each_region(r, t) { 1521 sz_region = damon_sz_region(r); 1522 max_access_events += sz_region * c->attrs.aggr_samples; 1523 access_events += sz_region * r->nr_accesses; 1524 } 1525 } 1526 target_access_events = max_access_events * goal_bp / 10000; 1527 target_access_events = target_access_events ? : 1; 1528 return access_events * 10000 / target_access_events; 1529 } 1530 1531 static unsigned long damon_feed_loop_next_input(unsigned long last_input, 1532 unsigned long score); 1533 1534 static unsigned long damon_get_intervals_adaptation_bp(struct damon_ctx *c) 1535 { 1536 unsigned long score_bp, adaptation_bp; 1537 1538 score_bp = damon_get_intervals_score(c); 1539 adaptation_bp = damon_feed_loop_next_input(100000000, score_bp) / 1540 10000; 1541 /* 1542 * adaptaion_bp ranges from 1 to 20,000. Avoid too rapid reduction of 1543 * the intervals by rescaling [1,10,000] to [5000, 10,000]. 1544 */ 1545 if (adaptation_bp <= 10000) 1546 adaptation_bp = 5000 + adaptation_bp / 2; 1547 return adaptation_bp; 1548 } 1549 1550 static void kdamond_tune_intervals(struct damon_ctx *c) 1551 { 1552 unsigned long adaptation_bp; 1553 struct damon_attrs new_attrs; 1554 struct damon_intervals_goal *goal; 1555 1556 adaptation_bp = damon_get_intervals_adaptation_bp(c); 1557 if (adaptation_bp == 10000) 1558 return; 1559 1560 new_attrs = c->attrs; 1561 goal = &c->attrs.intervals_goal; 1562 new_attrs.sample_interval = min(goal->max_sample_us, 1563 c->attrs.sample_interval * adaptation_bp / 10000); 1564 new_attrs.sample_interval = max(goal->min_sample_us, 1565 new_attrs.sample_interval); 1566 new_attrs.aggr_interval = new_attrs.sample_interval * 1567 c->attrs.aggr_samples; 1568 trace_damon_monitor_intervals_tune(new_attrs.sample_interval); 1569 damon_set_attrs(c, &new_attrs); 1570 } 1571 1572 static void damon_split_region_at(struct damon_target *t, 1573 struct damon_region *r, unsigned long sz_r); 1574 1575 static bool __damos_valid_target(struct damon_region *r, struct damos *s) 1576 { 1577 unsigned long sz; 1578 unsigned int nr_accesses = r->nr_accesses_bp / 10000; 1579 1580 sz = damon_sz_region(r); 1581 return s->pattern.min_sz_region <= sz && 1582 sz <= s->pattern.max_sz_region && 1583 s->pattern.min_nr_accesses <= nr_accesses && 1584 nr_accesses <= s->pattern.max_nr_accesses && 1585 s->pattern.min_age_region <= r->age && 1586 r->age <= s->pattern.max_age_region; 1587 } 1588 1589 static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t, 1590 struct damon_region *r, struct damos *s) 1591 { 1592 bool ret = __damos_valid_target(r, s); 1593 1594 if (!ret || !s->quota.esz || !c->ops.get_scheme_score) 1595 return ret; 1596 1597 return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score; 1598 } 1599 1600 /* 1601 * damos_skip_charged_region() - Check if the given region or starting part of 1602 * it is already charged for the DAMOS quota. 1603 * @t: The target of the region. 1604 * @rp: The pointer to the region. 1605 * @s: The scheme to be applied. 1606 * 1607 * If a quota of a scheme has exceeded in a quota charge window, the scheme's 1608 * action would applied to only a part of the target access pattern fulfilling 1609 * regions. To avoid applying the scheme action to only already applied 1610 * regions, DAMON skips applying the scheme action to the regions that charged 1611 * in the previous charge window. 1612 * 1613 * This function checks if a given region should be skipped or not for the 1614 * reason. If only the starting part of the region has previously charged, 1615 * this function splits the region into two so that the second one covers the 1616 * area that not charged in the previous charge widnow and saves the second 1617 * region in *rp and returns false, so that the caller can apply DAMON action 1618 * to the second one. 1619 * 1620 * Return: true if the region should be entirely skipped, false otherwise. 1621 */ 1622 static bool damos_skip_charged_region(struct damon_target *t, 1623 struct damon_region **rp, struct damos *s) 1624 { 1625 struct damon_region *r = *rp; 1626 struct damos_quota *quota = &s->quota; 1627 unsigned long sz_to_skip; 1628 1629 /* Skip previously charged regions */ 1630 if (quota->charge_target_from) { 1631 if (t != quota->charge_target_from) 1632 return true; 1633 if (r == damon_last_region(t)) { 1634 quota->charge_target_from = NULL; 1635 quota->charge_addr_from = 0; 1636 return true; 1637 } 1638 if (quota->charge_addr_from && 1639 r->ar.end <= quota->charge_addr_from) 1640 return true; 1641 1642 if (quota->charge_addr_from && r->ar.start < 1643 quota->charge_addr_from) { 1644 sz_to_skip = ALIGN_DOWN(quota->charge_addr_from - 1645 r->ar.start, DAMON_MIN_REGION); 1646 if (!sz_to_skip) { 1647 if (damon_sz_region(r) <= DAMON_MIN_REGION) 1648 return true; 1649 sz_to_skip = DAMON_MIN_REGION; 1650 } 1651 damon_split_region_at(t, r, sz_to_skip); 1652 r = damon_next_region(r); 1653 *rp = r; 1654 } 1655 quota->charge_target_from = NULL; 1656 quota->charge_addr_from = 0; 1657 } 1658 return false; 1659 } 1660 1661 static void damos_update_stat(struct damos *s, 1662 unsigned long sz_tried, unsigned long sz_applied, 1663 unsigned long sz_ops_filter_passed) 1664 { 1665 s->stat.nr_tried++; 1666 s->stat.sz_tried += sz_tried; 1667 if (sz_applied) 1668 s->stat.nr_applied++; 1669 s->stat.sz_applied += sz_applied; 1670 s->stat.sz_ops_filter_passed += sz_ops_filter_passed; 1671 } 1672 1673 static bool damos_filter_match(struct damon_ctx *ctx, struct damon_target *t, 1674 struct damon_region *r, struct damos_filter *filter) 1675 { 1676 bool matched = false; 1677 struct damon_target *ti; 1678 int target_idx = 0; 1679 unsigned long start, end; 1680 1681 switch (filter->type) { 1682 case DAMOS_FILTER_TYPE_TARGET: 1683 damon_for_each_target(ti, ctx) { 1684 if (ti == t) 1685 break; 1686 target_idx++; 1687 } 1688 matched = target_idx == filter->target_idx; 1689 break; 1690 case DAMOS_FILTER_TYPE_ADDR: 1691 start = ALIGN_DOWN(filter->addr_range.start, DAMON_MIN_REGION); 1692 end = ALIGN_DOWN(filter->addr_range.end, DAMON_MIN_REGION); 1693 1694 /* inside the range */ 1695 if (start <= r->ar.start && r->ar.end <= end) { 1696 matched = true; 1697 break; 1698 } 1699 /* outside of the range */ 1700 if (r->ar.end <= start || end <= r->ar.start) { 1701 matched = false; 1702 break; 1703 } 1704 /* start before the range and overlap */ 1705 if (r->ar.start < start) { 1706 damon_split_region_at(t, r, start - r->ar.start); 1707 matched = false; 1708 break; 1709 } 1710 /* start inside the range */ 1711 damon_split_region_at(t, r, end - r->ar.start); 1712 matched = true; 1713 break; 1714 default: 1715 return false; 1716 } 1717 1718 return matched == filter->matching; 1719 } 1720 1721 static bool damos_filter_out(struct damon_ctx *ctx, struct damon_target *t, 1722 struct damon_region *r, struct damos *s) 1723 { 1724 struct damos_filter *filter; 1725 1726 s->core_filters_allowed = false; 1727 damos_for_each_filter(filter, s) { 1728 if (damos_filter_match(ctx, t, r, filter)) { 1729 if (filter->allow) 1730 s->core_filters_allowed = true; 1731 return !filter->allow; 1732 } 1733 } 1734 return s->core_filters_default_reject; 1735 } 1736 1737 /* 1738 * damos_walk_call_walk() - Call &damos_walk_control->walk_fn. 1739 * @ctx: The context of &damon_ctx->walk_control. 1740 * @t: The monitoring target of @r that @s will be applied. 1741 * @r: The region of @t that @s will be applied. 1742 * @s: The scheme of @ctx that will be applied to @r. 1743 * 1744 * This function is called from kdamond whenever it asked the operation set to 1745 * apply a DAMOS scheme action to a region. If a DAMOS walk request is 1746 * installed by damos_walk() and not yet uninstalled, invoke it. 1747 */ 1748 static void damos_walk_call_walk(struct damon_ctx *ctx, struct damon_target *t, 1749 struct damon_region *r, struct damos *s, 1750 unsigned long sz_filter_passed) 1751 { 1752 struct damos_walk_control *control; 1753 1754 if (s->walk_completed) 1755 return; 1756 1757 control = ctx->walk_control; 1758 if (!control) 1759 return; 1760 1761 control->walk_fn(control->data, ctx, t, r, s, sz_filter_passed); 1762 } 1763 1764 /* 1765 * damos_walk_complete() - Complete DAMOS walk request if all walks are done. 1766 * @ctx: The context of &damon_ctx->walk_control. 1767 * @s: A scheme of @ctx that all walks are now done. 1768 * 1769 * This function is called when kdamond finished applying the action of a DAMOS 1770 * scheme to all regions that eligible for the given &damos->apply_interval_us. 1771 * If every scheme of @ctx including @s now finished walking for at least one 1772 * &damos->apply_interval_us, this function makrs the handling of the given 1773 * DAMOS walk request is done, so that damos_walk() can wake up and return. 1774 */ 1775 static void damos_walk_complete(struct damon_ctx *ctx, struct damos *s) 1776 { 1777 struct damos *siter; 1778 struct damos_walk_control *control; 1779 1780 control = ctx->walk_control; 1781 if (!control) 1782 return; 1783 1784 s->walk_completed = true; 1785 /* if all schemes completed, signal completion to walker */ 1786 damon_for_each_scheme(siter, ctx) { 1787 if (!siter->walk_completed) 1788 return; 1789 } 1790 damon_for_each_scheme(siter, ctx) 1791 siter->walk_completed = false; 1792 1793 complete(&control->completion); 1794 ctx->walk_control = NULL; 1795 } 1796 1797 /* 1798 * damos_walk_cancel() - Cancel the current DAMOS walk request. 1799 * @ctx: The context of &damon_ctx->walk_control. 1800 * 1801 * This function is called when @ctx is deactivated by DAMOS watermarks, DAMOS 1802 * walk is requested but there is no DAMOS scheme to walk for, or the kdamond 1803 * is already out of the main loop and therefore gonna be terminated, and hence 1804 * cannot continue the walks. This function therefore marks the walk request 1805 * as canceled, so that damos_walk() can wake up and return. 1806 */ 1807 static void damos_walk_cancel(struct damon_ctx *ctx) 1808 { 1809 struct damos_walk_control *control; 1810 1811 mutex_lock(&ctx->walk_control_lock); 1812 control = ctx->walk_control; 1813 mutex_unlock(&ctx->walk_control_lock); 1814 1815 if (!control) 1816 return; 1817 control->canceled = true; 1818 complete(&control->completion); 1819 mutex_lock(&ctx->walk_control_lock); 1820 ctx->walk_control = NULL; 1821 mutex_unlock(&ctx->walk_control_lock); 1822 } 1823 1824 static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t, 1825 struct damon_region *r, struct damos *s) 1826 { 1827 struct damos_quota *quota = &s->quota; 1828 unsigned long sz = damon_sz_region(r); 1829 struct timespec64 begin, end; 1830 unsigned long sz_applied = 0; 1831 unsigned long sz_ops_filter_passed = 0; 1832 /* 1833 * We plan to support multiple context per kdamond, as DAMON sysfs 1834 * implies with 'nr_contexts' file. Nevertheless, only single context 1835 * per kdamond is supported for now. So, we can simply use '0' context 1836 * index here. 1837 */ 1838 unsigned int cidx = 0; 1839 struct damos *siter; /* schemes iterator */ 1840 unsigned int sidx = 0; 1841 struct damon_target *titer; /* targets iterator */ 1842 unsigned int tidx = 0; 1843 bool do_trace = false; 1844 1845 /* get indices for trace_damos_before_apply() */ 1846 if (trace_damos_before_apply_enabled()) { 1847 damon_for_each_scheme(siter, c) { 1848 if (siter == s) 1849 break; 1850 sidx++; 1851 } 1852 damon_for_each_target(titer, c) { 1853 if (titer == t) 1854 break; 1855 tidx++; 1856 } 1857 do_trace = true; 1858 } 1859 1860 if (c->ops.apply_scheme) { 1861 if (quota->esz && quota->charged_sz + sz > quota->esz) { 1862 sz = ALIGN_DOWN(quota->esz - quota->charged_sz, 1863 DAMON_MIN_REGION); 1864 if (!sz) 1865 goto update_stat; 1866 damon_split_region_at(t, r, sz); 1867 } 1868 if (damos_filter_out(c, t, r, s)) 1869 return; 1870 ktime_get_coarse_ts64(&begin); 1871 trace_damos_before_apply(cidx, sidx, tidx, r, 1872 damon_nr_regions(t), do_trace); 1873 sz_applied = c->ops.apply_scheme(c, t, r, s, 1874 &sz_ops_filter_passed); 1875 damos_walk_call_walk(c, t, r, s, sz_ops_filter_passed); 1876 ktime_get_coarse_ts64(&end); 1877 quota->total_charged_ns += timespec64_to_ns(&end) - 1878 timespec64_to_ns(&begin); 1879 quota->charged_sz += sz; 1880 if (quota->esz && quota->charged_sz >= quota->esz) { 1881 quota->charge_target_from = t; 1882 quota->charge_addr_from = r->ar.end + 1; 1883 } 1884 } 1885 if (s->action != DAMOS_STAT) 1886 r->age = 0; 1887 1888 update_stat: 1889 damos_update_stat(s, sz, sz_applied, sz_ops_filter_passed); 1890 } 1891 1892 static void damon_do_apply_schemes(struct damon_ctx *c, 1893 struct damon_target *t, 1894 struct damon_region *r) 1895 { 1896 struct damos *s; 1897 1898 damon_for_each_scheme(s, c) { 1899 struct damos_quota *quota = &s->quota; 1900 1901 if (c->passed_sample_intervals < s->next_apply_sis) 1902 continue; 1903 1904 if (!s->wmarks.activated) 1905 continue; 1906 1907 /* Check the quota */ 1908 if (quota->esz && quota->charged_sz >= quota->esz) 1909 continue; 1910 1911 if (damos_skip_charged_region(t, &r, s)) 1912 continue; 1913 1914 if (!damos_valid_target(c, t, r, s)) 1915 continue; 1916 1917 damos_apply_scheme(c, t, r, s); 1918 } 1919 } 1920 1921 /* 1922 * damon_feed_loop_next_input() - get next input to achieve a target score. 1923 * @last_input The last input. 1924 * @score Current score that made with @last_input. 1925 * 1926 * Calculate next input to achieve the target score, based on the last input 1927 * and current score. Assuming the input and the score are positively 1928 * proportional, calculate how much compensation should be added to or 1929 * subtracted from the last input as a proportion of the last input. Avoid 1930 * next input always being zero by setting it non-zero always. In short form 1931 * (assuming support of float and signed calculations), the algorithm is as 1932 * below. 1933 * 1934 * next_input = max(last_input * ((goal - current) / goal + 1), 1) 1935 * 1936 * For simple implementation, we assume the target score is always 10,000. The 1937 * caller should adjust @score for this. 1938 * 1939 * Returns next input that assumed to achieve the target score. 1940 */ 1941 static unsigned long damon_feed_loop_next_input(unsigned long last_input, 1942 unsigned long score) 1943 { 1944 const unsigned long goal = 10000; 1945 /* Set minimum input as 10000 to avoid compensation be zero */ 1946 const unsigned long min_input = 10000; 1947 unsigned long score_goal_diff, compensation; 1948 bool over_achieving = score > goal; 1949 1950 if (score == goal) 1951 return last_input; 1952 if (score >= goal * 2) 1953 return min_input; 1954 1955 if (over_achieving) 1956 score_goal_diff = score - goal; 1957 else 1958 score_goal_diff = goal - score; 1959 1960 if (last_input < ULONG_MAX / score_goal_diff) 1961 compensation = last_input * score_goal_diff / goal; 1962 else 1963 compensation = last_input / goal * score_goal_diff; 1964 1965 if (over_achieving) 1966 return max(last_input - compensation, min_input); 1967 if (last_input < ULONG_MAX - compensation) 1968 return last_input + compensation; 1969 return ULONG_MAX; 1970 } 1971 1972 #ifdef CONFIG_PSI 1973 1974 static u64 damos_get_some_mem_psi_total(void) 1975 { 1976 if (static_branch_likely(&psi_disabled)) 1977 return 0; 1978 return div_u64(psi_system.total[PSI_AVGS][PSI_MEM * 2], 1979 NSEC_PER_USEC); 1980 } 1981 1982 #else /* CONFIG_PSI */ 1983 1984 static inline u64 damos_get_some_mem_psi_total(void) 1985 { 1986 return 0; 1987 }; 1988 1989 #endif /* CONFIG_PSI */ 1990 1991 #ifdef CONFIG_NUMA 1992 static __kernel_ulong_t damos_get_node_mem_bp( 1993 struct damos_quota_goal *goal) 1994 { 1995 struct sysinfo i; 1996 __kernel_ulong_t numerator; 1997 1998 si_meminfo_node(&i, goal->nid); 1999 if (goal->metric == DAMOS_QUOTA_NODE_MEM_USED_BP) 2000 numerator = i.totalram - i.freeram; 2001 else /* DAMOS_QUOTA_NODE_MEM_FREE_BP */ 2002 numerator = i.freeram; 2003 return numerator * 10000 / i.totalram; 2004 } 2005 #else 2006 static __kernel_ulong_t damos_get_node_mem_bp( 2007 struct damos_quota_goal *goal) 2008 { 2009 return 0; 2010 } 2011 #endif 2012 2013 2014 static void damos_set_quota_goal_current_value(struct damos_quota_goal *goal) 2015 { 2016 u64 now_psi_total; 2017 2018 switch (goal->metric) { 2019 case DAMOS_QUOTA_USER_INPUT: 2020 /* User should already set goal->current_value */ 2021 break; 2022 case DAMOS_QUOTA_SOME_MEM_PSI_US: 2023 now_psi_total = damos_get_some_mem_psi_total(); 2024 goal->current_value = now_psi_total - goal->last_psi_total; 2025 goal->last_psi_total = now_psi_total; 2026 break; 2027 case DAMOS_QUOTA_NODE_MEM_USED_BP: 2028 case DAMOS_QUOTA_NODE_MEM_FREE_BP: 2029 goal->current_value = damos_get_node_mem_bp(goal); 2030 break; 2031 default: 2032 break; 2033 } 2034 } 2035 2036 /* Return the highest score since it makes schemes least aggressive */ 2037 static unsigned long damos_quota_score(struct damos_quota *quota) 2038 { 2039 struct damos_quota_goal *goal; 2040 unsigned long highest_score = 0; 2041 2042 damos_for_each_quota_goal(goal, quota) { 2043 damos_set_quota_goal_current_value(goal); 2044 highest_score = max(highest_score, 2045 goal->current_value * 10000 / 2046 goal->target_value); 2047 } 2048 2049 return highest_score; 2050 } 2051 2052 /* 2053 * Called only if quota->ms, or quota->sz are set, or quota->goals is not empty 2054 */ 2055 static void damos_set_effective_quota(struct damos_quota *quota) 2056 { 2057 unsigned long throughput; 2058 unsigned long esz = ULONG_MAX; 2059 2060 if (!quota->ms && list_empty("a->goals)) { 2061 quota->esz = quota->sz; 2062 return; 2063 } 2064 2065 if (!list_empty("a->goals)) { 2066 unsigned long score = damos_quota_score(quota); 2067 2068 quota->esz_bp = damon_feed_loop_next_input( 2069 max(quota->esz_bp, 10000UL), 2070 score); 2071 esz = quota->esz_bp / 10000; 2072 } 2073 2074 if (quota->ms) { 2075 if (quota->total_charged_ns) 2076 throughput = quota->total_charged_sz * 1000000 / 2077 quota->total_charged_ns; 2078 else 2079 throughput = PAGE_SIZE * 1024; 2080 esz = min(throughput * quota->ms, esz); 2081 } 2082 2083 if (quota->sz && quota->sz < esz) 2084 esz = quota->sz; 2085 2086 quota->esz = esz; 2087 } 2088 2089 static void damos_trace_esz(struct damon_ctx *c, struct damos *s, 2090 struct damos_quota *quota) 2091 { 2092 unsigned int cidx = 0, sidx = 0; 2093 struct damos *siter; 2094 2095 damon_for_each_scheme(siter, c) { 2096 if (siter == s) 2097 break; 2098 sidx++; 2099 } 2100 trace_damos_esz(cidx, sidx, quota->esz); 2101 } 2102 2103 static void damos_adjust_quota(struct damon_ctx *c, struct damos *s) 2104 { 2105 struct damos_quota *quota = &s->quota; 2106 struct damon_target *t; 2107 struct damon_region *r; 2108 unsigned long cumulated_sz, cached_esz; 2109 unsigned int score, max_score = 0; 2110 2111 if (!quota->ms && !quota->sz && list_empty("a->goals)) 2112 return; 2113 2114 /* New charge window starts */ 2115 if (time_after_eq(jiffies, quota->charged_from + 2116 msecs_to_jiffies(quota->reset_interval))) { 2117 if (quota->esz && quota->charged_sz >= quota->esz) 2118 s->stat.qt_exceeds++; 2119 quota->total_charged_sz += quota->charged_sz; 2120 quota->charged_from = jiffies; 2121 quota->charged_sz = 0; 2122 if (trace_damos_esz_enabled()) 2123 cached_esz = quota->esz; 2124 damos_set_effective_quota(quota); 2125 if (trace_damos_esz_enabled() && quota->esz != cached_esz) 2126 damos_trace_esz(c, s, quota); 2127 } 2128 2129 if (!c->ops.get_scheme_score) 2130 return; 2131 2132 /* Fill up the score histogram */ 2133 memset(c->regions_score_histogram, 0, 2134 sizeof(*c->regions_score_histogram) * 2135 (DAMOS_MAX_SCORE + 1)); 2136 damon_for_each_target(t, c) { 2137 damon_for_each_region(r, t) { 2138 if (!__damos_valid_target(r, s)) 2139 continue; 2140 score = c->ops.get_scheme_score(c, t, r, s); 2141 c->regions_score_histogram[score] += 2142 damon_sz_region(r); 2143 if (score > max_score) 2144 max_score = score; 2145 } 2146 } 2147 2148 /* Set the min score limit */ 2149 for (cumulated_sz = 0, score = max_score; ; score--) { 2150 cumulated_sz += c->regions_score_histogram[score]; 2151 if (cumulated_sz >= quota->esz || !score) 2152 break; 2153 } 2154 quota->min_score = score; 2155 } 2156 2157 static void kdamond_apply_schemes(struct damon_ctx *c) 2158 { 2159 struct damon_target *t; 2160 struct damon_region *r, *next_r; 2161 struct damos *s; 2162 unsigned long sample_interval = c->attrs.sample_interval ? 2163 c->attrs.sample_interval : 1; 2164 bool has_schemes_to_apply = false; 2165 2166 damon_for_each_scheme(s, c) { 2167 if (c->passed_sample_intervals < s->next_apply_sis) 2168 continue; 2169 2170 if (!s->wmarks.activated) 2171 continue; 2172 2173 has_schemes_to_apply = true; 2174 2175 damos_adjust_quota(c, s); 2176 } 2177 2178 if (!has_schemes_to_apply) 2179 return; 2180 2181 mutex_lock(&c->walk_control_lock); 2182 damon_for_each_target(t, c) { 2183 damon_for_each_region_safe(r, next_r, t) 2184 damon_do_apply_schemes(c, t, r); 2185 } 2186 2187 damon_for_each_scheme(s, c) { 2188 if (c->passed_sample_intervals < s->next_apply_sis) 2189 continue; 2190 damos_walk_complete(c, s); 2191 s->next_apply_sis = c->passed_sample_intervals + 2192 (s->apply_interval_us ? s->apply_interval_us : 2193 c->attrs.aggr_interval) / sample_interval; 2194 s->last_applied = NULL; 2195 } 2196 mutex_unlock(&c->walk_control_lock); 2197 } 2198 2199 /* 2200 * Merge two adjacent regions into one region 2201 */ 2202 static void damon_merge_two_regions(struct damon_target *t, 2203 struct damon_region *l, struct damon_region *r) 2204 { 2205 unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r); 2206 2207 l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) / 2208 (sz_l + sz_r); 2209 l->nr_accesses_bp = l->nr_accesses * 10000; 2210 l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r); 2211 l->ar.end = r->ar.end; 2212 damon_destroy_region(r, t); 2213 } 2214 2215 /* 2216 * Merge adjacent regions having similar access frequencies 2217 * 2218 * t target affected by this merge operation 2219 * thres '->nr_accesses' diff threshold for the merge 2220 * sz_limit size upper limit of each region 2221 */ 2222 static void damon_merge_regions_of(struct damon_target *t, unsigned int thres, 2223 unsigned long sz_limit) 2224 { 2225 struct damon_region *r, *prev = NULL, *next; 2226 2227 damon_for_each_region_safe(r, next, t) { 2228 if (abs(r->nr_accesses - r->last_nr_accesses) > thres) 2229 r->age = 0; 2230 else 2231 r->age++; 2232 2233 if (prev && prev->ar.end == r->ar.start && 2234 abs(prev->nr_accesses - r->nr_accesses) <= thres && 2235 damon_sz_region(prev) + damon_sz_region(r) <= sz_limit) 2236 damon_merge_two_regions(t, prev, r); 2237 else 2238 prev = r; 2239 } 2240 } 2241 2242 /* 2243 * Merge adjacent regions having similar access frequencies 2244 * 2245 * threshold '->nr_accesses' diff threshold for the merge 2246 * sz_limit size upper limit of each region 2247 * 2248 * This function merges monitoring target regions which are adjacent and their 2249 * access frequencies are similar. This is for minimizing the monitoring 2250 * overhead under the dynamically changeable access pattern. If a merge was 2251 * unnecessarily made, later 'kdamond_split_regions()' will revert it. 2252 * 2253 * The total number of regions could be higher than the user-defined limit, 2254 * max_nr_regions for some cases. For example, the user can update 2255 * max_nr_regions to a number that lower than the current number of regions 2256 * while DAMON is running. For such a case, repeat merging until the limit is 2257 * met while increasing @threshold up to possible maximum level. 2258 */ 2259 static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold, 2260 unsigned long sz_limit) 2261 { 2262 struct damon_target *t; 2263 unsigned int nr_regions; 2264 unsigned int max_thres; 2265 2266 max_thres = c->attrs.aggr_interval / 2267 (c->attrs.sample_interval ? c->attrs.sample_interval : 1); 2268 do { 2269 nr_regions = 0; 2270 damon_for_each_target(t, c) { 2271 damon_merge_regions_of(t, threshold, sz_limit); 2272 nr_regions += damon_nr_regions(t); 2273 } 2274 threshold = max(1, threshold * 2); 2275 } while (nr_regions > c->attrs.max_nr_regions && 2276 threshold / 2 < max_thres); 2277 } 2278 2279 /* 2280 * Split a region in two 2281 * 2282 * r the region to be split 2283 * sz_r size of the first sub-region that will be made 2284 */ 2285 static void damon_split_region_at(struct damon_target *t, 2286 struct damon_region *r, unsigned long sz_r) 2287 { 2288 struct damon_region *new; 2289 2290 new = damon_new_region(r->ar.start + sz_r, r->ar.end); 2291 if (!new) 2292 return; 2293 2294 r->ar.end = new->ar.start; 2295 2296 new->age = r->age; 2297 new->last_nr_accesses = r->last_nr_accesses; 2298 new->nr_accesses_bp = r->nr_accesses_bp; 2299 new->nr_accesses = r->nr_accesses; 2300 2301 damon_insert_region(new, r, damon_next_region(r), t); 2302 } 2303 2304 /* Split every region in the given target into 'nr_subs' regions */ 2305 static void damon_split_regions_of(struct damon_target *t, int nr_subs) 2306 { 2307 struct damon_region *r, *next; 2308 unsigned long sz_region, sz_sub = 0; 2309 int i; 2310 2311 damon_for_each_region_safe(r, next, t) { 2312 sz_region = damon_sz_region(r); 2313 2314 for (i = 0; i < nr_subs - 1 && 2315 sz_region > 2 * DAMON_MIN_REGION; i++) { 2316 /* 2317 * Randomly select size of left sub-region to be at 2318 * least 10 percent and at most 90% of original region 2319 */ 2320 sz_sub = ALIGN_DOWN(damon_rand(1, 10) * 2321 sz_region / 10, DAMON_MIN_REGION); 2322 /* Do not allow blank region */ 2323 if (sz_sub == 0 || sz_sub >= sz_region) 2324 continue; 2325 2326 damon_split_region_at(t, r, sz_sub); 2327 sz_region = sz_sub; 2328 } 2329 } 2330 } 2331 2332 /* 2333 * Split every target region into randomly-sized small regions 2334 * 2335 * This function splits every target region into random-sized small regions if 2336 * current total number of the regions is equal or smaller than half of the 2337 * user-specified maximum number of regions. This is for maximizing the 2338 * monitoring accuracy under the dynamically changeable access patterns. If a 2339 * split was unnecessarily made, later 'kdamond_merge_regions()' will revert 2340 * it. 2341 */ 2342 static void kdamond_split_regions(struct damon_ctx *ctx) 2343 { 2344 struct damon_target *t; 2345 unsigned int nr_regions = 0; 2346 static unsigned int last_nr_regions; 2347 int nr_subregions = 2; 2348 2349 damon_for_each_target(t, ctx) 2350 nr_regions += damon_nr_regions(t); 2351 2352 if (nr_regions > ctx->attrs.max_nr_regions / 2) 2353 return; 2354 2355 /* Maybe the middle of the region has different access frequency */ 2356 if (last_nr_regions == nr_regions && 2357 nr_regions < ctx->attrs.max_nr_regions / 3) 2358 nr_subregions = 3; 2359 2360 damon_for_each_target(t, ctx) 2361 damon_split_regions_of(t, nr_subregions); 2362 2363 last_nr_regions = nr_regions; 2364 } 2365 2366 /* 2367 * Check whether current monitoring should be stopped 2368 * 2369 * The monitoring is stopped when either the user requested to stop, or all 2370 * monitoring targets are invalid. 2371 * 2372 * Returns true if need to stop current monitoring. 2373 */ 2374 static bool kdamond_need_stop(struct damon_ctx *ctx) 2375 { 2376 struct damon_target *t; 2377 2378 if (kthread_should_stop()) 2379 return true; 2380 2381 if (!ctx->ops.target_valid) 2382 return false; 2383 2384 damon_for_each_target(t, ctx) { 2385 if (ctx->ops.target_valid(t)) 2386 return false; 2387 } 2388 2389 return true; 2390 } 2391 2392 static int damos_get_wmark_metric_value(enum damos_wmark_metric metric, 2393 unsigned long *metric_value) 2394 { 2395 switch (metric) { 2396 case DAMOS_WMARK_FREE_MEM_RATE: 2397 *metric_value = global_zone_page_state(NR_FREE_PAGES) * 1000 / 2398 totalram_pages(); 2399 return 0; 2400 default: 2401 break; 2402 } 2403 return -EINVAL; 2404 } 2405 2406 /* 2407 * Returns zero if the scheme is active. Else, returns time to wait for next 2408 * watermark check in micro-seconds. 2409 */ 2410 static unsigned long damos_wmark_wait_us(struct damos *scheme) 2411 { 2412 unsigned long metric; 2413 2414 if (damos_get_wmark_metric_value(scheme->wmarks.metric, &metric)) 2415 return 0; 2416 2417 /* higher than high watermark or lower than low watermark */ 2418 if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) { 2419 if (scheme->wmarks.activated) 2420 pr_debug("deactivate a scheme (%d) for %s wmark\n", 2421 scheme->action, 2422 str_high_low(metric > scheme->wmarks.high)); 2423 scheme->wmarks.activated = false; 2424 return scheme->wmarks.interval; 2425 } 2426 2427 /* inactive and higher than middle watermark */ 2428 if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) && 2429 !scheme->wmarks.activated) 2430 return scheme->wmarks.interval; 2431 2432 if (!scheme->wmarks.activated) 2433 pr_debug("activate a scheme (%d)\n", scheme->action); 2434 scheme->wmarks.activated = true; 2435 return 0; 2436 } 2437 2438 static void kdamond_usleep(unsigned long usecs) 2439 { 2440 if (usecs >= USLEEP_RANGE_UPPER_BOUND) 2441 schedule_timeout_idle(usecs_to_jiffies(usecs)); 2442 else 2443 usleep_range_idle(usecs, usecs + 1); 2444 } 2445 2446 /* 2447 * kdamond_call() - handle damon_call_control objects. 2448 * @ctx: The &struct damon_ctx of the kdamond. 2449 * @cancel: Whether to cancel the invocation of the function. 2450 * 2451 * If there are &struct damon_call_control requests that registered via 2452 * &damon_call() on @ctx, do or cancel the invocation of the function depending 2453 * on @cancel. @cancel is set when the kdamond is already out of the main loop 2454 * and therefore will be terminated. 2455 */ 2456 static void kdamond_call(struct damon_ctx *ctx, bool cancel) 2457 { 2458 struct damon_call_control *control; 2459 LIST_HEAD(repeat_controls); 2460 int ret = 0; 2461 2462 while (true) { 2463 mutex_lock(&ctx->call_controls_lock); 2464 control = list_first_entry_or_null(&ctx->call_controls, 2465 struct damon_call_control, list); 2466 mutex_unlock(&ctx->call_controls_lock); 2467 if (!control) 2468 break; 2469 if (cancel) { 2470 control->canceled = true; 2471 } else { 2472 ret = control->fn(control->data); 2473 control->return_code = ret; 2474 } 2475 mutex_lock(&ctx->call_controls_lock); 2476 list_del(&control->list); 2477 mutex_unlock(&ctx->call_controls_lock); 2478 if (!control->repeat) 2479 complete(&control->completion); 2480 else 2481 list_add(&control->list, &repeat_controls); 2482 } 2483 control = list_first_entry_or_null(&repeat_controls, 2484 struct damon_call_control, list); 2485 if (!control || cancel) 2486 return; 2487 mutex_lock(&ctx->call_controls_lock); 2488 list_add_tail(&control->list, &ctx->call_controls); 2489 mutex_unlock(&ctx->call_controls_lock); 2490 } 2491 2492 /* Returns negative error code if it's not activated but should return */ 2493 static int kdamond_wait_activation(struct damon_ctx *ctx) 2494 { 2495 struct damos *s; 2496 unsigned long wait_time; 2497 unsigned long min_wait_time = 0; 2498 bool init_wait_time = false; 2499 2500 while (!kdamond_need_stop(ctx)) { 2501 damon_for_each_scheme(s, ctx) { 2502 wait_time = damos_wmark_wait_us(s); 2503 if (!init_wait_time || wait_time < min_wait_time) { 2504 init_wait_time = true; 2505 min_wait_time = wait_time; 2506 } 2507 } 2508 if (!min_wait_time) 2509 return 0; 2510 2511 kdamond_usleep(min_wait_time); 2512 2513 kdamond_call(ctx, false); 2514 damos_walk_cancel(ctx); 2515 } 2516 return -EBUSY; 2517 } 2518 2519 static void kdamond_init_ctx(struct damon_ctx *ctx) 2520 { 2521 unsigned long sample_interval = ctx->attrs.sample_interval ? 2522 ctx->attrs.sample_interval : 1; 2523 unsigned long apply_interval; 2524 struct damos *scheme; 2525 2526 ctx->passed_sample_intervals = 0; 2527 ctx->next_aggregation_sis = ctx->attrs.aggr_interval / sample_interval; 2528 ctx->next_ops_update_sis = ctx->attrs.ops_update_interval / 2529 sample_interval; 2530 ctx->next_intervals_tune_sis = ctx->next_aggregation_sis * 2531 ctx->attrs.intervals_goal.aggrs; 2532 2533 damon_for_each_scheme(scheme, ctx) { 2534 apply_interval = scheme->apply_interval_us ? 2535 scheme->apply_interval_us : ctx->attrs.aggr_interval; 2536 scheme->next_apply_sis = apply_interval / sample_interval; 2537 damos_set_filters_default_reject(scheme); 2538 } 2539 } 2540 2541 /* 2542 * The monitoring daemon that runs as a kernel thread 2543 */ 2544 static int kdamond_fn(void *data) 2545 { 2546 struct damon_ctx *ctx = data; 2547 struct damon_target *t; 2548 struct damon_region *r, *next; 2549 unsigned int max_nr_accesses = 0; 2550 unsigned long sz_limit = 0; 2551 2552 pr_debug("kdamond (%d) starts\n", current->pid); 2553 2554 complete(&ctx->kdamond_started); 2555 kdamond_init_ctx(ctx); 2556 2557 if (ctx->ops.init) 2558 ctx->ops.init(ctx); 2559 ctx->regions_score_histogram = kmalloc_array(DAMOS_MAX_SCORE + 1, 2560 sizeof(*ctx->regions_score_histogram), GFP_KERNEL); 2561 if (!ctx->regions_score_histogram) 2562 goto done; 2563 2564 sz_limit = damon_region_sz_limit(ctx); 2565 2566 while (!kdamond_need_stop(ctx)) { 2567 /* 2568 * ctx->attrs and ctx->next_{aggregation,ops_update}_sis could 2569 * be changed from kdamond_call(). Read the values here, and 2570 * use those for this iteration. That is, damon_set_attrs() 2571 * updated new values are respected from next iteration. 2572 */ 2573 unsigned long next_aggregation_sis = ctx->next_aggregation_sis; 2574 unsigned long next_ops_update_sis = ctx->next_ops_update_sis; 2575 unsigned long sample_interval = ctx->attrs.sample_interval; 2576 2577 if (kdamond_wait_activation(ctx)) 2578 break; 2579 2580 if (ctx->ops.prepare_access_checks) 2581 ctx->ops.prepare_access_checks(ctx); 2582 2583 kdamond_usleep(sample_interval); 2584 ctx->passed_sample_intervals++; 2585 2586 if (ctx->ops.check_accesses) 2587 max_nr_accesses = ctx->ops.check_accesses(ctx); 2588 2589 if (ctx->passed_sample_intervals >= next_aggregation_sis) 2590 kdamond_merge_regions(ctx, 2591 max_nr_accesses / 10, 2592 sz_limit); 2593 2594 /* 2595 * do kdamond_call() and kdamond_apply_schemes() after 2596 * kdamond_merge_regions() if possible, to reduce overhead 2597 */ 2598 kdamond_call(ctx, false); 2599 if (!list_empty(&ctx->schemes)) 2600 kdamond_apply_schemes(ctx); 2601 else 2602 damos_walk_cancel(ctx); 2603 2604 sample_interval = ctx->attrs.sample_interval ? 2605 ctx->attrs.sample_interval : 1; 2606 if (ctx->passed_sample_intervals >= next_aggregation_sis) { 2607 if (ctx->attrs.intervals_goal.aggrs && 2608 ctx->passed_sample_intervals >= 2609 ctx->next_intervals_tune_sis) { 2610 /* 2611 * ctx->next_aggregation_sis might be updated 2612 * from kdamond_call(). In the case, 2613 * damon_set_attrs() which will be called from 2614 * kdamond_tune_interval() may wrongly think 2615 * this is in the middle of the current 2616 * aggregation, and make aggregation 2617 * information reset for all regions. Then, 2618 * following kdamond_reset_aggregated() call 2619 * will make the region information invalid, 2620 * particularly for ->nr_accesses_bp. 2621 * 2622 * Reset ->next_aggregation_sis to avoid that. 2623 * It will anyway correctly updated after this 2624 * if caluse. 2625 */ 2626 ctx->next_aggregation_sis = 2627 next_aggregation_sis; 2628 ctx->next_intervals_tune_sis += 2629 ctx->attrs.aggr_samples * 2630 ctx->attrs.intervals_goal.aggrs; 2631 kdamond_tune_intervals(ctx); 2632 sample_interval = ctx->attrs.sample_interval ? 2633 ctx->attrs.sample_interval : 1; 2634 2635 } 2636 ctx->next_aggregation_sis = next_aggregation_sis + 2637 ctx->attrs.aggr_interval / sample_interval; 2638 2639 kdamond_reset_aggregated(ctx); 2640 kdamond_split_regions(ctx); 2641 } 2642 2643 if (ctx->passed_sample_intervals >= next_ops_update_sis) { 2644 ctx->next_ops_update_sis = next_ops_update_sis + 2645 ctx->attrs.ops_update_interval / 2646 sample_interval; 2647 if (ctx->ops.update) 2648 ctx->ops.update(ctx); 2649 sz_limit = damon_region_sz_limit(ctx); 2650 } 2651 } 2652 done: 2653 damon_for_each_target(t, ctx) { 2654 damon_for_each_region_safe(r, next, t) 2655 damon_destroy_region(r, t); 2656 } 2657 2658 if (ctx->ops.cleanup) 2659 ctx->ops.cleanup(ctx); 2660 kfree(ctx->regions_score_histogram); 2661 2662 pr_debug("kdamond (%d) finishes\n", current->pid); 2663 mutex_lock(&ctx->kdamond_lock); 2664 ctx->kdamond = NULL; 2665 mutex_unlock(&ctx->kdamond_lock); 2666 2667 kdamond_call(ctx, true); 2668 damos_walk_cancel(ctx); 2669 2670 mutex_lock(&damon_lock); 2671 nr_running_ctxs--; 2672 if (!nr_running_ctxs && running_exclusive_ctxs) 2673 running_exclusive_ctxs = false; 2674 mutex_unlock(&damon_lock); 2675 2676 damon_destroy_targets(ctx); 2677 return 0; 2678 } 2679 2680 /* 2681 * struct damon_system_ram_region - System RAM resource address region of 2682 * [@start, @end). 2683 * @start: Start address of the region (inclusive). 2684 * @end: End address of the region (exclusive). 2685 */ 2686 struct damon_system_ram_region { 2687 unsigned long start; 2688 unsigned long end; 2689 }; 2690 2691 static int walk_system_ram(struct resource *res, void *arg) 2692 { 2693 struct damon_system_ram_region *a = arg; 2694 2695 if (a->end - a->start < resource_size(res)) { 2696 a->start = res->start; 2697 a->end = res->end; 2698 } 2699 return 0; 2700 } 2701 2702 /* 2703 * Find biggest 'System RAM' resource and store its start and end address in 2704 * @start and @end, respectively. If no System RAM is found, returns false. 2705 */ 2706 static bool damon_find_biggest_system_ram(unsigned long *start, 2707 unsigned long *end) 2708 2709 { 2710 struct damon_system_ram_region arg = {}; 2711 2712 walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram); 2713 if (arg.end <= arg.start) 2714 return false; 2715 2716 *start = arg.start; 2717 *end = arg.end; 2718 return true; 2719 } 2720 2721 /** 2722 * damon_set_region_biggest_system_ram_default() - Set the region of the given 2723 * monitoring target as requested, or biggest 'System RAM'. 2724 * @t: The monitoring target to set the region. 2725 * @start: The pointer to the start address of the region. 2726 * @end: The pointer to the end address of the region. 2727 * 2728 * This function sets the region of @t as requested by @start and @end. If the 2729 * values of @start and @end are zero, however, this function finds the biggest 2730 * 'System RAM' resource and sets the region to cover the resource. In the 2731 * latter case, this function saves the start and end addresses of the resource 2732 * in @start and @end, respectively. 2733 * 2734 * Return: 0 on success, negative error code otherwise. 2735 */ 2736 int damon_set_region_biggest_system_ram_default(struct damon_target *t, 2737 unsigned long *start, unsigned long *end) 2738 { 2739 struct damon_addr_range addr_range; 2740 2741 if (*start > *end) 2742 return -EINVAL; 2743 2744 if (!*start && !*end && 2745 !damon_find_biggest_system_ram(start, end)) 2746 return -EINVAL; 2747 2748 addr_range.start = *start; 2749 addr_range.end = *end; 2750 return damon_set_regions(t, &addr_range, 1); 2751 } 2752 2753 /* 2754 * damon_moving_sum() - Calculate an inferred moving sum value. 2755 * @mvsum: Inferred sum of the last @len_window values. 2756 * @nomvsum: Non-moving sum of the last discrete @len_window window values. 2757 * @len_window: The number of last values to take care of. 2758 * @new_value: New value that will be added to the pseudo moving sum. 2759 * 2760 * Moving sum (moving average * window size) is good for handling noise, but 2761 * the cost of keeping past values can be high for arbitrary window size. This 2762 * function implements a lightweight pseudo moving sum function that doesn't 2763 * keep the past window values. 2764 * 2765 * It simply assumes there was no noise in the past, and get the no-noise 2766 * assumed past value to drop from @nomvsum and @len_window. @nomvsum is a 2767 * non-moving sum of the last window. For example, if @len_window is 10 and we 2768 * have 25 values, @nomvsum is the sum of the 11th to 20th values of the 25 2769 * values. Hence, this function simply drops @nomvsum / @len_window from 2770 * given @mvsum and add @new_value. 2771 * 2772 * For example, if @len_window is 10 and @nomvsum is 50, the last 10 values for 2773 * the last window could be vary, e.g., 0, 10, 0, 10, 0, 10, 0, 0, 0, 20. For 2774 * calculating next moving sum with a new value, we should drop 0 from 50 and 2775 * add the new value. However, this function assumes it got value 5 for each 2776 * of the last ten times. Based on the assumption, when the next value is 2777 * measured, it drops the assumed past value, 5 from the current sum, and add 2778 * the new value to get the updated pseduo-moving average. 2779 * 2780 * This means the value could have errors, but the errors will be disappeared 2781 * for every @len_window aligned calls. For example, if @len_window is 10, the 2782 * pseudo moving sum with 11th value to 19th value would have an error. But 2783 * the sum with 20th value will not have the error. 2784 * 2785 * Return: Pseudo-moving average after getting the @new_value. 2786 */ 2787 static unsigned int damon_moving_sum(unsigned int mvsum, unsigned int nomvsum, 2788 unsigned int len_window, unsigned int new_value) 2789 { 2790 return mvsum - nomvsum / len_window + new_value; 2791 } 2792 2793 /** 2794 * damon_update_region_access_rate() - Update the access rate of a region. 2795 * @r: The DAMON region to update for its access check result. 2796 * @accessed: Whether the region has accessed during last sampling interval. 2797 * @attrs: The damon_attrs of the DAMON context. 2798 * 2799 * Update the access rate of a region with the region's last sampling interval 2800 * access check result. 2801 * 2802 * Usually this will be called by &damon_operations->check_accesses callback. 2803 */ 2804 void damon_update_region_access_rate(struct damon_region *r, bool accessed, 2805 struct damon_attrs *attrs) 2806 { 2807 unsigned int len_window = 1; 2808 2809 /* 2810 * sample_interval can be zero, but cannot be larger than 2811 * aggr_interval, owing to validation of damon_set_attrs(). 2812 */ 2813 if (attrs->sample_interval) 2814 len_window = damon_max_nr_accesses(attrs); 2815 r->nr_accesses_bp = damon_moving_sum(r->nr_accesses_bp, 2816 r->last_nr_accesses * 10000, len_window, 2817 accessed ? 10000 : 0); 2818 2819 if (accessed) 2820 r->nr_accesses++; 2821 } 2822 2823 static int __init damon_init(void) 2824 { 2825 damon_region_cache = KMEM_CACHE(damon_region, 0); 2826 if (unlikely(!damon_region_cache)) { 2827 pr_err("creating damon_region_cache fails\n"); 2828 return -ENOMEM; 2829 } 2830 2831 return 0; 2832 } 2833 2834 subsys_initcall(damon_init); 2835 2836 #include "tests/core-kunit.h" 2837