1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Data Access Monitor 4 * 5 * Author: SeongJae Park <sj@kernel.org> 6 */ 7 8 #define pr_fmt(fmt) "damon: " fmt 9 10 #include <linux/damon.h> 11 #include <linux/delay.h> 12 #include <linux/kthread.h> 13 #include <linux/memcontrol.h> 14 #include <linux/mm.h> 15 #include <linux/psi.h> 16 #include <linux/slab.h> 17 #include <linux/string.h> 18 #include <linux/string_choices.h> 19 20 #define CREATE_TRACE_POINTS 21 #include <trace/events/damon.h> 22 23 static DEFINE_MUTEX(damon_lock); 24 static int nr_running_ctxs; 25 static bool running_exclusive_ctxs; 26 27 static DEFINE_MUTEX(damon_ops_lock); 28 static struct damon_operations damon_registered_ops[NR_DAMON_OPS]; 29 30 static struct kmem_cache *damon_region_cache __ro_after_init; 31 32 /* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */ 33 static bool __damon_is_registered_ops(enum damon_ops_id id) 34 { 35 struct damon_operations empty_ops = {}; 36 37 if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops))) 38 return false; 39 return true; 40 } 41 42 /** 43 * damon_is_registered_ops() - Check if a given damon_operations is registered. 44 * @id: Id of the damon_operations to check if registered. 45 * 46 * Return: true if the ops is set, false otherwise. 47 */ 48 bool damon_is_registered_ops(enum damon_ops_id id) 49 { 50 bool registered; 51 52 if (id >= NR_DAMON_OPS) 53 return false; 54 mutex_lock(&damon_ops_lock); 55 registered = __damon_is_registered_ops(id); 56 mutex_unlock(&damon_ops_lock); 57 return registered; 58 } 59 60 /** 61 * damon_register_ops() - Register a monitoring operations set to DAMON. 62 * @ops: monitoring operations set to register. 63 * 64 * This function registers a monitoring operations set of valid &struct 65 * damon_operations->id so that others can find and use them later. 66 * 67 * Return: 0 on success, negative error code otherwise. 68 */ 69 int damon_register_ops(struct damon_operations *ops) 70 { 71 int err = 0; 72 73 if (ops->id >= NR_DAMON_OPS) 74 return -EINVAL; 75 76 mutex_lock(&damon_ops_lock); 77 /* Fail for already registered ops */ 78 if (__damon_is_registered_ops(ops->id)) 79 err = -EINVAL; 80 else 81 damon_registered_ops[ops->id] = *ops; 82 mutex_unlock(&damon_ops_lock); 83 return err; 84 } 85 86 /** 87 * damon_select_ops() - Select a monitoring operations to use with the context. 88 * @ctx: monitoring context to use the operations. 89 * @id: id of the registered monitoring operations to select. 90 * 91 * This function finds registered monitoring operations set of @id and make 92 * @ctx to use it. 93 * 94 * Return: 0 on success, negative error code otherwise. 95 */ 96 int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id) 97 { 98 int err = 0; 99 100 if (id >= NR_DAMON_OPS) 101 return -EINVAL; 102 103 mutex_lock(&damon_ops_lock); 104 if (!__damon_is_registered_ops(id)) 105 err = -EINVAL; 106 else 107 ctx->ops = damon_registered_ops[id]; 108 mutex_unlock(&damon_ops_lock); 109 return err; 110 } 111 112 /* 113 * Construct a damon_region struct 114 * 115 * Returns the pointer to the new struct if success, or NULL otherwise 116 */ 117 struct damon_region *damon_new_region(unsigned long start, unsigned long end) 118 { 119 struct damon_region *region; 120 121 region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL); 122 if (!region) 123 return NULL; 124 125 region->ar.start = start; 126 region->ar.end = end; 127 region->nr_accesses = 0; 128 region->nr_accesses_bp = 0; 129 INIT_LIST_HEAD(®ion->list); 130 131 region->age = 0; 132 region->last_nr_accesses = 0; 133 134 return region; 135 } 136 137 void damon_add_region(struct damon_region *r, struct damon_target *t) 138 { 139 list_add_tail(&r->list, &t->regions_list); 140 t->nr_regions++; 141 } 142 143 static void damon_del_region(struct damon_region *r, struct damon_target *t) 144 { 145 list_del(&r->list); 146 t->nr_regions--; 147 } 148 149 static void damon_free_region(struct damon_region *r) 150 { 151 kmem_cache_free(damon_region_cache, r); 152 } 153 154 void damon_destroy_region(struct damon_region *r, struct damon_target *t) 155 { 156 damon_del_region(r, t); 157 damon_free_region(r); 158 } 159 160 /* 161 * Check whether a region is intersecting an address range 162 * 163 * Returns true if it is. 164 */ 165 static bool damon_intersect(struct damon_region *r, 166 struct damon_addr_range *re) 167 { 168 return !(r->ar.end <= re->start || re->end <= r->ar.start); 169 } 170 171 /* 172 * Fill holes in regions with new regions. 173 */ 174 static int damon_fill_regions_holes(struct damon_region *first, 175 struct damon_region *last, struct damon_target *t) 176 { 177 struct damon_region *r = first; 178 179 damon_for_each_region_from(r, t) { 180 struct damon_region *next, *newr; 181 182 if (r == last) 183 break; 184 next = damon_next_region(r); 185 if (r->ar.end != next->ar.start) { 186 newr = damon_new_region(r->ar.end, next->ar.start); 187 if (!newr) 188 return -ENOMEM; 189 damon_insert_region(newr, r, next, t); 190 } 191 } 192 return 0; 193 } 194 195 /* 196 * damon_set_regions() - Set regions of a target for given address ranges. 197 * @t: the given target. 198 * @ranges: array of new monitoring target ranges. 199 * @nr_ranges: length of @ranges. 200 * @min_sz_region: minimum region size. 201 * 202 * This function adds new regions to, or modify existing regions of a 203 * monitoring target to fit in specific ranges. 204 * 205 * Return: 0 if success, or negative error code otherwise. 206 */ 207 int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges, 208 unsigned int nr_ranges, unsigned long min_sz_region) 209 { 210 struct damon_region *r, *next; 211 unsigned int i; 212 int err; 213 214 /* Remove regions which are not in the new ranges */ 215 damon_for_each_region_safe(r, next, t) { 216 for (i = 0; i < nr_ranges; i++) { 217 if (damon_intersect(r, &ranges[i])) 218 break; 219 } 220 if (i == nr_ranges) 221 damon_destroy_region(r, t); 222 } 223 224 r = damon_first_region(t); 225 /* Add new regions or resize existing regions to fit in the ranges */ 226 for (i = 0; i < nr_ranges; i++) { 227 struct damon_region *first = NULL, *last, *newr; 228 struct damon_addr_range *range; 229 230 range = &ranges[i]; 231 /* Get the first/last regions intersecting with the range */ 232 damon_for_each_region_from(r, t) { 233 if (damon_intersect(r, range)) { 234 if (!first) 235 first = r; 236 last = r; 237 } 238 if (r->ar.start >= range->end) 239 break; 240 } 241 if (!first) { 242 /* no region intersects with this range */ 243 newr = damon_new_region( 244 ALIGN_DOWN(range->start, 245 min_sz_region), 246 ALIGN(range->end, min_sz_region)); 247 if (!newr) 248 return -ENOMEM; 249 damon_insert_region(newr, damon_prev_region(r), r, t); 250 } else { 251 /* resize intersecting regions to fit in this range */ 252 first->ar.start = ALIGN_DOWN(range->start, 253 min_sz_region); 254 last->ar.end = ALIGN(range->end, min_sz_region); 255 256 /* fill possible holes in the range */ 257 err = damon_fill_regions_holes(first, last, t); 258 if (err) 259 return err; 260 } 261 } 262 return 0; 263 } 264 265 struct damos_filter *damos_new_filter(enum damos_filter_type type, 266 bool matching, bool allow) 267 { 268 struct damos_filter *filter; 269 270 filter = kmalloc(sizeof(*filter), GFP_KERNEL); 271 if (!filter) 272 return NULL; 273 filter->type = type; 274 filter->matching = matching; 275 filter->allow = allow; 276 INIT_LIST_HEAD(&filter->list); 277 return filter; 278 } 279 280 /** 281 * damos_filter_for_ops() - Return if the filter is ops-hndled one. 282 * @type: type of the filter. 283 * 284 * Return: true if the filter of @type needs to be handled by ops layer, false 285 * otherwise. 286 */ 287 bool damos_filter_for_ops(enum damos_filter_type type) 288 { 289 switch (type) { 290 case DAMOS_FILTER_TYPE_ADDR: 291 case DAMOS_FILTER_TYPE_TARGET: 292 return false; 293 default: 294 break; 295 } 296 return true; 297 } 298 299 void damos_add_filter(struct damos *s, struct damos_filter *f) 300 { 301 if (damos_filter_for_ops(f->type)) 302 list_add_tail(&f->list, &s->ops_filters); 303 else 304 list_add_tail(&f->list, &s->core_filters); 305 } 306 307 static void damos_del_filter(struct damos_filter *f) 308 { 309 list_del(&f->list); 310 } 311 312 static void damos_free_filter(struct damos_filter *f) 313 { 314 kfree(f); 315 } 316 317 void damos_destroy_filter(struct damos_filter *f) 318 { 319 damos_del_filter(f); 320 damos_free_filter(f); 321 } 322 323 struct damos_quota_goal *damos_new_quota_goal( 324 enum damos_quota_goal_metric metric, 325 unsigned long target_value) 326 { 327 struct damos_quota_goal *goal; 328 329 goal = kmalloc(sizeof(*goal), GFP_KERNEL); 330 if (!goal) 331 return NULL; 332 goal->metric = metric; 333 goal->target_value = target_value; 334 INIT_LIST_HEAD(&goal->list); 335 return goal; 336 } 337 338 void damos_add_quota_goal(struct damos_quota *q, struct damos_quota_goal *g) 339 { 340 list_add_tail(&g->list, &q->goals); 341 } 342 343 static void damos_del_quota_goal(struct damos_quota_goal *g) 344 { 345 list_del(&g->list); 346 } 347 348 static void damos_free_quota_goal(struct damos_quota_goal *g) 349 { 350 kfree(g); 351 } 352 353 void damos_destroy_quota_goal(struct damos_quota_goal *g) 354 { 355 damos_del_quota_goal(g); 356 damos_free_quota_goal(g); 357 } 358 359 /* initialize fields of @quota that normally API users wouldn't set */ 360 static struct damos_quota *damos_quota_init(struct damos_quota *quota) 361 { 362 quota->esz = 0; 363 quota->total_charged_sz = 0; 364 quota->total_charged_ns = 0; 365 quota->charged_sz = 0; 366 quota->charged_from = 0; 367 quota->charge_target_from = NULL; 368 quota->charge_addr_from = 0; 369 quota->esz_bp = 0; 370 return quota; 371 } 372 373 struct damos *damon_new_scheme(struct damos_access_pattern *pattern, 374 enum damos_action action, 375 unsigned long apply_interval_us, 376 struct damos_quota *quota, 377 struct damos_watermarks *wmarks, 378 int target_nid) 379 { 380 struct damos *scheme; 381 382 scheme = kmalloc(sizeof(*scheme), GFP_KERNEL); 383 if (!scheme) 384 return NULL; 385 scheme->pattern = *pattern; 386 scheme->action = action; 387 scheme->apply_interval_us = apply_interval_us; 388 /* 389 * next_apply_sis will be set when kdamond starts. While kdamond is 390 * running, it will also updated when it is added to the DAMON context, 391 * or damon_attrs are updated. 392 */ 393 scheme->next_apply_sis = 0; 394 scheme->walk_completed = false; 395 INIT_LIST_HEAD(&scheme->core_filters); 396 INIT_LIST_HEAD(&scheme->ops_filters); 397 scheme->stat = (struct damos_stat){}; 398 INIT_LIST_HEAD(&scheme->list); 399 400 scheme->quota = *(damos_quota_init(quota)); 401 /* quota.goals should be separately set by caller */ 402 INIT_LIST_HEAD(&scheme->quota.goals); 403 404 scheme->wmarks = *wmarks; 405 scheme->wmarks.activated = true; 406 407 scheme->migrate_dests = (struct damos_migrate_dests){}; 408 scheme->target_nid = target_nid; 409 410 return scheme; 411 } 412 413 static void damos_set_next_apply_sis(struct damos *s, struct damon_ctx *ctx) 414 { 415 unsigned long sample_interval = ctx->attrs.sample_interval ? 416 ctx->attrs.sample_interval : 1; 417 unsigned long apply_interval = s->apply_interval_us ? 418 s->apply_interval_us : ctx->attrs.aggr_interval; 419 420 s->next_apply_sis = ctx->passed_sample_intervals + 421 apply_interval / sample_interval; 422 } 423 424 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s) 425 { 426 list_add_tail(&s->list, &ctx->schemes); 427 damos_set_next_apply_sis(s, ctx); 428 } 429 430 static void damon_del_scheme(struct damos *s) 431 { 432 list_del(&s->list); 433 } 434 435 static void damon_free_scheme(struct damos *s) 436 { 437 kfree(s); 438 } 439 440 void damon_destroy_scheme(struct damos *s) 441 { 442 struct damos_quota_goal *g, *g_next; 443 struct damos_filter *f, *next; 444 445 damos_for_each_quota_goal_safe(g, g_next, &s->quota) 446 damos_destroy_quota_goal(g); 447 448 damos_for_each_core_filter_safe(f, next, s) 449 damos_destroy_filter(f); 450 451 damos_for_each_ops_filter_safe(f, next, s) 452 damos_destroy_filter(f); 453 454 kfree(s->migrate_dests.node_id_arr); 455 kfree(s->migrate_dests.weight_arr); 456 damon_del_scheme(s); 457 damon_free_scheme(s); 458 } 459 460 /* 461 * Construct a damon_target struct 462 * 463 * Returns the pointer to the new struct if success, or NULL otherwise 464 */ 465 struct damon_target *damon_new_target(void) 466 { 467 struct damon_target *t; 468 469 t = kmalloc(sizeof(*t), GFP_KERNEL); 470 if (!t) 471 return NULL; 472 473 t->pid = NULL; 474 t->nr_regions = 0; 475 INIT_LIST_HEAD(&t->regions_list); 476 INIT_LIST_HEAD(&t->list); 477 t->obsolete = false; 478 479 return t; 480 } 481 482 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t) 483 { 484 list_add_tail(&t->list, &ctx->adaptive_targets); 485 } 486 487 bool damon_targets_empty(struct damon_ctx *ctx) 488 { 489 return list_empty(&ctx->adaptive_targets); 490 } 491 492 static void damon_del_target(struct damon_target *t) 493 { 494 list_del(&t->list); 495 } 496 497 void damon_free_target(struct damon_target *t) 498 { 499 struct damon_region *r, *next; 500 501 damon_for_each_region_safe(r, next, t) 502 damon_free_region(r); 503 kfree(t); 504 } 505 506 void damon_destroy_target(struct damon_target *t, struct damon_ctx *ctx) 507 { 508 509 if (ctx && ctx->ops.cleanup_target) 510 ctx->ops.cleanup_target(t); 511 512 damon_del_target(t); 513 damon_free_target(t); 514 } 515 516 unsigned int damon_nr_regions(struct damon_target *t) 517 { 518 return t->nr_regions; 519 } 520 521 struct damon_ctx *damon_new_ctx(void) 522 { 523 struct damon_ctx *ctx; 524 525 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 526 if (!ctx) 527 return NULL; 528 529 init_completion(&ctx->kdamond_started); 530 531 ctx->attrs.sample_interval = 5 * 1000; 532 ctx->attrs.aggr_interval = 100 * 1000; 533 ctx->attrs.ops_update_interval = 60 * 1000 * 1000; 534 535 ctx->passed_sample_intervals = 0; 536 /* These will be set from kdamond_init_ctx() */ 537 ctx->next_aggregation_sis = 0; 538 ctx->next_ops_update_sis = 0; 539 540 mutex_init(&ctx->kdamond_lock); 541 INIT_LIST_HEAD(&ctx->call_controls); 542 mutex_init(&ctx->call_controls_lock); 543 mutex_init(&ctx->walk_control_lock); 544 545 ctx->attrs.min_nr_regions = 10; 546 ctx->attrs.max_nr_regions = 1000; 547 548 ctx->addr_unit = 1; 549 ctx->min_sz_region = DAMON_MIN_REGION; 550 551 INIT_LIST_HEAD(&ctx->adaptive_targets); 552 INIT_LIST_HEAD(&ctx->schemes); 553 554 return ctx; 555 } 556 557 static void damon_destroy_targets(struct damon_ctx *ctx) 558 { 559 struct damon_target *t, *next_t; 560 561 damon_for_each_target_safe(t, next_t, ctx) 562 damon_destroy_target(t, ctx); 563 } 564 565 void damon_destroy_ctx(struct damon_ctx *ctx) 566 { 567 struct damos *s, *next_s; 568 569 damon_destroy_targets(ctx); 570 571 damon_for_each_scheme_safe(s, next_s, ctx) 572 damon_destroy_scheme(s); 573 574 kfree(ctx); 575 } 576 577 static bool damon_attrs_equals(const struct damon_attrs *attrs1, 578 const struct damon_attrs *attrs2) 579 { 580 const struct damon_intervals_goal *ig1 = &attrs1->intervals_goal; 581 const struct damon_intervals_goal *ig2 = &attrs2->intervals_goal; 582 583 return attrs1->sample_interval == attrs2->sample_interval && 584 attrs1->aggr_interval == attrs2->aggr_interval && 585 attrs1->ops_update_interval == attrs2->ops_update_interval && 586 attrs1->min_nr_regions == attrs2->min_nr_regions && 587 attrs1->max_nr_regions == attrs2->max_nr_regions && 588 ig1->access_bp == ig2->access_bp && 589 ig1->aggrs == ig2->aggrs && 590 ig1->min_sample_us == ig2->min_sample_us && 591 ig1->max_sample_us == ig2->max_sample_us; 592 } 593 594 static unsigned int damon_age_for_new_attrs(unsigned int age, 595 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs) 596 { 597 return age * old_attrs->aggr_interval / new_attrs->aggr_interval; 598 } 599 600 /* convert access ratio in bp (per 10,000) to nr_accesses */ 601 static unsigned int damon_accesses_bp_to_nr_accesses( 602 unsigned int accesses_bp, struct damon_attrs *attrs) 603 { 604 return accesses_bp * damon_max_nr_accesses(attrs) / 10000; 605 } 606 607 /* 608 * Convert nr_accesses to access ratio in bp (per 10,000). 609 * 610 * Callers should ensure attrs.aggr_interval is not zero, like 611 * damon_update_monitoring_results() does . Otherwise, divide-by-zero would 612 * happen. 613 */ 614 static unsigned int damon_nr_accesses_to_accesses_bp( 615 unsigned int nr_accesses, struct damon_attrs *attrs) 616 { 617 return nr_accesses * 10000 / damon_max_nr_accesses(attrs); 618 } 619 620 static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses, 621 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs) 622 { 623 return damon_accesses_bp_to_nr_accesses( 624 damon_nr_accesses_to_accesses_bp( 625 nr_accesses, old_attrs), 626 new_attrs); 627 } 628 629 static void damon_update_monitoring_result(struct damon_region *r, 630 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs, 631 bool aggregating) 632 { 633 if (!aggregating) { 634 r->nr_accesses = damon_nr_accesses_for_new_attrs( 635 r->nr_accesses, old_attrs, new_attrs); 636 r->nr_accesses_bp = r->nr_accesses * 10000; 637 } else { 638 /* 639 * if this is called in the middle of the aggregation, reset 640 * the aggregations we made so far for this aggregation 641 * interval. In other words, make the status like 642 * kdamond_reset_aggregated() is called. 643 */ 644 r->last_nr_accesses = damon_nr_accesses_for_new_attrs( 645 r->last_nr_accesses, old_attrs, new_attrs); 646 r->nr_accesses_bp = r->last_nr_accesses * 10000; 647 r->nr_accesses = 0; 648 } 649 r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs); 650 } 651 652 /* 653 * region->nr_accesses is the number of sampling intervals in the last 654 * aggregation interval that access to the region has found, and region->age is 655 * the number of aggregation intervals that its access pattern has maintained. 656 * For the reason, the real meaning of the two fields depend on current 657 * sampling interval and aggregation interval. This function updates 658 * ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs. 659 */ 660 static void damon_update_monitoring_results(struct damon_ctx *ctx, 661 struct damon_attrs *new_attrs, bool aggregating) 662 { 663 struct damon_attrs *old_attrs = &ctx->attrs; 664 struct damon_target *t; 665 struct damon_region *r; 666 667 /* if any interval is zero, simply forgive conversion */ 668 if (!old_attrs->sample_interval || !old_attrs->aggr_interval || 669 !new_attrs->sample_interval || 670 !new_attrs->aggr_interval) 671 return; 672 673 damon_for_each_target(t, ctx) 674 damon_for_each_region(r, t) 675 damon_update_monitoring_result( 676 r, old_attrs, new_attrs, aggregating); 677 } 678 679 /* 680 * damon_valid_intervals_goal() - return if the intervals goal of @attrs is 681 * valid. 682 */ 683 static bool damon_valid_intervals_goal(struct damon_attrs *attrs) 684 { 685 struct damon_intervals_goal *goal = &attrs->intervals_goal; 686 687 /* tuning is disabled */ 688 if (!goal->aggrs) 689 return true; 690 if (goal->min_sample_us > goal->max_sample_us) 691 return false; 692 if (attrs->sample_interval < goal->min_sample_us || 693 goal->max_sample_us < attrs->sample_interval) 694 return false; 695 return true; 696 } 697 698 /** 699 * damon_set_attrs() - Set attributes for the monitoring. 700 * @ctx: monitoring context 701 * @attrs: monitoring attributes 702 * 703 * This function should be called while the kdamond is not running, an access 704 * check results aggregation is not ongoing (e.g., from damon_call(). 705 * 706 * Every time interval is in micro-seconds. 707 * 708 * Return: 0 on success, negative error code otherwise. 709 */ 710 int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs) 711 { 712 unsigned long sample_interval = attrs->sample_interval ? 713 attrs->sample_interval : 1; 714 struct damos *s; 715 bool aggregating = ctx->passed_sample_intervals < 716 ctx->next_aggregation_sis; 717 718 if (!damon_valid_intervals_goal(attrs)) 719 return -EINVAL; 720 721 if (attrs->min_nr_regions < 3) 722 return -EINVAL; 723 if (attrs->min_nr_regions > attrs->max_nr_regions) 724 return -EINVAL; 725 if (attrs->sample_interval > attrs->aggr_interval) 726 return -EINVAL; 727 728 /* calls from core-external doesn't set this. */ 729 if (!attrs->aggr_samples) 730 attrs->aggr_samples = attrs->aggr_interval / sample_interval; 731 732 ctx->next_aggregation_sis = ctx->passed_sample_intervals + 733 attrs->aggr_interval / sample_interval; 734 ctx->next_ops_update_sis = ctx->passed_sample_intervals + 735 attrs->ops_update_interval / sample_interval; 736 737 damon_update_monitoring_results(ctx, attrs, aggregating); 738 ctx->attrs = *attrs; 739 740 damon_for_each_scheme(s, ctx) 741 damos_set_next_apply_sis(s, ctx); 742 743 return 0; 744 } 745 746 /** 747 * damon_set_schemes() - Set data access monitoring based operation schemes. 748 * @ctx: monitoring context 749 * @schemes: array of the schemes 750 * @nr_schemes: number of entries in @schemes 751 * 752 * This function should not be called while the kdamond of the context is 753 * running. 754 */ 755 void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes, 756 ssize_t nr_schemes) 757 { 758 struct damos *s, *next; 759 ssize_t i; 760 761 damon_for_each_scheme_safe(s, next, ctx) 762 damon_destroy_scheme(s); 763 for (i = 0; i < nr_schemes; i++) 764 damon_add_scheme(ctx, schemes[i]); 765 } 766 767 static struct damos_quota_goal *damos_nth_quota_goal( 768 int n, struct damos_quota *q) 769 { 770 struct damos_quota_goal *goal; 771 int i = 0; 772 773 damos_for_each_quota_goal(goal, q) { 774 if (i++ == n) 775 return goal; 776 } 777 return NULL; 778 } 779 780 static void damos_commit_quota_goal_union( 781 struct damos_quota_goal *dst, struct damos_quota_goal *src) 782 { 783 switch (dst->metric) { 784 case DAMOS_QUOTA_NODE_MEM_USED_BP: 785 case DAMOS_QUOTA_NODE_MEM_FREE_BP: 786 dst->nid = src->nid; 787 break; 788 case DAMOS_QUOTA_NODE_MEMCG_USED_BP: 789 case DAMOS_QUOTA_NODE_MEMCG_FREE_BP: 790 dst->nid = src->nid; 791 dst->memcg_id = src->memcg_id; 792 break; 793 default: 794 break; 795 } 796 } 797 798 static void damos_commit_quota_goal( 799 struct damos_quota_goal *dst, struct damos_quota_goal *src) 800 { 801 dst->metric = src->metric; 802 dst->target_value = src->target_value; 803 if (dst->metric == DAMOS_QUOTA_USER_INPUT) 804 dst->current_value = src->current_value; 805 /* keep last_psi_total as is, since it will be updated in next cycle */ 806 damos_commit_quota_goal_union(dst, src); 807 } 808 809 /** 810 * damos_commit_quota_goals() - Commit DAMOS quota goals to another quota. 811 * @dst: The commit destination DAMOS quota. 812 * @src: The commit source DAMOS quota. 813 * 814 * Copies user-specified parameters for quota goals from @src to @dst. Users 815 * should use this function for quota goals-level parameters update of running 816 * DAMON contexts, instead of manual in-place updates. 817 * 818 * This function should be called from parameters-update safe context, like 819 * damon_call(). 820 */ 821 int damos_commit_quota_goals(struct damos_quota *dst, struct damos_quota *src) 822 { 823 struct damos_quota_goal *dst_goal, *next, *src_goal, *new_goal; 824 int i = 0, j = 0; 825 826 damos_for_each_quota_goal_safe(dst_goal, next, dst) { 827 src_goal = damos_nth_quota_goal(i++, src); 828 if (src_goal) 829 damos_commit_quota_goal(dst_goal, src_goal); 830 else 831 damos_destroy_quota_goal(dst_goal); 832 } 833 damos_for_each_quota_goal_safe(src_goal, next, src) { 834 if (j++ < i) 835 continue; 836 new_goal = damos_new_quota_goal( 837 src_goal->metric, src_goal->target_value); 838 if (!new_goal) 839 return -ENOMEM; 840 damos_commit_quota_goal(new_goal, src_goal); 841 damos_add_quota_goal(dst, new_goal); 842 } 843 return 0; 844 } 845 846 static int damos_commit_quota(struct damos_quota *dst, struct damos_quota *src) 847 { 848 int err; 849 850 dst->reset_interval = src->reset_interval; 851 dst->ms = src->ms; 852 dst->sz = src->sz; 853 err = damos_commit_quota_goals(dst, src); 854 if (err) 855 return err; 856 dst->weight_sz = src->weight_sz; 857 dst->weight_nr_accesses = src->weight_nr_accesses; 858 dst->weight_age = src->weight_age; 859 return 0; 860 } 861 862 static struct damos_filter *damos_nth_core_filter(int n, struct damos *s) 863 { 864 struct damos_filter *filter; 865 int i = 0; 866 867 damos_for_each_core_filter(filter, s) { 868 if (i++ == n) 869 return filter; 870 } 871 return NULL; 872 } 873 874 static struct damos_filter *damos_nth_ops_filter(int n, struct damos *s) 875 { 876 struct damos_filter *filter; 877 int i = 0; 878 879 damos_for_each_ops_filter(filter, s) { 880 if (i++ == n) 881 return filter; 882 } 883 return NULL; 884 } 885 886 static void damos_commit_filter_arg( 887 struct damos_filter *dst, struct damos_filter *src) 888 { 889 switch (dst->type) { 890 case DAMOS_FILTER_TYPE_MEMCG: 891 dst->memcg_id = src->memcg_id; 892 break; 893 case DAMOS_FILTER_TYPE_ADDR: 894 dst->addr_range = src->addr_range; 895 break; 896 case DAMOS_FILTER_TYPE_TARGET: 897 dst->target_idx = src->target_idx; 898 break; 899 case DAMOS_FILTER_TYPE_HUGEPAGE_SIZE: 900 dst->sz_range = src->sz_range; 901 break; 902 default: 903 break; 904 } 905 } 906 907 static void damos_commit_filter( 908 struct damos_filter *dst, struct damos_filter *src) 909 { 910 dst->type = src->type; 911 dst->matching = src->matching; 912 dst->allow = src->allow; 913 damos_commit_filter_arg(dst, src); 914 } 915 916 static int damos_commit_core_filters(struct damos *dst, struct damos *src) 917 { 918 struct damos_filter *dst_filter, *next, *src_filter, *new_filter; 919 int i = 0, j = 0; 920 921 damos_for_each_core_filter_safe(dst_filter, next, dst) { 922 src_filter = damos_nth_core_filter(i++, src); 923 if (src_filter) 924 damos_commit_filter(dst_filter, src_filter); 925 else 926 damos_destroy_filter(dst_filter); 927 } 928 929 damos_for_each_core_filter_safe(src_filter, next, src) { 930 if (j++ < i) 931 continue; 932 933 new_filter = damos_new_filter( 934 src_filter->type, src_filter->matching, 935 src_filter->allow); 936 if (!new_filter) 937 return -ENOMEM; 938 damos_commit_filter_arg(new_filter, src_filter); 939 damos_add_filter(dst, new_filter); 940 } 941 return 0; 942 } 943 944 static int damos_commit_ops_filters(struct damos *dst, struct damos *src) 945 { 946 struct damos_filter *dst_filter, *next, *src_filter, *new_filter; 947 int i = 0, j = 0; 948 949 damos_for_each_ops_filter_safe(dst_filter, next, dst) { 950 src_filter = damos_nth_ops_filter(i++, src); 951 if (src_filter) 952 damos_commit_filter(dst_filter, src_filter); 953 else 954 damos_destroy_filter(dst_filter); 955 } 956 957 damos_for_each_ops_filter_safe(src_filter, next, src) { 958 if (j++ < i) 959 continue; 960 961 new_filter = damos_new_filter( 962 src_filter->type, src_filter->matching, 963 src_filter->allow); 964 if (!new_filter) 965 return -ENOMEM; 966 damos_commit_filter_arg(new_filter, src_filter); 967 damos_add_filter(dst, new_filter); 968 } 969 return 0; 970 } 971 972 /** 973 * damos_filters_default_reject() - decide whether to reject memory that didn't 974 * match with any given filter. 975 * @filters: Given DAMOS filters of a group. 976 */ 977 static bool damos_filters_default_reject(struct list_head *filters) 978 { 979 struct damos_filter *last_filter; 980 981 if (list_empty(filters)) 982 return false; 983 last_filter = list_last_entry(filters, struct damos_filter, list); 984 return last_filter->allow; 985 } 986 987 static void damos_set_filters_default_reject(struct damos *s) 988 { 989 if (!list_empty(&s->ops_filters)) 990 s->core_filters_default_reject = false; 991 else 992 s->core_filters_default_reject = 993 damos_filters_default_reject(&s->core_filters); 994 s->ops_filters_default_reject = 995 damos_filters_default_reject(&s->ops_filters); 996 } 997 998 static int damos_commit_dests(struct damos_migrate_dests *dst, 999 struct damos_migrate_dests *src) 1000 { 1001 if (dst->nr_dests != src->nr_dests) { 1002 kfree(dst->node_id_arr); 1003 kfree(dst->weight_arr); 1004 1005 dst->node_id_arr = kmalloc_array(src->nr_dests, 1006 sizeof(*dst->node_id_arr), GFP_KERNEL); 1007 if (!dst->node_id_arr) { 1008 dst->weight_arr = NULL; 1009 return -ENOMEM; 1010 } 1011 1012 dst->weight_arr = kmalloc_array(src->nr_dests, 1013 sizeof(*dst->weight_arr), GFP_KERNEL); 1014 if (!dst->weight_arr) { 1015 /* ->node_id_arr will be freed by scheme destruction */ 1016 return -ENOMEM; 1017 } 1018 } 1019 1020 dst->nr_dests = src->nr_dests; 1021 for (int i = 0; i < src->nr_dests; i++) { 1022 dst->node_id_arr[i] = src->node_id_arr[i]; 1023 dst->weight_arr[i] = src->weight_arr[i]; 1024 } 1025 1026 return 0; 1027 } 1028 1029 static int damos_commit_filters(struct damos *dst, struct damos *src) 1030 { 1031 int err; 1032 1033 err = damos_commit_core_filters(dst, src); 1034 if (err) 1035 return err; 1036 err = damos_commit_ops_filters(dst, src); 1037 if (err) 1038 return err; 1039 damos_set_filters_default_reject(dst); 1040 return 0; 1041 } 1042 1043 static struct damos *damon_nth_scheme(int n, struct damon_ctx *ctx) 1044 { 1045 struct damos *s; 1046 int i = 0; 1047 1048 damon_for_each_scheme(s, ctx) { 1049 if (i++ == n) 1050 return s; 1051 } 1052 return NULL; 1053 } 1054 1055 static int damos_commit(struct damos *dst, struct damos *src) 1056 { 1057 int err; 1058 1059 dst->pattern = src->pattern; 1060 dst->action = src->action; 1061 dst->apply_interval_us = src->apply_interval_us; 1062 1063 err = damos_commit_quota(&dst->quota, &src->quota); 1064 if (err) 1065 return err; 1066 1067 dst->wmarks = src->wmarks; 1068 dst->target_nid = src->target_nid; 1069 1070 err = damos_commit_dests(&dst->migrate_dests, &src->migrate_dests); 1071 if (err) 1072 return err; 1073 1074 err = damos_commit_filters(dst, src); 1075 return err; 1076 } 1077 1078 static int damon_commit_schemes(struct damon_ctx *dst, struct damon_ctx *src) 1079 { 1080 struct damos *dst_scheme, *next, *src_scheme, *new_scheme; 1081 int i = 0, j = 0, err; 1082 1083 damon_for_each_scheme_safe(dst_scheme, next, dst) { 1084 src_scheme = damon_nth_scheme(i++, src); 1085 if (src_scheme) { 1086 err = damos_commit(dst_scheme, src_scheme); 1087 if (err) 1088 return err; 1089 } else { 1090 damon_destroy_scheme(dst_scheme); 1091 } 1092 } 1093 1094 damon_for_each_scheme_safe(src_scheme, next, src) { 1095 if (j++ < i) 1096 continue; 1097 new_scheme = damon_new_scheme(&src_scheme->pattern, 1098 src_scheme->action, 1099 src_scheme->apply_interval_us, 1100 &src_scheme->quota, &src_scheme->wmarks, 1101 NUMA_NO_NODE); 1102 if (!new_scheme) 1103 return -ENOMEM; 1104 err = damos_commit(new_scheme, src_scheme); 1105 if (err) { 1106 damon_destroy_scheme(new_scheme); 1107 return err; 1108 } 1109 damon_add_scheme(dst, new_scheme); 1110 } 1111 return 0; 1112 } 1113 1114 static struct damon_target *damon_nth_target(int n, struct damon_ctx *ctx) 1115 { 1116 struct damon_target *t; 1117 int i = 0; 1118 1119 damon_for_each_target(t, ctx) { 1120 if (i++ == n) 1121 return t; 1122 } 1123 return NULL; 1124 } 1125 1126 /* 1127 * The caller should ensure the regions of @src are 1128 * 1. valid (end >= src) and 1129 * 2. sorted by starting address. 1130 * 1131 * If @src has no region, @dst keeps current regions. 1132 */ 1133 static int damon_commit_target_regions(struct damon_target *dst, 1134 struct damon_target *src, unsigned long src_min_sz_region) 1135 { 1136 struct damon_region *src_region; 1137 struct damon_addr_range *ranges; 1138 int i = 0, err; 1139 1140 damon_for_each_region(src_region, src) 1141 i++; 1142 if (!i) 1143 return 0; 1144 1145 ranges = kmalloc_array(i, sizeof(*ranges), GFP_KERNEL | __GFP_NOWARN); 1146 if (!ranges) 1147 return -ENOMEM; 1148 i = 0; 1149 damon_for_each_region(src_region, src) 1150 ranges[i++] = src_region->ar; 1151 err = damon_set_regions(dst, ranges, i, src_min_sz_region); 1152 kfree(ranges); 1153 return err; 1154 } 1155 1156 static int damon_commit_target( 1157 struct damon_target *dst, bool dst_has_pid, 1158 struct damon_target *src, bool src_has_pid, 1159 unsigned long src_min_sz_region) 1160 { 1161 int err; 1162 1163 err = damon_commit_target_regions(dst, src, src_min_sz_region); 1164 if (err) 1165 return err; 1166 if (dst_has_pid) 1167 put_pid(dst->pid); 1168 if (src_has_pid) 1169 get_pid(src->pid); 1170 dst->pid = src->pid; 1171 return 0; 1172 } 1173 1174 static int damon_commit_targets( 1175 struct damon_ctx *dst, struct damon_ctx *src) 1176 { 1177 struct damon_target *dst_target, *next, *src_target, *new_target; 1178 int i = 0, j = 0, err; 1179 1180 damon_for_each_target_safe(dst_target, next, dst) { 1181 src_target = damon_nth_target(i++, src); 1182 /* 1183 * If src target is obsolete, do not commit the parameters to 1184 * the dst target, and further remove the dst target. 1185 */ 1186 if (src_target && !src_target->obsolete) { 1187 err = damon_commit_target( 1188 dst_target, damon_target_has_pid(dst), 1189 src_target, damon_target_has_pid(src), 1190 src->min_sz_region); 1191 if (err) 1192 return err; 1193 } else { 1194 struct damos *s; 1195 1196 damon_destroy_target(dst_target, dst); 1197 damon_for_each_scheme(s, dst) { 1198 if (s->quota.charge_target_from == dst_target) { 1199 s->quota.charge_target_from = NULL; 1200 s->quota.charge_addr_from = 0; 1201 } 1202 } 1203 } 1204 } 1205 1206 damon_for_each_target_safe(src_target, next, src) { 1207 if (j++ < i) 1208 continue; 1209 /* target to remove has no matching dst */ 1210 if (src_target->obsolete) 1211 return -EINVAL; 1212 new_target = damon_new_target(); 1213 if (!new_target) 1214 return -ENOMEM; 1215 err = damon_commit_target(new_target, false, 1216 src_target, damon_target_has_pid(src), 1217 src->min_sz_region); 1218 if (err) { 1219 damon_destroy_target(new_target, NULL); 1220 return err; 1221 } 1222 damon_add_target(dst, new_target); 1223 } 1224 return 0; 1225 } 1226 1227 /** 1228 * damon_commit_ctx() - Commit parameters of a DAMON context to another. 1229 * @dst: The commit destination DAMON context. 1230 * @src: The commit source DAMON context. 1231 * 1232 * This function copies user-specified parameters from @src to @dst and update 1233 * the internal status and results accordingly. Users should use this function 1234 * for context-level parameters update of running context, instead of manual 1235 * in-place updates. 1236 * 1237 * This function should be called from parameters-update safe context, like 1238 * damon_call(). 1239 */ 1240 int damon_commit_ctx(struct damon_ctx *dst, struct damon_ctx *src) 1241 { 1242 int err; 1243 1244 err = damon_commit_schemes(dst, src); 1245 if (err) 1246 return err; 1247 err = damon_commit_targets(dst, src); 1248 if (err) 1249 return err; 1250 /* 1251 * schemes and targets should be updated first, since 1252 * 1. damon_set_attrs() updates monitoring results of targets and 1253 * next_apply_sis of schemes, and 1254 * 2. ops update should be done after pid handling is done (target 1255 * committing require putting pids). 1256 */ 1257 if (!damon_attrs_equals(&dst->attrs, &src->attrs)) { 1258 err = damon_set_attrs(dst, &src->attrs); 1259 if (err) 1260 return err; 1261 } 1262 dst->ops = src->ops; 1263 dst->addr_unit = src->addr_unit; 1264 dst->min_sz_region = src->min_sz_region; 1265 1266 return 0; 1267 } 1268 1269 /** 1270 * damon_nr_running_ctxs() - Return number of currently running contexts. 1271 */ 1272 int damon_nr_running_ctxs(void) 1273 { 1274 int nr_ctxs; 1275 1276 mutex_lock(&damon_lock); 1277 nr_ctxs = nr_running_ctxs; 1278 mutex_unlock(&damon_lock); 1279 1280 return nr_ctxs; 1281 } 1282 1283 /* Returns the size upper limit for each monitoring region */ 1284 static unsigned long damon_region_sz_limit(struct damon_ctx *ctx) 1285 { 1286 struct damon_target *t; 1287 struct damon_region *r; 1288 unsigned long sz = 0; 1289 1290 damon_for_each_target(t, ctx) { 1291 damon_for_each_region(r, t) 1292 sz += damon_sz_region(r); 1293 } 1294 1295 if (ctx->attrs.min_nr_regions) 1296 sz /= ctx->attrs.min_nr_regions; 1297 if (sz < ctx->min_sz_region) 1298 sz = ctx->min_sz_region; 1299 1300 return sz; 1301 } 1302 1303 static int kdamond_fn(void *data); 1304 1305 /* 1306 * __damon_start() - Starts monitoring with given context. 1307 * @ctx: monitoring context 1308 * 1309 * This function should be called while damon_lock is hold. 1310 * 1311 * Return: 0 on success, negative error code otherwise. 1312 */ 1313 static int __damon_start(struct damon_ctx *ctx) 1314 { 1315 int err = -EBUSY; 1316 1317 mutex_lock(&ctx->kdamond_lock); 1318 if (!ctx->kdamond) { 1319 err = 0; 1320 reinit_completion(&ctx->kdamond_started); 1321 ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d", 1322 nr_running_ctxs); 1323 if (IS_ERR(ctx->kdamond)) { 1324 err = PTR_ERR(ctx->kdamond); 1325 ctx->kdamond = NULL; 1326 } else { 1327 wait_for_completion(&ctx->kdamond_started); 1328 } 1329 } 1330 mutex_unlock(&ctx->kdamond_lock); 1331 1332 return err; 1333 } 1334 1335 /** 1336 * damon_start() - Starts the monitorings for a given group of contexts. 1337 * @ctxs: an array of the pointers for contexts to start monitoring 1338 * @nr_ctxs: size of @ctxs 1339 * @exclusive: exclusiveness of this contexts group 1340 * 1341 * This function starts a group of monitoring threads for a group of monitoring 1342 * contexts. One thread per each context is created and run in parallel. The 1343 * caller should handle synchronization between the threads by itself. If 1344 * @exclusive is true and a group of threads that created by other 1345 * 'damon_start()' call is currently running, this function does nothing but 1346 * returns -EBUSY. 1347 * 1348 * Return: 0 on success, negative error code otherwise. 1349 */ 1350 int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive) 1351 { 1352 int i; 1353 int err = 0; 1354 1355 mutex_lock(&damon_lock); 1356 if ((exclusive && nr_running_ctxs) || 1357 (!exclusive && running_exclusive_ctxs)) { 1358 mutex_unlock(&damon_lock); 1359 return -EBUSY; 1360 } 1361 1362 for (i = 0; i < nr_ctxs; i++) { 1363 err = __damon_start(ctxs[i]); 1364 if (err) 1365 break; 1366 nr_running_ctxs++; 1367 } 1368 if (exclusive && nr_running_ctxs) 1369 running_exclusive_ctxs = true; 1370 mutex_unlock(&damon_lock); 1371 1372 return err; 1373 } 1374 1375 /* 1376 * __damon_stop() - Stops monitoring of a given context. 1377 * @ctx: monitoring context 1378 * 1379 * Return: 0 on success, negative error code otherwise. 1380 */ 1381 static int __damon_stop(struct damon_ctx *ctx) 1382 { 1383 struct task_struct *tsk; 1384 1385 mutex_lock(&ctx->kdamond_lock); 1386 tsk = ctx->kdamond; 1387 if (tsk) { 1388 get_task_struct(tsk); 1389 mutex_unlock(&ctx->kdamond_lock); 1390 kthread_stop_put(tsk); 1391 return 0; 1392 } 1393 mutex_unlock(&ctx->kdamond_lock); 1394 1395 return -EPERM; 1396 } 1397 1398 /** 1399 * damon_stop() - Stops the monitorings for a given group of contexts. 1400 * @ctxs: an array of the pointers for contexts to stop monitoring 1401 * @nr_ctxs: size of @ctxs 1402 * 1403 * Return: 0 on success, negative error code otherwise. 1404 */ 1405 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs) 1406 { 1407 int i, err = 0; 1408 1409 for (i = 0; i < nr_ctxs; i++) { 1410 /* nr_running_ctxs is decremented in kdamond_fn */ 1411 err = __damon_stop(ctxs[i]); 1412 if (err) 1413 break; 1414 } 1415 return err; 1416 } 1417 1418 /** 1419 * damon_is_running() - Returns if a given DAMON context is running. 1420 * @ctx: The DAMON context to see if running. 1421 * 1422 * Return: true if @ctx is running, false otherwise. 1423 */ 1424 bool damon_is_running(struct damon_ctx *ctx) 1425 { 1426 bool running; 1427 1428 mutex_lock(&ctx->kdamond_lock); 1429 running = ctx->kdamond != NULL; 1430 mutex_unlock(&ctx->kdamond_lock); 1431 return running; 1432 } 1433 1434 /* 1435 * damon_call_handle_inactive_ctx() - handle DAMON call request that added to 1436 * an inactive context. 1437 * @ctx: The inactive DAMON context. 1438 * @control: Control variable of the call request. 1439 * 1440 * This function is called in a case that @control is added to @ctx but @ctx is 1441 * not running (inactive). See if @ctx handled @control or not, and cleanup 1442 * @control if it was not handled. 1443 * 1444 * Returns 0 if @control was handled by @ctx, negative error code otherwise. 1445 */ 1446 static int damon_call_handle_inactive_ctx( 1447 struct damon_ctx *ctx, struct damon_call_control *control) 1448 { 1449 struct damon_call_control *c; 1450 1451 mutex_lock(&ctx->call_controls_lock); 1452 list_for_each_entry(c, &ctx->call_controls, list) { 1453 if (c == control) { 1454 list_del(&control->list); 1455 mutex_unlock(&ctx->call_controls_lock); 1456 return -EINVAL; 1457 } 1458 } 1459 mutex_unlock(&ctx->call_controls_lock); 1460 return 0; 1461 } 1462 1463 /** 1464 * damon_call() - Invoke a given function on DAMON worker thread (kdamond). 1465 * @ctx: DAMON context to call the function for. 1466 * @control: Control variable of the call request. 1467 * 1468 * Ask DAMON worker thread (kdamond) of @ctx to call a function with an 1469 * argument data that respectively passed via &damon_call_control->fn and 1470 * &damon_call_control->data of @control. If &damon_call_control->repeat of 1471 * @control is unset, further wait until the kdamond finishes handling of the 1472 * request. Otherwise, return as soon as the request is made. 1473 * 1474 * The kdamond executes the function with the argument in the main loop, just 1475 * after a sampling of the iteration is finished. The function can hence 1476 * safely access the internal data of the &struct damon_ctx without additional 1477 * synchronization. The return value of the function will be saved in 1478 * &damon_call_control->return_code. 1479 * 1480 * Return: 0 on success, negative error code otherwise. 1481 */ 1482 int damon_call(struct damon_ctx *ctx, struct damon_call_control *control) 1483 { 1484 if (!control->repeat) 1485 init_completion(&control->completion); 1486 control->canceled = false; 1487 INIT_LIST_HEAD(&control->list); 1488 1489 mutex_lock(&ctx->call_controls_lock); 1490 list_add_tail(&control->list, &ctx->call_controls); 1491 mutex_unlock(&ctx->call_controls_lock); 1492 if (!damon_is_running(ctx)) 1493 return damon_call_handle_inactive_ctx(ctx, control); 1494 if (control->repeat) 1495 return 0; 1496 wait_for_completion(&control->completion); 1497 if (control->canceled) 1498 return -ECANCELED; 1499 return 0; 1500 } 1501 1502 /** 1503 * damos_walk() - Invoke a given functions while DAMOS walk regions. 1504 * @ctx: DAMON context to call the functions for. 1505 * @control: Control variable of the walk request. 1506 * 1507 * Ask DAMON worker thread (kdamond) of @ctx to call a function for each region 1508 * that the kdamond will apply DAMOS action to, and wait until the kdamond 1509 * finishes handling of the request. 1510 * 1511 * The kdamond executes the given function in the main loop, for each region 1512 * just after it applied any DAMOS actions of @ctx to it. The invocation is 1513 * made only within one &damos->apply_interval_us since damos_walk() 1514 * invocation, for each scheme. The given callback function can hence safely 1515 * access the internal data of &struct damon_ctx and &struct damon_region that 1516 * each of the scheme will apply the action for next interval, without 1517 * additional synchronizations against the kdamond. If every scheme of @ctx 1518 * passed at least one &damos->apply_interval_us, kdamond marks the request as 1519 * completed so that damos_walk() can wakeup and return. 1520 * 1521 * Return: 0 on success, negative error code otherwise. 1522 */ 1523 int damos_walk(struct damon_ctx *ctx, struct damos_walk_control *control) 1524 { 1525 init_completion(&control->completion); 1526 control->canceled = false; 1527 mutex_lock(&ctx->walk_control_lock); 1528 if (ctx->walk_control) { 1529 mutex_unlock(&ctx->walk_control_lock); 1530 return -EBUSY; 1531 } 1532 ctx->walk_control = control; 1533 mutex_unlock(&ctx->walk_control_lock); 1534 if (!damon_is_running(ctx)) 1535 return -EINVAL; 1536 wait_for_completion(&control->completion); 1537 if (control->canceled) 1538 return -ECANCELED; 1539 return 0; 1540 } 1541 1542 /* 1543 * Warn and fix corrupted ->nr_accesses[_bp] for investigations and preventing 1544 * the problem being propagated. 1545 */ 1546 static void damon_warn_fix_nr_accesses_corruption(struct damon_region *r) 1547 { 1548 if (r->nr_accesses_bp == r->nr_accesses * 10000) 1549 return; 1550 WARN_ONCE(true, "invalid nr_accesses_bp at reset: %u %u\n", 1551 r->nr_accesses_bp, r->nr_accesses); 1552 r->nr_accesses_bp = r->nr_accesses * 10000; 1553 } 1554 1555 /* 1556 * Reset the aggregated monitoring results ('nr_accesses' of each region). 1557 */ 1558 static void kdamond_reset_aggregated(struct damon_ctx *c) 1559 { 1560 struct damon_target *t; 1561 unsigned int ti = 0; /* target's index */ 1562 1563 damon_for_each_target(t, c) { 1564 struct damon_region *r; 1565 1566 damon_for_each_region(r, t) { 1567 trace_damon_aggregated(ti, r, damon_nr_regions(t)); 1568 damon_warn_fix_nr_accesses_corruption(r); 1569 r->last_nr_accesses = r->nr_accesses; 1570 r->nr_accesses = 0; 1571 } 1572 ti++; 1573 } 1574 } 1575 1576 static unsigned long damon_get_intervals_score(struct damon_ctx *c) 1577 { 1578 struct damon_target *t; 1579 struct damon_region *r; 1580 unsigned long sz_region, max_access_events = 0, access_events = 0; 1581 unsigned long target_access_events; 1582 unsigned long goal_bp = c->attrs.intervals_goal.access_bp; 1583 1584 damon_for_each_target(t, c) { 1585 damon_for_each_region(r, t) { 1586 sz_region = damon_sz_region(r); 1587 max_access_events += sz_region * c->attrs.aggr_samples; 1588 access_events += sz_region * r->nr_accesses; 1589 } 1590 } 1591 target_access_events = max_access_events * goal_bp / 10000; 1592 target_access_events = target_access_events ? : 1; 1593 return access_events * 10000 / target_access_events; 1594 } 1595 1596 static unsigned long damon_feed_loop_next_input(unsigned long last_input, 1597 unsigned long score); 1598 1599 static unsigned long damon_get_intervals_adaptation_bp(struct damon_ctx *c) 1600 { 1601 unsigned long score_bp, adaptation_bp; 1602 1603 score_bp = damon_get_intervals_score(c); 1604 adaptation_bp = damon_feed_loop_next_input(100000000, score_bp) / 1605 10000; 1606 /* 1607 * adaptaion_bp ranges from 1 to 20,000. Avoid too rapid reduction of 1608 * the intervals by rescaling [1,10,000] to [5000, 10,000]. 1609 */ 1610 if (adaptation_bp <= 10000) 1611 adaptation_bp = 5000 + adaptation_bp / 2; 1612 return adaptation_bp; 1613 } 1614 1615 static void kdamond_tune_intervals(struct damon_ctx *c) 1616 { 1617 unsigned long adaptation_bp; 1618 struct damon_attrs new_attrs; 1619 struct damon_intervals_goal *goal; 1620 1621 adaptation_bp = damon_get_intervals_adaptation_bp(c); 1622 if (adaptation_bp == 10000) 1623 return; 1624 1625 new_attrs = c->attrs; 1626 goal = &c->attrs.intervals_goal; 1627 new_attrs.sample_interval = min(goal->max_sample_us, 1628 c->attrs.sample_interval * adaptation_bp / 10000); 1629 new_attrs.sample_interval = max(goal->min_sample_us, 1630 new_attrs.sample_interval); 1631 new_attrs.aggr_interval = new_attrs.sample_interval * 1632 c->attrs.aggr_samples; 1633 trace_damon_monitor_intervals_tune(new_attrs.sample_interval); 1634 damon_set_attrs(c, &new_attrs); 1635 } 1636 1637 static void damon_split_region_at(struct damon_target *t, 1638 struct damon_region *r, unsigned long sz_r); 1639 1640 static bool __damos_valid_target(struct damon_region *r, struct damos *s) 1641 { 1642 unsigned long sz; 1643 unsigned int nr_accesses = r->nr_accesses_bp / 10000; 1644 1645 sz = damon_sz_region(r); 1646 return s->pattern.min_sz_region <= sz && 1647 sz <= s->pattern.max_sz_region && 1648 s->pattern.min_nr_accesses <= nr_accesses && 1649 nr_accesses <= s->pattern.max_nr_accesses && 1650 s->pattern.min_age_region <= r->age && 1651 r->age <= s->pattern.max_age_region; 1652 } 1653 1654 static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t, 1655 struct damon_region *r, struct damos *s) 1656 { 1657 bool ret = __damos_valid_target(r, s); 1658 1659 if (!ret || !s->quota.esz || !c->ops.get_scheme_score) 1660 return ret; 1661 1662 return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score; 1663 } 1664 1665 /* 1666 * damos_skip_charged_region() - Check if the given region or starting part of 1667 * it is already charged for the DAMOS quota. 1668 * @t: The target of the region. 1669 * @rp: The pointer to the region. 1670 * @s: The scheme to be applied. 1671 * @min_sz_region: minimum region size. 1672 * 1673 * If a quota of a scheme has exceeded in a quota charge window, the scheme's 1674 * action would applied to only a part of the target access pattern fulfilling 1675 * regions. To avoid applying the scheme action to only already applied 1676 * regions, DAMON skips applying the scheme action to the regions that charged 1677 * in the previous charge window. 1678 * 1679 * This function checks if a given region should be skipped or not for the 1680 * reason. If only the starting part of the region has previously charged, 1681 * this function splits the region into two so that the second one covers the 1682 * area that not charged in the previous charge widnow and saves the second 1683 * region in *rp and returns false, so that the caller can apply DAMON action 1684 * to the second one. 1685 * 1686 * Return: true if the region should be entirely skipped, false otherwise. 1687 */ 1688 static bool damos_skip_charged_region(struct damon_target *t, 1689 struct damon_region **rp, struct damos *s, unsigned long min_sz_region) 1690 { 1691 struct damon_region *r = *rp; 1692 struct damos_quota *quota = &s->quota; 1693 unsigned long sz_to_skip; 1694 1695 /* Skip previously charged regions */ 1696 if (quota->charge_target_from) { 1697 if (t != quota->charge_target_from) 1698 return true; 1699 if (r == damon_last_region(t)) { 1700 quota->charge_target_from = NULL; 1701 quota->charge_addr_from = 0; 1702 return true; 1703 } 1704 if (quota->charge_addr_from && 1705 r->ar.end <= quota->charge_addr_from) 1706 return true; 1707 1708 if (quota->charge_addr_from && r->ar.start < 1709 quota->charge_addr_from) { 1710 sz_to_skip = ALIGN_DOWN(quota->charge_addr_from - 1711 r->ar.start, min_sz_region); 1712 if (!sz_to_skip) { 1713 if (damon_sz_region(r) <= min_sz_region) 1714 return true; 1715 sz_to_skip = min_sz_region; 1716 } 1717 damon_split_region_at(t, r, sz_to_skip); 1718 r = damon_next_region(r); 1719 *rp = r; 1720 } 1721 quota->charge_target_from = NULL; 1722 quota->charge_addr_from = 0; 1723 } 1724 return false; 1725 } 1726 1727 static void damos_update_stat(struct damos *s, 1728 unsigned long sz_tried, unsigned long sz_applied, 1729 unsigned long sz_ops_filter_passed) 1730 { 1731 s->stat.nr_tried++; 1732 s->stat.sz_tried += sz_tried; 1733 if (sz_applied) 1734 s->stat.nr_applied++; 1735 s->stat.sz_applied += sz_applied; 1736 s->stat.sz_ops_filter_passed += sz_ops_filter_passed; 1737 } 1738 1739 static bool damos_filter_match(struct damon_ctx *ctx, struct damon_target *t, 1740 struct damon_region *r, struct damos_filter *filter, 1741 unsigned long min_sz_region) 1742 { 1743 bool matched = false; 1744 struct damon_target *ti; 1745 int target_idx = 0; 1746 unsigned long start, end; 1747 1748 switch (filter->type) { 1749 case DAMOS_FILTER_TYPE_TARGET: 1750 damon_for_each_target(ti, ctx) { 1751 if (ti == t) 1752 break; 1753 target_idx++; 1754 } 1755 matched = target_idx == filter->target_idx; 1756 break; 1757 case DAMOS_FILTER_TYPE_ADDR: 1758 start = ALIGN_DOWN(filter->addr_range.start, min_sz_region); 1759 end = ALIGN_DOWN(filter->addr_range.end, min_sz_region); 1760 1761 /* inside the range */ 1762 if (start <= r->ar.start && r->ar.end <= end) { 1763 matched = true; 1764 break; 1765 } 1766 /* outside of the range */ 1767 if (r->ar.end <= start || end <= r->ar.start) { 1768 matched = false; 1769 break; 1770 } 1771 /* start before the range and overlap */ 1772 if (r->ar.start < start) { 1773 damon_split_region_at(t, r, start - r->ar.start); 1774 matched = false; 1775 break; 1776 } 1777 /* start inside the range */ 1778 damon_split_region_at(t, r, end - r->ar.start); 1779 matched = true; 1780 break; 1781 default: 1782 return false; 1783 } 1784 1785 return matched == filter->matching; 1786 } 1787 1788 static bool damos_filter_out(struct damon_ctx *ctx, struct damon_target *t, 1789 struct damon_region *r, struct damos *s) 1790 { 1791 struct damos_filter *filter; 1792 1793 s->core_filters_allowed = false; 1794 damos_for_each_core_filter(filter, s) { 1795 if (damos_filter_match(ctx, t, r, filter, ctx->min_sz_region)) { 1796 if (filter->allow) 1797 s->core_filters_allowed = true; 1798 return !filter->allow; 1799 } 1800 } 1801 return s->core_filters_default_reject; 1802 } 1803 1804 /* 1805 * damos_walk_call_walk() - Call &damos_walk_control->walk_fn. 1806 * @ctx: The context of &damon_ctx->walk_control. 1807 * @t: The monitoring target of @r that @s will be applied. 1808 * @r: The region of @t that @s will be applied. 1809 * @s: The scheme of @ctx that will be applied to @r. 1810 * 1811 * This function is called from kdamond whenever it asked the operation set to 1812 * apply a DAMOS scheme action to a region. If a DAMOS walk request is 1813 * installed by damos_walk() and not yet uninstalled, invoke it. 1814 */ 1815 static void damos_walk_call_walk(struct damon_ctx *ctx, struct damon_target *t, 1816 struct damon_region *r, struct damos *s, 1817 unsigned long sz_filter_passed) 1818 { 1819 struct damos_walk_control *control; 1820 1821 if (s->walk_completed) 1822 return; 1823 1824 control = ctx->walk_control; 1825 if (!control) 1826 return; 1827 1828 control->walk_fn(control->data, ctx, t, r, s, sz_filter_passed); 1829 } 1830 1831 /* 1832 * damos_walk_complete() - Complete DAMOS walk request if all walks are done. 1833 * @ctx: The context of &damon_ctx->walk_control. 1834 * @s: A scheme of @ctx that all walks are now done. 1835 * 1836 * This function is called when kdamond finished applying the action of a DAMOS 1837 * scheme to all regions that eligible for the given &damos->apply_interval_us. 1838 * If every scheme of @ctx including @s now finished walking for at least one 1839 * &damos->apply_interval_us, this function makrs the handling of the given 1840 * DAMOS walk request is done, so that damos_walk() can wake up and return. 1841 */ 1842 static void damos_walk_complete(struct damon_ctx *ctx, struct damos *s) 1843 { 1844 struct damos *siter; 1845 struct damos_walk_control *control; 1846 1847 control = ctx->walk_control; 1848 if (!control) 1849 return; 1850 1851 s->walk_completed = true; 1852 /* if all schemes completed, signal completion to walker */ 1853 damon_for_each_scheme(siter, ctx) { 1854 if (!siter->walk_completed) 1855 return; 1856 } 1857 damon_for_each_scheme(siter, ctx) 1858 siter->walk_completed = false; 1859 1860 complete(&control->completion); 1861 ctx->walk_control = NULL; 1862 } 1863 1864 /* 1865 * damos_walk_cancel() - Cancel the current DAMOS walk request. 1866 * @ctx: The context of &damon_ctx->walk_control. 1867 * 1868 * This function is called when @ctx is deactivated by DAMOS watermarks, DAMOS 1869 * walk is requested but there is no DAMOS scheme to walk for, or the kdamond 1870 * is already out of the main loop and therefore gonna be terminated, and hence 1871 * cannot continue the walks. This function therefore marks the walk request 1872 * as canceled, so that damos_walk() can wake up and return. 1873 */ 1874 static void damos_walk_cancel(struct damon_ctx *ctx) 1875 { 1876 struct damos_walk_control *control; 1877 1878 mutex_lock(&ctx->walk_control_lock); 1879 control = ctx->walk_control; 1880 mutex_unlock(&ctx->walk_control_lock); 1881 1882 if (!control) 1883 return; 1884 control->canceled = true; 1885 complete(&control->completion); 1886 mutex_lock(&ctx->walk_control_lock); 1887 ctx->walk_control = NULL; 1888 mutex_unlock(&ctx->walk_control_lock); 1889 } 1890 1891 static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t, 1892 struct damon_region *r, struct damos *s) 1893 { 1894 struct damos_quota *quota = &s->quota; 1895 unsigned long sz = damon_sz_region(r); 1896 struct timespec64 begin, end; 1897 unsigned long sz_applied = 0; 1898 unsigned long sz_ops_filter_passed = 0; 1899 /* 1900 * We plan to support multiple context per kdamond, as DAMON sysfs 1901 * implies with 'nr_contexts' file. Nevertheless, only single context 1902 * per kdamond is supported for now. So, we can simply use '0' context 1903 * index here. 1904 */ 1905 unsigned int cidx = 0; 1906 struct damos *siter; /* schemes iterator */ 1907 unsigned int sidx = 0; 1908 struct damon_target *titer; /* targets iterator */ 1909 unsigned int tidx = 0; 1910 bool do_trace = false; 1911 1912 /* get indices for trace_damos_before_apply() */ 1913 if (trace_damos_before_apply_enabled()) { 1914 damon_for_each_scheme(siter, c) { 1915 if (siter == s) 1916 break; 1917 sidx++; 1918 } 1919 damon_for_each_target(titer, c) { 1920 if (titer == t) 1921 break; 1922 tidx++; 1923 } 1924 do_trace = true; 1925 } 1926 1927 if (c->ops.apply_scheme) { 1928 if (quota->esz && quota->charged_sz + sz > quota->esz) { 1929 sz = ALIGN_DOWN(quota->esz - quota->charged_sz, 1930 c->min_sz_region); 1931 if (!sz) 1932 goto update_stat; 1933 damon_split_region_at(t, r, sz); 1934 } 1935 if (damos_filter_out(c, t, r, s)) 1936 return; 1937 ktime_get_coarse_ts64(&begin); 1938 trace_damos_before_apply(cidx, sidx, tidx, r, 1939 damon_nr_regions(t), do_trace); 1940 sz_applied = c->ops.apply_scheme(c, t, r, s, 1941 &sz_ops_filter_passed); 1942 damos_walk_call_walk(c, t, r, s, sz_ops_filter_passed); 1943 ktime_get_coarse_ts64(&end); 1944 quota->total_charged_ns += timespec64_to_ns(&end) - 1945 timespec64_to_ns(&begin); 1946 quota->charged_sz += sz; 1947 if (quota->esz && quota->charged_sz >= quota->esz) { 1948 quota->charge_target_from = t; 1949 quota->charge_addr_from = r->ar.end + 1; 1950 } 1951 } 1952 if (s->action != DAMOS_STAT) 1953 r->age = 0; 1954 1955 update_stat: 1956 damos_update_stat(s, sz, sz_applied, sz_ops_filter_passed); 1957 } 1958 1959 static void damon_do_apply_schemes(struct damon_ctx *c, 1960 struct damon_target *t, 1961 struct damon_region *r) 1962 { 1963 struct damos *s; 1964 1965 damon_for_each_scheme(s, c) { 1966 struct damos_quota *quota = &s->quota; 1967 1968 if (c->passed_sample_intervals < s->next_apply_sis) 1969 continue; 1970 1971 if (!s->wmarks.activated) 1972 continue; 1973 1974 /* Check the quota */ 1975 if (quota->esz && quota->charged_sz >= quota->esz) 1976 continue; 1977 1978 if (damos_skip_charged_region(t, &r, s, c->min_sz_region)) 1979 continue; 1980 1981 if (!damos_valid_target(c, t, r, s)) 1982 continue; 1983 1984 damos_apply_scheme(c, t, r, s); 1985 } 1986 } 1987 1988 /* 1989 * damon_feed_loop_next_input() - get next input to achieve a target score. 1990 * @last_input The last input. 1991 * @score Current score that made with @last_input. 1992 * 1993 * Calculate next input to achieve the target score, based on the last input 1994 * and current score. Assuming the input and the score are positively 1995 * proportional, calculate how much compensation should be added to or 1996 * subtracted from the last input as a proportion of the last input. Avoid 1997 * next input always being zero by setting it non-zero always. In short form 1998 * (assuming support of float and signed calculations), the algorithm is as 1999 * below. 2000 * 2001 * next_input = max(last_input * ((goal - current) / goal + 1), 1) 2002 * 2003 * For simple implementation, we assume the target score is always 10,000. The 2004 * caller should adjust @score for this. 2005 * 2006 * Returns next input that assumed to achieve the target score. 2007 */ 2008 static unsigned long damon_feed_loop_next_input(unsigned long last_input, 2009 unsigned long score) 2010 { 2011 const unsigned long goal = 10000; 2012 /* Set minimum input as 10000 to avoid compensation be zero */ 2013 const unsigned long min_input = 10000; 2014 unsigned long score_goal_diff, compensation; 2015 bool over_achieving = score > goal; 2016 2017 if (score == goal) 2018 return last_input; 2019 if (score >= goal * 2) 2020 return min_input; 2021 2022 if (over_achieving) 2023 score_goal_diff = score - goal; 2024 else 2025 score_goal_diff = goal - score; 2026 2027 if (last_input < ULONG_MAX / score_goal_diff) 2028 compensation = last_input * score_goal_diff / goal; 2029 else 2030 compensation = last_input / goal * score_goal_diff; 2031 2032 if (over_achieving) 2033 return max(last_input - compensation, min_input); 2034 if (last_input < ULONG_MAX - compensation) 2035 return last_input + compensation; 2036 return ULONG_MAX; 2037 } 2038 2039 #ifdef CONFIG_PSI 2040 2041 static u64 damos_get_some_mem_psi_total(void) 2042 { 2043 if (static_branch_likely(&psi_disabled)) 2044 return 0; 2045 return div_u64(psi_system.total[PSI_AVGS][PSI_MEM * 2], 2046 NSEC_PER_USEC); 2047 } 2048 2049 #else /* CONFIG_PSI */ 2050 2051 static inline u64 damos_get_some_mem_psi_total(void) 2052 { 2053 return 0; 2054 }; 2055 2056 #endif /* CONFIG_PSI */ 2057 2058 #ifdef CONFIG_NUMA 2059 static __kernel_ulong_t damos_get_node_mem_bp( 2060 struct damos_quota_goal *goal) 2061 { 2062 struct sysinfo i; 2063 __kernel_ulong_t numerator; 2064 2065 si_meminfo_node(&i, goal->nid); 2066 if (goal->metric == DAMOS_QUOTA_NODE_MEM_USED_BP) 2067 numerator = i.totalram - i.freeram; 2068 else /* DAMOS_QUOTA_NODE_MEM_FREE_BP */ 2069 numerator = i.freeram; 2070 return numerator * 10000 / i.totalram; 2071 } 2072 2073 static unsigned long damos_get_node_memcg_used_bp( 2074 struct damos_quota_goal *goal) 2075 { 2076 struct mem_cgroup *memcg; 2077 struct lruvec *lruvec; 2078 unsigned long used_pages, numerator; 2079 struct sysinfo i; 2080 2081 rcu_read_lock(); 2082 memcg = mem_cgroup_from_id(goal->memcg_id); 2083 if (!memcg || !mem_cgroup_tryget(memcg)) { 2084 rcu_read_unlock(); 2085 if (goal->metric == DAMOS_QUOTA_NODE_MEMCG_USED_BP) 2086 return 0; 2087 else /* DAMOS_QUOTA_NODE_MEMCG_FREE_BP */ 2088 return 10000; 2089 } 2090 rcu_read_unlock(); 2091 2092 mem_cgroup_flush_stats(memcg); 2093 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(goal->nid)); 2094 used_pages = lruvec_page_state(lruvec, NR_ACTIVE_ANON); 2095 used_pages += lruvec_page_state(lruvec, NR_INACTIVE_ANON); 2096 used_pages += lruvec_page_state(lruvec, NR_ACTIVE_FILE); 2097 used_pages += lruvec_page_state(lruvec, NR_INACTIVE_FILE); 2098 2099 mem_cgroup_put(memcg); 2100 2101 si_meminfo_node(&i, goal->nid); 2102 if (goal->metric == DAMOS_QUOTA_NODE_MEMCG_USED_BP) 2103 numerator = used_pages; 2104 else /* DAMOS_QUOTA_NODE_MEMCG_FREE_BP */ 2105 numerator = i.totalram - used_pages; 2106 return numerator * 10000 / i.totalram; 2107 } 2108 #else 2109 static __kernel_ulong_t damos_get_node_mem_bp( 2110 struct damos_quota_goal *goal) 2111 { 2112 return 0; 2113 } 2114 2115 static unsigned long damos_get_node_memcg_used_bp( 2116 struct damos_quota_goal *goal) 2117 { 2118 return 0; 2119 } 2120 #endif 2121 2122 2123 static void damos_set_quota_goal_current_value(struct damos_quota_goal *goal) 2124 { 2125 u64 now_psi_total; 2126 2127 switch (goal->metric) { 2128 case DAMOS_QUOTA_USER_INPUT: 2129 /* User should already set goal->current_value */ 2130 break; 2131 case DAMOS_QUOTA_SOME_MEM_PSI_US: 2132 now_psi_total = damos_get_some_mem_psi_total(); 2133 goal->current_value = now_psi_total - goal->last_psi_total; 2134 goal->last_psi_total = now_psi_total; 2135 break; 2136 case DAMOS_QUOTA_NODE_MEM_USED_BP: 2137 case DAMOS_QUOTA_NODE_MEM_FREE_BP: 2138 goal->current_value = damos_get_node_mem_bp(goal); 2139 break; 2140 case DAMOS_QUOTA_NODE_MEMCG_USED_BP: 2141 case DAMOS_QUOTA_NODE_MEMCG_FREE_BP: 2142 goal->current_value = damos_get_node_memcg_used_bp(goal); 2143 break; 2144 default: 2145 break; 2146 } 2147 } 2148 2149 /* Return the highest score since it makes schemes least aggressive */ 2150 static unsigned long damos_quota_score(struct damos_quota *quota) 2151 { 2152 struct damos_quota_goal *goal; 2153 unsigned long highest_score = 0; 2154 2155 damos_for_each_quota_goal(goal, quota) { 2156 damos_set_quota_goal_current_value(goal); 2157 highest_score = max(highest_score, 2158 goal->current_value * 10000 / 2159 goal->target_value); 2160 } 2161 2162 return highest_score; 2163 } 2164 2165 /* 2166 * Called only if quota->ms, or quota->sz are set, or quota->goals is not empty 2167 */ 2168 static void damos_set_effective_quota(struct damos_quota *quota) 2169 { 2170 unsigned long throughput; 2171 unsigned long esz = ULONG_MAX; 2172 2173 if (!quota->ms && list_empty("a->goals)) { 2174 quota->esz = quota->sz; 2175 return; 2176 } 2177 2178 if (!list_empty("a->goals)) { 2179 unsigned long score = damos_quota_score(quota); 2180 2181 quota->esz_bp = damon_feed_loop_next_input( 2182 max(quota->esz_bp, 10000UL), 2183 score); 2184 esz = quota->esz_bp / 10000; 2185 } 2186 2187 if (quota->ms) { 2188 if (quota->total_charged_ns) 2189 throughput = mult_frac(quota->total_charged_sz, 1000000, 2190 quota->total_charged_ns); 2191 else 2192 throughput = PAGE_SIZE * 1024; 2193 esz = min(throughput * quota->ms, esz); 2194 } 2195 2196 if (quota->sz && quota->sz < esz) 2197 esz = quota->sz; 2198 2199 quota->esz = esz; 2200 } 2201 2202 static void damos_trace_esz(struct damon_ctx *c, struct damos *s, 2203 struct damos_quota *quota) 2204 { 2205 unsigned int cidx = 0, sidx = 0; 2206 struct damos *siter; 2207 2208 damon_for_each_scheme(siter, c) { 2209 if (siter == s) 2210 break; 2211 sidx++; 2212 } 2213 trace_damos_esz(cidx, sidx, quota->esz); 2214 } 2215 2216 static void damos_adjust_quota(struct damon_ctx *c, struct damos *s) 2217 { 2218 struct damos_quota *quota = &s->quota; 2219 struct damon_target *t; 2220 struct damon_region *r; 2221 unsigned long cumulated_sz, cached_esz; 2222 unsigned int score, max_score = 0; 2223 2224 if (!quota->ms && !quota->sz && list_empty("a->goals)) 2225 return; 2226 2227 /* First charge window */ 2228 if (!quota->total_charged_sz && !quota->charged_from) { 2229 quota->charged_from = jiffies; 2230 damos_set_effective_quota(quota); 2231 } 2232 2233 /* New charge window starts */ 2234 if (time_after_eq(jiffies, quota->charged_from + 2235 msecs_to_jiffies(quota->reset_interval))) { 2236 if (quota->esz && quota->charged_sz >= quota->esz) 2237 s->stat.qt_exceeds++; 2238 quota->total_charged_sz += quota->charged_sz; 2239 quota->charged_from = jiffies; 2240 quota->charged_sz = 0; 2241 if (trace_damos_esz_enabled()) 2242 cached_esz = quota->esz; 2243 damos_set_effective_quota(quota); 2244 if (trace_damos_esz_enabled() && quota->esz != cached_esz) 2245 damos_trace_esz(c, s, quota); 2246 } 2247 2248 if (!c->ops.get_scheme_score) 2249 return; 2250 2251 /* Fill up the score histogram */ 2252 memset(c->regions_score_histogram, 0, 2253 sizeof(*c->regions_score_histogram) * 2254 (DAMOS_MAX_SCORE + 1)); 2255 damon_for_each_target(t, c) { 2256 damon_for_each_region(r, t) { 2257 if (!__damos_valid_target(r, s)) 2258 continue; 2259 score = c->ops.get_scheme_score(c, t, r, s); 2260 c->regions_score_histogram[score] += 2261 damon_sz_region(r); 2262 if (score > max_score) 2263 max_score = score; 2264 } 2265 } 2266 2267 /* Set the min score limit */ 2268 for (cumulated_sz = 0, score = max_score; ; score--) { 2269 cumulated_sz += c->regions_score_histogram[score]; 2270 if (cumulated_sz >= quota->esz || !score) 2271 break; 2272 } 2273 quota->min_score = score; 2274 } 2275 2276 static void kdamond_apply_schemes(struct damon_ctx *c) 2277 { 2278 struct damon_target *t; 2279 struct damon_region *r, *next_r; 2280 struct damos *s; 2281 unsigned long sample_interval = c->attrs.sample_interval ? 2282 c->attrs.sample_interval : 1; 2283 bool has_schemes_to_apply = false; 2284 2285 damon_for_each_scheme(s, c) { 2286 if (c->passed_sample_intervals < s->next_apply_sis) 2287 continue; 2288 2289 if (!s->wmarks.activated) 2290 continue; 2291 2292 has_schemes_to_apply = true; 2293 2294 damos_adjust_quota(c, s); 2295 } 2296 2297 if (!has_schemes_to_apply) 2298 return; 2299 2300 mutex_lock(&c->walk_control_lock); 2301 damon_for_each_target(t, c) { 2302 damon_for_each_region_safe(r, next_r, t) 2303 damon_do_apply_schemes(c, t, r); 2304 } 2305 2306 damon_for_each_scheme(s, c) { 2307 if (c->passed_sample_intervals < s->next_apply_sis) 2308 continue; 2309 damos_walk_complete(c, s); 2310 s->next_apply_sis = c->passed_sample_intervals + 2311 (s->apply_interval_us ? s->apply_interval_us : 2312 c->attrs.aggr_interval) / sample_interval; 2313 s->last_applied = NULL; 2314 } 2315 mutex_unlock(&c->walk_control_lock); 2316 } 2317 2318 /* 2319 * Merge two adjacent regions into one region 2320 */ 2321 static void damon_merge_two_regions(struct damon_target *t, 2322 struct damon_region *l, struct damon_region *r) 2323 { 2324 unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r); 2325 2326 l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) / 2327 (sz_l + sz_r); 2328 l->nr_accesses_bp = l->nr_accesses * 10000; 2329 l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r); 2330 l->ar.end = r->ar.end; 2331 damon_destroy_region(r, t); 2332 } 2333 2334 /* 2335 * Merge adjacent regions having similar access frequencies 2336 * 2337 * t target affected by this merge operation 2338 * thres '->nr_accesses' diff threshold for the merge 2339 * sz_limit size upper limit of each region 2340 */ 2341 static void damon_merge_regions_of(struct damon_target *t, unsigned int thres, 2342 unsigned long sz_limit) 2343 { 2344 struct damon_region *r, *prev = NULL, *next; 2345 2346 damon_for_each_region_safe(r, next, t) { 2347 if (abs(r->nr_accesses - r->last_nr_accesses) > thres) 2348 r->age = 0; 2349 else if ((r->nr_accesses == 0) != (r->last_nr_accesses == 0)) 2350 r->age = 0; 2351 else 2352 r->age++; 2353 2354 if (prev && prev->ar.end == r->ar.start && 2355 abs(prev->nr_accesses - r->nr_accesses) <= thres && 2356 damon_sz_region(prev) + damon_sz_region(r) <= sz_limit) 2357 damon_merge_two_regions(t, prev, r); 2358 else 2359 prev = r; 2360 } 2361 } 2362 2363 /* 2364 * Merge adjacent regions having similar access frequencies 2365 * 2366 * threshold '->nr_accesses' diff threshold for the merge 2367 * sz_limit size upper limit of each region 2368 * 2369 * This function merges monitoring target regions which are adjacent and their 2370 * access frequencies are similar. This is for minimizing the monitoring 2371 * overhead under the dynamically changeable access pattern. If a merge was 2372 * unnecessarily made, later 'kdamond_split_regions()' will revert it. 2373 * 2374 * The total number of regions could be higher than the user-defined limit, 2375 * max_nr_regions for some cases. For example, the user can update 2376 * max_nr_regions to a number that lower than the current number of regions 2377 * while DAMON is running. For such a case, repeat merging until the limit is 2378 * met while increasing @threshold up to possible maximum level. 2379 */ 2380 static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold, 2381 unsigned long sz_limit) 2382 { 2383 struct damon_target *t; 2384 unsigned int nr_regions; 2385 unsigned int max_thres; 2386 2387 max_thres = c->attrs.aggr_interval / 2388 (c->attrs.sample_interval ? c->attrs.sample_interval : 1); 2389 do { 2390 nr_regions = 0; 2391 damon_for_each_target(t, c) { 2392 damon_merge_regions_of(t, threshold, sz_limit); 2393 nr_regions += damon_nr_regions(t); 2394 } 2395 threshold = max(1, threshold * 2); 2396 } while (nr_regions > c->attrs.max_nr_regions && 2397 threshold / 2 < max_thres); 2398 } 2399 2400 /* 2401 * Split a region in two 2402 * 2403 * r the region to be split 2404 * sz_r size of the first sub-region that will be made 2405 */ 2406 static void damon_split_region_at(struct damon_target *t, 2407 struct damon_region *r, unsigned long sz_r) 2408 { 2409 struct damon_region *new; 2410 2411 new = damon_new_region(r->ar.start + sz_r, r->ar.end); 2412 if (!new) 2413 return; 2414 2415 r->ar.end = new->ar.start; 2416 2417 new->age = r->age; 2418 new->last_nr_accesses = r->last_nr_accesses; 2419 new->nr_accesses_bp = r->nr_accesses_bp; 2420 new->nr_accesses = r->nr_accesses; 2421 2422 damon_insert_region(new, r, damon_next_region(r), t); 2423 } 2424 2425 /* Split every region in the given target into 'nr_subs' regions */ 2426 static void damon_split_regions_of(struct damon_target *t, int nr_subs, 2427 unsigned long min_sz_region) 2428 { 2429 struct damon_region *r, *next; 2430 unsigned long sz_region, sz_sub = 0; 2431 int i; 2432 2433 damon_for_each_region_safe(r, next, t) { 2434 sz_region = damon_sz_region(r); 2435 2436 for (i = 0; i < nr_subs - 1 && 2437 sz_region > 2 * min_sz_region; i++) { 2438 /* 2439 * Randomly select size of left sub-region to be at 2440 * least 10 percent and at most 90% of original region 2441 */ 2442 sz_sub = ALIGN_DOWN(damon_rand(1, 10) * 2443 sz_region / 10, min_sz_region); 2444 /* Do not allow blank region */ 2445 if (sz_sub == 0 || sz_sub >= sz_region) 2446 continue; 2447 2448 damon_split_region_at(t, r, sz_sub); 2449 sz_region = sz_sub; 2450 } 2451 } 2452 } 2453 2454 /* 2455 * Split every target region into randomly-sized small regions 2456 * 2457 * This function splits every target region into random-sized small regions if 2458 * current total number of the regions is equal or smaller than half of the 2459 * user-specified maximum number of regions. This is for maximizing the 2460 * monitoring accuracy under the dynamically changeable access patterns. If a 2461 * split was unnecessarily made, later 'kdamond_merge_regions()' will revert 2462 * it. 2463 */ 2464 static void kdamond_split_regions(struct damon_ctx *ctx) 2465 { 2466 struct damon_target *t; 2467 unsigned int nr_regions = 0; 2468 static unsigned int last_nr_regions; 2469 int nr_subregions = 2; 2470 2471 damon_for_each_target(t, ctx) 2472 nr_regions += damon_nr_regions(t); 2473 2474 if (nr_regions > ctx->attrs.max_nr_regions / 2) 2475 return; 2476 2477 /* Maybe the middle of the region has different access frequency */ 2478 if (last_nr_regions == nr_regions && 2479 nr_regions < ctx->attrs.max_nr_regions / 3) 2480 nr_subregions = 3; 2481 2482 damon_for_each_target(t, ctx) 2483 damon_split_regions_of(t, nr_subregions, ctx->min_sz_region); 2484 2485 last_nr_regions = nr_regions; 2486 } 2487 2488 /* 2489 * Check whether current monitoring should be stopped 2490 * 2491 * The monitoring is stopped when either the user requested to stop, or all 2492 * monitoring targets are invalid. 2493 * 2494 * Returns true if need to stop current monitoring. 2495 */ 2496 static bool kdamond_need_stop(struct damon_ctx *ctx) 2497 { 2498 struct damon_target *t; 2499 2500 if (kthread_should_stop()) 2501 return true; 2502 2503 if (!ctx->ops.target_valid) 2504 return false; 2505 2506 damon_for_each_target(t, ctx) { 2507 if (ctx->ops.target_valid(t)) 2508 return false; 2509 } 2510 2511 return true; 2512 } 2513 2514 static int damos_get_wmark_metric_value(enum damos_wmark_metric metric, 2515 unsigned long *metric_value) 2516 { 2517 switch (metric) { 2518 case DAMOS_WMARK_FREE_MEM_RATE: 2519 *metric_value = global_zone_page_state(NR_FREE_PAGES) * 1000 / 2520 totalram_pages(); 2521 return 0; 2522 default: 2523 break; 2524 } 2525 return -EINVAL; 2526 } 2527 2528 /* 2529 * Returns zero if the scheme is active. Else, returns time to wait for next 2530 * watermark check in micro-seconds. 2531 */ 2532 static unsigned long damos_wmark_wait_us(struct damos *scheme) 2533 { 2534 unsigned long metric; 2535 2536 if (damos_get_wmark_metric_value(scheme->wmarks.metric, &metric)) 2537 return 0; 2538 2539 /* higher than high watermark or lower than low watermark */ 2540 if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) { 2541 if (scheme->wmarks.activated) 2542 pr_debug("deactivate a scheme (%d) for %s wmark\n", 2543 scheme->action, 2544 str_high_low(metric > scheme->wmarks.high)); 2545 scheme->wmarks.activated = false; 2546 return scheme->wmarks.interval; 2547 } 2548 2549 /* inactive and higher than middle watermark */ 2550 if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) && 2551 !scheme->wmarks.activated) 2552 return scheme->wmarks.interval; 2553 2554 if (!scheme->wmarks.activated) 2555 pr_debug("activate a scheme (%d)\n", scheme->action); 2556 scheme->wmarks.activated = true; 2557 return 0; 2558 } 2559 2560 static void kdamond_usleep(unsigned long usecs) 2561 { 2562 if (usecs >= USLEEP_RANGE_UPPER_BOUND) 2563 schedule_timeout_idle(usecs_to_jiffies(usecs)); 2564 else 2565 usleep_range_idle(usecs, usecs + 1); 2566 } 2567 2568 /* 2569 * kdamond_call() - handle damon_call_control objects. 2570 * @ctx: The &struct damon_ctx of the kdamond. 2571 * @cancel: Whether to cancel the invocation of the function. 2572 * 2573 * If there are &struct damon_call_control requests that registered via 2574 * &damon_call() on @ctx, do or cancel the invocation of the function depending 2575 * on @cancel. @cancel is set when the kdamond is already out of the main loop 2576 * and therefore will be terminated. 2577 */ 2578 static void kdamond_call(struct damon_ctx *ctx, bool cancel) 2579 { 2580 struct damon_call_control *control; 2581 LIST_HEAD(repeat_controls); 2582 int ret = 0; 2583 2584 while (true) { 2585 mutex_lock(&ctx->call_controls_lock); 2586 control = list_first_entry_or_null(&ctx->call_controls, 2587 struct damon_call_control, list); 2588 mutex_unlock(&ctx->call_controls_lock); 2589 if (!control) 2590 break; 2591 if (cancel) { 2592 control->canceled = true; 2593 } else { 2594 ret = control->fn(control->data); 2595 control->return_code = ret; 2596 } 2597 mutex_lock(&ctx->call_controls_lock); 2598 list_del(&control->list); 2599 mutex_unlock(&ctx->call_controls_lock); 2600 if (!control->repeat) { 2601 complete(&control->completion); 2602 } else if (control->canceled && control->dealloc_on_cancel) { 2603 kfree(control); 2604 continue; 2605 } else { 2606 list_add(&control->list, &repeat_controls); 2607 } 2608 } 2609 control = list_first_entry_or_null(&repeat_controls, 2610 struct damon_call_control, list); 2611 if (!control || cancel) 2612 return; 2613 mutex_lock(&ctx->call_controls_lock); 2614 list_add_tail(&control->list, &ctx->call_controls); 2615 mutex_unlock(&ctx->call_controls_lock); 2616 } 2617 2618 /* Returns negative error code if it's not activated but should return */ 2619 static int kdamond_wait_activation(struct damon_ctx *ctx) 2620 { 2621 struct damos *s; 2622 unsigned long wait_time; 2623 unsigned long min_wait_time = 0; 2624 bool init_wait_time = false; 2625 2626 while (!kdamond_need_stop(ctx)) { 2627 damon_for_each_scheme(s, ctx) { 2628 wait_time = damos_wmark_wait_us(s); 2629 if (!init_wait_time || wait_time < min_wait_time) { 2630 init_wait_time = true; 2631 min_wait_time = wait_time; 2632 } 2633 } 2634 if (!min_wait_time) 2635 return 0; 2636 2637 kdamond_usleep(min_wait_time); 2638 2639 kdamond_call(ctx, false); 2640 damos_walk_cancel(ctx); 2641 } 2642 return -EBUSY; 2643 } 2644 2645 static void kdamond_init_ctx(struct damon_ctx *ctx) 2646 { 2647 unsigned long sample_interval = ctx->attrs.sample_interval ? 2648 ctx->attrs.sample_interval : 1; 2649 unsigned long apply_interval; 2650 struct damos *scheme; 2651 2652 ctx->passed_sample_intervals = 0; 2653 ctx->next_aggregation_sis = ctx->attrs.aggr_interval / sample_interval; 2654 ctx->next_ops_update_sis = ctx->attrs.ops_update_interval / 2655 sample_interval; 2656 ctx->next_intervals_tune_sis = ctx->next_aggregation_sis * 2657 ctx->attrs.intervals_goal.aggrs; 2658 2659 damon_for_each_scheme(scheme, ctx) { 2660 apply_interval = scheme->apply_interval_us ? 2661 scheme->apply_interval_us : ctx->attrs.aggr_interval; 2662 scheme->next_apply_sis = apply_interval / sample_interval; 2663 damos_set_filters_default_reject(scheme); 2664 } 2665 } 2666 2667 /* 2668 * The monitoring daemon that runs as a kernel thread 2669 */ 2670 static int kdamond_fn(void *data) 2671 { 2672 struct damon_ctx *ctx = data; 2673 struct damon_target *t; 2674 struct damon_region *r, *next; 2675 unsigned int max_nr_accesses = 0; 2676 unsigned long sz_limit = 0; 2677 2678 pr_debug("kdamond (%d) starts\n", current->pid); 2679 2680 complete(&ctx->kdamond_started); 2681 kdamond_init_ctx(ctx); 2682 2683 if (ctx->ops.init) 2684 ctx->ops.init(ctx); 2685 ctx->regions_score_histogram = kmalloc_array(DAMOS_MAX_SCORE + 1, 2686 sizeof(*ctx->regions_score_histogram), GFP_KERNEL); 2687 if (!ctx->regions_score_histogram) 2688 goto done; 2689 2690 sz_limit = damon_region_sz_limit(ctx); 2691 2692 while (!kdamond_need_stop(ctx)) { 2693 /* 2694 * ctx->attrs and ctx->next_{aggregation,ops_update}_sis could 2695 * be changed from kdamond_call(). Read the values here, and 2696 * use those for this iteration. That is, damon_set_attrs() 2697 * updated new values are respected from next iteration. 2698 */ 2699 unsigned long next_aggregation_sis = ctx->next_aggregation_sis; 2700 unsigned long next_ops_update_sis = ctx->next_ops_update_sis; 2701 unsigned long sample_interval = ctx->attrs.sample_interval; 2702 2703 if (kdamond_wait_activation(ctx)) 2704 break; 2705 2706 if (ctx->ops.prepare_access_checks) 2707 ctx->ops.prepare_access_checks(ctx); 2708 2709 kdamond_usleep(sample_interval); 2710 ctx->passed_sample_intervals++; 2711 2712 if (ctx->ops.check_accesses) 2713 max_nr_accesses = ctx->ops.check_accesses(ctx); 2714 2715 if (ctx->passed_sample_intervals >= next_aggregation_sis) 2716 kdamond_merge_regions(ctx, 2717 max_nr_accesses / 10, 2718 sz_limit); 2719 2720 /* 2721 * do kdamond_call() and kdamond_apply_schemes() after 2722 * kdamond_merge_regions() if possible, to reduce overhead 2723 */ 2724 kdamond_call(ctx, false); 2725 if (!list_empty(&ctx->schemes)) 2726 kdamond_apply_schemes(ctx); 2727 else 2728 damos_walk_cancel(ctx); 2729 2730 sample_interval = ctx->attrs.sample_interval ? 2731 ctx->attrs.sample_interval : 1; 2732 if (ctx->passed_sample_intervals >= next_aggregation_sis) { 2733 if (ctx->attrs.intervals_goal.aggrs && 2734 ctx->passed_sample_intervals >= 2735 ctx->next_intervals_tune_sis) { 2736 /* 2737 * ctx->next_aggregation_sis might be updated 2738 * from kdamond_call(). In the case, 2739 * damon_set_attrs() which will be called from 2740 * kdamond_tune_interval() may wrongly think 2741 * this is in the middle of the current 2742 * aggregation, and make aggregation 2743 * information reset for all regions. Then, 2744 * following kdamond_reset_aggregated() call 2745 * will make the region information invalid, 2746 * particularly for ->nr_accesses_bp. 2747 * 2748 * Reset ->next_aggregation_sis to avoid that. 2749 * It will anyway correctly updated after this 2750 * if caluse. 2751 */ 2752 ctx->next_aggregation_sis = 2753 next_aggregation_sis; 2754 ctx->next_intervals_tune_sis += 2755 ctx->attrs.aggr_samples * 2756 ctx->attrs.intervals_goal.aggrs; 2757 kdamond_tune_intervals(ctx); 2758 sample_interval = ctx->attrs.sample_interval ? 2759 ctx->attrs.sample_interval : 1; 2760 2761 } 2762 ctx->next_aggregation_sis = next_aggregation_sis + 2763 ctx->attrs.aggr_interval / sample_interval; 2764 2765 kdamond_reset_aggregated(ctx); 2766 kdamond_split_regions(ctx); 2767 } 2768 2769 if (ctx->passed_sample_intervals >= next_ops_update_sis) { 2770 ctx->next_ops_update_sis = next_ops_update_sis + 2771 ctx->attrs.ops_update_interval / 2772 sample_interval; 2773 if (ctx->ops.update) 2774 ctx->ops.update(ctx); 2775 sz_limit = damon_region_sz_limit(ctx); 2776 } 2777 } 2778 done: 2779 damon_for_each_target(t, ctx) { 2780 damon_for_each_region_safe(r, next, t) 2781 damon_destroy_region(r, t); 2782 } 2783 2784 if (ctx->ops.cleanup) 2785 ctx->ops.cleanup(ctx); 2786 kfree(ctx->regions_score_histogram); 2787 kdamond_call(ctx, true); 2788 2789 pr_debug("kdamond (%d) finishes\n", current->pid); 2790 mutex_lock(&ctx->kdamond_lock); 2791 ctx->kdamond = NULL; 2792 mutex_unlock(&ctx->kdamond_lock); 2793 2794 damos_walk_cancel(ctx); 2795 2796 mutex_lock(&damon_lock); 2797 nr_running_ctxs--; 2798 if (!nr_running_ctxs && running_exclusive_ctxs) 2799 running_exclusive_ctxs = false; 2800 mutex_unlock(&damon_lock); 2801 2802 damon_destroy_targets(ctx); 2803 return 0; 2804 } 2805 2806 /* 2807 * struct damon_system_ram_region - System RAM resource address region of 2808 * [@start, @end). 2809 * @start: Start address of the region (inclusive). 2810 * @end: End address of the region (exclusive). 2811 */ 2812 struct damon_system_ram_region { 2813 unsigned long start; 2814 unsigned long end; 2815 }; 2816 2817 static int walk_system_ram(struct resource *res, void *arg) 2818 { 2819 struct damon_system_ram_region *a = arg; 2820 2821 if (a->end - a->start < resource_size(res)) { 2822 a->start = res->start; 2823 a->end = res->end; 2824 } 2825 return 0; 2826 } 2827 2828 /* 2829 * Find biggest 'System RAM' resource and store its start and end address in 2830 * @start and @end, respectively. If no System RAM is found, returns false. 2831 */ 2832 static bool damon_find_biggest_system_ram(unsigned long *start, 2833 unsigned long *end) 2834 2835 { 2836 struct damon_system_ram_region arg = {}; 2837 2838 walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram); 2839 if (arg.end <= arg.start) 2840 return false; 2841 2842 *start = arg.start; 2843 *end = arg.end; 2844 return true; 2845 } 2846 2847 /** 2848 * damon_set_region_biggest_system_ram_default() - Set the region of the given 2849 * monitoring target as requested, or biggest 'System RAM'. 2850 * @t: The monitoring target to set the region. 2851 * @start: The pointer to the start address of the region. 2852 * @end: The pointer to the end address of the region. 2853 * @min_sz_region: Minimum region size. 2854 * 2855 * This function sets the region of @t as requested by @start and @end. If the 2856 * values of @start and @end are zero, however, this function finds the biggest 2857 * 'System RAM' resource and sets the region to cover the resource. In the 2858 * latter case, this function saves the start and end addresses of the resource 2859 * in @start and @end, respectively. 2860 * 2861 * Return: 0 on success, negative error code otherwise. 2862 */ 2863 int damon_set_region_biggest_system_ram_default(struct damon_target *t, 2864 unsigned long *start, unsigned long *end, 2865 unsigned long min_sz_region) 2866 { 2867 struct damon_addr_range addr_range; 2868 2869 if (*start > *end) 2870 return -EINVAL; 2871 2872 if (!*start && !*end && 2873 !damon_find_biggest_system_ram(start, end)) 2874 return -EINVAL; 2875 2876 addr_range.start = *start; 2877 addr_range.end = *end; 2878 return damon_set_regions(t, &addr_range, 1, min_sz_region); 2879 } 2880 2881 /* 2882 * damon_moving_sum() - Calculate an inferred moving sum value. 2883 * @mvsum: Inferred sum of the last @len_window values. 2884 * @nomvsum: Non-moving sum of the last discrete @len_window window values. 2885 * @len_window: The number of last values to take care of. 2886 * @new_value: New value that will be added to the pseudo moving sum. 2887 * 2888 * Moving sum (moving average * window size) is good for handling noise, but 2889 * the cost of keeping past values can be high for arbitrary window size. This 2890 * function implements a lightweight pseudo moving sum function that doesn't 2891 * keep the past window values. 2892 * 2893 * It simply assumes there was no noise in the past, and get the no-noise 2894 * assumed past value to drop from @nomvsum and @len_window. @nomvsum is a 2895 * non-moving sum of the last window. For example, if @len_window is 10 and we 2896 * have 25 values, @nomvsum is the sum of the 11th to 20th values of the 25 2897 * values. Hence, this function simply drops @nomvsum / @len_window from 2898 * given @mvsum and add @new_value. 2899 * 2900 * For example, if @len_window is 10 and @nomvsum is 50, the last 10 values for 2901 * the last window could be vary, e.g., 0, 10, 0, 10, 0, 10, 0, 0, 0, 20. For 2902 * calculating next moving sum with a new value, we should drop 0 from 50 and 2903 * add the new value. However, this function assumes it got value 5 for each 2904 * of the last ten times. Based on the assumption, when the next value is 2905 * measured, it drops the assumed past value, 5 from the current sum, and add 2906 * the new value to get the updated pseduo-moving average. 2907 * 2908 * This means the value could have errors, but the errors will be disappeared 2909 * for every @len_window aligned calls. For example, if @len_window is 10, the 2910 * pseudo moving sum with 11th value to 19th value would have an error. But 2911 * the sum with 20th value will not have the error. 2912 * 2913 * Return: Pseudo-moving average after getting the @new_value. 2914 */ 2915 static unsigned int damon_moving_sum(unsigned int mvsum, unsigned int nomvsum, 2916 unsigned int len_window, unsigned int new_value) 2917 { 2918 return mvsum - nomvsum / len_window + new_value; 2919 } 2920 2921 /** 2922 * damon_update_region_access_rate() - Update the access rate of a region. 2923 * @r: The DAMON region to update for its access check result. 2924 * @accessed: Whether the region has accessed during last sampling interval. 2925 * @attrs: The damon_attrs of the DAMON context. 2926 * 2927 * Update the access rate of a region with the region's last sampling interval 2928 * access check result. 2929 * 2930 * Usually this will be called by &damon_operations->check_accesses callback. 2931 */ 2932 void damon_update_region_access_rate(struct damon_region *r, bool accessed, 2933 struct damon_attrs *attrs) 2934 { 2935 unsigned int len_window = 1; 2936 2937 /* 2938 * sample_interval can be zero, but cannot be larger than 2939 * aggr_interval, owing to validation of damon_set_attrs(). 2940 */ 2941 if (attrs->sample_interval) 2942 len_window = damon_max_nr_accesses(attrs); 2943 r->nr_accesses_bp = damon_moving_sum(r->nr_accesses_bp, 2944 r->last_nr_accesses * 10000, len_window, 2945 accessed ? 10000 : 0); 2946 2947 if (accessed) 2948 r->nr_accesses++; 2949 } 2950 2951 /** 2952 * damon_initialized() - Return if DAMON is ready to be used. 2953 * 2954 * Return: true if DAMON is ready to be used, false otherwise. 2955 */ 2956 bool damon_initialized(void) 2957 { 2958 return damon_region_cache != NULL; 2959 } 2960 2961 static int __init damon_init(void) 2962 { 2963 damon_region_cache = KMEM_CACHE(damon_region, 0); 2964 if (unlikely(!damon_region_cache)) { 2965 pr_err("creating damon_region_cache fails\n"); 2966 return -ENOMEM; 2967 } 2968 2969 return 0; 2970 } 2971 2972 subsys_initcall(damon_init); 2973 2974 #include "tests/core-kunit.h" 2975