1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Data Access Monitor 4 * 5 * Author: SeongJae Park <sj@kernel.org> 6 */ 7 8 #define pr_fmt(fmt) "damon: " fmt 9 10 #include <linux/damon.h> 11 #include <linux/delay.h> 12 #include <linux/kthread.h> 13 #include <linux/mm.h> 14 #include <linux/psi.h> 15 #include <linux/slab.h> 16 #include <linux/string.h> 17 #include <linux/string_choices.h> 18 19 #define CREATE_TRACE_POINTS 20 #include <trace/events/damon.h> 21 22 #ifdef CONFIG_DAMON_KUNIT_TEST 23 #undef DAMON_MIN_REGION 24 #define DAMON_MIN_REGION 1 25 #endif 26 27 static DEFINE_MUTEX(damon_lock); 28 static int nr_running_ctxs; 29 static bool running_exclusive_ctxs; 30 31 static DEFINE_MUTEX(damon_ops_lock); 32 static struct damon_operations damon_registered_ops[NR_DAMON_OPS]; 33 34 static struct kmem_cache *damon_region_cache __ro_after_init; 35 36 /* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */ 37 static bool __damon_is_registered_ops(enum damon_ops_id id) 38 { 39 struct damon_operations empty_ops = {}; 40 41 if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops))) 42 return false; 43 return true; 44 } 45 46 /** 47 * damon_is_registered_ops() - Check if a given damon_operations is registered. 48 * @id: Id of the damon_operations to check if registered. 49 * 50 * Return: true if the ops is set, false otherwise. 51 */ 52 bool damon_is_registered_ops(enum damon_ops_id id) 53 { 54 bool registered; 55 56 if (id >= NR_DAMON_OPS) 57 return false; 58 mutex_lock(&damon_ops_lock); 59 registered = __damon_is_registered_ops(id); 60 mutex_unlock(&damon_ops_lock); 61 return registered; 62 } 63 64 /** 65 * damon_register_ops() - Register a monitoring operations set to DAMON. 66 * @ops: monitoring operations set to register. 67 * 68 * This function registers a monitoring operations set of valid &struct 69 * damon_operations->id so that others can find and use them later. 70 * 71 * Return: 0 on success, negative error code otherwise. 72 */ 73 int damon_register_ops(struct damon_operations *ops) 74 { 75 int err = 0; 76 77 if (ops->id >= NR_DAMON_OPS) 78 return -EINVAL; 79 80 mutex_lock(&damon_ops_lock); 81 /* Fail for already registered ops */ 82 if (__damon_is_registered_ops(ops->id)) 83 err = -EINVAL; 84 else 85 damon_registered_ops[ops->id] = *ops; 86 mutex_unlock(&damon_ops_lock); 87 return err; 88 } 89 90 /** 91 * damon_select_ops() - Select a monitoring operations to use with the context. 92 * @ctx: monitoring context to use the operations. 93 * @id: id of the registered monitoring operations to select. 94 * 95 * This function finds registered monitoring operations set of @id and make 96 * @ctx to use it. 97 * 98 * Return: 0 on success, negative error code otherwise. 99 */ 100 int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id) 101 { 102 int err = 0; 103 104 if (id >= NR_DAMON_OPS) 105 return -EINVAL; 106 107 mutex_lock(&damon_ops_lock); 108 if (!__damon_is_registered_ops(id)) 109 err = -EINVAL; 110 else 111 ctx->ops = damon_registered_ops[id]; 112 mutex_unlock(&damon_ops_lock); 113 return err; 114 } 115 116 /* 117 * Construct a damon_region struct 118 * 119 * Returns the pointer to the new struct if success, or NULL otherwise 120 */ 121 struct damon_region *damon_new_region(unsigned long start, unsigned long end) 122 { 123 struct damon_region *region; 124 125 region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL); 126 if (!region) 127 return NULL; 128 129 region->ar.start = start; 130 region->ar.end = end; 131 region->nr_accesses = 0; 132 region->nr_accesses_bp = 0; 133 INIT_LIST_HEAD(®ion->list); 134 135 region->age = 0; 136 region->last_nr_accesses = 0; 137 138 return region; 139 } 140 141 void damon_add_region(struct damon_region *r, struct damon_target *t) 142 { 143 list_add_tail(&r->list, &t->regions_list); 144 t->nr_regions++; 145 } 146 147 static void damon_del_region(struct damon_region *r, struct damon_target *t) 148 { 149 list_del(&r->list); 150 t->nr_regions--; 151 } 152 153 static void damon_free_region(struct damon_region *r) 154 { 155 kmem_cache_free(damon_region_cache, r); 156 } 157 158 void damon_destroy_region(struct damon_region *r, struct damon_target *t) 159 { 160 damon_del_region(r, t); 161 damon_free_region(r); 162 } 163 164 /* 165 * Check whether a region is intersecting an address range 166 * 167 * Returns true if it is. 168 */ 169 static bool damon_intersect(struct damon_region *r, 170 struct damon_addr_range *re) 171 { 172 return !(r->ar.end <= re->start || re->end <= r->ar.start); 173 } 174 175 /* 176 * Fill holes in regions with new regions. 177 */ 178 static int damon_fill_regions_holes(struct damon_region *first, 179 struct damon_region *last, struct damon_target *t) 180 { 181 struct damon_region *r = first; 182 183 damon_for_each_region_from(r, t) { 184 struct damon_region *next, *newr; 185 186 if (r == last) 187 break; 188 next = damon_next_region(r); 189 if (r->ar.end != next->ar.start) { 190 newr = damon_new_region(r->ar.end, next->ar.start); 191 if (!newr) 192 return -ENOMEM; 193 damon_insert_region(newr, r, next, t); 194 } 195 } 196 return 0; 197 } 198 199 /* 200 * damon_set_regions() - Set regions of a target for given address ranges. 201 * @t: the given target. 202 * @ranges: array of new monitoring target ranges. 203 * @nr_ranges: length of @ranges. 204 * 205 * This function adds new regions to, or modify existing regions of a 206 * monitoring target to fit in specific ranges. 207 * 208 * Return: 0 if success, or negative error code otherwise. 209 */ 210 int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges, 211 unsigned int nr_ranges) 212 { 213 struct damon_region *r, *next; 214 unsigned int i; 215 int err; 216 217 /* Remove regions which are not in the new ranges */ 218 damon_for_each_region_safe(r, next, t) { 219 for (i = 0; i < nr_ranges; i++) { 220 if (damon_intersect(r, &ranges[i])) 221 break; 222 } 223 if (i == nr_ranges) 224 damon_destroy_region(r, t); 225 } 226 227 r = damon_first_region(t); 228 /* Add new regions or resize existing regions to fit in the ranges */ 229 for (i = 0; i < nr_ranges; i++) { 230 struct damon_region *first = NULL, *last, *newr; 231 struct damon_addr_range *range; 232 233 range = &ranges[i]; 234 /* Get the first/last regions intersecting with the range */ 235 damon_for_each_region_from(r, t) { 236 if (damon_intersect(r, range)) { 237 if (!first) 238 first = r; 239 last = r; 240 } 241 if (r->ar.start >= range->end) 242 break; 243 } 244 if (!first) { 245 /* no region intersects with this range */ 246 newr = damon_new_region( 247 ALIGN_DOWN(range->start, 248 DAMON_MIN_REGION), 249 ALIGN(range->end, DAMON_MIN_REGION)); 250 if (!newr) 251 return -ENOMEM; 252 damon_insert_region(newr, damon_prev_region(r), r, t); 253 } else { 254 /* resize intersecting regions to fit in this range */ 255 first->ar.start = ALIGN_DOWN(range->start, 256 DAMON_MIN_REGION); 257 last->ar.end = ALIGN(range->end, DAMON_MIN_REGION); 258 259 /* fill possible holes in the range */ 260 err = damon_fill_regions_holes(first, last, t); 261 if (err) 262 return err; 263 } 264 } 265 return 0; 266 } 267 268 struct damos_filter *damos_new_filter(enum damos_filter_type type, 269 bool matching, bool allow) 270 { 271 struct damos_filter *filter; 272 273 filter = kmalloc(sizeof(*filter), GFP_KERNEL); 274 if (!filter) 275 return NULL; 276 filter->type = type; 277 filter->matching = matching; 278 filter->allow = allow; 279 INIT_LIST_HEAD(&filter->list); 280 return filter; 281 } 282 283 /** 284 * damos_filter_for_ops() - Return if the filter is ops-hndled one. 285 * @type: type of the filter. 286 * 287 * Return: true if the filter of @type needs to be handled by ops layer, false 288 * otherwise. 289 */ 290 bool damos_filter_for_ops(enum damos_filter_type type) 291 { 292 switch (type) { 293 case DAMOS_FILTER_TYPE_ADDR: 294 case DAMOS_FILTER_TYPE_TARGET: 295 return false; 296 default: 297 break; 298 } 299 return true; 300 } 301 302 void damos_add_filter(struct damos *s, struct damos_filter *f) 303 { 304 if (damos_filter_for_ops(f->type)) 305 list_add_tail(&f->list, &s->ops_filters); 306 else 307 list_add_tail(&f->list, &s->filters); 308 } 309 310 static void damos_del_filter(struct damos_filter *f) 311 { 312 list_del(&f->list); 313 } 314 315 static void damos_free_filter(struct damos_filter *f) 316 { 317 kfree(f); 318 } 319 320 void damos_destroy_filter(struct damos_filter *f) 321 { 322 damos_del_filter(f); 323 damos_free_filter(f); 324 } 325 326 struct damos_quota_goal *damos_new_quota_goal( 327 enum damos_quota_goal_metric metric, 328 unsigned long target_value) 329 { 330 struct damos_quota_goal *goal; 331 332 goal = kmalloc(sizeof(*goal), GFP_KERNEL); 333 if (!goal) 334 return NULL; 335 goal->metric = metric; 336 goal->target_value = target_value; 337 INIT_LIST_HEAD(&goal->list); 338 return goal; 339 } 340 341 void damos_add_quota_goal(struct damos_quota *q, struct damos_quota_goal *g) 342 { 343 list_add_tail(&g->list, &q->goals); 344 } 345 346 static void damos_del_quota_goal(struct damos_quota_goal *g) 347 { 348 list_del(&g->list); 349 } 350 351 static void damos_free_quota_goal(struct damos_quota_goal *g) 352 { 353 kfree(g); 354 } 355 356 void damos_destroy_quota_goal(struct damos_quota_goal *g) 357 { 358 damos_del_quota_goal(g); 359 damos_free_quota_goal(g); 360 } 361 362 /* initialize fields of @quota that normally API users wouldn't set */ 363 static struct damos_quota *damos_quota_init(struct damos_quota *quota) 364 { 365 quota->esz = 0; 366 quota->total_charged_sz = 0; 367 quota->total_charged_ns = 0; 368 quota->charged_sz = 0; 369 quota->charged_from = 0; 370 quota->charge_target_from = NULL; 371 quota->charge_addr_from = 0; 372 quota->esz_bp = 0; 373 return quota; 374 } 375 376 struct damos *damon_new_scheme(struct damos_access_pattern *pattern, 377 enum damos_action action, 378 unsigned long apply_interval_us, 379 struct damos_quota *quota, 380 struct damos_watermarks *wmarks, 381 int target_nid) 382 { 383 struct damos *scheme; 384 385 scheme = kmalloc(sizeof(*scheme), GFP_KERNEL); 386 if (!scheme) 387 return NULL; 388 scheme->pattern = *pattern; 389 scheme->action = action; 390 scheme->apply_interval_us = apply_interval_us; 391 /* 392 * next_apply_sis will be set when kdamond starts. While kdamond is 393 * running, it will also updated when it is added to the DAMON context, 394 * or damon_attrs are updated. 395 */ 396 scheme->next_apply_sis = 0; 397 scheme->walk_completed = false; 398 INIT_LIST_HEAD(&scheme->filters); 399 INIT_LIST_HEAD(&scheme->ops_filters); 400 scheme->stat = (struct damos_stat){}; 401 INIT_LIST_HEAD(&scheme->list); 402 403 scheme->quota = *(damos_quota_init(quota)); 404 /* quota.goals should be separately set by caller */ 405 INIT_LIST_HEAD(&scheme->quota.goals); 406 407 scheme->wmarks = *wmarks; 408 scheme->wmarks.activated = true; 409 410 scheme->migrate_dests = (struct damos_migrate_dests){}; 411 scheme->target_nid = target_nid; 412 413 return scheme; 414 } 415 416 static void damos_set_next_apply_sis(struct damos *s, struct damon_ctx *ctx) 417 { 418 unsigned long sample_interval = ctx->attrs.sample_interval ? 419 ctx->attrs.sample_interval : 1; 420 unsigned long apply_interval = s->apply_interval_us ? 421 s->apply_interval_us : ctx->attrs.aggr_interval; 422 423 s->next_apply_sis = ctx->passed_sample_intervals + 424 apply_interval / sample_interval; 425 } 426 427 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s) 428 { 429 list_add_tail(&s->list, &ctx->schemes); 430 damos_set_next_apply_sis(s, ctx); 431 } 432 433 static void damon_del_scheme(struct damos *s) 434 { 435 list_del(&s->list); 436 } 437 438 static void damon_free_scheme(struct damos *s) 439 { 440 kfree(s); 441 } 442 443 void damon_destroy_scheme(struct damos *s) 444 { 445 struct damos_quota_goal *g, *g_next; 446 struct damos_filter *f, *next; 447 448 damos_for_each_quota_goal_safe(g, g_next, &s->quota) 449 damos_destroy_quota_goal(g); 450 451 damos_for_each_filter_safe(f, next, s) 452 damos_destroy_filter(f); 453 454 kfree(s->migrate_dests.node_id_arr); 455 kfree(s->migrate_dests.weight_arr); 456 damon_del_scheme(s); 457 damon_free_scheme(s); 458 } 459 460 /* 461 * Construct a damon_target struct 462 * 463 * Returns the pointer to the new struct if success, or NULL otherwise 464 */ 465 struct damon_target *damon_new_target(void) 466 { 467 struct damon_target *t; 468 469 t = kmalloc(sizeof(*t), GFP_KERNEL); 470 if (!t) 471 return NULL; 472 473 t->pid = NULL; 474 t->nr_regions = 0; 475 INIT_LIST_HEAD(&t->regions_list); 476 INIT_LIST_HEAD(&t->list); 477 478 return t; 479 } 480 481 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t) 482 { 483 list_add_tail(&t->list, &ctx->adaptive_targets); 484 } 485 486 bool damon_targets_empty(struct damon_ctx *ctx) 487 { 488 return list_empty(&ctx->adaptive_targets); 489 } 490 491 static void damon_del_target(struct damon_target *t) 492 { 493 list_del(&t->list); 494 } 495 496 void damon_free_target(struct damon_target *t) 497 { 498 struct damon_region *r, *next; 499 500 damon_for_each_region_safe(r, next, t) 501 damon_free_region(r); 502 kfree(t); 503 } 504 505 void damon_destroy_target(struct damon_target *t, struct damon_ctx *ctx) 506 { 507 508 if (ctx && ctx->ops.cleanup_target) 509 ctx->ops.cleanup_target(t); 510 511 damon_del_target(t); 512 damon_free_target(t); 513 } 514 515 unsigned int damon_nr_regions(struct damon_target *t) 516 { 517 return t->nr_regions; 518 } 519 520 struct damon_ctx *damon_new_ctx(void) 521 { 522 struct damon_ctx *ctx; 523 524 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 525 if (!ctx) 526 return NULL; 527 528 init_completion(&ctx->kdamond_started); 529 530 ctx->attrs.sample_interval = 5 * 1000; 531 ctx->attrs.aggr_interval = 100 * 1000; 532 ctx->attrs.ops_update_interval = 60 * 1000 * 1000; 533 534 ctx->passed_sample_intervals = 0; 535 /* These will be set from kdamond_init_ctx() */ 536 ctx->next_aggregation_sis = 0; 537 ctx->next_ops_update_sis = 0; 538 539 mutex_init(&ctx->kdamond_lock); 540 INIT_LIST_HEAD(&ctx->call_controls); 541 mutex_init(&ctx->call_controls_lock); 542 mutex_init(&ctx->walk_control_lock); 543 544 ctx->attrs.min_nr_regions = 10; 545 ctx->attrs.max_nr_regions = 1000; 546 547 INIT_LIST_HEAD(&ctx->adaptive_targets); 548 INIT_LIST_HEAD(&ctx->schemes); 549 550 return ctx; 551 } 552 553 static void damon_destroy_targets(struct damon_ctx *ctx) 554 { 555 struct damon_target *t, *next_t; 556 557 damon_for_each_target_safe(t, next_t, ctx) 558 damon_destroy_target(t, ctx); 559 } 560 561 void damon_destroy_ctx(struct damon_ctx *ctx) 562 { 563 struct damos *s, *next_s; 564 565 damon_destroy_targets(ctx); 566 567 damon_for_each_scheme_safe(s, next_s, ctx) 568 damon_destroy_scheme(s); 569 570 kfree(ctx); 571 } 572 573 static bool damon_attrs_equals(const struct damon_attrs *attrs1, 574 const struct damon_attrs *attrs2) 575 { 576 const struct damon_intervals_goal *ig1 = &attrs1->intervals_goal; 577 const struct damon_intervals_goal *ig2 = &attrs2->intervals_goal; 578 579 return attrs1->sample_interval == attrs2->sample_interval && 580 attrs1->aggr_interval == attrs2->aggr_interval && 581 attrs1->ops_update_interval == attrs2->ops_update_interval && 582 attrs1->min_nr_regions == attrs2->min_nr_regions && 583 attrs1->max_nr_regions == attrs2->max_nr_regions && 584 ig1->access_bp == ig2->access_bp && 585 ig1->aggrs == ig2->aggrs && 586 ig1->min_sample_us == ig2->min_sample_us && 587 ig1->max_sample_us == ig2->max_sample_us; 588 } 589 590 static unsigned int damon_age_for_new_attrs(unsigned int age, 591 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs) 592 { 593 return age * old_attrs->aggr_interval / new_attrs->aggr_interval; 594 } 595 596 /* convert access ratio in bp (per 10,000) to nr_accesses */ 597 static unsigned int damon_accesses_bp_to_nr_accesses( 598 unsigned int accesses_bp, struct damon_attrs *attrs) 599 { 600 return accesses_bp * damon_max_nr_accesses(attrs) / 10000; 601 } 602 603 /* 604 * Convert nr_accesses to access ratio in bp (per 10,000). 605 * 606 * Callers should ensure attrs.aggr_interval is not zero, like 607 * damon_update_monitoring_results() does . Otherwise, divide-by-zero would 608 * happen. 609 */ 610 static unsigned int damon_nr_accesses_to_accesses_bp( 611 unsigned int nr_accesses, struct damon_attrs *attrs) 612 { 613 return nr_accesses * 10000 / damon_max_nr_accesses(attrs); 614 } 615 616 static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses, 617 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs) 618 { 619 return damon_accesses_bp_to_nr_accesses( 620 damon_nr_accesses_to_accesses_bp( 621 nr_accesses, old_attrs), 622 new_attrs); 623 } 624 625 static void damon_update_monitoring_result(struct damon_region *r, 626 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs, 627 bool aggregating) 628 { 629 if (!aggregating) { 630 r->nr_accesses = damon_nr_accesses_for_new_attrs( 631 r->nr_accesses, old_attrs, new_attrs); 632 r->nr_accesses_bp = r->nr_accesses * 10000; 633 } else { 634 /* 635 * if this is called in the middle of the aggregation, reset 636 * the aggregations we made so far for this aggregation 637 * interval. In other words, make the status like 638 * kdamond_reset_aggregated() is called. 639 */ 640 r->last_nr_accesses = damon_nr_accesses_for_new_attrs( 641 r->last_nr_accesses, old_attrs, new_attrs); 642 r->nr_accesses_bp = r->last_nr_accesses * 10000; 643 r->nr_accesses = 0; 644 } 645 r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs); 646 } 647 648 /* 649 * region->nr_accesses is the number of sampling intervals in the last 650 * aggregation interval that access to the region has found, and region->age is 651 * the number of aggregation intervals that its access pattern has maintained. 652 * For the reason, the real meaning of the two fields depend on current 653 * sampling interval and aggregation interval. This function updates 654 * ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs. 655 */ 656 static void damon_update_monitoring_results(struct damon_ctx *ctx, 657 struct damon_attrs *new_attrs, bool aggregating) 658 { 659 struct damon_attrs *old_attrs = &ctx->attrs; 660 struct damon_target *t; 661 struct damon_region *r; 662 663 /* if any interval is zero, simply forgive conversion */ 664 if (!old_attrs->sample_interval || !old_attrs->aggr_interval || 665 !new_attrs->sample_interval || 666 !new_attrs->aggr_interval) 667 return; 668 669 damon_for_each_target(t, ctx) 670 damon_for_each_region(r, t) 671 damon_update_monitoring_result( 672 r, old_attrs, new_attrs, aggregating); 673 } 674 675 /* 676 * damon_valid_intervals_goal() - return if the intervals goal of @attrs is 677 * valid. 678 */ 679 static bool damon_valid_intervals_goal(struct damon_attrs *attrs) 680 { 681 struct damon_intervals_goal *goal = &attrs->intervals_goal; 682 683 /* tuning is disabled */ 684 if (!goal->aggrs) 685 return true; 686 if (goal->min_sample_us > goal->max_sample_us) 687 return false; 688 if (attrs->sample_interval < goal->min_sample_us || 689 goal->max_sample_us < attrs->sample_interval) 690 return false; 691 return true; 692 } 693 694 /** 695 * damon_set_attrs() - Set attributes for the monitoring. 696 * @ctx: monitoring context 697 * @attrs: monitoring attributes 698 * 699 * This function should be called while the kdamond is not running, an access 700 * check results aggregation is not ongoing (e.g., from damon_call(). 701 * 702 * Every time interval is in micro-seconds. 703 * 704 * Return: 0 on success, negative error code otherwise. 705 */ 706 int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs) 707 { 708 unsigned long sample_interval = attrs->sample_interval ? 709 attrs->sample_interval : 1; 710 struct damos *s; 711 bool aggregating = ctx->passed_sample_intervals < 712 ctx->next_aggregation_sis; 713 714 if (!damon_valid_intervals_goal(attrs)) 715 return -EINVAL; 716 717 if (attrs->min_nr_regions < 3) 718 return -EINVAL; 719 if (attrs->min_nr_regions > attrs->max_nr_regions) 720 return -EINVAL; 721 if (attrs->sample_interval > attrs->aggr_interval) 722 return -EINVAL; 723 724 /* calls from core-external doesn't set this. */ 725 if (!attrs->aggr_samples) 726 attrs->aggr_samples = attrs->aggr_interval / sample_interval; 727 728 ctx->next_aggregation_sis = ctx->passed_sample_intervals + 729 attrs->aggr_interval / sample_interval; 730 ctx->next_ops_update_sis = ctx->passed_sample_intervals + 731 attrs->ops_update_interval / sample_interval; 732 733 damon_update_monitoring_results(ctx, attrs, aggregating); 734 ctx->attrs = *attrs; 735 736 damon_for_each_scheme(s, ctx) 737 damos_set_next_apply_sis(s, ctx); 738 739 return 0; 740 } 741 742 /** 743 * damon_set_schemes() - Set data access monitoring based operation schemes. 744 * @ctx: monitoring context 745 * @schemes: array of the schemes 746 * @nr_schemes: number of entries in @schemes 747 * 748 * This function should not be called while the kdamond of the context is 749 * running. 750 */ 751 void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes, 752 ssize_t nr_schemes) 753 { 754 struct damos *s, *next; 755 ssize_t i; 756 757 damon_for_each_scheme_safe(s, next, ctx) 758 damon_destroy_scheme(s); 759 for (i = 0; i < nr_schemes; i++) 760 damon_add_scheme(ctx, schemes[i]); 761 } 762 763 static struct damos_quota_goal *damos_nth_quota_goal( 764 int n, struct damos_quota *q) 765 { 766 struct damos_quota_goal *goal; 767 int i = 0; 768 769 damos_for_each_quota_goal(goal, q) { 770 if (i++ == n) 771 return goal; 772 } 773 return NULL; 774 } 775 776 static void damos_commit_quota_goal_union( 777 struct damos_quota_goal *dst, struct damos_quota_goal *src) 778 { 779 switch (dst->metric) { 780 case DAMOS_QUOTA_NODE_MEM_USED_BP: 781 case DAMOS_QUOTA_NODE_MEM_FREE_BP: 782 dst->nid = src->nid; 783 break; 784 default: 785 break; 786 } 787 } 788 789 static void damos_commit_quota_goal( 790 struct damos_quota_goal *dst, struct damos_quota_goal *src) 791 { 792 dst->metric = src->metric; 793 dst->target_value = src->target_value; 794 if (dst->metric == DAMOS_QUOTA_USER_INPUT) 795 dst->current_value = src->current_value; 796 /* keep last_psi_total as is, since it will be updated in next cycle */ 797 damos_commit_quota_goal_union(dst, src); 798 } 799 800 /** 801 * damos_commit_quota_goals() - Commit DAMOS quota goals to another quota. 802 * @dst: The commit destination DAMOS quota. 803 * @src: The commit source DAMOS quota. 804 * 805 * Copies user-specified parameters for quota goals from @src to @dst. Users 806 * should use this function for quota goals-level parameters update of running 807 * DAMON contexts, instead of manual in-place updates. 808 * 809 * This function should be called from parameters-update safe context, like 810 * damon_call(). 811 */ 812 int damos_commit_quota_goals(struct damos_quota *dst, struct damos_quota *src) 813 { 814 struct damos_quota_goal *dst_goal, *next, *src_goal, *new_goal; 815 int i = 0, j = 0; 816 817 damos_for_each_quota_goal_safe(dst_goal, next, dst) { 818 src_goal = damos_nth_quota_goal(i++, src); 819 if (src_goal) 820 damos_commit_quota_goal(dst_goal, src_goal); 821 else 822 damos_destroy_quota_goal(dst_goal); 823 } 824 damos_for_each_quota_goal_safe(src_goal, next, src) { 825 if (j++ < i) 826 continue; 827 new_goal = damos_new_quota_goal( 828 src_goal->metric, src_goal->target_value); 829 if (!new_goal) 830 return -ENOMEM; 831 damos_commit_quota_goal_union(new_goal, src_goal); 832 damos_add_quota_goal(dst, new_goal); 833 } 834 return 0; 835 } 836 837 static int damos_commit_quota(struct damos_quota *dst, struct damos_quota *src) 838 { 839 int err; 840 841 dst->reset_interval = src->reset_interval; 842 dst->ms = src->ms; 843 dst->sz = src->sz; 844 err = damos_commit_quota_goals(dst, src); 845 if (err) 846 return err; 847 dst->weight_sz = src->weight_sz; 848 dst->weight_nr_accesses = src->weight_nr_accesses; 849 dst->weight_age = src->weight_age; 850 return 0; 851 } 852 853 static struct damos_filter *damos_nth_filter(int n, struct damos *s) 854 { 855 struct damos_filter *filter; 856 int i = 0; 857 858 damos_for_each_filter(filter, s) { 859 if (i++ == n) 860 return filter; 861 } 862 return NULL; 863 } 864 865 static struct damos_filter *damos_nth_ops_filter(int n, struct damos *s) 866 { 867 struct damos_filter *filter; 868 int i = 0; 869 870 damos_for_each_ops_filter(filter, s) { 871 if (i++ == n) 872 return filter; 873 } 874 return NULL; 875 } 876 877 static void damos_commit_filter_arg( 878 struct damos_filter *dst, struct damos_filter *src) 879 { 880 switch (dst->type) { 881 case DAMOS_FILTER_TYPE_MEMCG: 882 dst->memcg_id = src->memcg_id; 883 break; 884 case DAMOS_FILTER_TYPE_ADDR: 885 dst->addr_range = src->addr_range; 886 break; 887 case DAMOS_FILTER_TYPE_TARGET: 888 dst->target_idx = src->target_idx; 889 break; 890 case DAMOS_FILTER_TYPE_HUGEPAGE_SIZE: 891 dst->sz_range = src->sz_range; 892 break; 893 default: 894 break; 895 } 896 } 897 898 static void damos_commit_filter( 899 struct damos_filter *dst, struct damos_filter *src) 900 { 901 dst->type = src->type; 902 dst->matching = src->matching; 903 dst->allow = src->allow; 904 damos_commit_filter_arg(dst, src); 905 } 906 907 static int damos_commit_core_filters(struct damos *dst, struct damos *src) 908 { 909 struct damos_filter *dst_filter, *next, *src_filter, *new_filter; 910 int i = 0, j = 0; 911 912 damos_for_each_filter_safe(dst_filter, next, dst) { 913 src_filter = damos_nth_filter(i++, src); 914 if (src_filter) 915 damos_commit_filter(dst_filter, src_filter); 916 else 917 damos_destroy_filter(dst_filter); 918 } 919 920 damos_for_each_filter_safe(src_filter, next, src) { 921 if (j++ < i) 922 continue; 923 924 new_filter = damos_new_filter( 925 src_filter->type, src_filter->matching, 926 src_filter->allow); 927 if (!new_filter) 928 return -ENOMEM; 929 damos_commit_filter_arg(new_filter, src_filter); 930 damos_add_filter(dst, new_filter); 931 } 932 return 0; 933 } 934 935 static int damos_commit_ops_filters(struct damos *dst, struct damos *src) 936 { 937 struct damos_filter *dst_filter, *next, *src_filter, *new_filter; 938 int i = 0, j = 0; 939 940 damos_for_each_ops_filter_safe(dst_filter, next, dst) { 941 src_filter = damos_nth_ops_filter(i++, src); 942 if (src_filter) 943 damos_commit_filter(dst_filter, src_filter); 944 else 945 damos_destroy_filter(dst_filter); 946 } 947 948 damos_for_each_ops_filter_safe(src_filter, next, src) { 949 if (j++ < i) 950 continue; 951 952 new_filter = damos_new_filter( 953 src_filter->type, src_filter->matching, 954 src_filter->allow); 955 if (!new_filter) 956 return -ENOMEM; 957 damos_commit_filter_arg(new_filter, src_filter); 958 damos_add_filter(dst, new_filter); 959 } 960 return 0; 961 } 962 963 /** 964 * damos_filters_default_reject() - decide whether to reject memory that didn't 965 * match with any given filter. 966 * @filters: Given DAMOS filters of a group. 967 */ 968 static bool damos_filters_default_reject(struct list_head *filters) 969 { 970 struct damos_filter *last_filter; 971 972 if (list_empty(filters)) 973 return false; 974 last_filter = list_last_entry(filters, struct damos_filter, list); 975 return last_filter->allow; 976 } 977 978 static void damos_set_filters_default_reject(struct damos *s) 979 { 980 if (!list_empty(&s->ops_filters)) 981 s->core_filters_default_reject = false; 982 else 983 s->core_filters_default_reject = 984 damos_filters_default_reject(&s->filters); 985 s->ops_filters_default_reject = 986 damos_filters_default_reject(&s->ops_filters); 987 } 988 989 static int damos_commit_dests(struct damos *dst, struct damos *src) 990 { 991 struct damos_migrate_dests *dst_dests, *src_dests; 992 993 dst_dests = &dst->migrate_dests; 994 src_dests = &src->migrate_dests; 995 996 if (dst_dests->nr_dests != src_dests->nr_dests) { 997 kfree(dst_dests->node_id_arr); 998 kfree(dst_dests->weight_arr); 999 1000 dst_dests->node_id_arr = kmalloc_array(src_dests->nr_dests, 1001 sizeof(*dst_dests->node_id_arr), GFP_KERNEL); 1002 if (!dst_dests->node_id_arr) { 1003 dst_dests->weight_arr = NULL; 1004 return -ENOMEM; 1005 } 1006 1007 dst_dests->weight_arr = kmalloc_array(src_dests->nr_dests, 1008 sizeof(*dst_dests->weight_arr), GFP_KERNEL); 1009 if (!dst_dests->weight_arr) { 1010 /* ->node_id_arr will be freed by scheme destruction */ 1011 return -ENOMEM; 1012 } 1013 } 1014 1015 dst_dests->nr_dests = src_dests->nr_dests; 1016 for (int i = 0; i < src_dests->nr_dests; i++) { 1017 dst_dests->node_id_arr[i] = src_dests->node_id_arr[i]; 1018 dst_dests->weight_arr[i] = src_dests->weight_arr[i]; 1019 } 1020 1021 return 0; 1022 } 1023 1024 static int damos_commit_filters(struct damos *dst, struct damos *src) 1025 { 1026 int err; 1027 1028 err = damos_commit_core_filters(dst, src); 1029 if (err) 1030 return err; 1031 err = damos_commit_ops_filters(dst, src); 1032 if (err) 1033 return err; 1034 damos_set_filters_default_reject(dst); 1035 return 0; 1036 } 1037 1038 static struct damos *damon_nth_scheme(int n, struct damon_ctx *ctx) 1039 { 1040 struct damos *s; 1041 int i = 0; 1042 1043 damon_for_each_scheme(s, ctx) { 1044 if (i++ == n) 1045 return s; 1046 } 1047 return NULL; 1048 } 1049 1050 static int damos_commit(struct damos *dst, struct damos *src) 1051 { 1052 int err; 1053 1054 dst->pattern = src->pattern; 1055 dst->action = src->action; 1056 dst->apply_interval_us = src->apply_interval_us; 1057 1058 err = damos_commit_quota(&dst->quota, &src->quota); 1059 if (err) 1060 return err; 1061 1062 dst->wmarks = src->wmarks; 1063 dst->target_nid = src->target_nid; 1064 1065 err = damos_commit_dests(dst, src); 1066 if (err) 1067 return err; 1068 1069 err = damos_commit_filters(dst, src); 1070 return err; 1071 } 1072 1073 static int damon_commit_schemes(struct damon_ctx *dst, struct damon_ctx *src) 1074 { 1075 struct damos *dst_scheme, *next, *src_scheme, *new_scheme; 1076 int i = 0, j = 0, err; 1077 1078 damon_for_each_scheme_safe(dst_scheme, next, dst) { 1079 src_scheme = damon_nth_scheme(i++, src); 1080 if (src_scheme) { 1081 err = damos_commit(dst_scheme, src_scheme); 1082 if (err) 1083 return err; 1084 } else { 1085 damon_destroy_scheme(dst_scheme); 1086 } 1087 } 1088 1089 damon_for_each_scheme_safe(src_scheme, next, src) { 1090 if (j++ < i) 1091 continue; 1092 new_scheme = damon_new_scheme(&src_scheme->pattern, 1093 src_scheme->action, 1094 src_scheme->apply_interval_us, 1095 &src_scheme->quota, &src_scheme->wmarks, 1096 NUMA_NO_NODE); 1097 if (!new_scheme) 1098 return -ENOMEM; 1099 err = damos_commit(new_scheme, src_scheme); 1100 if (err) { 1101 damon_destroy_scheme(new_scheme); 1102 return err; 1103 } 1104 damon_add_scheme(dst, new_scheme); 1105 } 1106 return 0; 1107 } 1108 1109 static struct damon_target *damon_nth_target(int n, struct damon_ctx *ctx) 1110 { 1111 struct damon_target *t; 1112 int i = 0; 1113 1114 damon_for_each_target(t, ctx) { 1115 if (i++ == n) 1116 return t; 1117 } 1118 return NULL; 1119 } 1120 1121 /* 1122 * The caller should ensure the regions of @src are 1123 * 1. valid (end >= src) and 1124 * 2. sorted by starting address. 1125 * 1126 * If @src has no region, @dst keeps current regions. 1127 */ 1128 static int damon_commit_target_regions( 1129 struct damon_target *dst, struct damon_target *src) 1130 { 1131 struct damon_region *src_region; 1132 struct damon_addr_range *ranges; 1133 int i = 0, err; 1134 1135 damon_for_each_region(src_region, src) 1136 i++; 1137 if (!i) 1138 return 0; 1139 1140 ranges = kmalloc_array(i, sizeof(*ranges), GFP_KERNEL | __GFP_NOWARN); 1141 if (!ranges) 1142 return -ENOMEM; 1143 i = 0; 1144 damon_for_each_region(src_region, src) 1145 ranges[i++] = src_region->ar; 1146 err = damon_set_regions(dst, ranges, i); 1147 kfree(ranges); 1148 return err; 1149 } 1150 1151 static int damon_commit_target( 1152 struct damon_target *dst, bool dst_has_pid, 1153 struct damon_target *src, bool src_has_pid) 1154 { 1155 int err; 1156 1157 err = damon_commit_target_regions(dst, src); 1158 if (err) 1159 return err; 1160 if (dst_has_pid) 1161 put_pid(dst->pid); 1162 if (src_has_pid) 1163 get_pid(src->pid); 1164 dst->pid = src->pid; 1165 return 0; 1166 } 1167 1168 static int damon_commit_targets( 1169 struct damon_ctx *dst, struct damon_ctx *src) 1170 { 1171 struct damon_target *dst_target, *next, *src_target, *new_target; 1172 int i = 0, j = 0, err; 1173 1174 damon_for_each_target_safe(dst_target, next, dst) { 1175 src_target = damon_nth_target(i++, src); 1176 if (src_target) { 1177 err = damon_commit_target( 1178 dst_target, damon_target_has_pid(dst), 1179 src_target, damon_target_has_pid(src)); 1180 if (err) 1181 return err; 1182 } else { 1183 struct damos *s; 1184 1185 damon_destroy_target(dst_target, dst); 1186 damon_for_each_scheme(s, dst) { 1187 if (s->quota.charge_target_from == dst_target) { 1188 s->quota.charge_target_from = NULL; 1189 s->quota.charge_addr_from = 0; 1190 } 1191 } 1192 } 1193 } 1194 1195 damon_for_each_target_safe(src_target, next, src) { 1196 if (j++ < i) 1197 continue; 1198 new_target = damon_new_target(); 1199 if (!new_target) 1200 return -ENOMEM; 1201 err = damon_commit_target(new_target, false, 1202 src_target, damon_target_has_pid(src)); 1203 if (err) { 1204 damon_destroy_target(new_target, NULL); 1205 return err; 1206 } 1207 damon_add_target(dst, new_target); 1208 } 1209 return 0; 1210 } 1211 1212 /** 1213 * damon_commit_ctx() - Commit parameters of a DAMON context to another. 1214 * @dst: The commit destination DAMON context. 1215 * @src: The commit source DAMON context. 1216 * 1217 * This function copies user-specified parameters from @src to @dst and update 1218 * the internal status and results accordingly. Users should use this function 1219 * for context-level parameters update of running context, instead of manual 1220 * in-place updates. 1221 * 1222 * This function should be called from parameters-update safe context, like 1223 * damon_call(). 1224 */ 1225 int damon_commit_ctx(struct damon_ctx *dst, struct damon_ctx *src) 1226 { 1227 int err; 1228 1229 err = damon_commit_schemes(dst, src); 1230 if (err) 1231 return err; 1232 err = damon_commit_targets(dst, src); 1233 if (err) 1234 return err; 1235 /* 1236 * schemes and targets should be updated first, since 1237 * 1. damon_set_attrs() updates monitoring results of targets and 1238 * next_apply_sis of schemes, and 1239 * 2. ops update should be done after pid handling is done (target 1240 * committing require putting pids). 1241 */ 1242 if (!damon_attrs_equals(&dst->attrs, &src->attrs)) { 1243 err = damon_set_attrs(dst, &src->attrs); 1244 if (err) 1245 return err; 1246 } 1247 dst->ops = src->ops; 1248 1249 return 0; 1250 } 1251 1252 /** 1253 * damon_nr_running_ctxs() - Return number of currently running contexts. 1254 */ 1255 int damon_nr_running_ctxs(void) 1256 { 1257 int nr_ctxs; 1258 1259 mutex_lock(&damon_lock); 1260 nr_ctxs = nr_running_ctxs; 1261 mutex_unlock(&damon_lock); 1262 1263 return nr_ctxs; 1264 } 1265 1266 /* Returns the size upper limit for each monitoring region */ 1267 static unsigned long damon_region_sz_limit(struct damon_ctx *ctx) 1268 { 1269 struct damon_target *t; 1270 struct damon_region *r; 1271 unsigned long sz = 0; 1272 1273 damon_for_each_target(t, ctx) { 1274 damon_for_each_region(r, t) 1275 sz += damon_sz_region(r); 1276 } 1277 1278 if (ctx->attrs.min_nr_regions) 1279 sz /= ctx->attrs.min_nr_regions; 1280 if (sz < DAMON_MIN_REGION) 1281 sz = DAMON_MIN_REGION; 1282 1283 return sz; 1284 } 1285 1286 static int kdamond_fn(void *data); 1287 1288 /* 1289 * __damon_start() - Starts monitoring with given context. 1290 * @ctx: monitoring context 1291 * 1292 * This function should be called while damon_lock is hold. 1293 * 1294 * Return: 0 on success, negative error code otherwise. 1295 */ 1296 static int __damon_start(struct damon_ctx *ctx) 1297 { 1298 int err = -EBUSY; 1299 1300 mutex_lock(&ctx->kdamond_lock); 1301 if (!ctx->kdamond) { 1302 err = 0; 1303 reinit_completion(&ctx->kdamond_started); 1304 ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d", 1305 nr_running_ctxs); 1306 if (IS_ERR(ctx->kdamond)) { 1307 err = PTR_ERR(ctx->kdamond); 1308 ctx->kdamond = NULL; 1309 } else { 1310 wait_for_completion(&ctx->kdamond_started); 1311 } 1312 } 1313 mutex_unlock(&ctx->kdamond_lock); 1314 1315 return err; 1316 } 1317 1318 /** 1319 * damon_start() - Starts the monitorings for a given group of contexts. 1320 * @ctxs: an array of the pointers for contexts to start monitoring 1321 * @nr_ctxs: size of @ctxs 1322 * @exclusive: exclusiveness of this contexts group 1323 * 1324 * This function starts a group of monitoring threads for a group of monitoring 1325 * contexts. One thread per each context is created and run in parallel. The 1326 * caller should handle synchronization between the threads by itself. If 1327 * @exclusive is true and a group of threads that created by other 1328 * 'damon_start()' call is currently running, this function does nothing but 1329 * returns -EBUSY. 1330 * 1331 * Return: 0 on success, negative error code otherwise. 1332 */ 1333 int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive) 1334 { 1335 int i; 1336 int err = 0; 1337 1338 mutex_lock(&damon_lock); 1339 if ((exclusive && nr_running_ctxs) || 1340 (!exclusive && running_exclusive_ctxs)) { 1341 mutex_unlock(&damon_lock); 1342 return -EBUSY; 1343 } 1344 1345 for (i = 0; i < nr_ctxs; i++) { 1346 err = __damon_start(ctxs[i]); 1347 if (err) 1348 break; 1349 nr_running_ctxs++; 1350 } 1351 if (exclusive && nr_running_ctxs) 1352 running_exclusive_ctxs = true; 1353 mutex_unlock(&damon_lock); 1354 1355 return err; 1356 } 1357 1358 /* 1359 * __damon_stop() - Stops monitoring of a given context. 1360 * @ctx: monitoring context 1361 * 1362 * Return: 0 on success, negative error code otherwise. 1363 */ 1364 static int __damon_stop(struct damon_ctx *ctx) 1365 { 1366 struct task_struct *tsk; 1367 1368 mutex_lock(&ctx->kdamond_lock); 1369 tsk = ctx->kdamond; 1370 if (tsk) { 1371 get_task_struct(tsk); 1372 mutex_unlock(&ctx->kdamond_lock); 1373 kthread_stop_put(tsk); 1374 return 0; 1375 } 1376 mutex_unlock(&ctx->kdamond_lock); 1377 1378 return -EPERM; 1379 } 1380 1381 /** 1382 * damon_stop() - Stops the monitorings for a given group of contexts. 1383 * @ctxs: an array of the pointers for contexts to stop monitoring 1384 * @nr_ctxs: size of @ctxs 1385 * 1386 * Return: 0 on success, negative error code otherwise. 1387 */ 1388 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs) 1389 { 1390 int i, err = 0; 1391 1392 for (i = 0; i < nr_ctxs; i++) { 1393 /* nr_running_ctxs is decremented in kdamond_fn */ 1394 err = __damon_stop(ctxs[i]); 1395 if (err) 1396 break; 1397 } 1398 return err; 1399 } 1400 1401 /** 1402 * damon_is_running() - Returns if a given DAMON context is running. 1403 * @ctx: The DAMON context to see if running. 1404 * 1405 * Return: true if @ctx is running, false otherwise. 1406 */ 1407 bool damon_is_running(struct damon_ctx *ctx) 1408 { 1409 bool running; 1410 1411 mutex_lock(&ctx->kdamond_lock); 1412 running = ctx->kdamond != NULL; 1413 mutex_unlock(&ctx->kdamond_lock); 1414 return running; 1415 } 1416 1417 /** 1418 * damon_call() - Invoke a given function on DAMON worker thread (kdamond). 1419 * @ctx: DAMON context to call the function for. 1420 * @control: Control variable of the call request. 1421 * 1422 * Ask DAMON worker thread (kdamond) of @ctx to call a function with an 1423 * argument data that respectively passed via &damon_call_control->fn and 1424 * &damon_call_control->data of @control. If &damon_call_control->repeat of 1425 * @control is set, further wait until the kdamond finishes handling of the 1426 * request. Otherwise, return as soon as the request is made. 1427 * 1428 * The kdamond executes the function with the argument in the main loop, just 1429 * after a sampling of the iteration is finished. The function can hence 1430 * safely access the internal data of the &struct damon_ctx without additional 1431 * synchronization. The return value of the function will be saved in 1432 * &damon_call_control->return_code. 1433 * 1434 * Return: 0 on success, negative error code otherwise. 1435 */ 1436 int damon_call(struct damon_ctx *ctx, struct damon_call_control *control) 1437 { 1438 if (!control->repeat) 1439 init_completion(&control->completion); 1440 control->canceled = false; 1441 INIT_LIST_HEAD(&control->list); 1442 1443 mutex_lock(&ctx->call_controls_lock); 1444 list_add_tail(&ctx->call_controls, &control->list); 1445 mutex_unlock(&ctx->call_controls_lock); 1446 if (!damon_is_running(ctx)) 1447 return -EINVAL; 1448 if (control->repeat) 1449 return 0; 1450 wait_for_completion(&control->completion); 1451 if (control->canceled) 1452 return -ECANCELED; 1453 return 0; 1454 } 1455 1456 /** 1457 * damos_walk() - Invoke a given functions while DAMOS walk regions. 1458 * @ctx: DAMON context to call the functions for. 1459 * @control: Control variable of the walk request. 1460 * 1461 * Ask DAMON worker thread (kdamond) of @ctx to call a function for each region 1462 * that the kdamond will apply DAMOS action to, and wait until the kdamond 1463 * finishes handling of the request. 1464 * 1465 * The kdamond executes the given function in the main loop, for each region 1466 * just after it applied any DAMOS actions of @ctx to it. The invocation is 1467 * made only within one &damos->apply_interval_us since damos_walk() 1468 * invocation, for each scheme. The given callback function can hence safely 1469 * access the internal data of &struct damon_ctx and &struct damon_region that 1470 * each of the scheme will apply the action for next interval, without 1471 * additional synchronizations against the kdamond. If every scheme of @ctx 1472 * passed at least one &damos->apply_interval_us, kdamond marks the request as 1473 * completed so that damos_walk() can wakeup and return. 1474 * 1475 * Return: 0 on success, negative error code otherwise. 1476 */ 1477 int damos_walk(struct damon_ctx *ctx, struct damos_walk_control *control) 1478 { 1479 init_completion(&control->completion); 1480 control->canceled = false; 1481 mutex_lock(&ctx->walk_control_lock); 1482 if (ctx->walk_control) { 1483 mutex_unlock(&ctx->walk_control_lock); 1484 return -EBUSY; 1485 } 1486 ctx->walk_control = control; 1487 mutex_unlock(&ctx->walk_control_lock); 1488 if (!damon_is_running(ctx)) 1489 return -EINVAL; 1490 wait_for_completion(&control->completion); 1491 if (control->canceled) 1492 return -ECANCELED; 1493 return 0; 1494 } 1495 1496 /* 1497 * Warn and fix corrupted ->nr_accesses[_bp] for investigations and preventing 1498 * the problem being propagated. 1499 */ 1500 static void damon_warn_fix_nr_accesses_corruption(struct damon_region *r) 1501 { 1502 if (r->nr_accesses_bp == r->nr_accesses * 10000) 1503 return; 1504 WARN_ONCE(true, "invalid nr_accesses_bp at reset: %u %u\n", 1505 r->nr_accesses_bp, r->nr_accesses); 1506 r->nr_accesses_bp = r->nr_accesses * 10000; 1507 } 1508 1509 /* 1510 * Reset the aggregated monitoring results ('nr_accesses' of each region). 1511 */ 1512 static void kdamond_reset_aggregated(struct damon_ctx *c) 1513 { 1514 struct damon_target *t; 1515 unsigned int ti = 0; /* target's index */ 1516 1517 damon_for_each_target(t, c) { 1518 struct damon_region *r; 1519 1520 damon_for_each_region(r, t) { 1521 trace_damon_aggregated(ti, r, damon_nr_regions(t)); 1522 damon_warn_fix_nr_accesses_corruption(r); 1523 r->last_nr_accesses = r->nr_accesses; 1524 r->nr_accesses = 0; 1525 } 1526 ti++; 1527 } 1528 } 1529 1530 static unsigned long damon_get_intervals_score(struct damon_ctx *c) 1531 { 1532 struct damon_target *t; 1533 struct damon_region *r; 1534 unsigned long sz_region, max_access_events = 0, access_events = 0; 1535 unsigned long target_access_events; 1536 unsigned long goal_bp = c->attrs.intervals_goal.access_bp; 1537 1538 damon_for_each_target(t, c) { 1539 damon_for_each_region(r, t) { 1540 sz_region = damon_sz_region(r); 1541 max_access_events += sz_region * c->attrs.aggr_samples; 1542 access_events += sz_region * r->nr_accesses; 1543 } 1544 } 1545 target_access_events = max_access_events * goal_bp / 10000; 1546 target_access_events = target_access_events ? : 1; 1547 return access_events * 10000 / target_access_events; 1548 } 1549 1550 static unsigned long damon_feed_loop_next_input(unsigned long last_input, 1551 unsigned long score); 1552 1553 static unsigned long damon_get_intervals_adaptation_bp(struct damon_ctx *c) 1554 { 1555 unsigned long score_bp, adaptation_bp; 1556 1557 score_bp = damon_get_intervals_score(c); 1558 adaptation_bp = damon_feed_loop_next_input(100000000, score_bp) / 1559 10000; 1560 /* 1561 * adaptaion_bp ranges from 1 to 20,000. Avoid too rapid reduction of 1562 * the intervals by rescaling [1,10,000] to [5000, 10,000]. 1563 */ 1564 if (adaptation_bp <= 10000) 1565 adaptation_bp = 5000 + adaptation_bp / 2; 1566 return adaptation_bp; 1567 } 1568 1569 static void kdamond_tune_intervals(struct damon_ctx *c) 1570 { 1571 unsigned long adaptation_bp; 1572 struct damon_attrs new_attrs; 1573 struct damon_intervals_goal *goal; 1574 1575 adaptation_bp = damon_get_intervals_adaptation_bp(c); 1576 if (adaptation_bp == 10000) 1577 return; 1578 1579 new_attrs = c->attrs; 1580 goal = &c->attrs.intervals_goal; 1581 new_attrs.sample_interval = min(goal->max_sample_us, 1582 c->attrs.sample_interval * adaptation_bp / 10000); 1583 new_attrs.sample_interval = max(goal->min_sample_us, 1584 new_attrs.sample_interval); 1585 new_attrs.aggr_interval = new_attrs.sample_interval * 1586 c->attrs.aggr_samples; 1587 trace_damon_monitor_intervals_tune(new_attrs.sample_interval); 1588 damon_set_attrs(c, &new_attrs); 1589 } 1590 1591 static void damon_split_region_at(struct damon_target *t, 1592 struct damon_region *r, unsigned long sz_r); 1593 1594 static bool __damos_valid_target(struct damon_region *r, struct damos *s) 1595 { 1596 unsigned long sz; 1597 unsigned int nr_accesses = r->nr_accesses_bp / 10000; 1598 1599 sz = damon_sz_region(r); 1600 return s->pattern.min_sz_region <= sz && 1601 sz <= s->pattern.max_sz_region && 1602 s->pattern.min_nr_accesses <= nr_accesses && 1603 nr_accesses <= s->pattern.max_nr_accesses && 1604 s->pattern.min_age_region <= r->age && 1605 r->age <= s->pattern.max_age_region; 1606 } 1607 1608 static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t, 1609 struct damon_region *r, struct damos *s) 1610 { 1611 bool ret = __damos_valid_target(r, s); 1612 1613 if (!ret || !s->quota.esz || !c->ops.get_scheme_score) 1614 return ret; 1615 1616 return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score; 1617 } 1618 1619 /* 1620 * damos_skip_charged_region() - Check if the given region or starting part of 1621 * it is already charged for the DAMOS quota. 1622 * @t: The target of the region. 1623 * @rp: The pointer to the region. 1624 * @s: The scheme to be applied. 1625 * 1626 * If a quota of a scheme has exceeded in a quota charge window, the scheme's 1627 * action would applied to only a part of the target access pattern fulfilling 1628 * regions. To avoid applying the scheme action to only already applied 1629 * regions, DAMON skips applying the scheme action to the regions that charged 1630 * in the previous charge window. 1631 * 1632 * This function checks if a given region should be skipped or not for the 1633 * reason. If only the starting part of the region has previously charged, 1634 * this function splits the region into two so that the second one covers the 1635 * area that not charged in the previous charge widnow and saves the second 1636 * region in *rp and returns false, so that the caller can apply DAMON action 1637 * to the second one. 1638 * 1639 * Return: true if the region should be entirely skipped, false otherwise. 1640 */ 1641 static bool damos_skip_charged_region(struct damon_target *t, 1642 struct damon_region **rp, struct damos *s) 1643 { 1644 struct damon_region *r = *rp; 1645 struct damos_quota *quota = &s->quota; 1646 unsigned long sz_to_skip; 1647 1648 /* Skip previously charged regions */ 1649 if (quota->charge_target_from) { 1650 if (t != quota->charge_target_from) 1651 return true; 1652 if (r == damon_last_region(t)) { 1653 quota->charge_target_from = NULL; 1654 quota->charge_addr_from = 0; 1655 return true; 1656 } 1657 if (quota->charge_addr_from && 1658 r->ar.end <= quota->charge_addr_from) 1659 return true; 1660 1661 if (quota->charge_addr_from && r->ar.start < 1662 quota->charge_addr_from) { 1663 sz_to_skip = ALIGN_DOWN(quota->charge_addr_from - 1664 r->ar.start, DAMON_MIN_REGION); 1665 if (!sz_to_skip) { 1666 if (damon_sz_region(r) <= DAMON_MIN_REGION) 1667 return true; 1668 sz_to_skip = DAMON_MIN_REGION; 1669 } 1670 damon_split_region_at(t, r, sz_to_skip); 1671 r = damon_next_region(r); 1672 *rp = r; 1673 } 1674 quota->charge_target_from = NULL; 1675 quota->charge_addr_from = 0; 1676 } 1677 return false; 1678 } 1679 1680 static void damos_update_stat(struct damos *s, 1681 unsigned long sz_tried, unsigned long sz_applied, 1682 unsigned long sz_ops_filter_passed) 1683 { 1684 s->stat.nr_tried++; 1685 s->stat.sz_tried += sz_tried; 1686 if (sz_applied) 1687 s->stat.nr_applied++; 1688 s->stat.sz_applied += sz_applied; 1689 s->stat.sz_ops_filter_passed += sz_ops_filter_passed; 1690 } 1691 1692 static bool damos_filter_match(struct damon_ctx *ctx, struct damon_target *t, 1693 struct damon_region *r, struct damos_filter *filter) 1694 { 1695 bool matched = false; 1696 struct damon_target *ti; 1697 int target_idx = 0; 1698 unsigned long start, end; 1699 1700 switch (filter->type) { 1701 case DAMOS_FILTER_TYPE_TARGET: 1702 damon_for_each_target(ti, ctx) { 1703 if (ti == t) 1704 break; 1705 target_idx++; 1706 } 1707 matched = target_idx == filter->target_idx; 1708 break; 1709 case DAMOS_FILTER_TYPE_ADDR: 1710 start = ALIGN_DOWN(filter->addr_range.start, DAMON_MIN_REGION); 1711 end = ALIGN_DOWN(filter->addr_range.end, DAMON_MIN_REGION); 1712 1713 /* inside the range */ 1714 if (start <= r->ar.start && r->ar.end <= end) { 1715 matched = true; 1716 break; 1717 } 1718 /* outside of the range */ 1719 if (r->ar.end <= start || end <= r->ar.start) { 1720 matched = false; 1721 break; 1722 } 1723 /* start before the range and overlap */ 1724 if (r->ar.start < start) { 1725 damon_split_region_at(t, r, start - r->ar.start); 1726 matched = false; 1727 break; 1728 } 1729 /* start inside the range */ 1730 damon_split_region_at(t, r, end - r->ar.start); 1731 matched = true; 1732 break; 1733 default: 1734 return false; 1735 } 1736 1737 return matched == filter->matching; 1738 } 1739 1740 static bool damos_filter_out(struct damon_ctx *ctx, struct damon_target *t, 1741 struct damon_region *r, struct damos *s) 1742 { 1743 struct damos_filter *filter; 1744 1745 s->core_filters_allowed = false; 1746 damos_for_each_filter(filter, s) { 1747 if (damos_filter_match(ctx, t, r, filter)) { 1748 if (filter->allow) 1749 s->core_filters_allowed = true; 1750 return !filter->allow; 1751 } 1752 } 1753 return s->core_filters_default_reject; 1754 } 1755 1756 /* 1757 * damos_walk_call_walk() - Call &damos_walk_control->walk_fn. 1758 * @ctx: The context of &damon_ctx->walk_control. 1759 * @t: The monitoring target of @r that @s will be applied. 1760 * @r: The region of @t that @s will be applied. 1761 * @s: The scheme of @ctx that will be applied to @r. 1762 * 1763 * This function is called from kdamond whenever it asked the operation set to 1764 * apply a DAMOS scheme action to a region. If a DAMOS walk request is 1765 * installed by damos_walk() and not yet uninstalled, invoke it. 1766 */ 1767 static void damos_walk_call_walk(struct damon_ctx *ctx, struct damon_target *t, 1768 struct damon_region *r, struct damos *s, 1769 unsigned long sz_filter_passed) 1770 { 1771 struct damos_walk_control *control; 1772 1773 if (s->walk_completed) 1774 return; 1775 1776 control = ctx->walk_control; 1777 if (!control) 1778 return; 1779 1780 control->walk_fn(control->data, ctx, t, r, s, sz_filter_passed); 1781 } 1782 1783 /* 1784 * damos_walk_complete() - Complete DAMOS walk request if all walks are done. 1785 * @ctx: The context of &damon_ctx->walk_control. 1786 * @s: A scheme of @ctx that all walks are now done. 1787 * 1788 * This function is called when kdamond finished applying the action of a DAMOS 1789 * scheme to all regions that eligible for the given &damos->apply_interval_us. 1790 * If every scheme of @ctx including @s now finished walking for at least one 1791 * &damos->apply_interval_us, this function makrs the handling of the given 1792 * DAMOS walk request is done, so that damos_walk() can wake up and return. 1793 */ 1794 static void damos_walk_complete(struct damon_ctx *ctx, struct damos *s) 1795 { 1796 struct damos *siter; 1797 struct damos_walk_control *control; 1798 1799 control = ctx->walk_control; 1800 if (!control) 1801 return; 1802 1803 s->walk_completed = true; 1804 /* if all schemes completed, signal completion to walker */ 1805 damon_for_each_scheme(siter, ctx) { 1806 if (!siter->walk_completed) 1807 return; 1808 } 1809 damon_for_each_scheme(siter, ctx) 1810 siter->walk_completed = false; 1811 1812 complete(&control->completion); 1813 ctx->walk_control = NULL; 1814 } 1815 1816 /* 1817 * damos_walk_cancel() - Cancel the current DAMOS walk request. 1818 * @ctx: The context of &damon_ctx->walk_control. 1819 * 1820 * This function is called when @ctx is deactivated by DAMOS watermarks, DAMOS 1821 * walk is requested but there is no DAMOS scheme to walk for, or the kdamond 1822 * is already out of the main loop and therefore gonna be terminated, and hence 1823 * cannot continue the walks. This function therefore marks the walk request 1824 * as canceled, so that damos_walk() can wake up and return. 1825 */ 1826 static void damos_walk_cancel(struct damon_ctx *ctx) 1827 { 1828 struct damos_walk_control *control; 1829 1830 mutex_lock(&ctx->walk_control_lock); 1831 control = ctx->walk_control; 1832 mutex_unlock(&ctx->walk_control_lock); 1833 1834 if (!control) 1835 return; 1836 control->canceled = true; 1837 complete(&control->completion); 1838 mutex_lock(&ctx->walk_control_lock); 1839 ctx->walk_control = NULL; 1840 mutex_unlock(&ctx->walk_control_lock); 1841 } 1842 1843 static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t, 1844 struct damon_region *r, struct damos *s) 1845 { 1846 struct damos_quota *quota = &s->quota; 1847 unsigned long sz = damon_sz_region(r); 1848 struct timespec64 begin, end; 1849 unsigned long sz_applied = 0; 1850 unsigned long sz_ops_filter_passed = 0; 1851 /* 1852 * We plan to support multiple context per kdamond, as DAMON sysfs 1853 * implies with 'nr_contexts' file. Nevertheless, only single context 1854 * per kdamond is supported for now. So, we can simply use '0' context 1855 * index here. 1856 */ 1857 unsigned int cidx = 0; 1858 struct damos *siter; /* schemes iterator */ 1859 unsigned int sidx = 0; 1860 struct damon_target *titer; /* targets iterator */ 1861 unsigned int tidx = 0; 1862 bool do_trace = false; 1863 1864 /* get indices for trace_damos_before_apply() */ 1865 if (trace_damos_before_apply_enabled()) { 1866 damon_for_each_scheme(siter, c) { 1867 if (siter == s) 1868 break; 1869 sidx++; 1870 } 1871 damon_for_each_target(titer, c) { 1872 if (titer == t) 1873 break; 1874 tidx++; 1875 } 1876 do_trace = true; 1877 } 1878 1879 if (c->ops.apply_scheme) { 1880 if (quota->esz && quota->charged_sz + sz > quota->esz) { 1881 sz = ALIGN_DOWN(quota->esz - quota->charged_sz, 1882 DAMON_MIN_REGION); 1883 if (!sz) 1884 goto update_stat; 1885 damon_split_region_at(t, r, sz); 1886 } 1887 if (damos_filter_out(c, t, r, s)) 1888 return; 1889 ktime_get_coarse_ts64(&begin); 1890 trace_damos_before_apply(cidx, sidx, tidx, r, 1891 damon_nr_regions(t), do_trace); 1892 sz_applied = c->ops.apply_scheme(c, t, r, s, 1893 &sz_ops_filter_passed); 1894 damos_walk_call_walk(c, t, r, s, sz_ops_filter_passed); 1895 ktime_get_coarse_ts64(&end); 1896 quota->total_charged_ns += timespec64_to_ns(&end) - 1897 timespec64_to_ns(&begin); 1898 quota->charged_sz += sz; 1899 if (quota->esz && quota->charged_sz >= quota->esz) { 1900 quota->charge_target_from = t; 1901 quota->charge_addr_from = r->ar.end + 1; 1902 } 1903 } 1904 if (s->action != DAMOS_STAT) 1905 r->age = 0; 1906 1907 update_stat: 1908 damos_update_stat(s, sz, sz_applied, sz_ops_filter_passed); 1909 } 1910 1911 static void damon_do_apply_schemes(struct damon_ctx *c, 1912 struct damon_target *t, 1913 struct damon_region *r) 1914 { 1915 struct damos *s; 1916 1917 damon_for_each_scheme(s, c) { 1918 struct damos_quota *quota = &s->quota; 1919 1920 if (c->passed_sample_intervals < s->next_apply_sis) 1921 continue; 1922 1923 if (!s->wmarks.activated) 1924 continue; 1925 1926 /* Check the quota */ 1927 if (quota->esz && quota->charged_sz >= quota->esz) 1928 continue; 1929 1930 if (damos_skip_charged_region(t, &r, s)) 1931 continue; 1932 1933 if (!damos_valid_target(c, t, r, s)) 1934 continue; 1935 1936 damos_apply_scheme(c, t, r, s); 1937 } 1938 } 1939 1940 /* 1941 * damon_feed_loop_next_input() - get next input to achieve a target score. 1942 * @last_input The last input. 1943 * @score Current score that made with @last_input. 1944 * 1945 * Calculate next input to achieve the target score, based on the last input 1946 * and current score. Assuming the input and the score are positively 1947 * proportional, calculate how much compensation should be added to or 1948 * subtracted from the last input as a proportion of the last input. Avoid 1949 * next input always being zero by setting it non-zero always. In short form 1950 * (assuming support of float and signed calculations), the algorithm is as 1951 * below. 1952 * 1953 * next_input = max(last_input * ((goal - current) / goal + 1), 1) 1954 * 1955 * For simple implementation, we assume the target score is always 10,000. The 1956 * caller should adjust @score for this. 1957 * 1958 * Returns next input that assumed to achieve the target score. 1959 */ 1960 static unsigned long damon_feed_loop_next_input(unsigned long last_input, 1961 unsigned long score) 1962 { 1963 const unsigned long goal = 10000; 1964 /* Set minimum input as 10000 to avoid compensation be zero */ 1965 const unsigned long min_input = 10000; 1966 unsigned long score_goal_diff, compensation; 1967 bool over_achieving = score > goal; 1968 1969 if (score == goal) 1970 return last_input; 1971 if (score >= goal * 2) 1972 return min_input; 1973 1974 if (over_achieving) 1975 score_goal_diff = score - goal; 1976 else 1977 score_goal_diff = goal - score; 1978 1979 if (last_input < ULONG_MAX / score_goal_diff) 1980 compensation = last_input * score_goal_diff / goal; 1981 else 1982 compensation = last_input / goal * score_goal_diff; 1983 1984 if (over_achieving) 1985 return max(last_input - compensation, min_input); 1986 if (last_input < ULONG_MAX - compensation) 1987 return last_input + compensation; 1988 return ULONG_MAX; 1989 } 1990 1991 #ifdef CONFIG_PSI 1992 1993 static u64 damos_get_some_mem_psi_total(void) 1994 { 1995 if (static_branch_likely(&psi_disabled)) 1996 return 0; 1997 return div_u64(psi_system.total[PSI_AVGS][PSI_MEM * 2], 1998 NSEC_PER_USEC); 1999 } 2000 2001 #else /* CONFIG_PSI */ 2002 2003 static inline u64 damos_get_some_mem_psi_total(void) 2004 { 2005 return 0; 2006 }; 2007 2008 #endif /* CONFIG_PSI */ 2009 2010 #ifdef CONFIG_NUMA 2011 static __kernel_ulong_t damos_get_node_mem_bp( 2012 struct damos_quota_goal *goal) 2013 { 2014 struct sysinfo i; 2015 __kernel_ulong_t numerator; 2016 2017 si_meminfo_node(&i, goal->nid); 2018 if (goal->metric == DAMOS_QUOTA_NODE_MEM_USED_BP) 2019 numerator = i.totalram - i.freeram; 2020 else /* DAMOS_QUOTA_NODE_MEM_FREE_BP */ 2021 numerator = i.freeram; 2022 return numerator * 10000 / i.totalram; 2023 } 2024 #else 2025 static __kernel_ulong_t damos_get_node_mem_bp( 2026 struct damos_quota_goal *goal) 2027 { 2028 return 0; 2029 } 2030 #endif 2031 2032 2033 static void damos_set_quota_goal_current_value(struct damos_quota_goal *goal) 2034 { 2035 u64 now_psi_total; 2036 2037 switch (goal->metric) { 2038 case DAMOS_QUOTA_USER_INPUT: 2039 /* User should already set goal->current_value */ 2040 break; 2041 case DAMOS_QUOTA_SOME_MEM_PSI_US: 2042 now_psi_total = damos_get_some_mem_psi_total(); 2043 goal->current_value = now_psi_total - goal->last_psi_total; 2044 goal->last_psi_total = now_psi_total; 2045 break; 2046 case DAMOS_QUOTA_NODE_MEM_USED_BP: 2047 case DAMOS_QUOTA_NODE_MEM_FREE_BP: 2048 goal->current_value = damos_get_node_mem_bp(goal); 2049 break; 2050 default: 2051 break; 2052 } 2053 } 2054 2055 /* Return the highest score since it makes schemes least aggressive */ 2056 static unsigned long damos_quota_score(struct damos_quota *quota) 2057 { 2058 struct damos_quota_goal *goal; 2059 unsigned long highest_score = 0; 2060 2061 damos_for_each_quota_goal(goal, quota) { 2062 damos_set_quota_goal_current_value(goal); 2063 highest_score = max(highest_score, 2064 goal->current_value * 10000 / 2065 goal->target_value); 2066 } 2067 2068 return highest_score; 2069 } 2070 2071 /* 2072 * Called only if quota->ms, or quota->sz are set, or quota->goals is not empty 2073 */ 2074 static void damos_set_effective_quota(struct damos_quota *quota) 2075 { 2076 unsigned long throughput; 2077 unsigned long esz = ULONG_MAX; 2078 2079 if (!quota->ms && list_empty("a->goals)) { 2080 quota->esz = quota->sz; 2081 return; 2082 } 2083 2084 if (!list_empty("a->goals)) { 2085 unsigned long score = damos_quota_score(quota); 2086 2087 quota->esz_bp = damon_feed_loop_next_input( 2088 max(quota->esz_bp, 10000UL), 2089 score); 2090 esz = quota->esz_bp / 10000; 2091 } 2092 2093 if (quota->ms) { 2094 if (quota->total_charged_ns) 2095 throughput = mult_frac(quota->total_charged_sz, 1000000, 2096 quota->total_charged_ns); 2097 else 2098 throughput = PAGE_SIZE * 1024; 2099 esz = min(throughput * quota->ms, esz); 2100 } 2101 2102 if (quota->sz && quota->sz < esz) 2103 esz = quota->sz; 2104 2105 quota->esz = esz; 2106 } 2107 2108 static void damos_trace_esz(struct damon_ctx *c, struct damos *s, 2109 struct damos_quota *quota) 2110 { 2111 unsigned int cidx = 0, sidx = 0; 2112 struct damos *siter; 2113 2114 damon_for_each_scheme(siter, c) { 2115 if (siter == s) 2116 break; 2117 sidx++; 2118 } 2119 trace_damos_esz(cidx, sidx, quota->esz); 2120 } 2121 2122 static void damos_adjust_quota(struct damon_ctx *c, struct damos *s) 2123 { 2124 struct damos_quota *quota = &s->quota; 2125 struct damon_target *t; 2126 struct damon_region *r; 2127 unsigned long cumulated_sz, cached_esz; 2128 unsigned int score, max_score = 0; 2129 2130 if (!quota->ms && !quota->sz && list_empty("a->goals)) 2131 return; 2132 2133 /* New charge window starts */ 2134 if (time_after_eq(jiffies, quota->charged_from + 2135 msecs_to_jiffies(quota->reset_interval))) { 2136 if (quota->esz && quota->charged_sz >= quota->esz) 2137 s->stat.qt_exceeds++; 2138 quota->total_charged_sz += quota->charged_sz; 2139 quota->charged_from = jiffies; 2140 quota->charged_sz = 0; 2141 if (trace_damos_esz_enabled()) 2142 cached_esz = quota->esz; 2143 damos_set_effective_quota(quota); 2144 if (trace_damos_esz_enabled() && quota->esz != cached_esz) 2145 damos_trace_esz(c, s, quota); 2146 } 2147 2148 if (!c->ops.get_scheme_score) 2149 return; 2150 2151 /* Fill up the score histogram */ 2152 memset(c->regions_score_histogram, 0, 2153 sizeof(*c->regions_score_histogram) * 2154 (DAMOS_MAX_SCORE + 1)); 2155 damon_for_each_target(t, c) { 2156 damon_for_each_region(r, t) { 2157 if (!__damos_valid_target(r, s)) 2158 continue; 2159 score = c->ops.get_scheme_score(c, t, r, s); 2160 c->regions_score_histogram[score] += 2161 damon_sz_region(r); 2162 if (score > max_score) 2163 max_score = score; 2164 } 2165 } 2166 2167 /* Set the min score limit */ 2168 for (cumulated_sz = 0, score = max_score; ; score--) { 2169 cumulated_sz += c->regions_score_histogram[score]; 2170 if (cumulated_sz >= quota->esz || !score) 2171 break; 2172 } 2173 quota->min_score = score; 2174 } 2175 2176 static void kdamond_apply_schemes(struct damon_ctx *c) 2177 { 2178 struct damon_target *t; 2179 struct damon_region *r, *next_r; 2180 struct damos *s; 2181 unsigned long sample_interval = c->attrs.sample_interval ? 2182 c->attrs.sample_interval : 1; 2183 bool has_schemes_to_apply = false; 2184 2185 damon_for_each_scheme(s, c) { 2186 if (c->passed_sample_intervals < s->next_apply_sis) 2187 continue; 2188 2189 if (!s->wmarks.activated) 2190 continue; 2191 2192 has_schemes_to_apply = true; 2193 2194 damos_adjust_quota(c, s); 2195 } 2196 2197 if (!has_schemes_to_apply) 2198 return; 2199 2200 mutex_lock(&c->walk_control_lock); 2201 damon_for_each_target(t, c) { 2202 damon_for_each_region_safe(r, next_r, t) 2203 damon_do_apply_schemes(c, t, r); 2204 } 2205 2206 damon_for_each_scheme(s, c) { 2207 if (c->passed_sample_intervals < s->next_apply_sis) 2208 continue; 2209 damos_walk_complete(c, s); 2210 s->next_apply_sis = c->passed_sample_intervals + 2211 (s->apply_interval_us ? s->apply_interval_us : 2212 c->attrs.aggr_interval) / sample_interval; 2213 s->last_applied = NULL; 2214 } 2215 mutex_unlock(&c->walk_control_lock); 2216 } 2217 2218 /* 2219 * Merge two adjacent regions into one region 2220 */ 2221 static void damon_merge_two_regions(struct damon_target *t, 2222 struct damon_region *l, struct damon_region *r) 2223 { 2224 unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r); 2225 2226 l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) / 2227 (sz_l + sz_r); 2228 l->nr_accesses_bp = l->nr_accesses * 10000; 2229 l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r); 2230 l->ar.end = r->ar.end; 2231 damon_destroy_region(r, t); 2232 } 2233 2234 /* 2235 * Merge adjacent regions having similar access frequencies 2236 * 2237 * t target affected by this merge operation 2238 * thres '->nr_accesses' diff threshold for the merge 2239 * sz_limit size upper limit of each region 2240 */ 2241 static void damon_merge_regions_of(struct damon_target *t, unsigned int thres, 2242 unsigned long sz_limit) 2243 { 2244 struct damon_region *r, *prev = NULL, *next; 2245 2246 damon_for_each_region_safe(r, next, t) { 2247 if (abs(r->nr_accesses - r->last_nr_accesses) > thres) 2248 r->age = 0; 2249 else 2250 r->age++; 2251 2252 if (prev && prev->ar.end == r->ar.start && 2253 abs(prev->nr_accesses - r->nr_accesses) <= thres && 2254 damon_sz_region(prev) + damon_sz_region(r) <= sz_limit) 2255 damon_merge_two_regions(t, prev, r); 2256 else 2257 prev = r; 2258 } 2259 } 2260 2261 /* 2262 * Merge adjacent regions having similar access frequencies 2263 * 2264 * threshold '->nr_accesses' diff threshold for the merge 2265 * sz_limit size upper limit of each region 2266 * 2267 * This function merges monitoring target regions which are adjacent and their 2268 * access frequencies are similar. This is for minimizing the monitoring 2269 * overhead under the dynamically changeable access pattern. If a merge was 2270 * unnecessarily made, later 'kdamond_split_regions()' will revert it. 2271 * 2272 * The total number of regions could be higher than the user-defined limit, 2273 * max_nr_regions for some cases. For example, the user can update 2274 * max_nr_regions to a number that lower than the current number of regions 2275 * while DAMON is running. For such a case, repeat merging until the limit is 2276 * met while increasing @threshold up to possible maximum level. 2277 */ 2278 static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold, 2279 unsigned long sz_limit) 2280 { 2281 struct damon_target *t; 2282 unsigned int nr_regions; 2283 unsigned int max_thres; 2284 2285 max_thres = c->attrs.aggr_interval / 2286 (c->attrs.sample_interval ? c->attrs.sample_interval : 1); 2287 do { 2288 nr_regions = 0; 2289 damon_for_each_target(t, c) { 2290 damon_merge_regions_of(t, threshold, sz_limit); 2291 nr_regions += damon_nr_regions(t); 2292 } 2293 threshold = max(1, threshold * 2); 2294 } while (nr_regions > c->attrs.max_nr_regions && 2295 threshold / 2 < max_thres); 2296 } 2297 2298 /* 2299 * Split a region in two 2300 * 2301 * r the region to be split 2302 * sz_r size of the first sub-region that will be made 2303 */ 2304 static void damon_split_region_at(struct damon_target *t, 2305 struct damon_region *r, unsigned long sz_r) 2306 { 2307 struct damon_region *new; 2308 2309 new = damon_new_region(r->ar.start + sz_r, r->ar.end); 2310 if (!new) 2311 return; 2312 2313 r->ar.end = new->ar.start; 2314 2315 new->age = r->age; 2316 new->last_nr_accesses = r->last_nr_accesses; 2317 new->nr_accesses_bp = r->nr_accesses_bp; 2318 new->nr_accesses = r->nr_accesses; 2319 2320 damon_insert_region(new, r, damon_next_region(r), t); 2321 } 2322 2323 /* Split every region in the given target into 'nr_subs' regions */ 2324 static void damon_split_regions_of(struct damon_target *t, int nr_subs) 2325 { 2326 struct damon_region *r, *next; 2327 unsigned long sz_region, sz_sub = 0; 2328 int i; 2329 2330 damon_for_each_region_safe(r, next, t) { 2331 sz_region = damon_sz_region(r); 2332 2333 for (i = 0; i < nr_subs - 1 && 2334 sz_region > 2 * DAMON_MIN_REGION; i++) { 2335 /* 2336 * Randomly select size of left sub-region to be at 2337 * least 10 percent and at most 90% of original region 2338 */ 2339 sz_sub = ALIGN_DOWN(damon_rand(1, 10) * 2340 sz_region / 10, DAMON_MIN_REGION); 2341 /* Do not allow blank region */ 2342 if (sz_sub == 0 || sz_sub >= sz_region) 2343 continue; 2344 2345 damon_split_region_at(t, r, sz_sub); 2346 sz_region = sz_sub; 2347 } 2348 } 2349 } 2350 2351 /* 2352 * Split every target region into randomly-sized small regions 2353 * 2354 * This function splits every target region into random-sized small regions if 2355 * current total number of the regions is equal or smaller than half of the 2356 * user-specified maximum number of regions. This is for maximizing the 2357 * monitoring accuracy under the dynamically changeable access patterns. If a 2358 * split was unnecessarily made, later 'kdamond_merge_regions()' will revert 2359 * it. 2360 */ 2361 static void kdamond_split_regions(struct damon_ctx *ctx) 2362 { 2363 struct damon_target *t; 2364 unsigned int nr_regions = 0; 2365 static unsigned int last_nr_regions; 2366 int nr_subregions = 2; 2367 2368 damon_for_each_target(t, ctx) 2369 nr_regions += damon_nr_regions(t); 2370 2371 if (nr_regions > ctx->attrs.max_nr_regions / 2) 2372 return; 2373 2374 /* Maybe the middle of the region has different access frequency */ 2375 if (last_nr_regions == nr_regions && 2376 nr_regions < ctx->attrs.max_nr_regions / 3) 2377 nr_subregions = 3; 2378 2379 damon_for_each_target(t, ctx) 2380 damon_split_regions_of(t, nr_subregions); 2381 2382 last_nr_regions = nr_regions; 2383 } 2384 2385 /* 2386 * Check whether current monitoring should be stopped 2387 * 2388 * The monitoring is stopped when either the user requested to stop, or all 2389 * monitoring targets are invalid. 2390 * 2391 * Returns true if need to stop current monitoring. 2392 */ 2393 static bool kdamond_need_stop(struct damon_ctx *ctx) 2394 { 2395 struct damon_target *t; 2396 2397 if (kthread_should_stop()) 2398 return true; 2399 2400 if (!ctx->ops.target_valid) 2401 return false; 2402 2403 damon_for_each_target(t, ctx) { 2404 if (ctx->ops.target_valid(t)) 2405 return false; 2406 } 2407 2408 return true; 2409 } 2410 2411 static int damos_get_wmark_metric_value(enum damos_wmark_metric metric, 2412 unsigned long *metric_value) 2413 { 2414 switch (metric) { 2415 case DAMOS_WMARK_FREE_MEM_RATE: 2416 *metric_value = global_zone_page_state(NR_FREE_PAGES) * 1000 / 2417 totalram_pages(); 2418 return 0; 2419 default: 2420 break; 2421 } 2422 return -EINVAL; 2423 } 2424 2425 /* 2426 * Returns zero if the scheme is active. Else, returns time to wait for next 2427 * watermark check in micro-seconds. 2428 */ 2429 static unsigned long damos_wmark_wait_us(struct damos *scheme) 2430 { 2431 unsigned long metric; 2432 2433 if (damos_get_wmark_metric_value(scheme->wmarks.metric, &metric)) 2434 return 0; 2435 2436 /* higher than high watermark or lower than low watermark */ 2437 if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) { 2438 if (scheme->wmarks.activated) 2439 pr_debug("deactivate a scheme (%d) for %s wmark\n", 2440 scheme->action, 2441 str_high_low(metric > scheme->wmarks.high)); 2442 scheme->wmarks.activated = false; 2443 return scheme->wmarks.interval; 2444 } 2445 2446 /* inactive and higher than middle watermark */ 2447 if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) && 2448 !scheme->wmarks.activated) 2449 return scheme->wmarks.interval; 2450 2451 if (!scheme->wmarks.activated) 2452 pr_debug("activate a scheme (%d)\n", scheme->action); 2453 scheme->wmarks.activated = true; 2454 return 0; 2455 } 2456 2457 static void kdamond_usleep(unsigned long usecs) 2458 { 2459 if (usecs >= USLEEP_RANGE_UPPER_BOUND) 2460 schedule_timeout_idle(usecs_to_jiffies(usecs)); 2461 else 2462 usleep_range_idle(usecs, usecs + 1); 2463 } 2464 2465 /* 2466 * kdamond_call() - handle damon_call_control objects. 2467 * @ctx: The &struct damon_ctx of the kdamond. 2468 * @cancel: Whether to cancel the invocation of the function. 2469 * 2470 * If there are &struct damon_call_control requests that registered via 2471 * &damon_call() on @ctx, do or cancel the invocation of the function depending 2472 * on @cancel. @cancel is set when the kdamond is already out of the main loop 2473 * and therefore will be terminated. 2474 */ 2475 static void kdamond_call(struct damon_ctx *ctx, bool cancel) 2476 { 2477 struct damon_call_control *control; 2478 LIST_HEAD(repeat_controls); 2479 int ret = 0; 2480 2481 while (true) { 2482 mutex_lock(&ctx->call_controls_lock); 2483 control = list_first_entry_or_null(&ctx->call_controls, 2484 struct damon_call_control, list); 2485 mutex_unlock(&ctx->call_controls_lock); 2486 if (!control) 2487 break; 2488 if (cancel) { 2489 control->canceled = true; 2490 } else { 2491 ret = control->fn(control->data); 2492 control->return_code = ret; 2493 } 2494 mutex_lock(&ctx->call_controls_lock); 2495 list_del(&control->list); 2496 mutex_unlock(&ctx->call_controls_lock); 2497 if (!control->repeat) 2498 complete(&control->completion); 2499 else 2500 list_add(&control->list, &repeat_controls); 2501 } 2502 control = list_first_entry_or_null(&repeat_controls, 2503 struct damon_call_control, list); 2504 if (!control || cancel) 2505 return; 2506 mutex_lock(&ctx->call_controls_lock); 2507 list_add_tail(&control->list, &ctx->call_controls); 2508 mutex_unlock(&ctx->call_controls_lock); 2509 } 2510 2511 /* Returns negative error code if it's not activated but should return */ 2512 static int kdamond_wait_activation(struct damon_ctx *ctx) 2513 { 2514 struct damos *s; 2515 unsigned long wait_time; 2516 unsigned long min_wait_time = 0; 2517 bool init_wait_time = false; 2518 2519 while (!kdamond_need_stop(ctx)) { 2520 damon_for_each_scheme(s, ctx) { 2521 wait_time = damos_wmark_wait_us(s); 2522 if (!init_wait_time || wait_time < min_wait_time) { 2523 init_wait_time = true; 2524 min_wait_time = wait_time; 2525 } 2526 } 2527 if (!min_wait_time) 2528 return 0; 2529 2530 kdamond_usleep(min_wait_time); 2531 2532 kdamond_call(ctx, false); 2533 damos_walk_cancel(ctx); 2534 } 2535 return -EBUSY; 2536 } 2537 2538 static void kdamond_init_ctx(struct damon_ctx *ctx) 2539 { 2540 unsigned long sample_interval = ctx->attrs.sample_interval ? 2541 ctx->attrs.sample_interval : 1; 2542 unsigned long apply_interval; 2543 struct damos *scheme; 2544 2545 ctx->passed_sample_intervals = 0; 2546 ctx->next_aggregation_sis = ctx->attrs.aggr_interval / sample_interval; 2547 ctx->next_ops_update_sis = ctx->attrs.ops_update_interval / 2548 sample_interval; 2549 ctx->next_intervals_tune_sis = ctx->next_aggregation_sis * 2550 ctx->attrs.intervals_goal.aggrs; 2551 2552 damon_for_each_scheme(scheme, ctx) { 2553 apply_interval = scheme->apply_interval_us ? 2554 scheme->apply_interval_us : ctx->attrs.aggr_interval; 2555 scheme->next_apply_sis = apply_interval / sample_interval; 2556 damos_set_filters_default_reject(scheme); 2557 } 2558 } 2559 2560 /* 2561 * The monitoring daemon that runs as a kernel thread 2562 */ 2563 static int kdamond_fn(void *data) 2564 { 2565 struct damon_ctx *ctx = data; 2566 struct damon_target *t; 2567 struct damon_region *r, *next; 2568 unsigned int max_nr_accesses = 0; 2569 unsigned long sz_limit = 0; 2570 2571 pr_debug("kdamond (%d) starts\n", current->pid); 2572 2573 complete(&ctx->kdamond_started); 2574 kdamond_init_ctx(ctx); 2575 2576 if (ctx->ops.init) 2577 ctx->ops.init(ctx); 2578 ctx->regions_score_histogram = kmalloc_array(DAMOS_MAX_SCORE + 1, 2579 sizeof(*ctx->regions_score_histogram), GFP_KERNEL); 2580 if (!ctx->regions_score_histogram) 2581 goto done; 2582 2583 sz_limit = damon_region_sz_limit(ctx); 2584 2585 while (!kdamond_need_stop(ctx)) { 2586 /* 2587 * ctx->attrs and ctx->next_{aggregation,ops_update}_sis could 2588 * be changed from kdamond_call(). Read the values here, and 2589 * use those for this iteration. That is, damon_set_attrs() 2590 * updated new values are respected from next iteration. 2591 */ 2592 unsigned long next_aggregation_sis = ctx->next_aggregation_sis; 2593 unsigned long next_ops_update_sis = ctx->next_ops_update_sis; 2594 unsigned long sample_interval = ctx->attrs.sample_interval; 2595 2596 if (kdamond_wait_activation(ctx)) 2597 break; 2598 2599 if (ctx->ops.prepare_access_checks) 2600 ctx->ops.prepare_access_checks(ctx); 2601 2602 kdamond_usleep(sample_interval); 2603 ctx->passed_sample_intervals++; 2604 2605 if (ctx->ops.check_accesses) 2606 max_nr_accesses = ctx->ops.check_accesses(ctx); 2607 2608 if (ctx->passed_sample_intervals >= next_aggregation_sis) 2609 kdamond_merge_regions(ctx, 2610 max_nr_accesses / 10, 2611 sz_limit); 2612 2613 /* 2614 * do kdamond_call() and kdamond_apply_schemes() after 2615 * kdamond_merge_regions() if possible, to reduce overhead 2616 */ 2617 kdamond_call(ctx, false); 2618 if (!list_empty(&ctx->schemes)) 2619 kdamond_apply_schemes(ctx); 2620 else 2621 damos_walk_cancel(ctx); 2622 2623 sample_interval = ctx->attrs.sample_interval ? 2624 ctx->attrs.sample_interval : 1; 2625 if (ctx->passed_sample_intervals >= next_aggregation_sis) { 2626 if (ctx->attrs.intervals_goal.aggrs && 2627 ctx->passed_sample_intervals >= 2628 ctx->next_intervals_tune_sis) { 2629 /* 2630 * ctx->next_aggregation_sis might be updated 2631 * from kdamond_call(). In the case, 2632 * damon_set_attrs() which will be called from 2633 * kdamond_tune_interval() may wrongly think 2634 * this is in the middle of the current 2635 * aggregation, and make aggregation 2636 * information reset for all regions. Then, 2637 * following kdamond_reset_aggregated() call 2638 * will make the region information invalid, 2639 * particularly for ->nr_accesses_bp. 2640 * 2641 * Reset ->next_aggregation_sis to avoid that. 2642 * It will anyway correctly updated after this 2643 * if caluse. 2644 */ 2645 ctx->next_aggregation_sis = 2646 next_aggregation_sis; 2647 ctx->next_intervals_tune_sis += 2648 ctx->attrs.aggr_samples * 2649 ctx->attrs.intervals_goal.aggrs; 2650 kdamond_tune_intervals(ctx); 2651 sample_interval = ctx->attrs.sample_interval ? 2652 ctx->attrs.sample_interval : 1; 2653 2654 } 2655 ctx->next_aggregation_sis = next_aggregation_sis + 2656 ctx->attrs.aggr_interval / sample_interval; 2657 2658 kdamond_reset_aggregated(ctx); 2659 kdamond_split_regions(ctx); 2660 } 2661 2662 if (ctx->passed_sample_intervals >= next_ops_update_sis) { 2663 ctx->next_ops_update_sis = next_ops_update_sis + 2664 ctx->attrs.ops_update_interval / 2665 sample_interval; 2666 if (ctx->ops.update) 2667 ctx->ops.update(ctx); 2668 sz_limit = damon_region_sz_limit(ctx); 2669 } 2670 } 2671 done: 2672 damon_for_each_target(t, ctx) { 2673 damon_for_each_region_safe(r, next, t) 2674 damon_destroy_region(r, t); 2675 } 2676 2677 if (ctx->ops.cleanup) 2678 ctx->ops.cleanup(ctx); 2679 kfree(ctx->regions_score_histogram); 2680 2681 pr_debug("kdamond (%d) finishes\n", current->pid); 2682 mutex_lock(&ctx->kdamond_lock); 2683 ctx->kdamond = NULL; 2684 mutex_unlock(&ctx->kdamond_lock); 2685 2686 kdamond_call(ctx, true); 2687 damos_walk_cancel(ctx); 2688 2689 mutex_lock(&damon_lock); 2690 nr_running_ctxs--; 2691 if (!nr_running_ctxs && running_exclusive_ctxs) 2692 running_exclusive_ctxs = false; 2693 mutex_unlock(&damon_lock); 2694 2695 damon_destroy_targets(ctx); 2696 return 0; 2697 } 2698 2699 /* 2700 * struct damon_system_ram_region - System RAM resource address region of 2701 * [@start, @end). 2702 * @start: Start address of the region (inclusive). 2703 * @end: End address of the region (exclusive). 2704 */ 2705 struct damon_system_ram_region { 2706 unsigned long start; 2707 unsigned long end; 2708 }; 2709 2710 static int walk_system_ram(struct resource *res, void *arg) 2711 { 2712 struct damon_system_ram_region *a = arg; 2713 2714 if (a->end - a->start < resource_size(res)) { 2715 a->start = res->start; 2716 a->end = res->end; 2717 } 2718 return 0; 2719 } 2720 2721 /* 2722 * Find biggest 'System RAM' resource and store its start and end address in 2723 * @start and @end, respectively. If no System RAM is found, returns false. 2724 */ 2725 static bool damon_find_biggest_system_ram(unsigned long *start, 2726 unsigned long *end) 2727 2728 { 2729 struct damon_system_ram_region arg = {}; 2730 2731 walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram); 2732 if (arg.end <= arg.start) 2733 return false; 2734 2735 *start = arg.start; 2736 *end = arg.end; 2737 return true; 2738 } 2739 2740 /** 2741 * damon_set_region_biggest_system_ram_default() - Set the region of the given 2742 * monitoring target as requested, or biggest 'System RAM'. 2743 * @t: The monitoring target to set the region. 2744 * @start: The pointer to the start address of the region. 2745 * @end: The pointer to the end address of the region. 2746 * 2747 * This function sets the region of @t as requested by @start and @end. If the 2748 * values of @start and @end are zero, however, this function finds the biggest 2749 * 'System RAM' resource and sets the region to cover the resource. In the 2750 * latter case, this function saves the start and end addresses of the resource 2751 * in @start and @end, respectively. 2752 * 2753 * Return: 0 on success, negative error code otherwise. 2754 */ 2755 int damon_set_region_biggest_system_ram_default(struct damon_target *t, 2756 unsigned long *start, unsigned long *end) 2757 { 2758 struct damon_addr_range addr_range; 2759 2760 if (*start > *end) 2761 return -EINVAL; 2762 2763 if (!*start && !*end && 2764 !damon_find_biggest_system_ram(start, end)) 2765 return -EINVAL; 2766 2767 addr_range.start = *start; 2768 addr_range.end = *end; 2769 return damon_set_regions(t, &addr_range, 1); 2770 } 2771 2772 /* 2773 * damon_moving_sum() - Calculate an inferred moving sum value. 2774 * @mvsum: Inferred sum of the last @len_window values. 2775 * @nomvsum: Non-moving sum of the last discrete @len_window window values. 2776 * @len_window: The number of last values to take care of. 2777 * @new_value: New value that will be added to the pseudo moving sum. 2778 * 2779 * Moving sum (moving average * window size) is good for handling noise, but 2780 * the cost of keeping past values can be high for arbitrary window size. This 2781 * function implements a lightweight pseudo moving sum function that doesn't 2782 * keep the past window values. 2783 * 2784 * It simply assumes there was no noise in the past, and get the no-noise 2785 * assumed past value to drop from @nomvsum and @len_window. @nomvsum is a 2786 * non-moving sum of the last window. For example, if @len_window is 10 and we 2787 * have 25 values, @nomvsum is the sum of the 11th to 20th values of the 25 2788 * values. Hence, this function simply drops @nomvsum / @len_window from 2789 * given @mvsum and add @new_value. 2790 * 2791 * For example, if @len_window is 10 and @nomvsum is 50, the last 10 values for 2792 * the last window could be vary, e.g., 0, 10, 0, 10, 0, 10, 0, 0, 0, 20. For 2793 * calculating next moving sum with a new value, we should drop 0 from 50 and 2794 * add the new value. However, this function assumes it got value 5 for each 2795 * of the last ten times. Based on the assumption, when the next value is 2796 * measured, it drops the assumed past value, 5 from the current sum, and add 2797 * the new value to get the updated pseduo-moving average. 2798 * 2799 * This means the value could have errors, but the errors will be disappeared 2800 * for every @len_window aligned calls. For example, if @len_window is 10, the 2801 * pseudo moving sum with 11th value to 19th value would have an error. But 2802 * the sum with 20th value will not have the error. 2803 * 2804 * Return: Pseudo-moving average after getting the @new_value. 2805 */ 2806 static unsigned int damon_moving_sum(unsigned int mvsum, unsigned int nomvsum, 2807 unsigned int len_window, unsigned int new_value) 2808 { 2809 return mvsum - nomvsum / len_window + new_value; 2810 } 2811 2812 /** 2813 * damon_update_region_access_rate() - Update the access rate of a region. 2814 * @r: The DAMON region to update for its access check result. 2815 * @accessed: Whether the region has accessed during last sampling interval. 2816 * @attrs: The damon_attrs of the DAMON context. 2817 * 2818 * Update the access rate of a region with the region's last sampling interval 2819 * access check result. 2820 * 2821 * Usually this will be called by &damon_operations->check_accesses callback. 2822 */ 2823 void damon_update_region_access_rate(struct damon_region *r, bool accessed, 2824 struct damon_attrs *attrs) 2825 { 2826 unsigned int len_window = 1; 2827 2828 /* 2829 * sample_interval can be zero, but cannot be larger than 2830 * aggr_interval, owing to validation of damon_set_attrs(). 2831 */ 2832 if (attrs->sample_interval) 2833 len_window = damon_max_nr_accesses(attrs); 2834 r->nr_accesses_bp = damon_moving_sum(r->nr_accesses_bp, 2835 r->last_nr_accesses * 10000, len_window, 2836 accessed ? 10000 : 0); 2837 2838 if (accessed) 2839 r->nr_accesses++; 2840 } 2841 2842 static int __init damon_init(void) 2843 { 2844 damon_region_cache = KMEM_CACHE(damon_region, 0); 2845 if (unlikely(!damon_region_cache)) { 2846 pr_err("creating damon_region_cache fails\n"); 2847 return -ENOMEM; 2848 } 2849 2850 return 0; 2851 } 2852 2853 subsys_initcall(damon_init); 2854 2855 #include "tests/core-kunit.h" 2856