xref: /linux/mm/damon/core.c (revision 9112fc0109fc0037ac3b8b633a169e78b4e23ca1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Data Access Monitor
4  *
5  * Author: SeongJae Park <sj@kernel.org>
6  */
7 
8 #define pr_fmt(fmt) "damon: " fmt
9 
10 #include <linux/damon.h>
11 #include <linux/delay.h>
12 #include <linux/kthread.h>
13 #include <linux/mm.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16 
17 #define CREATE_TRACE_POINTS
18 #include <trace/events/damon.h>
19 
20 #ifdef CONFIG_DAMON_KUNIT_TEST
21 #undef DAMON_MIN_REGION
22 #define DAMON_MIN_REGION 1
23 #endif
24 
25 static DEFINE_MUTEX(damon_lock);
26 static int nr_running_ctxs;
27 static bool running_exclusive_ctxs;
28 
29 static DEFINE_MUTEX(damon_ops_lock);
30 static struct damon_operations damon_registered_ops[NR_DAMON_OPS];
31 
32 static struct kmem_cache *damon_region_cache __ro_after_init;
33 
34 /* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */
35 static bool __damon_is_registered_ops(enum damon_ops_id id)
36 {
37 	struct damon_operations empty_ops = {};
38 
39 	if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops)))
40 		return false;
41 	return true;
42 }
43 
44 /**
45  * damon_is_registered_ops() - Check if a given damon_operations is registered.
46  * @id:	Id of the damon_operations to check if registered.
47  *
48  * Return: true if the ops is set, false otherwise.
49  */
50 bool damon_is_registered_ops(enum damon_ops_id id)
51 {
52 	bool registered;
53 
54 	if (id >= NR_DAMON_OPS)
55 		return false;
56 	mutex_lock(&damon_ops_lock);
57 	registered = __damon_is_registered_ops(id);
58 	mutex_unlock(&damon_ops_lock);
59 	return registered;
60 }
61 
62 /**
63  * damon_register_ops() - Register a monitoring operations set to DAMON.
64  * @ops:	monitoring operations set to register.
65  *
66  * This function registers a monitoring operations set of valid &struct
67  * damon_operations->id so that others can find and use them later.
68  *
69  * Return: 0 on success, negative error code otherwise.
70  */
71 int damon_register_ops(struct damon_operations *ops)
72 {
73 	int err = 0;
74 
75 	if (ops->id >= NR_DAMON_OPS)
76 		return -EINVAL;
77 	mutex_lock(&damon_ops_lock);
78 	/* Fail for already registered ops */
79 	if (__damon_is_registered_ops(ops->id)) {
80 		err = -EINVAL;
81 		goto out;
82 	}
83 	damon_registered_ops[ops->id] = *ops;
84 out:
85 	mutex_unlock(&damon_ops_lock);
86 	return err;
87 }
88 
89 /**
90  * damon_select_ops() - Select a monitoring operations to use with the context.
91  * @ctx:	monitoring context to use the operations.
92  * @id:		id of the registered monitoring operations to select.
93  *
94  * This function finds registered monitoring operations set of @id and make
95  * @ctx to use it.
96  *
97  * Return: 0 on success, negative error code otherwise.
98  */
99 int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id)
100 {
101 	int err = 0;
102 
103 	if (id >= NR_DAMON_OPS)
104 		return -EINVAL;
105 
106 	mutex_lock(&damon_ops_lock);
107 	if (!__damon_is_registered_ops(id))
108 		err = -EINVAL;
109 	else
110 		ctx->ops = damon_registered_ops[id];
111 	mutex_unlock(&damon_ops_lock);
112 	return err;
113 }
114 
115 /*
116  * Construct a damon_region struct
117  *
118  * Returns the pointer to the new struct if success, or NULL otherwise
119  */
120 struct damon_region *damon_new_region(unsigned long start, unsigned long end)
121 {
122 	struct damon_region *region;
123 
124 	region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL);
125 	if (!region)
126 		return NULL;
127 
128 	region->ar.start = start;
129 	region->ar.end = end;
130 	region->nr_accesses = 0;
131 	region->nr_accesses_bp = 0;
132 	INIT_LIST_HEAD(&region->list);
133 
134 	region->age = 0;
135 	region->last_nr_accesses = 0;
136 
137 	return region;
138 }
139 
140 void damon_add_region(struct damon_region *r, struct damon_target *t)
141 {
142 	list_add_tail(&r->list, &t->regions_list);
143 	t->nr_regions++;
144 }
145 
146 static void damon_del_region(struct damon_region *r, struct damon_target *t)
147 {
148 	list_del(&r->list);
149 	t->nr_regions--;
150 }
151 
152 static void damon_free_region(struct damon_region *r)
153 {
154 	kmem_cache_free(damon_region_cache, r);
155 }
156 
157 void damon_destroy_region(struct damon_region *r, struct damon_target *t)
158 {
159 	damon_del_region(r, t);
160 	damon_free_region(r);
161 }
162 
163 /*
164  * Check whether a region is intersecting an address range
165  *
166  * Returns true if it is.
167  */
168 static bool damon_intersect(struct damon_region *r,
169 		struct damon_addr_range *re)
170 {
171 	return !(r->ar.end <= re->start || re->end <= r->ar.start);
172 }
173 
174 /*
175  * Fill holes in regions with new regions.
176  */
177 static int damon_fill_regions_holes(struct damon_region *first,
178 		struct damon_region *last, struct damon_target *t)
179 {
180 	struct damon_region *r = first;
181 
182 	damon_for_each_region_from(r, t) {
183 		struct damon_region *next, *newr;
184 
185 		if (r == last)
186 			break;
187 		next = damon_next_region(r);
188 		if (r->ar.end != next->ar.start) {
189 			newr = damon_new_region(r->ar.end, next->ar.start);
190 			if (!newr)
191 				return -ENOMEM;
192 			damon_insert_region(newr, r, next, t);
193 		}
194 	}
195 	return 0;
196 }
197 
198 /*
199  * damon_set_regions() - Set regions of a target for given address ranges.
200  * @t:		the given target.
201  * @ranges:	array of new monitoring target ranges.
202  * @nr_ranges:	length of @ranges.
203  *
204  * This function adds new regions to, or modify existing regions of a
205  * monitoring target to fit in specific ranges.
206  *
207  * Return: 0 if success, or negative error code otherwise.
208  */
209 int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges,
210 		unsigned int nr_ranges)
211 {
212 	struct damon_region *r, *next;
213 	unsigned int i;
214 	int err;
215 
216 	/* Remove regions which are not in the new ranges */
217 	damon_for_each_region_safe(r, next, t) {
218 		for (i = 0; i < nr_ranges; i++) {
219 			if (damon_intersect(r, &ranges[i]))
220 				break;
221 		}
222 		if (i == nr_ranges)
223 			damon_destroy_region(r, t);
224 	}
225 
226 	r = damon_first_region(t);
227 	/* Add new regions or resize existing regions to fit in the ranges */
228 	for (i = 0; i < nr_ranges; i++) {
229 		struct damon_region *first = NULL, *last, *newr;
230 		struct damon_addr_range *range;
231 
232 		range = &ranges[i];
233 		/* Get the first/last regions intersecting with the range */
234 		damon_for_each_region_from(r, t) {
235 			if (damon_intersect(r, range)) {
236 				if (!first)
237 					first = r;
238 				last = r;
239 			}
240 			if (r->ar.start >= range->end)
241 				break;
242 		}
243 		if (!first) {
244 			/* no region intersects with this range */
245 			newr = damon_new_region(
246 					ALIGN_DOWN(range->start,
247 						DAMON_MIN_REGION),
248 					ALIGN(range->end, DAMON_MIN_REGION));
249 			if (!newr)
250 				return -ENOMEM;
251 			damon_insert_region(newr, damon_prev_region(r), r, t);
252 		} else {
253 			/* resize intersecting regions to fit in this range */
254 			first->ar.start = ALIGN_DOWN(range->start,
255 					DAMON_MIN_REGION);
256 			last->ar.end = ALIGN(range->end, DAMON_MIN_REGION);
257 
258 			/* fill possible holes in the range */
259 			err = damon_fill_regions_holes(first, last, t);
260 			if (err)
261 				return err;
262 		}
263 	}
264 	return 0;
265 }
266 
267 struct damos_filter *damos_new_filter(enum damos_filter_type type,
268 		bool matching)
269 {
270 	struct damos_filter *filter;
271 
272 	filter = kmalloc(sizeof(*filter), GFP_KERNEL);
273 	if (!filter)
274 		return NULL;
275 	filter->type = type;
276 	filter->matching = matching;
277 	INIT_LIST_HEAD(&filter->list);
278 	return filter;
279 }
280 
281 void damos_add_filter(struct damos *s, struct damos_filter *f)
282 {
283 	list_add_tail(&f->list, &s->filters);
284 }
285 
286 static void damos_del_filter(struct damos_filter *f)
287 {
288 	list_del(&f->list);
289 }
290 
291 static void damos_free_filter(struct damos_filter *f)
292 {
293 	kfree(f);
294 }
295 
296 void damos_destroy_filter(struct damos_filter *f)
297 {
298 	damos_del_filter(f);
299 	damos_free_filter(f);
300 }
301 
302 /* initialize private fields of damos_quota and return the pointer */
303 static struct damos_quota *damos_quota_init_priv(struct damos_quota *quota)
304 {
305 	quota->total_charged_sz = 0;
306 	quota->total_charged_ns = 0;
307 	quota->esz = 0;
308 	quota->charged_sz = 0;
309 	quota->charged_from = 0;
310 	quota->charge_target_from = NULL;
311 	quota->charge_addr_from = 0;
312 	return quota;
313 }
314 
315 struct damos *damon_new_scheme(struct damos_access_pattern *pattern,
316 			enum damos_action action,
317 			unsigned long apply_interval_us,
318 			struct damos_quota *quota,
319 			struct damos_watermarks *wmarks)
320 {
321 	struct damos *scheme;
322 
323 	scheme = kmalloc(sizeof(*scheme), GFP_KERNEL);
324 	if (!scheme)
325 		return NULL;
326 	scheme->pattern = *pattern;
327 	scheme->action = action;
328 	scheme->apply_interval_us = apply_interval_us;
329 	/*
330 	 * next_apply_sis will be set when kdamond starts.  While kdamond is
331 	 * running, it will also updated when it is added to the DAMON context,
332 	 * or damon_attrs are updated.
333 	 */
334 	scheme->next_apply_sis = 0;
335 	INIT_LIST_HEAD(&scheme->filters);
336 	scheme->stat = (struct damos_stat){};
337 	INIT_LIST_HEAD(&scheme->list);
338 
339 	scheme->quota = *(damos_quota_init_priv(quota));
340 
341 	scheme->wmarks = *wmarks;
342 	scheme->wmarks.activated = true;
343 
344 	return scheme;
345 }
346 
347 static void damos_set_next_apply_sis(struct damos *s, struct damon_ctx *ctx)
348 {
349 	unsigned long sample_interval = ctx->attrs.sample_interval ?
350 		ctx->attrs.sample_interval : 1;
351 	unsigned long apply_interval = s->apply_interval_us ?
352 		s->apply_interval_us : ctx->attrs.aggr_interval;
353 
354 	s->next_apply_sis = ctx->passed_sample_intervals +
355 		apply_interval / sample_interval;
356 }
357 
358 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s)
359 {
360 	list_add_tail(&s->list, &ctx->schemes);
361 	damos_set_next_apply_sis(s, ctx);
362 }
363 
364 static void damon_del_scheme(struct damos *s)
365 {
366 	list_del(&s->list);
367 }
368 
369 static void damon_free_scheme(struct damos *s)
370 {
371 	kfree(s);
372 }
373 
374 void damon_destroy_scheme(struct damos *s)
375 {
376 	struct damos_filter *f, *next;
377 
378 	damos_for_each_filter_safe(f, next, s)
379 		damos_destroy_filter(f);
380 	damon_del_scheme(s);
381 	damon_free_scheme(s);
382 }
383 
384 /*
385  * Construct a damon_target struct
386  *
387  * Returns the pointer to the new struct if success, or NULL otherwise
388  */
389 struct damon_target *damon_new_target(void)
390 {
391 	struct damon_target *t;
392 
393 	t = kmalloc(sizeof(*t), GFP_KERNEL);
394 	if (!t)
395 		return NULL;
396 
397 	t->pid = NULL;
398 	t->nr_regions = 0;
399 	INIT_LIST_HEAD(&t->regions_list);
400 	INIT_LIST_HEAD(&t->list);
401 
402 	return t;
403 }
404 
405 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t)
406 {
407 	list_add_tail(&t->list, &ctx->adaptive_targets);
408 }
409 
410 bool damon_targets_empty(struct damon_ctx *ctx)
411 {
412 	return list_empty(&ctx->adaptive_targets);
413 }
414 
415 static void damon_del_target(struct damon_target *t)
416 {
417 	list_del(&t->list);
418 }
419 
420 void damon_free_target(struct damon_target *t)
421 {
422 	struct damon_region *r, *next;
423 
424 	damon_for_each_region_safe(r, next, t)
425 		damon_free_region(r);
426 	kfree(t);
427 }
428 
429 void damon_destroy_target(struct damon_target *t)
430 {
431 	damon_del_target(t);
432 	damon_free_target(t);
433 }
434 
435 unsigned int damon_nr_regions(struct damon_target *t)
436 {
437 	return t->nr_regions;
438 }
439 
440 struct damon_ctx *damon_new_ctx(void)
441 {
442 	struct damon_ctx *ctx;
443 
444 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
445 	if (!ctx)
446 		return NULL;
447 
448 	init_completion(&ctx->kdamond_started);
449 
450 	ctx->attrs.sample_interval = 5 * 1000;
451 	ctx->attrs.aggr_interval = 100 * 1000;
452 	ctx->attrs.ops_update_interval = 60 * 1000 * 1000;
453 
454 	ctx->passed_sample_intervals = 0;
455 	/* These will be set from kdamond_init_intervals_sis() */
456 	ctx->next_aggregation_sis = 0;
457 	ctx->next_ops_update_sis = 0;
458 
459 	mutex_init(&ctx->kdamond_lock);
460 
461 	ctx->attrs.min_nr_regions = 10;
462 	ctx->attrs.max_nr_regions = 1000;
463 
464 	INIT_LIST_HEAD(&ctx->adaptive_targets);
465 	INIT_LIST_HEAD(&ctx->schemes);
466 
467 	return ctx;
468 }
469 
470 static void damon_destroy_targets(struct damon_ctx *ctx)
471 {
472 	struct damon_target *t, *next_t;
473 
474 	if (ctx->ops.cleanup) {
475 		ctx->ops.cleanup(ctx);
476 		return;
477 	}
478 
479 	damon_for_each_target_safe(t, next_t, ctx)
480 		damon_destroy_target(t);
481 }
482 
483 void damon_destroy_ctx(struct damon_ctx *ctx)
484 {
485 	struct damos *s, *next_s;
486 
487 	damon_destroy_targets(ctx);
488 
489 	damon_for_each_scheme_safe(s, next_s, ctx)
490 		damon_destroy_scheme(s);
491 
492 	kfree(ctx);
493 }
494 
495 static unsigned int damon_age_for_new_attrs(unsigned int age,
496 		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
497 {
498 	return age * old_attrs->aggr_interval / new_attrs->aggr_interval;
499 }
500 
501 /* convert access ratio in bp (per 10,000) to nr_accesses */
502 static unsigned int damon_accesses_bp_to_nr_accesses(
503 		unsigned int accesses_bp, struct damon_attrs *attrs)
504 {
505 	return accesses_bp * damon_max_nr_accesses(attrs) / 10000;
506 }
507 
508 /* convert nr_accesses to access ratio in bp (per 10,000) */
509 static unsigned int damon_nr_accesses_to_accesses_bp(
510 		unsigned int nr_accesses, struct damon_attrs *attrs)
511 {
512 	return nr_accesses * 10000 / damon_max_nr_accesses(attrs);
513 }
514 
515 static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,
516 		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
517 {
518 	return damon_accesses_bp_to_nr_accesses(
519 			damon_nr_accesses_to_accesses_bp(
520 				nr_accesses, old_attrs),
521 			new_attrs);
522 }
523 
524 static void damon_update_monitoring_result(struct damon_region *r,
525 		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
526 {
527 	r->nr_accesses = damon_nr_accesses_for_new_attrs(r->nr_accesses,
528 			old_attrs, new_attrs);
529 	r->nr_accesses_bp = r->nr_accesses * 10000;
530 	r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs);
531 }
532 
533 /*
534  * region->nr_accesses is the number of sampling intervals in the last
535  * aggregation interval that access to the region has found, and region->age is
536  * the number of aggregation intervals that its access pattern has maintained.
537  * For the reason, the real meaning of the two fields depend on current
538  * sampling interval and aggregation interval.  This function updates
539  * ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs.
540  */
541 static void damon_update_monitoring_results(struct damon_ctx *ctx,
542 		struct damon_attrs *new_attrs)
543 {
544 	struct damon_attrs *old_attrs = &ctx->attrs;
545 	struct damon_target *t;
546 	struct damon_region *r;
547 
548 	/* if any interval is zero, simply forgive conversion */
549 	if (!old_attrs->sample_interval || !old_attrs->aggr_interval ||
550 			!new_attrs->sample_interval ||
551 			!new_attrs->aggr_interval)
552 		return;
553 
554 	damon_for_each_target(t, ctx)
555 		damon_for_each_region(r, t)
556 			damon_update_monitoring_result(
557 					r, old_attrs, new_attrs);
558 }
559 
560 /**
561  * damon_set_attrs() - Set attributes for the monitoring.
562  * @ctx:		monitoring context
563  * @attrs:		monitoring attributes
564  *
565  * This function should be called while the kdamond is not running, or an
566  * access check results aggregation is not ongoing (e.g., from
567  * &struct damon_callback->after_aggregation or
568  * &struct damon_callback->after_wmarks_check callbacks).
569  *
570  * Every time interval is in micro-seconds.
571  *
572  * Return: 0 on success, negative error code otherwise.
573  */
574 int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs)
575 {
576 	unsigned long sample_interval = attrs->sample_interval ?
577 		attrs->sample_interval : 1;
578 	struct damos *s;
579 
580 	if (attrs->min_nr_regions < 3)
581 		return -EINVAL;
582 	if (attrs->min_nr_regions > attrs->max_nr_regions)
583 		return -EINVAL;
584 	if (attrs->sample_interval > attrs->aggr_interval)
585 		return -EINVAL;
586 
587 	ctx->next_aggregation_sis = ctx->passed_sample_intervals +
588 		attrs->aggr_interval / sample_interval;
589 	ctx->next_ops_update_sis = ctx->passed_sample_intervals +
590 		attrs->ops_update_interval / sample_interval;
591 
592 	damon_update_monitoring_results(ctx, attrs);
593 	ctx->attrs = *attrs;
594 
595 	damon_for_each_scheme(s, ctx)
596 		damos_set_next_apply_sis(s, ctx);
597 
598 	return 0;
599 }
600 
601 /**
602  * damon_set_schemes() - Set data access monitoring based operation schemes.
603  * @ctx:	monitoring context
604  * @schemes:	array of the schemes
605  * @nr_schemes:	number of entries in @schemes
606  *
607  * This function should not be called while the kdamond of the context is
608  * running.
609  */
610 void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes,
611 			ssize_t nr_schemes)
612 {
613 	struct damos *s, *next;
614 	ssize_t i;
615 
616 	damon_for_each_scheme_safe(s, next, ctx)
617 		damon_destroy_scheme(s);
618 	for (i = 0; i < nr_schemes; i++)
619 		damon_add_scheme(ctx, schemes[i]);
620 }
621 
622 /**
623  * damon_nr_running_ctxs() - Return number of currently running contexts.
624  */
625 int damon_nr_running_ctxs(void)
626 {
627 	int nr_ctxs;
628 
629 	mutex_lock(&damon_lock);
630 	nr_ctxs = nr_running_ctxs;
631 	mutex_unlock(&damon_lock);
632 
633 	return nr_ctxs;
634 }
635 
636 /* Returns the size upper limit for each monitoring region */
637 static unsigned long damon_region_sz_limit(struct damon_ctx *ctx)
638 {
639 	struct damon_target *t;
640 	struct damon_region *r;
641 	unsigned long sz = 0;
642 
643 	damon_for_each_target(t, ctx) {
644 		damon_for_each_region(r, t)
645 			sz += damon_sz_region(r);
646 	}
647 
648 	if (ctx->attrs.min_nr_regions)
649 		sz /= ctx->attrs.min_nr_regions;
650 	if (sz < DAMON_MIN_REGION)
651 		sz = DAMON_MIN_REGION;
652 
653 	return sz;
654 }
655 
656 static int kdamond_fn(void *data);
657 
658 /*
659  * __damon_start() - Starts monitoring with given context.
660  * @ctx:	monitoring context
661  *
662  * This function should be called while damon_lock is hold.
663  *
664  * Return: 0 on success, negative error code otherwise.
665  */
666 static int __damon_start(struct damon_ctx *ctx)
667 {
668 	int err = -EBUSY;
669 
670 	mutex_lock(&ctx->kdamond_lock);
671 	if (!ctx->kdamond) {
672 		err = 0;
673 		reinit_completion(&ctx->kdamond_started);
674 		ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d",
675 				nr_running_ctxs);
676 		if (IS_ERR(ctx->kdamond)) {
677 			err = PTR_ERR(ctx->kdamond);
678 			ctx->kdamond = NULL;
679 		} else {
680 			wait_for_completion(&ctx->kdamond_started);
681 		}
682 	}
683 	mutex_unlock(&ctx->kdamond_lock);
684 
685 	return err;
686 }
687 
688 /**
689  * damon_start() - Starts the monitorings for a given group of contexts.
690  * @ctxs:	an array of the pointers for contexts to start monitoring
691  * @nr_ctxs:	size of @ctxs
692  * @exclusive:	exclusiveness of this contexts group
693  *
694  * This function starts a group of monitoring threads for a group of monitoring
695  * contexts.  One thread per each context is created and run in parallel.  The
696  * caller should handle synchronization between the threads by itself.  If
697  * @exclusive is true and a group of threads that created by other
698  * 'damon_start()' call is currently running, this function does nothing but
699  * returns -EBUSY.
700  *
701  * Return: 0 on success, negative error code otherwise.
702  */
703 int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive)
704 {
705 	int i;
706 	int err = 0;
707 
708 	mutex_lock(&damon_lock);
709 	if ((exclusive && nr_running_ctxs) ||
710 			(!exclusive && running_exclusive_ctxs)) {
711 		mutex_unlock(&damon_lock);
712 		return -EBUSY;
713 	}
714 
715 	for (i = 0; i < nr_ctxs; i++) {
716 		err = __damon_start(ctxs[i]);
717 		if (err)
718 			break;
719 		nr_running_ctxs++;
720 	}
721 	if (exclusive && nr_running_ctxs)
722 		running_exclusive_ctxs = true;
723 	mutex_unlock(&damon_lock);
724 
725 	return err;
726 }
727 
728 /*
729  * __damon_stop() - Stops monitoring of a given context.
730  * @ctx:	monitoring context
731  *
732  * Return: 0 on success, negative error code otherwise.
733  */
734 static int __damon_stop(struct damon_ctx *ctx)
735 {
736 	struct task_struct *tsk;
737 
738 	mutex_lock(&ctx->kdamond_lock);
739 	tsk = ctx->kdamond;
740 	if (tsk) {
741 		get_task_struct(tsk);
742 		mutex_unlock(&ctx->kdamond_lock);
743 		kthread_stop_put(tsk);
744 		return 0;
745 	}
746 	mutex_unlock(&ctx->kdamond_lock);
747 
748 	return -EPERM;
749 }
750 
751 /**
752  * damon_stop() - Stops the monitorings for a given group of contexts.
753  * @ctxs:	an array of the pointers for contexts to stop monitoring
754  * @nr_ctxs:	size of @ctxs
755  *
756  * Return: 0 on success, negative error code otherwise.
757  */
758 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs)
759 {
760 	int i, err = 0;
761 
762 	for (i = 0; i < nr_ctxs; i++) {
763 		/* nr_running_ctxs is decremented in kdamond_fn */
764 		err = __damon_stop(ctxs[i]);
765 		if (err)
766 			break;
767 	}
768 	return err;
769 }
770 
771 /*
772  * Reset the aggregated monitoring results ('nr_accesses' of each region).
773  */
774 static void kdamond_reset_aggregated(struct damon_ctx *c)
775 {
776 	struct damon_target *t;
777 	unsigned int ti = 0;	/* target's index */
778 
779 	damon_for_each_target(t, c) {
780 		struct damon_region *r;
781 
782 		damon_for_each_region(r, t) {
783 			trace_damon_aggregated(ti, r, damon_nr_regions(t));
784 			r->last_nr_accesses = r->nr_accesses;
785 			r->nr_accesses = 0;
786 		}
787 		ti++;
788 	}
789 }
790 
791 static void damon_split_region_at(struct damon_target *t,
792 				  struct damon_region *r, unsigned long sz_r);
793 
794 static bool __damos_valid_target(struct damon_region *r, struct damos *s)
795 {
796 	unsigned long sz;
797 	unsigned int nr_accesses = r->nr_accesses_bp / 10000;
798 
799 	sz = damon_sz_region(r);
800 	return s->pattern.min_sz_region <= sz &&
801 		sz <= s->pattern.max_sz_region &&
802 		s->pattern.min_nr_accesses <= nr_accesses &&
803 		nr_accesses <= s->pattern.max_nr_accesses &&
804 		s->pattern.min_age_region <= r->age &&
805 		r->age <= s->pattern.max_age_region;
806 }
807 
808 static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t,
809 		struct damon_region *r, struct damos *s)
810 {
811 	bool ret = __damos_valid_target(r, s);
812 
813 	if (!ret || !s->quota.esz || !c->ops.get_scheme_score)
814 		return ret;
815 
816 	return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score;
817 }
818 
819 /*
820  * damos_skip_charged_region() - Check if the given region or starting part of
821  * it is already charged for the DAMOS quota.
822  * @t:	The target of the region.
823  * @rp:	The pointer to the region.
824  * @s:	The scheme to be applied.
825  *
826  * If a quota of a scheme has exceeded in a quota charge window, the scheme's
827  * action would applied to only a part of the target access pattern fulfilling
828  * regions.  To avoid applying the scheme action to only already applied
829  * regions, DAMON skips applying the scheme action to the regions that charged
830  * in the previous charge window.
831  *
832  * This function checks if a given region should be skipped or not for the
833  * reason.  If only the starting part of the region has previously charged,
834  * this function splits the region into two so that the second one covers the
835  * area that not charged in the previous charge widnow and saves the second
836  * region in *rp and returns false, so that the caller can apply DAMON action
837  * to the second one.
838  *
839  * Return: true if the region should be entirely skipped, false otherwise.
840  */
841 static bool damos_skip_charged_region(struct damon_target *t,
842 		struct damon_region **rp, struct damos *s)
843 {
844 	struct damon_region *r = *rp;
845 	struct damos_quota *quota = &s->quota;
846 	unsigned long sz_to_skip;
847 
848 	/* Skip previously charged regions */
849 	if (quota->charge_target_from) {
850 		if (t != quota->charge_target_from)
851 			return true;
852 		if (r == damon_last_region(t)) {
853 			quota->charge_target_from = NULL;
854 			quota->charge_addr_from = 0;
855 			return true;
856 		}
857 		if (quota->charge_addr_from &&
858 				r->ar.end <= quota->charge_addr_from)
859 			return true;
860 
861 		if (quota->charge_addr_from && r->ar.start <
862 				quota->charge_addr_from) {
863 			sz_to_skip = ALIGN_DOWN(quota->charge_addr_from -
864 					r->ar.start, DAMON_MIN_REGION);
865 			if (!sz_to_skip) {
866 				if (damon_sz_region(r) <= DAMON_MIN_REGION)
867 					return true;
868 				sz_to_skip = DAMON_MIN_REGION;
869 			}
870 			damon_split_region_at(t, r, sz_to_skip);
871 			r = damon_next_region(r);
872 			*rp = r;
873 		}
874 		quota->charge_target_from = NULL;
875 		quota->charge_addr_from = 0;
876 	}
877 	return false;
878 }
879 
880 static void damos_update_stat(struct damos *s,
881 		unsigned long sz_tried, unsigned long sz_applied)
882 {
883 	s->stat.nr_tried++;
884 	s->stat.sz_tried += sz_tried;
885 	if (sz_applied)
886 		s->stat.nr_applied++;
887 	s->stat.sz_applied += sz_applied;
888 }
889 
890 static bool __damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
891 		struct damon_region *r, struct damos_filter *filter)
892 {
893 	bool matched = false;
894 	struct damon_target *ti;
895 	int target_idx = 0;
896 	unsigned long start, end;
897 
898 	switch (filter->type) {
899 	case DAMOS_FILTER_TYPE_TARGET:
900 		damon_for_each_target(ti, ctx) {
901 			if (ti == t)
902 				break;
903 			target_idx++;
904 		}
905 		matched = target_idx == filter->target_idx;
906 		break;
907 	case DAMOS_FILTER_TYPE_ADDR:
908 		start = ALIGN_DOWN(filter->addr_range.start, DAMON_MIN_REGION);
909 		end = ALIGN_DOWN(filter->addr_range.end, DAMON_MIN_REGION);
910 
911 		/* inside the range */
912 		if (start <= r->ar.start && r->ar.end <= end) {
913 			matched = true;
914 			break;
915 		}
916 		/* outside of the range */
917 		if (r->ar.end <= start || end <= r->ar.start) {
918 			matched = false;
919 			break;
920 		}
921 		/* start before the range and overlap */
922 		if (r->ar.start < start) {
923 			damon_split_region_at(t, r, start - r->ar.start);
924 			matched = false;
925 			break;
926 		}
927 		/* start inside the range */
928 		damon_split_region_at(t, r, end - r->ar.start);
929 		matched = true;
930 		break;
931 	default:
932 		return false;
933 	}
934 
935 	return matched == filter->matching;
936 }
937 
938 static bool damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
939 		struct damon_region *r, struct damos *s)
940 {
941 	struct damos_filter *filter;
942 
943 	damos_for_each_filter(filter, s) {
944 		if (__damos_filter_out(ctx, t, r, filter))
945 			return true;
946 	}
947 	return false;
948 }
949 
950 static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t,
951 		struct damon_region *r, struct damos *s)
952 {
953 	struct damos_quota *quota = &s->quota;
954 	unsigned long sz = damon_sz_region(r);
955 	struct timespec64 begin, end;
956 	unsigned long sz_applied = 0;
957 	int err = 0;
958 	/*
959 	 * We plan to support multiple context per kdamond, as DAMON sysfs
960 	 * implies with 'nr_contexts' file.  Nevertheless, only single context
961 	 * per kdamond is supported for now.  So, we can simply use '0' context
962 	 * index here.
963 	 */
964 	unsigned int cidx = 0;
965 	struct damos *siter;		/* schemes iterator */
966 	unsigned int sidx = 0;
967 	struct damon_target *titer;	/* targets iterator */
968 	unsigned int tidx = 0;
969 	bool do_trace = false;
970 
971 	/* get indices for trace_damos_before_apply() */
972 	if (trace_damos_before_apply_enabled()) {
973 		damon_for_each_scheme(siter, c) {
974 			if (siter == s)
975 				break;
976 			sidx++;
977 		}
978 		damon_for_each_target(titer, c) {
979 			if (titer == t)
980 				break;
981 			tidx++;
982 		}
983 		do_trace = true;
984 	}
985 
986 	if (c->ops.apply_scheme) {
987 		if (quota->esz && quota->charged_sz + sz > quota->esz) {
988 			sz = ALIGN_DOWN(quota->esz - quota->charged_sz,
989 					DAMON_MIN_REGION);
990 			if (!sz)
991 				goto update_stat;
992 			damon_split_region_at(t, r, sz);
993 		}
994 		if (damos_filter_out(c, t, r, s))
995 			return;
996 		ktime_get_coarse_ts64(&begin);
997 		if (c->callback.before_damos_apply)
998 			err = c->callback.before_damos_apply(c, t, r, s);
999 		if (!err) {
1000 			trace_damos_before_apply(cidx, sidx, tidx, r,
1001 					damon_nr_regions(t), do_trace);
1002 			sz_applied = c->ops.apply_scheme(c, t, r, s);
1003 		}
1004 		ktime_get_coarse_ts64(&end);
1005 		quota->total_charged_ns += timespec64_to_ns(&end) -
1006 			timespec64_to_ns(&begin);
1007 		quota->charged_sz += sz;
1008 		if (quota->esz && quota->charged_sz >= quota->esz) {
1009 			quota->charge_target_from = t;
1010 			quota->charge_addr_from = r->ar.end + 1;
1011 		}
1012 	}
1013 	if (s->action != DAMOS_STAT)
1014 		r->age = 0;
1015 
1016 update_stat:
1017 	damos_update_stat(s, sz, sz_applied);
1018 }
1019 
1020 static void damon_do_apply_schemes(struct damon_ctx *c,
1021 				   struct damon_target *t,
1022 				   struct damon_region *r)
1023 {
1024 	struct damos *s;
1025 
1026 	damon_for_each_scheme(s, c) {
1027 		struct damos_quota *quota = &s->quota;
1028 
1029 		if (c->passed_sample_intervals != s->next_apply_sis)
1030 			continue;
1031 
1032 		if (!s->wmarks.activated)
1033 			continue;
1034 
1035 		/* Check the quota */
1036 		if (quota->esz && quota->charged_sz >= quota->esz)
1037 			continue;
1038 
1039 		if (damos_skip_charged_region(t, &r, s))
1040 			continue;
1041 
1042 		if (!damos_valid_target(c, t, r, s))
1043 			continue;
1044 
1045 		damos_apply_scheme(c, t, r, s);
1046 	}
1047 }
1048 
1049 /*
1050  * damon_feed_loop_next_input() - get next input to achieve a target score.
1051  * @last_input	The last input.
1052  * @score	Current score that made with @last_input.
1053  *
1054  * Calculate next input to achieve the target score, based on the last input
1055  * and current score.  Assuming the input and the score are positively
1056  * proportional, calculate how much compensation should be added to or
1057  * subtracted from the last input as a proportion of the last input.  Avoid
1058  * next input always being zero by setting it non-zero always.  In short form
1059  * (assuming support of float and signed calculations), the algorithm is as
1060  * below.
1061  *
1062  * next_input = max(last_input * ((goal - current) / goal + 1), 1)
1063  *
1064  * For simple implementation, we assume the target score is always 10,000.  The
1065  * caller should adjust @score for this.
1066  *
1067  * Returns next input that assumed to achieve the target score.
1068  */
1069 static unsigned long damon_feed_loop_next_input(unsigned long last_input,
1070 		unsigned long score)
1071 {
1072 	const unsigned long goal = 10000;
1073 	unsigned long score_goal_diff = max(goal, score) - min(goal, score);
1074 	unsigned long score_goal_diff_bp = score_goal_diff * 10000 / goal;
1075 	unsigned long compensation = last_input * score_goal_diff_bp / 10000;
1076 	/* Set minimum input as 10000 to avoid compensation be zero */
1077 	const unsigned long min_input = 10000;
1078 
1079 	if (goal > score)
1080 		return last_input + compensation;
1081 	if (last_input > compensation + min_input)
1082 		return last_input - compensation;
1083 	return min_input;
1084 }
1085 
1086 /* Shouldn't be called if quota->ms, quota->sz, and quota->get_score unset */
1087 static void damos_set_effective_quota(struct damos_quota *quota)
1088 {
1089 	unsigned long throughput;
1090 	unsigned long esz;
1091 
1092 	if (!quota->ms && !quota->get_score) {
1093 		quota->esz = quota->sz;
1094 		return;
1095 	}
1096 
1097 	if (quota->get_score) {
1098 		quota->esz_bp = damon_feed_loop_next_input(
1099 				max(quota->esz_bp, 10000UL),
1100 				quota->get_score(quota->get_score_arg));
1101 		esz = quota->esz_bp / 10000;
1102 	}
1103 
1104 	if (quota->ms) {
1105 		if (quota->total_charged_ns)
1106 			throughput = quota->total_charged_sz * 1000000 /
1107 				quota->total_charged_ns;
1108 		else
1109 			throughput = PAGE_SIZE * 1024;
1110 		if (quota->get_score)
1111 			esz = min(throughput * quota->ms, esz);
1112 		else
1113 			esz = throughput * quota->ms;
1114 	}
1115 
1116 	if (quota->sz && quota->sz < esz)
1117 		esz = quota->sz;
1118 
1119 	quota->esz = esz;
1120 }
1121 
1122 static void damos_adjust_quota(struct damon_ctx *c, struct damos *s)
1123 {
1124 	struct damos_quota *quota = &s->quota;
1125 	struct damon_target *t;
1126 	struct damon_region *r;
1127 	unsigned long cumulated_sz;
1128 	unsigned int score, max_score = 0;
1129 
1130 	if (!quota->ms && !quota->sz && !quota->get_score)
1131 		return;
1132 
1133 	/* New charge window starts */
1134 	if (time_after_eq(jiffies, quota->charged_from +
1135 				msecs_to_jiffies(quota->reset_interval))) {
1136 		if (quota->esz && quota->charged_sz >= quota->esz)
1137 			s->stat.qt_exceeds++;
1138 		quota->total_charged_sz += quota->charged_sz;
1139 		quota->charged_from = jiffies;
1140 		quota->charged_sz = 0;
1141 		damos_set_effective_quota(quota);
1142 	}
1143 
1144 	if (!c->ops.get_scheme_score)
1145 		return;
1146 
1147 	/* Fill up the score histogram */
1148 	memset(quota->histogram, 0, sizeof(quota->histogram));
1149 	damon_for_each_target(t, c) {
1150 		damon_for_each_region(r, t) {
1151 			if (!__damos_valid_target(r, s))
1152 				continue;
1153 			score = c->ops.get_scheme_score(c, t, r, s);
1154 			quota->histogram[score] += damon_sz_region(r);
1155 			if (score > max_score)
1156 				max_score = score;
1157 		}
1158 	}
1159 
1160 	/* Set the min score limit */
1161 	for (cumulated_sz = 0, score = max_score; ; score--) {
1162 		cumulated_sz += quota->histogram[score];
1163 		if (cumulated_sz >= quota->esz || !score)
1164 			break;
1165 	}
1166 	quota->min_score = score;
1167 }
1168 
1169 static void kdamond_apply_schemes(struct damon_ctx *c)
1170 {
1171 	struct damon_target *t;
1172 	struct damon_region *r, *next_r;
1173 	struct damos *s;
1174 	unsigned long sample_interval = c->attrs.sample_interval ?
1175 		c->attrs.sample_interval : 1;
1176 	bool has_schemes_to_apply = false;
1177 
1178 	damon_for_each_scheme(s, c) {
1179 		if (c->passed_sample_intervals != s->next_apply_sis)
1180 			continue;
1181 
1182 		if (!s->wmarks.activated)
1183 			continue;
1184 
1185 		has_schemes_to_apply = true;
1186 
1187 		damos_adjust_quota(c, s);
1188 	}
1189 
1190 	if (!has_schemes_to_apply)
1191 		return;
1192 
1193 	damon_for_each_target(t, c) {
1194 		damon_for_each_region_safe(r, next_r, t)
1195 			damon_do_apply_schemes(c, t, r);
1196 	}
1197 
1198 	damon_for_each_scheme(s, c) {
1199 		if (c->passed_sample_intervals != s->next_apply_sis)
1200 			continue;
1201 		s->next_apply_sis +=
1202 			(s->apply_interval_us ? s->apply_interval_us :
1203 			 c->attrs.aggr_interval) / sample_interval;
1204 	}
1205 }
1206 
1207 /*
1208  * Merge two adjacent regions into one region
1209  */
1210 static void damon_merge_two_regions(struct damon_target *t,
1211 		struct damon_region *l, struct damon_region *r)
1212 {
1213 	unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r);
1214 
1215 	l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) /
1216 			(sz_l + sz_r);
1217 	l->nr_accesses_bp = l->nr_accesses * 10000;
1218 	l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r);
1219 	l->ar.end = r->ar.end;
1220 	damon_destroy_region(r, t);
1221 }
1222 
1223 /*
1224  * Merge adjacent regions having similar access frequencies
1225  *
1226  * t		target affected by this merge operation
1227  * thres	'->nr_accesses' diff threshold for the merge
1228  * sz_limit	size upper limit of each region
1229  */
1230 static void damon_merge_regions_of(struct damon_target *t, unsigned int thres,
1231 				   unsigned long sz_limit)
1232 {
1233 	struct damon_region *r, *prev = NULL, *next;
1234 
1235 	damon_for_each_region_safe(r, next, t) {
1236 		if (abs(r->nr_accesses - r->last_nr_accesses) > thres)
1237 			r->age = 0;
1238 		else
1239 			r->age++;
1240 
1241 		if (prev && prev->ar.end == r->ar.start &&
1242 		    abs(prev->nr_accesses - r->nr_accesses) <= thres &&
1243 		    damon_sz_region(prev) + damon_sz_region(r) <= sz_limit)
1244 			damon_merge_two_regions(t, prev, r);
1245 		else
1246 			prev = r;
1247 	}
1248 }
1249 
1250 /*
1251  * Merge adjacent regions having similar access frequencies
1252  *
1253  * threshold	'->nr_accesses' diff threshold for the merge
1254  * sz_limit	size upper limit of each region
1255  *
1256  * This function merges monitoring target regions which are adjacent and their
1257  * access frequencies are similar.  This is for minimizing the monitoring
1258  * overhead under the dynamically changeable access pattern.  If a merge was
1259  * unnecessarily made, later 'kdamond_split_regions()' will revert it.
1260  */
1261 static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold,
1262 				  unsigned long sz_limit)
1263 {
1264 	struct damon_target *t;
1265 
1266 	damon_for_each_target(t, c)
1267 		damon_merge_regions_of(t, threshold, sz_limit);
1268 }
1269 
1270 /*
1271  * Split a region in two
1272  *
1273  * r		the region to be split
1274  * sz_r		size of the first sub-region that will be made
1275  */
1276 static void damon_split_region_at(struct damon_target *t,
1277 				  struct damon_region *r, unsigned long sz_r)
1278 {
1279 	struct damon_region *new;
1280 
1281 	new = damon_new_region(r->ar.start + sz_r, r->ar.end);
1282 	if (!new)
1283 		return;
1284 
1285 	r->ar.end = new->ar.start;
1286 
1287 	new->age = r->age;
1288 	new->last_nr_accesses = r->last_nr_accesses;
1289 	new->nr_accesses_bp = r->nr_accesses_bp;
1290 	new->nr_accesses = r->nr_accesses;
1291 
1292 	damon_insert_region(new, r, damon_next_region(r), t);
1293 }
1294 
1295 /* Split every region in the given target into 'nr_subs' regions */
1296 static void damon_split_regions_of(struct damon_target *t, int nr_subs)
1297 {
1298 	struct damon_region *r, *next;
1299 	unsigned long sz_region, sz_sub = 0;
1300 	int i;
1301 
1302 	damon_for_each_region_safe(r, next, t) {
1303 		sz_region = damon_sz_region(r);
1304 
1305 		for (i = 0; i < nr_subs - 1 &&
1306 				sz_region > 2 * DAMON_MIN_REGION; i++) {
1307 			/*
1308 			 * Randomly select size of left sub-region to be at
1309 			 * least 10 percent and at most 90% of original region
1310 			 */
1311 			sz_sub = ALIGN_DOWN(damon_rand(1, 10) *
1312 					sz_region / 10, DAMON_MIN_REGION);
1313 			/* Do not allow blank region */
1314 			if (sz_sub == 0 || sz_sub >= sz_region)
1315 				continue;
1316 
1317 			damon_split_region_at(t, r, sz_sub);
1318 			sz_region = sz_sub;
1319 		}
1320 	}
1321 }
1322 
1323 /*
1324  * Split every target region into randomly-sized small regions
1325  *
1326  * This function splits every target region into random-sized small regions if
1327  * current total number of the regions is equal or smaller than half of the
1328  * user-specified maximum number of regions.  This is for maximizing the
1329  * monitoring accuracy under the dynamically changeable access patterns.  If a
1330  * split was unnecessarily made, later 'kdamond_merge_regions()' will revert
1331  * it.
1332  */
1333 static void kdamond_split_regions(struct damon_ctx *ctx)
1334 {
1335 	struct damon_target *t;
1336 	unsigned int nr_regions = 0;
1337 	static unsigned int last_nr_regions;
1338 	int nr_subregions = 2;
1339 
1340 	damon_for_each_target(t, ctx)
1341 		nr_regions += damon_nr_regions(t);
1342 
1343 	if (nr_regions > ctx->attrs.max_nr_regions / 2)
1344 		return;
1345 
1346 	/* Maybe the middle of the region has different access frequency */
1347 	if (last_nr_regions == nr_regions &&
1348 			nr_regions < ctx->attrs.max_nr_regions / 3)
1349 		nr_subregions = 3;
1350 
1351 	damon_for_each_target(t, ctx)
1352 		damon_split_regions_of(t, nr_subregions);
1353 
1354 	last_nr_regions = nr_regions;
1355 }
1356 
1357 /*
1358  * Check whether current monitoring should be stopped
1359  *
1360  * The monitoring is stopped when either the user requested to stop, or all
1361  * monitoring targets are invalid.
1362  *
1363  * Returns true if need to stop current monitoring.
1364  */
1365 static bool kdamond_need_stop(struct damon_ctx *ctx)
1366 {
1367 	struct damon_target *t;
1368 
1369 	if (kthread_should_stop())
1370 		return true;
1371 
1372 	if (!ctx->ops.target_valid)
1373 		return false;
1374 
1375 	damon_for_each_target(t, ctx) {
1376 		if (ctx->ops.target_valid(t))
1377 			return false;
1378 	}
1379 
1380 	return true;
1381 }
1382 
1383 static unsigned long damos_wmark_metric_value(enum damos_wmark_metric metric)
1384 {
1385 	switch (metric) {
1386 	case DAMOS_WMARK_FREE_MEM_RATE:
1387 		return global_zone_page_state(NR_FREE_PAGES) * 1000 /
1388 		       totalram_pages();
1389 	default:
1390 		break;
1391 	}
1392 	return -EINVAL;
1393 }
1394 
1395 /*
1396  * Returns zero if the scheme is active.  Else, returns time to wait for next
1397  * watermark check in micro-seconds.
1398  */
1399 static unsigned long damos_wmark_wait_us(struct damos *scheme)
1400 {
1401 	unsigned long metric;
1402 
1403 	if (scheme->wmarks.metric == DAMOS_WMARK_NONE)
1404 		return 0;
1405 
1406 	metric = damos_wmark_metric_value(scheme->wmarks.metric);
1407 	/* higher than high watermark or lower than low watermark */
1408 	if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) {
1409 		if (scheme->wmarks.activated)
1410 			pr_debug("deactivate a scheme (%d) for %s wmark\n",
1411 					scheme->action,
1412 					metric > scheme->wmarks.high ?
1413 					"high" : "low");
1414 		scheme->wmarks.activated = false;
1415 		return scheme->wmarks.interval;
1416 	}
1417 
1418 	/* inactive and higher than middle watermark */
1419 	if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) &&
1420 			!scheme->wmarks.activated)
1421 		return scheme->wmarks.interval;
1422 
1423 	if (!scheme->wmarks.activated)
1424 		pr_debug("activate a scheme (%d)\n", scheme->action);
1425 	scheme->wmarks.activated = true;
1426 	return 0;
1427 }
1428 
1429 static void kdamond_usleep(unsigned long usecs)
1430 {
1431 	/* See Documentation/timers/timers-howto.rst for the thresholds */
1432 	if (usecs > 20 * USEC_PER_MSEC)
1433 		schedule_timeout_idle(usecs_to_jiffies(usecs));
1434 	else
1435 		usleep_idle_range(usecs, usecs + 1);
1436 }
1437 
1438 /* Returns negative error code if it's not activated but should return */
1439 static int kdamond_wait_activation(struct damon_ctx *ctx)
1440 {
1441 	struct damos *s;
1442 	unsigned long wait_time;
1443 	unsigned long min_wait_time = 0;
1444 	bool init_wait_time = false;
1445 
1446 	while (!kdamond_need_stop(ctx)) {
1447 		damon_for_each_scheme(s, ctx) {
1448 			wait_time = damos_wmark_wait_us(s);
1449 			if (!init_wait_time || wait_time < min_wait_time) {
1450 				init_wait_time = true;
1451 				min_wait_time = wait_time;
1452 			}
1453 		}
1454 		if (!min_wait_time)
1455 			return 0;
1456 
1457 		kdamond_usleep(min_wait_time);
1458 
1459 		if (ctx->callback.after_wmarks_check &&
1460 				ctx->callback.after_wmarks_check(ctx))
1461 			break;
1462 	}
1463 	return -EBUSY;
1464 }
1465 
1466 static void kdamond_init_intervals_sis(struct damon_ctx *ctx)
1467 {
1468 	unsigned long sample_interval = ctx->attrs.sample_interval ?
1469 		ctx->attrs.sample_interval : 1;
1470 	unsigned long apply_interval;
1471 	struct damos *scheme;
1472 
1473 	ctx->passed_sample_intervals = 0;
1474 	ctx->next_aggregation_sis = ctx->attrs.aggr_interval / sample_interval;
1475 	ctx->next_ops_update_sis = ctx->attrs.ops_update_interval /
1476 		sample_interval;
1477 
1478 	damon_for_each_scheme(scheme, ctx) {
1479 		apply_interval = scheme->apply_interval_us ?
1480 			scheme->apply_interval_us : ctx->attrs.aggr_interval;
1481 		scheme->next_apply_sis = apply_interval / sample_interval;
1482 	}
1483 }
1484 
1485 /*
1486  * The monitoring daemon that runs as a kernel thread
1487  */
1488 static int kdamond_fn(void *data)
1489 {
1490 	struct damon_ctx *ctx = data;
1491 	struct damon_target *t;
1492 	struct damon_region *r, *next;
1493 	unsigned int max_nr_accesses = 0;
1494 	unsigned long sz_limit = 0;
1495 
1496 	pr_debug("kdamond (%d) starts\n", current->pid);
1497 
1498 	complete(&ctx->kdamond_started);
1499 	kdamond_init_intervals_sis(ctx);
1500 
1501 	if (ctx->ops.init)
1502 		ctx->ops.init(ctx);
1503 	if (ctx->callback.before_start && ctx->callback.before_start(ctx))
1504 		goto done;
1505 
1506 	sz_limit = damon_region_sz_limit(ctx);
1507 
1508 	while (!kdamond_need_stop(ctx)) {
1509 		/*
1510 		 * ctx->attrs and ctx->next_{aggregation,ops_update}_sis could
1511 		 * be changed from after_wmarks_check() or after_aggregation()
1512 		 * callbacks.  Read the values here, and use those for this
1513 		 * iteration.  That is, damon_set_attrs() updated new values
1514 		 * are respected from next iteration.
1515 		 */
1516 		unsigned long next_aggregation_sis = ctx->next_aggregation_sis;
1517 		unsigned long next_ops_update_sis = ctx->next_ops_update_sis;
1518 		unsigned long sample_interval = ctx->attrs.sample_interval;
1519 
1520 		if (kdamond_wait_activation(ctx))
1521 			break;
1522 
1523 		if (ctx->ops.prepare_access_checks)
1524 			ctx->ops.prepare_access_checks(ctx);
1525 		if (ctx->callback.after_sampling &&
1526 				ctx->callback.after_sampling(ctx))
1527 			break;
1528 
1529 		kdamond_usleep(sample_interval);
1530 		ctx->passed_sample_intervals++;
1531 
1532 		if (ctx->ops.check_accesses)
1533 			max_nr_accesses = ctx->ops.check_accesses(ctx);
1534 
1535 		if (ctx->passed_sample_intervals == next_aggregation_sis) {
1536 			kdamond_merge_regions(ctx,
1537 					max_nr_accesses / 10,
1538 					sz_limit);
1539 			if (ctx->callback.after_aggregation &&
1540 					ctx->callback.after_aggregation(ctx))
1541 				break;
1542 		}
1543 
1544 		/*
1545 		 * do kdamond_apply_schemes() after kdamond_merge_regions() if
1546 		 * possible, to reduce overhead
1547 		 */
1548 		if (!list_empty(&ctx->schemes))
1549 			kdamond_apply_schemes(ctx);
1550 
1551 		sample_interval = ctx->attrs.sample_interval ?
1552 			ctx->attrs.sample_interval : 1;
1553 		if (ctx->passed_sample_intervals == next_aggregation_sis) {
1554 			ctx->next_aggregation_sis = next_aggregation_sis +
1555 				ctx->attrs.aggr_interval / sample_interval;
1556 
1557 			kdamond_reset_aggregated(ctx);
1558 			kdamond_split_regions(ctx);
1559 			if (ctx->ops.reset_aggregated)
1560 				ctx->ops.reset_aggregated(ctx);
1561 		}
1562 
1563 		if (ctx->passed_sample_intervals == next_ops_update_sis) {
1564 			ctx->next_ops_update_sis = next_ops_update_sis +
1565 				ctx->attrs.ops_update_interval /
1566 				sample_interval;
1567 			if (ctx->ops.update)
1568 				ctx->ops.update(ctx);
1569 			sz_limit = damon_region_sz_limit(ctx);
1570 		}
1571 	}
1572 done:
1573 	damon_for_each_target(t, ctx) {
1574 		damon_for_each_region_safe(r, next, t)
1575 			damon_destroy_region(r, t);
1576 	}
1577 
1578 	if (ctx->callback.before_terminate)
1579 		ctx->callback.before_terminate(ctx);
1580 	if (ctx->ops.cleanup)
1581 		ctx->ops.cleanup(ctx);
1582 
1583 	pr_debug("kdamond (%d) finishes\n", current->pid);
1584 	mutex_lock(&ctx->kdamond_lock);
1585 	ctx->kdamond = NULL;
1586 	mutex_unlock(&ctx->kdamond_lock);
1587 
1588 	mutex_lock(&damon_lock);
1589 	nr_running_ctxs--;
1590 	if (!nr_running_ctxs && running_exclusive_ctxs)
1591 		running_exclusive_ctxs = false;
1592 	mutex_unlock(&damon_lock);
1593 
1594 	return 0;
1595 }
1596 
1597 /*
1598  * struct damon_system_ram_region - System RAM resource address region of
1599  *				    [@start, @end).
1600  * @start:	Start address of the region (inclusive).
1601  * @end:	End address of the region (exclusive).
1602  */
1603 struct damon_system_ram_region {
1604 	unsigned long start;
1605 	unsigned long end;
1606 };
1607 
1608 static int walk_system_ram(struct resource *res, void *arg)
1609 {
1610 	struct damon_system_ram_region *a = arg;
1611 
1612 	if (a->end - a->start < resource_size(res)) {
1613 		a->start = res->start;
1614 		a->end = res->end;
1615 	}
1616 	return 0;
1617 }
1618 
1619 /*
1620  * Find biggest 'System RAM' resource and store its start and end address in
1621  * @start and @end, respectively.  If no System RAM is found, returns false.
1622  */
1623 static bool damon_find_biggest_system_ram(unsigned long *start,
1624 						unsigned long *end)
1625 
1626 {
1627 	struct damon_system_ram_region arg = {};
1628 
1629 	walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram);
1630 	if (arg.end <= arg.start)
1631 		return false;
1632 
1633 	*start = arg.start;
1634 	*end = arg.end;
1635 	return true;
1636 }
1637 
1638 /**
1639  * damon_set_region_biggest_system_ram_default() - Set the region of the given
1640  * monitoring target as requested, or biggest 'System RAM'.
1641  * @t:		The monitoring target to set the region.
1642  * @start:	The pointer to the start address of the region.
1643  * @end:	The pointer to the end address of the region.
1644  *
1645  * This function sets the region of @t as requested by @start and @end.  If the
1646  * values of @start and @end are zero, however, this function finds the biggest
1647  * 'System RAM' resource and sets the region to cover the resource.  In the
1648  * latter case, this function saves the start and end addresses of the resource
1649  * in @start and @end, respectively.
1650  *
1651  * Return: 0 on success, negative error code otherwise.
1652  */
1653 int damon_set_region_biggest_system_ram_default(struct damon_target *t,
1654 			unsigned long *start, unsigned long *end)
1655 {
1656 	struct damon_addr_range addr_range;
1657 
1658 	if (*start > *end)
1659 		return -EINVAL;
1660 
1661 	if (!*start && !*end &&
1662 		!damon_find_biggest_system_ram(start, end))
1663 		return -EINVAL;
1664 
1665 	addr_range.start = *start;
1666 	addr_range.end = *end;
1667 	return damon_set_regions(t, &addr_range, 1);
1668 }
1669 
1670 /*
1671  * damon_moving_sum() - Calculate an inferred moving sum value.
1672  * @mvsum:	Inferred sum of the last @len_window values.
1673  * @nomvsum:	Non-moving sum of the last discrete @len_window window values.
1674  * @len_window:	The number of last values to take care of.
1675  * @new_value:	New value that will be added to the pseudo moving sum.
1676  *
1677  * Moving sum (moving average * window size) is good for handling noise, but
1678  * the cost of keeping past values can be high for arbitrary window size.  This
1679  * function implements a lightweight pseudo moving sum function that doesn't
1680  * keep the past window values.
1681  *
1682  * It simply assumes there was no noise in the past, and get the no-noise
1683  * assumed past value to drop from @nomvsum and @len_window.  @nomvsum is a
1684  * non-moving sum of the last window.  For example, if @len_window is 10 and we
1685  * have 25 values, @nomvsum is the sum of the 11th to 20th values of the 25
1686  * values.  Hence, this function simply drops @nomvsum / @len_window from
1687  * given @mvsum and add @new_value.
1688  *
1689  * For example, if @len_window is 10 and @nomvsum is 50, the last 10 values for
1690  * the last window could be vary, e.g., 0, 10, 0, 10, 0, 10, 0, 0, 0, 20.  For
1691  * calculating next moving sum with a new value, we should drop 0 from 50 and
1692  * add the new value.  However, this function assumes it got value 5 for each
1693  * of the last ten times.  Based on the assumption, when the next value is
1694  * measured, it drops the assumed past value, 5 from the current sum, and add
1695  * the new value to get the updated pseduo-moving average.
1696  *
1697  * This means the value could have errors, but the errors will be disappeared
1698  * for every @len_window aligned calls.  For example, if @len_window is 10, the
1699  * pseudo moving sum with 11th value to 19th value would have an error.  But
1700  * the sum with 20th value will not have the error.
1701  *
1702  * Return: Pseudo-moving average after getting the @new_value.
1703  */
1704 static unsigned int damon_moving_sum(unsigned int mvsum, unsigned int nomvsum,
1705 		unsigned int len_window, unsigned int new_value)
1706 {
1707 	return mvsum - nomvsum / len_window + new_value;
1708 }
1709 
1710 /**
1711  * damon_update_region_access_rate() - Update the access rate of a region.
1712  * @r:		The DAMON region to update for its access check result.
1713  * @accessed:	Whether the region has accessed during last sampling interval.
1714  * @attrs:	The damon_attrs of the DAMON context.
1715  *
1716  * Update the access rate of a region with the region's last sampling interval
1717  * access check result.
1718  *
1719  * Usually this will be called by &damon_operations->check_accesses callback.
1720  */
1721 void damon_update_region_access_rate(struct damon_region *r, bool accessed,
1722 		struct damon_attrs *attrs)
1723 {
1724 	unsigned int len_window = 1;
1725 
1726 	/*
1727 	 * sample_interval can be zero, but cannot be larger than
1728 	 * aggr_interval, owing to validation of damon_set_attrs().
1729 	 */
1730 	if (attrs->sample_interval)
1731 		len_window = damon_max_nr_accesses(attrs);
1732 	r->nr_accesses_bp = damon_moving_sum(r->nr_accesses_bp,
1733 			r->last_nr_accesses * 10000, len_window,
1734 			accessed ? 10000 : 0);
1735 
1736 	if (accessed)
1737 		r->nr_accesses++;
1738 }
1739 
1740 static int __init damon_init(void)
1741 {
1742 	damon_region_cache = KMEM_CACHE(damon_region, 0);
1743 	if (unlikely(!damon_region_cache)) {
1744 		pr_err("creating damon_region_cache fails\n");
1745 		return -ENOMEM;
1746 	}
1747 
1748 	return 0;
1749 }
1750 
1751 subsys_initcall(damon_init);
1752 
1753 #include "core-test.h"
1754