1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Data Access Monitor 4 * 5 * Author: SeongJae Park <sj@kernel.org> 6 */ 7 8 #define pr_fmt(fmt) "damon: " fmt 9 10 #include <linux/damon.h> 11 #include <linux/delay.h> 12 #include <linux/kthread.h> 13 #include <linux/mm.h> 14 #include <linux/psi.h> 15 #include <linux/slab.h> 16 #include <linux/string.h> 17 18 #define CREATE_TRACE_POINTS 19 #include <trace/events/damon.h> 20 21 #ifdef CONFIG_DAMON_KUNIT_TEST 22 #undef DAMON_MIN_REGION 23 #define DAMON_MIN_REGION 1 24 #endif 25 26 static DEFINE_MUTEX(damon_lock); 27 static int nr_running_ctxs; 28 static bool running_exclusive_ctxs; 29 30 static DEFINE_MUTEX(damon_ops_lock); 31 static struct damon_operations damon_registered_ops[NR_DAMON_OPS]; 32 33 static struct kmem_cache *damon_region_cache __ro_after_init; 34 35 /* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */ 36 static bool __damon_is_registered_ops(enum damon_ops_id id) 37 { 38 struct damon_operations empty_ops = {}; 39 40 if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops))) 41 return false; 42 return true; 43 } 44 45 /** 46 * damon_is_registered_ops() - Check if a given damon_operations is registered. 47 * @id: Id of the damon_operations to check if registered. 48 * 49 * Return: true if the ops is set, false otherwise. 50 */ 51 bool damon_is_registered_ops(enum damon_ops_id id) 52 { 53 bool registered; 54 55 if (id >= NR_DAMON_OPS) 56 return false; 57 mutex_lock(&damon_ops_lock); 58 registered = __damon_is_registered_ops(id); 59 mutex_unlock(&damon_ops_lock); 60 return registered; 61 } 62 63 /** 64 * damon_register_ops() - Register a monitoring operations set to DAMON. 65 * @ops: monitoring operations set to register. 66 * 67 * This function registers a monitoring operations set of valid &struct 68 * damon_operations->id so that others can find and use them later. 69 * 70 * Return: 0 on success, negative error code otherwise. 71 */ 72 int damon_register_ops(struct damon_operations *ops) 73 { 74 int err = 0; 75 76 if (ops->id >= NR_DAMON_OPS) 77 return -EINVAL; 78 mutex_lock(&damon_ops_lock); 79 /* Fail for already registered ops */ 80 if (__damon_is_registered_ops(ops->id)) { 81 err = -EINVAL; 82 goto out; 83 } 84 damon_registered_ops[ops->id] = *ops; 85 out: 86 mutex_unlock(&damon_ops_lock); 87 return err; 88 } 89 90 /** 91 * damon_select_ops() - Select a monitoring operations to use with the context. 92 * @ctx: monitoring context to use the operations. 93 * @id: id of the registered monitoring operations to select. 94 * 95 * This function finds registered monitoring operations set of @id and make 96 * @ctx to use it. 97 * 98 * Return: 0 on success, negative error code otherwise. 99 */ 100 int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id) 101 { 102 int err = 0; 103 104 if (id >= NR_DAMON_OPS) 105 return -EINVAL; 106 107 mutex_lock(&damon_ops_lock); 108 if (!__damon_is_registered_ops(id)) 109 err = -EINVAL; 110 else 111 ctx->ops = damon_registered_ops[id]; 112 mutex_unlock(&damon_ops_lock); 113 return err; 114 } 115 116 /* 117 * Construct a damon_region struct 118 * 119 * Returns the pointer to the new struct if success, or NULL otherwise 120 */ 121 struct damon_region *damon_new_region(unsigned long start, unsigned long end) 122 { 123 struct damon_region *region; 124 125 region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL); 126 if (!region) 127 return NULL; 128 129 region->ar.start = start; 130 region->ar.end = end; 131 region->nr_accesses = 0; 132 region->nr_accesses_bp = 0; 133 INIT_LIST_HEAD(®ion->list); 134 135 region->age = 0; 136 region->last_nr_accesses = 0; 137 138 return region; 139 } 140 141 void damon_add_region(struct damon_region *r, struct damon_target *t) 142 { 143 list_add_tail(&r->list, &t->regions_list); 144 t->nr_regions++; 145 } 146 147 static void damon_del_region(struct damon_region *r, struct damon_target *t) 148 { 149 list_del(&r->list); 150 t->nr_regions--; 151 } 152 153 static void damon_free_region(struct damon_region *r) 154 { 155 kmem_cache_free(damon_region_cache, r); 156 } 157 158 void damon_destroy_region(struct damon_region *r, struct damon_target *t) 159 { 160 damon_del_region(r, t); 161 damon_free_region(r); 162 } 163 164 /* 165 * Check whether a region is intersecting an address range 166 * 167 * Returns true if it is. 168 */ 169 static bool damon_intersect(struct damon_region *r, 170 struct damon_addr_range *re) 171 { 172 return !(r->ar.end <= re->start || re->end <= r->ar.start); 173 } 174 175 /* 176 * Fill holes in regions with new regions. 177 */ 178 static int damon_fill_regions_holes(struct damon_region *first, 179 struct damon_region *last, struct damon_target *t) 180 { 181 struct damon_region *r = first; 182 183 damon_for_each_region_from(r, t) { 184 struct damon_region *next, *newr; 185 186 if (r == last) 187 break; 188 next = damon_next_region(r); 189 if (r->ar.end != next->ar.start) { 190 newr = damon_new_region(r->ar.end, next->ar.start); 191 if (!newr) 192 return -ENOMEM; 193 damon_insert_region(newr, r, next, t); 194 } 195 } 196 return 0; 197 } 198 199 /* 200 * damon_set_regions() - Set regions of a target for given address ranges. 201 * @t: the given target. 202 * @ranges: array of new monitoring target ranges. 203 * @nr_ranges: length of @ranges. 204 * 205 * This function adds new regions to, or modify existing regions of a 206 * monitoring target to fit in specific ranges. 207 * 208 * Return: 0 if success, or negative error code otherwise. 209 */ 210 int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges, 211 unsigned int nr_ranges) 212 { 213 struct damon_region *r, *next; 214 unsigned int i; 215 int err; 216 217 /* Remove regions which are not in the new ranges */ 218 damon_for_each_region_safe(r, next, t) { 219 for (i = 0; i < nr_ranges; i++) { 220 if (damon_intersect(r, &ranges[i])) 221 break; 222 } 223 if (i == nr_ranges) 224 damon_destroy_region(r, t); 225 } 226 227 r = damon_first_region(t); 228 /* Add new regions or resize existing regions to fit in the ranges */ 229 for (i = 0; i < nr_ranges; i++) { 230 struct damon_region *first = NULL, *last, *newr; 231 struct damon_addr_range *range; 232 233 range = &ranges[i]; 234 /* Get the first/last regions intersecting with the range */ 235 damon_for_each_region_from(r, t) { 236 if (damon_intersect(r, range)) { 237 if (!first) 238 first = r; 239 last = r; 240 } 241 if (r->ar.start >= range->end) 242 break; 243 } 244 if (!first) { 245 /* no region intersects with this range */ 246 newr = damon_new_region( 247 ALIGN_DOWN(range->start, 248 DAMON_MIN_REGION), 249 ALIGN(range->end, DAMON_MIN_REGION)); 250 if (!newr) 251 return -ENOMEM; 252 damon_insert_region(newr, damon_prev_region(r), r, t); 253 } else { 254 /* resize intersecting regions to fit in this range */ 255 first->ar.start = ALIGN_DOWN(range->start, 256 DAMON_MIN_REGION); 257 last->ar.end = ALIGN(range->end, DAMON_MIN_REGION); 258 259 /* fill possible holes in the range */ 260 err = damon_fill_regions_holes(first, last, t); 261 if (err) 262 return err; 263 } 264 } 265 return 0; 266 } 267 268 struct damos_filter *damos_new_filter(enum damos_filter_type type, 269 bool matching, bool allow) 270 { 271 struct damos_filter *filter; 272 273 filter = kmalloc(sizeof(*filter), GFP_KERNEL); 274 if (!filter) 275 return NULL; 276 filter->type = type; 277 filter->matching = matching; 278 filter->allow = allow; 279 INIT_LIST_HEAD(&filter->list); 280 return filter; 281 } 282 283 void damos_add_filter(struct damos *s, struct damos_filter *f) 284 { 285 list_add_tail(&f->list, &s->filters); 286 } 287 288 static void damos_del_filter(struct damos_filter *f) 289 { 290 list_del(&f->list); 291 } 292 293 static void damos_free_filter(struct damos_filter *f) 294 { 295 kfree(f); 296 } 297 298 void damos_destroy_filter(struct damos_filter *f) 299 { 300 damos_del_filter(f); 301 damos_free_filter(f); 302 } 303 304 struct damos_quota_goal *damos_new_quota_goal( 305 enum damos_quota_goal_metric metric, 306 unsigned long target_value) 307 { 308 struct damos_quota_goal *goal; 309 310 goal = kmalloc(sizeof(*goal), GFP_KERNEL); 311 if (!goal) 312 return NULL; 313 goal->metric = metric; 314 goal->target_value = target_value; 315 INIT_LIST_HEAD(&goal->list); 316 return goal; 317 } 318 319 void damos_add_quota_goal(struct damos_quota *q, struct damos_quota_goal *g) 320 { 321 list_add_tail(&g->list, &q->goals); 322 } 323 324 static void damos_del_quota_goal(struct damos_quota_goal *g) 325 { 326 list_del(&g->list); 327 } 328 329 static void damos_free_quota_goal(struct damos_quota_goal *g) 330 { 331 kfree(g); 332 } 333 334 void damos_destroy_quota_goal(struct damos_quota_goal *g) 335 { 336 damos_del_quota_goal(g); 337 damos_free_quota_goal(g); 338 } 339 340 /* initialize fields of @quota that normally API users wouldn't set */ 341 static struct damos_quota *damos_quota_init(struct damos_quota *quota) 342 { 343 quota->esz = 0; 344 quota->total_charged_sz = 0; 345 quota->total_charged_ns = 0; 346 quota->charged_sz = 0; 347 quota->charged_from = 0; 348 quota->charge_target_from = NULL; 349 quota->charge_addr_from = 0; 350 quota->esz_bp = 0; 351 return quota; 352 } 353 354 struct damos *damon_new_scheme(struct damos_access_pattern *pattern, 355 enum damos_action action, 356 unsigned long apply_interval_us, 357 struct damos_quota *quota, 358 struct damos_watermarks *wmarks, 359 int target_nid) 360 { 361 struct damos *scheme; 362 363 scheme = kmalloc(sizeof(*scheme), GFP_KERNEL); 364 if (!scheme) 365 return NULL; 366 scheme->pattern = *pattern; 367 scheme->action = action; 368 scheme->apply_interval_us = apply_interval_us; 369 /* 370 * next_apply_sis will be set when kdamond starts. While kdamond is 371 * running, it will also updated when it is added to the DAMON context, 372 * or damon_attrs are updated. 373 */ 374 scheme->next_apply_sis = 0; 375 INIT_LIST_HEAD(&scheme->filters); 376 scheme->stat = (struct damos_stat){}; 377 INIT_LIST_HEAD(&scheme->list); 378 379 scheme->quota = *(damos_quota_init(quota)); 380 /* quota.goals should be separately set by caller */ 381 INIT_LIST_HEAD(&scheme->quota.goals); 382 383 scheme->wmarks = *wmarks; 384 scheme->wmarks.activated = true; 385 386 scheme->target_nid = target_nid; 387 388 return scheme; 389 } 390 391 static void damos_set_next_apply_sis(struct damos *s, struct damon_ctx *ctx) 392 { 393 unsigned long sample_interval = ctx->attrs.sample_interval ? 394 ctx->attrs.sample_interval : 1; 395 unsigned long apply_interval = s->apply_interval_us ? 396 s->apply_interval_us : ctx->attrs.aggr_interval; 397 398 s->next_apply_sis = ctx->passed_sample_intervals + 399 apply_interval / sample_interval; 400 } 401 402 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s) 403 { 404 list_add_tail(&s->list, &ctx->schemes); 405 damos_set_next_apply_sis(s, ctx); 406 } 407 408 static void damon_del_scheme(struct damos *s) 409 { 410 list_del(&s->list); 411 } 412 413 static void damon_free_scheme(struct damos *s) 414 { 415 kfree(s); 416 } 417 418 void damon_destroy_scheme(struct damos *s) 419 { 420 struct damos_quota_goal *g, *g_next; 421 struct damos_filter *f, *next; 422 423 damos_for_each_quota_goal_safe(g, g_next, &s->quota) 424 damos_destroy_quota_goal(g); 425 426 damos_for_each_filter_safe(f, next, s) 427 damos_destroy_filter(f); 428 damon_del_scheme(s); 429 damon_free_scheme(s); 430 } 431 432 /* 433 * Construct a damon_target struct 434 * 435 * Returns the pointer to the new struct if success, or NULL otherwise 436 */ 437 struct damon_target *damon_new_target(void) 438 { 439 struct damon_target *t; 440 441 t = kmalloc(sizeof(*t), GFP_KERNEL); 442 if (!t) 443 return NULL; 444 445 t->pid = NULL; 446 t->nr_regions = 0; 447 INIT_LIST_HEAD(&t->regions_list); 448 INIT_LIST_HEAD(&t->list); 449 450 return t; 451 } 452 453 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t) 454 { 455 list_add_tail(&t->list, &ctx->adaptive_targets); 456 } 457 458 bool damon_targets_empty(struct damon_ctx *ctx) 459 { 460 return list_empty(&ctx->adaptive_targets); 461 } 462 463 static void damon_del_target(struct damon_target *t) 464 { 465 list_del(&t->list); 466 } 467 468 void damon_free_target(struct damon_target *t) 469 { 470 struct damon_region *r, *next; 471 472 damon_for_each_region_safe(r, next, t) 473 damon_free_region(r); 474 kfree(t); 475 } 476 477 void damon_destroy_target(struct damon_target *t) 478 { 479 damon_del_target(t); 480 damon_free_target(t); 481 } 482 483 unsigned int damon_nr_regions(struct damon_target *t) 484 { 485 return t->nr_regions; 486 } 487 488 struct damon_ctx *damon_new_ctx(void) 489 { 490 struct damon_ctx *ctx; 491 492 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 493 if (!ctx) 494 return NULL; 495 496 init_completion(&ctx->kdamond_started); 497 498 ctx->attrs.sample_interval = 5 * 1000; 499 ctx->attrs.aggr_interval = 100 * 1000; 500 ctx->attrs.ops_update_interval = 60 * 1000 * 1000; 501 502 ctx->passed_sample_intervals = 0; 503 /* These will be set from kdamond_init_intervals_sis() */ 504 ctx->next_aggregation_sis = 0; 505 ctx->next_ops_update_sis = 0; 506 507 mutex_init(&ctx->kdamond_lock); 508 mutex_init(&ctx->call_control_lock); 509 mutex_init(&ctx->walk_control_lock); 510 511 ctx->attrs.min_nr_regions = 10; 512 ctx->attrs.max_nr_regions = 1000; 513 514 INIT_LIST_HEAD(&ctx->adaptive_targets); 515 INIT_LIST_HEAD(&ctx->schemes); 516 517 return ctx; 518 } 519 520 static void damon_destroy_targets(struct damon_ctx *ctx) 521 { 522 struct damon_target *t, *next_t; 523 524 if (ctx->ops.cleanup) { 525 ctx->ops.cleanup(ctx); 526 return; 527 } 528 529 damon_for_each_target_safe(t, next_t, ctx) 530 damon_destroy_target(t); 531 } 532 533 void damon_destroy_ctx(struct damon_ctx *ctx) 534 { 535 struct damos *s, *next_s; 536 537 damon_destroy_targets(ctx); 538 539 damon_for_each_scheme_safe(s, next_s, ctx) 540 damon_destroy_scheme(s); 541 542 kfree(ctx); 543 } 544 545 static unsigned int damon_age_for_new_attrs(unsigned int age, 546 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs) 547 { 548 return age * old_attrs->aggr_interval / new_attrs->aggr_interval; 549 } 550 551 /* convert access ratio in bp (per 10,000) to nr_accesses */ 552 static unsigned int damon_accesses_bp_to_nr_accesses( 553 unsigned int accesses_bp, struct damon_attrs *attrs) 554 { 555 return accesses_bp * damon_max_nr_accesses(attrs) / 10000; 556 } 557 558 /* 559 * Convert nr_accesses to access ratio in bp (per 10,000). 560 * 561 * Callers should ensure attrs.aggr_interval is not zero, like 562 * damon_update_monitoring_results() does . Otherwise, divide-by-zero would 563 * happen. 564 */ 565 static unsigned int damon_nr_accesses_to_accesses_bp( 566 unsigned int nr_accesses, struct damon_attrs *attrs) 567 { 568 return nr_accesses * 10000 / damon_max_nr_accesses(attrs); 569 } 570 571 static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses, 572 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs) 573 { 574 return damon_accesses_bp_to_nr_accesses( 575 damon_nr_accesses_to_accesses_bp( 576 nr_accesses, old_attrs), 577 new_attrs); 578 } 579 580 static void damon_update_monitoring_result(struct damon_region *r, 581 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs) 582 { 583 r->nr_accesses = damon_nr_accesses_for_new_attrs(r->nr_accesses, 584 old_attrs, new_attrs); 585 r->nr_accesses_bp = r->nr_accesses * 10000; 586 r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs); 587 } 588 589 /* 590 * region->nr_accesses is the number of sampling intervals in the last 591 * aggregation interval that access to the region has found, and region->age is 592 * the number of aggregation intervals that its access pattern has maintained. 593 * For the reason, the real meaning of the two fields depend on current 594 * sampling interval and aggregation interval. This function updates 595 * ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs. 596 */ 597 static void damon_update_monitoring_results(struct damon_ctx *ctx, 598 struct damon_attrs *new_attrs) 599 { 600 struct damon_attrs *old_attrs = &ctx->attrs; 601 struct damon_target *t; 602 struct damon_region *r; 603 604 /* if any interval is zero, simply forgive conversion */ 605 if (!old_attrs->sample_interval || !old_attrs->aggr_interval || 606 !new_attrs->sample_interval || 607 !new_attrs->aggr_interval) 608 return; 609 610 damon_for_each_target(t, ctx) 611 damon_for_each_region(r, t) 612 damon_update_monitoring_result( 613 r, old_attrs, new_attrs); 614 } 615 616 /** 617 * damon_set_attrs() - Set attributes for the monitoring. 618 * @ctx: monitoring context 619 * @attrs: monitoring attributes 620 * 621 * This function should be called while the kdamond is not running, or an 622 * access check results aggregation is not ongoing (e.g., from 623 * &struct damon_callback->after_aggregation or 624 * &struct damon_callback->after_wmarks_check callbacks). 625 * 626 * Every time interval is in micro-seconds. 627 * 628 * Return: 0 on success, negative error code otherwise. 629 */ 630 int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs) 631 { 632 unsigned long sample_interval = attrs->sample_interval ? 633 attrs->sample_interval : 1; 634 struct damos *s; 635 636 if (attrs->min_nr_regions < 3) 637 return -EINVAL; 638 if (attrs->min_nr_regions > attrs->max_nr_regions) 639 return -EINVAL; 640 if (attrs->sample_interval > attrs->aggr_interval) 641 return -EINVAL; 642 643 ctx->next_aggregation_sis = ctx->passed_sample_intervals + 644 attrs->aggr_interval / sample_interval; 645 ctx->next_ops_update_sis = ctx->passed_sample_intervals + 646 attrs->ops_update_interval / sample_interval; 647 648 damon_update_monitoring_results(ctx, attrs); 649 ctx->attrs = *attrs; 650 651 damon_for_each_scheme(s, ctx) 652 damos_set_next_apply_sis(s, ctx); 653 654 return 0; 655 } 656 657 /** 658 * damon_set_schemes() - Set data access monitoring based operation schemes. 659 * @ctx: monitoring context 660 * @schemes: array of the schemes 661 * @nr_schemes: number of entries in @schemes 662 * 663 * This function should not be called while the kdamond of the context is 664 * running. 665 */ 666 void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes, 667 ssize_t nr_schemes) 668 { 669 struct damos *s, *next; 670 ssize_t i; 671 672 damon_for_each_scheme_safe(s, next, ctx) 673 damon_destroy_scheme(s); 674 for (i = 0; i < nr_schemes; i++) 675 damon_add_scheme(ctx, schemes[i]); 676 } 677 678 static struct damos_quota_goal *damos_nth_quota_goal( 679 int n, struct damos_quota *q) 680 { 681 struct damos_quota_goal *goal; 682 int i = 0; 683 684 damos_for_each_quota_goal(goal, q) { 685 if (i++ == n) 686 return goal; 687 } 688 return NULL; 689 } 690 691 static void damos_commit_quota_goal( 692 struct damos_quota_goal *dst, struct damos_quota_goal *src) 693 { 694 dst->metric = src->metric; 695 dst->target_value = src->target_value; 696 if (dst->metric == DAMOS_QUOTA_USER_INPUT) 697 dst->current_value = src->current_value; 698 /* keep last_psi_total as is, since it will be updated in next cycle */ 699 } 700 701 /** 702 * damos_commit_quota_goals() - Commit DAMOS quota goals to another quota. 703 * @dst: The commit destination DAMOS quota. 704 * @src: The commit source DAMOS quota. 705 * 706 * Copies user-specified parameters for quota goals from @src to @dst. Users 707 * should use this function for quota goals-level parameters update of running 708 * DAMON contexts, instead of manual in-place updates. 709 * 710 * This function should be called from parameters-update safe context, like 711 * DAMON callbacks. 712 */ 713 int damos_commit_quota_goals(struct damos_quota *dst, struct damos_quota *src) 714 { 715 struct damos_quota_goal *dst_goal, *next, *src_goal, *new_goal; 716 int i = 0, j = 0; 717 718 damos_for_each_quota_goal_safe(dst_goal, next, dst) { 719 src_goal = damos_nth_quota_goal(i++, src); 720 if (src_goal) 721 damos_commit_quota_goal(dst_goal, src_goal); 722 else 723 damos_destroy_quota_goal(dst_goal); 724 } 725 damos_for_each_quota_goal_safe(src_goal, next, src) { 726 if (j++ < i) 727 continue; 728 new_goal = damos_new_quota_goal( 729 src_goal->metric, src_goal->target_value); 730 if (!new_goal) 731 return -ENOMEM; 732 damos_add_quota_goal(dst, new_goal); 733 } 734 return 0; 735 } 736 737 static int damos_commit_quota(struct damos_quota *dst, struct damos_quota *src) 738 { 739 int err; 740 741 dst->reset_interval = src->reset_interval; 742 dst->ms = src->ms; 743 dst->sz = src->sz; 744 err = damos_commit_quota_goals(dst, src); 745 if (err) 746 return err; 747 dst->weight_sz = src->weight_sz; 748 dst->weight_nr_accesses = src->weight_nr_accesses; 749 dst->weight_age = src->weight_age; 750 return 0; 751 } 752 753 static struct damos_filter *damos_nth_filter(int n, struct damos *s) 754 { 755 struct damos_filter *filter; 756 int i = 0; 757 758 damos_for_each_filter(filter, s) { 759 if (i++ == n) 760 return filter; 761 } 762 return NULL; 763 } 764 765 static void damos_commit_filter_arg( 766 struct damos_filter *dst, struct damos_filter *src) 767 { 768 switch (dst->type) { 769 case DAMOS_FILTER_TYPE_MEMCG: 770 dst->memcg_id = src->memcg_id; 771 break; 772 case DAMOS_FILTER_TYPE_ADDR: 773 dst->addr_range = src->addr_range; 774 break; 775 case DAMOS_FILTER_TYPE_TARGET: 776 dst->target_idx = src->target_idx; 777 break; 778 default: 779 break; 780 } 781 } 782 783 static void damos_commit_filter( 784 struct damos_filter *dst, struct damos_filter *src) 785 { 786 dst->type = src->type; 787 dst->matching = src->matching; 788 damos_commit_filter_arg(dst, src); 789 } 790 791 static int damos_commit_filters(struct damos *dst, struct damos *src) 792 { 793 struct damos_filter *dst_filter, *next, *src_filter, *new_filter; 794 int i = 0, j = 0; 795 796 damos_for_each_filter_safe(dst_filter, next, dst) { 797 src_filter = damos_nth_filter(i++, src); 798 if (src_filter) 799 damos_commit_filter(dst_filter, src_filter); 800 else 801 damos_destroy_filter(dst_filter); 802 } 803 804 damos_for_each_filter_safe(src_filter, next, src) { 805 if (j++ < i) 806 continue; 807 808 new_filter = damos_new_filter( 809 src_filter->type, src_filter->matching, 810 src_filter->allow); 811 if (!new_filter) 812 return -ENOMEM; 813 damos_commit_filter_arg(new_filter, src_filter); 814 damos_add_filter(dst, new_filter); 815 } 816 return 0; 817 } 818 819 static struct damos *damon_nth_scheme(int n, struct damon_ctx *ctx) 820 { 821 struct damos *s; 822 int i = 0; 823 824 damon_for_each_scheme(s, ctx) { 825 if (i++ == n) 826 return s; 827 } 828 return NULL; 829 } 830 831 static int damos_commit(struct damos *dst, struct damos *src) 832 { 833 int err; 834 835 dst->pattern = src->pattern; 836 dst->action = src->action; 837 dst->apply_interval_us = src->apply_interval_us; 838 839 err = damos_commit_quota(&dst->quota, &src->quota); 840 if (err) 841 return err; 842 843 dst->wmarks = src->wmarks; 844 845 err = damos_commit_filters(dst, src); 846 return err; 847 } 848 849 static int damon_commit_schemes(struct damon_ctx *dst, struct damon_ctx *src) 850 { 851 struct damos *dst_scheme, *next, *src_scheme, *new_scheme; 852 int i = 0, j = 0, err; 853 854 damon_for_each_scheme_safe(dst_scheme, next, dst) { 855 src_scheme = damon_nth_scheme(i++, src); 856 if (src_scheme) { 857 err = damos_commit(dst_scheme, src_scheme); 858 if (err) 859 return err; 860 } else { 861 damon_destroy_scheme(dst_scheme); 862 } 863 } 864 865 damon_for_each_scheme_safe(src_scheme, next, src) { 866 if (j++ < i) 867 continue; 868 new_scheme = damon_new_scheme(&src_scheme->pattern, 869 src_scheme->action, 870 src_scheme->apply_interval_us, 871 &src_scheme->quota, &src_scheme->wmarks, 872 NUMA_NO_NODE); 873 if (!new_scheme) 874 return -ENOMEM; 875 err = damos_commit(new_scheme, src_scheme); 876 if (err) { 877 damon_destroy_scheme(new_scheme); 878 return err; 879 } 880 damon_add_scheme(dst, new_scheme); 881 } 882 return 0; 883 } 884 885 static struct damon_target *damon_nth_target(int n, struct damon_ctx *ctx) 886 { 887 struct damon_target *t; 888 int i = 0; 889 890 damon_for_each_target(t, ctx) { 891 if (i++ == n) 892 return t; 893 } 894 return NULL; 895 } 896 897 /* 898 * The caller should ensure the regions of @src are 899 * 1. valid (end >= src) and 900 * 2. sorted by starting address. 901 * 902 * If @src has no region, @dst keeps current regions. 903 */ 904 static int damon_commit_target_regions( 905 struct damon_target *dst, struct damon_target *src) 906 { 907 struct damon_region *src_region; 908 struct damon_addr_range *ranges; 909 int i = 0, err; 910 911 damon_for_each_region(src_region, src) 912 i++; 913 if (!i) 914 return 0; 915 916 ranges = kmalloc_array(i, sizeof(*ranges), GFP_KERNEL | __GFP_NOWARN); 917 if (!ranges) 918 return -ENOMEM; 919 i = 0; 920 damon_for_each_region(src_region, src) 921 ranges[i++] = src_region->ar; 922 err = damon_set_regions(dst, ranges, i); 923 kfree(ranges); 924 return err; 925 } 926 927 static int damon_commit_target( 928 struct damon_target *dst, bool dst_has_pid, 929 struct damon_target *src, bool src_has_pid) 930 { 931 int err; 932 933 err = damon_commit_target_regions(dst, src); 934 if (err) 935 return err; 936 if (dst_has_pid) 937 put_pid(dst->pid); 938 if (src_has_pid) 939 get_pid(src->pid); 940 dst->pid = src->pid; 941 return 0; 942 } 943 944 static int damon_commit_targets( 945 struct damon_ctx *dst, struct damon_ctx *src) 946 { 947 struct damon_target *dst_target, *next, *src_target, *new_target; 948 int i = 0, j = 0, err; 949 950 damon_for_each_target_safe(dst_target, next, dst) { 951 src_target = damon_nth_target(i++, src); 952 if (src_target) { 953 err = damon_commit_target( 954 dst_target, damon_target_has_pid(dst), 955 src_target, damon_target_has_pid(src)); 956 if (err) 957 return err; 958 } else { 959 if (damon_target_has_pid(dst)) 960 put_pid(dst_target->pid); 961 damon_destroy_target(dst_target); 962 } 963 } 964 965 damon_for_each_target_safe(src_target, next, src) { 966 if (j++ < i) 967 continue; 968 new_target = damon_new_target(); 969 if (!new_target) 970 return -ENOMEM; 971 err = damon_commit_target(new_target, false, 972 src_target, damon_target_has_pid(src)); 973 if (err) { 974 damon_destroy_target(new_target); 975 return err; 976 } 977 damon_add_target(dst, new_target); 978 } 979 return 0; 980 } 981 982 /** 983 * damon_commit_ctx() - Commit parameters of a DAMON context to another. 984 * @dst: The commit destination DAMON context. 985 * @src: The commit source DAMON context. 986 * 987 * This function copies user-specified parameters from @src to @dst and update 988 * the internal status and results accordingly. Users should use this function 989 * for context-level parameters update of running context, instead of manual 990 * in-place updates. 991 * 992 * This function should be called from parameters-update safe context, like 993 * DAMON callbacks. 994 */ 995 int damon_commit_ctx(struct damon_ctx *dst, struct damon_ctx *src) 996 { 997 int err; 998 999 err = damon_commit_schemes(dst, src); 1000 if (err) 1001 return err; 1002 err = damon_commit_targets(dst, src); 1003 if (err) 1004 return err; 1005 /* 1006 * schemes and targets should be updated first, since 1007 * 1. damon_set_attrs() updates monitoring results of targets and 1008 * next_apply_sis of schemes, and 1009 * 2. ops update should be done after pid handling is done (target 1010 * committing require putting pids). 1011 */ 1012 err = damon_set_attrs(dst, &src->attrs); 1013 if (err) 1014 return err; 1015 dst->ops = src->ops; 1016 1017 return 0; 1018 } 1019 1020 /** 1021 * damon_nr_running_ctxs() - Return number of currently running contexts. 1022 */ 1023 int damon_nr_running_ctxs(void) 1024 { 1025 int nr_ctxs; 1026 1027 mutex_lock(&damon_lock); 1028 nr_ctxs = nr_running_ctxs; 1029 mutex_unlock(&damon_lock); 1030 1031 return nr_ctxs; 1032 } 1033 1034 /* Returns the size upper limit for each monitoring region */ 1035 static unsigned long damon_region_sz_limit(struct damon_ctx *ctx) 1036 { 1037 struct damon_target *t; 1038 struct damon_region *r; 1039 unsigned long sz = 0; 1040 1041 damon_for_each_target(t, ctx) { 1042 damon_for_each_region(r, t) 1043 sz += damon_sz_region(r); 1044 } 1045 1046 if (ctx->attrs.min_nr_regions) 1047 sz /= ctx->attrs.min_nr_regions; 1048 if (sz < DAMON_MIN_REGION) 1049 sz = DAMON_MIN_REGION; 1050 1051 return sz; 1052 } 1053 1054 static int kdamond_fn(void *data); 1055 1056 /* 1057 * __damon_start() - Starts monitoring with given context. 1058 * @ctx: monitoring context 1059 * 1060 * This function should be called while damon_lock is hold. 1061 * 1062 * Return: 0 on success, negative error code otherwise. 1063 */ 1064 static int __damon_start(struct damon_ctx *ctx) 1065 { 1066 int err = -EBUSY; 1067 1068 mutex_lock(&ctx->kdamond_lock); 1069 if (!ctx->kdamond) { 1070 err = 0; 1071 reinit_completion(&ctx->kdamond_started); 1072 ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d", 1073 nr_running_ctxs); 1074 if (IS_ERR(ctx->kdamond)) { 1075 err = PTR_ERR(ctx->kdamond); 1076 ctx->kdamond = NULL; 1077 } else { 1078 wait_for_completion(&ctx->kdamond_started); 1079 } 1080 } 1081 mutex_unlock(&ctx->kdamond_lock); 1082 1083 return err; 1084 } 1085 1086 /** 1087 * damon_start() - Starts the monitorings for a given group of contexts. 1088 * @ctxs: an array of the pointers for contexts to start monitoring 1089 * @nr_ctxs: size of @ctxs 1090 * @exclusive: exclusiveness of this contexts group 1091 * 1092 * This function starts a group of monitoring threads for a group of monitoring 1093 * contexts. One thread per each context is created and run in parallel. The 1094 * caller should handle synchronization between the threads by itself. If 1095 * @exclusive is true and a group of threads that created by other 1096 * 'damon_start()' call is currently running, this function does nothing but 1097 * returns -EBUSY. 1098 * 1099 * Return: 0 on success, negative error code otherwise. 1100 */ 1101 int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive) 1102 { 1103 int i; 1104 int err = 0; 1105 1106 mutex_lock(&damon_lock); 1107 if ((exclusive && nr_running_ctxs) || 1108 (!exclusive && running_exclusive_ctxs)) { 1109 mutex_unlock(&damon_lock); 1110 return -EBUSY; 1111 } 1112 1113 for (i = 0; i < nr_ctxs; i++) { 1114 err = __damon_start(ctxs[i]); 1115 if (err) 1116 break; 1117 nr_running_ctxs++; 1118 } 1119 if (exclusive && nr_running_ctxs) 1120 running_exclusive_ctxs = true; 1121 mutex_unlock(&damon_lock); 1122 1123 return err; 1124 } 1125 1126 /* 1127 * __damon_stop() - Stops monitoring of a given context. 1128 * @ctx: monitoring context 1129 * 1130 * Return: 0 on success, negative error code otherwise. 1131 */ 1132 static int __damon_stop(struct damon_ctx *ctx) 1133 { 1134 struct task_struct *tsk; 1135 1136 mutex_lock(&ctx->kdamond_lock); 1137 tsk = ctx->kdamond; 1138 if (tsk) { 1139 get_task_struct(tsk); 1140 mutex_unlock(&ctx->kdamond_lock); 1141 kthread_stop_put(tsk); 1142 return 0; 1143 } 1144 mutex_unlock(&ctx->kdamond_lock); 1145 1146 return -EPERM; 1147 } 1148 1149 /** 1150 * damon_stop() - Stops the monitorings for a given group of contexts. 1151 * @ctxs: an array of the pointers for contexts to stop monitoring 1152 * @nr_ctxs: size of @ctxs 1153 * 1154 * Return: 0 on success, negative error code otherwise. 1155 */ 1156 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs) 1157 { 1158 int i, err = 0; 1159 1160 for (i = 0; i < nr_ctxs; i++) { 1161 /* nr_running_ctxs is decremented in kdamond_fn */ 1162 err = __damon_stop(ctxs[i]); 1163 if (err) 1164 break; 1165 } 1166 return err; 1167 } 1168 1169 static bool damon_is_running(struct damon_ctx *ctx) 1170 { 1171 bool running; 1172 1173 mutex_lock(&ctx->kdamond_lock); 1174 running = ctx->kdamond != NULL; 1175 mutex_unlock(&ctx->kdamond_lock); 1176 return running; 1177 } 1178 1179 /** 1180 * damon_call() - Invoke a given function on DAMON worker thread (kdamond). 1181 * @ctx: DAMON context to call the function for. 1182 * @control: Control variable of the call request. 1183 * 1184 * Ask DAMON worker thread (kdamond) of @ctx to call a function with an 1185 * argument data that respectively passed via &damon_call_control->fn and 1186 * &damon_call_control->data of @control, and wait until the kdamond finishes 1187 * handling of the request. 1188 * 1189 * The kdamond executes the function with the argument in the main loop, just 1190 * after a sampling of the iteration is finished. The function can hence 1191 * safely access the internal data of the &struct damon_ctx without additional 1192 * synchronization. The return value of the function will be saved in 1193 * &damon_call_control->return_code. 1194 * 1195 * Return: 0 on success, negative error code otherwise. 1196 */ 1197 int damon_call(struct damon_ctx *ctx, struct damon_call_control *control) 1198 { 1199 init_completion(&control->completion); 1200 control->canceled = false; 1201 1202 mutex_lock(&ctx->call_control_lock); 1203 if (ctx->call_control) { 1204 mutex_unlock(&ctx->call_control_lock); 1205 return -EBUSY; 1206 } 1207 ctx->call_control = control; 1208 mutex_unlock(&ctx->call_control_lock); 1209 if (!damon_is_running(ctx)) 1210 return -EINVAL; 1211 wait_for_completion(&control->completion); 1212 if (control->canceled) 1213 return -ECANCELED; 1214 return 0; 1215 } 1216 1217 /** 1218 * damos_walk() - Invoke a given functions while DAMOS walk regions. 1219 * @ctx: DAMON context to call the functions for. 1220 * @control: Control variable of the walk request. 1221 * 1222 * Ask DAMON worker thread (kdamond) of @ctx to call a function for each region 1223 * that the kdamond will apply DAMOS action to, and wait until the kdamond 1224 * finishes handling of the request. 1225 * 1226 * The kdamond executes the given function in the main loop, for each region 1227 * just after it applied any DAMOS actions of @ctx to it. The invocation is 1228 * made only within one &damos->apply_interval_us since damos_walk() 1229 * invocation, for each scheme. The given callback function can hence safely 1230 * access the internal data of &struct damon_ctx and &struct damon_region that 1231 * each of the scheme will apply the action for next interval, without 1232 * additional synchronizations against the kdamond. If every scheme of @ctx 1233 * passed at least one &damos->apply_interval_us, kdamond marks the request as 1234 * completed so that damos_walk() can wakeup and return. 1235 * 1236 * Return: 0 on success, negative error code otherwise. 1237 */ 1238 int damos_walk(struct damon_ctx *ctx, struct damos_walk_control *control) 1239 { 1240 init_completion(&control->completion); 1241 control->canceled = false; 1242 mutex_lock(&ctx->walk_control_lock); 1243 if (ctx->walk_control) { 1244 mutex_unlock(&ctx->walk_control_lock); 1245 return -EBUSY; 1246 } 1247 ctx->walk_control = control; 1248 mutex_unlock(&ctx->walk_control_lock); 1249 if (!damon_is_running(ctx)) 1250 return -EINVAL; 1251 wait_for_completion(&control->completion); 1252 if (control->canceled) 1253 return -ECANCELED; 1254 return 0; 1255 } 1256 1257 /* 1258 * Reset the aggregated monitoring results ('nr_accesses' of each region). 1259 */ 1260 static void kdamond_reset_aggregated(struct damon_ctx *c) 1261 { 1262 struct damon_target *t; 1263 unsigned int ti = 0; /* target's index */ 1264 1265 damon_for_each_target(t, c) { 1266 struct damon_region *r; 1267 1268 damon_for_each_region(r, t) { 1269 trace_damon_aggregated(ti, r, damon_nr_regions(t)); 1270 r->last_nr_accesses = r->nr_accesses; 1271 r->nr_accesses = 0; 1272 } 1273 ti++; 1274 } 1275 } 1276 1277 static void damon_split_region_at(struct damon_target *t, 1278 struct damon_region *r, unsigned long sz_r); 1279 1280 static bool __damos_valid_target(struct damon_region *r, struct damos *s) 1281 { 1282 unsigned long sz; 1283 unsigned int nr_accesses = r->nr_accesses_bp / 10000; 1284 1285 sz = damon_sz_region(r); 1286 return s->pattern.min_sz_region <= sz && 1287 sz <= s->pattern.max_sz_region && 1288 s->pattern.min_nr_accesses <= nr_accesses && 1289 nr_accesses <= s->pattern.max_nr_accesses && 1290 s->pattern.min_age_region <= r->age && 1291 r->age <= s->pattern.max_age_region; 1292 } 1293 1294 static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t, 1295 struct damon_region *r, struct damos *s) 1296 { 1297 bool ret = __damos_valid_target(r, s); 1298 1299 if (!ret || !s->quota.esz || !c->ops.get_scheme_score) 1300 return ret; 1301 1302 return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score; 1303 } 1304 1305 /* 1306 * damos_skip_charged_region() - Check if the given region or starting part of 1307 * it is already charged for the DAMOS quota. 1308 * @t: The target of the region. 1309 * @rp: The pointer to the region. 1310 * @s: The scheme to be applied. 1311 * 1312 * If a quota of a scheme has exceeded in a quota charge window, the scheme's 1313 * action would applied to only a part of the target access pattern fulfilling 1314 * regions. To avoid applying the scheme action to only already applied 1315 * regions, DAMON skips applying the scheme action to the regions that charged 1316 * in the previous charge window. 1317 * 1318 * This function checks if a given region should be skipped or not for the 1319 * reason. If only the starting part of the region has previously charged, 1320 * this function splits the region into two so that the second one covers the 1321 * area that not charged in the previous charge widnow and saves the second 1322 * region in *rp and returns false, so that the caller can apply DAMON action 1323 * to the second one. 1324 * 1325 * Return: true if the region should be entirely skipped, false otherwise. 1326 */ 1327 static bool damos_skip_charged_region(struct damon_target *t, 1328 struct damon_region **rp, struct damos *s) 1329 { 1330 struct damon_region *r = *rp; 1331 struct damos_quota *quota = &s->quota; 1332 unsigned long sz_to_skip; 1333 1334 /* Skip previously charged regions */ 1335 if (quota->charge_target_from) { 1336 if (t != quota->charge_target_from) 1337 return true; 1338 if (r == damon_last_region(t)) { 1339 quota->charge_target_from = NULL; 1340 quota->charge_addr_from = 0; 1341 return true; 1342 } 1343 if (quota->charge_addr_from && 1344 r->ar.end <= quota->charge_addr_from) 1345 return true; 1346 1347 if (quota->charge_addr_from && r->ar.start < 1348 quota->charge_addr_from) { 1349 sz_to_skip = ALIGN_DOWN(quota->charge_addr_from - 1350 r->ar.start, DAMON_MIN_REGION); 1351 if (!sz_to_skip) { 1352 if (damon_sz_region(r) <= DAMON_MIN_REGION) 1353 return true; 1354 sz_to_skip = DAMON_MIN_REGION; 1355 } 1356 damon_split_region_at(t, r, sz_to_skip); 1357 r = damon_next_region(r); 1358 *rp = r; 1359 } 1360 quota->charge_target_from = NULL; 1361 quota->charge_addr_from = 0; 1362 } 1363 return false; 1364 } 1365 1366 static void damos_update_stat(struct damos *s, 1367 unsigned long sz_tried, unsigned long sz_applied, 1368 unsigned long sz_ops_filter_passed) 1369 { 1370 s->stat.nr_tried++; 1371 s->stat.sz_tried += sz_tried; 1372 if (sz_applied) 1373 s->stat.nr_applied++; 1374 s->stat.sz_applied += sz_applied; 1375 s->stat.sz_ops_filter_passed += sz_ops_filter_passed; 1376 } 1377 1378 static bool damos_filter_match(struct damon_ctx *ctx, struct damon_target *t, 1379 struct damon_region *r, struct damos_filter *filter) 1380 { 1381 bool matched = false; 1382 struct damon_target *ti; 1383 int target_idx = 0; 1384 unsigned long start, end; 1385 1386 switch (filter->type) { 1387 case DAMOS_FILTER_TYPE_TARGET: 1388 damon_for_each_target(ti, ctx) { 1389 if (ti == t) 1390 break; 1391 target_idx++; 1392 } 1393 matched = target_idx == filter->target_idx; 1394 break; 1395 case DAMOS_FILTER_TYPE_ADDR: 1396 start = ALIGN_DOWN(filter->addr_range.start, DAMON_MIN_REGION); 1397 end = ALIGN_DOWN(filter->addr_range.end, DAMON_MIN_REGION); 1398 1399 /* inside the range */ 1400 if (start <= r->ar.start && r->ar.end <= end) { 1401 matched = true; 1402 break; 1403 } 1404 /* outside of the range */ 1405 if (r->ar.end <= start || end <= r->ar.start) { 1406 matched = false; 1407 break; 1408 } 1409 /* start before the range and overlap */ 1410 if (r->ar.start < start) { 1411 damon_split_region_at(t, r, start - r->ar.start); 1412 matched = false; 1413 break; 1414 } 1415 /* start inside the range */ 1416 damon_split_region_at(t, r, end - r->ar.start); 1417 matched = true; 1418 break; 1419 default: 1420 return false; 1421 } 1422 1423 return matched == filter->matching; 1424 } 1425 1426 static bool damos_filter_out(struct damon_ctx *ctx, struct damon_target *t, 1427 struct damon_region *r, struct damos *s) 1428 { 1429 struct damos_filter *filter; 1430 1431 damos_for_each_filter(filter, s) { 1432 if (damos_filter_match(ctx, t, r, filter)) 1433 return !filter->allow; 1434 } 1435 return false; 1436 } 1437 1438 /* 1439 * damos_walk_call_walk() - Call &damos_walk_control->walk_fn. 1440 * @ctx: The context of &damon_ctx->walk_control. 1441 * @t: The monitoring target of @r that @s will be applied. 1442 * @r: The region of @t that @s will be applied. 1443 * @s: The scheme of @ctx that will be applied to @r. 1444 * 1445 * This function is called from kdamond whenever it asked the operation set to 1446 * apply a DAMOS scheme action to a region. If a DAMOS walk request is 1447 * installed by damos_walk() and not yet uninstalled, invoke it. 1448 */ 1449 static void damos_walk_call_walk(struct damon_ctx *ctx, struct damon_target *t, 1450 struct damon_region *r, struct damos *s, 1451 unsigned long sz_filter_passed) 1452 { 1453 struct damos_walk_control *control; 1454 1455 mutex_lock(&ctx->walk_control_lock); 1456 control = ctx->walk_control; 1457 mutex_unlock(&ctx->walk_control_lock); 1458 if (!control) 1459 return; 1460 control->walk_fn(control->data, ctx, t, r, s, sz_filter_passed); 1461 } 1462 1463 /* 1464 * damos_walk_complete() - Complete DAMOS walk request if all walks are done. 1465 * @ctx: The context of &damon_ctx->walk_control. 1466 * @s: A scheme of @ctx that all walks are now done. 1467 * 1468 * This function is called when kdamond finished applying the action of a DAMOS 1469 * scheme to all regions that eligible for the given &damos->apply_interval_us. 1470 * If every scheme of @ctx including @s now finished walking for at least one 1471 * &damos->apply_interval_us, this function makrs the handling of the given 1472 * DAMOS walk request is done, so that damos_walk() can wake up and return. 1473 */ 1474 static void damos_walk_complete(struct damon_ctx *ctx, struct damos *s) 1475 { 1476 struct damos *siter; 1477 struct damos_walk_control *control; 1478 1479 mutex_lock(&ctx->walk_control_lock); 1480 control = ctx->walk_control; 1481 mutex_unlock(&ctx->walk_control_lock); 1482 if (!control) 1483 return; 1484 1485 s->walk_completed = true; 1486 /* if all schemes completed, signal completion to walker */ 1487 damon_for_each_scheme(siter, ctx) { 1488 if (!siter->walk_completed) 1489 return; 1490 } 1491 complete(&control->completion); 1492 mutex_lock(&ctx->walk_control_lock); 1493 ctx->walk_control = NULL; 1494 mutex_unlock(&ctx->walk_control_lock); 1495 } 1496 1497 /* 1498 * damos_walk_cancel() - Cancel the current DAMOS walk request. 1499 * @ctx: The context of &damon_ctx->walk_control. 1500 * 1501 * This function is called when @ctx is deactivated by DAMOS watermarks, DAMOS 1502 * walk is requested but there is no DAMOS scheme to walk for, or the kdamond 1503 * is already out of the main loop and therefore gonna be terminated, and hence 1504 * cannot continue the walks. This function therefore marks the walk request 1505 * as canceled, so that damos_walk() can wake up and return. 1506 */ 1507 static void damos_walk_cancel(struct damon_ctx *ctx) 1508 { 1509 struct damos_walk_control *control; 1510 1511 mutex_lock(&ctx->walk_control_lock); 1512 control = ctx->walk_control; 1513 mutex_unlock(&ctx->walk_control_lock); 1514 1515 if (!control) 1516 return; 1517 control->canceled = true; 1518 complete(&control->completion); 1519 mutex_lock(&ctx->walk_control_lock); 1520 ctx->walk_control = NULL; 1521 mutex_unlock(&ctx->walk_control_lock); 1522 } 1523 1524 static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t, 1525 struct damon_region *r, struct damos *s) 1526 { 1527 struct damos_quota *quota = &s->quota; 1528 unsigned long sz = damon_sz_region(r); 1529 struct timespec64 begin, end; 1530 unsigned long sz_applied = 0; 1531 unsigned long sz_ops_filter_passed = 0; 1532 int err = 0; 1533 /* 1534 * We plan to support multiple context per kdamond, as DAMON sysfs 1535 * implies with 'nr_contexts' file. Nevertheless, only single context 1536 * per kdamond is supported for now. So, we can simply use '0' context 1537 * index here. 1538 */ 1539 unsigned int cidx = 0; 1540 struct damos *siter; /* schemes iterator */ 1541 unsigned int sidx = 0; 1542 struct damon_target *titer; /* targets iterator */ 1543 unsigned int tidx = 0; 1544 bool do_trace = false; 1545 1546 /* get indices for trace_damos_before_apply() */ 1547 if (trace_damos_before_apply_enabled()) { 1548 damon_for_each_scheme(siter, c) { 1549 if (siter == s) 1550 break; 1551 sidx++; 1552 } 1553 damon_for_each_target(titer, c) { 1554 if (titer == t) 1555 break; 1556 tidx++; 1557 } 1558 do_trace = true; 1559 } 1560 1561 if (c->ops.apply_scheme) { 1562 if (quota->esz && quota->charged_sz + sz > quota->esz) { 1563 sz = ALIGN_DOWN(quota->esz - quota->charged_sz, 1564 DAMON_MIN_REGION); 1565 if (!sz) 1566 goto update_stat; 1567 damon_split_region_at(t, r, sz); 1568 } 1569 if (damos_filter_out(c, t, r, s)) 1570 return; 1571 ktime_get_coarse_ts64(&begin); 1572 if (c->callback.before_damos_apply) 1573 err = c->callback.before_damos_apply(c, t, r, s); 1574 if (!err) { 1575 trace_damos_before_apply(cidx, sidx, tidx, r, 1576 damon_nr_regions(t), do_trace); 1577 sz_applied = c->ops.apply_scheme(c, t, r, s, 1578 &sz_ops_filter_passed); 1579 } 1580 damos_walk_call_walk(c, t, r, s, sz_ops_filter_passed); 1581 ktime_get_coarse_ts64(&end); 1582 quota->total_charged_ns += timespec64_to_ns(&end) - 1583 timespec64_to_ns(&begin); 1584 quota->charged_sz += sz; 1585 if (quota->esz && quota->charged_sz >= quota->esz) { 1586 quota->charge_target_from = t; 1587 quota->charge_addr_from = r->ar.end + 1; 1588 } 1589 } 1590 if (s->action != DAMOS_STAT) 1591 r->age = 0; 1592 1593 update_stat: 1594 damos_update_stat(s, sz, sz_applied, sz_ops_filter_passed); 1595 } 1596 1597 static void damon_do_apply_schemes(struct damon_ctx *c, 1598 struct damon_target *t, 1599 struct damon_region *r) 1600 { 1601 struct damos *s; 1602 1603 damon_for_each_scheme(s, c) { 1604 struct damos_quota *quota = &s->quota; 1605 1606 if (c->passed_sample_intervals < s->next_apply_sis) 1607 continue; 1608 1609 if (!s->wmarks.activated) 1610 continue; 1611 1612 /* Check the quota */ 1613 if (quota->esz && quota->charged_sz >= quota->esz) 1614 continue; 1615 1616 if (damos_skip_charged_region(t, &r, s)) 1617 continue; 1618 1619 if (!damos_valid_target(c, t, r, s)) 1620 continue; 1621 1622 damos_apply_scheme(c, t, r, s); 1623 } 1624 } 1625 1626 /* 1627 * damon_feed_loop_next_input() - get next input to achieve a target score. 1628 * @last_input The last input. 1629 * @score Current score that made with @last_input. 1630 * 1631 * Calculate next input to achieve the target score, based on the last input 1632 * and current score. Assuming the input and the score are positively 1633 * proportional, calculate how much compensation should be added to or 1634 * subtracted from the last input as a proportion of the last input. Avoid 1635 * next input always being zero by setting it non-zero always. In short form 1636 * (assuming support of float and signed calculations), the algorithm is as 1637 * below. 1638 * 1639 * next_input = max(last_input * ((goal - current) / goal + 1), 1) 1640 * 1641 * For simple implementation, we assume the target score is always 10,000. The 1642 * caller should adjust @score for this. 1643 * 1644 * Returns next input that assumed to achieve the target score. 1645 */ 1646 static unsigned long damon_feed_loop_next_input(unsigned long last_input, 1647 unsigned long score) 1648 { 1649 const unsigned long goal = 10000; 1650 /* Set minimum input as 10000 to avoid compensation be zero */ 1651 const unsigned long min_input = 10000; 1652 unsigned long score_goal_diff, compensation; 1653 bool over_achieving = score > goal; 1654 1655 if (score == goal) 1656 return last_input; 1657 if (score >= goal * 2) 1658 return min_input; 1659 1660 if (over_achieving) 1661 score_goal_diff = score - goal; 1662 else 1663 score_goal_diff = goal - score; 1664 1665 if (last_input < ULONG_MAX / score_goal_diff) 1666 compensation = last_input * score_goal_diff / goal; 1667 else 1668 compensation = last_input / goal * score_goal_diff; 1669 1670 if (over_achieving) 1671 return max(last_input - compensation, min_input); 1672 if (last_input < ULONG_MAX - compensation) 1673 return last_input + compensation; 1674 return ULONG_MAX; 1675 } 1676 1677 #ifdef CONFIG_PSI 1678 1679 static u64 damos_get_some_mem_psi_total(void) 1680 { 1681 if (static_branch_likely(&psi_disabled)) 1682 return 0; 1683 return div_u64(psi_system.total[PSI_AVGS][PSI_MEM * 2], 1684 NSEC_PER_USEC); 1685 } 1686 1687 #else /* CONFIG_PSI */ 1688 1689 static inline u64 damos_get_some_mem_psi_total(void) 1690 { 1691 return 0; 1692 }; 1693 1694 #endif /* CONFIG_PSI */ 1695 1696 static void damos_set_quota_goal_current_value(struct damos_quota_goal *goal) 1697 { 1698 u64 now_psi_total; 1699 1700 switch (goal->metric) { 1701 case DAMOS_QUOTA_USER_INPUT: 1702 /* User should already set goal->current_value */ 1703 break; 1704 case DAMOS_QUOTA_SOME_MEM_PSI_US: 1705 now_psi_total = damos_get_some_mem_psi_total(); 1706 goal->current_value = now_psi_total - goal->last_psi_total; 1707 goal->last_psi_total = now_psi_total; 1708 break; 1709 default: 1710 break; 1711 } 1712 } 1713 1714 /* Return the highest score since it makes schemes least aggressive */ 1715 static unsigned long damos_quota_score(struct damos_quota *quota) 1716 { 1717 struct damos_quota_goal *goal; 1718 unsigned long highest_score = 0; 1719 1720 damos_for_each_quota_goal(goal, quota) { 1721 damos_set_quota_goal_current_value(goal); 1722 highest_score = max(highest_score, 1723 goal->current_value * 10000 / 1724 goal->target_value); 1725 } 1726 1727 return highest_score; 1728 } 1729 1730 /* 1731 * Called only if quota->ms, or quota->sz are set, or quota->goals is not empty 1732 */ 1733 static void damos_set_effective_quota(struct damos_quota *quota) 1734 { 1735 unsigned long throughput; 1736 unsigned long esz = ULONG_MAX; 1737 1738 if (!quota->ms && list_empty("a->goals)) { 1739 quota->esz = quota->sz; 1740 return; 1741 } 1742 1743 if (!list_empty("a->goals)) { 1744 unsigned long score = damos_quota_score(quota); 1745 1746 quota->esz_bp = damon_feed_loop_next_input( 1747 max(quota->esz_bp, 10000UL), 1748 score); 1749 esz = quota->esz_bp / 10000; 1750 } 1751 1752 if (quota->ms) { 1753 if (quota->total_charged_ns) 1754 throughput = quota->total_charged_sz * 1000000 / 1755 quota->total_charged_ns; 1756 else 1757 throughput = PAGE_SIZE * 1024; 1758 esz = min(throughput * quota->ms, esz); 1759 } 1760 1761 if (quota->sz && quota->sz < esz) 1762 esz = quota->sz; 1763 1764 quota->esz = esz; 1765 } 1766 1767 static void damos_adjust_quota(struct damon_ctx *c, struct damos *s) 1768 { 1769 struct damos_quota *quota = &s->quota; 1770 struct damon_target *t; 1771 struct damon_region *r; 1772 unsigned long cumulated_sz; 1773 unsigned int score, max_score = 0; 1774 1775 if (!quota->ms && !quota->sz && list_empty("a->goals)) 1776 return; 1777 1778 /* New charge window starts */ 1779 if (time_after_eq(jiffies, quota->charged_from + 1780 msecs_to_jiffies(quota->reset_interval))) { 1781 if (quota->esz && quota->charged_sz >= quota->esz) 1782 s->stat.qt_exceeds++; 1783 quota->total_charged_sz += quota->charged_sz; 1784 quota->charged_from = jiffies; 1785 quota->charged_sz = 0; 1786 damos_set_effective_quota(quota); 1787 } 1788 1789 if (!c->ops.get_scheme_score) 1790 return; 1791 1792 /* Fill up the score histogram */ 1793 memset(c->regions_score_histogram, 0, 1794 sizeof(*c->regions_score_histogram) * 1795 (DAMOS_MAX_SCORE + 1)); 1796 damon_for_each_target(t, c) { 1797 damon_for_each_region(r, t) { 1798 if (!__damos_valid_target(r, s)) 1799 continue; 1800 score = c->ops.get_scheme_score(c, t, r, s); 1801 c->regions_score_histogram[score] += 1802 damon_sz_region(r); 1803 if (score > max_score) 1804 max_score = score; 1805 } 1806 } 1807 1808 /* Set the min score limit */ 1809 for (cumulated_sz = 0, score = max_score; ; score--) { 1810 cumulated_sz += c->regions_score_histogram[score]; 1811 if (cumulated_sz >= quota->esz || !score) 1812 break; 1813 } 1814 quota->min_score = score; 1815 } 1816 1817 static void kdamond_apply_schemes(struct damon_ctx *c) 1818 { 1819 struct damon_target *t; 1820 struct damon_region *r, *next_r; 1821 struct damos *s; 1822 unsigned long sample_interval = c->attrs.sample_interval ? 1823 c->attrs.sample_interval : 1; 1824 bool has_schemes_to_apply = false; 1825 1826 damon_for_each_scheme(s, c) { 1827 if (c->passed_sample_intervals < s->next_apply_sis) 1828 continue; 1829 1830 if (!s->wmarks.activated) 1831 continue; 1832 1833 has_schemes_to_apply = true; 1834 1835 damos_adjust_quota(c, s); 1836 } 1837 1838 if (!has_schemes_to_apply) 1839 return; 1840 1841 damon_for_each_target(t, c) { 1842 damon_for_each_region_safe(r, next_r, t) 1843 damon_do_apply_schemes(c, t, r); 1844 } 1845 1846 damon_for_each_scheme(s, c) { 1847 if (c->passed_sample_intervals < s->next_apply_sis) 1848 continue; 1849 damos_walk_complete(c, s); 1850 s->next_apply_sis = c->passed_sample_intervals + 1851 (s->apply_interval_us ? s->apply_interval_us : 1852 c->attrs.aggr_interval) / sample_interval; 1853 } 1854 } 1855 1856 /* 1857 * Merge two adjacent regions into one region 1858 */ 1859 static void damon_merge_two_regions(struct damon_target *t, 1860 struct damon_region *l, struct damon_region *r) 1861 { 1862 unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r); 1863 1864 l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) / 1865 (sz_l + sz_r); 1866 l->nr_accesses_bp = l->nr_accesses * 10000; 1867 l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r); 1868 l->ar.end = r->ar.end; 1869 damon_destroy_region(r, t); 1870 } 1871 1872 /* 1873 * Merge adjacent regions having similar access frequencies 1874 * 1875 * t target affected by this merge operation 1876 * thres '->nr_accesses' diff threshold for the merge 1877 * sz_limit size upper limit of each region 1878 */ 1879 static void damon_merge_regions_of(struct damon_target *t, unsigned int thres, 1880 unsigned long sz_limit) 1881 { 1882 struct damon_region *r, *prev = NULL, *next; 1883 1884 damon_for_each_region_safe(r, next, t) { 1885 if (abs(r->nr_accesses - r->last_nr_accesses) > thres) 1886 r->age = 0; 1887 else 1888 r->age++; 1889 1890 if (prev && prev->ar.end == r->ar.start && 1891 abs(prev->nr_accesses - r->nr_accesses) <= thres && 1892 damon_sz_region(prev) + damon_sz_region(r) <= sz_limit) 1893 damon_merge_two_regions(t, prev, r); 1894 else 1895 prev = r; 1896 } 1897 } 1898 1899 /* 1900 * Merge adjacent regions having similar access frequencies 1901 * 1902 * threshold '->nr_accesses' diff threshold for the merge 1903 * sz_limit size upper limit of each region 1904 * 1905 * This function merges monitoring target regions which are adjacent and their 1906 * access frequencies are similar. This is for minimizing the monitoring 1907 * overhead under the dynamically changeable access pattern. If a merge was 1908 * unnecessarily made, later 'kdamond_split_regions()' will revert it. 1909 * 1910 * The total number of regions could be higher than the user-defined limit, 1911 * max_nr_regions for some cases. For example, the user can update 1912 * max_nr_regions to a number that lower than the current number of regions 1913 * while DAMON is running. For such a case, repeat merging until the limit is 1914 * met while increasing @threshold up to possible maximum level. 1915 */ 1916 static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold, 1917 unsigned long sz_limit) 1918 { 1919 struct damon_target *t; 1920 unsigned int nr_regions; 1921 unsigned int max_thres; 1922 1923 max_thres = c->attrs.aggr_interval / 1924 (c->attrs.sample_interval ? c->attrs.sample_interval : 1); 1925 do { 1926 nr_regions = 0; 1927 damon_for_each_target(t, c) { 1928 damon_merge_regions_of(t, threshold, sz_limit); 1929 nr_regions += damon_nr_regions(t); 1930 } 1931 threshold = max(1, threshold * 2); 1932 } while (nr_regions > c->attrs.max_nr_regions && 1933 threshold / 2 < max_thres); 1934 } 1935 1936 /* 1937 * Split a region in two 1938 * 1939 * r the region to be split 1940 * sz_r size of the first sub-region that will be made 1941 */ 1942 static void damon_split_region_at(struct damon_target *t, 1943 struct damon_region *r, unsigned long sz_r) 1944 { 1945 struct damon_region *new; 1946 1947 new = damon_new_region(r->ar.start + sz_r, r->ar.end); 1948 if (!new) 1949 return; 1950 1951 r->ar.end = new->ar.start; 1952 1953 new->age = r->age; 1954 new->last_nr_accesses = r->last_nr_accesses; 1955 new->nr_accesses_bp = r->nr_accesses_bp; 1956 new->nr_accesses = r->nr_accesses; 1957 1958 damon_insert_region(new, r, damon_next_region(r), t); 1959 } 1960 1961 /* Split every region in the given target into 'nr_subs' regions */ 1962 static void damon_split_regions_of(struct damon_target *t, int nr_subs) 1963 { 1964 struct damon_region *r, *next; 1965 unsigned long sz_region, sz_sub = 0; 1966 int i; 1967 1968 damon_for_each_region_safe(r, next, t) { 1969 sz_region = damon_sz_region(r); 1970 1971 for (i = 0; i < nr_subs - 1 && 1972 sz_region > 2 * DAMON_MIN_REGION; i++) { 1973 /* 1974 * Randomly select size of left sub-region to be at 1975 * least 10 percent and at most 90% of original region 1976 */ 1977 sz_sub = ALIGN_DOWN(damon_rand(1, 10) * 1978 sz_region / 10, DAMON_MIN_REGION); 1979 /* Do not allow blank region */ 1980 if (sz_sub == 0 || sz_sub >= sz_region) 1981 continue; 1982 1983 damon_split_region_at(t, r, sz_sub); 1984 sz_region = sz_sub; 1985 } 1986 } 1987 } 1988 1989 /* 1990 * Split every target region into randomly-sized small regions 1991 * 1992 * This function splits every target region into random-sized small regions if 1993 * current total number of the regions is equal or smaller than half of the 1994 * user-specified maximum number of regions. This is for maximizing the 1995 * monitoring accuracy under the dynamically changeable access patterns. If a 1996 * split was unnecessarily made, later 'kdamond_merge_regions()' will revert 1997 * it. 1998 */ 1999 static void kdamond_split_regions(struct damon_ctx *ctx) 2000 { 2001 struct damon_target *t; 2002 unsigned int nr_regions = 0; 2003 static unsigned int last_nr_regions; 2004 int nr_subregions = 2; 2005 2006 damon_for_each_target(t, ctx) 2007 nr_regions += damon_nr_regions(t); 2008 2009 if (nr_regions > ctx->attrs.max_nr_regions / 2) 2010 return; 2011 2012 /* Maybe the middle of the region has different access frequency */ 2013 if (last_nr_regions == nr_regions && 2014 nr_regions < ctx->attrs.max_nr_regions / 3) 2015 nr_subregions = 3; 2016 2017 damon_for_each_target(t, ctx) 2018 damon_split_regions_of(t, nr_subregions); 2019 2020 last_nr_regions = nr_regions; 2021 } 2022 2023 /* 2024 * Check whether current monitoring should be stopped 2025 * 2026 * The monitoring is stopped when either the user requested to stop, or all 2027 * monitoring targets are invalid. 2028 * 2029 * Returns true if need to stop current monitoring. 2030 */ 2031 static bool kdamond_need_stop(struct damon_ctx *ctx) 2032 { 2033 struct damon_target *t; 2034 2035 if (kthread_should_stop()) 2036 return true; 2037 2038 if (!ctx->ops.target_valid) 2039 return false; 2040 2041 damon_for_each_target(t, ctx) { 2042 if (ctx->ops.target_valid(t)) 2043 return false; 2044 } 2045 2046 return true; 2047 } 2048 2049 static int damos_get_wmark_metric_value(enum damos_wmark_metric metric, 2050 unsigned long *metric_value) 2051 { 2052 switch (metric) { 2053 case DAMOS_WMARK_FREE_MEM_RATE: 2054 *metric_value = global_zone_page_state(NR_FREE_PAGES) * 1000 / 2055 totalram_pages(); 2056 return 0; 2057 default: 2058 break; 2059 } 2060 return -EINVAL; 2061 } 2062 2063 /* 2064 * Returns zero if the scheme is active. Else, returns time to wait for next 2065 * watermark check in micro-seconds. 2066 */ 2067 static unsigned long damos_wmark_wait_us(struct damos *scheme) 2068 { 2069 unsigned long metric; 2070 2071 if (damos_get_wmark_metric_value(scheme->wmarks.metric, &metric)) 2072 return 0; 2073 2074 /* higher than high watermark or lower than low watermark */ 2075 if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) { 2076 if (scheme->wmarks.activated) 2077 pr_debug("deactivate a scheme (%d) for %s wmark\n", 2078 scheme->action, 2079 metric > scheme->wmarks.high ? 2080 "high" : "low"); 2081 scheme->wmarks.activated = false; 2082 return scheme->wmarks.interval; 2083 } 2084 2085 /* inactive and higher than middle watermark */ 2086 if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) && 2087 !scheme->wmarks.activated) 2088 return scheme->wmarks.interval; 2089 2090 if (!scheme->wmarks.activated) 2091 pr_debug("activate a scheme (%d)\n", scheme->action); 2092 scheme->wmarks.activated = true; 2093 return 0; 2094 } 2095 2096 static void kdamond_usleep(unsigned long usecs) 2097 { 2098 if (usecs >= USLEEP_RANGE_UPPER_BOUND) 2099 schedule_timeout_idle(usecs_to_jiffies(usecs)); 2100 else 2101 usleep_range_idle(usecs, usecs + 1); 2102 } 2103 2104 /* 2105 * kdamond_call() - handle damon_call_control. 2106 * @ctx: The &struct damon_ctx of the kdamond. 2107 * @cancel: Whether to cancel the invocation of the function. 2108 * 2109 * If there is a &struct damon_call_control request that registered via 2110 * &damon_call() on @ctx, do or cancel the invocation of the function depending 2111 * on @cancel. @cancel is set when the kdamond is deactivated by DAMOS 2112 * watermarks, or the kdamond is already out of the main loop and therefore 2113 * will be terminated. 2114 */ 2115 static void kdamond_call(struct damon_ctx *ctx, bool cancel) 2116 { 2117 struct damon_call_control *control; 2118 int ret = 0; 2119 2120 mutex_lock(&ctx->call_control_lock); 2121 control = ctx->call_control; 2122 mutex_unlock(&ctx->call_control_lock); 2123 if (!control) 2124 return; 2125 if (cancel) { 2126 control->canceled = true; 2127 } else { 2128 ret = control->fn(control->data); 2129 control->return_code = ret; 2130 } 2131 complete(&control->completion); 2132 mutex_lock(&ctx->call_control_lock); 2133 ctx->call_control = NULL; 2134 mutex_unlock(&ctx->call_control_lock); 2135 } 2136 2137 /* Returns negative error code if it's not activated but should return */ 2138 static int kdamond_wait_activation(struct damon_ctx *ctx) 2139 { 2140 struct damos *s; 2141 unsigned long wait_time; 2142 unsigned long min_wait_time = 0; 2143 bool init_wait_time = false; 2144 2145 while (!kdamond_need_stop(ctx)) { 2146 damon_for_each_scheme(s, ctx) { 2147 wait_time = damos_wmark_wait_us(s); 2148 if (!init_wait_time || wait_time < min_wait_time) { 2149 init_wait_time = true; 2150 min_wait_time = wait_time; 2151 } 2152 } 2153 if (!min_wait_time) 2154 return 0; 2155 2156 kdamond_usleep(min_wait_time); 2157 2158 if (ctx->callback.after_wmarks_check && 2159 ctx->callback.after_wmarks_check(ctx)) 2160 break; 2161 kdamond_call(ctx, true); 2162 damos_walk_cancel(ctx); 2163 } 2164 return -EBUSY; 2165 } 2166 2167 static void kdamond_init_intervals_sis(struct damon_ctx *ctx) 2168 { 2169 unsigned long sample_interval = ctx->attrs.sample_interval ? 2170 ctx->attrs.sample_interval : 1; 2171 unsigned long apply_interval; 2172 struct damos *scheme; 2173 2174 ctx->passed_sample_intervals = 0; 2175 ctx->next_aggregation_sis = ctx->attrs.aggr_interval / sample_interval; 2176 ctx->next_ops_update_sis = ctx->attrs.ops_update_interval / 2177 sample_interval; 2178 2179 damon_for_each_scheme(scheme, ctx) { 2180 apply_interval = scheme->apply_interval_us ? 2181 scheme->apply_interval_us : ctx->attrs.aggr_interval; 2182 scheme->next_apply_sis = apply_interval / sample_interval; 2183 } 2184 } 2185 2186 /* 2187 * The monitoring daemon that runs as a kernel thread 2188 */ 2189 static int kdamond_fn(void *data) 2190 { 2191 struct damon_ctx *ctx = data; 2192 struct damon_target *t; 2193 struct damon_region *r, *next; 2194 unsigned int max_nr_accesses = 0; 2195 unsigned long sz_limit = 0; 2196 2197 pr_debug("kdamond (%d) starts\n", current->pid); 2198 2199 complete(&ctx->kdamond_started); 2200 kdamond_init_intervals_sis(ctx); 2201 2202 if (ctx->ops.init) 2203 ctx->ops.init(ctx); 2204 if (ctx->callback.before_start && ctx->callback.before_start(ctx)) 2205 goto done; 2206 ctx->regions_score_histogram = kmalloc_array(DAMOS_MAX_SCORE + 1, 2207 sizeof(*ctx->regions_score_histogram), GFP_KERNEL); 2208 if (!ctx->regions_score_histogram) 2209 goto done; 2210 2211 sz_limit = damon_region_sz_limit(ctx); 2212 2213 while (!kdamond_need_stop(ctx)) { 2214 /* 2215 * ctx->attrs and ctx->next_{aggregation,ops_update}_sis could 2216 * be changed from after_wmarks_check() or after_aggregation() 2217 * callbacks. Read the values here, and use those for this 2218 * iteration. That is, damon_set_attrs() updated new values 2219 * are respected from next iteration. 2220 */ 2221 unsigned long next_aggregation_sis = ctx->next_aggregation_sis; 2222 unsigned long next_ops_update_sis = ctx->next_ops_update_sis; 2223 unsigned long sample_interval = ctx->attrs.sample_interval; 2224 2225 if (kdamond_wait_activation(ctx)) 2226 break; 2227 2228 if (ctx->ops.prepare_access_checks) 2229 ctx->ops.prepare_access_checks(ctx); 2230 if (ctx->callback.after_sampling && 2231 ctx->callback.after_sampling(ctx)) 2232 break; 2233 kdamond_call(ctx, false); 2234 2235 kdamond_usleep(sample_interval); 2236 ctx->passed_sample_intervals++; 2237 2238 if (ctx->ops.check_accesses) 2239 max_nr_accesses = ctx->ops.check_accesses(ctx); 2240 2241 if (ctx->passed_sample_intervals >= next_aggregation_sis) { 2242 kdamond_merge_regions(ctx, 2243 max_nr_accesses / 10, 2244 sz_limit); 2245 if (ctx->callback.after_aggregation && 2246 ctx->callback.after_aggregation(ctx)) 2247 break; 2248 } 2249 2250 /* 2251 * do kdamond_apply_schemes() after kdamond_merge_regions() if 2252 * possible, to reduce overhead 2253 */ 2254 if (!list_empty(&ctx->schemes)) 2255 kdamond_apply_schemes(ctx); 2256 else 2257 damos_walk_cancel(ctx); 2258 2259 sample_interval = ctx->attrs.sample_interval ? 2260 ctx->attrs.sample_interval : 1; 2261 if (ctx->passed_sample_intervals >= next_aggregation_sis) { 2262 ctx->next_aggregation_sis = next_aggregation_sis + 2263 ctx->attrs.aggr_interval / sample_interval; 2264 2265 kdamond_reset_aggregated(ctx); 2266 kdamond_split_regions(ctx); 2267 if (ctx->ops.reset_aggregated) 2268 ctx->ops.reset_aggregated(ctx); 2269 } 2270 2271 if (ctx->passed_sample_intervals >= next_ops_update_sis) { 2272 ctx->next_ops_update_sis = next_ops_update_sis + 2273 ctx->attrs.ops_update_interval / 2274 sample_interval; 2275 if (ctx->ops.update) 2276 ctx->ops.update(ctx); 2277 sz_limit = damon_region_sz_limit(ctx); 2278 } 2279 } 2280 done: 2281 damon_for_each_target(t, ctx) { 2282 damon_for_each_region_safe(r, next, t) 2283 damon_destroy_region(r, t); 2284 } 2285 2286 if (ctx->callback.before_terminate) 2287 ctx->callback.before_terminate(ctx); 2288 if (ctx->ops.cleanup) 2289 ctx->ops.cleanup(ctx); 2290 kfree(ctx->regions_score_histogram); 2291 2292 pr_debug("kdamond (%d) finishes\n", current->pid); 2293 mutex_lock(&ctx->kdamond_lock); 2294 ctx->kdamond = NULL; 2295 mutex_unlock(&ctx->kdamond_lock); 2296 2297 kdamond_call(ctx, true); 2298 damos_walk_cancel(ctx); 2299 2300 mutex_lock(&damon_lock); 2301 nr_running_ctxs--; 2302 if (!nr_running_ctxs && running_exclusive_ctxs) 2303 running_exclusive_ctxs = false; 2304 mutex_unlock(&damon_lock); 2305 2306 return 0; 2307 } 2308 2309 /* 2310 * struct damon_system_ram_region - System RAM resource address region of 2311 * [@start, @end). 2312 * @start: Start address of the region (inclusive). 2313 * @end: End address of the region (exclusive). 2314 */ 2315 struct damon_system_ram_region { 2316 unsigned long start; 2317 unsigned long end; 2318 }; 2319 2320 static int walk_system_ram(struct resource *res, void *arg) 2321 { 2322 struct damon_system_ram_region *a = arg; 2323 2324 if (a->end - a->start < resource_size(res)) { 2325 a->start = res->start; 2326 a->end = res->end; 2327 } 2328 return 0; 2329 } 2330 2331 /* 2332 * Find biggest 'System RAM' resource and store its start and end address in 2333 * @start and @end, respectively. If no System RAM is found, returns false. 2334 */ 2335 static bool damon_find_biggest_system_ram(unsigned long *start, 2336 unsigned long *end) 2337 2338 { 2339 struct damon_system_ram_region arg = {}; 2340 2341 walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram); 2342 if (arg.end <= arg.start) 2343 return false; 2344 2345 *start = arg.start; 2346 *end = arg.end; 2347 return true; 2348 } 2349 2350 /** 2351 * damon_set_region_biggest_system_ram_default() - Set the region of the given 2352 * monitoring target as requested, or biggest 'System RAM'. 2353 * @t: The monitoring target to set the region. 2354 * @start: The pointer to the start address of the region. 2355 * @end: The pointer to the end address of the region. 2356 * 2357 * This function sets the region of @t as requested by @start and @end. If the 2358 * values of @start and @end are zero, however, this function finds the biggest 2359 * 'System RAM' resource and sets the region to cover the resource. In the 2360 * latter case, this function saves the start and end addresses of the resource 2361 * in @start and @end, respectively. 2362 * 2363 * Return: 0 on success, negative error code otherwise. 2364 */ 2365 int damon_set_region_biggest_system_ram_default(struct damon_target *t, 2366 unsigned long *start, unsigned long *end) 2367 { 2368 struct damon_addr_range addr_range; 2369 2370 if (*start > *end) 2371 return -EINVAL; 2372 2373 if (!*start && !*end && 2374 !damon_find_biggest_system_ram(start, end)) 2375 return -EINVAL; 2376 2377 addr_range.start = *start; 2378 addr_range.end = *end; 2379 return damon_set_regions(t, &addr_range, 1); 2380 } 2381 2382 /* 2383 * damon_moving_sum() - Calculate an inferred moving sum value. 2384 * @mvsum: Inferred sum of the last @len_window values. 2385 * @nomvsum: Non-moving sum of the last discrete @len_window window values. 2386 * @len_window: The number of last values to take care of. 2387 * @new_value: New value that will be added to the pseudo moving sum. 2388 * 2389 * Moving sum (moving average * window size) is good for handling noise, but 2390 * the cost of keeping past values can be high for arbitrary window size. This 2391 * function implements a lightweight pseudo moving sum function that doesn't 2392 * keep the past window values. 2393 * 2394 * It simply assumes there was no noise in the past, and get the no-noise 2395 * assumed past value to drop from @nomvsum and @len_window. @nomvsum is a 2396 * non-moving sum of the last window. For example, if @len_window is 10 and we 2397 * have 25 values, @nomvsum is the sum of the 11th to 20th values of the 25 2398 * values. Hence, this function simply drops @nomvsum / @len_window from 2399 * given @mvsum and add @new_value. 2400 * 2401 * For example, if @len_window is 10 and @nomvsum is 50, the last 10 values for 2402 * the last window could be vary, e.g., 0, 10, 0, 10, 0, 10, 0, 0, 0, 20. For 2403 * calculating next moving sum with a new value, we should drop 0 from 50 and 2404 * add the new value. However, this function assumes it got value 5 for each 2405 * of the last ten times. Based on the assumption, when the next value is 2406 * measured, it drops the assumed past value, 5 from the current sum, and add 2407 * the new value to get the updated pseduo-moving average. 2408 * 2409 * This means the value could have errors, but the errors will be disappeared 2410 * for every @len_window aligned calls. For example, if @len_window is 10, the 2411 * pseudo moving sum with 11th value to 19th value would have an error. But 2412 * the sum with 20th value will not have the error. 2413 * 2414 * Return: Pseudo-moving average after getting the @new_value. 2415 */ 2416 static unsigned int damon_moving_sum(unsigned int mvsum, unsigned int nomvsum, 2417 unsigned int len_window, unsigned int new_value) 2418 { 2419 return mvsum - nomvsum / len_window + new_value; 2420 } 2421 2422 /** 2423 * damon_update_region_access_rate() - Update the access rate of a region. 2424 * @r: The DAMON region to update for its access check result. 2425 * @accessed: Whether the region has accessed during last sampling interval. 2426 * @attrs: The damon_attrs of the DAMON context. 2427 * 2428 * Update the access rate of a region with the region's last sampling interval 2429 * access check result. 2430 * 2431 * Usually this will be called by &damon_operations->check_accesses callback. 2432 */ 2433 void damon_update_region_access_rate(struct damon_region *r, bool accessed, 2434 struct damon_attrs *attrs) 2435 { 2436 unsigned int len_window = 1; 2437 2438 /* 2439 * sample_interval can be zero, but cannot be larger than 2440 * aggr_interval, owing to validation of damon_set_attrs(). 2441 */ 2442 if (attrs->sample_interval) 2443 len_window = damon_max_nr_accesses(attrs); 2444 r->nr_accesses_bp = damon_moving_sum(r->nr_accesses_bp, 2445 r->last_nr_accesses * 10000, len_window, 2446 accessed ? 10000 : 0); 2447 2448 if (accessed) 2449 r->nr_accesses++; 2450 } 2451 2452 static int __init damon_init(void) 2453 { 2454 damon_region_cache = KMEM_CACHE(damon_region, 0); 2455 if (unlikely(!damon_region_cache)) { 2456 pr_err("creating damon_region_cache fails\n"); 2457 return -ENOMEM; 2458 } 2459 2460 return 0; 2461 } 2462 2463 subsys_initcall(damon_init); 2464 2465 #include "tests/core-kunit.h" 2466