xref: /linux/mm/damon/core.c (revision 36f353a1ebf88280f58d1ebfe2731251d9159456)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Data Access Monitor
4  *
5  * Author: SeongJae Park <sj@kernel.org>
6  */
7 
8 #define pr_fmt(fmt) "damon: " fmt
9 
10 #include <linux/damon.h>
11 #include <linux/delay.h>
12 #include <linux/kthread.h>
13 #include <linux/mm.h>
14 #include <linux/psi.h>
15 #include <linux/slab.h>
16 #include <linux/string.h>
17 
18 #define CREATE_TRACE_POINTS
19 #include <trace/events/damon.h>
20 
21 #ifdef CONFIG_DAMON_KUNIT_TEST
22 #undef DAMON_MIN_REGION
23 #define DAMON_MIN_REGION 1
24 #endif
25 
26 static DEFINE_MUTEX(damon_lock);
27 static int nr_running_ctxs;
28 static bool running_exclusive_ctxs;
29 
30 static DEFINE_MUTEX(damon_ops_lock);
31 static struct damon_operations damon_registered_ops[NR_DAMON_OPS];
32 
33 static struct kmem_cache *damon_region_cache __ro_after_init;
34 
35 /* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */
36 static bool __damon_is_registered_ops(enum damon_ops_id id)
37 {
38 	struct damon_operations empty_ops = {};
39 
40 	if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops)))
41 		return false;
42 	return true;
43 }
44 
45 /**
46  * damon_is_registered_ops() - Check if a given damon_operations is registered.
47  * @id:	Id of the damon_operations to check if registered.
48  *
49  * Return: true if the ops is set, false otherwise.
50  */
51 bool damon_is_registered_ops(enum damon_ops_id id)
52 {
53 	bool registered;
54 
55 	if (id >= NR_DAMON_OPS)
56 		return false;
57 	mutex_lock(&damon_ops_lock);
58 	registered = __damon_is_registered_ops(id);
59 	mutex_unlock(&damon_ops_lock);
60 	return registered;
61 }
62 
63 /**
64  * damon_register_ops() - Register a monitoring operations set to DAMON.
65  * @ops:	monitoring operations set to register.
66  *
67  * This function registers a monitoring operations set of valid &struct
68  * damon_operations->id so that others can find and use them later.
69  *
70  * Return: 0 on success, negative error code otherwise.
71  */
72 int damon_register_ops(struct damon_operations *ops)
73 {
74 	int err = 0;
75 
76 	if (ops->id >= NR_DAMON_OPS)
77 		return -EINVAL;
78 	mutex_lock(&damon_ops_lock);
79 	/* Fail for already registered ops */
80 	if (__damon_is_registered_ops(ops->id)) {
81 		err = -EINVAL;
82 		goto out;
83 	}
84 	damon_registered_ops[ops->id] = *ops;
85 out:
86 	mutex_unlock(&damon_ops_lock);
87 	return err;
88 }
89 
90 /**
91  * damon_select_ops() - Select a monitoring operations to use with the context.
92  * @ctx:	monitoring context to use the operations.
93  * @id:		id of the registered monitoring operations to select.
94  *
95  * This function finds registered monitoring operations set of @id and make
96  * @ctx to use it.
97  *
98  * Return: 0 on success, negative error code otherwise.
99  */
100 int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id)
101 {
102 	int err = 0;
103 
104 	if (id >= NR_DAMON_OPS)
105 		return -EINVAL;
106 
107 	mutex_lock(&damon_ops_lock);
108 	if (!__damon_is_registered_ops(id))
109 		err = -EINVAL;
110 	else
111 		ctx->ops = damon_registered_ops[id];
112 	mutex_unlock(&damon_ops_lock);
113 	return err;
114 }
115 
116 /*
117  * Construct a damon_region struct
118  *
119  * Returns the pointer to the new struct if success, or NULL otherwise
120  */
121 struct damon_region *damon_new_region(unsigned long start, unsigned long end)
122 {
123 	struct damon_region *region;
124 
125 	region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL);
126 	if (!region)
127 		return NULL;
128 
129 	region->ar.start = start;
130 	region->ar.end = end;
131 	region->nr_accesses = 0;
132 	region->nr_accesses_bp = 0;
133 	INIT_LIST_HEAD(&region->list);
134 
135 	region->age = 0;
136 	region->last_nr_accesses = 0;
137 
138 	return region;
139 }
140 
141 void damon_add_region(struct damon_region *r, struct damon_target *t)
142 {
143 	list_add_tail(&r->list, &t->regions_list);
144 	t->nr_regions++;
145 }
146 
147 static void damon_del_region(struct damon_region *r, struct damon_target *t)
148 {
149 	list_del(&r->list);
150 	t->nr_regions--;
151 }
152 
153 static void damon_free_region(struct damon_region *r)
154 {
155 	kmem_cache_free(damon_region_cache, r);
156 }
157 
158 void damon_destroy_region(struct damon_region *r, struct damon_target *t)
159 {
160 	damon_del_region(r, t);
161 	damon_free_region(r);
162 }
163 
164 /*
165  * Check whether a region is intersecting an address range
166  *
167  * Returns true if it is.
168  */
169 static bool damon_intersect(struct damon_region *r,
170 		struct damon_addr_range *re)
171 {
172 	return !(r->ar.end <= re->start || re->end <= r->ar.start);
173 }
174 
175 /*
176  * Fill holes in regions with new regions.
177  */
178 static int damon_fill_regions_holes(struct damon_region *first,
179 		struct damon_region *last, struct damon_target *t)
180 {
181 	struct damon_region *r = first;
182 
183 	damon_for_each_region_from(r, t) {
184 		struct damon_region *next, *newr;
185 
186 		if (r == last)
187 			break;
188 		next = damon_next_region(r);
189 		if (r->ar.end != next->ar.start) {
190 			newr = damon_new_region(r->ar.end, next->ar.start);
191 			if (!newr)
192 				return -ENOMEM;
193 			damon_insert_region(newr, r, next, t);
194 		}
195 	}
196 	return 0;
197 }
198 
199 /*
200  * damon_set_regions() - Set regions of a target for given address ranges.
201  * @t:		the given target.
202  * @ranges:	array of new monitoring target ranges.
203  * @nr_ranges:	length of @ranges.
204  *
205  * This function adds new regions to, or modify existing regions of a
206  * monitoring target to fit in specific ranges.
207  *
208  * Return: 0 if success, or negative error code otherwise.
209  */
210 int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges,
211 		unsigned int nr_ranges)
212 {
213 	struct damon_region *r, *next;
214 	unsigned int i;
215 	int err;
216 
217 	/* Remove regions which are not in the new ranges */
218 	damon_for_each_region_safe(r, next, t) {
219 		for (i = 0; i < nr_ranges; i++) {
220 			if (damon_intersect(r, &ranges[i]))
221 				break;
222 		}
223 		if (i == nr_ranges)
224 			damon_destroy_region(r, t);
225 	}
226 
227 	r = damon_first_region(t);
228 	/* Add new regions or resize existing regions to fit in the ranges */
229 	for (i = 0; i < nr_ranges; i++) {
230 		struct damon_region *first = NULL, *last, *newr;
231 		struct damon_addr_range *range;
232 
233 		range = &ranges[i];
234 		/* Get the first/last regions intersecting with the range */
235 		damon_for_each_region_from(r, t) {
236 			if (damon_intersect(r, range)) {
237 				if (!first)
238 					first = r;
239 				last = r;
240 			}
241 			if (r->ar.start >= range->end)
242 				break;
243 		}
244 		if (!first) {
245 			/* no region intersects with this range */
246 			newr = damon_new_region(
247 					ALIGN_DOWN(range->start,
248 						DAMON_MIN_REGION),
249 					ALIGN(range->end, DAMON_MIN_REGION));
250 			if (!newr)
251 				return -ENOMEM;
252 			damon_insert_region(newr, damon_prev_region(r), r, t);
253 		} else {
254 			/* resize intersecting regions to fit in this range */
255 			first->ar.start = ALIGN_DOWN(range->start,
256 					DAMON_MIN_REGION);
257 			last->ar.end = ALIGN(range->end, DAMON_MIN_REGION);
258 
259 			/* fill possible holes in the range */
260 			err = damon_fill_regions_holes(first, last, t);
261 			if (err)
262 				return err;
263 		}
264 	}
265 	return 0;
266 }
267 
268 struct damos_filter *damos_new_filter(enum damos_filter_type type,
269 		bool matching)
270 {
271 	struct damos_filter *filter;
272 
273 	filter = kmalloc(sizeof(*filter), GFP_KERNEL);
274 	if (!filter)
275 		return NULL;
276 	filter->type = type;
277 	filter->matching = matching;
278 	INIT_LIST_HEAD(&filter->list);
279 	return filter;
280 }
281 
282 void damos_add_filter(struct damos *s, struct damos_filter *f)
283 {
284 	list_add_tail(&f->list, &s->filters);
285 }
286 
287 static void damos_del_filter(struct damos_filter *f)
288 {
289 	list_del(&f->list);
290 }
291 
292 static void damos_free_filter(struct damos_filter *f)
293 {
294 	kfree(f);
295 }
296 
297 void damos_destroy_filter(struct damos_filter *f)
298 {
299 	damos_del_filter(f);
300 	damos_free_filter(f);
301 }
302 
303 struct damos_quota_goal *damos_new_quota_goal(
304 		enum damos_quota_goal_metric metric,
305 		unsigned long target_value)
306 {
307 	struct damos_quota_goal *goal;
308 
309 	goal = kmalloc(sizeof(*goal), GFP_KERNEL);
310 	if (!goal)
311 		return NULL;
312 	goal->metric = metric;
313 	goal->target_value = target_value;
314 	INIT_LIST_HEAD(&goal->list);
315 	return goal;
316 }
317 
318 void damos_add_quota_goal(struct damos_quota *q, struct damos_quota_goal *g)
319 {
320 	list_add_tail(&g->list, &q->goals);
321 }
322 
323 static void damos_del_quota_goal(struct damos_quota_goal *g)
324 {
325 	list_del(&g->list);
326 }
327 
328 static void damos_free_quota_goal(struct damos_quota_goal *g)
329 {
330 	kfree(g);
331 }
332 
333 void damos_destroy_quota_goal(struct damos_quota_goal *g)
334 {
335 	damos_del_quota_goal(g);
336 	damos_free_quota_goal(g);
337 }
338 
339 /* initialize fields of @quota that normally API users wouldn't set */
340 static struct damos_quota *damos_quota_init(struct damos_quota *quota)
341 {
342 	quota->esz = 0;
343 	quota->total_charged_sz = 0;
344 	quota->total_charged_ns = 0;
345 	quota->charged_sz = 0;
346 	quota->charged_from = 0;
347 	quota->charge_target_from = NULL;
348 	quota->charge_addr_from = 0;
349 	return quota;
350 }
351 
352 struct damos *damon_new_scheme(struct damos_access_pattern *pattern,
353 			enum damos_action action,
354 			unsigned long apply_interval_us,
355 			struct damos_quota *quota,
356 			struct damos_watermarks *wmarks)
357 {
358 	struct damos *scheme;
359 
360 	scheme = kmalloc(sizeof(*scheme), GFP_KERNEL);
361 	if (!scheme)
362 		return NULL;
363 	scheme->pattern = *pattern;
364 	scheme->action = action;
365 	scheme->apply_interval_us = apply_interval_us;
366 	/*
367 	 * next_apply_sis will be set when kdamond starts.  While kdamond is
368 	 * running, it will also updated when it is added to the DAMON context,
369 	 * or damon_attrs are updated.
370 	 */
371 	scheme->next_apply_sis = 0;
372 	INIT_LIST_HEAD(&scheme->filters);
373 	scheme->stat = (struct damos_stat){};
374 	INIT_LIST_HEAD(&scheme->list);
375 
376 	scheme->quota = *(damos_quota_init(quota));
377 	/* quota.goals should be separately set by caller */
378 	INIT_LIST_HEAD(&scheme->quota.goals);
379 
380 	scheme->wmarks = *wmarks;
381 	scheme->wmarks.activated = true;
382 
383 	return scheme;
384 }
385 
386 static void damos_set_next_apply_sis(struct damos *s, struct damon_ctx *ctx)
387 {
388 	unsigned long sample_interval = ctx->attrs.sample_interval ?
389 		ctx->attrs.sample_interval : 1;
390 	unsigned long apply_interval = s->apply_interval_us ?
391 		s->apply_interval_us : ctx->attrs.aggr_interval;
392 
393 	s->next_apply_sis = ctx->passed_sample_intervals +
394 		apply_interval / sample_interval;
395 }
396 
397 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s)
398 {
399 	list_add_tail(&s->list, &ctx->schemes);
400 	damos_set_next_apply_sis(s, ctx);
401 }
402 
403 static void damon_del_scheme(struct damos *s)
404 {
405 	list_del(&s->list);
406 }
407 
408 static void damon_free_scheme(struct damos *s)
409 {
410 	kfree(s);
411 }
412 
413 void damon_destroy_scheme(struct damos *s)
414 {
415 	struct damos_quota_goal *g, *g_next;
416 	struct damos_filter *f, *next;
417 
418 	damos_for_each_quota_goal_safe(g, g_next, &s->quota)
419 		damos_destroy_quota_goal(g);
420 
421 	damos_for_each_filter_safe(f, next, s)
422 		damos_destroy_filter(f);
423 	damon_del_scheme(s);
424 	damon_free_scheme(s);
425 }
426 
427 /*
428  * Construct a damon_target struct
429  *
430  * Returns the pointer to the new struct if success, or NULL otherwise
431  */
432 struct damon_target *damon_new_target(void)
433 {
434 	struct damon_target *t;
435 
436 	t = kmalloc(sizeof(*t), GFP_KERNEL);
437 	if (!t)
438 		return NULL;
439 
440 	t->pid = NULL;
441 	t->nr_regions = 0;
442 	INIT_LIST_HEAD(&t->regions_list);
443 	INIT_LIST_HEAD(&t->list);
444 
445 	return t;
446 }
447 
448 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t)
449 {
450 	list_add_tail(&t->list, &ctx->adaptive_targets);
451 }
452 
453 bool damon_targets_empty(struct damon_ctx *ctx)
454 {
455 	return list_empty(&ctx->adaptive_targets);
456 }
457 
458 static void damon_del_target(struct damon_target *t)
459 {
460 	list_del(&t->list);
461 }
462 
463 void damon_free_target(struct damon_target *t)
464 {
465 	struct damon_region *r, *next;
466 
467 	damon_for_each_region_safe(r, next, t)
468 		damon_free_region(r);
469 	kfree(t);
470 }
471 
472 void damon_destroy_target(struct damon_target *t)
473 {
474 	damon_del_target(t);
475 	damon_free_target(t);
476 }
477 
478 unsigned int damon_nr_regions(struct damon_target *t)
479 {
480 	return t->nr_regions;
481 }
482 
483 struct damon_ctx *damon_new_ctx(void)
484 {
485 	struct damon_ctx *ctx;
486 
487 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
488 	if (!ctx)
489 		return NULL;
490 
491 	init_completion(&ctx->kdamond_started);
492 
493 	ctx->attrs.sample_interval = 5 * 1000;
494 	ctx->attrs.aggr_interval = 100 * 1000;
495 	ctx->attrs.ops_update_interval = 60 * 1000 * 1000;
496 
497 	ctx->passed_sample_intervals = 0;
498 	/* These will be set from kdamond_init_intervals_sis() */
499 	ctx->next_aggregation_sis = 0;
500 	ctx->next_ops_update_sis = 0;
501 
502 	mutex_init(&ctx->kdamond_lock);
503 
504 	ctx->attrs.min_nr_regions = 10;
505 	ctx->attrs.max_nr_regions = 1000;
506 
507 	INIT_LIST_HEAD(&ctx->adaptive_targets);
508 	INIT_LIST_HEAD(&ctx->schemes);
509 
510 	return ctx;
511 }
512 
513 static void damon_destroy_targets(struct damon_ctx *ctx)
514 {
515 	struct damon_target *t, *next_t;
516 
517 	if (ctx->ops.cleanup) {
518 		ctx->ops.cleanup(ctx);
519 		return;
520 	}
521 
522 	damon_for_each_target_safe(t, next_t, ctx)
523 		damon_destroy_target(t);
524 }
525 
526 void damon_destroy_ctx(struct damon_ctx *ctx)
527 {
528 	struct damos *s, *next_s;
529 
530 	damon_destroy_targets(ctx);
531 
532 	damon_for_each_scheme_safe(s, next_s, ctx)
533 		damon_destroy_scheme(s);
534 
535 	kfree(ctx);
536 }
537 
538 static unsigned int damon_age_for_new_attrs(unsigned int age,
539 		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
540 {
541 	return age * old_attrs->aggr_interval / new_attrs->aggr_interval;
542 }
543 
544 /* convert access ratio in bp (per 10,000) to nr_accesses */
545 static unsigned int damon_accesses_bp_to_nr_accesses(
546 		unsigned int accesses_bp, struct damon_attrs *attrs)
547 {
548 	return accesses_bp * damon_max_nr_accesses(attrs) / 10000;
549 }
550 
551 /* convert nr_accesses to access ratio in bp (per 10,000) */
552 static unsigned int damon_nr_accesses_to_accesses_bp(
553 		unsigned int nr_accesses, struct damon_attrs *attrs)
554 {
555 	return nr_accesses * 10000 / damon_max_nr_accesses(attrs);
556 }
557 
558 static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,
559 		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
560 {
561 	return damon_accesses_bp_to_nr_accesses(
562 			damon_nr_accesses_to_accesses_bp(
563 				nr_accesses, old_attrs),
564 			new_attrs);
565 }
566 
567 static void damon_update_monitoring_result(struct damon_region *r,
568 		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
569 {
570 	r->nr_accesses = damon_nr_accesses_for_new_attrs(r->nr_accesses,
571 			old_attrs, new_attrs);
572 	r->nr_accesses_bp = r->nr_accesses * 10000;
573 	r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs);
574 }
575 
576 /*
577  * region->nr_accesses is the number of sampling intervals in the last
578  * aggregation interval that access to the region has found, and region->age is
579  * the number of aggregation intervals that its access pattern has maintained.
580  * For the reason, the real meaning of the two fields depend on current
581  * sampling interval and aggregation interval.  This function updates
582  * ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs.
583  */
584 static void damon_update_monitoring_results(struct damon_ctx *ctx,
585 		struct damon_attrs *new_attrs)
586 {
587 	struct damon_attrs *old_attrs = &ctx->attrs;
588 	struct damon_target *t;
589 	struct damon_region *r;
590 
591 	/* if any interval is zero, simply forgive conversion */
592 	if (!old_attrs->sample_interval || !old_attrs->aggr_interval ||
593 			!new_attrs->sample_interval ||
594 			!new_attrs->aggr_interval)
595 		return;
596 
597 	damon_for_each_target(t, ctx)
598 		damon_for_each_region(r, t)
599 			damon_update_monitoring_result(
600 					r, old_attrs, new_attrs);
601 }
602 
603 /**
604  * damon_set_attrs() - Set attributes for the monitoring.
605  * @ctx:		monitoring context
606  * @attrs:		monitoring attributes
607  *
608  * This function should be called while the kdamond is not running, or an
609  * access check results aggregation is not ongoing (e.g., from
610  * &struct damon_callback->after_aggregation or
611  * &struct damon_callback->after_wmarks_check callbacks).
612  *
613  * Every time interval is in micro-seconds.
614  *
615  * Return: 0 on success, negative error code otherwise.
616  */
617 int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs)
618 {
619 	unsigned long sample_interval = attrs->sample_interval ?
620 		attrs->sample_interval : 1;
621 	struct damos *s;
622 
623 	if (attrs->min_nr_regions < 3)
624 		return -EINVAL;
625 	if (attrs->min_nr_regions > attrs->max_nr_regions)
626 		return -EINVAL;
627 	if (attrs->sample_interval > attrs->aggr_interval)
628 		return -EINVAL;
629 
630 	ctx->next_aggregation_sis = ctx->passed_sample_intervals +
631 		attrs->aggr_interval / sample_interval;
632 	ctx->next_ops_update_sis = ctx->passed_sample_intervals +
633 		attrs->ops_update_interval / sample_interval;
634 
635 	damon_update_monitoring_results(ctx, attrs);
636 	ctx->attrs = *attrs;
637 
638 	damon_for_each_scheme(s, ctx)
639 		damos_set_next_apply_sis(s, ctx);
640 
641 	return 0;
642 }
643 
644 /**
645  * damon_set_schemes() - Set data access monitoring based operation schemes.
646  * @ctx:	monitoring context
647  * @schemes:	array of the schemes
648  * @nr_schemes:	number of entries in @schemes
649  *
650  * This function should not be called while the kdamond of the context is
651  * running.
652  */
653 void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes,
654 			ssize_t nr_schemes)
655 {
656 	struct damos *s, *next;
657 	ssize_t i;
658 
659 	damon_for_each_scheme_safe(s, next, ctx)
660 		damon_destroy_scheme(s);
661 	for (i = 0; i < nr_schemes; i++)
662 		damon_add_scheme(ctx, schemes[i]);
663 }
664 
665 /**
666  * damon_nr_running_ctxs() - Return number of currently running contexts.
667  */
668 int damon_nr_running_ctxs(void)
669 {
670 	int nr_ctxs;
671 
672 	mutex_lock(&damon_lock);
673 	nr_ctxs = nr_running_ctxs;
674 	mutex_unlock(&damon_lock);
675 
676 	return nr_ctxs;
677 }
678 
679 /* Returns the size upper limit for each monitoring region */
680 static unsigned long damon_region_sz_limit(struct damon_ctx *ctx)
681 {
682 	struct damon_target *t;
683 	struct damon_region *r;
684 	unsigned long sz = 0;
685 
686 	damon_for_each_target(t, ctx) {
687 		damon_for_each_region(r, t)
688 			sz += damon_sz_region(r);
689 	}
690 
691 	if (ctx->attrs.min_nr_regions)
692 		sz /= ctx->attrs.min_nr_regions;
693 	if (sz < DAMON_MIN_REGION)
694 		sz = DAMON_MIN_REGION;
695 
696 	return sz;
697 }
698 
699 static int kdamond_fn(void *data);
700 
701 /*
702  * __damon_start() - Starts monitoring with given context.
703  * @ctx:	monitoring context
704  *
705  * This function should be called while damon_lock is hold.
706  *
707  * Return: 0 on success, negative error code otherwise.
708  */
709 static int __damon_start(struct damon_ctx *ctx)
710 {
711 	int err = -EBUSY;
712 
713 	mutex_lock(&ctx->kdamond_lock);
714 	if (!ctx->kdamond) {
715 		err = 0;
716 		reinit_completion(&ctx->kdamond_started);
717 		ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d",
718 				nr_running_ctxs);
719 		if (IS_ERR(ctx->kdamond)) {
720 			err = PTR_ERR(ctx->kdamond);
721 			ctx->kdamond = NULL;
722 		} else {
723 			wait_for_completion(&ctx->kdamond_started);
724 		}
725 	}
726 	mutex_unlock(&ctx->kdamond_lock);
727 
728 	return err;
729 }
730 
731 /**
732  * damon_start() - Starts the monitorings for a given group of contexts.
733  * @ctxs:	an array of the pointers for contexts to start monitoring
734  * @nr_ctxs:	size of @ctxs
735  * @exclusive:	exclusiveness of this contexts group
736  *
737  * This function starts a group of monitoring threads for a group of monitoring
738  * contexts.  One thread per each context is created and run in parallel.  The
739  * caller should handle synchronization between the threads by itself.  If
740  * @exclusive is true and a group of threads that created by other
741  * 'damon_start()' call is currently running, this function does nothing but
742  * returns -EBUSY.
743  *
744  * Return: 0 on success, negative error code otherwise.
745  */
746 int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive)
747 {
748 	int i;
749 	int err = 0;
750 
751 	mutex_lock(&damon_lock);
752 	if ((exclusive && nr_running_ctxs) ||
753 			(!exclusive && running_exclusive_ctxs)) {
754 		mutex_unlock(&damon_lock);
755 		return -EBUSY;
756 	}
757 
758 	for (i = 0; i < nr_ctxs; i++) {
759 		err = __damon_start(ctxs[i]);
760 		if (err)
761 			break;
762 		nr_running_ctxs++;
763 	}
764 	if (exclusive && nr_running_ctxs)
765 		running_exclusive_ctxs = true;
766 	mutex_unlock(&damon_lock);
767 
768 	return err;
769 }
770 
771 /*
772  * __damon_stop() - Stops monitoring of a given context.
773  * @ctx:	monitoring context
774  *
775  * Return: 0 on success, negative error code otherwise.
776  */
777 static int __damon_stop(struct damon_ctx *ctx)
778 {
779 	struct task_struct *tsk;
780 
781 	mutex_lock(&ctx->kdamond_lock);
782 	tsk = ctx->kdamond;
783 	if (tsk) {
784 		get_task_struct(tsk);
785 		mutex_unlock(&ctx->kdamond_lock);
786 		kthread_stop_put(tsk);
787 		return 0;
788 	}
789 	mutex_unlock(&ctx->kdamond_lock);
790 
791 	return -EPERM;
792 }
793 
794 /**
795  * damon_stop() - Stops the monitorings for a given group of contexts.
796  * @ctxs:	an array of the pointers for contexts to stop monitoring
797  * @nr_ctxs:	size of @ctxs
798  *
799  * Return: 0 on success, negative error code otherwise.
800  */
801 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs)
802 {
803 	int i, err = 0;
804 
805 	for (i = 0; i < nr_ctxs; i++) {
806 		/* nr_running_ctxs is decremented in kdamond_fn */
807 		err = __damon_stop(ctxs[i]);
808 		if (err)
809 			break;
810 	}
811 	return err;
812 }
813 
814 /*
815  * Reset the aggregated monitoring results ('nr_accesses' of each region).
816  */
817 static void kdamond_reset_aggregated(struct damon_ctx *c)
818 {
819 	struct damon_target *t;
820 	unsigned int ti = 0;	/* target's index */
821 
822 	damon_for_each_target(t, c) {
823 		struct damon_region *r;
824 
825 		damon_for_each_region(r, t) {
826 			trace_damon_aggregated(ti, r, damon_nr_regions(t));
827 			r->last_nr_accesses = r->nr_accesses;
828 			r->nr_accesses = 0;
829 		}
830 		ti++;
831 	}
832 }
833 
834 static void damon_split_region_at(struct damon_target *t,
835 				  struct damon_region *r, unsigned long sz_r);
836 
837 static bool __damos_valid_target(struct damon_region *r, struct damos *s)
838 {
839 	unsigned long sz;
840 	unsigned int nr_accesses = r->nr_accesses_bp / 10000;
841 
842 	sz = damon_sz_region(r);
843 	return s->pattern.min_sz_region <= sz &&
844 		sz <= s->pattern.max_sz_region &&
845 		s->pattern.min_nr_accesses <= nr_accesses &&
846 		nr_accesses <= s->pattern.max_nr_accesses &&
847 		s->pattern.min_age_region <= r->age &&
848 		r->age <= s->pattern.max_age_region;
849 }
850 
851 static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t,
852 		struct damon_region *r, struct damos *s)
853 {
854 	bool ret = __damos_valid_target(r, s);
855 
856 	if (!ret || !s->quota.esz || !c->ops.get_scheme_score)
857 		return ret;
858 
859 	return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score;
860 }
861 
862 /*
863  * damos_skip_charged_region() - Check if the given region or starting part of
864  * it is already charged for the DAMOS quota.
865  * @t:	The target of the region.
866  * @rp:	The pointer to the region.
867  * @s:	The scheme to be applied.
868  *
869  * If a quota of a scheme has exceeded in a quota charge window, the scheme's
870  * action would applied to only a part of the target access pattern fulfilling
871  * regions.  To avoid applying the scheme action to only already applied
872  * regions, DAMON skips applying the scheme action to the regions that charged
873  * in the previous charge window.
874  *
875  * This function checks if a given region should be skipped or not for the
876  * reason.  If only the starting part of the region has previously charged,
877  * this function splits the region into two so that the second one covers the
878  * area that not charged in the previous charge widnow and saves the second
879  * region in *rp and returns false, so that the caller can apply DAMON action
880  * to the second one.
881  *
882  * Return: true if the region should be entirely skipped, false otherwise.
883  */
884 static bool damos_skip_charged_region(struct damon_target *t,
885 		struct damon_region **rp, struct damos *s)
886 {
887 	struct damon_region *r = *rp;
888 	struct damos_quota *quota = &s->quota;
889 	unsigned long sz_to_skip;
890 
891 	/* Skip previously charged regions */
892 	if (quota->charge_target_from) {
893 		if (t != quota->charge_target_from)
894 			return true;
895 		if (r == damon_last_region(t)) {
896 			quota->charge_target_from = NULL;
897 			quota->charge_addr_from = 0;
898 			return true;
899 		}
900 		if (quota->charge_addr_from &&
901 				r->ar.end <= quota->charge_addr_from)
902 			return true;
903 
904 		if (quota->charge_addr_from && r->ar.start <
905 				quota->charge_addr_from) {
906 			sz_to_skip = ALIGN_DOWN(quota->charge_addr_from -
907 					r->ar.start, DAMON_MIN_REGION);
908 			if (!sz_to_skip) {
909 				if (damon_sz_region(r) <= DAMON_MIN_REGION)
910 					return true;
911 				sz_to_skip = DAMON_MIN_REGION;
912 			}
913 			damon_split_region_at(t, r, sz_to_skip);
914 			r = damon_next_region(r);
915 			*rp = r;
916 		}
917 		quota->charge_target_from = NULL;
918 		quota->charge_addr_from = 0;
919 	}
920 	return false;
921 }
922 
923 static void damos_update_stat(struct damos *s,
924 		unsigned long sz_tried, unsigned long sz_applied)
925 {
926 	s->stat.nr_tried++;
927 	s->stat.sz_tried += sz_tried;
928 	if (sz_applied)
929 		s->stat.nr_applied++;
930 	s->stat.sz_applied += sz_applied;
931 }
932 
933 static bool __damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
934 		struct damon_region *r, struct damos_filter *filter)
935 {
936 	bool matched = false;
937 	struct damon_target *ti;
938 	int target_idx = 0;
939 	unsigned long start, end;
940 
941 	switch (filter->type) {
942 	case DAMOS_FILTER_TYPE_TARGET:
943 		damon_for_each_target(ti, ctx) {
944 			if (ti == t)
945 				break;
946 			target_idx++;
947 		}
948 		matched = target_idx == filter->target_idx;
949 		break;
950 	case DAMOS_FILTER_TYPE_ADDR:
951 		start = ALIGN_DOWN(filter->addr_range.start, DAMON_MIN_REGION);
952 		end = ALIGN_DOWN(filter->addr_range.end, DAMON_MIN_REGION);
953 
954 		/* inside the range */
955 		if (start <= r->ar.start && r->ar.end <= end) {
956 			matched = true;
957 			break;
958 		}
959 		/* outside of the range */
960 		if (r->ar.end <= start || end <= r->ar.start) {
961 			matched = false;
962 			break;
963 		}
964 		/* start before the range and overlap */
965 		if (r->ar.start < start) {
966 			damon_split_region_at(t, r, start - r->ar.start);
967 			matched = false;
968 			break;
969 		}
970 		/* start inside the range */
971 		damon_split_region_at(t, r, end - r->ar.start);
972 		matched = true;
973 		break;
974 	default:
975 		return false;
976 	}
977 
978 	return matched == filter->matching;
979 }
980 
981 static bool damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
982 		struct damon_region *r, struct damos *s)
983 {
984 	struct damos_filter *filter;
985 
986 	damos_for_each_filter(filter, s) {
987 		if (__damos_filter_out(ctx, t, r, filter))
988 			return true;
989 	}
990 	return false;
991 }
992 
993 static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t,
994 		struct damon_region *r, struct damos *s)
995 {
996 	struct damos_quota *quota = &s->quota;
997 	unsigned long sz = damon_sz_region(r);
998 	struct timespec64 begin, end;
999 	unsigned long sz_applied = 0;
1000 	int err = 0;
1001 	/*
1002 	 * We plan to support multiple context per kdamond, as DAMON sysfs
1003 	 * implies with 'nr_contexts' file.  Nevertheless, only single context
1004 	 * per kdamond is supported for now.  So, we can simply use '0' context
1005 	 * index here.
1006 	 */
1007 	unsigned int cidx = 0;
1008 	struct damos *siter;		/* schemes iterator */
1009 	unsigned int sidx = 0;
1010 	struct damon_target *titer;	/* targets iterator */
1011 	unsigned int tidx = 0;
1012 	bool do_trace = false;
1013 
1014 	/* get indices for trace_damos_before_apply() */
1015 	if (trace_damos_before_apply_enabled()) {
1016 		damon_for_each_scheme(siter, c) {
1017 			if (siter == s)
1018 				break;
1019 			sidx++;
1020 		}
1021 		damon_for_each_target(titer, c) {
1022 			if (titer == t)
1023 				break;
1024 			tidx++;
1025 		}
1026 		do_trace = true;
1027 	}
1028 
1029 	if (c->ops.apply_scheme) {
1030 		if (quota->esz && quota->charged_sz + sz > quota->esz) {
1031 			sz = ALIGN_DOWN(quota->esz - quota->charged_sz,
1032 					DAMON_MIN_REGION);
1033 			if (!sz)
1034 				goto update_stat;
1035 			damon_split_region_at(t, r, sz);
1036 		}
1037 		if (damos_filter_out(c, t, r, s))
1038 			return;
1039 		ktime_get_coarse_ts64(&begin);
1040 		if (c->callback.before_damos_apply)
1041 			err = c->callback.before_damos_apply(c, t, r, s);
1042 		if (!err) {
1043 			trace_damos_before_apply(cidx, sidx, tidx, r,
1044 					damon_nr_regions(t), do_trace);
1045 			sz_applied = c->ops.apply_scheme(c, t, r, s);
1046 		}
1047 		ktime_get_coarse_ts64(&end);
1048 		quota->total_charged_ns += timespec64_to_ns(&end) -
1049 			timespec64_to_ns(&begin);
1050 		quota->charged_sz += sz;
1051 		if (quota->esz && quota->charged_sz >= quota->esz) {
1052 			quota->charge_target_from = t;
1053 			quota->charge_addr_from = r->ar.end + 1;
1054 		}
1055 	}
1056 	if (s->action != DAMOS_STAT)
1057 		r->age = 0;
1058 
1059 update_stat:
1060 	damos_update_stat(s, sz, sz_applied);
1061 }
1062 
1063 static void damon_do_apply_schemes(struct damon_ctx *c,
1064 				   struct damon_target *t,
1065 				   struct damon_region *r)
1066 {
1067 	struct damos *s;
1068 
1069 	damon_for_each_scheme(s, c) {
1070 		struct damos_quota *quota = &s->quota;
1071 
1072 		if (c->passed_sample_intervals != s->next_apply_sis)
1073 			continue;
1074 
1075 		if (!s->wmarks.activated)
1076 			continue;
1077 
1078 		/* Check the quota */
1079 		if (quota->esz && quota->charged_sz >= quota->esz)
1080 			continue;
1081 
1082 		if (damos_skip_charged_region(t, &r, s))
1083 			continue;
1084 
1085 		if (!damos_valid_target(c, t, r, s))
1086 			continue;
1087 
1088 		damos_apply_scheme(c, t, r, s);
1089 	}
1090 }
1091 
1092 /*
1093  * damon_feed_loop_next_input() - get next input to achieve a target score.
1094  * @last_input	The last input.
1095  * @score	Current score that made with @last_input.
1096  *
1097  * Calculate next input to achieve the target score, based on the last input
1098  * and current score.  Assuming the input and the score are positively
1099  * proportional, calculate how much compensation should be added to or
1100  * subtracted from the last input as a proportion of the last input.  Avoid
1101  * next input always being zero by setting it non-zero always.  In short form
1102  * (assuming support of float and signed calculations), the algorithm is as
1103  * below.
1104  *
1105  * next_input = max(last_input * ((goal - current) / goal + 1), 1)
1106  *
1107  * For simple implementation, we assume the target score is always 10,000.  The
1108  * caller should adjust @score for this.
1109  *
1110  * Returns next input that assumed to achieve the target score.
1111  */
1112 static unsigned long damon_feed_loop_next_input(unsigned long last_input,
1113 		unsigned long score)
1114 {
1115 	const unsigned long goal = 10000;
1116 	unsigned long score_goal_diff = max(goal, score) - min(goal, score);
1117 	unsigned long score_goal_diff_bp = score_goal_diff * 10000 / goal;
1118 	unsigned long compensation = last_input * score_goal_diff_bp / 10000;
1119 	/* Set minimum input as 10000 to avoid compensation be zero */
1120 	const unsigned long min_input = 10000;
1121 
1122 	if (goal > score)
1123 		return last_input + compensation;
1124 	if (last_input > compensation + min_input)
1125 		return last_input - compensation;
1126 	return min_input;
1127 }
1128 
1129 #ifdef CONFIG_PSI
1130 
1131 static u64 damos_get_some_mem_psi_total(void)
1132 {
1133 	if (static_branch_likely(&psi_disabled))
1134 		return 0;
1135 	return div_u64(psi_system.total[PSI_AVGS][PSI_MEM * 2],
1136 			NSEC_PER_USEC);
1137 }
1138 
1139 #else	/* CONFIG_PSI */
1140 
1141 static inline u64 damos_get_some_mem_psi_total(void)
1142 {
1143 	return 0;
1144 };
1145 
1146 #endif	/* CONFIG_PSI */
1147 
1148 static void damos_set_quota_goal_current_value(struct damos_quota_goal *goal)
1149 {
1150 	u64 now_psi_total;
1151 
1152 	switch (goal->metric) {
1153 	case DAMOS_QUOTA_USER_INPUT:
1154 		/* User should already set goal->current_value */
1155 		break;
1156 	case DAMOS_QUOTA_SOME_MEM_PSI_US:
1157 		now_psi_total = damos_get_some_mem_psi_total();
1158 		goal->current_value = now_psi_total - goal->last_psi_total;
1159 		goal->last_psi_total = now_psi_total;
1160 		break;
1161 	default:
1162 		break;
1163 	}
1164 }
1165 
1166 /* Return the highest score since it makes schemes least aggressive */
1167 static unsigned long damos_quota_score(struct damos_quota *quota)
1168 {
1169 	struct damos_quota_goal *goal;
1170 	unsigned long highest_score = 0;
1171 
1172 	damos_for_each_quota_goal(goal, quota) {
1173 		damos_set_quota_goal_current_value(goal);
1174 		highest_score = max(highest_score,
1175 				goal->current_value * 10000 /
1176 				goal->target_value);
1177 	}
1178 
1179 	return highest_score;
1180 }
1181 
1182 /*
1183  * Called only if quota->ms, or quota->sz are set, or quota->goals is not empty
1184  */
1185 static void damos_set_effective_quota(struct damos_quota *quota)
1186 {
1187 	unsigned long throughput;
1188 	unsigned long esz;
1189 
1190 	if (!quota->ms && list_empty(&quota->goals)) {
1191 		quota->esz = quota->sz;
1192 		return;
1193 	}
1194 
1195 	if (!list_empty(&quota->goals)) {
1196 		unsigned long score = damos_quota_score(quota);
1197 
1198 		quota->esz_bp = damon_feed_loop_next_input(
1199 				max(quota->esz_bp, 10000UL),
1200 				score);
1201 		esz = quota->esz_bp / 10000;
1202 	}
1203 
1204 	if (quota->ms) {
1205 		if (quota->total_charged_ns)
1206 			throughput = quota->total_charged_sz * 1000000 /
1207 				quota->total_charged_ns;
1208 		else
1209 			throughput = PAGE_SIZE * 1024;
1210 		if (!list_empty(&quota->goals))
1211 			esz = min(throughput * quota->ms, esz);
1212 		else
1213 			esz = throughput * quota->ms;
1214 	}
1215 
1216 	if (quota->sz && quota->sz < esz)
1217 		esz = quota->sz;
1218 
1219 	quota->esz = esz;
1220 }
1221 
1222 static void damos_adjust_quota(struct damon_ctx *c, struct damos *s)
1223 {
1224 	struct damos_quota *quota = &s->quota;
1225 	struct damon_target *t;
1226 	struct damon_region *r;
1227 	unsigned long cumulated_sz;
1228 	unsigned int score, max_score = 0;
1229 
1230 	if (!quota->ms && !quota->sz && list_empty(&quota->goals))
1231 		return;
1232 
1233 	/* New charge window starts */
1234 	if (time_after_eq(jiffies, quota->charged_from +
1235 				msecs_to_jiffies(quota->reset_interval))) {
1236 		if (quota->esz && quota->charged_sz >= quota->esz)
1237 			s->stat.qt_exceeds++;
1238 		quota->total_charged_sz += quota->charged_sz;
1239 		quota->charged_from = jiffies;
1240 		quota->charged_sz = 0;
1241 		damos_set_effective_quota(quota);
1242 	}
1243 
1244 	if (!c->ops.get_scheme_score)
1245 		return;
1246 
1247 	/* Fill up the score histogram */
1248 	memset(quota->histogram, 0, sizeof(quota->histogram));
1249 	damon_for_each_target(t, c) {
1250 		damon_for_each_region(r, t) {
1251 			if (!__damos_valid_target(r, s))
1252 				continue;
1253 			score = c->ops.get_scheme_score(c, t, r, s);
1254 			quota->histogram[score] += damon_sz_region(r);
1255 			if (score > max_score)
1256 				max_score = score;
1257 		}
1258 	}
1259 
1260 	/* Set the min score limit */
1261 	for (cumulated_sz = 0, score = max_score; ; score--) {
1262 		cumulated_sz += quota->histogram[score];
1263 		if (cumulated_sz >= quota->esz || !score)
1264 			break;
1265 	}
1266 	quota->min_score = score;
1267 }
1268 
1269 static void kdamond_apply_schemes(struct damon_ctx *c)
1270 {
1271 	struct damon_target *t;
1272 	struct damon_region *r, *next_r;
1273 	struct damos *s;
1274 	unsigned long sample_interval = c->attrs.sample_interval ?
1275 		c->attrs.sample_interval : 1;
1276 	bool has_schemes_to_apply = false;
1277 
1278 	damon_for_each_scheme(s, c) {
1279 		if (c->passed_sample_intervals != s->next_apply_sis)
1280 			continue;
1281 
1282 		if (!s->wmarks.activated)
1283 			continue;
1284 
1285 		has_schemes_to_apply = true;
1286 
1287 		damos_adjust_quota(c, s);
1288 	}
1289 
1290 	if (!has_schemes_to_apply)
1291 		return;
1292 
1293 	damon_for_each_target(t, c) {
1294 		damon_for_each_region_safe(r, next_r, t)
1295 			damon_do_apply_schemes(c, t, r);
1296 	}
1297 
1298 	damon_for_each_scheme(s, c) {
1299 		if (c->passed_sample_intervals != s->next_apply_sis)
1300 			continue;
1301 		s->next_apply_sis +=
1302 			(s->apply_interval_us ? s->apply_interval_us :
1303 			 c->attrs.aggr_interval) / sample_interval;
1304 	}
1305 }
1306 
1307 /*
1308  * Merge two adjacent regions into one region
1309  */
1310 static void damon_merge_two_regions(struct damon_target *t,
1311 		struct damon_region *l, struct damon_region *r)
1312 {
1313 	unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r);
1314 
1315 	l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) /
1316 			(sz_l + sz_r);
1317 	l->nr_accesses_bp = l->nr_accesses * 10000;
1318 	l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r);
1319 	l->ar.end = r->ar.end;
1320 	damon_destroy_region(r, t);
1321 }
1322 
1323 /*
1324  * Merge adjacent regions having similar access frequencies
1325  *
1326  * t		target affected by this merge operation
1327  * thres	'->nr_accesses' diff threshold for the merge
1328  * sz_limit	size upper limit of each region
1329  */
1330 static void damon_merge_regions_of(struct damon_target *t, unsigned int thres,
1331 				   unsigned long sz_limit)
1332 {
1333 	struct damon_region *r, *prev = NULL, *next;
1334 
1335 	damon_for_each_region_safe(r, next, t) {
1336 		if (abs(r->nr_accesses - r->last_nr_accesses) > thres)
1337 			r->age = 0;
1338 		else
1339 			r->age++;
1340 
1341 		if (prev && prev->ar.end == r->ar.start &&
1342 		    abs(prev->nr_accesses - r->nr_accesses) <= thres &&
1343 		    damon_sz_region(prev) + damon_sz_region(r) <= sz_limit)
1344 			damon_merge_two_regions(t, prev, r);
1345 		else
1346 			prev = r;
1347 	}
1348 }
1349 
1350 /*
1351  * Merge adjacent regions having similar access frequencies
1352  *
1353  * threshold	'->nr_accesses' diff threshold for the merge
1354  * sz_limit	size upper limit of each region
1355  *
1356  * This function merges monitoring target regions which are adjacent and their
1357  * access frequencies are similar.  This is for minimizing the monitoring
1358  * overhead under the dynamically changeable access pattern.  If a merge was
1359  * unnecessarily made, later 'kdamond_split_regions()' will revert it.
1360  */
1361 static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold,
1362 				  unsigned long sz_limit)
1363 {
1364 	struct damon_target *t;
1365 
1366 	damon_for_each_target(t, c)
1367 		damon_merge_regions_of(t, threshold, sz_limit);
1368 }
1369 
1370 /*
1371  * Split a region in two
1372  *
1373  * r		the region to be split
1374  * sz_r		size of the first sub-region that will be made
1375  */
1376 static void damon_split_region_at(struct damon_target *t,
1377 				  struct damon_region *r, unsigned long sz_r)
1378 {
1379 	struct damon_region *new;
1380 
1381 	new = damon_new_region(r->ar.start + sz_r, r->ar.end);
1382 	if (!new)
1383 		return;
1384 
1385 	r->ar.end = new->ar.start;
1386 
1387 	new->age = r->age;
1388 	new->last_nr_accesses = r->last_nr_accesses;
1389 	new->nr_accesses_bp = r->nr_accesses_bp;
1390 	new->nr_accesses = r->nr_accesses;
1391 
1392 	damon_insert_region(new, r, damon_next_region(r), t);
1393 }
1394 
1395 /* Split every region in the given target into 'nr_subs' regions */
1396 static void damon_split_regions_of(struct damon_target *t, int nr_subs)
1397 {
1398 	struct damon_region *r, *next;
1399 	unsigned long sz_region, sz_sub = 0;
1400 	int i;
1401 
1402 	damon_for_each_region_safe(r, next, t) {
1403 		sz_region = damon_sz_region(r);
1404 
1405 		for (i = 0; i < nr_subs - 1 &&
1406 				sz_region > 2 * DAMON_MIN_REGION; i++) {
1407 			/*
1408 			 * Randomly select size of left sub-region to be at
1409 			 * least 10 percent and at most 90% of original region
1410 			 */
1411 			sz_sub = ALIGN_DOWN(damon_rand(1, 10) *
1412 					sz_region / 10, DAMON_MIN_REGION);
1413 			/* Do not allow blank region */
1414 			if (sz_sub == 0 || sz_sub >= sz_region)
1415 				continue;
1416 
1417 			damon_split_region_at(t, r, sz_sub);
1418 			sz_region = sz_sub;
1419 		}
1420 	}
1421 }
1422 
1423 /*
1424  * Split every target region into randomly-sized small regions
1425  *
1426  * This function splits every target region into random-sized small regions if
1427  * current total number of the regions is equal or smaller than half of the
1428  * user-specified maximum number of regions.  This is for maximizing the
1429  * monitoring accuracy under the dynamically changeable access patterns.  If a
1430  * split was unnecessarily made, later 'kdamond_merge_regions()' will revert
1431  * it.
1432  */
1433 static void kdamond_split_regions(struct damon_ctx *ctx)
1434 {
1435 	struct damon_target *t;
1436 	unsigned int nr_regions = 0;
1437 	static unsigned int last_nr_regions;
1438 	int nr_subregions = 2;
1439 
1440 	damon_for_each_target(t, ctx)
1441 		nr_regions += damon_nr_regions(t);
1442 
1443 	if (nr_regions > ctx->attrs.max_nr_regions / 2)
1444 		return;
1445 
1446 	/* Maybe the middle of the region has different access frequency */
1447 	if (last_nr_regions == nr_regions &&
1448 			nr_regions < ctx->attrs.max_nr_regions / 3)
1449 		nr_subregions = 3;
1450 
1451 	damon_for_each_target(t, ctx)
1452 		damon_split_regions_of(t, nr_subregions);
1453 
1454 	last_nr_regions = nr_regions;
1455 }
1456 
1457 /*
1458  * Check whether current monitoring should be stopped
1459  *
1460  * The monitoring is stopped when either the user requested to stop, or all
1461  * monitoring targets are invalid.
1462  *
1463  * Returns true if need to stop current monitoring.
1464  */
1465 static bool kdamond_need_stop(struct damon_ctx *ctx)
1466 {
1467 	struct damon_target *t;
1468 
1469 	if (kthread_should_stop())
1470 		return true;
1471 
1472 	if (!ctx->ops.target_valid)
1473 		return false;
1474 
1475 	damon_for_each_target(t, ctx) {
1476 		if (ctx->ops.target_valid(t))
1477 			return false;
1478 	}
1479 
1480 	return true;
1481 }
1482 
1483 static unsigned long damos_wmark_metric_value(enum damos_wmark_metric metric)
1484 {
1485 	switch (metric) {
1486 	case DAMOS_WMARK_FREE_MEM_RATE:
1487 		return global_zone_page_state(NR_FREE_PAGES) * 1000 /
1488 		       totalram_pages();
1489 	default:
1490 		break;
1491 	}
1492 	return -EINVAL;
1493 }
1494 
1495 /*
1496  * Returns zero if the scheme is active.  Else, returns time to wait for next
1497  * watermark check in micro-seconds.
1498  */
1499 static unsigned long damos_wmark_wait_us(struct damos *scheme)
1500 {
1501 	unsigned long metric;
1502 
1503 	if (scheme->wmarks.metric == DAMOS_WMARK_NONE)
1504 		return 0;
1505 
1506 	metric = damos_wmark_metric_value(scheme->wmarks.metric);
1507 	/* higher than high watermark or lower than low watermark */
1508 	if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) {
1509 		if (scheme->wmarks.activated)
1510 			pr_debug("deactivate a scheme (%d) for %s wmark\n",
1511 					scheme->action,
1512 					metric > scheme->wmarks.high ?
1513 					"high" : "low");
1514 		scheme->wmarks.activated = false;
1515 		return scheme->wmarks.interval;
1516 	}
1517 
1518 	/* inactive and higher than middle watermark */
1519 	if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) &&
1520 			!scheme->wmarks.activated)
1521 		return scheme->wmarks.interval;
1522 
1523 	if (!scheme->wmarks.activated)
1524 		pr_debug("activate a scheme (%d)\n", scheme->action);
1525 	scheme->wmarks.activated = true;
1526 	return 0;
1527 }
1528 
1529 static void kdamond_usleep(unsigned long usecs)
1530 {
1531 	/* See Documentation/timers/timers-howto.rst for the thresholds */
1532 	if (usecs > 20 * USEC_PER_MSEC)
1533 		schedule_timeout_idle(usecs_to_jiffies(usecs));
1534 	else
1535 		usleep_idle_range(usecs, usecs + 1);
1536 }
1537 
1538 /* Returns negative error code if it's not activated but should return */
1539 static int kdamond_wait_activation(struct damon_ctx *ctx)
1540 {
1541 	struct damos *s;
1542 	unsigned long wait_time;
1543 	unsigned long min_wait_time = 0;
1544 	bool init_wait_time = false;
1545 
1546 	while (!kdamond_need_stop(ctx)) {
1547 		damon_for_each_scheme(s, ctx) {
1548 			wait_time = damos_wmark_wait_us(s);
1549 			if (!init_wait_time || wait_time < min_wait_time) {
1550 				init_wait_time = true;
1551 				min_wait_time = wait_time;
1552 			}
1553 		}
1554 		if (!min_wait_time)
1555 			return 0;
1556 
1557 		kdamond_usleep(min_wait_time);
1558 
1559 		if (ctx->callback.after_wmarks_check &&
1560 				ctx->callback.after_wmarks_check(ctx))
1561 			break;
1562 	}
1563 	return -EBUSY;
1564 }
1565 
1566 static void kdamond_init_intervals_sis(struct damon_ctx *ctx)
1567 {
1568 	unsigned long sample_interval = ctx->attrs.sample_interval ?
1569 		ctx->attrs.sample_interval : 1;
1570 	unsigned long apply_interval;
1571 	struct damos *scheme;
1572 
1573 	ctx->passed_sample_intervals = 0;
1574 	ctx->next_aggregation_sis = ctx->attrs.aggr_interval / sample_interval;
1575 	ctx->next_ops_update_sis = ctx->attrs.ops_update_interval /
1576 		sample_interval;
1577 
1578 	damon_for_each_scheme(scheme, ctx) {
1579 		apply_interval = scheme->apply_interval_us ?
1580 			scheme->apply_interval_us : ctx->attrs.aggr_interval;
1581 		scheme->next_apply_sis = apply_interval / sample_interval;
1582 	}
1583 }
1584 
1585 /*
1586  * The monitoring daemon that runs as a kernel thread
1587  */
1588 static int kdamond_fn(void *data)
1589 {
1590 	struct damon_ctx *ctx = data;
1591 	struct damon_target *t;
1592 	struct damon_region *r, *next;
1593 	unsigned int max_nr_accesses = 0;
1594 	unsigned long sz_limit = 0;
1595 
1596 	pr_debug("kdamond (%d) starts\n", current->pid);
1597 
1598 	complete(&ctx->kdamond_started);
1599 	kdamond_init_intervals_sis(ctx);
1600 
1601 	if (ctx->ops.init)
1602 		ctx->ops.init(ctx);
1603 	if (ctx->callback.before_start && ctx->callback.before_start(ctx))
1604 		goto done;
1605 
1606 	sz_limit = damon_region_sz_limit(ctx);
1607 
1608 	while (!kdamond_need_stop(ctx)) {
1609 		/*
1610 		 * ctx->attrs and ctx->next_{aggregation,ops_update}_sis could
1611 		 * be changed from after_wmarks_check() or after_aggregation()
1612 		 * callbacks.  Read the values here, and use those for this
1613 		 * iteration.  That is, damon_set_attrs() updated new values
1614 		 * are respected from next iteration.
1615 		 */
1616 		unsigned long next_aggregation_sis = ctx->next_aggregation_sis;
1617 		unsigned long next_ops_update_sis = ctx->next_ops_update_sis;
1618 		unsigned long sample_interval = ctx->attrs.sample_interval;
1619 
1620 		if (kdamond_wait_activation(ctx))
1621 			break;
1622 
1623 		if (ctx->ops.prepare_access_checks)
1624 			ctx->ops.prepare_access_checks(ctx);
1625 		if (ctx->callback.after_sampling &&
1626 				ctx->callback.after_sampling(ctx))
1627 			break;
1628 
1629 		kdamond_usleep(sample_interval);
1630 		ctx->passed_sample_intervals++;
1631 
1632 		if (ctx->ops.check_accesses)
1633 			max_nr_accesses = ctx->ops.check_accesses(ctx);
1634 
1635 		if (ctx->passed_sample_intervals == next_aggregation_sis) {
1636 			kdamond_merge_regions(ctx,
1637 					max_nr_accesses / 10,
1638 					sz_limit);
1639 			if (ctx->callback.after_aggregation &&
1640 					ctx->callback.after_aggregation(ctx))
1641 				break;
1642 		}
1643 
1644 		/*
1645 		 * do kdamond_apply_schemes() after kdamond_merge_regions() if
1646 		 * possible, to reduce overhead
1647 		 */
1648 		if (!list_empty(&ctx->schemes))
1649 			kdamond_apply_schemes(ctx);
1650 
1651 		sample_interval = ctx->attrs.sample_interval ?
1652 			ctx->attrs.sample_interval : 1;
1653 		if (ctx->passed_sample_intervals == next_aggregation_sis) {
1654 			ctx->next_aggregation_sis = next_aggregation_sis +
1655 				ctx->attrs.aggr_interval / sample_interval;
1656 
1657 			kdamond_reset_aggregated(ctx);
1658 			kdamond_split_regions(ctx);
1659 			if (ctx->ops.reset_aggregated)
1660 				ctx->ops.reset_aggregated(ctx);
1661 		}
1662 
1663 		if (ctx->passed_sample_intervals == next_ops_update_sis) {
1664 			ctx->next_ops_update_sis = next_ops_update_sis +
1665 				ctx->attrs.ops_update_interval /
1666 				sample_interval;
1667 			if (ctx->ops.update)
1668 				ctx->ops.update(ctx);
1669 			sz_limit = damon_region_sz_limit(ctx);
1670 		}
1671 	}
1672 done:
1673 	damon_for_each_target(t, ctx) {
1674 		damon_for_each_region_safe(r, next, t)
1675 			damon_destroy_region(r, t);
1676 	}
1677 
1678 	if (ctx->callback.before_terminate)
1679 		ctx->callback.before_terminate(ctx);
1680 	if (ctx->ops.cleanup)
1681 		ctx->ops.cleanup(ctx);
1682 
1683 	pr_debug("kdamond (%d) finishes\n", current->pid);
1684 	mutex_lock(&ctx->kdamond_lock);
1685 	ctx->kdamond = NULL;
1686 	mutex_unlock(&ctx->kdamond_lock);
1687 
1688 	mutex_lock(&damon_lock);
1689 	nr_running_ctxs--;
1690 	if (!nr_running_ctxs && running_exclusive_ctxs)
1691 		running_exclusive_ctxs = false;
1692 	mutex_unlock(&damon_lock);
1693 
1694 	return 0;
1695 }
1696 
1697 /*
1698  * struct damon_system_ram_region - System RAM resource address region of
1699  *				    [@start, @end).
1700  * @start:	Start address of the region (inclusive).
1701  * @end:	End address of the region (exclusive).
1702  */
1703 struct damon_system_ram_region {
1704 	unsigned long start;
1705 	unsigned long end;
1706 };
1707 
1708 static int walk_system_ram(struct resource *res, void *arg)
1709 {
1710 	struct damon_system_ram_region *a = arg;
1711 
1712 	if (a->end - a->start < resource_size(res)) {
1713 		a->start = res->start;
1714 		a->end = res->end;
1715 	}
1716 	return 0;
1717 }
1718 
1719 /*
1720  * Find biggest 'System RAM' resource and store its start and end address in
1721  * @start and @end, respectively.  If no System RAM is found, returns false.
1722  */
1723 static bool damon_find_biggest_system_ram(unsigned long *start,
1724 						unsigned long *end)
1725 
1726 {
1727 	struct damon_system_ram_region arg = {};
1728 
1729 	walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram);
1730 	if (arg.end <= arg.start)
1731 		return false;
1732 
1733 	*start = arg.start;
1734 	*end = arg.end;
1735 	return true;
1736 }
1737 
1738 /**
1739  * damon_set_region_biggest_system_ram_default() - Set the region of the given
1740  * monitoring target as requested, or biggest 'System RAM'.
1741  * @t:		The monitoring target to set the region.
1742  * @start:	The pointer to the start address of the region.
1743  * @end:	The pointer to the end address of the region.
1744  *
1745  * This function sets the region of @t as requested by @start and @end.  If the
1746  * values of @start and @end are zero, however, this function finds the biggest
1747  * 'System RAM' resource and sets the region to cover the resource.  In the
1748  * latter case, this function saves the start and end addresses of the resource
1749  * in @start and @end, respectively.
1750  *
1751  * Return: 0 on success, negative error code otherwise.
1752  */
1753 int damon_set_region_biggest_system_ram_default(struct damon_target *t,
1754 			unsigned long *start, unsigned long *end)
1755 {
1756 	struct damon_addr_range addr_range;
1757 
1758 	if (*start > *end)
1759 		return -EINVAL;
1760 
1761 	if (!*start && !*end &&
1762 		!damon_find_biggest_system_ram(start, end))
1763 		return -EINVAL;
1764 
1765 	addr_range.start = *start;
1766 	addr_range.end = *end;
1767 	return damon_set_regions(t, &addr_range, 1);
1768 }
1769 
1770 /*
1771  * damon_moving_sum() - Calculate an inferred moving sum value.
1772  * @mvsum:	Inferred sum of the last @len_window values.
1773  * @nomvsum:	Non-moving sum of the last discrete @len_window window values.
1774  * @len_window:	The number of last values to take care of.
1775  * @new_value:	New value that will be added to the pseudo moving sum.
1776  *
1777  * Moving sum (moving average * window size) is good for handling noise, but
1778  * the cost of keeping past values can be high for arbitrary window size.  This
1779  * function implements a lightweight pseudo moving sum function that doesn't
1780  * keep the past window values.
1781  *
1782  * It simply assumes there was no noise in the past, and get the no-noise
1783  * assumed past value to drop from @nomvsum and @len_window.  @nomvsum is a
1784  * non-moving sum of the last window.  For example, if @len_window is 10 and we
1785  * have 25 values, @nomvsum is the sum of the 11th to 20th values of the 25
1786  * values.  Hence, this function simply drops @nomvsum / @len_window from
1787  * given @mvsum and add @new_value.
1788  *
1789  * For example, if @len_window is 10 and @nomvsum is 50, the last 10 values for
1790  * the last window could be vary, e.g., 0, 10, 0, 10, 0, 10, 0, 0, 0, 20.  For
1791  * calculating next moving sum with a new value, we should drop 0 from 50 and
1792  * add the new value.  However, this function assumes it got value 5 for each
1793  * of the last ten times.  Based on the assumption, when the next value is
1794  * measured, it drops the assumed past value, 5 from the current sum, and add
1795  * the new value to get the updated pseduo-moving average.
1796  *
1797  * This means the value could have errors, but the errors will be disappeared
1798  * for every @len_window aligned calls.  For example, if @len_window is 10, the
1799  * pseudo moving sum with 11th value to 19th value would have an error.  But
1800  * the sum with 20th value will not have the error.
1801  *
1802  * Return: Pseudo-moving average after getting the @new_value.
1803  */
1804 static unsigned int damon_moving_sum(unsigned int mvsum, unsigned int nomvsum,
1805 		unsigned int len_window, unsigned int new_value)
1806 {
1807 	return mvsum - nomvsum / len_window + new_value;
1808 }
1809 
1810 /**
1811  * damon_update_region_access_rate() - Update the access rate of a region.
1812  * @r:		The DAMON region to update for its access check result.
1813  * @accessed:	Whether the region has accessed during last sampling interval.
1814  * @attrs:	The damon_attrs of the DAMON context.
1815  *
1816  * Update the access rate of a region with the region's last sampling interval
1817  * access check result.
1818  *
1819  * Usually this will be called by &damon_operations->check_accesses callback.
1820  */
1821 void damon_update_region_access_rate(struct damon_region *r, bool accessed,
1822 		struct damon_attrs *attrs)
1823 {
1824 	unsigned int len_window = 1;
1825 
1826 	/*
1827 	 * sample_interval can be zero, but cannot be larger than
1828 	 * aggr_interval, owing to validation of damon_set_attrs().
1829 	 */
1830 	if (attrs->sample_interval)
1831 		len_window = damon_max_nr_accesses(attrs);
1832 	r->nr_accesses_bp = damon_moving_sum(r->nr_accesses_bp,
1833 			r->last_nr_accesses * 10000, len_window,
1834 			accessed ? 10000 : 0);
1835 
1836 	if (accessed)
1837 		r->nr_accesses++;
1838 }
1839 
1840 static int __init damon_init(void)
1841 {
1842 	damon_region_cache = KMEM_CACHE(damon_region, 0);
1843 	if (unlikely(!damon_region_cache)) {
1844 		pr_err("creating damon_region_cache fails\n");
1845 		return -ENOMEM;
1846 	}
1847 
1848 	return 0;
1849 }
1850 
1851 subsys_initcall(damon_init);
1852 
1853 #include "core-test.h"
1854