1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Data Access Monitor 4 * 5 * Author: SeongJae Park <sj@kernel.org> 6 */ 7 8 #define pr_fmt(fmt) "damon: " fmt 9 10 #include <linux/damon.h> 11 #include <linux/delay.h> 12 #include <linux/kthread.h> 13 #include <linux/mm.h> 14 #include <linux/psi.h> 15 #include <linux/slab.h> 16 #include <linux/string.h> 17 #include <linux/string_choices.h> 18 19 #define CREATE_TRACE_POINTS 20 #include <trace/events/damon.h> 21 22 #ifdef CONFIG_DAMON_KUNIT_TEST 23 #undef DAMON_MIN_REGION 24 #define DAMON_MIN_REGION 1 25 #endif 26 27 static DEFINE_MUTEX(damon_lock); 28 static int nr_running_ctxs; 29 static bool running_exclusive_ctxs; 30 31 static DEFINE_MUTEX(damon_ops_lock); 32 static struct damon_operations damon_registered_ops[NR_DAMON_OPS]; 33 34 static struct kmem_cache *damon_region_cache __ro_after_init; 35 36 /* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */ 37 static bool __damon_is_registered_ops(enum damon_ops_id id) 38 { 39 struct damon_operations empty_ops = {}; 40 41 if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops))) 42 return false; 43 return true; 44 } 45 46 /** 47 * damon_is_registered_ops() - Check if a given damon_operations is registered. 48 * @id: Id of the damon_operations to check if registered. 49 * 50 * Return: true if the ops is set, false otherwise. 51 */ 52 bool damon_is_registered_ops(enum damon_ops_id id) 53 { 54 bool registered; 55 56 if (id >= NR_DAMON_OPS) 57 return false; 58 mutex_lock(&damon_ops_lock); 59 registered = __damon_is_registered_ops(id); 60 mutex_unlock(&damon_ops_lock); 61 return registered; 62 } 63 64 /** 65 * damon_register_ops() - Register a monitoring operations set to DAMON. 66 * @ops: monitoring operations set to register. 67 * 68 * This function registers a monitoring operations set of valid &struct 69 * damon_operations->id so that others can find and use them later. 70 * 71 * Return: 0 on success, negative error code otherwise. 72 */ 73 int damon_register_ops(struct damon_operations *ops) 74 { 75 int err = 0; 76 77 if (ops->id >= NR_DAMON_OPS) 78 return -EINVAL; 79 80 mutex_lock(&damon_ops_lock); 81 /* Fail for already registered ops */ 82 if (__damon_is_registered_ops(ops->id)) 83 err = -EINVAL; 84 else 85 damon_registered_ops[ops->id] = *ops; 86 mutex_unlock(&damon_ops_lock); 87 return err; 88 } 89 90 /** 91 * damon_select_ops() - Select a monitoring operations to use with the context. 92 * @ctx: monitoring context to use the operations. 93 * @id: id of the registered monitoring operations to select. 94 * 95 * This function finds registered monitoring operations set of @id and make 96 * @ctx to use it. 97 * 98 * Return: 0 on success, negative error code otherwise. 99 */ 100 int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id) 101 { 102 int err = 0; 103 104 if (id >= NR_DAMON_OPS) 105 return -EINVAL; 106 107 mutex_lock(&damon_ops_lock); 108 if (!__damon_is_registered_ops(id)) 109 err = -EINVAL; 110 else 111 ctx->ops = damon_registered_ops[id]; 112 mutex_unlock(&damon_ops_lock); 113 return err; 114 } 115 116 /* 117 * Construct a damon_region struct 118 * 119 * Returns the pointer to the new struct if success, or NULL otherwise 120 */ 121 struct damon_region *damon_new_region(unsigned long start, unsigned long end) 122 { 123 struct damon_region *region; 124 125 region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL); 126 if (!region) 127 return NULL; 128 129 region->ar.start = start; 130 region->ar.end = end; 131 region->nr_accesses = 0; 132 region->nr_accesses_bp = 0; 133 INIT_LIST_HEAD(®ion->list); 134 135 region->age = 0; 136 region->last_nr_accesses = 0; 137 138 return region; 139 } 140 141 void damon_add_region(struct damon_region *r, struct damon_target *t) 142 { 143 list_add_tail(&r->list, &t->regions_list); 144 t->nr_regions++; 145 } 146 147 static void damon_del_region(struct damon_region *r, struct damon_target *t) 148 { 149 list_del(&r->list); 150 t->nr_regions--; 151 } 152 153 static void damon_free_region(struct damon_region *r) 154 { 155 kmem_cache_free(damon_region_cache, r); 156 } 157 158 void damon_destroy_region(struct damon_region *r, struct damon_target *t) 159 { 160 damon_del_region(r, t); 161 damon_free_region(r); 162 } 163 164 /* 165 * Check whether a region is intersecting an address range 166 * 167 * Returns true if it is. 168 */ 169 static bool damon_intersect(struct damon_region *r, 170 struct damon_addr_range *re) 171 { 172 return !(r->ar.end <= re->start || re->end <= r->ar.start); 173 } 174 175 /* 176 * Fill holes in regions with new regions. 177 */ 178 static int damon_fill_regions_holes(struct damon_region *first, 179 struct damon_region *last, struct damon_target *t) 180 { 181 struct damon_region *r = first; 182 183 damon_for_each_region_from(r, t) { 184 struct damon_region *next, *newr; 185 186 if (r == last) 187 break; 188 next = damon_next_region(r); 189 if (r->ar.end != next->ar.start) { 190 newr = damon_new_region(r->ar.end, next->ar.start); 191 if (!newr) 192 return -ENOMEM; 193 damon_insert_region(newr, r, next, t); 194 } 195 } 196 return 0; 197 } 198 199 /* 200 * damon_set_regions() - Set regions of a target for given address ranges. 201 * @t: the given target. 202 * @ranges: array of new monitoring target ranges. 203 * @nr_ranges: length of @ranges. 204 * 205 * This function adds new regions to, or modify existing regions of a 206 * monitoring target to fit in specific ranges. 207 * 208 * Return: 0 if success, or negative error code otherwise. 209 */ 210 int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges, 211 unsigned int nr_ranges) 212 { 213 struct damon_region *r, *next; 214 unsigned int i; 215 int err; 216 217 /* Remove regions which are not in the new ranges */ 218 damon_for_each_region_safe(r, next, t) { 219 for (i = 0; i < nr_ranges; i++) { 220 if (damon_intersect(r, &ranges[i])) 221 break; 222 } 223 if (i == nr_ranges) 224 damon_destroy_region(r, t); 225 } 226 227 r = damon_first_region(t); 228 /* Add new regions or resize existing regions to fit in the ranges */ 229 for (i = 0; i < nr_ranges; i++) { 230 struct damon_region *first = NULL, *last, *newr; 231 struct damon_addr_range *range; 232 233 range = &ranges[i]; 234 /* Get the first/last regions intersecting with the range */ 235 damon_for_each_region_from(r, t) { 236 if (damon_intersect(r, range)) { 237 if (!first) 238 first = r; 239 last = r; 240 } 241 if (r->ar.start >= range->end) 242 break; 243 } 244 if (!first) { 245 /* no region intersects with this range */ 246 newr = damon_new_region( 247 ALIGN_DOWN(range->start, 248 DAMON_MIN_REGION), 249 ALIGN(range->end, DAMON_MIN_REGION)); 250 if (!newr) 251 return -ENOMEM; 252 damon_insert_region(newr, damon_prev_region(r), r, t); 253 } else { 254 /* resize intersecting regions to fit in this range */ 255 first->ar.start = ALIGN_DOWN(range->start, 256 DAMON_MIN_REGION); 257 last->ar.end = ALIGN(range->end, DAMON_MIN_REGION); 258 259 /* fill possible holes in the range */ 260 err = damon_fill_regions_holes(first, last, t); 261 if (err) 262 return err; 263 } 264 } 265 return 0; 266 } 267 268 struct damos_filter *damos_new_filter(enum damos_filter_type type, 269 bool matching, bool allow) 270 { 271 struct damos_filter *filter; 272 273 filter = kmalloc(sizeof(*filter), GFP_KERNEL); 274 if (!filter) 275 return NULL; 276 filter->type = type; 277 filter->matching = matching; 278 filter->allow = allow; 279 INIT_LIST_HEAD(&filter->list); 280 return filter; 281 } 282 283 /** 284 * damos_filter_for_ops() - Return if the filter is ops-hndled one. 285 * @type: type of the filter. 286 * 287 * Return: true if the filter of @type needs to be handled by ops layer, false 288 * otherwise. 289 */ 290 bool damos_filter_for_ops(enum damos_filter_type type) 291 { 292 switch (type) { 293 case DAMOS_FILTER_TYPE_ADDR: 294 case DAMOS_FILTER_TYPE_TARGET: 295 return false; 296 default: 297 break; 298 } 299 return true; 300 } 301 302 void damos_add_filter(struct damos *s, struct damos_filter *f) 303 { 304 if (damos_filter_for_ops(f->type)) 305 list_add_tail(&f->list, &s->ops_filters); 306 else 307 list_add_tail(&f->list, &s->filters); 308 } 309 310 static void damos_del_filter(struct damos_filter *f) 311 { 312 list_del(&f->list); 313 } 314 315 static void damos_free_filter(struct damos_filter *f) 316 { 317 kfree(f); 318 } 319 320 void damos_destroy_filter(struct damos_filter *f) 321 { 322 damos_del_filter(f); 323 damos_free_filter(f); 324 } 325 326 struct damos_quota_goal *damos_new_quota_goal( 327 enum damos_quota_goal_metric metric, 328 unsigned long target_value) 329 { 330 struct damos_quota_goal *goal; 331 332 goal = kmalloc(sizeof(*goal), GFP_KERNEL); 333 if (!goal) 334 return NULL; 335 goal->metric = metric; 336 goal->target_value = target_value; 337 INIT_LIST_HEAD(&goal->list); 338 return goal; 339 } 340 341 void damos_add_quota_goal(struct damos_quota *q, struct damos_quota_goal *g) 342 { 343 list_add_tail(&g->list, &q->goals); 344 } 345 346 static void damos_del_quota_goal(struct damos_quota_goal *g) 347 { 348 list_del(&g->list); 349 } 350 351 static void damos_free_quota_goal(struct damos_quota_goal *g) 352 { 353 kfree(g); 354 } 355 356 void damos_destroy_quota_goal(struct damos_quota_goal *g) 357 { 358 damos_del_quota_goal(g); 359 damos_free_quota_goal(g); 360 } 361 362 /* initialize fields of @quota that normally API users wouldn't set */ 363 static struct damos_quota *damos_quota_init(struct damos_quota *quota) 364 { 365 quota->esz = 0; 366 quota->total_charged_sz = 0; 367 quota->total_charged_ns = 0; 368 quota->charged_sz = 0; 369 quota->charged_from = 0; 370 quota->charge_target_from = NULL; 371 quota->charge_addr_from = 0; 372 quota->esz_bp = 0; 373 return quota; 374 } 375 376 struct damos *damon_new_scheme(struct damos_access_pattern *pattern, 377 enum damos_action action, 378 unsigned long apply_interval_us, 379 struct damos_quota *quota, 380 struct damos_watermarks *wmarks, 381 int target_nid) 382 { 383 struct damos *scheme; 384 385 scheme = kmalloc(sizeof(*scheme), GFP_KERNEL); 386 if (!scheme) 387 return NULL; 388 scheme->pattern = *pattern; 389 scheme->action = action; 390 scheme->apply_interval_us = apply_interval_us; 391 /* 392 * next_apply_sis will be set when kdamond starts. While kdamond is 393 * running, it will also updated when it is added to the DAMON context, 394 * or damon_attrs are updated. 395 */ 396 scheme->next_apply_sis = 0; 397 scheme->walk_completed = false; 398 INIT_LIST_HEAD(&scheme->filters); 399 INIT_LIST_HEAD(&scheme->ops_filters); 400 scheme->stat = (struct damos_stat){}; 401 INIT_LIST_HEAD(&scheme->list); 402 403 scheme->quota = *(damos_quota_init(quota)); 404 /* quota.goals should be separately set by caller */ 405 INIT_LIST_HEAD(&scheme->quota.goals); 406 407 scheme->wmarks = *wmarks; 408 scheme->wmarks.activated = true; 409 410 scheme->target_nid = target_nid; 411 412 return scheme; 413 } 414 415 static void damos_set_next_apply_sis(struct damos *s, struct damon_ctx *ctx) 416 { 417 unsigned long sample_interval = ctx->attrs.sample_interval ? 418 ctx->attrs.sample_interval : 1; 419 unsigned long apply_interval = s->apply_interval_us ? 420 s->apply_interval_us : ctx->attrs.aggr_interval; 421 422 s->next_apply_sis = ctx->passed_sample_intervals + 423 apply_interval / sample_interval; 424 } 425 426 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s) 427 { 428 list_add_tail(&s->list, &ctx->schemes); 429 damos_set_next_apply_sis(s, ctx); 430 } 431 432 static void damon_del_scheme(struct damos *s) 433 { 434 list_del(&s->list); 435 } 436 437 static void damon_free_scheme(struct damos *s) 438 { 439 kfree(s); 440 } 441 442 void damon_destroy_scheme(struct damos *s) 443 { 444 struct damos_quota_goal *g, *g_next; 445 struct damos_filter *f, *next; 446 447 damos_for_each_quota_goal_safe(g, g_next, &s->quota) 448 damos_destroy_quota_goal(g); 449 450 damos_for_each_filter_safe(f, next, s) 451 damos_destroy_filter(f); 452 damon_del_scheme(s); 453 damon_free_scheme(s); 454 } 455 456 /* 457 * Construct a damon_target struct 458 * 459 * Returns the pointer to the new struct if success, or NULL otherwise 460 */ 461 struct damon_target *damon_new_target(void) 462 { 463 struct damon_target *t; 464 465 t = kmalloc(sizeof(*t), GFP_KERNEL); 466 if (!t) 467 return NULL; 468 469 t->pid = NULL; 470 t->nr_regions = 0; 471 INIT_LIST_HEAD(&t->regions_list); 472 INIT_LIST_HEAD(&t->list); 473 474 return t; 475 } 476 477 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t) 478 { 479 list_add_tail(&t->list, &ctx->adaptive_targets); 480 } 481 482 bool damon_targets_empty(struct damon_ctx *ctx) 483 { 484 return list_empty(&ctx->adaptive_targets); 485 } 486 487 static void damon_del_target(struct damon_target *t) 488 { 489 list_del(&t->list); 490 } 491 492 void damon_free_target(struct damon_target *t) 493 { 494 struct damon_region *r, *next; 495 496 damon_for_each_region_safe(r, next, t) 497 damon_free_region(r); 498 kfree(t); 499 } 500 501 void damon_destroy_target(struct damon_target *t) 502 { 503 damon_del_target(t); 504 damon_free_target(t); 505 } 506 507 unsigned int damon_nr_regions(struct damon_target *t) 508 { 509 return t->nr_regions; 510 } 511 512 struct damon_ctx *damon_new_ctx(void) 513 { 514 struct damon_ctx *ctx; 515 516 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 517 if (!ctx) 518 return NULL; 519 520 init_completion(&ctx->kdamond_started); 521 522 ctx->attrs.sample_interval = 5 * 1000; 523 ctx->attrs.aggr_interval = 100 * 1000; 524 ctx->attrs.ops_update_interval = 60 * 1000 * 1000; 525 526 ctx->passed_sample_intervals = 0; 527 /* These will be set from kdamond_init_ctx() */ 528 ctx->next_aggregation_sis = 0; 529 ctx->next_ops_update_sis = 0; 530 531 mutex_init(&ctx->kdamond_lock); 532 mutex_init(&ctx->call_control_lock); 533 mutex_init(&ctx->walk_control_lock); 534 535 ctx->attrs.min_nr_regions = 10; 536 ctx->attrs.max_nr_regions = 1000; 537 538 INIT_LIST_HEAD(&ctx->adaptive_targets); 539 INIT_LIST_HEAD(&ctx->schemes); 540 541 return ctx; 542 } 543 544 static void damon_destroy_targets(struct damon_ctx *ctx) 545 { 546 struct damon_target *t, *next_t; 547 548 if (ctx->ops.cleanup) { 549 ctx->ops.cleanup(ctx); 550 return; 551 } 552 553 damon_for_each_target_safe(t, next_t, ctx) 554 damon_destroy_target(t); 555 } 556 557 void damon_destroy_ctx(struct damon_ctx *ctx) 558 { 559 struct damos *s, *next_s; 560 561 damon_destroy_targets(ctx); 562 563 damon_for_each_scheme_safe(s, next_s, ctx) 564 damon_destroy_scheme(s); 565 566 kfree(ctx); 567 } 568 569 static unsigned int damon_age_for_new_attrs(unsigned int age, 570 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs) 571 { 572 return age * old_attrs->aggr_interval / new_attrs->aggr_interval; 573 } 574 575 /* convert access ratio in bp (per 10,000) to nr_accesses */ 576 static unsigned int damon_accesses_bp_to_nr_accesses( 577 unsigned int accesses_bp, struct damon_attrs *attrs) 578 { 579 return accesses_bp * damon_max_nr_accesses(attrs) / 10000; 580 } 581 582 /* 583 * Convert nr_accesses to access ratio in bp (per 10,000). 584 * 585 * Callers should ensure attrs.aggr_interval is not zero, like 586 * damon_update_monitoring_results() does . Otherwise, divide-by-zero would 587 * happen. 588 */ 589 static unsigned int damon_nr_accesses_to_accesses_bp( 590 unsigned int nr_accesses, struct damon_attrs *attrs) 591 { 592 return nr_accesses * 10000 / damon_max_nr_accesses(attrs); 593 } 594 595 static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses, 596 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs) 597 { 598 return damon_accesses_bp_to_nr_accesses( 599 damon_nr_accesses_to_accesses_bp( 600 nr_accesses, old_attrs), 601 new_attrs); 602 } 603 604 static void damon_update_monitoring_result(struct damon_region *r, 605 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs, 606 bool aggregating) 607 { 608 if (!aggregating) { 609 r->nr_accesses = damon_nr_accesses_for_new_attrs( 610 r->nr_accesses, old_attrs, new_attrs); 611 r->nr_accesses_bp = r->nr_accesses * 10000; 612 } else { 613 /* 614 * if this is called in the middle of the aggregation, reset 615 * the aggregations we made so far for this aggregation 616 * interval. In other words, make the status like 617 * kdamond_reset_aggregated() is called. 618 */ 619 r->last_nr_accesses = damon_nr_accesses_for_new_attrs( 620 r->last_nr_accesses, old_attrs, new_attrs); 621 r->nr_accesses_bp = r->last_nr_accesses * 10000; 622 r->nr_accesses = 0; 623 } 624 r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs); 625 } 626 627 /* 628 * region->nr_accesses is the number of sampling intervals in the last 629 * aggregation interval that access to the region has found, and region->age is 630 * the number of aggregation intervals that its access pattern has maintained. 631 * For the reason, the real meaning of the two fields depend on current 632 * sampling interval and aggregation interval. This function updates 633 * ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs. 634 */ 635 static void damon_update_monitoring_results(struct damon_ctx *ctx, 636 struct damon_attrs *new_attrs, bool aggregating) 637 { 638 struct damon_attrs *old_attrs = &ctx->attrs; 639 struct damon_target *t; 640 struct damon_region *r; 641 642 /* if any interval is zero, simply forgive conversion */ 643 if (!old_attrs->sample_interval || !old_attrs->aggr_interval || 644 !new_attrs->sample_interval || 645 !new_attrs->aggr_interval) 646 return; 647 648 damon_for_each_target(t, ctx) 649 damon_for_each_region(r, t) 650 damon_update_monitoring_result( 651 r, old_attrs, new_attrs, aggregating); 652 } 653 654 /* 655 * damon_valid_intervals_goal() - return if the intervals goal of @attrs is 656 * valid. 657 */ 658 static bool damon_valid_intervals_goal(struct damon_attrs *attrs) 659 { 660 struct damon_intervals_goal *goal = &attrs->intervals_goal; 661 662 /* tuning is disabled */ 663 if (!goal->aggrs) 664 return true; 665 if (goal->min_sample_us > goal->max_sample_us) 666 return false; 667 if (attrs->sample_interval < goal->min_sample_us || 668 goal->max_sample_us < attrs->sample_interval) 669 return false; 670 return true; 671 } 672 673 /** 674 * damon_set_attrs() - Set attributes for the monitoring. 675 * @ctx: monitoring context 676 * @attrs: monitoring attributes 677 * 678 * This function should be called while the kdamond is not running, an access 679 * check results aggregation is not ongoing (e.g., from &struct 680 * damon_callback->after_aggregation or &struct 681 * damon_callback->after_wmarks_check callbacks), or from damon_call(). 682 * 683 * Every time interval is in micro-seconds. 684 * 685 * Return: 0 on success, negative error code otherwise. 686 */ 687 int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs) 688 { 689 unsigned long sample_interval = attrs->sample_interval ? 690 attrs->sample_interval : 1; 691 struct damos *s; 692 bool aggregating = ctx->passed_sample_intervals < 693 ctx->next_aggregation_sis; 694 695 if (!damon_valid_intervals_goal(attrs)) 696 return -EINVAL; 697 698 if (attrs->min_nr_regions < 3) 699 return -EINVAL; 700 if (attrs->min_nr_regions > attrs->max_nr_regions) 701 return -EINVAL; 702 if (attrs->sample_interval > attrs->aggr_interval) 703 return -EINVAL; 704 705 /* calls from core-external doesn't set this. */ 706 if (!attrs->aggr_samples) 707 attrs->aggr_samples = attrs->aggr_interval / sample_interval; 708 709 ctx->next_aggregation_sis = ctx->passed_sample_intervals + 710 attrs->aggr_interval / sample_interval; 711 ctx->next_ops_update_sis = ctx->passed_sample_intervals + 712 attrs->ops_update_interval / sample_interval; 713 714 damon_update_monitoring_results(ctx, attrs, aggregating); 715 ctx->attrs = *attrs; 716 717 damon_for_each_scheme(s, ctx) 718 damos_set_next_apply_sis(s, ctx); 719 720 return 0; 721 } 722 723 /** 724 * damon_set_schemes() - Set data access monitoring based operation schemes. 725 * @ctx: monitoring context 726 * @schemes: array of the schemes 727 * @nr_schemes: number of entries in @schemes 728 * 729 * This function should not be called while the kdamond of the context is 730 * running. 731 */ 732 void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes, 733 ssize_t nr_schemes) 734 { 735 struct damos *s, *next; 736 ssize_t i; 737 738 damon_for_each_scheme_safe(s, next, ctx) 739 damon_destroy_scheme(s); 740 for (i = 0; i < nr_schemes; i++) 741 damon_add_scheme(ctx, schemes[i]); 742 } 743 744 static struct damos_quota_goal *damos_nth_quota_goal( 745 int n, struct damos_quota *q) 746 { 747 struct damos_quota_goal *goal; 748 int i = 0; 749 750 damos_for_each_quota_goal(goal, q) { 751 if (i++ == n) 752 return goal; 753 } 754 return NULL; 755 } 756 757 static void damos_commit_quota_goal_union( 758 struct damos_quota_goal *dst, struct damos_quota_goal *src) 759 { 760 switch (dst->metric) { 761 case DAMOS_QUOTA_NODE_MEM_USED_BP: 762 case DAMOS_QUOTA_NODE_MEM_FREE_BP: 763 dst->nid = src->nid; 764 break; 765 default: 766 break; 767 } 768 } 769 770 static void damos_commit_quota_goal( 771 struct damos_quota_goal *dst, struct damos_quota_goal *src) 772 { 773 dst->metric = src->metric; 774 dst->target_value = src->target_value; 775 if (dst->metric == DAMOS_QUOTA_USER_INPUT) 776 dst->current_value = src->current_value; 777 /* keep last_psi_total as is, since it will be updated in next cycle */ 778 damos_commit_quota_goal_union(dst, src); 779 } 780 781 /** 782 * damos_commit_quota_goals() - Commit DAMOS quota goals to another quota. 783 * @dst: The commit destination DAMOS quota. 784 * @src: The commit source DAMOS quota. 785 * 786 * Copies user-specified parameters for quota goals from @src to @dst. Users 787 * should use this function for quota goals-level parameters update of running 788 * DAMON contexts, instead of manual in-place updates. 789 * 790 * This function should be called from parameters-update safe context, like 791 * DAMON callbacks. 792 */ 793 int damos_commit_quota_goals(struct damos_quota *dst, struct damos_quota *src) 794 { 795 struct damos_quota_goal *dst_goal, *next, *src_goal, *new_goal; 796 int i = 0, j = 0; 797 798 damos_for_each_quota_goal_safe(dst_goal, next, dst) { 799 src_goal = damos_nth_quota_goal(i++, src); 800 if (src_goal) 801 damos_commit_quota_goal(dst_goal, src_goal); 802 else 803 damos_destroy_quota_goal(dst_goal); 804 } 805 damos_for_each_quota_goal_safe(src_goal, next, src) { 806 if (j++ < i) 807 continue; 808 new_goal = damos_new_quota_goal( 809 src_goal->metric, src_goal->target_value); 810 if (!new_goal) 811 return -ENOMEM; 812 damos_commit_quota_goal_union(new_goal, src_goal); 813 damos_add_quota_goal(dst, new_goal); 814 } 815 return 0; 816 } 817 818 static int damos_commit_quota(struct damos_quota *dst, struct damos_quota *src) 819 { 820 int err; 821 822 dst->reset_interval = src->reset_interval; 823 dst->ms = src->ms; 824 dst->sz = src->sz; 825 err = damos_commit_quota_goals(dst, src); 826 if (err) 827 return err; 828 dst->weight_sz = src->weight_sz; 829 dst->weight_nr_accesses = src->weight_nr_accesses; 830 dst->weight_age = src->weight_age; 831 return 0; 832 } 833 834 static struct damos_filter *damos_nth_filter(int n, struct damos *s) 835 { 836 struct damos_filter *filter; 837 int i = 0; 838 839 damos_for_each_filter(filter, s) { 840 if (i++ == n) 841 return filter; 842 } 843 return NULL; 844 } 845 846 static void damos_commit_filter_arg( 847 struct damos_filter *dst, struct damos_filter *src) 848 { 849 switch (dst->type) { 850 case DAMOS_FILTER_TYPE_MEMCG: 851 dst->memcg_id = src->memcg_id; 852 break; 853 case DAMOS_FILTER_TYPE_ADDR: 854 dst->addr_range = src->addr_range; 855 break; 856 case DAMOS_FILTER_TYPE_TARGET: 857 dst->target_idx = src->target_idx; 858 break; 859 case DAMOS_FILTER_TYPE_HUGEPAGE_SIZE: 860 dst->sz_range = src->sz_range; 861 break; 862 default: 863 break; 864 } 865 } 866 867 static void damos_commit_filter( 868 struct damos_filter *dst, struct damos_filter *src) 869 { 870 dst->type = src->type; 871 dst->matching = src->matching; 872 damos_commit_filter_arg(dst, src); 873 } 874 875 static int damos_commit_core_filters(struct damos *dst, struct damos *src) 876 { 877 struct damos_filter *dst_filter, *next, *src_filter, *new_filter; 878 int i = 0, j = 0; 879 880 damos_for_each_filter_safe(dst_filter, next, dst) { 881 src_filter = damos_nth_filter(i++, src); 882 if (src_filter) 883 damos_commit_filter(dst_filter, src_filter); 884 else 885 damos_destroy_filter(dst_filter); 886 } 887 888 damos_for_each_filter_safe(src_filter, next, src) { 889 if (j++ < i) 890 continue; 891 892 new_filter = damos_new_filter( 893 src_filter->type, src_filter->matching, 894 src_filter->allow); 895 if (!new_filter) 896 return -ENOMEM; 897 damos_commit_filter_arg(new_filter, src_filter); 898 damos_add_filter(dst, new_filter); 899 } 900 return 0; 901 } 902 903 static int damos_commit_ops_filters(struct damos *dst, struct damos *src) 904 { 905 struct damos_filter *dst_filter, *next, *src_filter, *new_filter; 906 int i = 0, j = 0; 907 908 damos_for_each_ops_filter_safe(dst_filter, next, dst) { 909 src_filter = damos_nth_filter(i++, src); 910 if (src_filter) 911 damos_commit_filter(dst_filter, src_filter); 912 else 913 damos_destroy_filter(dst_filter); 914 } 915 916 damos_for_each_ops_filter_safe(src_filter, next, src) { 917 if (j++ < i) 918 continue; 919 920 new_filter = damos_new_filter( 921 src_filter->type, src_filter->matching, 922 src_filter->allow); 923 if (!new_filter) 924 return -ENOMEM; 925 damos_commit_filter_arg(new_filter, src_filter); 926 damos_add_filter(dst, new_filter); 927 } 928 return 0; 929 } 930 931 /** 932 * damos_filters_default_reject() - decide whether to reject memory that didn't 933 * match with any given filter. 934 * @filters: Given DAMOS filters of a group. 935 */ 936 static bool damos_filters_default_reject(struct list_head *filters) 937 { 938 struct damos_filter *last_filter; 939 940 if (list_empty(filters)) 941 return false; 942 last_filter = list_last_entry(filters, struct damos_filter, list); 943 return last_filter->allow; 944 } 945 946 static void damos_set_filters_default_reject(struct damos *s) 947 { 948 if (!list_empty(&s->ops_filters)) 949 s->core_filters_default_reject = false; 950 else 951 s->core_filters_default_reject = 952 damos_filters_default_reject(&s->filters); 953 s->ops_filters_default_reject = 954 damos_filters_default_reject(&s->ops_filters); 955 } 956 957 static int damos_commit_filters(struct damos *dst, struct damos *src) 958 { 959 int err; 960 961 err = damos_commit_core_filters(dst, src); 962 if (err) 963 return err; 964 err = damos_commit_ops_filters(dst, src); 965 if (err) 966 return err; 967 damos_set_filters_default_reject(dst); 968 return 0; 969 } 970 971 static struct damos *damon_nth_scheme(int n, struct damon_ctx *ctx) 972 { 973 struct damos *s; 974 int i = 0; 975 976 damon_for_each_scheme(s, ctx) { 977 if (i++ == n) 978 return s; 979 } 980 return NULL; 981 } 982 983 static int damos_commit(struct damos *dst, struct damos *src) 984 { 985 int err; 986 987 dst->pattern = src->pattern; 988 dst->action = src->action; 989 dst->apply_interval_us = src->apply_interval_us; 990 991 err = damos_commit_quota(&dst->quota, &src->quota); 992 if (err) 993 return err; 994 995 dst->wmarks = src->wmarks; 996 997 err = damos_commit_filters(dst, src); 998 return err; 999 } 1000 1001 static int damon_commit_schemes(struct damon_ctx *dst, struct damon_ctx *src) 1002 { 1003 struct damos *dst_scheme, *next, *src_scheme, *new_scheme; 1004 int i = 0, j = 0, err; 1005 1006 damon_for_each_scheme_safe(dst_scheme, next, dst) { 1007 src_scheme = damon_nth_scheme(i++, src); 1008 if (src_scheme) { 1009 err = damos_commit(dst_scheme, src_scheme); 1010 if (err) 1011 return err; 1012 } else { 1013 damon_destroy_scheme(dst_scheme); 1014 } 1015 } 1016 1017 damon_for_each_scheme_safe(src_scheme, next, src) { 1018 if (j++ < i) 1019 continue; 1020 new_scheme = damon_new_scheme(&src_scheme->pattern, 1021 src_scheme->action, 1022 src_scheme->apply_interval_us, 1023 &src_scheme->quota, &src_scheme->wmarks, 1024 NUMA_NO_NODE); 1025 if (!new_scheme) 1026 return -ENOMEM; 1027 err = damos_commit(new_scheme, src_scheme); 1028 if (err) { 1029 damon_destroy_scheme(new_scheme); 1030 return err; 1031 } 1032 damon_add_scheme(dst, new_scheme); 1033 } 1034 return 0; 1035 } 1036 1037 static struct damon_target *damon_nth_target(int n, struct damon_ctx *ctx) 1038 { 1039 struct damon_target *t; 1040 int i = 0; 1041 1042 damon_for_each_target(t, ctx) { 1043 if (i++ == n) 1044 return t; 1045 } 1046 return NULL; 1047 } 1048 1049 /* 1050 * The caller should ensure the regions of @src are 1051 * 1. valid (end >= src) and 1052 * 2. sorted by starting address. 1053 * 1054 * If @src has no region, @dst keeps current regions. 1055 */ 1056 static int damon_commit_target_regions( 1057 struct damon_target *dst, struct damon_target *src) 1058 { 1059 struct damon_region *src_region; 1060 struct damon_addr_range *ranges; 1061 int i = 0, err; 1062 1063 damon_for_each_region(src_region, src) 1064 i++; 1065 if (!i) 1066 return 0; 1067 1068 ranges = kmalloc_array(i, sizeof(*ranges), GFP_KERNEL | __GFP_NOWARN); 1069 if (!ranges) 1070 return -ENOMEM; 1071 i = 0; 1072 damon_for_each_region(src_region, src) 1073 ranges[i++] = src_region->ar; 1074 err = damon_set_regions(dst, ranges, i); 1075 kfree(ranges); 1076 return err; 1077 } 1078 1079 static int damon_commit_target( 1080 struct damon_target *dst, bool dst_has_pid, 1081 struct damon_target *src, bool src_has_pid) 1082 { 1083 int err; 1084 1085 err = damon_commit_target_regions(dst, src); 1086 if (err) 1087 return err; 1088 if (dst_has_pid) 1089 put_pid(dst->pid); 1090 if (src_has_pid) 1091 get_pid(src->pid); 1092 dst->pid = src->pid; 1093 return 0; 1094 } 1095 1096 static int damon_commit_targets( 1097 struct damon_ctx *dst, struct damon_ctx *src) 1098 { 1099 struct damon_target *dst_target, *next, *src_target, *new_target; 1100 int i = 0, j = 0, err; 1101 1102 damon_for_each_target_safe(dst_target, next, dst) { 1103 src_target = damon_nth_target(i++, src); 1104 if (src_target) { 1105 err = damon_commit_target( 1106 dst_target, damon_target_has_pid(dst), 1107 src_target, damon_target_has_pid(src)); 1108 if (err) 1109 return err; 1110 } else { 1111 struct damos *s; 1112 1113 if (damon_target_has_pid(dst)) 1114 put_pid(dst_target->pid); 1115 damon_destroy_target(dst_target); 1116 damon_for_each_scheme(s, dst) { 1117 if (s->quota.charge_target_from == dst_target) { 1118 s->quota.charge_target_from = NULL; 1119 s->quota.charge_addr_from = 0; 1120 } 1121 } 1122 } 1123 } 1124 1125 damon_for_each_target_safe(src_target, next, src) { 1126 if (j++ < i) 1127 continue; 1128 new_target = damon_new_target(); 1129 if (!new_target) 1130 return -ENOMEM; 1131 err = damon_commit_target(new_target, false, 1132 src_target, damon_target_has_pid(src)); 1133 if (err) { 1134 damon_destroy_target(new_target); 1135 return err; 1136 } 1137 damon_add_target(dst, new_target); 1138 } 1139 return 0; 1140 } 1141 1142 /** 1143 * damon_commit_ctx() - Commit parameters of a DAMON context to another. 1144 * @dst: The commit destination DAMON context. 1145 * @src: The commit source DAMON context. 1146 * 1147 * This function copies user-specified parameters from @src to @dst and update 1148 * the internal status and results accordingly. Users should use this function 1149 * for context-level parameters update of running context, instead of manual 1150 * in-place updates. 1151 * 1152 * This function should be called from parameters-update safe context, like 1153 * DAMON callbacks. 1154 */ 1155 int damon_commit_ctx(struct damon_ctx *dst, struct damon_ctx *src) 1156 { 1157 int err; 1158 1159 err = damon_commit_schemes(dst, src); 1160 if (err) 1161 return err; 1162 err = damon_commit_targets(dst, src); 1163 if (err) 1164 return err; 1165 /* 1166 * schemes and targets should be updated first, since 1167 * 1. damon_set_attrs() updates monitoring results of targets and 1168 * next_apply_sis of schemes, and 1169 * 2. ops update should be done after pid handling is done (target 1170 * committing require putting pids). 1171 */ 1172 err = damon_set_attrs(dst, &src->attrs); 1173 if (err) 1174 return err; 1175 dst->ops = src->ops; 1176 1177 return 0; 1178 } 1179 1180 /** 1181 * damon_nr_running_ctxs() - Return number of currently running contexts. 1182 */ 1183 int damon_nr_running_ctxs(void) 1184 { 1185 int nr_ctxs; 1186 1187 mutex_lock(&damon_lock); 1188 nr_ctxs = nr_running_ctxs; 1189 mutex_unlock(&damon_lock); 1190 1191 return nr_ctxs; 1192 } 1193 1194 /* Returns the size upper limit for each monitoring region */ 1195 static unsigned long damon_region_sz_limit(struct damon_ctx *ctx) 1196 { 1197 struct damon_target *t; 1198 struct damon_region *r; 1199 unsigned long sz = 0; 1200 1201 damon_for_each_target(t, ctx) { 1202 damon_for_each_region(r, t) 1203 sz += damon_sz_region(r); 1204 } 1205 1206 if (ctx->attrs.min_nr_regions) 1207 sz /= ctx->attrs.min_nr_regions; 1208 if (sz < DAMON_MIN_REGION) 1209 sz = DAMON_MIN_REGION; 1210 1211 return sz; 1212 } 1213 1214 static int kdamond_fn(void *data); 1215 1216 /* 1217 * __damon_start() - Starts monitoring with given context. 1218 * @ctx: monitoring context 1219 * 1220 * This function should be called while damon_lock is hold. 1221 * 1222 * Return: 0 on success, negative error code otherwise. 1223 */ 1224 static int __damon_start(struct damon_ctx *ctx) 1225 { 1226 int err = -EBUSY; 1227 1228 mutex_lock(&ctx->kdamond_lock); 1229 if (!ctx->kdamond) { 1230 err = 0; 1231 reinit_completion(&ctx->kdamond_started); 1232 ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d", 1233 nr_running_ctxs); 1234 if (IS_ERR(ctx->kdamond)) { 1235 err = PTR_ERR(ctx->kdamond); 1236 ctx->kdamond = NULL; 1237 } else { 1238 wait_for_completion(&ctx->kdamond_started); 1239 } 1240 } 1241 mutex_unlock(&ctx->kdamond_lock); 1242 1243 return err; 1244 } 1245 1246 /** 1247 * damon_start() - Starts the monitorings for a given group of contexts. 1248 * @ctxs: an array of the pointers for contexts to start monitoring 1249 * @nr_ctxs: size of @ctxs 1250 * @exclusive: exclusiveness of this contexts group 1251 * 1252 * This function starts a group of monitoring threads for a group of monitoring 1253 * contexts. One thread per each context is created and run in parallel. The 1254 * caller should handle synchronization between the threads by itself. If 1255 * @exclusive is true and a group of threads that created by other 1256 * 'damon_start()' call is currently running, this function does nothing but 1257 * returns -EBUSY. 1258 * 1259 * Return: 0 on success, negative error code otherwise. 1260 */ 1261 int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive) 1262 { 1263 int i; 1264 int err = 0; 1265 1266 mutex_lock(&damon_lock); 1267 if ((exclusive && nr_running_ctxs) || 1268 (!exclusive && running_exclusive_ctxs)) { 1269 mutex_unlock(&damon_lock); 1270 return -EBUSY; 1271 } 1272 1273 for (i = 0; i < nr_ctxs; i++) { 1274 err = __damon_start(ctxs[i]); 1275 if (err) 1276 break; 1277 nr_running_ctxs++; 1278 } 1279 if (exclusive && nr_running_ctxs) 1280 running_exclusive_ctxs = true; 1281 mutex_unlock(&damon_lock); 1282 1283 return err; 1284 } 1285 1286 /* 1287 * __damon_stop() - Stops monitoring of a given context. 1288 * @ctx: monitoring context 1289 * 1290 * Return: 0 on success, negative error code otherwise. 1291 */ 1292 static int __damon_stop(struct damon_ctx *ctx) 1293 { 1294 struct task_struct *tsk; 1295 1296 mutex_lock(&ctx->kdamond_lock); 1297 tsk = ctx->kdamond; 1298 if (tsk) { 1299 get_task_struct(tsk); 1300 mutex_unlock(&ctx->kdamond_lock); 1301 kthread_stop_put(tsk); 1302 return 0; 1303 } 1304 mutex_unlock(&ctx->kdamond_lock); 1305 1306 return -EPERM; 1307 } 1308 1309 /** 1310 * damon_stop() - Stops the monitorings for a given group of contexts. 1311 * @ctxs: an array of the pointers for contexts to stop monitoring 1312 * @nr_ctxs: size of @ctxs 1313 * 1314 * Return: 0 on success, negative error code otherwise. 1315 */ 1316 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs) 1317 { 1318 int i, err = 0; 1319 1320 for (i = 0; i < nr_ctxs; i++) { 1321 /* nr_running_ctxs is decremented in kdamond_fn */ 1322 err = __damon_stop(ctxs[i]); 1323 if (err) 1324 break; 1325 } 1326 return err; 1327 } 1328 1329 static bool damon_is_running(struct damon_ctx *ctx) 1330 { 1331 bool running; 1332 1333 mutex_lock(&ctx->kdamond_lock); 1334 running = ctx->kdamond != NULL; 1335 mutex_unlock(&ctx->kdamond_lock); 1336 return running; 1337 } 1338 1339 /** 1340 * damon_call() - Invoke a given function on DAMON worker thread (kdamond). 1341 * @ctx: DAMON context to call the function for. 1342 * @control: Control variable of the call request. 1343 * 1344 * Ask DAMON worker thread (kdamond) of @ctx to call a function with an 1345 * argument data that respectively passed via &damon_call_control->fn and 1346 * &damon_call_control->data of @control, and wait until the kdamond finishes 1347 * handling of the request. 1348 * 1349 * The kdamond executes the function with the argument in the main loop, just 1350 * after a sampling of the iteration is finished. The function can hence 1351 * safely access the internal data of the &struct damon_ctx without additional 1352 * synchronization. The return value of the function will be saved in 1353 * &damon_call_control->return_code. 1354 * 1355 * Return: 0 on success, negative error code otherwise. 1356 */ 1357 int damon_call(struct damon_ctx *ctx, struct damon_call_control *control) 1358 { 1359 init_completion(&control->completion); 1360 control->canceled = false; 1361 1362 mutex_lock(&ctx->call_control_lock); 1363 if (ctx->call_control) { 1364 mutex_unlock(&ctx->call_control_lock); 1365 return -EBUSY; 1366 } 1367 ctx->call_control = control; 1368 mutex_unlock(&ctx->call_control_lock); 1369 if (!damon_is_running(ctx)) 1370 return -EINVAL; 1371 wait_for_completion(&control->completion); 1372 if (control->canceled) 1373 return -ECANCELED; 1374 return 0; 1375 } 1376 1377 /** 1378 * damos_walk() - Invoke a given functions while DAMOS walk regions. 1379 * @ctx: DAMON context to call the functions for. 1380 * @control: Control variable of the walk request. 1381 * 1382 * Ask DAMON worker thread (kdamond) of @ctx to call a function for each region 1383 * that the kdamond will apply DAMOS action to, and wait until the kdamond 1384 * finishes handling of the request. 1385 * 1386 * The kdamond executes the given function in the main loop, for each region 1387 * just after it applied any DAMOS actions of @ctx to it. The invocation is 1388 * made only within one &damos->apply_interval_us since damos_walk() 1389 * invocation, for each scheme. The given callback function can hence safely 1390 * access the internal data of &struct damon_ctx and &struct damon_region that 1391 * each of the scheme will apply the action for next interval, without 1392 * additional synchronizations against the kdamond. If every scheme of @ctx 1393 * passed at least one &damos->apply_interval_us, kdamond marks the request as 1394 * completed so that damos_walk() can wakeup and return. 1395 * 1396 * Return: 0 on success, negative error code otherwise. 1397 */ 1398 int damos_walk(struct damon_ctx *ctx, struct damos_walk_control *control) 1399 { 1400 init_completion(&control->completion); 1401 control->canceled = false; 1402 mutex_lock(&ctx->walk_control_lock); 1403 if (ctx->walk_control) { 1404 mutex_unlock(&ctx->walk_control_lock); 1405 return -EBUSY; 1406 } 1407 ctx->walk_control = control; 1408 mutex_unlock(&ctx->walk_control_lock); 1409 if (!damon_is_running(ctx)) 1410 return -EINVAL; 1411 wait_for_completion(&control->completion); 1412 if (control->canceled) 1413 return -ECANCELED; 1414 return 0; 1415 } 1416 1417 /* 1418 * Warn and fix corrupted ->nr_accesses[_bp] for investigations and preventing 1419 * the problem being propagated. 1420 */ 1421 static void damon_warn_fix_nr_accesses_corruption(struct damon_region *r) 1422 { 1423 if (r->nr_accesses_bp == r->nr_accesses * 10000) 1424 return; 1425 WARN_ONCE(true, "invalid nr_accesses_bp at reset: %u %u\n", 1426 r->nr_accesses_bp, r->nr_accesses); 1427 r->nr_accesses_bp = r->nr_accesses * 10000; 1428 } 1429 1430 /* 1431 * Reset the aggregated monitoring results ('nr_accesses' of each region). 1432 */ 1433 static void kdamond_reset_aggregated(struct damon_ctx *c) 1434 { 1435 struct damon_target *t; 1436 unsigned int ti = 0; /* target's index */ 1437 1438 damon_for_each_target(t, c) { 1439 struct damon_region *r; 1440 1441 damon_for_each_region(r, t) { 1442 trace_damon_aggregated(ti, r, damon_nr_regions(t)); 1443 damon_warn_fix_nr_accesses_corruption(r); 1444 r->last_nr_accesses = r->nr_accesses; 1445 r->nr_accesses = 0; 1446 } 1447 ti++; 1448 } 1449 } 1450 1451 static unsigned long damon_get_intervals_score(struct damon_ctx *c) 1452 { 1453 struct damon_target *t; 1454 struct damon_region *r; 1455 unsigned long sz_region, max_access_events = 0, access_events = 0; 1456 unsigned long target_access_events; 1457 unsigned long goal_bp = c->attrs.intervals_goal.access_bp; 1458 1459 damon_for_each_target(t, c) { 1460 damon_for_each_region(r, t) { 1461 sz_region = damon_sz_region(r); 1462 max_access_events += sz_region * c->attrs.aggr_samples; 1463 access_events += sz_region * r->nr_accesses; 1464 } 1465 } 1466 target_access_events = max_access_events * goal_bp / 10000; 1467 target_access_events = target_access_events ? : 1; 1468 return access_events * 10000 / target_access_events; 1469 } 1470 1471 static unsigned long damon_feed_loop_next_input(unsigned long last_input, 1472 unsigned long score); 1473 1474 static unsigned long damon_get_intervals_adaptation_bp(struct damon_ctx *c) 1475 { 1476 unsigned long score_bp, adaptation_bp; 1477 1478 score_bp = damon_get_intervals_score(c); 1479 adaptation_bp = damon_feed_loop_next_input(100000000, score_bp) / 1480 10000; 1481 /* 1482 * adaptaion_bp ranges from 1 to 20,000. Avoid too rapid reduction of 1483 * the intervals by rescaling [1,10,000] to [5000, 10,000]. 1484 */ 1485 if (adaptation_bp <= 10000) 1486 adaptation_bp = 5000 + adaptation_bp / 2; 1487 return adaptation_bp; 1488 } 1489 1490 static void kdamond_tune_intervals(struct damon_ctx *c) 1491 { 1492 unsigned long adaptation_bp; 1493 struct damon_attrs new_attrs; 1494 struct damon_intervals_goal *goal; 1495 1496 adaptation_bp = damon_get_intervals_adaptation_bp(c); 1497 if (adaptation_bp == 10000) 1498 return; 1499 1500 new_attrs = c->attrs; 1501 goal = &c->attrs.intervals_goal; 1502 new_attrs.sample_interval = min(goal->max_sample_us, 1503 c->attrs.sample_interval * adaptation_bp / 10000); 1504 new_attrs.sample_interval = max(goal->min_sample_us, 1505 new_attrs.sample_interval); 1506 new_attrs.aggr_interval = new_attrs.sample_interval * 1507 c->attrs.aggr_samples; 1508 damon_set_attrs(c, &new_attrs); 1509 } 1510 1511 static void damon_split_region_at(struct damon_target *t, 1512 struct damon_region *r, unsigned long sz_r); 1513 1514 static bool __damos_valid_target(struct damon_region *r, struct damos *s) 1515 { 1516 unsigned long sz; 1517 unsigned int nr_accesses = r->nr_accesses_bp / 10000; 1518 1519 sz = damon_sz_region(r); 1520 return s->pattern.min_sz_region <= sz && 1521 sz <= s->pattern.max_sz_region && 1522 s->pattern.min_nr_accesses <= nr_accesses && 1523 nr_accesses <= s->pattern.max_nr_accesses && 1524 s->pattern.min_age_region <= r->age && 1525 r->age <= s->pattern.max_age_region; 1526 } 1527 1528 static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t, 1529 struct damon_region *r, struct damos *s) 1530 { 1531 bool ret = __damos_valid_target(r, s); 1532 1533 if (!ret || !s->quota.esz || !c->ops.get_scheme_score) 1534 return ret; 1535 1536 return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score; 1537 } 1538 1539 /* 1540 * damos_skip_charged_region() - Check if the given region or starting part of 1541 * it is already charged for the DAMOS quota. 1542 * @t: The target of the region. 1543 * @rp: The pointer to the region. 1544 * @s: The scheme to be applied. 1545 * 1546 * If a quota of a scheme has exceeded in a quota charge window, the scheme's 1547 * action would applied to only a part of the target access pattern fulfilling 1548 * regions. To avoid applying the scheme action to only already applied 1549 * regions, DAMON skips applying the scheme action to the regions that charged 1550 * in the previous charge window. 1551 * 1552 * This function checks if a given region should be skipped or not for the 1553 * reason. If only the starting part of the region has previously charged, 1554 * this function splits the region into two so that the second one covers the 1555 * area that not charged in the previous charge widnow and saves the second 1556 * region in *rp and returns false, so that the caller can apply DAMON action 1557 * to the second one. 1558 * 1559 * Return: true if the region should be entirely skipped, false otherwise. 1560 */ 1561 static bool damos_skip_charged_region(struct damon_target *t, 1562 struct damon_region **rp, struct damos *s) 1563 { 1564 struct damon_region *r = *rp; 1565 struct damos_quota *quota = &s->quota; 1566 unsigned long sz_to_skip; 1567 1568 /* Skip previously charged regions */ 1569 if (quota->charge_target_from) { 1570 if (t != quota->charge_target_from) 1571 return true; 1572 if (r == damon_last_region(t)) { 1573 quota->charge_target_from = NULL; 1574 quota->charge_addr_from = 0; 1575 return true; 1576 } 1577 if (quota->charge_addr_from && 1578 r->ar.end <= quota->charge_addr_from) 1579 return true; 1580 1581 if (quota->charge_addr_from && r->ar.start < 1582 quota->charge_addr_from) { 1583 sz_to_skip = ALIGN_DOWN(quota->charge_addr_from - 1584 r->ar.start, DAMON_MIN_REGION); 1585 if (!sz_to_skip) { 1586 if (damon_sz_region(r) <= DAMON_MIN_REGION) 1587 return true; 1588 sz_to_skip = DAMON_MIN_REGION; 1589 } 1590 damon_split_region_at(t, r, sz_to_skip); 1591 r = damon_next_region(r); 1592 *rp = r; 1593 } 1594 quota->charge_target_from = NULL; 1595 quota->charge_addr_from = 0; 1596 } 1597 return false; 1598 } 1599 1600 static void damos_update_stat(struct damos *s, 1601 unsigned long sz_tried, unsigned long sz_applied, 1602 unsigned long sz_ops_filter_passed) 1603 { 1604 s->stat.nr_tried++; 1605 s->stat.sz_tried += sz_tried; 1606 if (sz_applied) 1607 s->stat.nr_applied++; 1608 s->stat.sz_applied += sz_applied; 1609 s->stat.sz_ops_filter_passed += sz_ops_filter_passed; 1610 } 1611 1612 static bool damos_filter_match(struct damon_ctx *ctx, struct damon_target *t, 1613 struct damon_region *r, struct damos_filter *filter) 1614 { 1615 bool matched = false; 1616 struct damon_target *ti; 1617 int target_idx = 0; 1618 unsigned long start, end; 1619 1620 switch (filter->type) { 1621 case DAMOS_FILTER_TYPE_TARGET: 1622 damon_for_each_target(ti, ctx) { 1623 if (ti == t) 1624 break; 1625 target_idx++; 1626 } 1627 matched = target_idx == filter->target_idx; 1628 break; 1629 case DAMOS_FILTER_TYPE_ADDR: 1630 start = ALIGN_DOWN(filter->addr_range.start, DAMON_MIN_REGION); 1631 end = ALIGN_DOWN(filter->addr_range.end, DAMON_MIN_REGION); 1632 1633 /* inside the range */ 1634 if (start <= r->ar.start && r->ar.end <= end) { 1635 matched = true; 1636 break; 1637 } 1638 /* outside of the range */ 1639 if (r->ar.end <= start || end <= r->ar.start) { 1640 matched = false; 1641 break; 1642 } 1643 /* start before the range and overlap */ 1644 if (r->ar.start < start) { 1645 damon_split_region_at(t, r, start - r->ar.start); 1646 matched = false; 1647 break; 1648 } 1649 /* start inside the range */ 1650 damon_split_region_at(t, r, end - r->ar.start); 1651 matched = true; 1652 break; 1653 default: 1654 return false; 1655 } 1656 1657 return matched == filter->matching; 1658 } 1659 1660 static bool damos_filter_out(struct damon_ctx *ctx, struct damon_target *t, 1661 struct damon_region *r, struct damos *s) 1662 { 1663 struct damos_filter *filter; 1664 1665 s->core_filters_allowed = false; 1666 damos_for_each_filter(filter, s) { 1667 if (damos_filter_match(ctx, t, r, filter)) { 1668 if (filter->allow) 1669 s->core_filters_allowed = true; 1670 return !filter->allow; 1671 } 1672 } 1673 return s->core_filters_default_reject; 1674 } 1675 1676 /* 1677 * damos_walk_call_walk() - Call &damos_walk_control->walk_fn. 1678 * @ctx: The context of &damon_ctx->walk_control. 1679 * @t: The monitoring target of @r that @s will be applied. 1680 * @r: The region of @t that @s will be applied. 1681 * @s: The scheme of @ctx that will be applied to @r. 1682 * 1683 * This function is called from kdamond whenever it asked the operation set to 1684 * apply a DAMOS scheme action to a region. If a DAMOS walk request is 1685 * installed by damos_walk() and not yet uninstalled, invoke it. 1686 */ 1687 static void damos_walk_call_walk(struct damon_ctx *ctx, struct damon_target *t, 1688 struct damon_region *r, struct damos *s, 1689 unsigned long sz_filter_passed) 1690 { 1691 struct damos_walk_control *control; 1692 1693 if (s->walk_completed) 1694 return; 1695 1696 control = ctx->walk_control; 1697 if (!control) 1698 return; 1699 1700 control->walk_fn(control->data, ctx, t, r, s, sz_filter_passed); 1701 } 1702 1703 /* 1704 * damos_walk_complete() - Complete DAMOS walk request if all walks are done. 1705 * @ctx: The context of &damon_ctx->walk_control. 1706 * @s: A scheme of @ctx that all walks are now done. 1707 * 1708 * This function is called when kdamond finished applying the action of a DAMOS 1709 * scheme to all regions that eligible for the given &damos->apply_interval_us. 1710 * If every scheme of @ctx including @s now finished walking for at least one 1711 * &damos->apply_interval_us, this function makrs the handling of the given 1712 * DAMOS walk request is done, so that damos_walk() can wake up and return. 1713 */ 1714 static void damos_walk_complete(struct damon_ctx *ctx, struct damos *s) 1715 { 1716 struct damos *siter; 1717 struct damos_walk_control *control; 1718 1719 control = ctx->walk_control; 1720 if (!control) 1721 return; 1722 1723 s->walk_completed = true; 1724 /* if all schemes completed, signal completion to walker */ 1725 damon_for_each_scheme(siter, ctx) { 1726 if (!siter->walk_completed) 1727 return; 1728 } 1729 damon_for_each_scheme(siter, ctx) 1730 siter->walk_completed = false; 1731 1732 complete(&control->completion); 1733 ctx->walk_control = NULL; 1734 } 1735 1736 /* 1737 * damos_walk_cancel() - Cancel the current DAMOS walk request. 1738 * @ctx: The context of &damon_ctx->walk_control. 1739 * 1740 * This function is called when @ctx is deactivated by DAMOS watermarks, DAMOS 1741 * walk is requested but there is no DAMOS scheme to walk for, or the kdamond 1742 * is already out of the main loop and therefore gonna be terminated, and hence 1743 * cannot continue the walks. This function therefore marks the walk request 1744 * as canceled, so that damos_walk() can wake up and return. 1745 */ 1746 static void damos_walk_cancel(struct damon_ctx *ctx) 1747 { 1748 struct damos_walk_control *control; 1749 1750 mutex_lock(&ctx->walk_control_lock); 1751 control = ctx->walk_control; 1752 mutex_unlock(&ctx->walk_control_lock); 1753 1754 if (!control) 1755 return; 1756 control->canceled = true; 1757 complete(&control->completion); 1758 mutex_lock(&ctx->walk_control_lock); 1759 ctx->walk_control = NULL; 1760 mutex_unlock(&ctx->walk_control_lock); 1761 } 1762 1763 static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t, 1764 struct damon_region *r, struct damos *s) 1765 { 1766 struct damos_quota *quota = &s->quota; 1767 unsigned long sz = damon_sz_region(r); 1768 struct timespec64 begin, end; 1769 unsigned long sz_applied = 0; 1770 unsigned long sz_ops_filter_passed = 0; 1771 /* 1772 * We plan to support multiple context per kdamond, as DAMON sysfs 1773 * implies with 'nr_contexts' file. Nevertheless, only single context 1774 * per kdamond is supported for now. So, we can simply use '0' context 1775 * index here. 1776 */ 1777 unsigned int cidx = 0; 1778 struct damos *siter; /* schemes iterator */ 1779 unsigned int sidx = 0; 1780 struct damon_target *titer; /* targets iterator */ 1781 unsigned int tidx = 0; 1782 bool do_trace = false; 1783 1784 /* get indices for trace_damos_before_apply() */ 1785 if (trace_damos_before_apply_enabled()) { 1786 damon_for_each_scheme(siter, c) { 1787 if (siter == s) 1788 break; 1789 sidx++; 1790 } 1791 damon_for_each_target(titer, c) { 1792 if (titer == t) 1793 break; 1794 tidx++; 1795 } 1796 do_trace = true; 1797 } 1798 1799 if (c->ops.apply_scheme) { 1800 if (quota->esz && quota->charged_sz + sz > quota->esz) { 1801 sz = ALIGN_DOWN(quota->esz - quota->charged_sz, 1802 DAMON_MIN_REGION); 1803 if (!sz) 1804 goto update_stat; 1805 damon_split_region_at(t, r, sz); 1806 } 1807 if (damos_filter_out(c, t, r, s)) 1808 return; 1809 ktime_get_coarse_ts64(&begin); 1810 trace_damos_before_apply(cidx, sidx, tidx, r, 1811 damon_nr_regions(t), do_trace); 1812 sz_applied = c->ops.apply_scheme(c, t, r, s, 1813 &sz_ops_filter_passed); 1814 damos_walk_call_walk(c, t, r, s, sz_ops_filter_passed); 1815 ktime_get_coarse_ts64(&end); 1816 quota->total_charged_ns += timespec64_to_ns(&end) - 1817 timespec64_to_ns(&begin); 1818 quota->charged_sz += sz; 1819 if (quota->esz && quota->charged_sz >= quota->esz) { 1820 quota->charge_target_from = t; 1821 quota->charge_addr_from = r->ar.end + 1; 1822 } 1823 } 1824 if (s->action != DAMOS_STAT) 1825 r->age = 0; 1826 1827 update_stat: 1828 damos_update_stat(s, sz, sz_applied, sz_ops_filter_passed); 1829 } 1830 1831 static void damon_do_apply_schemes(struct damon_ctx *c, 1832 struct damon_target *t, 1833 struct damon_region *r) 1834 { 1835 struct damos *s; 1836 1837 damon_for_each_scheme(s, c) { 1838 struct damos_quota *quota = &s->quota; 1839 1840 if (c->passed_sample_intervals < s->next_apply_sis) 1841 continue; 1842 1843 if (!s->wmarks.activated) 1844 continue; 1845 1846 /* Check the quota */ 1847 if (quota->esz && quota->charged_sz >= quota->esz) 1848 continue; 1849 1850 if (damos_skip_charged_region(t, &r, s)) 1851 continue; 1852 1853 if (!damos_valid_target(c, t, r, s)) 1854 continue; 1855 1856 damos_apply_scheme(c, t, r, s); 1857 } 1858 } 1859 1860 /* 1861 * damon_feed_loop_next_input() - get next input to achieve a target score. 1862 * @last_input The last input. 1863 * @score Current score that made with @last_input. 1864 * 1865 * Calculate next input to achieve the target score, based on the last input 1866 * and current score. Assuming the input and the score are positively 1867 * proportional, calculate how much compensation should be added to or 1868 * subtracted from the last input as a proportion of the last input. Avoid 1869 * next input always being zero by setting it non-zero always. In short form 1870 * (assuming support of float and signed calculations), the algorithm is as 1871 * below. 1872 * 1873 * next_input = max(last_input * ((goal - current) / goal + 1), 1) 1874 * 1875 * For simple implementation, we assume the target score is always 10,000. The 1876 * caller should adjust @score for this. 1877 * 1878 * Returns next input that assumed to achieve the target score. 1879 */ 1880 static unsigned long damon_feed_loop_next_input(unsigned long last_input, 1881 unsigned long score) 1882 { 1883 const unsigned long goal = 10000; 1884 /* Set minimum input as 10000 to avoid compensation be zero */ 1885 const unsigned long min_input = 10000; 1886 unsigned long score_goal_diff, compensation; 1887 bool over_achieving = score > goal; 1888 1889 if (score == goal) 1890 return last_input; 1891 if (score >= goal * 2) 1892 return min_input; 1893 1894 if (over_achieving) 1895 score_goal_diff = score - goal; 1896 else 1897 score_goal_diff = goal - score; 1898 1899 if (last_input < ULONG_MAX / score_goal_diff) 1900 compensation = last_input * score_goal_diff / goal; 1901 else 1902 compensation = last_input / goal * score_goal_diff; 1903 1904 if (over_achieving) 1905 return max(last_input - compensation, min_input); 1906 if (last_input < ULONG_MAX - compensation) 1907 return last_input + compensation; 1908 return ULONG_MAX; 1909 } 1910 1911 #ifdef CONFIG_PSI 1912 1913 static u64 damos_get_some_mem_psi_total(void) 1914 { 1915 if (static_branch_likely(&psi_disabled)) 1916 return 0; 1917 return div_u64(psi_system.total[PSI_AVGS][PSI_MEM * 2], 1918 NSEC_PER_USEC); 1919 } 1920 1921 #else /* CONFIG_PSI */ 1922 1923 static inline u64 damos_get_some_mem_psi_total(void) 1924 { 1925 return 0; 1926 }; 1927 1928 #endif /* CONFIG_PSI */ 1929 1930 #ifdef CONFIG_NUMA 1931 static __kernel_ulong_t damos_get_node_mem_bp( 1932 struct damos_quota_goal *goal) 1933 { 1934 struct sysinfo i; 1935 __kernel_ulong_t numerator; 1936 1937 si_meminfo_node(&i, goal->nid); 1938 if (goal->metric == DAMOS_QUOTA_NODE_MEM_USED_BP) 1939 numerator = i.totalram - i.freeram; 1940 else /* DAMOS_QUOTA_NODE_MEM_FREE_BP */ 1941 numerator = i.freeram; 1942 return numerator * 10000 / i.totalram; 1943 } 1944 #else 1945 static __kernel_ulong_t damos_get_node_mem_bp( 1946 struct damos_quota_goal *goal) 1947 { 1948 return 0; 1949 } 1950 #endif 1951 1952 1953 static void damos_set_quota_goal_current_value(struct damos_quota_goal *goal) 1954 { 1955 u64 now_psi_total; 1956 1957 switch (goal->metric) { 1958 case DAMOS_QUOTA_USER_INPUT: 1959 /* User should already set goal->current_value */ 1960 break; 1961 case DAMOS_QUOTA_SOME_MEM_PSI_US: 1962 now_psi_total = damos_get_some_mem_psi_total(); 1963 goal->current_value = now_psi_total - goal->last_psi_total; 1964 goal->last_psi_total = now_psi_total; 1965 break; 1966 case DAMOS_QUOTA_NODE_MEM_USED_BP: 1967 case DAMOS_QUOTA_NODE_MEM_FREE_BP: 1968 goal->current_value = damos_get_node_mem_bp(goal); 1969 break; 1970 default: 1971 break; 1972 } 1973 } 1974 1975 /* Return the highest score since it makes schemes least aggressive */ 1976 static unsigned long damos_quota_score(struct damos_quota *quota) 1977 { 1978 struct damos_quota_goal *goal; 1979 unsigned long highest_score = 0; 1980 1981 damos_for_each_quota_goal(goal, quota) { 1982 damos_set_quota_goal_current_value(goal); 1983 highest_score = max(highest_score, 1984 goal->current_value * 10000 / 1985 goal->target_value); 1986 } 1987 1988 return highest_score; 1989 } 1990 1991 /* 1992 * Called only if quota->ms, or quota->sz are set, or quota->goals is not empty 1993 */ 1994 static void damos_set_effective_quota(struct damos_quota *quota) 1995 { 1996 unsigned long throughput; 1997 unsigned long esz = ULONG_MAX; 1998 1999 if (!quota->ms && list_empty("a->goals)) { 2000 quota->esz = quota->sz; 2001 return; 2002 } 2003 2004 if (!list_empty("a->goals)) { 2005 unsigned long score = damos_quota_score(quota); 2006 2007 quota->esz_bp = damon_feed_loop_next_input( 2008 max(quota->esz_bp, 10000UL), 2009 score); 2010 esz = quota->esz_bp / 10000; 2011 } 2012 2013 if (quota->ms) { 2014 if (quota->total_charged_ns) 2015 throughput = quota->total_charged_sz * 1000000 / 2016 quota->total_charged_ns; 2017 else 2018 throughput = PAGE_SIZE * 1024; 2019 esz = min(throughput * quota->ms, esz); 2020 } 2021 2022 if (quota->sz && quota->sz < esz) 2023 esz = quota->sz; 2024 2025 quota->esz = esz; 2026 } 2027 2028 static void damos_adjust_quota(struct damon_ctx *c, struct damos *s) 2029 { 2030 struct damos_quota *quota = &s->quota; 2031 struct damon_target *t; 2032 struct damon_region *r; 2033 unsigned long cumulated_sz; 2034 unsigned int score, max_score = 0; 2035 2036 if (!quota->ms && !quota->sz && list_empty("a->goals)) 2037 return; 2038 2039 /* New charge window starts */ 2040 if (time_after_eq(jiffies, quota->charged_from + 2041 msecs_to_jiffies(quota->reset_interval))) { 2042 if (quota->esz && quota->charged_sz >= quota->esz) 2043 s->stat.qt_exceeds++; 2044 quota->total_charged_sz += quota->charged_sz; 2045 quota->charged_from = jiffies; 2046 quota->charged_sz = 0; 2047 damos_set_effective_quota(quota); 2048 } 2049 2050 if (!c->ops.get_scheme_score) 2051 return; 2052 2053 /* Fill up the score histogram */ 2054 memset(c->regions_score_histogram, 0, 2055 sizeof(*c->regions_score_histogram) * 2056 (DAMOS_MAX_SCORE + 1)); 2057 damon_for_each_target(t, c) { 2058 damon_for_each_region(r, t) { 2059 if (!__damos_valid_target(r, s)) 2060 continue; 2061 score = c->ops.get_scheme_score(c, t, r, s); 2062 c->regions_score_histogram[score] += 2063 damon_sz_region(r); 2064 if (score > max_score) 2065 max_score = score; 2066 } 2067 } 2068 2069 /* Set the min score limit */ 2070 for (cumulated_sz = 0, score = max_score; ; score--) { 2071 cumulated_sz += c->regions_score_histogram[score]; 2072 if (cumulated_sz >= quota->esz || !score) 2073 break; 2074 } 2075 quota->min_score = score; 2076 } 2077 2078 static void kdamond_apply_schemes(struct damon_ctx *c) 2079 { 2080 struct damon_target *t; 2081 struct damon_region *r, *next_r; 2082 struct damos *s; 2083 unsigned long sample_interval = c->attrs.sample_interval ? 2084 c->attrs.sample_interval : 1; 2085 bool has_schemes_to_apply = false; 2086 2087 damon_for_each_scheme(s, c) { 2088 if (c->passed_sample_intervals < s->next_apply_sis) 2089 continue; 2090 2091 if (!s->wmarks.activated) 2092 continue; 2093 2094 has_schemes_to_apply = true; 2095 2096 damos_adjust_quota(c, s); 2097 } 2098 2099 if (!has_schemes_to_apply) 2100 return; 2101 2102 mutex_lock(&c->walk_control_lock); 2103 damon_for_each_target(t, c) { 2104 damon_for_each_region_safe(r, next_r, t) 2105 damon_do_apply_schemes(c, t, r); 2106 } 2107 2108 damon_for_each_scheme(s, c) { 2109 if (c->passed_sample_intervals < s->next_apply_sis) 2110 continue; 2111 damos_walk_complete(c, s); 2112 s->next_apply_sis = c->passed_sample_intervals + 2113 (s->apply_interval_us ? s->apply_interval_us : 2114 c->attrs.aggr_interval) / sample_interval; 2115 s->last_applied = NULL; 2116 } 2117 mutex_unlock(&c->walk_control_lock); 2118 } 2119 2120 /* 2121 * Merge two adjacent regions into one region 2122 */ 2123 static void damon_merge_two_regions(struct damon_target *t, 2124 struct damon_region *l, struct damon_region *r) 2125 { 2126 unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r); 2127 2128 l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) / 2129 (sz_l + sz_r); 2130 l->nr_accesses_bp = l->nr_accesses * 10000; 2131 l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r); 2132 l->ar.end = r->ar.end; 2133 damon_destroy_region(r, t); 2134 } 2135 2136 /* 2137 * Merge adjacent regions having similar access frequencies 2138 * 2139 * t target affected by this merge operation 2140 * thres '->nr_accesses' diff threshold for the merge 2141 * sz_limit size upper limit of each region 2142 */ 2143 static void damon_merge_regions_of(struct damon_target *t, unsigned int thres, 2144 unsigned long sz_limit) 2145 { 2146 struct damon_region *r, *prev = NULL, *next; 2147 2148 damon_for_each_region_safe(r, next, t) { 2149 if (abs(r->nr_accesses - r->last_nr_accesses) > thres) 2150 r->age = 0; 2151 else 2152 r->age++; 2153 2154 if (prev && prev->ar.end == r->ar.start && 2155 abs(prev->nr_accesses - r->nr_accesses) <= thres && 2156 damon_sz_region(prev) + damon_sz_region(r) <= sz_limit) 2157 damon_merge_two_regions(t, prev, r); 2158 else 2159 prev = r; 2160 } 2161 } 2162 2163 /* 2164 * Merge adjacent regions having similar access frequencies 2165 * 2166 * threshold '->nr_accesses' diff threshold for the merge 2167 * sz_limit size upper limit of each region 2168 * 2169 * This function merges monitoring target regions which are adjacent and their 2170 * access frequencies are similar. This is for minimizing the monitoring 2171 * overhead under the dynamically changeable access pattern. If a merge was 2172 * unnecessarily made, later 'kdamond_split_regions()' will revert it. 2173 * 2174 * The total number of regions could be higher than the user-defined limit, 2175 * max_nr_regions for some cases. For example, the user can update 2176 * max_nr_regions to a number that lower than the current number of regions 2177 * while DAMON is running. For such a case, repeat merging until the limit is 2178 * met while increasing @threshold up to possible maximum level. 2179 */ 2180 static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold, 2181 unsigned long sz_limit) 2182 { 2183 struct damon_target *t; 2184 unsigned int nr_regions; 2185 unsigned int max_thres; 2186 2187 max_thres = c->attrs.aggr_interval / 2188 (c->attrs.sample_interval ? c->attrs.sample_interval : 1); 2189 do { 2190 nr_regions = 0; 2191 damon_for_each_target(t, c) { 2192 damon_merge_regions_of(t, threshold, sz_limit); 2193 nr_regions += damon_nr_regions(t); 2194 } 2195 threshold = max(1, threshold * 2); 2196 } while (nr_regions > c->attrs.max_nr_regions && 2197 threshold / 2 < max_thres); 2198 } 2199 2200 /* 2201 * Split a region in two 2202 * 2203 * r the region to be split 2204 * sz_r size of the first sub-region that will be made 2205 */ 2206 static void damon_split_region_at(struct damon_target *t, 2207 struct damon_region *r, unsigned long sz_r) 2208 { 2209 struct damon_region *new; 2210 2211 new = damon_new_region(r->ar.start + sz_r, r->ar.end); 2212 if (!new) 2213 return; 2214 2215 r->ar.end = new->ar.start; 2216 2217 new->age = r->age; 2218 new->last_nr_accesses = r->last_nr_accesses; 2219 new->nr_accesses_bp = r->nr_accesses_bp; 2220 new->nr_accesses = r->nr_accesses; 2221 2222 damon_insert_region(new, r, damon_next_region(r), t); 2223 } 2224 2225 /* Split every region in the given target into 'nr_subs' regions */ 2226 static void damon_split_regions_of(struct damon_target *t, int nr_subs) 2227 { 2228 struct damon_region *r, *next; 2229 unsigned long sz_region, sz_sub = 0; 2230 int i; 2231 2232 damon_for_each_region_safe(r, next, t) { 2233 sz_region = damon_sz_region(r); 2234 2235 for (i = 0; i < nr_subs - 1 && 2236 sz_region > 2 * DAMON_MIN_REGION; i++) { 2237 /* 2238 * Randomly select size of left sub-region to be at 2239 * least 10 percent and at most 90% of original region 2240 */ 2241 sz_sub = ALIGN_DOWN(damon_rand(1, 10) * 2242 sz_region / 10, DAMON_MIN_REGION); 2243 /* Do not allow blank region */ 2244 if (sz_sub == 0 || sz_sub >= sz_region) 2245 continue; 2246 2247 damon_split_region_at(t, r, sz_sub); 2248 sz_region = sz_sub; 2249 } 2250 } 2251 } 2252 2253 /* 2254 * Split every target region into randomly-sized small regions 2255 * 2256 * This function splits every target region into random-sized small regions if 2257 * current total number of the regions is equal or smaller than half of the 2258 * user-specified maximum number of regions. This is for maximizing the 2259 * monitoring accuracy under the dynamically changeable access patterns. If a 2260 * split was unnecessarily made, later 'kdamond_merge_regions()' will revert 2261 * it. 2262 */ 2263 static void kdamond_split_regions(struct damon_ctx *ctx) 2264 { 2265 struct damon_target *t; 2266 unsigned int nr_regions = 0; 2267 static unsigned int last_nr_regions; 2268 int nr_subregions = 2; 2269 2270 damon_for_each_target(t, ctx) 2271 nr_regions += damon_nr_regions(t); 2272 2273 if (nr_regions > ctx->attrs.max_nr_regions / 2) 2274 return; 2275 2276 /* Maybe the middle of the region has different access frequency */ 2277 if (last_nr_regions == nr_regions && 2278 nr_regions < ctx->attrs.max_nr_regions / 3) 2279 nr_subregions = 3; 2280 2281 damon_for_each_target(t, ctx) 2282 damon_split_regions_of(t, nr_subregions); 2283 2284 last_nr_regions = nr_regions; 2285 } 2286 2287 /* 2288 * Check whether current monitoring should be stopped 2289 * 2290 * The monitoring is stopped when either the user requested to stop, or all 2291 * monitoring targets are invalid. 2292 * 2293 * Returns true if need to stop current monitoring. 2294 */ 2295 static bool kdamond_need_stop(struct damon_ctx *ctx) 2296 { 2297 struct damon_target *t; 2298 2299 if (kthread_should_stop()) 2300 return true; 2301 2302 if (!ctx->ops.target_valid) 2303 return false; 2304 2305 damon_for_each_target(t, ctx) { 2306 if (ctx->ops.target_valid(t)) 2307 return false; 2308 } 2309 2310 return true; 2311 } 2312 2313 static int damos_get_wmark_metric_value(enum damos_wmark_metric metric, 2314 unsigned long *metric_value) 2315 { 2316 switch (metric) { 2317 case DAMOS_WMARK_FREE_MEM_RATE: 2318 *metric_value = global_zone_page_state(NR_FREE_PAGES) * 1000 / 2319 totalram_pages(); 2320 return 0; 2321 default: 2322 break; 2323 } 2324 return -EINVAL; 2325 } 2326 2327 /* 2328 * Returns zero if the scheme is active. Else, returns time to wait for next 2329 * watermark check in micro-seconds. 2330 */ 2331 static unsigned long damos_wmark_wait_us(struct damos *scheme) 2332 { 2333 unsigned long metric; 2334 2335 if (damos_get_wmark_metric_value(scheme->wmarks.metric, &metric)) 2336 return 0; 2337 2338 /* higher than high watermark or lower than low watermark */ 2339 if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) { 2340 if (scheme->wmarks.activated) 2341 pr_debug("deactivate a scheme (%d) for %s wmark\n", 2342 scheme->action, 2343 str_high_low(metric > scheme->wmarks.high)); 2344 scheme->wmarks.activated = false; 2345 return scheme->wmarks.interval; 2346 } 2347 2348 /* inactive and higher than middle watermark */ 2349 if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) && 2350 !scheme->wmarks.activated) 2351 return scheme->wmarks.interval; 2352 2353 if (!scheme->wmarks.activated) 2354 pr_debug("activate a scheme (%d)\n", scheme->action); 2355 scheme->wmarks.activated = true; 2356 return 0; 2357 } 2358 2359 static void kdamond_usleep(unsigned long usecs) 2360 { 2361 if (usecs >= USLEEP_RANGE_UPPER_BOUND) 2362 schedule_timeout_idle(usecs_to_jiffies(usecs)); 2363 else 2364 usleep_range_idle(usecs, usecs + 1); 2365 } 2366 2367 /* 2368 * kdamond_call() - handle damon_call_control. 2369 * @ctx: The &struct damon_ctx of the kdamond. 2370 * @cancel: Whether to cancel the invocation of the function. 2371 * 2372 * If there is a &struct damon_call_control request that registered via 2373 * &damon_call() on @ctx, do or cancel the invocation of the function depending 2374 * on @cancel. @cancel is set when the kdamond is already out of the main loop 2375 * and therefore will be terminated. 2376 */ 2377 static void kdamond_call(struct damon_ctx *ctx, bool cancel) 2378 { 2379 struct damon_call_control *control; 2380 int ret = 0; 2381 2382 mutex_lock(&ctx->call_control_lock); 2383 control = ctx->call_control; 2384 mutex_unlock(&ctx->call_control_lock); 2385 if (!control) 2386 return; 2387 if (cancel) { 2388 control->canceled = true; 2389 } else { 2390 ret = control->fn(control->data); 2391 control->return_code = ret; 2392 } 2393 complete(&control->completion); 2394 mutex_lock(&ctx->call_control_lock); 2395 ctx->call_control = NULL; 2396 mutex_unlock(&ctx->call_control_lock); 2397 } 2398 2399 /* Returns negative error code if it's not activated but should return */ 2400 static int kdamond_wait_activation(struct damon_ctx *ctx) 2401 { 2402 struct damos *s; 2403 unsigned long wait_time; 2404 unsigned long min_wait_time = 0; 2405 bool init_wait_time = false; 2406 2407 while (!kdamond_need_stop(ctx)) { 2408 damon_for_each_scheme(s, ctx) { 2409 wait_time = damos_wmark_wait_us(s); 2410 if (!init_wait_time || wait_time < min_wait_time) { 2411 init_wait_time = true; 2412 min_wait_time = wait_time; 2413 } 2414 } 2415 if (!min_wait_time) 2416 return 0; 2417 2418 kdamond_usleep(min_wait_time); 2419 2420 if (ctx->callback.after_wmarks_check && 2421 ctx->callback.after_wmarks_check(ctx)) 2422 break; 2423 kdamond_call(ctx, false); 2424 damos_walk_cancel(ctx); 2425 } 2426 return -EBUSY; 2427 } 2428 2429 static void kdamond_init_ctx(struct damon_ctx *ctx) 2430 { 2431 unsigned long sample_interval = ctx->attrs.sample_interval ? 2432 ctx->attrs.sample_interval : 1; 2433 unsigned long apply_interval; 2434 struct damos *scheme; 2435 2436 ctx->passed_sample_intervals = 0; 2437 ctx->next_aggregation_sis = ctx->attrs.aggr_interval / sample_interval; 2438 ctx->next_ops_update_sis = ctx->attrs.ops_update_interval / 2439 sample_interval; 2440 ctx->next_intervals_tune_sis = ctx->next_aggregation_sis * 2441 ctx->attrs.intervals_goal.aggrs; 2442 2443 damon_for_each_scheme(scheme, ctx) { 2444 apply_interval = scheme->apply_interval_us ? 2445 scheme->apply_interval_us : ctx->attrs.aggr_interval; 2446 scheme->next_apply_sis = apply_interval / sample_interval; 2447 damos_set_filters_default_reject(scheme); 2448 } 2449 } 2450 2451 /* 2452 * The monitoring daemon that runs as a kernel thread 2453 */ 2454 static int kdamond_fn(void *data) 2455 { 2456 struct damon_ctx *ctx = data; 2457 struct damon_target *t; 2458 struct damon_region *r, *next; 2459 unsigned int max_nr_accesses = 0; 2460 unsigned long sz_limit = 0; 2461 2462 pr_debug("kdamond (%d) starts\n", current->pid); 2463 2464 complete(&ctx->kdamond_started); 2465 kdamond_init_ctx(ctx); 2466 2467 if (ctx->ops.init) 2468 ctx->ops.init(ctx); 2469 ctx->regions_score_histogram = kmalloc_array(DAMOS_MAX_SCORE + 1, 2470 sizeof(*ctx->regions_score_histogram), GFP_KERNEL); 2471 if (!ctx->regions_score_histogram) 2472 goto done; 2473 2474 sz_limit = damon_region_sz_limit(ctx); 2475 2476 while (!kdamond_need_stop(ctx)) { 2477 /* 2478 * ctx->attrs and ctx->next_{aggregation,ops_update}_sis could 2479 * be changed from after_wmarks_check() or after_aggregation() 2480 * callbacks. Read the values here, and use those for this 2481 * iteration. That is, damon_set_attrs() updated new values 2482 * are respected from next iteration. 2483 */ 2484 unsigned long next_aggregation_sis = ctx->next_aggregation_sis; 2485 unsigned long next_ops_update_sis = ctx->next_ops_update_sis; 2486 unsigned long sample_interval = ctx->attrs.sample_interval; 2487 2488 if (kdamond_wait_activation(ctx)) 2489 break; 2490 2491 if (ctx->ops.prepare_access_checks) 2492 ctx->ops.prepare_access_checks(ctx); 2493 2494 kdamond_usleep(sample_interval); 2495 ctx->passed_sample_intervals++; 2496 2497 if (ctx->ops.check_accesses) 2498 max_nr_accesses = ctx->ops.check_accesses(ctx); 2499 2500 if (ctx->passed_sample_intervals >= next_aggregation_sis) { 2501 kdamond_merge_regions(ctx, 2502 max_nr_accesses / 10, 2503 sz_limit); 2504 if (ctx->callback.after_aggregation && 2505 ctx->callback.after_aggregation(ctx)) 2506 break; 2507 } 2508 2509 /* 2510 * do kdamond_call() and kdamond_apply_schemes() after 2511 * kdamond_merge_regions() if possible, to reduce overhead 2512 */ 2513 kdamond_call(ctx, false); 2514 if (!list_empty(&ctx->schemes)) 2515 kdamond_apply_schemes(ctx); 2516 else 2517 damos_walk_cancel(ctx); 2518 2519 sample_interval = ctx->attrs.sample_interval ? 2520 ctx->attrs.sample_interval : 1; 2521 if (ctx->passed_sample_intervals >= next_aggregation_sis) { 2522 if (ctx->attrs.intervals_goal.aggrs && 2523 ctx->passed_sample_intervals >= 2524 ctx->next_intervals_tune_sis) { 2525 /* 2526 * ctx->next_aggregation_sis might be updated 2527 * from kdamond_call(). In the case, 2528 * damon_set_attrs() which will be called from 2529 * kdamond_tune_interval() may wrongly think 2530 * this is in the middle of the current 2531 * aggregation, and make aggregation 2532 * information reset for all regions. Then, 2533 * following kdamond_reset_aggregated() call 2534 * will make the region information invalid, 2535 * particularly for ->nr_accesses_bp. 2536 * 2537 * Reset ->next_aggregation_sis to avoid that. 2538 * It will anyway correctly updated after this 2539 * if caluse. 2540 */ 2541 ctx->next_aggregation_sis = 2542 next_aggregation_sis; 2543 ctx->next_intervals_tune_sis += 2544 ctx->attrs.aggr_samples * 2545 ctx->attrs.intervals_goal.aggrs; 2546 kdamond_tune_intervals(ctx); 2547 sample_interval = ctx->attrs.sample_interval ? 2548 ctx->attrs.sample_interval : 1; 2549 2550 } 2551 ctx->next_aggregation_sis = next_aggregation_sis + 2552 ctx->attrs.aggr_interval / sample_interval; 2553 2554 kdamond_reset_aggregated(ctx); 2555 kdamond_split_regions(ctx); 2556 } 2557 2558 if (ctx->passed_sample_intervals >= next_ops_update_sis) { 2559 ctx->next_ops_update_sis = next_ops_update_sis + 2560 ctx->attrs.ops_update_interval / 2561 sample_interval; 2562 if (ctx->ops.update) 2563 ctx->ops.update(ctx); 2564 sz_limit = damon_region_sz_limit(ctx); 2565 } 2566 } 2567 done: 2568 damon_for_each_target(t, ctx) { 2569 damon_for_each_region_safe(r, next, t) 2570 damon_destroy_region(r, t); 2571 } 2572 2573 if (ctx->callback.before_terminate) 2574 ctx->callback.before_terminate(ctx); 2575 if (ctx->ops.cleanup) 2576 ctx->ops.cleanup(ctx); 2577 kfree(ctx->regions_score_histogram); 2578 2579 pr_debug("kdamond (%d) finishes\n", current->pid); 2580 mutex_lock(&ctx->kdamond_lock); 2581 ctx->kdamond = NULL; 2582 mutex_unlock(&ctx->kdamond_lock); 2583 2584 kdamond_call(ctx, true); 2585 damos_walk_cancel(ctx); 2586 2587 mutex_lock(&damon_lock); 2588 nr_running_ctxs--; 2589 if (!nr_running_ctxs && running_exclusive_ctxs) 2590 running_exclusive_ctxs = false; 2591 mutex_unlock(&damon_lock); 2592 2593 return 0; 2594 } 2595 2596 /* 2597 * struct damon_system_ram_region - System RAM resource address region of 2598 * [@start, @end). 2599 * @start: Start address of the region (inclusive). 2600 * @end: End address of the region (exclusive). 2601 */ 2602 struct damon_system_ram_region { 2603 unsigned long start; 2604 unsigned long end; 2605 }; 2606 2607 static int walk_system_ram(struct resource *res, void *arg) 2608 { 2609 struct damon_system_ram_region *a = arg; 2610 2611 if (a->end - a->start < resource_size(res)) { 2612 a->start = res->start; 2613 a->end = res->end; 2614 } 2615 return 0; 2616 } 2617 2618 /* 2619 * Find biggest 'System RAM' resource and store its start and end address in 2620 * @start and @end, respectively. If no System RAM is found, returns false. 2621 */ 2622 static bool damon_find_biggest_system_ram(unsigned long *start, 2623 unsigned long *end) 2624 2625 { 2626 struct damon_system_ram_region arg = {}; 2627 2628 walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram); 2629 if (arg.end <= arg.start) 2630 return false; 2631 2632 *start = arg.start; 2633 *end = arg.end; 2634 return true; 2635 } 2636 2637 /** 2638 * damon_set_region_biggest_system_ram_default() - Set the region of the given 2639 * monitoring target as requested, or biggest 'System RAM'. 2640 * @t: The monitoring target to set the region. 2641 * @start: The pointer to the start address of the region. 2642 * @end: The pointer to the end address of the region. 2643 * 2644 * This function sets the region of @t as requested by @start and @end. If the 2645 * values of @start and @end are zero, however, this function finds the biggest 2646 * 'System RAM' resource and sets the region to cover the resource. In the 2647 * latter case, this function saves the start and end addresses of the resource 2648 * in @start and @end, respectively. 2649 * 2650 * Return: 0 on success, negative error code otherwise. 2651 */ 2652 int damon_set_region_biggest_system_ram_default(struct damon_target *t, 2653 unsigned long *start, unsigned long *end) 2654 { 2655 struct damon_addr_range addr_range; 2656 2657 if (*start > *end) 2658 return -EINVAL; 2659 2660 if (!*start && !*end && 2661 !damon_find_biggest_system_ram(start, end)) 2662 return -EINVAL; 2663 2664 addr_range.start = *start; 2665 addr_range.end = *end; 2666 return damon_set_regions(t, &addr_range, 1); 2667 } 2668 2669 /* 2670 * damon_moving_sum() - Calculate an inferred moving sum value. 2671 * @mvsum: Inferred sum of the last @len_window values. 2672 * @nomvsum: Non-moving sum of the last discrete @len_window window values. 2673 * @len_window: The number of last values to take care of. 2674 * @new_value: New value that will be added to the pseudo moving sum. 2675 * 2676 * Moving sum (moving average * window size) is good for handling noise, but 2677 * the cost of keeping past values can be high for arbitrary window size. This 2678 * function implements a lightweight pseudo moving sum function that doesn't 2679 * keep the past window values. 2680 * 2681 * It simply assumes there was no noise in the past, and get the no-noise 2682 * assumed past value to drop from @nomvsum and @len_window. @nomvsum is a 2683 * non-moving sum of the last window. For example, if @len_window is 10 and we 2684 * have 25 values, @nomvsum is the sum of the 11th to 20th values of the 25 2685 * values. Hence, this function simply drops @nomvsum / @len_window from 2686 * given @mvsum and add @new_value. 2687 * 2688 * For example, if @len_window is 10 and @nomvsum is 50, the last 10 values for 2689 * the last window could be vary, e.g., 0, 10, 0, 10, 0, 10, 0, 0, 0, 20. For 2690 * calculating next moving sum with a new value, we should drop 0 from 50 and 2691 * add the new value. However, this function assumes it got value 5 for each 2692 * of the last ten times. Based on the assumption, when the next value is 2693 * measured, it drops the assumed past value, 5 from the current sum, and add 2694 * the new value to get the updated pseduo-moving average. 2695 * 2696 * This means the value could have errors, but the errors will be disappeared 2697 * for every @len_window aligned calls. For example, if @len_window is 10, the 2698 * pseudo moving sum with 11th value to 19th value would have an error. But 2699 * the sum with 20th value will not have the error. 2700 * 2701 * Return: Pseudo-moving average after getting the @new_value. 2702 */ 2703 static unsigned int damon_moving_sum(unsigned int mvsum, unsigned int nomvsum, 2704 unsigned int len_window, unsigned int new_value) 2705 { 2706 return mvsum - nomvsum / len_window + new_value; 2707 } 2708 2709 /** 2710 * damon_update_region_access_rate() - Update the access rate of a region. 2711 * @r: The DAMON region to update for its access check result. 2712 * @accessed: Whether the region has accessed during last sampling interval. 2713 * @attrs: The damon_attrs of the DAMON context. 2714 * 2715 * Update the access rate of a region with the region's last sampling interval 2716 * access check result. 2717 * 2718 * Usually this will be called by &damon_operations->check_accesses callback. 2719 */ 2720 void damon_update_region_access_rate(struct damon_region *r, bool accessed, 2721 struct damon_attrs *attrs) 2722 { 2723 unsigned int len_window = 1; 2724 2725 /* 2726 * sample_interval can be zero, but cannot be larger than 2727 * aggr_interval, owing to validation of damon_set_attrs(). 2728 */ 2729 if (attrs->sample_interval) 2730 len_window = damon_max_nr_accesses(attrs); 2731 r->nr_accesses_bp = damon_moving_sum(r->nr_accesses_bp, 2732 r->last_nr_accesses * 10000, len_window, 2733 accessed ? 10000 : 0); 2734 2735 if (accessed) 2736 r->nr_accesses++; 2737 } 2738 2739 static int __init damon_init(void) 2740 { 2741 damon_region_cache = KMEM_CACHE(damon_region, 0); 2742 if (unlikely(!damon_region_cache)) { 2743 pr_err("creating damon_region_cache fails\n"); 2744 return -ENOMEM; 2745 } 2746 2747 return 0; 2748 } 2749 2750 subsys_initcall(damon_init); 2751 2752 #include "tests/core-kunit.h" 2753