1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Data Access Monitor 4 * 5 * Author: SeongJae Park <sj@kernel.org> 6 */ 7 8 #define pr_fmt(fmt) "damon: " fmt 9 10 #include <linux/damon.h> 11 #include <linux/delay.h> 12 #include <linux/kthread.h> 13 #include <linux/mm.h> 14 #include <linux/psi.h> 15 #include <linux/slab.h> 16 #include <linux/string.h> 17 #include <linux/string_choices.h> 18 19 #define CREATE_TRACE_POINTS 20 #include <trace/events/damon.h> 21 22 #ifdef CONFIG_DAMON_KUNIT_TEST 23 #undef DAMON_MIN_REGION 24 #define DAMON_MIN_REGION 1 25 #endif 26 27 static DEFINE_MUTEX(damon_lock); 28 static int nr_running_ctxs; 29 static bool running_exclusive_ctxs; 30 31 static DEFINE_MUTEX(damon_ops_lock); 32 static struct damon_operations damon_registered_ops[NR_DAMON_OPS]; 33 34 static struct kmem_cache *damon_region_cache __ro_after_init; 35 36 /* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */ 37 static bool __damon_is_registered_ops(enum damon_ops_id id) 38 { 39 struct damon_operations empty_ops = {}; 40 41 if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops))) 42 return false; 43 return true; 44 } 45 46 /** 47 * damon_is_registered_ops() - Check if a given damon_operations is registered. 48 * @id: Id of the damon_operations to check if registered. 49 * 50 * Return: true if the ops is set, false otherwise. 51 */ 52 bool damon_is_registered_ops(enum damon_ops_id id) 53 { 54 bool registered; 55 56 if (id >= NR_DAMON_OPS) 57 return false; 58 mutex_lock(&damon_ops_lock); 59 registered = __damon_is_registered_ops(id); 60 mutex_unlock(&damon_ops_lock); 61 return registered; 62 } 63 64 /** 65 * damon_register_ops() - Register a monitoring operations set to DAMON. 66 * @ops: monitoring operations set to register. 67 * 68 * This function registers a monitoring operations set of valid &struct 69 * damon_operations->id so that others can find and use them later. 70 * 71 * Return: 0 on success, negative error code otherwise. 72 */ 73 int damon_register_ops(struct damon_operations *ops) 74 { 75 int err = 0; 76 77 if (ops->id >= NR_DAMON_OPS) 78 return -EINVAL; 79 80 mutex_lock(&damon_ops_lock); 81 /* Fail for already registered ops */ 82 if (__damon_is_registered_ops(ops->id)) 83 err = -EINVAL; 84 else 85 damon_registered_ops[ops->id] = *ops; 86 mutex_unlock(&damon_ops_lock); 87 return err; 88 } 89 90 /** 91 * damon_select_ops() - Select a monitoring operations to use with the context. 92 * @ctx: monitoring context to use the operations. 93 * @id: id of the registered monitoring operations to select. 94 * 95 * This function finds registered monitoring operations set of @id and make 96 * @ctx to use it. 97 * 98 * Return: 0 on success, negative error code otherwise. 99 */ 100 int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id) 101 { 102 int err = 0; 103 104 if (id >= NR_DAMON_OPS) 105 return -EINVAL; 106 107 mutex_lock(&damon_ops_lock); 108 if (!__damon_is_registered_ops(id)) 109 err = -EINVAL; 110 else 111 ctx->ops = damon_registered_ops[id]; 112 mutex_unlock(&damon_ops_lock); 113 return err; 114 } 115 116 /* 117 * Construct a damon_region struct 118 * 119 * Returns the pointer to the new struct if success, or NULL otherwise 120 */ 121 struct damon_region *damon_new_region(unsigned long start, unsigned long end) 122 { 123 struct damon_region *region; 124 125 region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL); 126 if (!region) 127 return NULL; 128 129 region->ar.start = start; 130 region->ar.end = end; 131 region->nr_accesses = 0; 132 region->nr_accesses_bp = 0; 133 INIT_LIST_HEAD(®ion->list); 134 135 region->age = 0; 136 region->last_nr_accesses = 0; 137 138 return region; 139 } 140 141 void damon_add_region(struct damon_region *r, struct damon_target *t) 142 { 143 list_add_tail(&r->list, &t->regions_list); 144 t->nr_regions++; 145 } 146 147 static void damon_del_region(struct damon_region *r, struct damon_target *t) 148 { 149 list_del(&r->list); 150 t->nr_regions--; 151 } 152 153 static void damon_free_region(struct damon_region *r) 154 { 155 kmem_cache_free(damon_region_cache, r); 156 } 157 158 void damon_destroy_region(struct damon_region *r, struct damon_target *t) 159 { 160 damon_del_region(r, t); 161 damon_free_region(r); 162 } 163 164 /* 165 * Check whether a region is intersecting an address range 166 * 167 * Returns true if it is. 168 */ 169 static bool damon_intersect(struct damon_region *r, 170 struct damon_addr_range *re) 171 { 172 return !(r->ar.end <= re->start || re->end <= r->ar.start); 173 } 174 175 /* 176 * Fill holes in regions with new regions. 177 */ 178 static int damon_fill_regions_holes(struct damon_region *first, 179 struct damon_region *last, struct damon_target *t) 180 { 181 struct damon_region *r = first; 182 183 damon_for_each_region_from(r, t) { 184 struct damon_region *next, *newr; 185 186 if (r == last) 187 break; 188 next = damon_next_region(r); 189 if (r->ar.end != next->ar.start) { 190 newr = damon_new_region(r->ar.end, next->ar.start); 191 if (!newr) 192 return -ENOMEM; 193 damon_insert_region(newr, r, next, t); 194 } 195 } 196 return 0; 197 } 198 199 /* 200 * damon_set_regions() - Set regions of a target for given address ranges. 201 * @t: the given target. 202 * @ranges: array of new monitoring target ranges. 203 * @nr_ranges: length of @ranges. 204 * @min_sz_region: minimum region size. 205 * 206 * This function adds new regions to, or modify existing regions of a 207 * monitoring target to fit in specific ranges. 208 * 209 * Return: 0 if success, or negative error code otherwise. 210 */ 211 int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges, 212 unsigned int nr_ranges, unsigned long min_sz_region) 213 { 214 struct damon_region *r, *next; 215 unsigned int i; 216 int err; 217 218 /* Remove regions which are not in the new ranges */ 219 damon_for_each_region_safe(r, next, t) { 220 for (i = 0; i < nr_ranges; i++) { 221 if (damon_intersect(r, &ranges[i])) 222 break; 223 } 224 if (i == nr_ranges) 225 damon_destroy_region(r, t); 226 } 227 228 r = damon_first_region(t); 229 /* Add new regions or resize existing regions to fit in the ranges */ 230 for (i = 0; i < nr_ranges; i++) { 231 struct damon_region *first = NULL, *last, *newr; 232 struct damon_addr_range *range; 233 234 range = &ranges[i]; 235 /* Get the first/last regions intersecting with the range */ 236 damon_for_each_region_from(r, t) { 237 if (damon_intersect(r, range)) { 238 if (!first) 239 first = r; 240 last = r; 241 } 242 if (r->ar.start >= range->end) 243 break; 244 } 245 if (!first) { 246 /* no region intersects with this range */ 247 newr = damon_new_region( 248 ALIGN_DOWN(range->start, 249 min_sz_region), 250 ALIGN(range->end, min_sz_region)); 251 if (!newr) 252 return -ENOMEM; 253 damon_insert_region(newr, damon_prev_region(r), r, t); 254 } else { 255 /* resize intersecting regions to fit in this range */ 256 first->ar.start = ALIGN_DOWN(range->start, 257 min_sz_region); 258 last->ar.end = ALIGN(range->end, min_sz_region); 259 260 /* fill possible holes in the range */ 261 err = damon_fill_regions_holes(first, last, t); 262 if (err) 263 return err; 264 } 265 } 266 return 0; 267 } 268 269 struct damos_filter *damos_new_filter(enum damos_filter_type type, 270 bool matching, bool allow) 271 { 272 struct damos_filter *filter; 273 274 filter = kmalloc(sizeof(*filter), GFP_KERNEL); 275 if (!filter) 276 return NULL; 277 filter->type = type; 278 filter->matching = matching; 279 filter->allow = allow; 280 INIT_LIST_HEAD(&filter->list); 281 return filter; 282 } 283 284 /** 285 * damos_filter_for_ops() - Return if the filter is ops-hndled one. 286 * @type: type of the filter. 287 * 288 * Return: true if the filter of @type needs to be handled by ops layer, false 289 * otherwise. 290 */ 291 bool damos_filter_for_ops(enum damos_filter_type type) 292 { 293 switch (type) { 294 case DAMOS_FILTER_TYPE_ADDR: 295 case DAMOS_FILTER_TYPE_TARGET: 296 return false; 297 default: 298 break; 299 } 300 return true; 301 } 302 303 void damos_add_filter(struct damos *s, struct damos_filter *f) 304 { 305 if (damos_filter_for_ops(f->type)) 306 list_add_tail(&f->list, &s->ops_filters); 307 else 308 list_add_tail(&f->list, &s->filters); 309 } 310 311 static void damos_del_filter(struct damos_filter *f) 312 { 313 list_del(&f->list); 314 } 315 316 static void damos_free_filter(struct damos_filter *f) 317 { 318 kfree(f); 319 } 320 321 void damos_destroy_filter(struct damos_filter *f) 322 { 323 damos_del_filter(f); 324 damos_free_filter(f); 325 } 326 327 struct damos_quota_goal *damos_new_quota_goal( 328 enum damos_quota_goal_metric metric, 329 unsigned long target_value) 330 { 331 struct damos_quota_goal *goal; 332 333 goal = kmalloc(sizeof(*goal), GFP_KERNEL); 334 if (!goal) 335 return NULL; 336 goal->metric = metric; 337 goal->target_value = target_value; 338 INIT_LIST_HEAD(&goal->list); 339 return goal; 340 } 341 342 void damos_add_quota_goal(struct damos_quota *q, struct damos_quota_goal *g) 343 { 344 list_add_tail(&g->list, &q->goals); 345 } 346 347 static void damos_del_quota_goal(struct damos_quota_goal *g) 348 { 349 list_del(&g->list); 350 } 351 352 static void damos_free_quota_goal(struct damos_quota_goal *g) 353 { 354 kfree(g); 355 } 356 357 void damos_destroy_quota_goal(struct damos_quota_goal *g) 358 { 359 damos_del_quota_goal(g); 360 damos_free_quota_goal(g); 361 } 362 363 /* initialize fields of @quota that normally API users wouldn't set */ 364 static struct damos_quota *damos_quota_init(struct damos_quota *quota) 365 { 366 quota->esz = 0; 367 quota->total_charged_sz = 0; 368 quota->total_charged_ns = 0; 369 quota->charged_sz = 0; 370 quota->charged_from = 0; 371 quota->charge_target_from = NULL; 372 quota->charge_addr_from = 0; 373 quota->esz_bp = 0; 374 return quota; 375 } 376 377 struct damos *damon_new_scheme(struct damos_access_pattern *pattern, 378 enum damos_action action, 379 unsigned long apply_interval_us, 380 struct damos_quota *quota, 381 struct damos_watermarks *wmarks, 382 int target_nid) 383 { 384 struct damos *scheme; 385 386 scheme = kmalloc(sizeof(*scheme), GFP_KERNEL); 387 if (!scheme) 388 return NULL; 389 scheme->pattern = *pattern; 390 scheme->action = action; 391 scheme->apply_interval_us = apply_interval_us; 392 /* 393 * next_apply_sis will be set when kdamond starts. While kdamond is 394 * running, it will also updated when it is added to the DAMON context, 395 * or damon_attrs are updated. 396 */ 397 scheme->next_apply_sis = 0; 398 scheme->walk_completed = false; 399 INIT_LIST_HEAD(&scheme->filters); 400 INIT_LIST_HEAD(&scheme->ops_filters); 401 scheme->stat = (struct damos_stat){}; 402 INIT_LIST_HEAD(&scheme->list); 403 404 scheme->quota = *(damos_quota_init(quota)); 405 /* quota.goals should be separately set by caller */ 406 INIT_LIST_HEAD(&scheme->quota.goals); 407 408 scheme->wmarks = *wmarks; 409 scheme->wmarks.activated = true; 410 411 scheme->migrate_dests = (struct damos_migrate_dests){}; 412 scheme->target_nid = target_nid; 413 414 return scheme; 415 } 416 417 static void damos_set_next_apply_sis(struct damos *s, struct damon_ctx *ctx) 418 { 419 unsigned long sample_interval = ctx->attrs.sample_interval ? 420 ctx->attrs.sample_interval : 1; 421 unsigned long apply_interval = s->apply_interval_us ? 422 s->apply_interval_us : ctx->attrs.aggr_interval; 423 424 s->next_apply_sis = ctx->passed_sample_intervals + 425 apply_interval / sample_interval; 426 } 427 428 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s) 429 { 430 list_add_tail(&s->list, &ctx->schemes); 431 damos_set_next_apply_sis(s, ctx); 432 } 433 434 static void damon_del_scheme(struct damos *s) 435 { 436 list_del(&s->list); 437 } 438 439 static void damon_free_scheme(struct damos *s) 440 { 441 kfree(s); 442 } 443 444 void damon_destroy_scheme(struct damos *s) 445 { 446 struct damos_quota_goal *g, *g_next; 447 struct damos_filter *f, *next; 448 449 damos_for_each_quota_goal_safe(g, g_next, &s->quota) 450 damos_destroy_quota_goal(g); 451 452 damos_for_each_filter_safe(f, next, s) 453 damos_destroy_filter(f); 454 455 damos_for_each_ops_filter_safe(f, next, s) 456 damos_destroy_filter(f); 457 458 kfree(s->migrate_dests.node_id_arr); 459 kfree(s->migrate_dests.weight_arr); 460 damon_del_scheme(s); 461 damon_free_scheme(s); 462 } 463 464 /* 465 * Construct a damon_target struct 466 * 467 * Returns the pointer to the new struct if success, or NULL otherwise 468 */ 469 struct damon_target *damon_new_target(void) 470 { 471 struct damon_target *t; 472 473 t = kmalloc(sizeof(*t), GFP_KERNEL); 474 if (!t) 475 return NULL; 476 477 t->pid = NULL; 478 t->nr_regions = 0; 479 INIT_LIST_HEAD(&t->regions_list); 480 INIT_LIST_HEAD(&t->list); 481 482 return t; 483 } 484 485 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t) 486 { 487 list_add_tail(&t->list, &ctx->adaptive_targets); 488 } 489 490 bool damon_targets_empty(struct damon_ctx *ctx) 491 { 492 return list_empty(&ctx->adaptive_targets); 493 } 494 495 static void damon_del_target(struct damon_target *t) 496 { 497 list_del(&t->list); 498 } 499 500 void damon_free_target(struct damon_target *t) 501 { 502 struct damon_region *r, *next; 503 504 damon_for_each_region_safe(r, next, t) 505 damon_free_region(r); 506 kfree(t); 507 } 508 509 void damon_destroy_target(struct damon_target *t, struct damon_ctx *ctx) 510 { 511 512 if (ctx && ctx->ops.cleanup_target) 513 ctx->ops.cleanup_target(t); 514 515 damon_del_target(t); 516 damon_free_target(t); 517 } 518 519 unsigned int damon_nr_regions(struct damon_target *t) 520 { 521 return t->nr_regions; 522 } 523 524 struct damon_ctx *damon_new_ctx(void) 525 { 526 struct damon_ctx *ctx; 527 528 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 529 if (!ctx) 530 return NULL; 531 532 init_completion(&ctx->kdamond_started); 533 534 ctx->attrs.sample_interval = 5 * 1000; 535 ctx->attrs.aggr_interval = 100 * 1000; 536 ctx->attrs.ops_update_interval = 60 * 1000 * 1000; 537 538 ctx->passed_sample_intervals = 0; 539 /* These will be set from kdamond_init_ctx() */ 540 ctx->next_aggregation_sis = 0; 541 ctx->next_ops_update_sis = 0; 542 543 mutex_init(&ctx->kdamond_lock); 544 INIT_LIST_HEAD(&ctx->call_controls); 545 mutex_init(&ctx->call_controls_lock); 546 mutex_init(&ctx->walk_control_lock); 547 548 ctx->attrs.min_nr_regions = 10; 549 ctx->attrs.max_nr_regions = 1000; 550 551 ctx->addr_unit = 1; 552 ctx->min_sz_region = DAMON_MIN_REGION; 553 554 INIT_LIST_HEAD(&ctx->adaptive_targets); 555 INIT_LIST_HEAD(&ctx->schemes); 556 557 return ctx; 558 } 559 560 static void damon_destroy_targets(struct damon_ctx *ctx) 561 { 562 struct damon_target *t, *next_t; 563 564 damon_for_each_target_safe(t, next_t, ctx) 565 damon_destroy_target(t, ctx); 566 } 567 568 void damon_destroy_ctx(struct damon_ctx *ctx) 569 { 570 struct damos *s, *next_s; 571 572 damon_destroy_targets(ctx); 573 574 damon_for_each_scheme_safe(s, next_s, ctx) 575 damon_destroy_scheme(s); 576 577 kfree(ctx); 578 } 579 580 static bool damon_attrs_equals(const struct damon_attrs *attrs1, 581 const struct damon_attrs *attrs2) 582 { 583 const struct damon_intervals_goal *ig1 = &attrs1->intervals_goal; 584 const struct damon_intervals_goal *ig2 = &attrs2->intervals_goal; 585 586 return attrs1->sample_interval == attrs2->sample_interval && 587 attrs1->aggr_interval == attrs2->aggr_interval && 588 attrs1->ops_update_interval == attrs2->ops_update_interval && 589 attrs1->min_nr_regions == attrs2->min_nr_regions && 590 attrs1->max_nr_regions == attrs2->max_nr_regions && 591 ig1->access_bp == ig2->access_bp && 592 ig1->aggrs == ig2->aggrs && 593 ig1->min_sample_us == ig2->min_sample_us && 594 ig1->max_sample_us == ig2->max_sample_us; 595 } 596 597 static unsigned int damon_age_for_new_attrs(unsigned int age, 598 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs) 599 { 600 return age * old_attrs->aggr_interval / new_attrs->aggr_interval; 601 } 602 603 /* convert access ratio in bp (per 10,000) to nr_accesses */ 604 static unsigned int damon_accesses_bp_to_nr_accesses( 605 unsigned int accesses_bp, struct damon_attrs *attrs) 606 { 607 return accesses_bp * damon_max_nr_accesses(attrs) / 10000; 608 } 609 610 /* 611 * Convert nr_accesses to access ratio in bp (per 10,000). 612 * 613 * Callers should ensure attrs.aggr_interval is not zero, like 614 * damon_update_monitoring_results() does . Otherwise, divide-by-zero would 615 * happen. 616 */ 617 static unsigned int damon_nr_accesses_to_accesses_bp( 618 unsigned int nr_accesses, struct damon_attrs *attrs) 619 { 620 return nr_accesses * 10000 / damon_max_nr_accesses(attrs); 621 } 622 623 static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses, 624 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs) 625 { 626 return damon_accesses_bp_to_nr_accesses( 627 damon_nr_accesses_to_accesses_bp( 628 nr_accesses, old_attrs), 629 new_attrs); 630 } 631 632 static void damon_update_monitoring_result(struct damon_region *r, 633 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs, 634 bool aggregating) 635 { 636 if (!aggregating) { 637 r->nr_accesses = damon_nr_accesses_for_new_attrs( 638 r->nr_accesses, old_attrs, new_attrs); 639 r->nr_accesses_bp = r->nr_accesses * 10000; 640 } else { 641 /* 642 * if this is called in the middle of the aggregation, reset 643 * the aggregations we made so far for this aggregation 644 * interval. In other words, make the status like 645 * kdamond_reset_aggregated() is called. 646 */ 647 r->last_nr_accesses = damon_nr_accesses_for_new_attrs( 648 r->last_nr_accesses, old_attrs, new_attrs); 649 r->nr_accesses_bp = r->last_nr_accesses * 10000; 650 r->nr_accesses = 0; 651 } 652 r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs); 653 } 654 655 /* 656 * region->nr_accesses is the number of sampling intervals in the last 657 * aggregation interval that access to the region has found, and region->age is 658 * the number of aggregation intervals that its access pattern has maintained. 659 * For the reason, the real meaning of the two fields depend on current 660 * sampling interval and aggregation interval. This function updates 661 * ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs. 662 */ 663 static void damon_update_monitoring_results(struct damon_ctx *ctx, 664 struct damon_attrs *new_attrs, bool aggregating) 665 { 666 struct damon_attrs *old_attrs = &ctx->attrs; 667 struct damon_target *t; 668 struct damon_region *r; 669 670 /* if any interval is zero, simply forgive conversion */ 671 if (!old_attrs->sample_interval || !old_attrs->aggr_interval || 672 !new_attrs->sample_interval || 673 !new_attrs->aggr_interval) 674 return; 675 676 damon_for_each_target(t, ctx) 677 damon_for_each_region(r, t) 678 damon_update_monitoring_result( 679 r, old_attrs, new_attrs, aggregating); 680 } 681 682 /* 683 * damon_valid_intervals_goal() - return if the intervals goal of @attrs is 684 * valid. 685 */ 686 static bool damon_valid_intervals_goal(struct damon_attrs *attrs) 687 { 688 struct damon_intervals_goal *goal = &attrs->intervals_goal; 689 690 /* tuning is disabled */ 691 if (!goal->aggrs) 692 return true; 693 if (goal->min_sample_us > goal->max_sample_us) 694 return false; 695 if (attrs->sample_interval < goal->min_sample_us || 696 goal->max_sample_us < attrs->sample_interval) 697 return false; 698 return true; 699 } 700 701 /** 702 * damon_set_attrs() - Set attributes for the monitoring. 703 * @ctx: monitoring context 704 * @attrs: monitoring attributes 705 * 706 * This function should be called while the kdamond is not running, an access 707 * check results aggregation is not ongoing (e.g., from damon_call(). 708 * 709 * Every time interval is in micro-seconds. 710 * 711 * Return: 0 on success, negative error code otherwise. 712 */ 713 int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs) 714 { 715 unsigned long sample_interval = attrs->sample_interval ? 716 attrs->sample_interval : 1; 717 struct damos *s; 718 bool aggregating = ctx->passed_sample_intervals < 719 ctx->next_aggregation_sis; 720 721 if (!damon_valid_intervals_goal(attrs)) 722 return -EINVAL; 723 724 if (attrs->min_nr_regions < 3) 725 return -EINVAL; 726 if (attrs->min_nr_regions > attrs->max_nr_regions) 727 return -EINVAL; 728 if (attrs->sample_interval > attrs->aggr_interval) 729 return -EINVAL; 730 731 /* calls from core-external doesn't set this. */ 732 if (!attrs->aggr_samples) 733 attrs->aggr_samples = attrs->aggr_interval / sample_interval; 734 735 ctx->next_aggregation_sis = ctx->passed_sample_intervals + 736 attrs->aggr_interval / sample_interval; 737 ctx->next_ops_update_sis = ctx->passed_sample_intervals + 738 attrs->ops_update_interval / sample_interval; 739 740 damon_update_monitoring_results(ctx, attrs, aggregating); 741 ctx->attrs = *attrs; 742 743 damon_for_each_scheme(s, ctx) 744 damos_set_next_apply_sis(s, ctx); 745 746 return 0; 747 } 748 749 /** 750 * damon_set_schemes() - Set data access monitoring based operation schemes. 751 * @ctx: monitoring context 752 * @schemes: array of the schemes 753 * @nr_schemes: number of entries in @schemes 754 * 755 * This function should not be called while the kdamond of the context is 756 * running. 757 */ 758 void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes, 759 ssize_t nr_schemes) 760 { 761 struct damos *s, *next; 762 ssize_t i; 763 764 damon_for_each_scheme_safe(s, next, ctx) 765 damon_destroy_scheme(s); 766 for (i = 0; i < nr_schemes; i++) 767 damon_add_scheme(ctx, schemes[i]); 768 } 769 770 static struct damos_quota_goal *damos_nth_quota_goal( 771 int n, struct damos_quota *q) 772 { 773 struct damos_quota_goal *goal; 774 int i = 0; 775 776 damos_for_each_quota_goal(goal, q) { 777 if (i++ == n) 778 return goal; 779 } 780 return NULL; 781 } 782 783 static void damos_commit_quota_goal_union( 784 struct damos_quota_goal *dst, struct damos_quota_goal *src) 785 { 786 switch (dst->metric) { 787 case DAMOS_QUOTA_NODE_MEM_USED_BP: 788 case DAMOS_QUOTA_NODE_MEM_FREE_BP: 789 dst->nid = src->nid; 790 break; 791 default: 792 break; 793 } 794 } 795 796 static void damos_commit_quota_goal( 797 struct damos_quota_goal *dst, struct damos_quota_goal *src) 798 { 799 dst->metric = src->metric; 800 dst->target_value = src->target_value; 801 if (dst->metric == DAMOS_QUOTA_USER_INPUT) 802 dst->current_value = src->current_value; 803 /* keep last_psi_total as is, since it will be updated in next cycle */ 804 damos_commit_quota_goal_union(dst, src); 805 } 806 807 /** 808 * damos_commit_quota_goals() - Commit DAMOS quota goals to another quota. 809 * @dst: The commit destination DAMOS quota. 810 * @src: The commit source DAMOS quota. 811 * 812 * Copies user-specified parameters for quota goals from @src to @dst. Users 813 * should use this function for quota goals-level parameters update of running 814 * DAMON contexts, instead of manual in-place updates. 815 * 816 * This function should be called from parameters-update safe context, like 817 * damon_call(). 818 */ 819 int damos_commit_quota_goals(struct damos_quota *dst, struct damos_quota *src) 820 { 821 struct damos_quota_goal *dst_goal, *next, *src_goal, *new_goal; 822 int i = 0, j = 0; 823 824 damos_for_each_quota_goal_safe(dst_goal, next, dst) { 825 src_goal = damos_nth_quota_goal(i++, src); 826 if (src_goal) 827 damos_commit_quota_goal(dst_goal, src_goal); 828 else 829 damos_destroy_quota_goal(dst_goal); 830 } 831 damos_for_each_quota_goal_safe(src_goal, next, src) { 832 if (j++ < i) 833 continue; 834 new_goal = damos_new_quota_goal( 835 src_goal->metric, src_goal->target_value); 836 if (!new_goal) 837 return -ENOMEM; 838 damos_commit_quota_goal(new_goal, src_goal); 839 damos_add_quota_goal(dst, new_goal); 840 } 841 return 0; 842 } 843 844 static int damos_commit_quota(struct damos_quota *dst, struct damos_quota *src) 845 { 846 int err; 847 848 dst->reset_interval = src->reset_interval; 849 dst->ms = src->ms; 850 dst->sz = src->sz; 851 err = damos_commit_quota_goals(dst, src); 852 if (err) 853 return err; 854 dst->weight_sz = src->weight_sz; 855 dst->weight_nr_accesses = src->weight_nr_accesses; 856 dst->weight_age = src->weight_age; 857 return 0; 858 } 859 860 static struct damos_filter *damos_nth_filter(int n, struct damos *s) 861 { 862 struct damos_filter *filter; 863 int i = 0; 864 865 damos_for_each_filter(filter, s) { 866 if (i++ == n) 867 return filter; 868 } 869 return NULL; 870 } 871 872 static struct damos_filter *damos_nth_ops_filter(int n, struct damos *s) 873 { 874 struct damos_filter *filter; 875 int i = 0; 876 877 damos_for_each_ops_filter(filter, s) { 878 if (i++ == n) 879 return filter; 880 } 881 return NULL; 882 } 883 884 static void damos_commit_filter_arg( 885 struct damos_filter *dst, struct damos_filter *src) 886 { 887 switch (dst->type) { 888 case DAMOS_FILTER_TYPE_MEMCG: 889 dst->memcg_id = src->memcg_id; 890 break; 891 case DAMOS_FILTER_TYPE_ADDR: 892 dst->addr_range = src->addr_range; 893 break; 894 case DAMOS_FILTER_TYPE_TARGET: 895 dst->target_idx = src->target_idx; 896 break; 897 case DAMOS_FILTER_TYPE_HUGEPAGE_SIZE: 898 dst->sz_range = src->sz_range; 899 break; 900 default: 901 break; 902 } 903 } 904 905 static void damos_commit_filter( 906 struct damos_filter *dst, struct damos_filter *src) 907 { 908 dst->type = src->type; 909 dst->matching = src->matching; 910 dst->allow = src->allow; 911 damos_commit_filter_arg(dst, src); 912 } 913 914 static int damos_commit_core_filters(struct damos *dst, struct damos *src) 915 { 916 struct damos_filter *dst_filter, *next, *src_filter, *new_filter; 917 int i = 0, j = 0; 918 919 damos_for_each_filter_safe(dst_filter, next, dst) { 920 src_filter = damos_nth_filter(i++, src); 921 if (src_filter) 922 damos_commit_filter(dst_filter, src_filter); 923 else 924 damos_destroy_filter(dst_filter); 925 } 926 927 damos_for_each_filter_safe(src_filter, next, src) { 928 if (j++ < i) 929 continue; 930 931 new_filter = damos_new_filter( 932 src_filter->type, src_filter->matching, 933 src_filter->allow); 934 if (!new_filter) 935 return -ENOMEM; 936 damos_commit_filter_arg(new_filter, src_filter); 937 damos_add_filter(dst, new_filter); 938 } 939 return 0; 940 } 941 942 static int damos_commit_ops_filters(struct damos *dst, struct damos *src) 943 { 944 struct damos_filter *dst_filter, *next, *src_filter, *new_filter; 945 int i = 0, j = 0; 946 947 damos_for_each_ops_filter_safe(dst_filter, next, dst) { 948 src_filter = damos_nth_ops_filter(i++, src); 949 if (src_filter) 950 damos_commit_filter(dst_filter, src_filter); 951 else 952 damos_destroy_filter(dst_filter); 953 } 954 955 damos_for_each_ops_filter_safe(src_filter, next, src) { 956 if (j++ < i) 957 continue; 958 959 new_filter = damos_new_filter( 960 src_filter->type, src_filter->matching, 961 src_filter->allow); 962 if (!new_filter) 963 return -ENOMEM; 964 damos_commit_filter_arg(new_filter, src_filter); 965 damos_add_filter(dst, new_filter); 966 } 967 return 0; 968 } 969 970 /** 971 * damos_filters_default_reject() - decide whether to reject memory that didn't 972 * match with any given filter. 973 * @filters: Given DAMOS filters of a group. 974 */ 975 static bool damos_filters_default_reject(struct list_head *filters) 976 { 977 struct damos_filter *last_filter; 978 979 if (list_empty(filters)) 980 return false; 981 last_filter = list_last_entry(filters, struct damos_filter, list); 982 return last_filter->allow; 983 } 984 985 static void damos_set_filters_default_reject(struct damos *s) 986 { 987 if (!list_empty(&s->ops_filters)) 988 s->core_filters_default_reject = false; 989 else 990 s->core_filters_default_reject = 991 damos_filters_default_reject(&s->filters); 992 s->ops_filters_default_reject = 993 damos_filters_default_reject(&s->ops_filters); 994 } 995 996 static int damos_commit_dests(struct damos *dst, struct damos *src) 997 { 998 struct damos_migrate_dests *dst_dests, *src_dests; 999 1000 dst_dests = &dst->migrate_dests; 1001 src_dests = &src->migrate_dests; 1002 1003 if (dst_dests->nr_dests != src_dests->nr_dests) { 1004 kfree(dst_dests->node_id_arr); 1005 kfree(dst_dests->weight_arr); 1006 1007 dst_dests->node_id_arr = kmalloc_array(src_dests->nr_dests, 1008 sizeof(*dst_dests->node_id_arr), GFP_KERNEL); 1009 if (!dst_dests->node_id_arr) { 1010 dst_dests->weight_arr = NULL; 1011 return -ENOMEM; 1012 } 1013 1014 dst_dests->weight_arr = kmalloc_array(src_dests->nr_dests, 1015 sizeof(*dst_dests->weight_arr), GFP_KERNEL); 1016 if (!dst_dests->weight_arr) { 1017 /* ->node_id_arr will be freed by scheme destruction */ 1018 return -ENOMEM; 1019 } 1020 } 1021 1022 dst_dests->nr_dests = src_dests->nr_dests; 1023 for (int i = 0; i < src_dests->nr_dests; i++) { 1024 dst_dests->node_id_arr[i] = src_dests->node_id_arr[i]; 1025 dst_dests->weight_arr[i] = src_dests->weight_arr[i]; 1026 } 1027 1028 return 0; 1029 } 1030 1031 static int damos_commit_filters(struct damos *dst, struct damos *src) 1032 { 1033 int err; 1034 1035 err = damos_commit_core_filters(dst, src); 1036 if (err) 1037 return err; 1038 err = damos_commit_ops_filters(dst, src); 1039 if (err) 1040 return err; 1041 damos_set_filters_default_reject(dst); 1042 return 0; 1043 } 1044 1045 static struct damos *damon_nth_scheme(int n, struct damon_ctx *ctx) 1046 { 1047 struct damos *s; 1048 int i = 0; 1049 1050 damon_for_each_scheme(s, ctx) { 1051 if (i++ == n) 1052 return s; 1053 } 1054 return NULL; 1055 } 1056 1057 static int damos_commit(struct damos *dst, struct damos *src) 1058 { 1059 int err; 1060 1061 dst->pattern = src->pattern; 1062 dst->action = src->action; 1063 dst->apply_interval_us = src->apply_interval_us; 1064 1065 err = damos_commit_quota(&dst->quota, &src->quota); 1066 if (err) 1067 return err; 1068 1069 dst->wmarks = src->wmarks; 1070 dst->target_nid = src->target_nid; 1071 1072 err = damos_commit_dests(dst, src); 1073 if (err) 1074 return err; 1075 1076 err = damos_commit_filters(dst, src); 1077 return err; 1078 } 1079 1080 static int damon_commit_schemes(struct damon_ctx *dst, struct damon_ctx *src) 1081 { 1082 struct damos *dst_scheme, *next, *src_scheme, *new_scheme; 1083 int i = 0, j = 0, err; 1084 1085 damon_for_each_scheme_safe(dst_scheme, next, dst) { 1086 src_scheme = damon_nth_scheme(i++, src); 1087 if (src_scheme) { 1088 err = damos_commit(dst_scheme, src_scheme); 1089 if (err) 1090 return err; 1091 } else { 1092 damon_destroy_scheme(dst_scheme); 1093 } 1094 } 1095 1096 damon_for_each_scheme_safe(src_scheme, next, src) { 1097 if (j++ < i) 1098 continue; 1099 new_scheme = damon_new_scheme(&src_scheme->pattern, 1100 src_scheme->action, 1101 src_scheme->apply_interval_us, 1102 &src_scheme->quota, &src_scheme->wmarks, 1103 NUMA_NO_NODE); 1104 if (!new_scheme) 1105 return -ENOMEM; 1106 err = damos_commit(new_scheme, src_scheme); 1107 if (err) { 1108 damon_destroy_scheme(new_scheme); 1109 return err; 1110 } 1111 damon_add_scheme(dst, new_scheme); 1112 } 1113 return 0; 1114 } 1115 1116 static struct damon_target *damon_nth_target(int n, struct damon_ctx *ctx) 1117 { 1118 struct damon_target *t; 1119 int i = 0; 1120 1121 damon_for_each_target(t, ctx) { 1122 if (i++ == n) 1123 return t; 1124 } 1125 return NULL; 1126 } 1127 1128 /* 1129 * The caller should ensure the regions of @src are 1130 * 1. valid (end >= src) and 1131 * 2. sorted by starting address. 1132 * 1133 * If @src has no region, @dst keeps current regions. 1134 */ 1135 static int damon_commit_target_regions(struct damon_target *dst, 1136 struct damon_target *src, unsigned long src_min_sz_region) 1137 { 1138 struct damon_region *src_region; 1139 struct damon_addr_range *ranges; 1140 int i = 0, err; 1141 1142 damon_for_each_region(src_region, src) 1143 i++; 1144 if (!i) 1145 return 0; 1146 1147 ranges = kmalloc_array(i, sizeof(*ranges), GFP_KERNEL | __GFP_NOWARN); 1148 if (!ranges) 1149 return -ENOMEM; 1150 i = 0; 1151 damon_for_each_region(src_region, src) 1152 ranges[i++] = src_region->ar; 1153 err = damon_set_regions(dst, ranges, i, src_min_sz_region); 1154 kfree(ranges); 1155 return err; 1156 } 1157 1158 static int damon_commit_target( 1159 struct damon_target *dst, bool dst_has_pid, 1160 struct damon_target *src, bool src_has_pid, 1161 unsigned long src_min_sz_region) 1162 { 1163 int err; 1164 1165 err = damon_commit_target_regions(dst, src, src_min_sz_region); 1166 if (err) 1167 return err; 1168 if (dst_has_pid) 1169 put_pid(dst->pid); 1170 if (src_has_pid) 1171 get_pid(src->pid); 1172 dst->pid = src->pid; 1173 return 0; 1174 } 1175 1176 static int damon_commit_targets( 1177 struct damon_ctx *dst, struct damon_ctx *src) 1178 { 1179 struct damon_target *dst_target, *next, *src_target, *new_target; 1180 int i = 0, j = 0, err; 1181 1182 damon_for_each_target_safe(dst_target, next, dst) { 1183 src_target = damon_nth_target(i++, src); 1184 if (src_target) { 1185 err = damon_commit_target( 1186 dst_target, damon_target_has_pid(dst), 1187 src_target, damon_target_has_pid(src), 1188 src->min_sz_region); 1189 if (err) 1190 return err; 1191 } else { 1192 struct damos *s; 1193 1194 damon_destroy_target(dst_target, dst); 1195 damon_for_each_scheme(s, dst) { 1196 if (s->quota.charge_target_from == dst_target) { 1197 s->quota.charge_target_from = NULL; 1198 s->quota.charge_addr_from = 0; 1199 } 1200 } 1201 } 1202 } 1203 1204 damon_for_each_target_safe(src_target, next, src) { 1205 if (j++ < i) 1206 continue; 1207 new_target = damon_new_target(); 1208 if (!new_target) 1209 return -ENOMEM; 1210 err = damon_commit_target(new_target, false, 1211 src_target, damon_target_has_pid(src), 1212 src->min_sz_region); 1213 if (err) { 1214 damon_destroy_target(new_target, NULL); 1215 return err; 1216 } 1217 damon_add_target(dst, new_target); 1218 } 1219 return 0; 1220 } 1221 1222 /** 1223 * damon_commit_ctx() - Commit parameters of a DAMON context to another. 1224 * @dst: The commit destination DAMON context. 1225 * @src: The commit source DAMON context. 1226 * 1227 * This function copies user-specified parameters from @src to @dst and update 1228 * the internal status and results accordingly. Users should use this function 1229 * for context-level parameters update of running context, instead of manual 1230 * in-place updates. 1231 * 1232 * This function should be called from parameters-update safe context, like 1233 * damon_call(). 1234 */ 1235 int damon_commit_ctx(struct damon_ctx *dst, struct damon_ctx *src) 1236 { 1237 int err; 1238 1239 err = damon_commit_schemes(dst, src); 1240 if (err) 1241 return err; 1242 err = damon_commit_targets(dst, src); 1243 if (err) 1244 return err; 1245 /* 1246 * schemes and targets should be updated first, since 1247 * 1. damon_set_attrs() updates monitoring results of targets and 1248 * next_apply_sis of schemes, and 1249 * 2. ops update should be done after pid handling is done (target 1250 * committing require putting pids). 1251 */ 1252 if (!damon_attrs_equals(&dst->attrs, &src->attrs)) { 1253 err = damon_set_attrs(dst, &src->attrs); 1254 if (err) 1255 return err; 1256 } 1257 dst->ops = src->ops; 1258 dst->addr_unit = src->addr_unit; 1259 dst->min_sz_region = src->min_sz_region; 1260 1261 return 0; 1262 } 1263 1264 /** 1265 * damon_nr_running_ctxs() - Return number of currently running contexts. 1266 */ 1267 int damon_nr_running_ctxs(void) 1268 { 1269 int nr_ctxs; 1270 1271 mutex_lock(&damon_lock); 1272 nr_ctxs = nr_running_ctxs; 1273 mutex_unlock(&damon_lock); 1274 1275 return nr_ctxs; 1276 } 1277 1278 /* Returns the size upper limit for each monitoring region */ 1279 static unsigned long damon_region_sz_limit(struct damon_ctx *ctx) 1280 { 1281 struct damon_target *t; 1282 struct damon_region *r; 1283 unsigned long sz = 0; 1284 1285 damon_for_each_target(t, ctx) { 1286 damon_for_each_region(r, t) 1287 sz += damon_sz_region(r); 1288 } 1289 1290 if (ctx->attrs.min_nr_regions) 1291 sz /= ctx->attrs.min_nr_regions; 1292 if (sz < ctx->min_sz_region) 1293 sz = ctx->min_sz_region; 1294 1295 return sz; 1296 } 1297 1298 static int kdamond_fn(void *data); 1299 1300 /* 1301 * __damon_start() - Starts monitoring with given context. 1302 * @ctx: monitoring context 1303 * 1304 * This function should be called while damon_lock is hold. 1305 * 1306 * Return: 0 on success, negative error code otherwise. 1307 */ 1308 static int __damon_start(struct damon_ctx *ctx) 1309 { 1310 int err = -EBUSY; 1311 1312 mutex_lock(&ctx->kdamond_lock); 1313 if (!ctx->kdamond) { 1314 err = 0; 1315 reinit_completion(&ctx->kdamond_started); 1316 ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d", 1317 nr_running_ctxs); 1318 if (IS_ERR(ctx->kdamond)) { 1319 err = PTR_ERR(ctx->kdamond); 1320 ctx->kdamond = NULL; 1321 } else { 1322 wait_for_completion(&ctx->kdamond_started); 1323 } 1324 } 1325 mutex_unlock(&ctx->kdamond_lock); 1326 1327 return err; 1328 } 1329 1330 /** 1331 * damon_start() - Starts the monitorings for a given group of contexts. 1332 * @ctxs: an array of the pointers for contexts to start monitoring 1333 * @nr_ctxs: size of @ctxs 1334 * @exclusive: exclusiveness of this contexts group 1335 * 1336 * This function starts a group of monitoring threads for a group of monitoring 1337 * contexts. One thread per each context is created and run in parallel. The 1338 * caller should handle synchronization between the threads by itself. If 1339 * @exclusive is true and a group of threads that created by other 1340 * 'damon_start()' call is currently running, this function does nothing but 1341 * returns -EBUSY. 1342 * 1343 * Return: 0 on success, negative error code otherwise. 1344 */ 1345 int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive) 1346 { 1347 int i; 1348 int err = 0; 1349 1350 mutex_lock(&damon_lock); 1351 if ((exclusive && nr_running_ctxs) || 1352 (!exclusive && running_exclusive_ctxs)) { 1353 mutex_unlock(&damon_lock); 1354 return -EBUSY; 1355 } 1356 1357 for (i = 0; i < nr_ctxs; i++) { 1358 err = __damon_start(ctxs[i]); 1359 if (err) 1360 break; 1361 nr_running_ctxs++; 1362 } 1363 if (exclusive && nr_running_ctxs) 1364 running_exclusive_ctxs = true; 1365 mutex_unlock(&damon_lock); 1366 1367 return err; 1368 } 1369 1370 /* 1371 * __damon_stop() - Stops monitoring of a given context. 1372 * @ctx: monitoring context 1373 * 1374 * Return: 0 on success, negative error code otherwise. 1375 */ 1376 static int __damon_stop(struct damon_ctx *ctx) 1377 { 1378 struct task_struct *tsk; 1379 1380 mutex_lock(&ctx->kdamond_lock); 1381 tsk = ctx->kdamond; 1382 if (tsk) { 1383 get_task_struct(tsk); 1384 mutex_unlock(&ctx->kdamond_lock); 1385 kthread_stop_put(tsk); 1386 return 0; 1387 } 1388 mutex_unlock(&ctx->kdamond_lock); 1389 1390 return -EPERM; 1391 } 1392 1393 /** 1394 * damon_stop() - Stops the monitorings for a given group of contexts. 1395 * @ctxs: an array of the pointers for contexts to stop monitoring 1396 * @nr_ctxs: size of @ctxs 1397 * 1398 * Return: 0 on success, negative error code otherwise. 1399 */ 1400 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs) 1401 { 1402 int i, err = 0; 1403 1404 for (i = 0; i < nr_ctxs; i++) { 1405 /* nr_running_ctxs is decremented in kdamond_fn */ 1406 err = __damon_stop(ctxs[i]); 1407 if (err) 1408 break; 1409 } 1410 return err; 1411 } 1412 1413 /** 1414 * damon_is_running() - Returns if a given DAMON context is running. 1415 * @ctx: The DAMON context to see if running. 1416 * 1417 * Return: true if @ctx is running, false otherwise. 1418 */ 1419 bool damon_is_running(struct damon_ctx *ctx) 1420 { 1421 bool running; 1422 1423 mutex_lock(&ctx->kdamond_lock); 1424 running = ctx->kdamond != NULL; 1425 mutex_unlock(&ctx->kdamond_lock); 1426 return running; 1427 } 1428 1429 /** 1430 * damon_call() - Invoke a given function on DAMON worker thread (kdamond). 1431 * @ctx: DAMON context to call the function for. 1432 * @control: Control variable of the call request. 1433 * 1434 * Ask DAMON worker thread (kdamond) of @ctx to call a function with an 1435 * argument data that respectively passed via &damon_call_control->fn and 1436 * &damon_call_control->data of @control. If &damon_call_control->repeat of 1437 * @control is set, further wait until the kdamond finishes handling of the 1438 * request. Otherwise, return as soon as the request is made. 1439 * 1440 * The kdamond executes the function with the argument in the main loop, just 1441 * after a sampling of the iteration is finished. The function can hence 1442 * safely access the internal data of the &struct damon_ctx without additional 1443 * synchronization. The return value of the function will be saved in 1444 * &damon_call_control->return_code. 1445 * 1446 * Return: 0 on success, negative error code otherwise. 1447 */ 1448 int damon_call(struct damon_ctx *ctx, struct damon_call_control *control) 1449 { 1450 if (!control->repeat) 1451 init_completion(&control->completion); 1452 control->canceled = false; 1453 INIT_LIST_HEAD(&control->list); 1454 1455 mutex_lock(&ctx->call_controls_lock); 1456 list_add_tail(&control->list, &ctx->call_controls); 1457 mutex_unlock(&ctx->call_controls_lock); 1458 if (!damon_is_running(ctx)) 1459 return -EINVAL; 1460 if (control->repeat) 1461 return 0; 1462 wait_for_completion(&control->completion); 1463 if (control->canceled) 1464 return -ECANCELED; 1465 return 0; 1466 } 1467 1468 /** 1469 * damos_walk() - Invoke a given functions while DAMOS walk regions. 1470 * @ctx: DAMON context to call the functions for. 1471 * @control: Control variable of the walk request. 1472 * 1473 * Ask DAMON worker thread (kdamond) of @ctx to call a function for each region 1474 * that the kdamond will apply DAMOS action to, and wait until the kdamond 1475 * finishes handling of the request. 1476 * 1477 * The kdamond executes the given function in the main loop, for each region 1478 * just after it applied any DAMOS actions of @ctx to it. The invocation is 1479 * made only within one &damos->apply_interval_us since damos_walk() 1480 * invocation, for each scheme. The given callback function can hence safely 1481 * access the internal data of &struct damon_ctx and &struct damon_region that 1482 * each of the scheme will apply the action for next interval, without 1483 * additional synchronizations against the kdamond. If every scheme of @ctx 1484 * passed at least one &damos->apply_interval_us, kdamond marks the request as 1485 * completed so that damos_walk() can wakeup and return. 1486 * 1487 * Return: 0 on success, negative error code otherwise. 1488 */ 1489 int damos_walk(struct damon_ctx *ctx, struct damos_walk_control *control) 1490 { 1491 init_completion(&control->completion); 1492 control->canceled = false; 1493 mutex_lock(&ctx->walk_control_lock); 1494 if (ctx->walk_control) { 1495 mutex_unlock(&ctx->walk_control_lock); 1496 return -EBUSY; 1497 } 1498 ctx->walk_control = control; 1499 mutex_unlock(&ctx->walk_control_lock); 1500 if (!damon_is_running(ctx)) 1501 return -EINVAL; 1502 wait_for_completion(&control->completion); 1503 if (control->canceled) 1504 return -ECANCELED; 1505 return 0; 1506 } 1507 1508 /* 1509 * Warn and fix corrupted ->nr_accesses[_bp] for investigations and preventing 1510 * the problem being propagated. 1511 */ 1512 static void damon_warn_fix_nr_accesses_corruption(struct damon_region *r) 1513 { 1514 if (r->nr_accesses_bp == r->nr_accesses * 10000) 1515 return; 1516 WARN_ONCE(true, "invalid nr_accesses_bp at reset: %u %u\n", 1517 r->nr_accesses_bp, r->nr_accesses); 1518 r->nr_accesses_bp = r->nr_accesses * 10000; 1519 } 1520 1521 /* 1522 * Reset the aggregated monitoring results ('nr_accesses' of each region). 1523 */ 1524 static void kdamond_reset_aggregated(struct damon_ctx *c) 1525 { 1526 struct damon_target *t; 1527 unsigned int ti = 0; /* target's index */ 1528 1529 damon_for_each_target(t, c) { 1530 struct damon_region *r; 1531 1532 damon_for_each_region(r, t) { 1533 trace_damon_aggregated(ti, r, damon_nr_regions(t)); 1534 damon_warn_fix_nr_accesses_corruption(r); 1535 r->last_nr_accesses = r->nr_accesses; 1536 r->nr_accesses = 0; 1537 } 1538 ti++; 1539 } 1540 } 1541 1542 static unsigned long damon_get_intervals_score(struct damon_ctx *c) 1543 { 1544 struct damon_target *t; 1545 struct damon_region *r; 1546 unsigned long sz_region, max_access_events = 0, access_events = 0; 1547 unsigned long target_access_events; 1548 unsigned long goal_bp = c->attrs.intervals_goal.access_bp; 1549 1550 damon_for_each_target(t, c) { 1551 damon_for_each_region(r, t) { 1552 sz_region = damon_sz_region(r); 1553 max_access_events += sz_region * c->attrs.aggr_samples; 1554 access_events += sz_region * r->nr_accesses; 1555 } 1556 } 1557 target_access_events = max_access_events * goal_bp / 10000; 1558 target_access_events = target_access_events ? : 1; 1559 return access_events * 10000 / target_access_events; 1560 } 1561 1562 static unsigned long damon_feed_loop_next_input(unsigned long last_input, 1563 unsigned long score); 1564 1565 static unsigned long damon_get_intervals_adaptation_bp(struct damon_ctx *c) 1566 { 1567 unsigned long score_bp, adaptation_bp; 1568 1569 score_bp = damon_get_intervals_score(c); 1570 adaptation_bp = damon_feed_loop_next_input(100000000, score_bp) / 1571 10000; 1572 /* 1573 * adaptaion_bp ranges from 1 to 20,000. Avoid too rapid reduction of 1574 * the intervals by rescaling [1,10,000] to [5000, 10,000]. 1575 */ 1576 if (adaptation_bp <= 10000) 1577 adaptation_bp = 5000 + adaptation_bp / 2; 1578 return adaptation_bp; 1579 } 1580 1581 static void kdamond_tune_intervals(struct damon_ctx *c) 1582 { 1583 unsigned long adaptation_bp; 1584 struct damon_attrs new_attrs; 1585 struct damon_intervals_goal *goal; 1586 1587 adaptation_bp = damon_get_intervals_adaptation_bp(c); 1588 if (adaptation_bp == 10000) 1589 return; 1590 1591 new_attrs = c->attrs; 1592 goal = &c->attrs.intervals_goal; 1593 new_attrs.sample_interval = min(goal->max_sample_us, 1594 c->attrs.sample_interval * adaptation_bp / 10000); 1595 new_attrs.sample_interval = max(goal->min_sample_us, 1596 new_attrs.sample_interval); 1597 new_attrs.aggr_interval = new_attrs.sample_interval * 1598 c->attrs.aggr_samples; 1599 trace_damon_monitor_intervals_tune(new_attrs.sample_interval); 1600 damon_set_attrs(c, &new_attrs); 1601 } 1602 1603 static void damon_split_region_at(struct damon_target *t, 1604 struct damon_region *r, unsigned long sz_r); 1605 1606 static bool __damos_valid_target(struct damon_region *r, struct damos *s) 1607 { 1608 unsigned long sz; 1609 unsigned int nr_accesses = r->nr_accesses_bp / 10000; 1610 1611 sz = damon_sz_region(r); 1612 return s->pattern.min_sz_region <= sz && 1613 sz <= s->pattern.max_sz_region && 1614 s->pattern.min_nr_accesses <= nr_accesses && 1615 nr_accesses <= s->pattern.max_nr_accesses && 1616 s->pattern.min_age_region <= r->age && 1617 r->age <= s->pattern.max_age_region; 1618 } 1619 1620 static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t, 1621 struct damon_region *r, struct damos *s) 1622 { 1623 bool ret = __damos_valid_target(r, s); 1624 1625 if (!ret || !s->quota.esz || !c->ops.get_scheme_score) 1626 return ret; 1627 1628 return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score; 1629 } 1630 1631 /* 1632 * damos_skip_charged_region() - Check if the given region or starting part of 1633 * it is already charged for the DAMOS quota. 1634 * @t: The target of the region. 1635 * @rp: The pointer to the region. 1636 * @s: The scheme to be applied. 1637 * @min_sz_region: minimum region size. 1638 * 1639 * If a quota of a scheme has exceeded in a quota charge window, the scheme's 1640 * action would applied to only a part of the target access pattern fulfilling 1641 * regions. To avoid applying the scheme action to only already applied 1642 * regions, DAMON skips applying the scheme action to the regions that charged 1643 * in the previous charge window. 1644 * 1645 * This function checks if a given region should be skipped or not for the 1646 * reason. If only the starting part of the region has previously charged, 1647 * this function splits the region into two so that the second one covers the 1648 * area that not charged in the previous charge widnow and saves the second 1649 * region in *rp and returns false, so that the caller can apply DAMON action 1650 * to the second one. 1651 * 1652 * Return: true if the region should be entirely skipped, false otherwise. 1653 */ 1654 static bool damos_skip_charged_region(struct damon_target *t, 1655 struct damon_region **rp, struct damos *s, unsigned long min_sz_region) 1656 { 1657 struct damon_region *r = *rp; 1658 struct damos_quota *quota = &s->quota; 1659 unsigned long sz_to_skip; 1660 1661 /* Skip previously charged regions */ 1662 if (quota->charge_target_from) { 1663 if (t != quota->charge_target_from) 1664 return true; 1665 if (r == damon_last_region(t)) { 1666 quota->charge_target_from = NULL; 1667 quota->charge_addr_from = 0; 1668 return true; 1669 } 1670 if (quota->charge_addr_from && 1671 r->ar.end <= quota->charge_addr_from) 1672 return true; 1673 1674 if (quota->charge_addr_from && r->ar.start < 1675 quota->charge_addr_from) { 1676 sz_to_skip = ALIGN_DOWN(quota->charge_addr_from - 1677 r->ar.start, min_sz_region); 1678 if (!sz_to_skip) { 1679 if (damon_sz_region(r) <= min_sz_region) 1680 return true; 1681 sz_to_skip = min_sz_region; 1682 } 1683 damon_split_region_at(t, r, sz_to_skip); 1684 r = damon_next_region(r); 1685 *rp = r; 1686 } 1687 quota->charge_target_from = NULL; 1688 quota->charge_addr_from = 0; 1689 } 1690 return false; 1691 } 1692 1693 static void damos_update_stat(struct damos *s, 1694 unsigned long sz_tried, unsigned long sz_applied, 1695 unsigned long sz_ops_filter_passed) 1696 { 1697 s->stat.nr_tried++; 1698 s->stat.sz_tried += sz_tried; 1699 if (sz_applied) 1700 s->stat.nr_applied++; 1701 s->stat.sz_applied += sz_applied; 1702 s->stat.sz_ops_filter_passed += sz_ops_filter_passed; 1703 } 1704 1705 static bool damos_filter_match(struct damon_ctx *ctx, struct damon_target *t, 1706 struct damon_region *r, struct damos_filter *filter, 1707 unsigned long min_sz_region) 1708 { 1709 bool matched = false; 1710 struct damon_target *ti; 1711 int target_idx = 0; 1712 unsigned long start, end; 1713 1714 switch (filter->type) { 1715 case DAMOS_FILTER_TYPE_TARGET: 1716 damon_for_each_target(ti, ctx) { 1717 if (ti == t) 1718 break; 1719 target_idx++; 1720 } 1721 matched = target_idx == filter->target_idx; 1722 break; 1723 case DAMOS_FILTER_TYPE_ADDR: 1724 start = ALIGN_DOWN(filter->addr_range.start, min_sz_region); 1725 end = ALIGN_DOWN(filter->addr_range.end, min_sz_region); 1726 1727 /* inside the range */ 1728 if (start <= r->ar.start && r->ar.end <= end) { 1729 matched = true; 1730 break; 1731 } 1732 /* outside of the range */ 1733 if (r->ar.end <= start || end <= r->ar.start) { 1734 matched = false; 1735 break; 1736 } 1737 /* start before the range and overlap */ 1738 if (r->ar.start < start) { 1739 damon_split_region_at(t, r, start - r->ar.start); 1740 matched = false; 1741 break; 1742 } 1743 /* start inside the range */ 1744 damon_split_region_at(t, r, end - r->ar.start); 1745 matched = true; 1746 break; 1747 default: 1748 return false; 1749 } 1750 1751 return matched == filter->matching; 1752 } 1753 1754 static bool damos_filter_out(struct damon_ctx *ctx, struct damon_target *t, 1755 struct damon_region *r, struct damos *s) 1756 { 1757 struct damos_filter *filter; 1758 1759 s->core_filters_allowed = false; 1760 damos_for_each_filter(filter, s) { 1761 if (damos_filter_match(ctx, t, r, filter, ctx->min_sz_region)) { 1762 if (filter->allow) 1763 s->core_filters_allowed = true; 1764 return !filter->allow; 1765 } 1766 } 1767 return s->core_filters_default_reject; 1768 } 1769 1770 /* 1771 * damos_walk_call_walk() - Call &damos_walk_control->walk_fn. 1772 * @ctx: The context of &damon_ctx->walk_control. 1773 * @t: The monitoring target of @r that @s will be applied. 1774 * @r: The region of @t that @s will be applied. 1775 * @s: The scheme of @ctx that will be applied to @r. 1776 * 1777 * This function is called from kdamond whenever it asked the operation set to 1778 * apply a DAMOS scheme action to a region. If a DAMOS walk request is 1779 * installed by damos_walk() and not yet uninstalled, invoke it. 1780 */ 1781 static void damos_walk_call_walk(struct damon_ctx *ctx, struct damon_target *t, 1782 struct damon_region *r, struct damos *s, 1783 unsigned long sz_filter_passed) 1784 { 1785 struct damos_walk_control *control; 1786 1787 if (s->walk_completed) 1788 return; 1789 1790 control = ctx->walk_control; 1791 if (!control) 1792 return; 1793 1794 control->walk_fn(control->data, ctx, t, r, s, sz_filter_passed); 1795 } 1796 1797 /* 1798 * damos_walk_complete() - Complete DAMOS walk request if all walks are done. 1799 * @ctx: The context of &damon_ctx->walk_control. 1800 * @s: A scheme of @ctx that all walks are now done. 1801 * 1802 * This function is called when kdamond finished applying the action of a DAMOS 1803 * scheme to all regions that eligible for the given &damos->apply_interval_us. 1804 * If every scheme of @ctx including @s now finished walking for at least one 1805 * &damos->apply_interval_us, this function makrs the handling of the given 1806 * DAMOS walk request is done, so that damos_walk() can wake up and return. 1807 */ 1808 static void damos_walk_complete(struct damon_ctx *ctx, struct damos *s) 1809 { 1810 struct damos *siter; 1811 struct damos_walk_control *control; 1812 1813 control = ctx->walk_control; 1814 if (!control) 1815 return; 1816 1817 s->walk_completed = true; 1818 /* if all schemes completed, signal completion to walker */ 1819 damon_for_each_scheme(siter, ctx) { 1820 if (!siter->walk_completed) 1821 return; 1822 } 1823 damon_for_each_scheme(siter, ctx) 1824 siter->walk_completed = false; 1825 1826 complete(&control->completion); 1827 ctx->walk_control = NULL; 1828 } 1829 1830 /* 1831 * damos_walk_cancel() - Cancel the current DAMOS walk request. 1832 * @ctx: The context of &damon_ctx->walk_control. 1833 * 1834 * This function is called when @ctx is deactivated by DAMOS watermarks, DAMOS 1835 * walk is requested but there is no DAMOS scheme to walk for, or the kdamond 1836 * is already out of the main loop and therefore gonna be terminated, and hence 1837 * cannot continue the walks. This function therefore marks the walk request 1838 * as canceled, so that damos_walk() can wake up and return. 1839 */ 1840 static void damos_walk_cancel(struct damon_ctx *ctx) 1841 { 1842 struct damos_walk_control *control; 1843 1844 mutex_lock(&ctx->walk_control_lock); 1845 control = ctx->walk_control; 1846 mutex_unlock(&ctx->walk_control_lock); 1847 1848 if (!control) 1849 return; 1850 control->canceled = true; 1851 complete(&control->completion); 1852 mutex_lock(&ctx->walk_control_lock); 1853 ctx->walk_control = NULL; 1854 mutex_unlock(&ctx->walk_control_lock); 1855 } 1856 1857 static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t, 1858 struct damon_region *r, struct damos *s) 1859 { 1860 struct damos_quota *quota = &s->quota; 1861 unsigned long sz = damon_sz_region(r); 1862 struct timespec64 begin, end; 1863 unsigned long sz_applied = 0; 1864 unsigned long sz_ops_filter_passed = 0; 1865 /* 1866 * We plan to support multiple context per kdamond, as DAMON sysfs 1867 * implies with 'nr_contexts' file. Nevertheless, only single context 1868 * per kdamond is supported for now. So, we can simply use '0' context 1869 * index here. 1870 */ 1871 unsigned int cidx = 0; 1872 struct damos *siter; /* schemes iterator */ 1873 unsigned int sidx = 0; 1874 struct damon_target *titer; /* targets iterator */ 1875 unsigned int tidx = 0; 1876 bool do_trace = false; 1877 1878 /* get indices for trace_damos_before_apply() */ 1879 if (trace_damos_before_apply_enabled()) { 1880 damon_for_each_scheme(siter, c) { 1881 if (siter == s) 1882 break; 1883 sidx++; 1884 } 1885 damon_for_each_target(titer, c) { 1886 if (titer == t) 1887 break; 1888 tidx++; 1889 } 1890 do_trace = true; 1891 } 1892 1893 if (c->ops.apply_scheme) { 1894 if (quota->esz && quota->charged_sz + sz > quota->esz) { 1895 sz = ALIGN_DOWN(quota->esz - quota->charged_sz, 1896 c->min_sz_region); 1897 if (!sz) 1898 goto update_stat; 1899 damon_split_region_at(t, r, sz); 1900 } 1901 if (damos_filter_out(c, t, r, s)) 1902 return; 1903 ktime_get_coarse_ts64(&begin); 1904 trace_damos_before_apply(cidx, sidx, tidx, r, 1905 damon_nr_regions(t), do_trace); 1906 sz_applied = c->ops.apply_scheme(c, t, r, s, 1907 &sz_ops_filter_passed); 1908 damos_walk_call_walk(c, t, r, s, sz_ops_filter_passed); 1909 ktime_get_coarse_ts64(&end); 1910 quota->total_charged_ns += timespec64_to_ns(&end) - 1911 timespec64_to_ns(&begin); 1912 quota->charged_sz += sz; 1913 if (quota->esz && quota->charged_sz >= quota->esz) { 1914 quota->charge_target_from = t; 1915 quota->charge_addr_from = r->ar.end + 1; 1916 } 1917 } 1918 if (s->action != DAMOS_STAT) 1919 r->age = 0; 1920 1921 update_stat: 1922 damos_update_stat(s, sz, sz_applied, sz_ops_filter_passed); 1923 } 1924 1925 static void damon_do_apply_schemes(struct damon_ctx *c, 1926 struct damon_target *t, 1927 struct damon_region *r) 1928 { 1929 struct damos *s; 1930 1931 damon_for_each_scheme(s, c) { 1932 struct damos_quota *quota = &s->quota; 1933 1934 if (c->passed_sample_intervals < s->next_apply_sis) 1935 continue; 1936 1937 if (!s->wmarks.activated) 1938 continue; 1939 1940 /* Check the quota */ 1941 if (quota->esz && quota->charged_sz >= quota->esz) 1942 continue; 1943 1944 if (damos_skip_charged_region(t, &r, s, c->min_sz_region)) 1945 continue; 1946 1947 if (!damos_valid_target(c, t, r, s)) 1948 continue; 1949 1950 damos_apply_scheme(c, t, r, s); 1951 } 1952 } 1953 1954 /* 1955 * damon_feed_loop_next_input() - get next input to achieve a target score. 1956 * @last_input The last input. 1957 * @score Current score that made with @last_input. 1958 * 1959 * Calculate next input to achieve the target score, based on the last input 1960 * and current score. Assuming the input and the score are positively 1961 * proportional, calculate how much compensation should be added to or 1962 * subtracted from the last input as a proportion of the last input. Avoid 1963 * next input always being zero by setting it non-zero always. In short form 1964 * (assuming support of float and signed calculations), the algorithm is as 1965 * below. 1966 * 1967 * next_input = max(last_input * ((goal - current) / goal + 1), 1) 1968 * 1969 * For simple implementation, we assume the target score is always 10,000. The 1970 * caller should adjust @score for this. 1971 * 1972 * Returns next input that assumed to achieve the target score. 1973 */ 1974 static unsigned long damon_feed_loop_next_input(unsigned long last_input, 1975 unsigned long score) 1976 { 1977 const unsigned long goal = 10000; 1978 /* Set minimum input as 10000 to avoid compensation be zero */ 1979 const unsigned long min_input = 10000; 1980 unsigned long score_goal_diff, compensation; 1981 bool over_achieving = score > goal; 1982 1983 if (score == goal) 1984 return last_input; 1985 if (score >= goal * 2) 1986 return min_input; 1987 1988 if (over_achieving) 1989 score_goal_diff = score - goal; 1990 else 1991 score_goal_diff = goal - score; 1992 1993 if (last_input < ULONG_MAX / score_goal_diff) 1994 compensation = last_input * score_goal_diff / goal; 1995 else 1996 compensation = last_input / goal * score_goal_diff; 1997 1998 if (over_achieving) 1999 return max(last_input - compensation, min_input); 2000 if (last_input < ULONG_MAX - compensation) 2001 return last_input + compensation; 2002 return ULONG_MAX; 2003 } 2004 2005 #ifdef CONFIG_PSI 2006 2007 static u64 damos_get_some_mem_psi_total(void) 2008 { 2009 if (static_branch_likely(&psi_disabled)) 2010 return 0; 2011 return div_u64(psi_system.total[PSI_AVGS][PSI_MEM * 2], 2012 NSEC_PER_USEC); 2013 } 2014 2015 #else /* CONFIG_PSI */ 2016 2017 static inline u64 damos_get_some_mem_psi_total(void) 2018 { 2019 return 0; 2020 }; 2021 2022 #endif /* CONFIG_PSI */ 2023 2024 #ifdef CONFIG_NUMA 2025 static __kernel_ulong_t damos_get_node_mem_bp( 2026 struct damos_quota_goal *goal) 2027 { 2028 struct sysinfo i; 2029 __kernel_ulong_t numerator; 2030 2031 si_meminfo_node(&i, goal->nid); 2032 if (goal->metric == DAMOS_QUOTA_NODE_MEM_USED_BP) 2033 numerator = i.totalram - i.freeram; 2034 else /* DAMOS_QUOTA_NODE_MEM_FREE_BP */ 2035 numerator = i.freeram; 2036 return numerator * 10000 / i.totalram; 2037 } 2038 #else 2039 static __kernel_ulong_t damos_get_node_mem_bp( 2040 struct damos_quota_goal *goal) 2041 { 2042 return 0; 2043 } 2044 #endif 2045 2046 2047 static void damos_set_quota_goal_current_value(struct damos_quota_goal *goal) 2048 { 2049 u64 now_psi_total; 2050 2051 switch (goal->metric) { 2052 case DAMOS_QUOTA_USER_INPUT: 2053 /* User should already set goal->current_value */ 2054 break; 2055 case DAMOS_QUOTA_SOME_MEM_PSI_US: 2056 now_psi_total = damos_get_some_mem_psi_total(); 2057 goal->current_value = now_psi_total - goal->last_psi_total; 2058 goal->last_psi_total = now_psi_total; 2059 break; 2060 case DAMOS_QUOTA_NODE_MEM_USED_BP: 2061 case DAMOS_QUOTA_NODE_MEM_FREE_BP: 2062 goal->current_value = damos_get_node_mem_bp(goal); 2063 break; 2064 default: 2065 break; 2066 } 2067 } 2068 2069 /* Return the highest score since it makes schemes least aggressive */ 2070 static unsigned long damos_quota_score(struct damos_quota *quota) 2071 { 2072 struct damos_quota_goal *goal; 2073 unsigned long highest_score = 0; 2074 2075 damos_for_each_quota_goal(goal, quota) { 2076 damos_set_quota_goal_current_value(goal); 2077 highest_score = max(highest_score, 2078 goal->current_value * 10000 / 2079 goal->target_value); 2080 } 2081 2082 return highest_score; 2083 } 2084 2085 /* 2086 * Called only if quota->ms, or quota->sz are set, or quota->goals is not empty 2087 */ 2088 static void damos_set_effective_quota(struct damos_quota *quota) 2089 { 2090 unsigned long throughput; 2091 unsigned long esz = ULONG_MAX; 2092 2093 if (!quota->ms && list_empty("a->goals)) { 2094 quota->esz = quota->sz; 2095 return; 2096 } 2097 2098 if (!list_empty("a->goals)) { 2099 unsigned long score = damos_quota_score(quota); 2100 2101 quota->esz_bp = damon_feed_loop_next_input( 2102 max(quota->esz_bp, 10000UL), 2103 score); 2104 esz = quota->esz_bp / 10000; 2105 } 2106 2107 if (quota->ms) { 2108 if (quota->total_charged_ns) 2109 throughput = mult_frac(quota->total_charged_sz, 1000000, 2110 quota->total_charged_ns); 2111 else 2112 throughput = PAGE_SIZE * 1024; 2113 esz = min(throughput * quota->ms, esz); 2114 } 2115 2116 if (quota->sz && quota->sz < esz) 2117 esz = quota->sz; 2118 2119 quota->esz = esz; 2120 } 2121 2122 static void damos_trace_esz(struct damon_ctx *c, struct damos *s, 2123 struct damos_quota *quota) 2124 { 2125 unsigned int cidx = 0, sidx = 0; 2126 struct damos *siter; 2127 2128 damon_for_each_scheme(siter, c) { 2129 if (siter == s) 2130 break; 2131 sidx++; 2132 } 2133 trace_damos_esz(cidx, sidx, quota->esz); 2134 } 2135 2136 static void damos_adjust_quota(struct damon_ctx *c, struct damos *s) 2137 { 2138 struct damos_quota *quota = &s->quota; 2139 struct damon_target *t; 2140 struct damon_region *r; 2141 unsigned long cumulated_sz, cached_esz; 2142 unsigned int score, max_score = 0; 2143 2144 if (!quota->ms && !quota->sz && list_empty("a->goals)) 2145 return; 2146 2147 /* First charge window */ 2148 if (!quota->total_charged_sz && !quota->charged_from) { 2149 quota->charged_from = jiffies; 2150 damos_set_effective_quota(quota); 2151 } 2152 2153 /* New charge window starts */ 2154 if (time_after_eq(jiffies, quota->charged_from + 2155 msecs_to_jiffies(quota->reset_interval))) { 2156 if (quota->esz && quota->charged_sz >= quota->esz) 2157 s->stat.qt_exceeds++; 2158 quota->total_charged_sz += quota->charged_sz; 2159 quota->charged_from = jiffies; 2160 quota->charged_sz = 0; 2161 if (trace_damos_esz_enabled()) 2162 cached_esz = quota->esz; 2163 damos_set_effective_quota(quota); 2164 if (trace_damos_esz_enabled() && quota->esz != cached_esz) 2165 damos_trace_esz(c, s, quota); 2166 } 2167 2168 if (!c->ops.get_scheme_score) 2169 return; 2170 2171 /* Fill up the score histogram */ 2172 memset(c->regions_score_histogram, 0, 2173 sizeof(*c->regions_score_histogram) * 2174 (DAMOS_MAX_SCORE + 1)); 2175 damon_for_each_target(t, c) { 2176 damon_for_each_region(r, t) { 2177 if (!__damos_valid_target(r, s)) 2178 continue; 2179 score = c->ops.get_scheme_score(c, t, r, s); 2180 c->regions_score_histogram[score] += 2181 damon_sz_region(r); 2182 if (score > max_score) 2183 max_score = score; 2184 } 2185 } 2186 2187 /* Set the min score limit */ 2188 for (cumulated_sz = 0, score = max_score; ; score--) { 2189 cumulated_sz += c->regions_score_histogram[score]; 2190 if (cumulated_sz >= quota->esz || !score) 2191 break; 2192 } 2193 quota->min_score = score; 2194 } 2195 2196 static void kdamond_apply_schemes(struct damon_ctx *c) 2197 { 2198 struct damon_target *t; 2199 struct damon_region *r, *next_r; 2200 struct damos *s; 2201 unsigned long sample_interval = c->attrs.sample_interval ? 2202 c->attrs.sample_interval : 1; 2203 bool has_schemes_to_apply = false; 2204 2205 damon_for_each_scheme(s, c) { 2206 if (c->passed_sample_intervals < s->next_apply_sis) 2207 continue; 2208 2209 if (!s->wmarks.activated) 2210 continue; 2211 2212 has_schemes_to_apply = true; 2213 2214 damos_adjust_quota(c, s); 2215 } 2216 2217 if (!has_schemes_to_apply) 2218 return; 2219 2220 mutex_lock(&c->walk_control_lock); 2221 damon_for_each_target(t, c) { 2222 damon_for_each_region_safe(r, next_r, t) 2223 damon_do_apply_schemes(c, t, r); 2224 } 2225 2226 damon_for_each_scheme(s, c) { 2227 if (c->passed_sample_intervals < s->next_apply_sis) 2228 continue; 2229 damos_walk_complete(c, s); 2230 s->next_apply_sis = c->passed_sample_intervals + 2231 (s->apply_interval_us ? s->apply_interval_us : 2232 c->attrs.aggr_interval) / sample_interval; 2233 s->last_applied = NULL; 2234 } 2235 mutex_unlock(&c->walk_control_lock); 2236 } 2237 2238 /* 2239 * Merge two adjacent regions into one region 2240 */ 2241 static void damon_merge_two_regions(struct damon_target *t, 2242 struct damon_region *l, struct damon_region *r) 2243 { 2244 unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r); 2245 2246 l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) / 2247 (sz_l + sz_r); 2248 l->nr_accesses_bp = l->nr_accesses * 10000; 2249 l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r); 2250 l->ar.end = r->ar.end; 2251 damon_destroy_region(r, t); 2252 } 2253 2254 /* 2255 * Merge adjacent regions having similar access frequencies 2256 * 2257 * t target affected by this merge operation 2258 * thres '->nr_accesses' diff threshold for the merge 2259 * sz_limit size upper limit of each region 2260 */ 2261 static void damon_merge_regions_of(struct damon_target *t, unsigned int thres, 2262 unsigned long sz_limit) 2263 { 2264 struct damon_region *r, *prev = NULL, *next; 2265 2266 damon_for_each_region_safe(r, next, t) { 2267 if (abs(r->nr_accesses - r->last_nr_accesses) > thres) 2268 r->age = 0; 2269 else if ((r->nr_accesses == 0) != (r->last_nr_accesses == 0)) 2270 r->age = 0; 2271 else 2272 r->age++; 2273 2274 if (prev && prev->ar.end == r->ar.start && 2275 abs(prev->nr_accesses - r->nr_accesses) <= thres && 2276 damon_sz_region(prev) + damon_sz_region(r) <= sz_limit) 2277 damon_merge_two_regions(t, prev, r); 2278 else 2279 prev = r; 2280 } 2281 } 2282 2283 /* 2284 * Merge adjacent regions having similar access frequencies 2285 * 2286 * threshold '->nr_accesses' diff threshold for the merge 2287 * sz_limit size upper limit of each region 2288 * 2289 * This function merges monitoring target regions which are adjacent and their 2290 * access frequencies are similar. This is for minimizing the monitoring 2291 * overhead under the dynamically changeable access pattern. If a merge was 2292 * unnecessarily made, later 'kdamond_split_regions()' will revert it. 2293 * 2294 * The total number of regions could be higher than the user-defined limit, 2295 * max_nr_regions for some cases. For example, the user can update 2296 * max_nr_regions to a number that lower than the current number of regions 2297 * while DAMON is running. For such a case, repeat merging until the limit is 2298 * met while increasing @threshold up to possible maximum level. 2299 */ 2300 static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold, 2301 unsigned long sz_limit) 2302 { 2303 struct damon_target *t; 2304 unsigned int nr_regions; 2305 unsigned int max_thres; 2306 2307 max_thres = c->attrs.aggr_interval / 2308 (c->attrs.sample_interval ? c->attrs.sample_interval : 1); 2309 do { 2310 nr_regions = 0; 2311 damon_for_each_target(t, c) { 2312 damon_merge_regions_of(t, threshold, sz_limit); 2313 nr_regions += damon_nr_regions(t); 2314 } 2315 threshold = max(1, threshold * 2); 2316 } while (nr_regions > c->attrs.max_nr_regions && 2317 threshold / 2 < max_thres); 2318 } 2319 2320 /* 2321 * Split a region in two 2322 * 2323 * r the region to be split 2324 * sz_r size of the first sub-region that will be made 2325 */ 2326 static void damon_split_region_at(struct damon_target *t, 2327 struct damon_region *r, unsigned long sz_r) 2328 { 2329 struct damon_region *new; 2330 2331 new = damon_new_region(r->ar.start + sz_r, r->ar.end); 2332 if (!new) 2333 return; 2334 2335 r->ar.end = new->ar.start; 2336 2337 new->age = r->age; 2338 new->last_nr_accesses = r->last_nr_accesses; 2339 new->nr_accesses_bp = r->nr_accesses_bp; 2340 new->nr_accesses = r->nr_accesses; 2341 2342 damon_insert_region(new, r, damon_next_region(r), t); 2343 } 2344 2345 /* Split every region in the given target into 'nr_subs' regions */ 2346 static void damon_split_regions_of(struct damon_target *t, int nr_subs, 2347 unsigned long min_sz_region) 2348 { 2349 struct damon_region *r, *next; 2350 unsigned long sz_region, sz_sub = 0; 2351 int i; 2352 2353 damon_for_each_region_safe(r, next, t) { 2354 sz_region = damon_sz_region(r); 2355 2356 for (i = 0; i < nr_subs - 1 && 2357 sz_region > 2 * min_sz_region; i++) { 2358 /* 2359 * Randomly select size of left sub-region to be at 2360 * least 10 percent and at most 90% of original region 2361 */ 2362 sz_sub = ALIGN_DOWN(damon_rand(1, 10) * 2363 sz_region / 10, min_sz_region); 2364 /* Do not allow blank region */ 2365 if (sz_sub == 0 || sz_sub >= sz_region) 2366 continue; 2367 2368 damon_split_region_at(t, r, sz_sub); 2369 sz_region = sz_sub; 2370 } 2371 } 2372 } 2373 2374 /* 2375 * Split every target region into randomly-sized small regions 2376 * 2377 * This function splits every target region into random-sized small regions if 2378 * current total number of the regions is equal or smaller than half of the 2379 * user-specified maximum number of regions. This is for maximizing the 2380 * monitoring accuracy under the dynamically changeable access patterns. If a 2381 * split was unnecessarily made, later 'kdamond_merge_regions()' will revert 2382 * it. 2383 */ 2384 static void kdamond_split_regions(struct damon_ctx *ctx) 2385 { 2386 struct damon_target *t; 2387 unsigned int nr_regions = 0; 2388 static unsigned int last_nr_regions; 2389 int nr_subregions = 2; 2390 2391 damon_for_each_target(t, ctx) 2392 nr_regions += damon_nr_regions(t); 2393 2394 if (nr_regions > ctx->attrs.max_nr_regions / 2) 2395 return; 2396 2397 /* Maybe the middle of the region has different access frequency */ 2398 if (last_nr_regions == nr_regions && 2399 nr_regions < ctx->attrs.max_nr_regions / 3) 2400 nr_subregions = 3; 2401 2402 damon_for_each_target(t, ctx) 2403 damon_split_regions_of(t, nr_subregions, ctx->min_sz_region); 2404 2405 last_nr_regions = nr_regions; 2406 } 2407 2408 /* 2409 * Check whether current monitoring should be stopped 2410 * 2411 * The monitoring is stopped when either the user requested to stop, or all 2412 * monitoring targets are invalid. 2413 * 2414 * Returns true if need to stop current monitoring. 2415 */ 2416 static bool kdamond_need_stop(struct damon_ctx *ctx) 2417 { 2418 struct damon_target *t; 2419 2420 if (kthread_should_stop()) 2421 return true; 2422 2423 if (!ctx->ops.target_valid) 2424 return false; 2425 2426 damon_for_each_target(t, ctx) { 2427 if (ctx->ops.target_valid(t)) 2428 return false; 2429 } 2430 2431 return true; 2432 } 2433 2434 static int damos_get_wmark_metric_value(enum damos_wmark_metric metric, 2435 unsigned long *metric_value) 2436 { 2437 switch (metric) { 2438 case DAMOS_WMARK_FREE_MEM_RATE: 2439 *metric_value = global_zone_page_state(NR_FREE_PAGES) * 1000 / 2440 totalram_pages(); 2441 return 0; 2442 default: 2443 break; 2444 } 2445 return -EINVAL; 2446 } 2447 2448 /* 2449 * Returns zero if the scheme is active. Else, returns time to wait for next 2450 * watermark check in micro-seconds. 2451 */ 2452 static unsigned long damos_wmark_wait_us(struct damos *scheme) 2453 { 2454 unsigned long metric; 2455 2456 if (damos_get_wmark_metric_value(scheme->wmarks.metric, &metric)) 2457 return 0; 2458 2459 /* higher than high watermark or lower than low watermark */ 2460 if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) { 2461 if (scheme->wmarks.activated) 2462 pr_debug("deactivate a scheme (%d) for %s wmark\n", 2463 scheme->action, 2464 str_high_low(metric > scheme->wmarks.high)); 2465 scheme->wmarks.activated = false; 2466 return scheme->wmarks.interval; 2467 } 2468 2469 /* inactive and higher than middle watermark */ 2470 if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) && 2471 !scheme->wmarks.activated) 2472 return scheme->wmarks.interval; 2473 2474 if (!scheme->wmarks.activated) 2475 pr_debug("activate a scheme (%d)\n", scheme->action); 2476 scheme->wmarks.activated = true; 2477 return 0; 2478 } 2479 2480 static void kdamond_usleep(unsigned long usecs) 2481 { 2482 if (usecs >= USLEEP_RANGE_UPPER_BOUND) 2483 schedule_timeout_idle(usecs_to_jiffies(usecs)); 2484 else 2485 usleep_range_idle(usecs, usecs + 1); 2486 } 2487 2488 /* 2489 * kdamond_call() - handle damon_call_control objects. 2490 * @ctx: The &struct damon_ctx of the kdamond. 2491 * @cancel: Whether to cancel the invocation of the function. 2492 * 2493 * If there are &struct damon_call_control requests that registered via 2494 * &damon_call() on @ctx, do or cancel the invocation of the function depending 2495 * on @cancel. @cancel is set when the kdamond is already out of the main loop 2496 * and therefore will be terminated. 2497 */ 2498 static void kdamond_call(struct damon_ctx *ctx, bool cancel) 2499 { 2500 struct damon_call_control *control; 2501 LIST_HEAD(repeat_controls); 2502 int ret = 0; 2503 2504 while (true) { 2505 mutex_lock(&ctx->call_controls_lock); 2506 control = list_first_entry_or_null(&ctx->call_controls, 2507 struct damon_call_control, list); 2508 mutex_unlock(&ctx->call_controls_lock); 2509 if (!control) 2510 break; 2511 if (cancel) { 2512 control->canceled = true; 2513 } else { 2514 ret = control->fn(control->data); 2515 control->return_code = ret; 2516 } 2517 mutex_lock(&ctx->call_controls_lock); 2518 list_del(&control->list); 2519 mutex_unlock(&ctx->call_controls_lock); 2520 if (!control->repeat) { 2521 complete(&control->completion); 2522 } else if (control->canceled && control->dealloc_on_cancel) { 2523 kfree(control); 2524 continue; 2525 } else { 2526 list_add(&control->list, &repeat_controls); 2527 } 2528 } 2529 control = list_first_entry_or_null(&repeat_controls, 2530 struct damon_call_control, list); 2531 if (!control || cancel) 2532 return; 2533 mutex_lock(&ctx->call_controls_lock); 2534 list_add_tail(&control->list, &ctx->call_controls); 2535 mutex_unlock(&ctx->call_controls_lock); 2536 } 2537 2538 /* Returns negative error code if it's not activated but should return */ 2539 static int kdamond_wait_activation(struct damon_ctx *ctx) 2540 { 2541 struct damos *s; 2542 unsigned long wait_time; 2543 unsigned long min_wait_time = 0; 2544 bool init_wait_time = false; 2545 2546 while (!kdamond_need_stop(ctx)) { 2547 damon_for_each_scheme(s, ctx) { 2548 wait_time = damos_wmark_wait_us(s); 2549 if (!init_wait_time || wait_time < min_wait_time) { 2550 init_wait_time = true; 2551 min_wait_time = wait_time; 2552 } 2553 } 2554 if (!min_wait_time) 2555 return 0; 2556 2557 kdamond_usleep(min_wait_time); 2558 2559 kdamond_call(ctx, false); 2560 damos_walk_cancel(ctx); 2561 } 2562 return -EBUSY; 2563 } 2564 2565 static void kdamond_init_ctx(struct damon_ctx *ctx) 2566 { 2567 unsigned long sample_interval = ctx->attrs.sample_interval ? 2568 ctx->attrs.sample_interval : 1; 2569 unsigned long apply_interval; 2570 struct damos *scheme; 2571 2572 ctx->passed_sample_intervals = 0; 2573 ctx->next_aggregation_sis = ctx->attrs.aggr_interval / sample_interval; 2574 ctx->next_ops_update_sis = ctx->attrs.ops_update_interval / 2575 sample_interval; 2576 ctx->next_intervals_tune_sis = ctx->next_aggregation_sis * 2577 ctx->attrs.intervals_goal.aggrs; 2578 2579 damon_for_each_scheme(scheme, ctx) { 2580 apply_interval = scheme->apply_interval_us ? 2581 scheme->apply_interval_us : ctx->attrs.aggr_interval; 2582 scheme->next_apply_sis = apply_interval / sample_interval; 2583 damos_set_filters_default_reject(scheme); 2584 } 2585 } 2586 2587 /* 2588 * The monitoring daemon that runs as a kernel thread 2589 */ 2590 static int kdamond_fn(void *data) 2591 { 2592 struct damon_ctx *ctx = data; 2593 struct damon_target *t; 2594 struct damon_region *r, *next; 2595 unsigned int max_nr_accesses = 0; 2596 unsigned long sz_limit = 0; 2597 2598 pr_debug("kdamond (%d) starts\n", current->pid); 2599 2600 complete(&ctx->kdamond_started); 2601 kdamond_init_ctx(ctx); 2602 2603 if (ctx->ops.init) 2604 ctx->ops.init(ctx); 2605 ctx->regions_score_histogram = kmalloc_array(DAMOS_MAX_SCORE + 1, 2606 sizeof(*ctx->regions_score_histogram), GFP_KERNEL); 2607 if (!ctx->regions_score_histogram) 2608 goto done; 2609 2610 sz_limit = damon_region_sz_limit(ctx); 2611 2612 while (!kdamond_need_stop(ctx)) { 2613 /* 2614 * ctx->attrs and ctx->next_{aggregation,ops_update}_sis could 2615 * be changed from kdamond_call(). Read the values here, and 2616 * use those for this iteration. That is, damon_set_attrs() 2617 * updated new values are respected from next iteration. 2618 */ 2619 unsigned long next_aggregation_sis = ctx->next_aggregation_sis; 2620 unsigned long next_ops_update_sis = ctx->next_ops_update_sis; 2621 unsigned long sample_interval = ctx->attrs.sample_interval; 2622 2623 if (kdamond_wait_activation(ctx)) 2624 break; 2625 2626 if (ctx->ops.prepare_access_checks) 2627 ctx->ops.prepare_access_checks(ctx); 2628 2629 kdamond_usleep(sample_interval); 2630 ctx->passed_sample_intervals++; 2631 2632 if (ctx->ops.check_accesses) 2633 max_nr_accesses = ctx->ops.check_accesses(ctx); 2634 2635 if (ctx->passed_sample_intervals >= next_aggregation_sis) 2636 kdamond_merge_regions(ctx, 2637 max_nr_accesses / 10, 2638 sz_limit); 2639 2640 /* 2641 * do kdamond_call() and kdamond_apply_schemes() after 2642 * kdamond_merge_regions() if possible, to reduce overhead 2643 */ 2644 kdamond_call(ctx, false); 2645 if (!list_empty(&ctx->schemes)) 2646 kdamond_apply_schemes(ctx); 2647 else 2648 damos_walk_cancel(ctx); 2649 2650 sample_interval = ctx->attrs.sample_interval ? 2651 ctx->attrs.sample_interval : 1; 2652 if (ctx->passed_sample_intervals >= next_aggregation_sis) { 2653 if (ctx->attrs.intervals_goal.aggrs && 2654 ctx->passed_sample_intervals >= 2655 ctx->next_intervals_tune_sis) { 2656 /* 2657 * ctx->next_aggregation_sis might be updated 2658 * from kdamond_call(). In the case, 2659 * damon_set_attrs() which will be called from 2660 * kdamond_tune_interval() may wrongly think 2661 * this is in the middle of the current 2662 * aggregation, and make aggregation 2663 * information reset for all regions. Then, 2664 * following kdamond_reset_aggregated() call 2665 * will make the region information invalid, 2666 * particularly for ->nr_accesses_bp. 2667 * 2668 * Reset ->next_aggregation_sis to avoid that. 2669 * It will anyway correctly updated after this 2670 * if caluse. 2671 */ 2672 ctx->next_aggregation_sis = 2673 next_aggregation_sis; 2674 ctx->next_intervals_tune_sis += 2675 ctx->attrs.aggr_samples * 2676 ctx->attrs.intervals_goal.aggrs; 2677 kdamond_tune_intervals(ctx); 2678 sample_interval = ctx->attrs.sample_interval ? 2679 ctx->attrs.sample_interval : 1; 2680 2681 } 2682 ctx->next_aggregation_sis = next_aggregation_sis + 2683 ctx->attrs.aggr_interval / sample_interval; 2684 2685 kdamond_reset_aggregated(ctx); 2686 kdamond_split_regions(ctx); 2687 } 2688 2689 if (ctx->passed_sample_intervals >= next_ops_update_sis) { 2690 ctx->next_ops_update_sis = next_ops_update_sis + 2691 ctx->attrs.ops_update_interval / 2692 sample_interval; 2693 if (ctx->ops.update) 2694 ctx->ops.update(ctx); 2695 sz_limit = damon_region_sz_limit(ctx); 2696 } 2697 } 2698 done: 2699 damon_for_each_target(t, ctx) { 2700 damon_for_each_region_safe(r, next, t) 2701 damon_destroy_region(r, t); 2702 } 2703 2704 if (ctx->ops.cleanup) 2705 ctx->ops.cleanup(ctx); 2706 kfree(ctx->regions_score_histogram); 2707 2708 pr_debug("kdamond (%d) finishes\n", current->pid); 2709 mutex_lock(&ctx->kdamond_lock); 2710 ctx->kdamond = NULL; 2711 mutex_unlock(&ctx->kdamond_lock); 2712 2713 kdamond_call(ctx, true); 2714 damos_walk_cancel(ctx); 2715 2716 mutex_lock(&damon_lock); 2717 nr_running_ctxs--; 2718 if (!nr_running_ctxs && running_exclusive_ctxs) 2719 running_exclusive_ctxs = false; 2720 mutex_unlock(&damon_lock); 2721 2722 damon_destroy_targets(ctx); 2723 return 0; 2724 } 2725 2726 /* 2727 * struct damon_system_ram_region - System RAM resource address region of 2728 * [@start, @end). 2729 * @start: Start address of the region (inclusive). 2730 * @end: End address of the region (exclusive). 2731 */ 2732 struct damon_system_ram_region { 2733 unsigned long start; 2734 unsigned long end; 2735 }; 2736 2737 static int walk_system_ram(struct resource *res, void *arg) 2738 { 2739 struct damon_system_ram_region *a = arg; 2740 2741 if (a->end - a->start < resource_size(res)) { 2742 a->start = res->start; 2743 a->end = res->end; 2744 } 2745 return 0; 2746 } 2747 2748 /* 2749 * Find biggest 'System RAM' resource and store its start and end address in 2750 * @start and @end, respectively. If no System RAM is found, returns false. 2751 */ 2752 static bool damon_find_biggest_system_ram(unsigned long *start, 2753 unsigned long *end) 2754 2755 { 2756 struct damon_system_ram_region arg = {}; 2757 2758 walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram); 2759 if (arg.end <= arg.start) 2760 return false; 2761 2762 *start = arg.start; 2763 *end = arg.end; 2764 return true; 2765 } 2766 2767 /** 2768 * damon_set_region_biggest_system_ram_default() - Set the region of the given 2769 * monitoring target as requested, or biggest 'System RAM'. 2770 * @t: The monitoring target to set the region. 2771 * @start: The pointer to the start address of the region. 2772 * @end: The pointer to the end address of the region. 2773 * 2774 * This function sets the region of @t as requested by @start and @end. If the 2775 * values of @start and @end are zero, however, this function finds the biggest 2776 * 'System RAM' resource and sets the region to cover the resource. In the 2777 * latter case, this function saves the start and end addresses of the resource 2778 * in @start and @end, respectively. 2779 * 2780 * Return: 0 on success, negative error code otherwise. 2781 */ 2782 int damon_set_region_biggest_system_ram_default(struct damon_target *t, 2783 unsigned long *start, unsigned long *end) 2784 { 2785 struct damon_addr_range addr_range; 2786 2787 if (*start > *end) 2788 return -EINVAL; 2789 2790 if (!*start && !*end && 2791 !damon_find_biggest_system_ram(start, end)) 2792 return -EINVAL; 2793 2794 addr_range.start = *start; 2795 addr_range.end = *end; 2796 return damon_set_regions(t, &addr_range, 1, DAMON_MIN_REGION); 2797 } 2798 2799 /* 2800 * damon_moving_sum() - Calculate an inferred moving sum value. 2801 * @mvsum: Inferred sum of the last @len_window values. 2802 * @nomvsum: Non-moving sum of the last discrete @len_window window values. 2803 * @len_window: The number of last values to take care of. 2804 * @new_value: New value that will be added to the pseudo moving sum. 2805 * 2806 * Moving sum (moving average * window size) is good for handling noise, but 2807 * the cost of keeping past values can be high for arbitrary window size. This 2808 * function implements a lightweight pseudo moving sum function that doesn't 2809 * keep the past window values. 2810 * 2811 * It simply assumes there was no noise in the past, and get the no-noise 2812 * assumed past value to drop from @nomvsum and @len_window. @nomvsum is a 2813 * non-moving sum of the last window. For example, if @len_window is 10 and we 2814 * have 25 values, @nomvsum is the sum of the 11th to 20th values of the 25 2815 * values. Hence, this function simply drops @nomvsum / @len_window from 2816 * given @mvsum and add @new_value. 2817 * 2818 * For example, if @len_window is 10 and @nomvsum is 50, the last 10 values for 2819 * the last window could be vary, e.g., 0, 10, 0, 10, 0, 10, 0, 0, 0, 20. For 2820 * calculating next moving sum with a new value, we should drop 0 from 50 and 2821 * add the new value. However, this function assumes it got value 5 for each 2822 * of the last ten times. Based on the assumption, when the next value is 2823 * measured, it drops the assumed past value, 5 from the current sum, and add 2824 * the new value to get the updated pseduo-moving average. 2825 * 2826 * This means the value could have errors, but the errors will be disappeared 2827 * for every @len_window aligned calls. For example, if @len_window is 10, the 2828 * pseudo moving sum with 11th value to 19th value would have an error. But 2829 * the sum with 20th value will not have the error. 2830 * 2831 * Return: Pseudo-moving average after getting the @new_value. 2832 */ 2833 static unsigned int damon_moving_sum(unsigned int mvsum, unsigned int nomvsum, 2834 unsigned int len_window, unsigned int new_value) 2835 { 2836 return mvsum - nomvsum / len_window + new_value; 2837 } 2838 2839 /** 2840 * damon_update_region_access_rate() - Update the access rate of a region. 2841 * @r: The DAMON region to update for its access check result. 2842 * @accessed: Whether the region has accessed during last sampling interval. 2843 * @attrs: The damon_attrs of the DAMON context. 2844 * 2845 * Update the access rate of a region with the region's last sampling interval 2846 * access check result. 2847 * 2848 * Usually this will be called by &damon_operations->check_accesses callback. 2849 */ 2850 void damon_update_region_access_rate(struct damon_region *r, bool accessed, 2851 struct damon_attrs *attrs) 2852 { 2853 unsigned int len_window = 1; 2854 2855 /* 2856 * sample_interval can be zero, but cannot be larger than 2857 * aggr_interval, owing to validation of damon_set_attrs(). 2858 */ 2859 if (attrs->sample_interval) 2860 len_window = damon_max_nr_accesses(attrs); 2861 r->nr_accesses_bp = damon_moving_sum(r->nr_accesses_bp, 2862 r->last_nr_accesses * 10000, len_window, 2863 accessed ? 10000 : 0); 2864 2865 if (accessed) 2866 r->nr_accesses++; 2867 } 2868 2869 /** 2870 * damon_initialized() - Return if DAMON is ready to be used. 2871 * 2872 * Return: true if DAMON is ready to be used, false otherwise. 2873 */ 2874 bool damon_initialized(void) 2875 { 2876 return damon_region_cache != NULL; 2877 } 2878 2879 static int __init damon_init(void) 2880 { 2881 damon_region_cache = KMEM_CACHE(damon_region, 0); 2882 if (unlikely(!damon_region_cache)) { 2883 pr_err("creating damon_region_cache fails\n"); 2884 return -ENOMEM; 2885 } 2886 2887 return 0; 2888 } 2889 2890 subsys_initcall(damon_init); 2891 2892 #include "tests/core-kunit.h" 2893