1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Data Access Monitor 4 * 5 * Author: SeongJae Park <sj@kernel.org> 6 */ 7 8 #define pr_fmt(fmt) "damon: " fmt 9 10 #include <linux/damon.h> 11 #include <linux/delay.h> 12 #include <linux/kthread.h> 13 #include <linux/mm.h> 14 #include <linux/psi.h> 15 #include <linux/slab.h> 16 #include <linux/string.h> 17 #include <linux/string_choices.h> 18 19 #define CREATE_TRACE_POINTS 20 #include <trace/events/damon.h> 21 22 #ifdef CONFIG_DAMON_KUNIT_TEST 23 #undef DAMON_MIN_REGION 24 #define DAMON_MIN_REGION 1 25 #endif 26 27 static DEFINE_MUTEX(damon_lock); 28 static int nr_running_ctxs; 29 static bool running_exclusive_ctxs; 30 31 static DEFINE_MUTEX(damon_ops_lock); 32 static struct damon_operations damon_registered_ops[NR_DAMON_OPS]; 33 34 static struct kmem_cache *damon_region_cache __ro_after_init; 35 36 /* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */ 37 static bool __damon_is_registered_ops(enum damon_ops_id id) 38 { 39 struct damon_operations empty_ops = {}; 40 41 if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops))) 42 return false; 43 return true; 44 } 45 46 /** 47 * damon_is_registered_ops() - Check if a given damon_operations is registered. 48 * @id: Id of the damon_operations to check if registered. 49 * 50 * Return: true if the ops is set, false otherwise. 51 */ 52 bool damon_is_registered_ops(enum damon_ops_id id) 53 { 54 bool registered; 55 56 if (id >= NR_DAMON_OPS) 57 return false; 58 mutex_lock(&damon_ops_lock); 59 registered = __damon_is_registered_ops(id); 60 mutex_unlock(&damon_ops_lock); 61 return registered; 62 } 63 64 /** 65 * damon_register_ops() - Register a monitoring operations set to DAMON. 66 * @ops: monitoring operations set to register. 67 * 68 * This function registers a monitoring operations set of valid &struct 69 * damon_operations->id so that others can find and use them later. 70 * 71 * Return: 0 on success, negative error code otherwise. 72 */ 73 int damon_register_ops(struct damon_operations *ops) 74 { 75 int err = 0; 76 77 if (ops->id >= NR_DAMON_OPS) 78 return -EINVAL; 79 80 mutex_lock(&damon_ops_lock); 81 /* Fail for already registered ops */ 82 if (__damon_is_registered_ops(ops->id)) 83 err = -EINVAL; 84 else 85 damon_registered_ops[ops->id] = *ops; 86 mutex_unlock(&damon_ops_lock); 87 return err; 88 } 89 90 /** 91 * damon_select_ops() - Select a monitoring operations to use with the context. 92 * @ctx: monitoring context to use the operations. 93 * @id: id of the registered monitoring operations to select. 94 * 95 * This function finds registered monitoring operations set of @id and make 96 * @ctx to use it. 97 * 98 * Return: 0 on success, negative error code otherwise. 99 */ 100 int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id) 101 { 102 int err = 0; 103 104 if (id >= NR_DAMON_OPS) 105 return -EINVAL; 106 107 mutex_lock(&damon_ops_lock); 108 if (!__damon_is_registered_ops(id)) 109 err = -EINVAL; 110 else 111 ctx->ops = damon_registered_ops[id]; 112 mutex_unlock(&damon_ops_lock); 113 return err; 114 } 115 116 /* 117 * Construct a damon_region struct 118 * 119 * Returns the pointer to the new struct if success, or NULL otherwise 120 */ 121 struct damon_region *damon_new_region(unsigned long start, unsigned long end) 122 { 123 struct damon_region *region; 124 125 region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL); 126 if (!region) 127 return NULL; 128 129 region->ar.start = start; 130 region->ar.end = end; 131 region->nr_accesses = 0; 132 region->nr_accesses_bp = 0; 133 INIT_LIST_HEAD(®ion->list); 134 135 region->age = 0; 136 region->last_nr_accesses = 0; 137 138 return region; 139 } 140 141 void damon_add_region(struct damon_region *r, struct damon_target *t) 142 { 143 list_add_tail(&r->list, &t->regions_list); 144 t->nr_regions++; 145 } 146 147 static void damon_del_region(struct damon_region *r, struct damon_target *t) 148 { 149 list_del(&r->list); 150 t->nr_regions--; 151 } 152 153 static void damon_free_region(struct damon_region *r) 154 { 155 kmem_cache_free(damon_region_cache, r); 156 } 157 158 void damon_destroy_region(struct damon_region *r, struct damon_target *t) 159 { 160 damon_del_region(r, t); 161 damon_free_region(r); 162 } 163 164 /* 165 * Check whether a region is intersecting an address range 166 * 167 * Returns true if it is. 168 */ 169 static bool damon_intersect(struct damon_region *r, 170 struct damon_addr_range *re) 171 { 172 return !(r->ar.end <= re->start || re->end <= r->ar.start); 173 } 174 175 /* 176 * Fill holes in regions with new regions. 177 */ 178 static int damon_fill_regions_holes(struct damon_region *first, 179 struct damon_region *last, struct damon_target *t) 180 { 181 struct damon_region *r = first; 182 183 damon_for_each_region_from(r, t) { 184 struct damon_region *next, *newr; 185 186 if (r == last) 187 break; 188 next = damon_next_region(r); 189 if (r->ar.end != next->ar.start) { 190 newr = damon_new_region(r->ar.end, next->ar.start); 191 if (!newr) 192 return -ENOMEM; 193 damon_insert_region(newr, r, next, t); 194 } 195 } 196 return 0; 197 } 198 199 /* 200 * damon_set_regions() - Set regions of a target for given address ranges. 201 * @t: the given target. 202 * @ranges: array of new monitoring target ranges. 203 * @nr_ranges: length of @ranges. 204 * 205 * This function adds new regions to, or modify existing regions of a 206 * monitoring target to fit in specific ranges. 207 * 208 * Return: 0 if success, or negative error code otherwise. 209 */ 210 int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges, 211 unsigned int nr_ranges) 212 { 213 struct damon_region *r, *next; 214 unsigned int i; 215 int err; 216 217 /* Remove regions which are not in the new ranges */ 218 damon_for_each_region_safe(r, next, t) { 219 for (i = 0; i < nr_ranges; i++) { 220 if (damon_intersect(r, &ranges[i])) 221 break; 222 } 223 if (i == nr_ranges) 224 damon_destroy_region(r, t); 225 } 226 227 r = damon_first_region(t); 228 /* Add new regions or resize existing regions to fit in the ranges */ 229 for (i = 0; i < nr_ranges; i++) { 230 struct damon_region *first = NULL, *last, *newr; 231 struct damon_addr_range *range; 232 233 range = &ranges[i]; 234 /* Get the first/last regions intersecting with the range */ 235 damon_for_each_region_from(r, t) { 236 if (damon_intersect(r, range)) { 237 if (!first) 238 first = r; 239 last = r; 240 } 241 if (r->ar.start >= range->end) 242 break; 243 } 244 if (!first) { 245 /* no region intersects with this range */ 246 newr = damon_new_region( 247 ALIGN_DOWN(range->start, 248 DAMON_MIN_REGION), 249 ALIGN(range->end, DAMON_MIN_REGION)); 250 if (!newr) 251 return -ENOMEM; 252 damon_insert_region(newr, damon_prev_region(r), r, t); 253 } else { 254 /* resize intersecting regions to fit in this range */ 255 first->ar.start = ALIGN_DOWN(range->start, 256 DAMON_MIN_REGION); 257 last->ar.end = ALIGN(range->end, DAMON_MIN_REGION); 258 259 /* fill possible holes in the range */ 260 err = damon_fill_regions_holes(first, last, t); 261 if (err) 262 return err; 263 } 264 } 265 return 0; 266 } 267 268 struct damos_filter *damos_new_filter(enum damos_filter_type type, 269 bool matching, bool allow) 270 { 271 struct damos_filter *filter; 272 273 filter = kmalloc(sizeof(*filter), GFP_KERNEL); 274 if (!filter) 275 return NULL; 276 filter->type = type; 277 filter->matching = matching; 278 filter->allow = allow; 279 INIT_LIST_HEAD(&filter->list); 280 return filter; 281 } 282 283 /** 284 * damos_filter_for_ops() - Return if the filter is ops-hndled one. 285 * @type: type of the filter. 286 * 287 * Return: true if the filter of @type needs to be handled by ops layer, false 288 * otherwise. 289 */ 290 bool damos_filter_for_ops(enum damos_filter_type type) 291 { 292 switch (type) { 293 case DAMOS_FILTER_TYPE_ADDR: 294 case DAMOS_FILTER_TYPE_TARGET: 295 return false; 296 default: 297 break; 298 } 299 return true; 300 } 301 302 void damos_add_filter(struct damos *s, struct damos_filter *f) 303 { 304 if (damos_filter_for_ops(f->type)) 305 list_add_tail(&f->list, &s->ops_filters); 306 else 307 list_add_tail(&f->list, &s->filters); 308 } 309 310 static void damos_del_filter(struct damos_filter *f) 311 { 312 list_del(&f->list); 313 } 314 315 static void damos_free_filter(struct damos_filter *f) 316 { 317 kfree(f); 318 } 319 320 void damos_destroy_filter(struct damos_filter *f) 321 { 322 damos_del_filter(f); 323 damos_free_filter(f); 324 } 325 326 struct damos_quota_goal *damos_new_quota_goal( 327 enum damos_quota_goal_metric metric, 328 unsigned long target_value) 329 { 330 struct damos_quota_goal *goal; 331 332 goal = kmalloc(sizeof(*goal), GFP_KERNEL); 333 if (!goal) 334 return NULL; 335 goal->metric = metric; 336 goal->target_value = target_value; 337 INIT_LIST_HEAD(&goal->list); 338 return goal; 339 } 340 341 void damos_add_quota_goal(struct damos_quota *q, struct damos_quota_goal *g) 342 { 343 list_add_tail(&g->list, &q->goals); 344 } 345 346 static void damos_del_quota_goal(struct damos_quota_goal *g) 347 { 348 list_del(&g->list); 349 } 350 351 static void damos_free_quota_goal(struct damos_quota_goal *g) 352 { 353 kfree(g); 354 } 355 356 void damos_destroy_quota_goal(struct damos_quota_goal *g) 357 { 358 damos_del_quota_goal(g); 359 damos_free_quota_goal(g); 360 } 361 362 /* initialize fields of @quota that normally API users wouldn't set */ 363 static struct damos_quota *damos_quota_init(struct damos_quota *quota) 364 { 365 quota->esz = 0; 366 quota->total_charged_sz = 0; 367 quota->total_charged_ns = 0; 368 quota->charged_sz = 0; 369 quota->charged_from = 0; 370 quota->charge_target_from = NULL; 371 quota->charge_addr_from = 0; 372 quota->esz_bp = 0; 373 return quota; 374 } 375 376 struct damos *damon_new_scheme(struct damos_access_pattern *pattern, 377 enum damos_action action, 378 unsigned long apply_interval_us, 379 struct damos_quota *quota, 380 struct damos_watermarks *wmarks, 381 int target_nid) 382 { 383 struct damos *scheme; 384 385 scheme = kmalloc(sizeof(*scheme), GFP_KERNEL); 386 if (!scheme) 387 return NULL; 388 scheme->pattern = *pattern; 389 scheme->action = action; 390 scheme->apply_interval_us = apply_interval_us; 391 /* 392 * next_apply_sis will be set when kdamond starts. While kdamond is 393 * running, it will also updated when it is added to the DAMON context, 394 * or damon_attrs are updated. 395 */ 396 scheme->next_apply_sis = 0; 397 scheme->walk_completed = false; 398 INIT_LIST_HEAD(&scheme->filters); 399 INIT_LIST_HEAD(&scheme->ops_filters); 400 scheme->stat = (struct damos_stat){}; 401 INIT_LIST_HEAD(&scheme->list); 402 403 scheme->quota = *(damos_quota_init(quota)); 404 /* quota.goals should be separately set by caller */ 405 INIT_LIST_HEAD(&scheme->quota.goals); 406 407 scheme->wmarks = *wmarks; 408 scheme->wmarks.activated = true; 409 410 scheme->target_nid = target_nid; 411 412 return scheme; 413 } 414 415 static void damos_set_next_apply_sis(struct damos *s, struct damon_ctx *ctx) 416 { 417 unsigned long sample_interval = ctx->attrs.sample_interval ? 418 ctx->attrs.sample_interval : 1; 419 unsigned long apply_interval = s->apply_interval_us ? 420 s->apply_interval_us : ctx->attrs.aggr_interval; 421 422 s->next_apply_sis = ctx->passed_sample_intervals + 423 apply_interval / sample_interval; 424 } 425 426 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s) 427 { 428 list_add_tail(&s->list, &ctx->schemes); 429 damos_set_next_apply_sis(s, ctx); 430 } 431 432 static void damon_del_scheme(struct damos *s) 433 { 434 list_del(&s->list); 435 } 436 437 static void damon_free_scheme(struct damos *s) 438 { 439 kfree(s); 440 } 441 442 void damon_destroy_scheme(struct damos *s) 443 { 444 struct damos_quota_goal *g, *g_next; 445 struct damos_filter *f, *next; 446 447 damos_for_each_quota_goal_safe(g, g_next, &s->quota) 448 damos_destroy_quota_goal(g); 449 450 damos_for_each_filter_safe(f, next, s) 451 damos_destroy_filter(f); 452 damon_del_scheme(s); 453 damon_free_scheme(s); 454 } 455 456 /* 457 * Construct a damon_target struct 458 * 459 * Returns the pointer to the new struct if success, or NULL otherwise 460 */ 461 struct damon_target *damon_new_target(void) 462 { 463 struct damon_target *t; 464 465 t = kmalloc(sizeof(*t), GFP_KERNEL); 466 if (!t) 467 return NULL; 468 469 t->pid = NULL; 470 t->nr_regions = 0; 471 INIT_LIST_HEAD(&t->regions_list); 472 INIT_LIST_HEAD(&t->list); 473 474 return t; 475 } 476 477 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t) 478 { 479 list_add_tail(&t->list, &ctx->adaptive_targets); 480 } 481 482 bool damon_targets_empty(struct damon_ctx *ctx) 483 { 484 return list_empty(&ctx->adaptive_targets); 485 } 486 487 static void damon_del_target(struct damon_target *t) 488 { 489 list_del(&t->list); 490 } 491 492 void damon_free_target(struct damon_target *t) 493 { 494 struct damon_region *r, *next; 495 496 damon_for_each_region_safe(r, next, t) 497 damon_free_region(r); 498 kfree(t); 499 } 500 501 void damon_destroy_target(struct damon_target *t) 502 { 503 damon_del_target(t); 504 damon_free_target(t); 505 } 506 507 unsigned int damon_nr_regions(struct damon_target *t) 508 { 509 return t->nr_regions; 510 } 511 512 struct damon_ctx *damon_new_ctx(void) 513 { 514 struct damon_ctx *ctx; 515 516 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 517 if (!ctx) 518 return NULL; 519 520 init_completion(&ctx->kdamond_started); 521 522 ctx->attrs.sample_interval = 5 * 1000; 523 ctx->attrs.aggr_interval = 100 * 1000; 524 ctx->attrs.ops_update_interval = 60 * 1000 * 1000; 525 526 ctx->passed_sample_intervals = 0; 527 /* These will be set from kdamond_init_ctx() */ 528 ctx->next_aggregation_sis = 0; 529 ctx->next_ops_update_sis = 0; 530 531 mutex_init(&ctx->kdamond_lock); 532 mutex_init(&ctx->call_control_lock); 533 mutex_init(&ctx->walk_control_lock); 534 535 ctx->attrs.min_nr_regions = 10; 536 ctx->attrs.max_nr_regions = 1000; 537 538 INIT_LIST_HEAD(&ctx->adaptive_targets); 539 INIT_LIST_HEAD(&ctx->schemes); 540 541 return ctx; 542 } 543 544 static void damon_destroy_targets(struct damon_ctx *ctx) 545 { 546 struct damon_target *t, *next_t; 547 548 if (ctx->ops.cleanup) { 549 ctx->ops.cleanup(ctx); 550 return; 551 } 552 553 damon_for_each_target_safe(t, next_t, ctx) 554 damon_destroy_target(t); 555 } 556 557 void damon_destroy_ctx(struct damon_ctx *ctx) 558 { 559 struct damos *s, *next_s; 560 561 damon_destroy_targets(ctx); 562 563 damon_for_each_scheme_safe(s, next_s, ctx) 564 damon_destroy_scheme(s); 565 566 kfree(ctx); 567 } 568 569 static unsigned int damon_age_for_new_attrs(unsigned int age, 570 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs) 571 { 572 return age * old_attrs->aggr_interval / new_attrs->aggr_interval; 573 } 574 575 /* convert access ratio in bp (per 10,000) to nr_accesses */ 576 static unsigned int damon_accesses_bp_to_nr_accesses( 577 unsigned int accesses_bp, struct damon_attrs *attrs) 578 { 579 return accesses_bp * damon_max_nr_accesses(attrs) / 10000; 580 } 581 582 /* 583 * Convert nr_accesses to access ratio in bp (per 10,000). 584 * 585 * Callers should ensure attrs.aggr_interval is not zero, like 586 * damon_update_monitoring_results() does . Otherwise, divide-by-zero would 587 * happen. 588 */ 589 static unsigned int damon_nr_accesses_to_accesses_bp( 590 unsigned int nr_accesses, struct damon_attrs *attrs) 591 { 592 return nr_accesses * 10000 / damon_max_nr_accesses(attrs); 593 } 594 595 static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses, 596 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs) 597 { 598 return damon_accesses_bp_to_nr_accesses( 599 damon_nr_accesses_to_accesses_bp( 600 nr_accesses, old_attrs), 601 new_attrs); 602 } 603 604 static void damon_update_monitoring_result(struct damon_region *r, 605 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs, 606 bool aggregating) 607 { 608 if (!aggregating) { 609 r->nr_accesses = damon_nr_accesses_for_new_attrs( 610 r->nr_accesses, old_attrs, new_attrs); 611 r->nr_accesses_bp = r->nr_accesses * 10000; 612 } else { 613 /* 614 * if this is called in the middle of the aggregation, reset 615 * the aggregations we made so far for this aggregation 616 * interval. In other words, make the status like 617 * kdamond_reset_aggregated() is called. 618 */ 619 r->last_nr_accesses = damon_nr_accesses_for_new_attrs( 620 r->last_nr_accesses, old_attrs, new_attrs); 621 r->nr_accesses_bp = r->last_nr_accesses * 10000; 622 r->nr_accesses = 0; 623 } 624 r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs); 625 } 626 627 /* 628 * region->nr_accesses is the number of sampling intervals in the last 629 * aggregation interval that access to the region has found, and region->age is 630 * the number of aggregation intervals that its access pattern has maintained. 631 * For the reason, the real meaning of the two fields depend on current 632 * sampling interval and aggregation interval. This function updates 633 * ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs. 634 */ 635 static void damon_update_monitoring_results(struct damon_ctx *ctx, 636 struct damon_attrs *new_attrs, bool aggregating) 637 { 638 struct damon_attrs *old_attrs = &ctx->attrs; 639 struct damon_target *t; 640 struct damon_region *r; 641 642 /* if any interval is zero, simply forgive conversion */ 643 if (!old_attrs->sample_interval || !old_attrs->aggr_interval || 644 !new_attrs->sample_interval || 645 !new_attrs->aggr_interval) 646 return; 647 648 damon_for_each_target(t, ctx) 649 damon_for_each_region(r, t) 650 damon_update_monitoring_result( 651 r, old_attrs, new_attrs, aggregating); 652 } 653 654 /* 655 * damon_valid_intervals_goal() - return if the intervals goal of @attrs is 656 * valid. 657 */ 658 static bool damon_valid_intervals_goal(struct damon_attrs *attrs) 659 { 660 struct damon_intervals_goal *goal = &attrs->intervals_goal; 661 662 /* tuning is disabled */ 663 if (!goal->aggrs) 664 return true; 665 if (goal->min_sample_us > goal->max_sample_us) 666 return false; 667 if (attrs->sample_interval < goal->min_sample_us || 668 goal->max_sample_us < attrs->sample_interval) 669 return false; 670 return true; 671 } 672 673 /** 674 * damon_set_attrs() - Set attributes for the monitoring. 675 * @ctx: monitoring context 676 * @attrs: monitoring attributes 677 * 678 * This function should be called while the kdamond is not running, an access 679 * check results aggregation is not ongoing (e.g., from &struct 680 * damon_callback->after_aggregation or &struct 681 * damon_callback->after_wmarks_check callbacks), or from damon_call(). 682 * 683 * Every time interval is in micro-seconds. 684 * 685 * Return: 0 on success, negative error code otherwise. 686 */ 687 int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs) 688 { 689 unsigned long sample_interval = attrs->sample_interval ? 690 attrs->sample_interval : 1; 691 struct damos *s; 692 bool aggregating = ctx->passed_sample_intervals < 693 ctx->next_aggregation_sis; 694 695 if (!damon_valid_intervals_goal(attrs)) 696 return -EINVAL; 697 698 if (attrs->min_nr_regions < 3) 699 return -EINVAL; 700 if (attrs->min_nr_regions > attrs->max_nr_regions) 701 return -EINVAL; 702 if (attrs->sample_interval > attrs->aggr_interval) 703 return -EINVAL; 704 705 /* calls from core-external doesn't set this. */ 706 if (!attrs->aggr_samples) 707 attrs->aggr_samples = attrs->aggr_interval / sample_interval; 708 709 ctx->next_aggregation_sis = ctx->passed_sample_intervals + 710 attrs->aggr_interval / sample_interval; 711 ctx->next_ops_update_sis = ctx->passed_sample_intervals + 712 attrs->ops_update_interval / sample_interval; 713 714 damon_update_monitoring_results(ctx, attrs, aggregating); 715 ctx->attrs = *attrs; 716 717 damon_for_each_scheme(s, ctx) 718 damos_set_next_apply_sis(s, ctx); 719 720 return 0; 721 } 722 723 /** 724 * damon_set_schemes() - Set data access monitoring based operation schemes. 725 * @ctx: monitoring context 726 * @schemes: array of the schemes 727 * @nr_schemes: number of entries in @schemes 728 * 729 * This function should not be called while the kdamond of the context is 730 * running. 731 */ 732 void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes, 733 ssize_t nr_schemes) 734 { 735 struct damos *s, *next; 736 ssize_t i; 737 738 damon_for_each_scheme_safe(s, next, ctx) 739 damon_destroy_scheme(s); 740 for (i = 0; i < nr_schemes; i++) 741 damon_add_scheme(ctx, schemes[i]); 742 } 743 744 static struct damos_quota_goal *damos_nth_quota_goal( 745 int n, struct damos_quota *q) 746 { 747 struct damos_quota_goal *goal; 748 int i = 0; 749 750 damos_for_each_quota_goal(goal, q) { 751 if (i++ == n) 752 return goal; 753 } 754 return NULL; 755 } 756 757 static void damos_commit_quota_goal( 758 struct damos_quota_goal *dst, struct damos_quota_goal *src) 759 { 760 dst->metric = src->metric; 761 dst->target_value = src->target_value; 762 if (dst->metric == DAMOS_QUOTA_USER_INPUT) 763 dst->current_value = src->current_value; 764 /* keep last_psi_total as is, since it will be updated in next cycle */ 765 } 766 767 /** 768 * damos_commit_quota_goals() - Commit DAMOS quota goals to another quota. 769 * @dst: The commit destination DAMOS quota. 770 * @src: The commit source DAMOS quota. 771 * 772 * Copies user-specified parameters for quota goals from @src to @dst. Users 773 * should use this function for quota goals-level parameters update of running 774 * DAMON contexts, instead of manual in-place updates. 775 * 776 * This function should be called from parameters-update safe context, like 777 * DAMON callbacks. 778 */ 779 int damos_commit_quota_goals(struct damos_quota *dst, struct damos_quota *src) 780 { 781 struct damos_quota_goal *dst_goal, *next, *src_goal, *new_goal; 782 int i = 0, j = 0; 783 784 damos_for_each_quota_goal_safe(dst_goal, next, dst) { 785 src_goal = damos_nth_quota_goal(i++, src); 786 if (src_goal) 787 damos_commit_quota_goal(dst_goal, src_goal); 788 else 789 damos_destroy_quota_goal(dst_goal); 790 } 791 damos_for_each_quota_goal_safe(src_goal, next, src) { 792 if (j++ < i) 793 continue; 794 new_goal = damos_new_quota_goal( 795 src_goal->metric, src_goal->target_value); 796 if (!new_goal) 797 return -ENOMEM; 798 damos_add_quota_goal(dst, new_goal); 799 } 800 return 0; 801 } 802 803 static int damos_commit_quota(struct damos_quota *dst, struct damos_quota *src) 804 { 805 int err; 806 807 dst->reset_interval = src->reset_interval; 808 dst->ms = src->ms; 809 dst->sz = src->sz; 810 err = damos_commit_quota_goals(dst, src); 811 if (err) 812 return err; 813 dst->weight_sz = src->weight_sz; 814 dst->weight_nr_accesses = src->weight_nr_accesses; 815 dst->weight_age = src->weight_age; 816 return 0; 817 } 818 819 static struct damos_filter *damos_nth_filter(int n, struct damos *s) 820 { 821 struct damos_filter *filter; 822 int i = 0; 823 824 damos_for_each_filter(filter, s) { 825 if (i++ == n) 826 return filter; 827 } 828 return NULL; 829 } 830 831 static void damos_commit_filter_arg( 832 struct damos_filter *dst, struct damos_filter *src) 833 { 834 switch (dst->type) { 835 case DAMOS_FILTER_TYPE_MEMCG: 836 dst->memcg_id = src->memcg_id; 837 break; 838 case DAMOS_FILTER_TYPE_ADDR: 839 dst->addr_range = src->addr_range; 840 break; 841 case DAMOS_FILTER_TYPE_TARGET: 842 dst->target_idx = src->target_idx; 843 break; 844 case DAMOS_FILTER_TYPE_HUGEPAGE_SIZE: 845 dst->sz_range = src->sz_range; 846 break; 847 default: 848 break; 849 } 850 } 851 852 static void damos_commit_filter( 853 struct damos_filter *dst, struct damos_filter *src) 854 { 855 dst->type = src->type; 856 dst->matching = src->matching; 857 damos_commit_filter_arg(dst, src); 858 } 859 860 static int damos_commit_core_filters(struct damos *dst, struct damos *src) 861 { 862 struct damos_filter *dst_filter, *next, *src_filter, *new_filter; 863 int i = 0, j = 0; 864 865 damos_for_each_filter_safe(dst_filter, next, dst) { 866 src_filter = damos_nth_filter(i++, src); 867 if (src_filter) 868 damos_commit_filter(dst_filter, src_filter); 869 else 870 damos_destroy_filter(dst_filter); 871 } 872 873 damos_for_each_filter_safe(src_filter, next, src) { 874 if (j++ < i) 875 continue; 876 877 new_filter = damos_new_filter( 878 src_filter->type, src_filter->matching, 879 src_filter->allow); 880 if (!new_filter) 881 return -ENOMEM; 882 damos_commit_filter_arg(new_filter, src_filter); 883 damos_add_filter(dst, new_filter); 884 } 885 return 0; 886 } 887 888 static int damos_commit_ops_filters(struct damos *dst, struct damos *src) 889 { 890 struct damos_filter *dst_filter, *next, *src_filter, *new_filter; 891 int i = 0, j = 0; 892 893 damos_for_each_ops_filter_safe(dst_filter, next, dst) { 894 src_filter = damos_nth_filter(i++, src); 895 if (src_filter) 896 damos_commit_filter(dst_filter, src_filter); 897 else 898 damos_destroy_filter(dst_filter); 899 } 900 901 damos_for_each_ops_filter_safe(src_filter, next, src) { 902 if (j++ < i) 903 continue; 904 905 new_filter = damos_new_filter( 906 src_filter->type, src_filter->matching, 907 src_filter->allow); 908 if (!new_filter) 909 return -ENOMEM; 910 damos_commit_filter_arg(new_filter, src_filter); 911 damos_add_filter(dst, new_filter); 912 } 913 return 0; 914 } 915 916 /** 917 * damos_filters_default_reject() - decide whether to reject memory that didn't 918 * match with any given filter. 919 * @filters: Given DAMOS filters of a group. 920 */ 921 static bool damos_filters_default_reject(struct list_head *filters) 922 { 923 struct damos_filter *last_filter; 924 925 if (list_empty(filters)) 926 return false; 927 last_filter = list_last_entry(filters, struct damos_filter, list); 928 return last_filter->allow; 929 } 930 931 static void damos_set_filters_default_reject(struct damos *s) 932 { 933 if (!list_empty(&s->ops_filters)) 934 s->core_filters_default_reject = false; 935 else 936 s->core_filters_default_reject = 937 damos_filters_default_reject(&s->filters); 938 s->ops_filters_default_reject = 939 damos_filters_default_reject(&s->ops_filters); 940 } 941 942 static int damos_commit_filters(struct damos *dst, struct damos *src) 943 { 944 int err; 945 946 err = damos_commit_core_filters(dst, src); 947 if (err) 948 return err; 949 err = damos_commit_ops_filters(dst, src); 950 if (err) 951 return err; 952 damos_set_filters_default_reject(dst); 953 return 0; 954 } 955 956 static struct damos *damon_nth_scheme(int n, struct damon_ctx *ctx) 957 { 958 struct damos *s; 959 int i = 0; 960 961 damon_for_each_scheme(s, ctx) { 962 if (i++ == n) 963 return s; 964 } 965 return NULL; 966 } 967 968 static int damos_commit(struct damos *dst, struct damos *src) 969 { 970 int err; 971 972 dst->pattern = src->pattern; 973 dst->action = src->action; 974 dst->apply_interval_us = src->apply_interval_us; 975 976 err = damos_commit_quota(&dst->quota, &src->quota); 977 if (err) 978 return err; 979 980 dst->wmarks = src->wmarks; 981 982 err = damos_commit_filters(dst, src); 983 return err; 984 } 985 986 static int damon_commit_schemes(struct damon_ctx *dst, struct damon_ctx *src) 987 { 988 struct damos *dst_scheme, *next, *src_scheme, *new_scheme; 989 int i = 0, j = 0, err; 990 991 damon_for_each_scheme_safe(dst_scheme, next, dst) { 992 src_scheme = damon_nth_scheme(i++, src); 993 if (src_scheme) { 994 err = damos_commit(dst_scheme, src_scheme); 995 if (err) 996 return err; 997 } else { 998 damon_destroy_scheme(dst_scheme); 999 } 1000 } 1001 1002 damon_for_each_scheme_safe(src_scheme, next, src) { 1003 if (j++ < i) 1004 continue; 1005 new_scheme = damon_new_scheme(&src_scheme->pattern, 1006 src_scheme->action, 1007 src_scheme->apply_interval_us, 1008 &src_scheme->quota, &src_scheme->wmarks, 1009 NUMA_NO_NODE); 1010 if (!new_scheme) 1011 return -ENOMEM; 1012 err = damos_commit(new_scheme, src_scheme); 1013 if (err) { 1014 damon_destroy_scheme(new_scheme); 1015 return err; 1016 } 1017 damon_add_scheme(dst, new_scheme); 1018 } 1019 return 0; 1020 } 1021 1022 static struct damon_target *damon_nth_target(int n, struct damon_ctx *ctx) 1023 { 1024 struct damon_target *t; 1025 int i = 0; 1026 1027 damon_for_each_target(t, ctx) { 1028 if (i++ == n) 1029 return t; 1030 } 1031 return NULL; 1032 } 1033 1034 /* 1035 * The caller should ensure the regions of @src are 1036 * 1. valid (end >= src) and 1037 * 2. sorted by starting address. 1038 * 1039 * If @src has no region, @dst keeps current regions. 1040 */ 1041 static int damon_commit_target_regions( 1042 struct damon_target *dst, struct damon_target *src) 1043 { 1044 struct damon_region *src_region; 1045 struct damon_addr_range *ranges; 1046 int i = 0, err; 1047 1048 damon_for_each_region(src_region, src) 1049 i++; 1050 if (!i) 1051 return 0; 1052 1053 ranges = kmalloc_array(i, sizeof(*ranges), GFP_KERNEL | __GFP_NOWARN); 1054 if (!ranges) 1055 return -ENOMEM; 1056 i = 0; 1057 damon_for_each_region(src_region, src) 1058 ranges[i++] = src_region->ar; 1059 err = damon_set_regions(dst, ranges, i); 1060 kfree(ranges); 1061 return err; 1062 } 1063 1064 static int damon_commit_target( 1065 struct damon_target *dst, bool dst_has_pid, 1066 struct damon_target *src, bool src_has_pid) 1067 { 1068 int err; 1069 1070 err = damon_commit_target_regions(dst, src); 1071 if (err) 1072 return err; 1073 if (dst_has_pid) 1074 put_pid(dst->pid); 1075 if (src_has_pid) 1076 get_pid(src->pid); 1077 dst->pid = src->pid; 1078 return 0; 1079 } 1080 1081 static int damon_commit_targets( 1082 struct damon_ctx *dst, struct damon_ctx *src) 1083 { 1084 struct damon_target *dst_target, *next, *src_target, *new_target; 1085 int i = 0, j = 0, err; 1086 1087 damon_for_each_target_safe(dst_target, next, dst) { 1088 src_target = damon_nth_target(i++, src); 1089 if (src_target) { 1090 err = damon_commit_target( 1091 dst_target, damon_target_has_pid(dst), 1092 src_target, damon_target_has_pid(src)); 1093 if (err) 1094 return err; 1095 } else { 1096 if (damon_target_has_pid(dst)) 1097 put_pid(dst_target->pid); 1098 damon_destroy_target(dst_target); 1099 } 1100 } 1101 1102 damon_for_each_target_safe(src_target, next, src) { 1103 if (j++ < i) 1104 continue; 1105 new_target = damon_new_target(); 1106 if (!new_target) 1107 return -ENOMEM; 1108 err = damon_commit_target(new_target, false, 1109 src_target, damon_target_has_pid(src)); 1110 if (err) { 1111 damon_destroy_target(new_target); 1112 return err; 1113 } 1114 damon_add_target(dst, new_target); 1115 } 1116 return 0; 1117 } 1118 1119 /** 1120 * damon_commit_ctx() - Commit parameters of a DAMON context to another. 1121 * @dst: The commit destination DAMON context. 1122 * @src: The commit source DAMON context. 1123 * 1124 * This function copies user-specified parameters from @src to @dst and update 1125 * the internal status and results accordingly. Users should use this function 1126 * for context-level parameters update of running context, instead of manual 1127 * in-place updates. 1128 * 1129 * This function should be called from parameters-update safe context, like 1130 * DAMON callbacks. 1131 */ 1132 int damon_commit_ctx(struct damon_ctx *dst, struct damon_ctx *src) 1133 { 1134 int err; 1135 1136 err = damon_commit_schemes(dst, src); 1137 if (err) 1138 return err; 1139 err = damon_commit_targets(dst, src); 1140 if (err) 1141 return err; 1142 /* 1143 * schemes and targets should be updated first, since 1144 * 1. damon_set_attrs() updates monitoring results of targets and 1145 * next_apply_sis of schemes, and 1146 * 2. ops update should be done after pid handling is done (target 1147 * committing require putting pids). 1148 */ 1149 err = damon_set_attrs(dst, &src->attrs); 1150 if (err) 1151 return err; 1152 dst->ops = src->ops; 1153 1154 return 0; 1155 } 1156 1157 /** 1158 * damon_nr_running_ctxs() - Return number of currently running contexts. 1159 */ 1160 int damon_nr_running_ctxs(void) 1161 { 1162 int nr_ctxs; 1163 1164 mutex_lock(&damon_lock); 1165 nr_ctxs = nr_running_ctxs; 1166 mutex_unlock(&damon_lock); 1167 1168 return nr_ctxs; 1169 } 1170 1171 /* Returns the size upper limit for each monitoring region */ 1172 static unsigned long damon_region_sz_limit(struct damon_ctx *ctx) 1173 { 1174 struct damon_target *t; 1175 struct damon_region *r; 1176 unsigned long sz = 0; 1177 1178 damon_for_each_target(t, ctx) { 1179 damon_for_each_region(r, t) 1180 sz += damon_sz_region(r); 1181 } 1182 1183 if (ctx->attrs.min_nr_regions) 1184 sz /= ctx->attrs.min_nr_regions; 1185 if (sz < DAMON_MIN_REGION) 1186 sz = DAMON_MIN_REGION; 1187 1188 return sz; 1189 } 1190 1191 static int kdamond_fn(void *data); 1192 1193 /* 1194 * __damon_start() - Starts monitoring with given context. 1195 * @ctx: monitoring context 1196 * 1197 * This function should be called while damon_lock is hold. 1198 * 1199 * Return: 0 on success, negative error code otherwise. 1200 */ 1201 static int __damon_start(struct damon_ctx *ctx) 1202 { 1203 int err = -EBUSY; 1204 1205 mutex_lock(&ctx->kdamond_lock); 1206 if (!ctx->kdamond) { 1207 err = 0; 1208 reinit_completion(&ctx->kdamond_started); 1209 ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d", 1210 nr_running_ctxs); 1211 if (IS_ERR(ctx->kdamond)) { 1212 err = PTR_ERR(ctx->kdamond); 1213 ctx->kdamond = NULL; 1214 } else { 1215 wait_for_completion(&ctx->kdamond_started); 1216 } 1217 } 1218 mutex_unlock(&ctx->kdamond_lock); 1219 1220 return err; 1221 } 1222 1223 /** 1224 * damon_start() - Starts the monitorings for a given group of contexts. 1225 * @ctxs: an array of the pointers for contexts to start monitoring 1226 * @nr_ctxs: size of @ctxs 1227 * @exclusive: exclusiveness of this contexts group 1228 * 1229 * This function starts a group of monitoring threads for a group of monitoring 1230 * contexts. One thread per each context is created and run in parallel. The 1231 * caller should handle synchronization between the threads by itself. If 1232 * @exclusive is true and a group of threads that created by other 1233 * 'damon_start()' call is currently running, this function does nothing but 1234 * returns -EBUSY. 1235 * 1236 * Return: 0 on success, negative error code otherwise. 1237 */ 1238 int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive) 1239 { 1240 int i; 1241 int err = 0; 1242 1243 mutex_lock(&damon_lock); 1244 if ((exclusive && nr_running_ctxs) || 1245 (!exclusive && running_exclusive_ctxs)) { 1246 mutex_unlock(&damon_lock); 1247 return -EBUSY; 1248 } 1249 1250 for (i = 0; i < nr_ctxs; i++) { 1251 err = __damon_start(ctxs[i]); 1252 if (err) 1253 break; 1254 nr_running_ctxs++; 1255 } 1256 if (exclusive && nr_running_ctxs) 1257 running_exclusive_ctxs = true; 1258 mutex_unlock(&damon_lock); 1259 1260 return err; 1261 } 1262 1263 /* 1264 * __damon_stop() - Stops monitoring of a given context. 1265 * @ctx: monitoring context 1266 * 1267 * Return: 0 on success, negative error code otherwise. 1268 */ 1269 static int __damon_stop(struct damon_ctx *ctx) 1270 { 1271 struct task_struct *tsk; 1272 1273 mutex_lock(&ctx->kdamond_lock); 1274 tsk = ctx->kdamond; 1275 if (tsk) { 1276 get_task_struct(tsk); 1277 mutex_unlock(&ctx->kdamond_lock); 1278 kthread_stop_put(tsk); 1279 return 0; 1280 } 1281 mutex_unlock(&ctx->kdamond_lock); 1282 1283 return -EPERM; 1284 } 1285 1286 /** 1287 * damon_stop() - Stops the monitorings for a given group of contexts. 1288 * @ctxs: an array of the pointers for contexts to stop monitoring 1289 * @nr_ctxs: size of @ctxs 1290 * 1291 * Return: 0 on success, negative error code otherwise. 1292 */ 1293 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs) 1294 { 1295 int i, err = 0; 1296 1297 for (i = 0; i < nr_ctxs; i++) { 1298 /* nr_running_ctxs is decremented in kdamond_fn */ 1299 err = __damon_stop(ctxs[i]); 1300 if (err) 1301 break; 1302 } 1303 return err; 1304 } 1305 1306 static bool damon_is_running(struct damon_ctx *ctx) 1307 { 1308 bool running; 1309 1310 mutex_lock(&ctx->kdamond_lock); 1311 running = ctx->kdamond != NULL; 1312 mutex_unlock(&ctx->kdamond_lock); 1313 return running; 1314 } 1315 1316 /** 1317 * damon_call() - Invoke a given function on DAMON worker thread (kdamond). 1318 * @ctx: DAMON context to call the function for. 1319 * @control: Control variable of the call request. 1320 * 1321 * Ask DAMON worker thread (kdamond) of @ctx to call a function with an 1322 * argument data that respectively passed via &damon_call_control->fn and 1323 * &damon_call_control->data of @control, and wait until the kdamond finishes 1324 * handling of the request. 1325 * 1326 * The kdamond executes the function with the argument in the main loop, just 1327 * after a sampling of the iteration is finished. The function can hence 1328 * safely access the internal data of the &struct damon_ctx without additional 1329 * synchronization. The return value of the function will be saved in 1330 * &damon_call_control->return_code. 1331 * 1332 * Return: 0 on success, negative error code otherwise. 1333 */ 1334 int damon_call(struct damon_ctx *ctx, struct damon_call_control *control) 1335 { 1336 init_completion(&control->completion); 1337 control->canceled = false; 1338 1339 mutex_lock(&ctx->call_control_lock); 1340 if (ctx->call_control) { 1341 mutex_unlock(&ctx->call_control_lock); 1342 return -EBUSY; 1343 } 1344 ctx->call_control = control; 1345 mutex_unlock(&ctx->call_control_lock); 1346 if (!damon_is_running(ctx)) 1347 return -EINVAL; 1348 wait_for_completion(&control->completion); 1349 if (control->canceled) 1350 return -ECANCELED; 1351 return 0; 1352 } 1353 1354 /** 1355 * damos_walk() - Invoke a given functions while DAMOS walk regions. 1356 * @ctx: DAMON context to call the functions for. 1357 * @control: Control variable of the walk request. 1358 * 1359 * Ask DAMON worker thread (kdamond) of @ctx to call a function for each region 1360 * that the kdamond will apply DAMOS action to, and wait until the kdamond 1361 * finishes handling of the request. 1362 * 1363 * The kdamond executes the given function in the main loop, for each region 1364 * just after it applied any DAMOS actions of @ctx to it. The invocation is 1365 * made only within one &damos->apply_interval_us since damos_walk() 1366 * invocation, for each scheme. The given callback function can hence safely 1367 * access the internal data of &struct damon_ctx and &struct damon_region that 1368 * each of the scheme will apply the action for next interval, without 1369 * additional synchronizations against the kdamond. If every scheme of @ctx 1370 * passed at least one &damos->apply_interval_us, kdamond marks the request as 1371 * completed so that damos_walk() can wakeup and return. 1372 * 1373 * Return: 0 on success, negative error code otherwise. 1374 */ 1375 int damos_walk(struct damon_ctx *ctx, struct damos_walk_control *control) 1376 { 1377 init_completion(&control->completion); 1378 control->canceled = false; 1379 mutex_lock(&ctx->walk_control_lock); 1380 if (ctx->walk_control) { 1381 mutex_unlock(&ctx->walk_control_lock); 1382 return -EBUSY; 1383 } 1384 ctx->walk_control = control; 1385 mutex_unlock(&ctx->walk_control_lock); 1386 if (!damon_is_running(ctx)) 1387 return -EINVAL; 1388 wait_for_completion(&control->completion); 1389 if (control->canceled) 1390 return -ECANCELED; 1391 return 0; 1392 } 1393 1394 /* 1395 * Reset the aggregated monitoring results ('nr_accesses' of each region). 1396 */ 1397 static void kdamond_reset_aggregated(struct damon_ctx *c) 1398 { 1399 struct damon_target *t; 1400 unsigned int ti = 0; /* target's index */ 1401 1402 damon_for_each_target(t, c) { 1403 struct damon_region *r; 1404 1405 damon_for_each_region(r, t) { 1406 trace_damon_aggregated(ti, r, damon_nr_regions(t)); 1407 r->last_nr_accesses = r->nr_accesses; 1408 r->nr_accesses = 0; 1409 } 1410 ti++; 1411 } 1412 } 1413 1414 static unsigned long damon_get_intervals_score(struct damon_ctx *c) 1415 { 1416 struct damon_target *t; 1417 struct damon_region *r; 1418 unsigned long sz_region, max_access_events = 0, access_events = 0; 1419 unsigned long target_access_events; 1420 unsigned long goal_bp = c->attrs.intervals_goal.access_bp; 1421 1422 damon_for_each_target(t, c) { 1423 damon_for_each_region(r, t) { 1424 sz_region = damon_sz_region(r); 1425 max_access_events += sz_region * c->attrs.aggr_samples; 1426 access_events += sz_region * r->nr_accesses; 1427 } 1428 } 1429 target_access_events = max_access_events * goal_bp / 10000; 1430 return access_events * 10000 / target_access_events; 1431 } 1432 1433 static unsigned long damon_feed_loop_next_input(unsigned long last_input, 1434 unsigned long score); 1435 1436 static unsigned long damon_get_intervals_adaptation_bp(struct damon_ctx *c) 1437 { 1438 unsigned long score_bp, adaptation_bp; 1439 1440 score_bp = damon_get_intervals_score(c); 1441 adaptation_bp = damon_feed_loop_next_input(100000000, score_bp) / 1442 10000; 1443 /* 1444 * adaptaion_bp ranges from 1 to 20,000. Avoid too rapid reduction of 1445 * the intervals by rescaling [1,10,000] to [5000, 10,000]. 1446 */ 1447 if (adaptation_bp <= 10000) 1448 adaptation_bp = 5000 + adaptation_bp / 2; 1449 return adaptation_bp; 1450 } 1451 1452 static void kdamond_tune_intervals(struct damon_ctx *c) 1453 { 1454 unsigned long adaptation_bp; 1455 struct damon_attrs new_attrs; 1456 struct damon_intervals_goal *goal; 1457 1458 adaptation_bp = damon_get_intervals_adaptation_bp(c); 1459 if (adaptation_bp == 10000) 1460 return; 1461 1462 new_attrs = c->attrs; 1463 goal = &c->attrs.intervals_goal; 1464 new_attrs.sample_interval = min(goal->max_sample_us, 1465 c->attrs.sample_interval * adaptation_bp / 10000); 1466 new_attrs.sample_interval = max(goal->min_sample_us, 1467 new_attrs.sample_interval); 1468 new_attrs.aggr_interval = new_attrs.sample_interval * 1469 c->attrs.aggr_samples; 1470 damon_set_attrs(c, &new_attrs); 1471 } 1472 1473 static void damon_split_region_at(struct damon_target *t, 1474 struct damon_region *r, unsigned long sz_r); 1475 1476 static bool __damos_valid_target(struct damon_region *r, struct damos *s) 1477 { 1478 unsigned long sz; 1479 unsigned int nr_accesses = r->nr_accesses_bp / 10000; 1480 1481 sz = damon_sz_region(r); 1482 return s->pattern.min_sz_region <= sz && 1483 sz <= s->pattern.max_sz_region && 1484 s->pattern.min_nr_accesses <= nr_accesses && 1485 nr_accesses <= s->pattern.max_nr_accesses && 1486 s->pattern.min_age_region <= r->age && 1487 r->age <= s->pattern.max_age_region; 1488 } 1489 1490 static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t, 1491 struct damon_region *r, struct damos *s) 1492 { 1493 bool ret = __damos_valid_target(r, s); 1494 1495 if (!ret || !s->quota.esz || !c->ops.get_scheme_score) 1496 return ret; 1497 1498 return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score; 1499 } 1500 1501 /* 1502 * damos_skip_charged_region() - Check if the given region or starting part of 1503 * it is already charged for the DAMOS quota. 1504 * @t: The target of the region. 1505 * @rp: The pointer to the region. 1506 * @s: The scheme to be applied. 1507 * 1508 * If a quota of a scheme has exceeded in a quota charge window, the scheme's 1509 * action would applied to only a part of the target access pattern fulfilling 1510 * regions. To avoid applying the scheme action to only already applied 1511 * regions, DAMON skips applying the scheme action to the regions that charged 1512 * in the previous charge window. 1513 * 1514 * This function checks if a given region should be skipped or not for the 1515 * reason. If only the starting part of the region has previously charged, 1516 * this function splits the region into two so that the second one covers the 1517 * area that not charged in the previous charge widnow and saves the second 1518 * region in *rp and returns false, so that the caller can apply DAMON action 1519 * to the second one. 1520 * 1521 * Return: true if the region should be entirely skipped, false otherwise. 1522 */ 1523 static bool damos_skip_charged_region(struct damon_target *t, 1524 struct damon_region **rp, struct damos *s) 1525 { 1526 struct damon_region *r = *rp; 1527 struct damos_quota *quota = &s->quota; 1528 unsigned long sz_to_skip; 1529 1530 /* Skip previously charged regions */ 1531 if (quota->charge_target_from) { 1532 if (t != quota->charge_target_from) 1533 return true; 1534 if (r == damon_last_region(t)) { 1535 quota->charge_target_from = NULL; 1536 quota->charge_addr_from = 0; 1537 return true; 1538 } 1539 if (quota->charge_addr_from && 1540 r->ar.end <= quota->charge_addr_from) 1541 return true; 1542 1543 if (quota->charge_addr_from && r->ar.start < 1544 quota->charge_addr_from) { 1545 sz_to_skip = ALIGN_DOWN(quota->charge_addr_from - 1546 r->ar.start, DAMON_MIN_REGION); 1547 if (!sz_to_skip) { 1548 if (damon_sz_region(r) <= DAMON_MIN_REGION) 1549 return true; 1550 sz_to_skip = DAMON_MIN_REGION; 1551 } 1552 damon_split_region_at(t, r, sz_to_skip); 1553 r = damon_next_region(r); 1554 *rp = r; 1555 } 1556 quota->charge_target_from = NULL; 1557 quota->charge_addr_from = 0; 1558 } 1559 return false; 1560 } 1561 1562 static void damos_update_stat(struct damos *s, 1563 unsigned long sz_tried, unsigned long sz_applied, 1564 unsigned long sz_ops_filter_passed) 1565 { 1566 s->stat.nr_tried++; 1567 s->stat.sz_tried += sz_tried; 1568 if (sz_applied) 1569 s->stat.nr_applied++; 1570 s->stat.sz_applied += sz_applied; 1571 s->stat.sz_ops_filter_passed += sz_ops_filter_passed; 1572 } 1573 1574 static bool damos_filter_match(struct damon_ctx *ctx, struct damon_target *t, 1575 struct damon_region *r, struct damos_filter *filter) 1576 { 1577 bool matched = false; 1578 struct damon_target *ti; 1579 int target_idx = 0; 1580 unsigned long start, end; 1581 1582 switch (filter->type) { 1583 case DAMOS_FILTER_TYPE_TARGET: 1584 damon_for_each_target(ti, ctx) { 1585 if (ti == t) 1586 break; 1587 target_idx++; 1588 } 1589 matched = target_idx == filter->target_idx; 1590 break; 1591 case DAMOS_FILTER_TYPE_ADDR: 1592 start = ALIGN_DOWN(filter->addr_range.start, DAMON_MIN_REGION); 1593 end = ALIGN_DOWN(filter->addr_range.end, DAMON_MIN_REGION); 1594 1595 /* inside the range */ 1596 if (start <= r->ar.start && r->ar.end <= end) { 1597 matched = true; 1598 break; 1599 } 1600 /* outside of the range */ 1601 if (r->ar.end <= start || end <= r->ar.start) { 1602 matched = false; 1603 break; 1604 } 1605 /* start before the range and overlap */ 1606 if (r->ar.start < start) { 1607 damon_split_region_at(t, r, start - r->ar.start); 1608 matched = false; 1609 break; 1610 } 1611 /* start inside the range */ 1612 damon_split_region_at(t, r, end - r->ar.start); 1613 matched = true; 1614 break; 1615 default: 1616 return false; 1617 } 1618 1619 return matched == filter->matching; 1620 } 1621 1622 static bool damos_filter_out(struct damon_ctx *ctx, struct damon_target *t, 1623 struct damon_region *r, struct damos *s) 1624 { 1625 struct damos_filter *filter; 1626 1627 s->core_filters_allowed = false; 1628 damos_for_each_filter(filter, s) { 1629 if (damos_filter_match(ctx, t, r, filter)) { 1630 if (filter->allow) 1631 s->core_filters_allowed = true; 1632 return !filter->allow; 1633 } 1634 } 1635 return s->core_filters_default_reject; 1636 } 1637 1638 /* 1639 * damos_walk_call_walk() - Call &damos_walk_control->walk_fn. 1640 * @ctx: The context of &damon_ctx->walk_control. 1641 * @t: The monitoring target of @r that @s will be applied. 1642 * @r: The region of @t that @s will be applied. 1643 * @s: The scheme of @ctx that will be applied to @r. 1644 * 1645 * This function is called from kdamond whenever it asked the operation set to 1646 * apply a DAMOS scheme action to a region. If a DAMOS walk request is 1647 * installed by damos_walk() and not yet uninstalled, invoke it. 1648 */ 1649 static void damos_walk_call_walk(struct damon_ctx *ctx, struct damon_target *t, 1650 struct damon_region *r, struct damos *s, 1651 unsigned long sz_filter_passed) 1652 { 1653 struct damos_walk_control *control; 1654 1655 if (s->walk_completed) 1656 return; 1657 1658 control = ctx->walk_control; 1659 if (!control) 1660 return; 1661 1662 control->walk_fn(control->data, ctx, t, r, s, sz_filter_passed); 1663 } 1664 1665 /* 1666 * damos_walk_complete() - Complete DAMOS walk request if all walks are done. 1667 * @ctx: The context of &damon_ctx->walk_control. 1668 * @s: A scheme of @ctx that all walks are now done. 1669 * 1670 * This function is called when kdamond finished applying the action of a DAMOS 1671 * scheme to all regions that eligible for the given &damos->apply_interval_us. 1672 * If every scheme of @ctx including @s now finished walking for at least one 1673 * &damos->apply_interval_us, this function makrs the handling of the given 1674 * DAMOS walk request is done, so that damos_walk() can wake up and return. 1675 */ 1676 static void damos_walk_complete(struct damon_ctx *ctx, struct damos *s) 1677 { 1678 struct damos *siter; 1679 struct damos_walk_control *control; 1680 1681 control = ctx->walk_control; 1682 if (!control) 1683 return; 1684 1685 s->walk_completed = true; 1686 /* if all schemes completed, signal completion to walker */ 1687 damon_for_each_scheme(siter, ctx) { 1688 if (!siter->walk_completed) 1689 return; 1690 } 1691 damon_for_each_scheme(siter, ctx) 1692 siter->walk_completed = false; 1693 1694 complete(&control->completion); 1695 ctx->walk_control = NULL; 1696 } 1697 1698 /* 1699 * damos_walk_cancel() - Cancel the current DAMOS walk request. 1700 * @ctx: The context of &damon_ctx->walk_control. 1701 * 1702 * This function is called when @ctx is deactivated by DAMOS watermarks, DAMOS 1703 * walk is requested but there is no DAMOS scheme to walk for, or the kdamond 1704 * is already out of the main loop and therefore gonna be terminated, and hence 1705 * cannot continue the walks. This function therefore marks the walk request 1706 * as canceled, so that damos_walk() can wake up and return. 1707 */ 1708 static void damos_walk_cancel(struct damon_ctx *ctx) 1709 { 1710 struct damos_walk_control *control; 1711 1712 mutex_lock(&ctx->walk_control_lock); 1713 control = ctx->walk_control; 1714 mutex_unlock(&ctx->walk_control_lock); 1715 1716 if (!control) 1717 return; 1718 control->canceled = true; 1719 complete(&control->completion); 1720 mutex_lock(&ctx->walk_control_lock); 1721 ctx->walk_control = NULL; 1722 mutex_unlock(&ctx->walk_control_lock); 1723 } 1724 1725 static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t, 1726 struct damon_region *r, struct damos *s) 1727 { 1728 struct damos_quota *quota = &s->quota; 1729 unsigned long sz = damon_sz_region(r); 1730 struct timespec64 begin, end; 1731 unsigned long sz_applied = 0; 1732 unsigned long sz_ops_filter_passed = 0; 1733 /* 1734 * We plan to support multiple context per kdamond, as DAMON sysfs 1735 * implies with 'nr_contexts' file. Nevertheless, only single context 1736 * per kdamond is supported for now. So, we can simply use '0' context 1737 * index here. 1738 */ 1739 unsigned int cidx = 0; 1740 struct damos *siter; /* schemes iterator */ 1741 unsigned int sidx = 0; 1742 struct damon_target *titer; /* targets iterator */ 1743 unsigned int tidx = 0; 1744 bool do_trace = false; 1745 1746 /* get indices for trace_damos_before_apply() */ 1747 if (trace_damos_before_apply_enabled()) { 1748 damon_for_each_scheme(siter, c) { 1749 if (siter == s) 1750 break; 1751 sidx++; 1752 } 1753 damon_for_each_target(titer, c) { 1754 if (titer == t) 1755 break; 1756 tidx++; 1757 } 1758 do_trace = true; 1759 } 1760 1761 if (c->ops.apply_scheme) { 1762 if (quota->esz && quota->charged_sz + sz > quota->esz) { 1763 sz = ALIGN_DOWN(quota->esz - quota->charged_sz, 1764 DAMON_MIN_REGION); 1765 if (!sz) 1766 goto update_stat; 1767 damon_split_region_at(t, r, sz); 1768 } 1769 if (damos_filter_out(c, t, r, s)) 1770 return; 1771 ktime_get_coarse_ts64(&begin); 1772 trace_damos_before_apply(cidx, sidx, tidx, r, 1773 damon_nr_regions(t), do_trace); 1774 sz_applied = c->ops.apply_scheme(c, t, r, s, 1775 &sz_ops_filter_passed); 1776 damos_walk_call_walk(c, t, r, s, sz_ops_filter_passed); 1777 ktime_get_coarse_ts64(&end); 1778 quota->total_charged_ns += timespec64_to_ns(&end) - 1779 timespec64_to_ns(&begin); 1780 quota->charged_sz += sz; 1781 if (quota->esz && quota->charged_sz >= quota->esz) { 1782 quota->charge_target_from = t; 1783 quota->charge_addr_from = r->ar.end + 1; 1784 } 1785 } 1786 if (s->action != DAMOS_STAT) 1787 r->age = 0; 1788 1789 update_stat: 1790 damos_update_stat(s, sz, sz_applied, sz_ops_filter_passed); 1791 } 1792 1793 static void damon_do_apply_schemes(struct damon_ctx *c, 1794 struct damon_target *t, 1795 struct damon_region *r) 1796 { 1797 struct damos *s; 1798 1799 damon_for_each_scheme(s, c) { 1800 struct damos_quota *quota = &s->quota; 1801 1802 if (c->passed_sample_intervals < s->next_apply_sis) 1803 continue; 1804 1805 if (!s->wmarks.activated) 1806 continue; 1807 1808 /* Check the quota */ 1809 if (quota->esz && quota->charged_sz >= quota->esz) 1810 continue; 1811 1812 if (damos_skip_charged_region(t, &r, s)) 1813 continue; 1814 1815 if (!damos_valid_target(c, t, r, s)) 1816 continue; 1817 1818 damos_apply_scheme(c, t, r, s); 1819 } 1820 } 1821 1822 /* 1823 * damon_feed_loop_next_input() - get next input to achieve a target score. 1824 * @last_input The last input. 1825 * @score Current score that made with @last_input. 1826 * 1827 * Calculate next input to achieve the target score, based on the last input 1828 * and current score. Assuming the input and the score are positively 1829 * proportional, calculate how much compensation should be added to or 1830 * subtracted from the last input as a proportion of the last input. Avoid 1831 * next input always being zero by setting it non-zero always. In short form 1832 * (assuming support of float and signed calculations), the algorithm is as 1833 * below. 1834 * 1835 * next_input = max(last_input * ((goal - current) / goal + 1), 1) 1836 * 1837 * For simple implementation, we assume the target score is always 10,000. The 1838 * caller should adjust @score for this. 1839 * 1840 * Returns next input that assumed to achieve the target score. 1841 */ 1842 static unsigned long damon_feed_loop_next_input(unsigned long last_input, 1843 unsigned long score) 1844 { 1845 const unsigned long goal = 10000; 1846 /* Set minimum input as 10000 to avoid compensation be zero */ 1847 const unsigned long min_input = 10000; 1848 unsigned long score_goal_diff, compensation; 1849 bool over_achieving = score > goal; 1850 1851 if (score == goal) 1852 return last_input; 1853 if (score >= goal * 2) 1854 return min_input; 1855 1856 if (over_achieving) 1857 score_goal_diff = score - goal; 1858 else 1859 score_goal_diff = goal - score; 1860 1861 if (last_input < ULONG_MAX / score_goal_diff) 1862 compensation = last_input * score_goal_diff / goal; 1863 else 1864 compensation = last_input / goal * score_goal_diff; 1865 1866 if (over_achieving) 1867 return max(last_input - compensation, min_input); 1868 if (last_input < ULONG_MAX - compensation) 1869 return last_input + compensation; 1870 return ULONG_MAX; 1871 } 1872 1873 #ifdef CONFIG_PSI 1874 1875 static u64 damos_get_some_mem_psi_total(void) 1876 { 1877 if (static_branch_likely(&psi_disabled)) 1878 return 0; 1879 return div_u64(psi_system.total[PSI_AVGS][PSI_MEM * 2], 1880 NSEC_PER_USEC); 1881 } 1882 1883 #else /* CONFIG_PSI */ 1884 1885 static inline u64 damos_get_some_mem_psi_total(void) 1886 { 1887 return 0; 1888 }; 1889 1890 #endif /* CONFIG_PSI */ 1891 1892 static void damos_set_quota_goal_current_value(struct damos_quota_goal *goal) 1893 { 1894 u64 now_psi_total; 1895 1896 switch (goal->metric) { 1897 case DAMOS_QUOTA_USER_INPUT: 1898 /* User should already set goal->current_value */ 1899 break; 1900 case DAMOS_QUOTA_SOME_MEM_PSI_US: 1901 now_psi_total = damos_get_some_mem_psi_total(); 1902 goal->current_value = now_psi_total - goal->last_psi_total; 1903 goal->last_psi_total = now_psi_total; 1904 break; 1905 default: 1906 break; 1907 } 1908 } 1909 1910 /* Return the highest score since it makes schemes least aggressive */ 1911 static unsigned long damos_quota_score(struct damos_quota *quota) 1912 { 1913 struct damos_quota_goal *goal; 1914 unsigned long highest_score = 0; 1915 1916 damos_for_each_quota_goal(goal, quota) { 1917 damos_set_quota_goal_current_value(goal); 1918 highest_score = max(highest_score, 1919 goal->current_value * 10000 / 1920 goal->target_value); 1921 } 1922 1923 return highest_score; 1924 } 1925 1926 /* 1927 * Called only if quota->ms, or quota->sz are set, or quota->goals is not empty 1928 */ 1929 static void damos_set_effective_quota(struct damos_quota *quota) 1930 { 1931 unsigned long throughput; 1932 unsigned long esz = ULONG_MAX; 1933 1934 if (!quota->ms && list_empty("a->goals)) { 1935 quota->esz = quota->sz; 1936 return; 1937 } 1938 1939 if (!list_empty("a->goals)) { 1940 unsigned long score = damos_quota_score(quota); 1941 1942 quota->esz_bp = damon_feed_loop_next_input( 1943 max(quota->esz_bp, 10000UL), 1944 score); 1945 esz = quota->esz_bp / 10000; 1946 } 1947 1948 if (quota->ms) { 1949 if (quota->total_charged_ns) 1950 throughput = quota->total_charged_sz * 1000000 / 1951 quota->total_charged_ns; 1952 else 1953 throughput = PAGE_SIZE * 1024; 1954 esz = min(throughput * quota->ms, esz); 1955 } 1956 1957 if (quota->sz && quota->sz < esz) 1958 esz = quota->sz; 1959 1960 quota->esz = esz; 1961 } 1962 1963 static void damos_adjust_quota(struct damon_ctx *c, struct damos *s) 1964 { 1965 struct damos_quota *quota = &s->quota; 1966 struct damon_target *t; 1967 struct damon_region *r; 1968 unsigned long cumulated_sz; 1969 unsigned int score, max_score = 0; 1970 1971 if (!quota->ms && !quota->sz && list_empty("a->goals)) 1972 return; 1973 1974 /* New charge window starts */ 1975 if (time_after_eq(jiffies, quota->charged_from + 1976 msecs_to_jiffies(quota->reset_interval))) { 1977 if (quota->esz && quota->charged_sz >= quota->esz) 1978 s->stat.qt_exceeds++; 1979 quota->total_charged_sz += quota->charged_sz; 1980 quota->charged_from = jiffies; 1981 quota->charged_sz = 0; 1982 damos_set_effective_quota(quota); 1983 } 1984 1985 if (!c->ops.get_scheme_score) 1986 return; 1987 1988 /* Fill up the score histogram */ 1989 memset(c->regions_score_histogram, 0, 1990 sizeof(*c->regions_score_histogram) * 1991 (DAMOS_MAX_SCORE + 1)); 1992 damon_for_each_target(t, c) { 1993 damon_for_each_region(r, t) { 1994 if (!__damos_valid_target(r, s)) 1995 continue; 1996 score = c->ops.get_scheme_score(c, t, r, s); 1997 c->regions_score_histogram[score] += 1998 damon_sz_region(r); 1999 if (score > max_score) 2000 max_score = score; 2001 } 2002 } 2003 2004 /* Set the min score limit */ 2005 for (cumulated_sz = 0, score = max_score; ; score--) { 2006 cumulated_sz += c->regions_score_histogram[score]; 2007 if (cumulated_sz >= quota->esz || !score) 2008 break; 2009 } 2010 quota->min_score = score; 2011 } 2012 2013 static void kdamond_apply_schemes(struct damon_ctx *c) 2014 { 2015 struct damon_target *t; 2016 struct damon_region *r, *next_r; 2017 struct damos *s; 2018 unsigned long sample_interval = c->attrs.sample_interval ? 2019 c->attrs.sample_interval : 1; 2020 bool has_schemes_to_apply = false; 2021 2022 damon_for_each_scheme(s, c) { 2023 if (c->passed_sample_intervals < s->next_apply_sis) 2024 continue; 2025 2026 if (!s->wmarks.activated) 2027 continue; 2028 2029 has_schemes_to_apply = true; 2030 2031 damos_adjust_quota(c, s); 2032 } 2033 2034 if (!has_schemes_to_apply) 2035 return; 2036 2037 mutex_lock(&c->walk_control_lock); 2038 damon_for_each_target(t, c) { 2039 damon_for_each_region_safe(r, next_r, t) 2040 damon_do_apply_schemes(c, t, r); 2041 } 2042 2043 damon_for_each_scheme(s, c) { 2044 if (c->passed_sample_intervals < s->next_apply_sis) 2045 continue; 2046 damos_walk_complete(c, s); 2047 s->next_apply_sis = c->passed_sample_intervals + 2048 (s->apply_interval_us ? s->apply_interval_us : 2049 c->attrs.aggr_interval) / sample_interval; 2050 s->last_applied = NULL; 2051 } 2052 mutex_unlock(&c->walk_control_lock); 2053 } 2054 2055 /* 2056 * Merge two adjacent regions into one region 2057 */ 2058 static void damon_merge_two_regions(struct damon_target *t, 2059 struct damon_region *l, struct damon_region *r) 2060 { 2061 unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r); 2062 2063 l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) / 2064 (sz_l + sz_r); 2065 l->nr_accesses_bp = l->nr_accesses * 10000; 2066 l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r); 2067 l->ar.end = r->ar.end; 2068 damon_destroy_region(r, t); 2069 } 2070 2071 /* 2072 * Merge adjacent regions having similar access frequencies 2073 * 2074 * t target affected by this merge operation 2075 * thres '->nr_accesses' diff threshold for the merge 2076 * sz_limit size upper limit of each region 2077 */ 2078 static void damon_merge_regions_of(struct damon_target *t, unsigned int thres, 2079 unsigned long sz_limit) 2080 { 2081 struct damon_region *r, *prev = NULL, *next; 2082 2083 damon_for_each_region_safe(r, next, t) { 2084 if (abs(r->nr_accesses - r->last_nr_accesses) > thres) 2085 r->age = 0; 2086 else 2087 r->age++; 2088 2089 if (prev && prev->ar.end == r->ar.start && 2090 abs(prev->nr_accesses - r->nr_accesses) <= thres && 2091 damon_sz_region(prev) + damon_sz_region(r) <= sz_limit) 2092 damon_merge_two_regions(t, prev, r); 2093 else 2094 prev = r; 2095 } 2096 } 2097 2098 /* 2099 * Merge adjacent regions having similar access frequencies 2100 * 2101 * threshold '->nr_accesses' diff threshold for the merge 2102 * sz_limit size upper limit of each region 2103 * 2104 * This function merges monitoring target regions which are adjacent and their 2105 * access frequencies are similar. This is for minimizing the monitoring 2106 * overhead under the dynamically changeable access pattern. If a merge was 2107 * unnecessarily made, later 'kdamond_split_regions()' will revert it. 2108 * 2109 * The total number of regions could be higher than the user-defined limit, 2110 * max_nr_regions for some cases. For example, the user can update 2111 * max_nr_regions to a number that lower than the current number of regions 2112 * while DAMON is running. For such a case, repeat merging until the limit is 2113 * met while increasing @threshold up to possible maximum level. 2114 */ 2115 static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold, 2116 unsigned long sz_limit) 2117 { 2118 struct damon_target *t; 2119 unsigned int nr_regions; 2120 unsigned int max_thres; 2121 2122 max_thres = c->attrs.aggr_interval / 2123 (c->attrs.sample_interval ? c->attrs.sample_interval : 1); 2124 do { 2125 nr_regions = 0; 2126 damon_for_each_target(t, c) { 2127 damon_merge_regions_of(t, threshold, sz_limit); 2128 nr_regions += damon_nr_regions(t); 2129 } 2130 threshold = max(1, threshold * 2); 2131 } while (nr_regions > c->attrs.max_nr_regions && 2132 threshold / 2 < max_thres); 2133 } 2134 2135 /* 2136 * Split a region in two 2137 * 2138 * r the region to be split 2139 * sz_r size of the first sub-region that will be made 2140 */ 2141 static void damon_split_region_at(struct damon_target *t, 2142 struct damon_region *r, unsigned long sz_r) 2143 { 2144 struct damon_region *new; 2145 2146 new = damon_new_region(r->ar.start + sz_r, r->ar.end); 2147 if (!new) 2148 return; 2149 2150 r->ar.end = new->ar.start; 2151 2152 new->age = r->age; 2153 new->last_nr_accesses = r->last_nr_accesses; 2154 new->nr_accesses_bp = r->nr_accesses_bp; 2155 new->nr_accesses = r->nr_accesses; 2156 2157 damon_insert_region(new, r, damon_next_region(r), t); 2158 } 2159 2160 /* Split every region in the given target into 'nr_subs' regions */ 2161 static void damon_split_regions_of(struct damon_target *t, int nr_subs) 2162 { 2163 struct damon_region *r, *next; 2164 unsigned long sz_region, sz_sub = 0; 2165 int i; 2166 2167 damon_for_each_region_safe(r, next, t) { 2168 sz_region = damon_sz_region(r); 2169 2170 for (i = 0; i < nr_subs - 1 && 2171 sz_region > 2 * DAMON_MIN_REGION; i++) { 2172 /* 2173 * Randomly select size of left sub-region to be at 2174 * least 10 percent and at most 90% of original region 2175 */ 2176 sz_sub = ALIGN_DOWN(damon_rand(1, 10) * 2177 sz_region / 10, DAMON_MIN_REGION); 2178 /* Do not allow blank region */ 2179 if (sz_sub == 0 || sz_sub >= sz_region) 2180 continue; 2181 2182 damon_split_region_at(t, r, sz_sub); 2183 sz_region = sz_sub; 2184 } 2185 } 2186 } 2187 2188 /* 2189 * Split every target region into randomly-sized small regions 2190 * 2191 * This function splits every target region into random-sized small regions if 2192 * current total number of the regions is equal or smaller than half of the 2193 * user-specified maximum number of regions. This is for maximizing the 2194 * monitoring accuracy under the dynamically changeable access patterns. If a 2195 * split was unnecessarily made, later 'kdamond_merge_regions()' will revert 2196 * it. 2197 */ 2198 static void kdamond_split_regions(struct damon_ctx *ctx) 2199 { 2200 struct damon_target *t; 2201 unsigned int nr_regions = 0; 2202 static unsigned int last_nr_regions; 2203 int nr_subregions = 2; 2204 2205 damon_for_each_target(t, ctx) 2206 nr_regions += damon_nr_regions(t); 2207 2208 if (nr_regions > ctx->attrs.max_nr_regions / 2) 2209 return; 2210 2211 /* Maybe the middle of the region has different access frequency */ 2212 if (last_nr_regions == nr_regions && 2213 nr_regions < ctx->attrs.max_nr_regions / 3) 2214 nr_subregions = 3; 2215 2216 damon_for_each_target(t, ctx) 2217 damon_split_regions_of(t, nr_subregions); 2218 2219 last_nr_regions = nr_regions; 2220 } 2221 2222 /* 2223 * Check whether current monitoring should be stopped 2224 * 2225 * The monitoring is stopped when either the user requested to stop, or all 2226 * monitoring targets are invalid. 2227 * 2228 * Returns true if need to stop current monitoring. 2229 */ 2230 static bool kdamond_need_stop(struct damon_ctx *ctx) 2231 { 2232 struct damon_target *t; 2233 2234 if (kthread_should_stop()) 2235 return true; 2236 2237 if (!ctx->ops.target_valid) 2238 return false; 2239 2240 damon_for_each_target(t, ctx) { 2241 if (ctx->ops.target_valid(t)) 2242 return false; 2243 } 2244 2245 return true; 2246 } 2247 2248 static int damos_get_wmark_metric_value(enum damos_wmark_metric metric, 2249 unsigned long *metric_value) 2250 { 2251 switch (metric) { 2252 case DAMOS_WMARK_FREE_MEM_RATE: 2253 *metric_value = global_zone_page_state(NR_FREE_PAGES) * 1000 / 2254 totalram_pages(); 2255 return 0; 2256 default: 2257 break; 2258 } 2259 return -EINVAL; 2260 } 2261 2262 /* 2263 * Returns zero if the scheme is active. Else, returns time to wait for next 2264 * watermark check in micro-seconds. 2265 */ 2266 static unsigned long damos_wmark_wait_us(struct damos *scheme) 2267 { 2268 unsigned long metric; 2269 2270 if (damos_get_wmark_metric_value(scheme->wmarks.metric, &metric)) 2271 return 0; 2272 2273 /* higher than high watermark or lower than low watermark */ 2274 if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) { 2275 if (scheme->wmarks.activated) 2276 pr_debug("deactivate a scheme (%d) for %s wmark\n", 2277 scheme->action, 2278 str_high_low(metric > scheme->wmarks.high)); 2279 scheme->wmarks.activated = false; 2280 return scheme->wmarks.interval; 2281 } 2282 2283 /* inactive and higher than middle watermark */ 2284 if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) && 2285 !scheme->wmarks.activated) 2286 return scheme->wmarks.interval; 2287 2288 if (!scheme->wmarks.activated) 2289 pr_debug("activate a scheme (%d)\n", scheme->action); 2290 scheme->wmarks.activated = true; 2291 return 0; 2292 } 2293 2294 static void kdamond_usleep(unsigned long usecs) 2295 { 2296 if (usecs >= USLEEP_RANGE_UPPER_BOUND) 2297 schedule_timeout_idle(usecs_to_jiffies(usecs)); 2298 else 2299 usleep_range_idle(usecs, usecs + 1); 2300 } 2301 2302 /* 2303 * kdamond_call() - handle damon_call_control. 2304 * @ctx: The &struct damon_ctx of the kdamond. 2305 * @cancel: Whether to cancel the invocation of the function. 2306 * 2307 * If there is a &struct damon_call_control request that registered via 2308 * &damon_call() on @ctx, do or cancel the invocation of the function depending 2309 * on @cancel. @cancel is set when the kdamond is deactivated by DAMOS 2310 * watermarks, or the kdamond is already out of the main loop and therefore 2311 * will be terminated. 2312 */ 2313 static void kdamond_call(struct damon_ctx *ctx, bool cancel) 2314 { 2315 struct damon_call_control *control; 2316 int ret = 0; 2317 2318 mutex_lock(&ctx->call_control_lock); 2319 control = ctx->call_control; 2320 mutex_unlock(&ctx->call_control_lock); 2321 if (!control) 2322 return; 2323 if (cancel) { 2324 control->canceled = true; 2325 } else { 2326 ret = control->fn(control->data); 2327 control->return_code = ret; 2328 } 2329 complete(&control->completion); 2330 mutex_lock(&ctx->call_control_lock); 2331 ctx->call_control = NULL; 2332 mutex_unlock(&ctx->call_control_lock); 2333 } 2334 2335 /* Returns negative error code if it's not activated but should return */ 2336 static int kdamond_wait_activation(struct damon_ctx *ctx) 2337 { 2338 struct damos *s; 2339 unsigned long wait_time; 2340 unsigned long min_wait_time = 0; 2341 bool init_wait_time = false; 2342 2343 while (!kdamond_need_stop(ctx)) { 2344 damon_for_each_scheme(s, ctx) { 2345 wait_time = damos_wmark_wait_us(s); 2346 if (!init_wait_time || wait_time < min_wait_time) { 2347 init_wait_time = true; 2348 min_wait_time = wait_time; 2349 } 2350 } 2351 if (!min_wait_time) 2352 return 0; 2353 2354 kdamond_usleep(min_wait_time); 2355 2356 if (ctx->callback.after_wmarks_check && 2357 ctx->callback.after_wmarks_check(ctx)) 2358 break; 2359 kdamond_call(ctx, true); 2360 damos_walk_cancel(ctx); 2361 } 2362 return -EBUSY; 2363 } 2364 2365 static void kdamond_init_ctx(struct damon_ctx *ctx) 2366 { 2367 unsigned long sample_interval = ctx->attrs.sample_interval ? 2368 ctx->attrs.sample_interval : 1; 2369 unsigned long apply_interval; 2370 struct damos *scheme; 2371 2372 ctx->passed_sample_intervals = 0; 2373 ctx->next_aggregation_sis = ctx->attrs.aggr_interval / sample_interval; 2374 ctx->next_ops_update_sis = ctx->attrs.ops_update_interval / 2375 sample_interval; 2376 ctx->next_intervals_tune_sis = ctx->next_aggregation_sis * 2377 ctx->attrs.intervals_goal.aggrs; 2378 2379 damon_for_each_scheme(scheme, ctx) { 2380 apply_interval = scheme->apply_interval_us ? 2381 scheme->apply_interval_us : ctx->attrs.aggr_interval; 2382 scheme->next_apply_sis = apply_interval / sample_interval; 2383 damos_set_filters_default_reject(scheme); 2384 } 2385 } 2386 2387 /* 2388 * The monitoring daemon that runs as a kernel thread 2389 */ 2390 static int kdamond_fn(void *data) 2391 { 2392 struct damon_ctx *ctx = data; 2393 struct damon_target *t; 2394 struct damon_region *r, *next; 2395 unsigned int max_nr_accesses = 0; 2396 unsigned long sz_limit = 0; 2397 2398 pr_debug("kdamond (%d) starts\n", current->pid); 2399 2400 complete(&ctx->kdamond_started); 2401 kdamond_init_ctx(ctx); 2402 2403 if (ctx->ops.init) 2404 ctx->ops.init(ctx); 2405 ctx->regions_score_histogram = kmalloc_array(DAMOS_MAX_SCORE + 1, 2406 sizeof(*ctx->regions_score_histogram), GFP_KERNEL); 2407 if (!ctx->regions_score_histogram) 2408 goto done; 2409 2410 sz_limit = damon_region_sz_limit(ctx); 2411 2412 while (!kdamond_need_stop(ctx)) { 2413 /* 2414 * ctx->attrs and ctx->next_{aggregation,ops_update}_sis could 2415 * be changed from after_wmarks_check() or after_aggregation() 2416 * callbacks. Read the values here, and use those for this 2417 * iteration. That is, damon_set_attrs() updated new values 2418 * are respected from next iteration. 2419 */ 2420 unsigned long next_aggregation_sis = ctx->next_aggregation_sis; 2421 unsigned long next_ops_update_sis = ctx->next_ops_update_sis; 2422 unsigned long sample_interval = ctx->attrs.sample_interval; 2423 2424 if (kdamond_wait_activation(ctx)) 2425 break; 2426 2427 if (ctx->ops.prepare_access_checks) 2428 ctx->ops.prepare_access_checks(ctx); 2429 2430 kdamond_usleep(sample_interval); 2431 ctx->passed_sample_intervals++; 2432 2433 if (ctx->ops.check_accesses) 2434 max_nr_accesses = ctx->ops.check_accesses(ctx); 2435 2436 if (ctx->passed_sample_intervals >= next_aggregation_sis) { 2437 kdamond_merge_regions(ctx, 2438 max_nr_accesses / 10, 2439 sz_limit); 2440 if (ctx->callback.after_aggregation && 2441 ctx->callback.after_aggregation(ctx)) 2442 break; 2443 } 2444 2445 /* 2446 * do kdamond_call() and kdamond_apply_schemes() after 2447 * kdamond_merge_regions() if possible, to reduce overhead 2448 */ 2449 kdamond_call(ctx, false); 2450 if (!list_empty(&ctx->schemes)) 2451 kdamond_apply_schemes(ctx); 2452 else 2453 damos_walk_cancel(ctx); 2454 2455 sample_interval = ctx->attrs.sample_interval ? 2456 ctx->attrs.sample_interval : 1; 2457 if (ctx->passed_sample_intervals >= next_aggregation_sis) { 2458 if (ctx->attrs.intervals_goal.aggrs && 2459 ctx->passed_sample_intervals >= 2460 ctx->next_intervals_tune_sis) { 2461 /* 2462 * ctx->next_aggregation_sis might be updated 2463 * from kdamond_call(). In the case, 2464 * damon_set_attrs() which will be called from 2465 * kdamond_tune_interval() may wrongly think 2466 * this is in the middle of the current 2467 * aggregation, and make aggregation 2468 * information reset for all regions. Then, 2469 * following kdamond_reset_aggregated() call 2470 * will make the region information invalid, 2471 * particularly for ->nr_accesses_bp. 2472 * 2473 * Reset ->next_aggregation_sis to avoid that. 2474 * It will anyway correctly updated after this 2475 * if caluse. 2476 */ 2477 ctx->next_aggregation_sis = 2478 next_aggregation_sis; 2479 ctx->next_intervals_tune_sis += 2480 ctx->attrs.aggr_samples * 2481 ctx->attrs.intervals_goal.aggrs; 2482 kdamond_tune_intervals(ctx); 2483 sample_interval = ctx->attrs.sample_interval ? 2484 ctx->attrs.sample_interval : 1; 2485 2486 } 2487 ctx->next_aggregation_sis = next_aggregation_sis + 2488 ctx->attrs.aggr_interval / sample_interval; 2489 2490 kdamond_reset_aggregated(ctx); 2491 kdamond_split_regions(ctx); 2492 } 2493 2494 if (ctx->passed_sample_intervals >= next_ops_update_sis) { 2495 ctx->next_ops_update_sis = next_ops_update_sis + 2496 ctx->attrs.ops_update_interval / 2497 sample_interval; 2498 if (ctx->ops.update) 2499 ctx->ops.update(ctx); 2500 sz_limit = damon_region_sz_limit(ctx); 2501 } 2502 } 2503 done: 2504 damon_for_each_target(t, ctx) { 2505 damon_for_each_region_safe(r, next, t) 2506 damon_destroy_region(r, t); 2507 } 2508 2509 if (ctx->callback.before_terminate) 2510 ctx->callback.before_terminate(ctx); 2511 if (ctx->ops.cleanup) 2512 ctx->ops.cleanup(ctx); 2513 kfree(ctx->regions_score_histogram); 2514 2515 pr_debug("kdamond (%d) finishes\n", current->pid); 2516 mutex_lock(&ctx->kdamond_lock); 2517 ctx->kdamond = NULL; 2518 mutex_unlock(&ctx->kdamond_lock); 2519 2520 kdamond_call(ctx, true); 2521 damos_walk_cancel(ctx); 2522 2523 mutex_lock(&damon_lock); 2524 nr_running_ctxs--; 2525 if (!nr_running_ctxs && running_exclusive_ctxs) 2526 running_exclusive_ctxs = false; 2527 mutex_unlock(&damon_lock); 2528 2529 return 0; 2530 } 2531 2532 /* 2533 * struct damon_system_ram_region - System RAM resource address region of 2534 * [@start, @end). 2535 * @start: Start address of the region (inclusive). 2536 * @end: End address of the region (exclusive). 2537 */ 2538 struct damon_system_ram_region { 2539 unsigned long start; 2540 unsigned long end; 2541 }; 2542 2543 static int walk_system_ram(struct resource *res, void *arg) 2544 { 2545 struct damon_system_ram_region *a = arg; 2546 2547 if (a->end - a->start < resource_size(res)) { 2548 a->start = res->start; 2549 a->end = res->end; 2550 } 2551 return 0; 2552 } 2553 2554 /* 2555 * Find biggest 'System RAM' resource and store its start and end address in 2556 * @start and @end, respectively. If no System RAM is found, returns false. 2557 */ 2558 static bool damon_find_biggest_system_ram(unsigned long *start, 2559 unsigned long *end) 2560 2561 { 2562 struct damon_system_ram_region arg = {}; 2563 2564 walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram); 2565 if (arg.end <= arg.start) 2566 return false; 2567 2568 *start = arg.start; 2569 *end = arg.end; 2570 return true; 2571 } 2572 2573 /** 2574 * damon_set_region_biggest_system_ram_default() - Set the region of the given 2575 * monitoring target as requested, or biggest 'System RAM'. 2576 * @t: The monitoring target to set the region. 2577 * @start: The pointer to the start address of the region. 2578 * @end: The pointer to the end address of the region. 2579 * 2580 * This function sets the region of @t as requested by @start and @end. If the 2581 * values of @start and @end are zero, however, this function finds the biggest 2582 * 'System RAM' resource and sets the region to cover the resource. In the 2583 * latter case, this function saves the start and end addresses of the resource 2584 * in @start and @end, respectively. 2585 * 2586 * Return: 0 on success, negative error code otherwise. 2587 */ 2588 int damon_set_region_biggest_system_ram_default(struct damon_target *t, 2589 unsigned long *start, unsigned long *end) 2590 { 2591 struct damon_addr_range addr_range; 2592 2593 if (*start > *end) 2594 return -EINVAL; 2595 2596 if (!*start && !*end && 2597 !damon_find_biggest_system_ram(start, end)) 2598 return -EINVAL; 2599 2600 addr_range.start = *start; 2601 addr_range.end = *end; 2602 return damon_set_regions(t, &addr_range, 1); 2603 } 2604 2605 /* 2606 * damon_moving_sum() - Calculate an inferred moving sum value. 2607 * @mvsum: Inferred sum of the last @len_window values. 2608 * @nomvsum: Non-moving sum of the last discrete @len_window window values. 2609 * @len_window: The number of last values to take care of. 2610 * @new_value: New value that will be added to the pseudo moving sum. 2611 * 2612 * Moving sum (moving average * window size) is good for handling noise, but 2613 * the cost of keeping past values can be high for arbitrary window size. This 2614 * function implements a lightweight pseudo moving sum function that doesn't 2615 * keep the past window values. 2616 * 2617 * It simply assumes there was no noise in the past, and get the no-noise 2618 * assumed past value to drop from @nomvsum and @len_window. @nomvsum is a 2619 * non-moving sum of the last window. For example, if @len_window is 10 and we 2620 * have 25 values, @nomvsum is the sum of the 11th to 20th values of the 25 2621 * values. Hence, this function simply drops @nomvsum / @len_window from 2622 * given @mvsum and add @new_value. 2623 * 2624 * For example, if @len_window is 10 and @nomvsum is 50, the last 10 values for 2625 * the last window could be vary, e.g., 0, 10, 0, 10, 0, 10, 0, 0, 0, 20. For 2626 * calculating next moving sum with a new value, we should drop 0 from 50 and 2627 * add the new value. However, this function assumes it got value 5 for each 2628 * of the last ten times. Based on the assumption, when the next value is 2629 * measured, it drops the assumed past value, 5 from the current sum, and add 2630 * the new value to get the updated pseduo-moving average. 2631 * 2632 * This means the value could have errors, but the errors will be disappeared 2633 * for every @len_window aligned calls. For example, if @len_window is 10, the 2634 * pseudo moving sum with 11th value to 19th value would have an error. But 2635 * the sum with 20th value will not have the error. 2636 * 2637 * Return: Pseudo-moving average after getting the @new_value. 2638 */ 2639 static unsigned int damon_moving_sum(unsigned int mvsum, unsigned int nomvsum, 2640 unsigned int len_window, unsigned int new_value) 2641 { 2642 return mvsum - nomvsum / len_window + new_value; 2643 } 2644 2645 /** 2646 * damon_update_region_access_rate() - Update the access rate of a region. 2647 * @r: The DAMON region to update for its access check result. 2648 * @accessed: Whether the region has accessed during last sampling interval. 2649 * @attrs: The damon_attrs of the DAMON context. 2650 * 2651 * Update the access rate of a region with the region's last sampling interval 2652 * access check result. 2653 * 2654 * Usually this will be called by &damon_operations->check_accesses callback. 2655 */ 2656 void damon_update_region_access_rate(struct damon_region *r, bool accessed, 2657 struct damon_attrs *attrs) 2658 { 2659 unsigned int len_window = 1; 2660 2661 /* 2662 * sample_interval can be zero, but cannot be larger than 2663 * aggr_interval, owing to validation of damon_set_attrs(). 2664 */ 2665 if (attrs->sample_interval) 2666 len_window = damon_max_nr_accesses(attrs); 2667 r->nr_accesses_bp = damon_moving_sum(r->nr_accesses_bp, 2668 r->last_nr_accesses * 10000, len_window, 2669 accessed ? 10000 : 0); 2670 2671 if (accessed) 2672 r->nr_accesses++; 2673 } 2674 2675 static int __init damon_init(void) 2676 { 2677 damon_region_cache = KMEM_CACHE(damon_region, 0); 2678 if (unlikely(!damon_region_cache)) { 2679 pr_err("creating damon_region_cache fails\n"); 2680 return -ENOMEM; 2681 } 2682 2683 return 0; 2684 } 2685 2686 subsys_initcall(damon_init); 2687 2688 #include "tests/core-kunit.h" 2689