1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Data Access Monitor 4 * 5 * Author: SeongJae Park <sj@kernel.org> 6 */ 7 8 #define pr_fmt(fmt) "damon: " fmt 9 10 #include <linux/damon.h> 11 #include <linux/delay.h> 12 #include <linux/kthread.h> 13 #include <linux/mm.h> 14 #include <linux/psi.h> 15 #include <linux/slab.h> 16 #include <linux/string.h> 17 18 #define CREATE_TRACE_POINTS 19 #include <trace/events/damon.h> 20 21 #ifdef CONFIG_DAMON_KUNIT_TEST 22 #undef DAMON_MIN_REGION 23 #define DAMON_MIN_REGION 1 24 #endif 25 26 static DEFINE_MUTEX(damon_lock); 27 static int nr_running_ctxs; 28 static bool running_exclusive_ctxs; 29 30 static DEFINE_MUTEX(damon_ops_lock); 31 static struct damon_operations damon_registered_ops[NR_DAMON_OPS]; 32 33 static struct kmem_cache *damon_region_cache __ro_after_init; 34 35 /* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */ 36 static bool __damon_is_registered_ops(enum damon_ops_id id) 37 { 38 struct damon_operations empty_ops = {}; 39 40 if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops))) 41 return false; 42 return true; 43 } 44 45 /** 46 * damon_is_registered_ops() - Check if a given damon_operations is registered. 47 * @id: Id of the damon_operations to check if registered. 48 * 49 * Return: true if the ops is set, false otherwise. 50 */ 51 bool damon_is_registered_ops(enum damon_ops_id id) 52 { 53 bool registered; 54 55 if (id >= NR_DAMON_OPS) 56 return false; 57 mutex_lock(&damon_ops_lock); 58 registered = __damon_is_registered_ops(id); 59 mutex_unlock(&damon_ops_lock); 60 return registered; 61 } 62 63 /** 64 * damon_register_ops() - Register a monitoring operations set to DAMON. 65 * @ops: monitoring operations set to register. 66 * 67 * This function registers a monitoring operations set of valid &struct 68 * damon_operations->id so that others can find and use them later. 69 * 70 * Return: 0 on success, negative error code otherwise. 71 */ 72 int damon_register_ops(struct damon_operations *ops) 73 { 74 int err = 0; 75 76 if (ops->id >= NR_DAMON_OPS) 77 return -EINVAL; 78 mutex_lock(&damon_ops_lock); 79 /* Fail for already registered ops */ 80 if (__damon_is_registered_ops(ops->id)) { 81 err = -EINVAL; 82 goto out; 83 } 84 damon_registered_ops[ops->id] = *ops; 85 out: 86 mutex_unlock(&damon_ops_lock); 87 return err; 88 } 89 90 /** 91 * damon_select_ops() - Select a monitoring operations to use with the context. 92 * @ctx: monitoring context to use the operations. 93 * @id: id of the registered monitoring operations to select. 94 * 95 * This function finds registered monitoring operations set of @id and make 96 * @ctx to use it. 97 * 98 * Return: 0 on success, negative error code otherwise. 99 */ 100 int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id) 101 { 102 int err = 0; 103 104 if (id >= NR_DAMON_OPS) 105 return -EINVAL; 106 107 mutex_lock(&damon_ops_lock); 108 if (!__damon_is_registered_ops(id)) 109 err = -EINVAL; 110 else 111 ctx->ops = damon_registered_ops[id]; 112 mutex_unlock(&damon_ops_lock); 113 return err; 114 } 115 116 /* 117 * Construct a damon_region struct 118 * 119 * Returns the pointer to the new struct if success, or NULL otherwise 120 */ 121 struct damon_region *damon_new_region(unsigned long start, unsigned long end) 122 { 123 struct damon_region *region; 124 125 region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL); 126 if (!region) 127 return NULL; 128 129 region->ar.start = start; 130 region->ar.end = end; 131 region->nr_accesses = 0; 132 region->nr_accesses_bp = 0; 133 INIT_LIST_HEAD(®ion->list); 134 135 region->age = 0; 136 region->last_nr_accesses = 0; 137 138 return region; 139 } 140 141 void damon_add_region(struct damon_region *r, struct damon_target *t) 142 { 143 list_add_tail(&r->list, &t->regions_list); 144 t->nr_regions++; 145 } 146 147 static void damon_del_region(struct damon_region *r, struct damon_target *t) 148 { 149 list_del(&r->list); 150 t->nr_regions--; 151 } 152 153 static void damon_free_region(struct damon_region *r) 154 { 155 kmem_cache_free(damon_region_cache, r); 156 } 157 158 void damon_destroy_region(struct damon_region *r, struct damon_target *t) 159 { 160 damon_del_region(r, t); 161 damon_free_region(r); 162 } 163 164 /* 165 * Check whether a region is intersecting an address range 166 * 167 * Returns true if it is. 168 */ 169 static bool damon_intersect(struct damon_region *r, 170 struct damon_addr_range *re) 171 { 172 return !(r->ar.end <= re->start || re->end <= r->ar.start); 173 } 174 175 /* 176 * Fill holes in regions with new regions. 177 */ 178 static int damon_fill_regions_holes(struct damon_region *first, 179 struct damon_region *last, struct damon_target *t) 180 { 181 struct damon_region *r = first; 182 183 damon_for_each_region_from(r, t) { 184 struct damon_region *next, *newr; 185 186 if (r == last) 187 break; 188 next = damon_next_region(r); 189 if (r->ar.end != next->ar.start) { 190 newr = damon_new_region(r->ar.end, next->ar.start); 191 if (!newr) 192 return -ENOMEM; 193 damon_insert_region(newr, r, next, t); 194 } 195 } 196 return 0; 197 } 198 199 /* 200 * damon_set_regions() - Set regions of a target for given address ranges. 201 * @t: the given target. 202 * @ranges: array of new monitoring target ranges. 203 * @nr_ranges: length of @ranges. 204 * 205 * This function adds new regions to, or modify existing regions of a 206 * monitoring target to fit in specific ranges. 207 * 208 * Return: 0 if success, or negative error code otherwise. 209 */ 210 int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges, 211 unsigned int nr_ranges) 212 { 213 struct damon_region *r, *next; 214 unsigned int i; 215 int err; 216 217 /* Remove regions which are not in the new ranges */ 218 damon_for_each_region_safe(r, next, t) { 219 for (i = 0; i < nr_ranges; i++) { 220 if (damon_intersect(r, &ranges[i])) 221 break; 222 } 223 if (i == nr_ranges) 224 damon_destroy_region(r, t); 225 } 226 227 r = damon_first_region(t); 228 /* Add new regions or resize existing regions to fit in the ranges */ 229 for (i = 0; i < nr_ranges; i++) { 230 struct damon_region *first = NULL, *last, *newr; 231 struct damon_addr_range *range; 232 233 range = &ranges[i]; 234 /* Get the first/last regions intersecting with the range */ 235 damon_for_each_region_from(r, t) { 236 if (damon_intersect(r, range)) { 237 if (!first) 238 first = r; 239 last = r; 240 } 241 if (r->ar.start >= range->end) 242 break; 243 } 244 if (!first) { 245 /* no region intersects with this range */ 246 newr = damon_new_region( 247 ALIGN_DOWN(range->start, 248 DAMON_MIN_REGION), 249 ALIGN(range->end, DAMON_MIN_REGION)); 250 if (!newr) 251 return -ENOMEM; 252 damon_insert_region(newr, damon_prev_region(r), r, t); 253 } else { 254 /* resize intersecting regions to fit in this range */ 255 first->ar.start = ALIGN_DOWN(range->start, 256 DAMON_MIN_REGION); 257 last->ar.end = ALIGN(range->end, DAMON_MIN_REGION); 258 259 /* fill possible holes in the range */ 260 err = damon_fill_regions_holes(first, last, t); 261 if (err) 262 return err; 263 } 264 } 265 return 0; 266 } 267 268 struct damos_filter *damos_new_filter(enum damos_filter_type type, 269 bool matching) 270 { 271 struct damos_filter *filter; 272 273 filter = kmalloc(sizeof(*filter), GFP_KERNEL); 274 if (!filter) 275 return NULL; 276 filter->type = type; 277 filter->matching = matching; 278 INIT_LIST_HEAD(&filter->list); 279 return filter; 280 } 281 282 void damos_add_filter(struct damos *s, struct damos_filter *f) 283 { 284 list_add_tail(&f->list, &s->filters); 285 } 286 287 static void damos_del_filter(struct damos_filter *f) 288 { 289 list_del(&f->list); 290 } 291 292 static void damos_free_filter(struct damos_filter *f) 293 { 294 kfree(f); 295 } 296 297 void damos_destroy_filter(struct damos_filter *f) 298 { 299 damos_del_filter(f); 300 damos_free_filter(f); 301 } 302 303 struct damos_quota_goal *damos_new_quota_goal( 304 enum damos_quota_goal_metric metric, 305 unsigned long target_value) 306 { 307 struct damos_quota_goal *goal; 308 309 goal = kmalloc(sizeof(*goal), GFP_KERNEL); 310 if (!goal) 311 return NULL; 312 goal->metric = metric; 313 goal->target_value = target_value; 314 INIT_LIST_HEAD(&goal->list); 315 return goal; 316 } 317 318 void damos_add_quota_goal(struct damos_quota *q, struct damos_quota_goal *g) 319 { 320 list_add_tail(&g->list, &q->goals); 321 } 322 323 static void damos_del_quota_goal(struct damos_quota_goal *g) 324 { 325 list_del(&g->list); 326 } 327 328 static void damos_free_quota_goal(struct damos_quota_goal *g) 329 { 330 kfree(g); 331 } 332 333 void damos_destroy_quota_goal(struct damos_quota_goal *g) 334 { 335 damos_del_quota_goal(g); 336 damos_free_quota_goal(g); 337 } 338 339 /* initialize fields of @quota that normally API users wouldn't set */ 340 static struct damos_quota *damos_quota_init(struct damos_quota *quota) 341 { 342 quota->esz = 0; 343 quota->total_charged_sz = 0; 344 quota->total_charged_ns = 0; 345 quota->charged_sz = 0; 346 quota->charged_from = 0; 347 quota->charge_target_from = NULL; 348 quota->charge_addr_from = 0; 349 quota->esz_bp = 0; 350 return quota; 351 } 352 353 struct damos *damon_new_scheme(struct damos_access_pattern *pattern, 354 enum damos_action action, 355 unsigned long apply_interval_us, 356 struct damos_quota *quota, 357 struct damos_watermarks *wmarks, 358 int target_nid) 359 { 360 struct damos *scheme; 361 362 scheme = kmalloc(sizeof(*scheme), GFP_KERNEL); 363 if (!scheme) 364 return NULL; 365 scheme->pattern = *pattern; 366 scheme->action = action; 367 scheme->apply_interval_us = apply_interval_us; 368 /* 369 * next_apply_sis will be set when kdamond starts. While kdamond is 370 * running, it will also updated when it is added to the DAMON context, 371 * or damon_attrs are updated. 372 */ 373 scheme->next_apply_sis = 0; 374 INIT_LIST_HEAD(&scheme->filters); 375 scheme->stat = (struct damos_stat){}; 376 INIT_LIST_HEAD(&scheme->list); 377 378 scheme->quota = *(damos_quota_init(quota)); 379 /* quota.goals should be separately set by caller */ 380 INIT_LIST_HEAD(&scheme->quota.goals); 381 382 scheme->wmarks = *wmarks; 383 scheme->wmarks.activated = true; 384 385 scheme->target_nid = target_nid; 386 387 return scheme; 388 } 389 390 static void damos_set_next_apply_sis(struct damos *s, struct damon_ctx *ctx) 391 { 392 unsigned long sample_interval = ctx->attrs.sample_interval ? 393 ctx->attrs.sample_interval : 1; 394 unsigned long apply_interval = s->apply_interval_us ? 395 s->apply_interval_us : ctx->attrs.aggr_interval; 396 397 s->next_apply_sis = ctx->passed_sample_intervals + 398 apply_interval / sample_interval; 399 } 400 401 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s) 402 { 403 list_add_tail(&s->list, &ctx->schemes); 404 damos_set_next_apply_sis(s, ctx); 405 } 406 407 static void damon_del_scheme(struct damos *s) 408 { 409 list_del(&s->list); 410 } 411 412 static void damon_free_scheme(struct damos *s) 413 { 414 kfree(s); 415 } 416 417 void damon_destroy_scheme(struct damos *s) 418 { 419 struct damos_quota_goal *g, *g_next; 420 struct damos_filter *f, *next; 421 422 damos_for_each_quota_goal_safe(g, g_next, &s->quota) 423 damos_destroy_quota_goal(g); 424 425 damos_for_each_filter_safe(f, next, s) 426 damos_destroy_filter(f); 427 damon_del_scheme(s); 428 damon_free_scheme(s); 429 } 430 431 /* 432 * Construct a damon_target struct 433 * 434 * Returns the pointer to the new struct if success, or NULL otherwise 435 */ 436 struct damon_target *damon_new_target(void) 437 { 438 struct damon_target *t; 439 440 t = kmalloc(sizeof(*t), GFP_KERNEL); 441 if (!t) 442 return NULL; 443 444 t->pid = NULL; 445 t->nr_regions = 0; 446 INIT_LIST_HEAD(&t->regions_list); 447 INIT_LIST_HEAD(&t->list); 448 449 return t; 450 } 451 452 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t) 453 { 454 list_add_tail(&t->list, &ctx->adaptive_targets); 455 } 456 457 bool damon_targets_empty(struct damon_ctx *ctx) 458 { 459 return list_empty(&ctx->adaptive_targets); 460 } 461 462 static void damon_del_target(struct damon_target *t) 463 { 464 list_del(&t->list); 465 } 466 467 void damon_free_target(struct damon_target *t) 468 { 469 struct damon_region *r, *next; 470 471 damon_for_each_region_safe(r, next, t) 472 damon_free_region(r); 473 kfree(t); 474 } 475 476 void damon_destroy_target(struct damon_target *t) 477 { 478 damon_del_target(t); 479 damon_free_target(t); 480 } 481 482 unsigned int damon_nr_regions(struct damon_target *t) 483 { 484 return t->nr_regions; 485 } 486 487 struct damon_ctx *damon_new_ctx(void) 488 { 489 struct damon_ctx *ctx; 490 491 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 492 if (!ctx) 493 return NULL; 494 495 init_completion(&ctx->kdamond_started); 496 497 ctx->attrs.sample_interval = 5 * 1000; 498 ctx->attrs.aggr_interval = 100 * 1000; 499 ctx->attrs.ops_update_interval = 60 * 1000 * 1000; 500 501 ctx->passed_sample_intervals = 0; 502 /* These will be set from kdamond_init_intervals_sis() */ 503 ctx->next_aggregation_sis = 0; 504 ctx->next_ops_update_sis = 0; 505 506 mutex_init(&ctx->kdamond_lock); 507 508 ctx->attrs.min_nr_regions = 10; 509 ctx->attrs.max_nr_regions = 1000; 510 511 INIT_LIST_HEAD(&ctx->adaptive_targets); 512 INIT_LIST_HEAD(&ctx->schemes); 513 514 return ctx; 515 } 516 517 static void damon_destroy_targets(struct damon_ctx *ctx) 518 { 519 struct damon_target *t, *next_t; 520 521 if (ctx->ops.cleanup) { 522 ctx->ops.cleanup(ctx); 523 return; 524 } 525 526 damon_for_each_target_safe(t, next_t, ctx) 527 damon_destroy_target(t); 528 } 529 530 void damon_destroy_ctx(struct damon_ctx *ctx) 531 { 532 struct damos *s, *next_s; 533 534 damon_destroy_targets(ctx); 535 536 damon_for_each_scheme_safe(s, next_s, ctx) 537 damon_destroy_scheme(s); 538 539 kfree(ctx); 540 } 541 542 static unsigned int damon_age_for_new_attrs(unsigned int age, 543 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs) 544 { 545 return age * old_attrs->aggr_interval / new_attrs->aggr_interval; 546 } 547 548 /* convert access ratio in bp (per 10,000) to nr_accesses */ 549 static unsigned int damon_accesses_bp_to_nr_accesses( 550 unsigned int accesses_bp, struct damon_attrs *attrs) 551 { 552 return accesses_bp * damon_max_nr_accesses(attrs) / 10000; 553 } 554 555 /* convert nr_accesses to access ratio in bp (per 10,000) */ 556 static unsigned int damon_nr_accesses_to_accesses_bp( 557 unsigned int nr_accesses, struct damon_attrs *attrs) 558 { 559 return nr_accesses * 10000 / damon_max_nr_accesses(attrs); 560 } 561 562 static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses, 563 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs) 564 { 565 return damon_accesses_bp_to_nr_accesses( 566 damon_nr_accesses_to_accesses_bp( 567 nr_accesses, old_attrs), 568 new_attrs); 569 } 570 571 static void damon_update_monitoring_result(struct damon_region *r, 572 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs) 573 { 574 r->nr_accesses = damon_nr_accesses_for_new_attrs(r->nr_accesses, 575 old_attrs, new_attrs); 576 r->nr_accesses_bp = r->nr_accesses * 10000; 577 r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs); 578 } 579 580 /* 581 * region->nr_accesses is the number of sampling intervals in the last 582 * aggregation interval that access to the region has found, and region->age is 583 * the number of aggregation intervals that its access pattern has maintained. 584 * For the reason, the real meaning of the two fields depend on current 585 * sampling interval and aggregation interval. This function updates 586 * ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs. 587 */ 588 static void damon_update_monitoring_results(struct damon_ctx *ctx, 589 struct damon_attrs *new_attrs) 590 { 591 struct damon_attrs *old_attrs = &ctx->attrs; 592 struct damon_target *t; 593 struct damon_region *r; 594 595 /* if any interval is zero, simply forgive conversion */ 596 if (!old_attrs->sample_interval || !old_attrs->aggr_interval || 597 !new_attrs->sample_interval || 598 !new_attrs->aggr_interval) 599 return; 600 601 damon_for_each_target(t, ctx) 602 damon_for_each_region(r, t) 603 damon_update_monitoring_result( 604 r, old_attrs, new_attrs); 605 } 606 607 /** 608 * damon_set_attrs() - Set attributes for the monitoring. 609 * @ctx: monitoring context 610 * @attrs: monitoring attributes 611 * 612 * This function should be called while the kdamond is not running, or an 613 * access check results aggregation is not ongoing (e.g., from 614 * &struct damon_callback->after_aggregation or 615 * &struct damon_callback->after_wmarks_check callbacks). 616 * 617 * Every time interval is in micro-seconds. 618 * 619 * Return: 0 on success, negative error code otherwise. 620 */ 621 int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs) 622 { 623 unsigned long sample_interval = attrs->sample_interval ? 624 attrs->sample_interval : 1; 625 struct damos *s; 626 627 if (attrs->min_nr_regions < 3) 628 return -EINVAL; 629 if (attrs->min_nr_regions > attrs->max_nr_regions) 630 return -EINVAL; 631 if (attrs->sample_interval > attrs->aggr_interval) 632 return -EINVAL; 633 634 ctx->next_aggregation_sis = ctx->passed_sample_intervals + 635 attrs->aggr_interval / sample_interval; 636 ctx->next_ops_update_sis = ctx->passed_sample_intervals + 637 attrs->ops_update_interval / sample_interval; 638 639 damon_update_monitoring_results(ctx, attrs); 640 ctx->attrs = *attrs; 641 642 damon_for_each_scheme(s, ctx) 643 damos_set_next_apply_sis(s, ctx); 644 645 return 0; 646 } 647 648 /** 649 * damon_set_schemes() - Set data access monitoring based operation schemes. 650 * @ctx: monitoring context 651 * @schemes: array of the schemes 652 * @nr_schemes: number of entries in @schemes 653 * 654 * This function should not be called while the kdamond of the context is 655 * running. 656 */ 657 void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes, 658 ssize_t nr_schemes) 659 { 660 struct damos *s, *next; 661 ssize_t i; 662 663 damon_for_each_scheme_safe(s, next, ctx) 664 damon_destroy_scheme(s); 665 for (i = 0; i < nr_schemes; i++) 666 damon_add_scheme(ctx, schemes[i]); 667 } 668 669 static struct damos_quota_goal *damos_nth_quota_goal( 670 int n, struct damos_quota *q) 671 { 672 struct damos_quota_goal *goal; 673 int i = 0; 674 675 damos_for_each_quota_goal(goal, q) { 676 if (i++ == n) 677 return goal; 678 } 679 return NULL; 680 } 681 682 static void damos_commit_quota_goal( 683 struct damos_quota_goal *dst, struct damos_quota_goal *src) 684 { 685 dst->metric = src->metric; 686 dst->target_value = src->target_value; 687 if (dst->metric == DAMOS_QUOTA_USER_INPUT) 688 dst->current_value = src->current_value; 689 /* keep last_psi_total as is, since it will be updated in next cycle */ 690 } 691 692 /** 693 * damos_commit_quota_goals() - Commit DAMOS quota goals to another quota. 694 * @dst: The commit destination DAMOS quota. 695 * @src: The commit source DAMOS quota. 696 * 697 * Copies user-specified parameters for quota goals from @src to @dst. Users 698 * should use this function for quota goals-level parameters update of running 699 * DAMON contexts, instead of manual in-place updates. 700 * 701 * This function should be called from parameters-update safe context, like 702 * DAMON callbacks. 703 */ 704 int damos_commit_quota_goals(struct damos_quota *dst, struct damos_quota *src) 705 { 706 struct damos_quota_goal *dst_goal, *next, *src_goal, *new_goal; 707 int i = 0, j = 0; 708 709 damos_for_each_quota_goal_safe(dst_goal, next, dst) { 710 src_goal = damos_nth_quota_goal(i++, src); 711 if (src_goal) 712 damos_commit_quota_goal(dst_goal, src_goal); 713 else 714 damos_destroy_quota_goal(dst_goal); 715 } 716 damos_for_each_quota_goal_safe(src_goal, next, src) { 717 if (j++ < i) 718 continue; 719 new_goal = damos_new_quota_goal( 720 src_goal->metric, src_goal->target_value); 721 if (!new_goal) 722 return -ENOMEM; 723 damos_add_quota_goal(dst, new_goal); 724 } 725 return 0; 726 } 727 728 static int damos_commit_quota(struct damos_quota *dst, struct damos_quota *src) 729 { 730 int err; 731 732 dst->reset_interval = src->reset_interval; 733 dst->ms = src->ms; 734 dst->sz = src->sz; 735 err = damos_commit_quota_goals(dst, src); 736 if (err) 737 return err; 738 dst->weight_sz = src->weight_sz; 739 dst->weight_nr_accesses = src->weight_nr_accesses; 740 dst->weight_age = src->weight_age; 741 return 0; 742 } 743 744 static struct damos_filter *damos_nth_filter(int n, struct damos *s) 745 { 746 struct damos_filter *filter; 747 int i = 0; 748 749 damos_for_each_filter(filter, s) { 750 if (i++ == n) 751 return filter; 752 } 753 return NULL; 754 } 755 756 static void damos_commit_filter_arg( 757 struct damos_filter *dst, struct damos_filter *src) 758 { 759 switch (dst->type) { 760 case DAMOS_FILTER_TYPE_MEMCG: 761 dst->memcg_id = src->memcg_id; 762 break; 763 case DAMOS_FILTER_TYPE_ADDR: 764 dst->addr_range = src->addr_range; 765 break; 766 case DAMOS_FILTER_TYPE_TARGET: 767 dst->target_idx = src->target_idx; 768 break; 769 default: 770 break; 771 } 772 } 773 774 static void damos_commit_filter( 775 struct damos_filter *dst, struct damos_filter *src) 776 { 777 dst->type = src->type; 778 dst->matching = src->matching; 779 damos_commit_filter_arg(dst, src); 780 } 781 782 static int damos_commit_filters(struct damos *dst, struct damos *src) 783 { 784 struct damos_filter *dst_filter, *next, *src_filter, *new_filter; 785 int i = 0, j = 0; 786 787 damos_for_each_filter_safe(dst_filter, next, dst) { 788 src_filter = damos_nth_filter(i++, src); 789 if (src_filter) 790 damos_commit_filter(dst_filter, src_filter); 791 else 792 damos_destroy_filter(dst_filter); 793 } 794 795 damos_for_each_filter_safe(src_filter, next, src) { 796 if (j++ < i) 797 continue; 798 799 new_filter = damos_new_filter( 800 src_filter->type, src_filter->matching); 801 if (!new_filter) 802 return -ENOMEM; 803 damos_commit_filter_arg(new_filter, src_filter); 804 damos_add_filter(dst, new_filter); 805 } 806 return 0; 807 } 808 809 static struct damos *damon_nth_scheme(int n, struct damon_ctx *ctx) 810 { 811 struct damos *s; 812 int i = 0; 813 814 damon_for_each_scheme(s, ctx) { 815 if (i++ == n) 816 return s; 817 } 818 return NULL; 819 } 820 821 static int damos_commit(struct damos *dst, struct damos *src) 822 { 823 int err; 824 825 dst->pattern = src->pattern; 826 dst->action = src->action; 827 dst->apply_interval_us = src->apply_interval_us; 828 829 err = damos_commit_quota(&dst->quota, &src->quota); 830 if (err) 831 return err; 832 833 dst->wmarks = src->wmarks; 834 835 err = damos_commit_filters(dst, src); 836 return err; 837 } 838 839 static int damon_commit_schemes(struct damon_ctx *dst, struct damon_ctx *src) 840 { 841 struct damos *dst_scheme, *next, *src_scheme, *new_scheme; 842 int i = 0, j = 0, err; 843 844 damon_for_each_scheme_safe(dst_scheme, next, dst) { 845 src_scheme = damon_nth_scheme(i++, src); 846 if (src_scheme) { 847 err = damos_commit(dst_scheme, src_scheme); 848 if (err) 849 return err; 850 } else { 851 damon_destroy_scheme(dst_scheme); 852 } 853 } 854 855 damon_for_each_scheme_safe(src_scheme, next, src) { 856 if (j++ < i) 857 continue; 858 new_scheme = damon_new_scheme(&src_scheme->pattern, 859 src_scheme->action, 860 src_scheme->apply_interval_us, 861 &src_scheme->quota, &src_scheme->wmarks, 862 NUMA_NO_NODE); 863 if (!new_scheme) 864 return -ENOMEM; 865 damon_add_scheme(dst, new_scheme); 866 } 867 return 0; 868 } 869 870 static struct damon_target *damon_nth_target(int n, struct damon_ctx *ctx) 871 { 872 struct damon_target *t; 873 int i = 0; 874 875 damon_for_each_target(t, ctx) { 876 if (i++ == n) 877 return t; 878 } 879 return NULL; 880 } 881 882 /* 883 * The caller should ensure the regions of @src are 884 * 1. valid (end >= src) and 885 * 2. sorted by starting address. 886 * 887 * If @src has no region, @dst keeps current regions. 888 */ 889 static int damon_commit_target_regions( 890 struct damon_target *dst, struct damon_target *src) 891 { 892 struct damon_region *src_region; 893 struct damon_addr_range *ranges; 894 int i = 0, err; 895 896 damon_for_each_region(src_region, src) 897 i++; 898 if (!i) 899 return 0; 900 901 ranges = kmalloc_array(i, sizeof(*ranges), GFP_KERNEL | __GFP_NOWARN); 902 if (!ranges) 903 return -ENOMEM; 904 i = 0; 905 damon_for_each_region(src_region, src) 906 ranges[i++] = src_region->ar; 907 err = damon_set_regions(dst, ranges, i); 908 kfree(ranges); 909 return err; 910 } 911 912 static int damon_commit_target( 913 struct damon_target *dst, bool dst_has_pid, 914 struct damon_target *src, bool src_has_pid) 915 { 916 int err; 917 918 err = damon_commit_target_regions(dst, src); 919 if (err) 920 return err; 921 if (dst_has_pid) 922 put_pid(dst->pid); 923 if (src_has_pid) 924 get_pid(src->pid); 925 dst->pid = src->pid; 926 return 0; 927 } 928 929 static int damon_commit_targets( 930 struct damon_ctx *dst, struct damon_ctx *src) 931 { 932 struct damon_target *dst_target, *next, *src_target, *new_target; 933 int i = 0, j = 0, err; 934 935 damon_for_each_target_safe(dst_target, next, dst) { 936 src_target = damon_nth_target(i++, src); 937 if (src_target) { 938 err = damon_commit_target( 939 dst_target, damon_target_has_pid(dst), 940 src_target, damon_target_has_pid(src)); 941 if (err) 942 return err; 943 } else { 944 if (damon_target_has_pid(dst)) 945 put_pid(dst_target->pid); 946 damon_destroy_target(dst_target); 947 } 948 } 949 950 damon_for_each_target_safe(src_target, next, src) { 951 if (j++ < i) 952 continue; 953 new_target = damon_new_target(); 954 if (!new_target) 955 return -ENOMEM; 956 err = damon_commit_target(new_target, false, 957 src_target, damon_target_has_pid(src)); 958 if (err) 959 return err; 960 } 961 return 0; 962 } 963 964 /** 965 * damon_commit_ctx() - Commit parameters of a DAMON context to another. 966 * @dst: The commit destination DAMON context. 967 * @src: The commit source DAMON context. 968 * 969 * This function copies user-specified parameters from @src to @dst and update 970 * the internal status and results accordingly. Users should use this function 971 * for context-level parameters update of running context, instead of manual 972 * in-place updates. 973 * 974 * This function should be called from parameters-update safe context, like 975 * DAMON callbacks. 976 */ 977 int damon_commit_ctx(struct damon_ctx *dst, struct damon_ctx *src) 978 { 979 int err; 980 981 err = damon_commit_schemes(dst, src); 982 if (err) 983 return err; 984 err = damon_commit_targets(dst, src); 985 if (err) 986 return err; 987 /* 988 * schemes and targets should be updated first, since 989 * 1. damon_set_attrs() updates monitoring results of targets and 990 * next_apply_sis of schemes, and 991 * 2. ops update should be done after pid handling is done (target 992 * committing require putting pids). 993 */ 994 err = damon_set_attrs(dst, &src->attrs); 995 if (err) 996 return err; 997 dst->ops = src->ops; 998 999 return 0; 1000 } 1001 1002 /** 1003 * damon_nr_running_ctxs() - Return number of currently running contexts. 1004 */ 1005 int damon_nr_running_ctxs(void) 1006 { 1007 int nr_ctxs; 1008 1009 mutex_lock(&damon_lock); 1010 nr_ctxs = nr_running_ctxs; 1011 mutex_unlock(&damon_lock); 1012 1013 return nr_ctxs; 1014 } 1015 1016 /* Returns the size upper limit for each monitoring region */ 1017 static unsigned long damon_region_sz_limit(struct damon_ctx *ctx) 1018 { 1019 struct damon_target *t; 1020 struct damon_region *r; 1021 unsigned long sz = 0; 1022 1023 damon_for_each_target(t, ctx) { 1024 damon_for_each_region(r, t) 1025 sz += damon_sz_region(r); 1026 } 1027 1028 if (ctx->attrs.min_nr_regions) 1029 sz /= ctx->attrs.min_nr_regions; 1030 if (sz < DAMON_MIN_REGION) 1031 sz = DAMON_MIN_REGION; 1032 1033 return sz; 1034 } 1035 1036 static int kdamond_fn(void *data); 1037 1038 /* 1039 * __damon_start() - Starts monitoring with given context. 1040 * @ctx: monitoring context 1041 * 1042 * This function should be called while damon_lock is hold. 1043 * 1044 * Return: 0 on success, negative error code otherwise. 1045 */ 1046 static int __damon_start(struct damon_ctx *ctx) 1047 { 1048 int err = -EBUSY; 1049 1050 mutex_lock(&ctx->kdamond_lock); 1051 if (!ctx->kdamond) { 1052 err = 0; 1053 reinit_completion(&ctx->kdamond_started); 1054 ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d", 1055 nr_running_ctxs); 1056 if (IS_ERR(ctx->kdamond)) { 1057 err = PTR_ERR(ctx->kdamond); 1058 ctx->kdamond = NULL; 1059 } else { 1060 wait_for_completion(&ctx->kdamond_started); 1061 } 1062 } 1063 mutex_unlock(&ctx->kdamond_lock); 1064 1065 return err; 1066 } 1067 1068 /** 1069 * damon_start() - Starts the monitorings for a given group of contexts. 1070 * @ctxs: an array of the pointers for contexts to start monitoring 1071 * @nr_ctxs: size of @ctxs 1072 * @exclusive: exclusiveness of this contexts group 1073 * 1074 * This function starts a group of monitoring threads for a group of monitoring 1075 * contexts. One thread per each context is created and run in parallel. The 1076 * caller should handle synchronization between the threads by itself. If 1077 * @exclusive is true and a group of threads that created by other 1078 * 'damon_start()' call is currently running, this function does nothing but 1079 * returns -EBUSY. 1080 * 1081 * Return: 0 on success, negative error code otherwise. 1082 */ 1083 int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive) 1084 { 1085 int i; 1086 int err = 0; 1087 1088 mutex_lock(&damon_lock); 1089 if ((exclusive && nr_running_ctxs) || 1090 (!exclusive && running_exclusive_ctxs)) { 1091 mutex_unlock(&damon_lock); 1092 return -EBUSY; 1093 } 1094 1095 for (i = 0; i < nr_ctxs; i++) { 1096 err = __damon_start(ctxs[i]); 1097 if (err) 1098 break; 1099 nr_running_ctxs++; 1100 } 1101 if (exclusive && nr_running_ctxs) 1102 running_exclusive_ctxs = true; 1103 mutex_unlock(&damon_lock); 1104 1105 return err; 1106 } 1107 1108 /* 1109 * __damon_stop() - Stops monitoring of a given context. 1110 * @ctx: monitoring context 1111 * 1112 * Return: 0 on success, negative error code otherwise. 1113 */ 1114 static int __damon_stop(struct damon_ctx *ctx) 1115 { 1116 struct task_struct *tsk; 1117 1118 mutex_lock(&ctx->kdamond_lock); 1119 tsk = ctx->kdamond; 1120 if (tsk) { 1121 get_task_struct(tsk); 1122 mutex_unlock(&ctx->kdamond_lock); 1123 kthread_stop_put(tsk); 1124 return 0; 1125 } 1126 mutex_unlock(&ctx->kdamond_lock); 1127 1128 return -EPERM; 1129 } 1130 1131 /** 1132 * damon_stop() - Stops the monitorings for a given group of contexts. 1133 * @ctxs: an array of the pointers for contexts to stop monitoring 1134 * @nr_ctxs: size of @ctxs 1135 * 1136 * Return: 0 on success, negative error code otherwise. 1137 */ 1138 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs) 1139 { 1140 int i, err = 0; 1141 1142 for (i = 0; i < nr_ctxs; i++) { 1143 /* nr_running_ctxs is decremented in kdamond_fn */ 1144 err = __damon_stop(ctxs[i]); 1145 if (err) 1146 break; 1147 } 1148 return err; 1149 } 1150 1151 /* 1152 * Reset the aggregated monitoring results ('nr_accesses' of each region). 1153 */ 1154 static void kdamond_reset_aggregated(struct damon_ctx *c) 1155 { 1156 struct damon_target *t; 1157 unsigned int ti = 0; /* target's index */ 1158 1159 damon_for_each_target(t, c) { 1160 struct damon_region *r; 1161 1162 damon_for_each_region(r, t) { 1163 trace_damon_aggregated(ti, r, damon_nr_regions(t)); 1164 r->last_nr_accesses = r->nr_accesses; 1165 r->nr_accesses = 0; 1166 } 1167 ti++; 1168 } 1169 } 1170 1171 static void damon_split_region_at(struct damon_target *t, 1172 struct damon_region *r, unsigned long sz_r); 1173 1174 static bool __damos_valid_target(struct damon_region *r, struct damos *s) 1175 { 1176 unsigned long sz; 1177 unsigned int nr_accesses = r->nr_accesses_bp / 10000; 1178 1179 sz = damon_sz_region(r); 1180 return s->pattern.min_sz_region <= sz && 1181 sz <= s->pattern.max_sz_region && 1182 s->pattern.min_nr_accesses <= nr_accesses && 1183 nr_accesses <= s->pattern.max_nr_accesses && 1184 s->pattern.min_age_region <= r->age && 1185 r->age <= s->pattern.max_age_region; 1186 } 1187 1188 static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t, 1189 struct damon_region *r, struct damos *s) 1190 { 1191 bool ret = __damos_valid_target(r, s); 1192 1193 if (!ret || !s->quota.esz || !c->ops.get_scheme_score) 1194 return ret; 1195 1196 return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score; 1197 } 1198 1199 /* 1200 * damos_skip_charged_region() - Check if the given region or starting part of 1201 * it is already charged for the DAMOS quota. 1202 * @t: The target of the region. 1203 * @rp: The pointer to the region. 1204 * @s: The scheme to be applied. 1205 * 1206 * If a quota of a scheme has exceeded in a quota charge window, the scheme's 1207 * action would applied to only a part of the target access pattern fulfilling 1208 * regions. To avoid applying the scheme action to only already applied 1209 * regions, DAMON skips applying the scheme action to the regions that charged 1210 * in the previous charge window. 1211 * 1212 * This function checks if a given region should be skipped or not for the 1213 * reason. If only the starting part of the region has previously charged, 1214 * this function splits the region into two so that the second one covers the 1215 * area that not charged in the previous charge widnow and saves the second 1216 * region in *rp and returns false, so that the caller can apply DAMON action 1217 * to the second one. 1218 * 1219 * Return: true if the region should be entirely skipped, false otherwise. 1220 */ 1221 static bool damos_skip_charged_region(struct damon_target *t, 1222 struct damon_region **rp, struct damos *s) 1223 { 1224 struct damon_region *r = *rp; 1225 struct damos_quota *quota = &s->quota; 1226 unsigned long sz_to_skip; 1227 1228 /* Skip previously charged regions */ 1229 if (quota->charge_target_from) { 1230 if (t != quota->charge_target_from) 1231 return true; 1232 if (r == damon_last_region(t)) { 1233 quota->charge_target_from = NULL; 1234 quota->charge_addr_from = 0; 1235 return true; 1236 } 1237 if (quota->charge_addr_from && 1238 r->ar.end <= quota->charge_addr_from) 1239 return true; 1240 1241 if (quota->charge_addr_from && r->ar.start < 1242 quota->charge_addr_from) { 1243 sz_to_skip = ALIGN_DOWN(quota->charge_addr_from - 1244 r->ar.start, DAMON_MIN_REGION); 1245 if (!sz_to_skip) { 1246 if (damon_sz_region(r) <= DAMON_MIN_REGION) 1247 return true; 1248 sz_to_skip = DAMON_MIN_REGION; 1249 } 1250 damon_split_region_at(t, r, sz_to_skip); 1251 r = damon_next_region(r); 1252 *rp = r; 1253 } 1254 quota->charge_target_from = NULL; 1255 quota->charge_addr_from = 0; 1256 } 1257 return false; 1258 } 1259 1260 static void damos_update_stat(struct damos *s, 1261 unsigned long sz_tried, unsigned long sz_applied) 1262 { 1263 s->stat.nr_tried++; 1264 s->stat.sz_tried += sz_tried; 1265 if (sz_applied) 1266 s->stat.nr_applied++; 1267 s->stat.sz_applied += sz_applied; 1268 } 1269 1270 static bool __damos_filter_out(struct damon_ctx *ctx, struct damon_target *t, 1271 struct damon_region *r, struct damos_filter *filter) 1272 { 1273 bool matched = false; 1274 struct damon_target *ti; 1275 int target_idx = 0; 1276 unsigned long start, end; 1277 1278 switch (filter->type) { 1279 case DAMOS_FILTER_TYPE_TARGET: 1280 damon_for_each_target(ti, ctx) { 1281 if (ti == t) 1282 break; 1283 target_idx++; 1284 } 1285 matched = target_idx == filter->target_idx; 1286 break; 1287 case DAMOS_FILTER_TYPE_ADDR: 1288 start = ALIGN_DOWN(filter->addr_range.start, DAMON_MIN_REGION); 1289 end = ALIGN_DOWN(filter->addr_range.end, DAMON_MIN_REGION); 1290 1291 /* inside the range */ 1292 if (start <= r->ar.start && r->ar.end <= end) { 1293 matched = true; 1294 break; 1295 } 1296 /* outside of the range */ 1297 if (r->ar.end <= start || end <= r->ar.start) { 1298 matched = false; 1299 break; 1300 } 1301 /* start before the range and overlap */ 1302 if (r->ar.start < start) { 1303 damon_split_region_at(t, r, start - r->ar.start); 1304 matched = false; 1305 break; 1306 } 1307 /* start inside the range */ 1308 damon_split_region_at(t, r, end - r->ar.start); 1309 matched = true; 1310 break; 1311 default: 1312 return false; 1313 } 1314 1315 return matched == filter->matching; 1316 } 1317 1318 static bool damos_filter_out(struct damon_ctx *ctx, struct damon_target *t, 1319 struct damon_region *r, struct damos *s) 1320 { 1321 struct damos_filter *filter; 1322 1323 damos_for_each_filter(filter, s) { 1324 if (__damos_filter_out(ctx, t, r, filter)) 1325 return true; 1326 } 1327 return false; 1328 } 1329 1330 static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t, 1331 struct damon_region *r, struct damos *s) 1332 { 1333 struct damos_quota *quota = &s->quota; 1334 unsigned long sz = damon_sz_region(r); 1335 struct timespec64 begin, end; 1336 unsigned long sz_applied = 0; 1337 int err = 0; 1338 /* 1339 * We plan to support multiple context per kdamond, as DAMON sysfs 1340 * implies with 'nr_contexts' file. Nevertheless, only single context 1341 * per kdamond is supported for now. So, we can simply use '0' context 1342 * index here. 1343 */ 1344 unsigned int cidx = 0; 1345 struct damos *siter; /* schemes iterator */ 1346 unsigned int sidx = 0; 1347 struct damon_target *titer; /* targets iterator */ 1348 unsigned int tidx = 0; 1349 bool do_trace = false; 1350 1351 /* get indices for trace_damos_before_apply() */ 1352 if (trace_damos_before_apply_enabled()) { 1353 damon_for_each_scheme(siter, c) { 1354 if (siter == s) 1355 break; 1356 sidx++; 1357 } 1358 damon_for_each_target(titer, c) { 1359 if (titer == t) 1360 break; 1361 tidx++; 1362 } 1363 do_trace = true; 1364 } 1365 1366 if (c->ops.apply_scheme) { 1367 if (quota->esz && quota->charged_sz + sz > quota->esz) { 1368 sz = ALIGN_DOWN(quota->esz - quota->charged_sz, 1369 DAMON_MIN_REGION); 1370 if (!sz) 1371 goto update_stat; 1372 damon_split_region_at(t, r, sz); 1373 } 1374 if (damos_filter_out(c, t, r, s)) 1375 return; 1376 ktime_get_coarse_ts64(&begin); 1377 if (c->callback.before_damos_apply) 1378 err = c->callback.before_damos_apply(c, t, r, s); 1379 if (!err) { 1380 trace_damos_before_apply(cidx, sidx, tidx, r, 1381 damon_nr_regions(t), do_trace); 1382 sz_applied = c->ops.apply_scheme(c, t, r, s); 1383 } 1384 ktime_get_coarse_ts64(&end); 1385 quota->total_charged_ns += timespec64_to_ns(&end) - 1386 timespec64_to_ns(&begin); 1387 quota->charged_sz += sz; 1388 if (quota->esz && quota->charged_sz >= quota->esz) { 1389 quota->charge_target_from = t; 1390 quota->charge_addr_from = r->ar.end + 1; 1391 } 1392 } 1393 if (s->action != DAMOS_STAT) 1394 r->age = 0; 1395 1396 update_stat: 1397 damos_update_stat(s, sz, sz_applied); 1398 } 1399 1400 static void damon_do_apply_schemes(struct damon_ctx *c, 1401 struct damon_target *t, 1402 struct damon_region *r) 1403 { 1404 struct damos *s; 1405 1406 damon_for_each_scheme(s, c) { 1407 struct damos_quota *quota = &s->quota; 1408 1409 if (c->passed_sample_intervals != s->next_apply_sis) 1410 continue; 1411 1412 if (!s->wmarks.activated) 1413 continue; 1414 1415 /* Check the quota */ 1416 if (quota->esz && quota->charged_sz >= quota->esz) 1417 continue; 1418 1419 if (damos_skip_charged_region(t, &r, s)) 1420 continue; 1421 1422 if (!damos_valid_target(c, t, r, s)) 1423 continue; 1424 1425 damos_apply_scheme(c, t, r, s); 1426 } 1427 } 1428 1429 /* 1430 * damon_feed_loop_next_input() - get next input to achieve a target score. 1431 * @last_input The last input. 1432 * @score Current score that made with @last_input. 1433 * 1434 * Calculate next input to achieve the target score, based on the last input 1435 * and current score. Assuming the input and the score are positively 1436 * proportional, calculate how much compensation should be added to or 1437 * subtracted from the last input as a proportion of the last input. Avoid 1438 * next input always being zero by setting it non-zero always. In short form 1439 * (assuming support of float and signed calculations), the algorithm is as 1440 * below. 1441 * 1442 * next_input = max(last_input * ((goal - current) / goal + 1), 1) 1443 * 1444 * For simple implementation, we assume the target score is always 10,000. The 1445 * caller should adjust @score for this. 1446 * 1447 * Returns next input that assumed to achieve the target score. 1448 */ 1449 static unsigned long damon_feed_loop_next_input(unsigned long last_input, 1450 unsigned long score) 1451 { 1452 const unsigned long goal = 10000; 1453 unsigned long score_goal_diff = max(goal, score) - min(goal, score); 1454 unsigned long score_goal_diff_bp = score_goal_diff * 10000 / goal; 1455 unsigned long compensation = last_input * score_goal_diff_bp / 10000; 1456 /* Set minimum input as 10000 to avoid compensation be zero */ 1457 const unsigned long min_input = 10000; 1458 1459 if (goal > score) 1460 return last_input + compensation; 1461 if (last_input > compensation + min_input) 1462 return last_input - compensation; 1463 return min_input; 1464 } 1465 1466 #ifdef CONFIG_PSI 1467 1468 static u64 damos_get_some_mem_psi_total(void) 1469 { 1470 if (static_branch_likely(&psi_disabled)) 1471 return 0; 1472 return div_u64(psi_system.total[PSI_AVGS][PSI_MEM * 2], 1473 NSEC_PER_USEC); 1474 } 1475 1476 #else /* CONFIG_PSI */ 1477 1478 static inline u64 damos_get_some_mem_psi_total(void) 1479 { 1480 return 0; 1481 }; 1482 1483 #endif /* CONFIG_PSI */ 1484 1485 static void damos_set_quota_goal_current_value(struct damos_quota_goal *goal) 1486 { 1487 u64 now_psi_total; 1488 1489 switch (goal->metric) { 1490 case DAMOS_QUOTA_USER_INPUT: 1491 /* User should already set goal->current_value */ 1492 break; 1493 case DAMOS_QUOTA_SOME_MEM_PSI_US: 1494 now_psi_total = damos_get_some_mem_psi_total(); 1495 goal->current_value = now_psi_total - goal->last_psi_total; 1496 goal->last_psi_total = now_psi_total; 1497 break; 1498 default: 1499 break; 1500 } 1501 } 1502 1503 /* Return the highest score since it makes schemes least aggressive */ 1504 static unsigned long damos_quota_score(struct damos_quota *quota) 1505 { 1506 struct damos_quota_goal *goal; 1507 unsigned long highest_score = 0; 1508 1509 damos_for_each_quota_goal(goal, quota) { 1510 damos_set_quota_goal_current_value(goal); 1511 highest_score = max(highest_score, 1512 goal->current_value * 10000 / 1513 goal->target_value); 1514 } 1515 1516 return highest_score; 1517 } 1518 1519 /* 1520 * Called only if quota->ms, or quota->sz are set, or quota->goals is not empty 1521 */ 1522 static void damos_set_effective_quota(struct damos_quota *quota) 1523 { 1524 unsigned long throughput; 1525 unsigned long esz; 1526 1527 if (!quota->ms && list_empty("a->goals)) { 1528 quota->esz = quota->sz; 1529 return; 1530 } 1531 1532 if (!list_empty("a->goals)) { 1533 unsigned long score = damos_quota_score(quota); 1534 1535 quota->esz_bp = damon_feed_loop_next_input( 1536 max(quota->esz_bp, 10000UL), 1537 score); 1538 esz = quota->esz_bp / 10000; 1539 } 1540 1541 if (quota->ms) { 1542 if (quota->total_charged_ns) 1543 throughput = quota->total_charged_sz * 1000000 / 1544 quota->total_charged_ns; 1545 else 1546 throughput = PAGE_SIZE * 1024; 1547 if (!list_empty("a->goals)) 1548 esz = min(throughput * quota->ms, esz); 1549 else 1550 esz = throughput * quota->ms; 1551 } 1552 1553 if (quota->sz && quota->sz < esz) 1554 esz = quota->sz; 1555 1556 quota->esz = esz; 1557 } 1558 1559 static void damos_adjust_quota(struct damon_ctx *c, struct damos *s) 1560 { 1561 struct damos_quota *quota = &s->quota; 1562 struct damon_target *t; 1563 struct damon_region *r; 1564 unsigned long cumulated_sz; 1565 unsigned int score, max_score = 0; 1566 1567 if (!quota->ms && !quota->sz && list_empty("a->goals)) 1568 return; 1569 1570 /* New charge window starts */ 1571 if (time_after_eq(jiffies, quota->charged_from + 1572 msecs_to_jiffies(quota->reset_interval))) { 1573 if (quota->esz && quota->charged_sz >= quota->esz) 1574 s->stat.qt_exceeds++; 1575 quota->total_charged_sz += quota->charged_sz; 1576 quota->charged_from = jiffies; 1577 quota->charged_sz = 0; 1578 damos_set_effective_quota(quota); 1579 } 1580 1581 if (!c->ops.get_scheme_score) 1582 return; 1583 1584 /* Fill up the score histogram */ 1585 memset(quota->histogram, 0, sizeof(quota->histogram)); 1586 damon_for_each_target(t, c) { 1587 damon_for_each_region(r, t) { 1588 if (!__damos_valid_target(r, s)) 1589 continue; 1590 score = c->ops.get_scheme_score(c, t, r, s); 1591 quota->histogram[score] += damon_sz_region(r); 1592 if (score > max_score) 1593 max_score = score; 1594 } 1595 } 1596 1597 /* Set the min score limit */ 1598 for (cumulated_sz = 0, score = max_score; ; score--) { 1599 cumulated_sz += quota->histogram[score]; 1600 if (cumulated_sz >= quota->esz || !score) 1601 break; 1602 } 1603 quota->min_score = score; 1604 } 1605 1606 static void kdamond_apply_schemes(struct damon_ctx *c) 1607 { 1608 struct damon_target *t; 1609 struct damon_region *r, *next_r; 1610 struct damos *s; 1611 unsigned long sample_interval = c->attrs.sample_interval ? 1612 c->attrs.sample_interval : 1; 1613 bool has_schemes_to_apply = false; 1614 1615 damon_for_each_scheme(s, c) { 1616 if (c->passed_sample_intervals != s->next_apply_sis) 1617 continue; 1618 1619 if (!s->wmarks.activated) 1620 continue; 1621 1622 has_schemes_to_apply = true; 1623 1624 damos_adjust_quota(c, s); 1625 } 1626 1627 if (!has_schemes_to_apply) 1628 return; 1629 1630 damon_for_each_target(t, c) { 1631 damon_for_each_region_safe(r, next_r, t) 1632 damon_do_apply_schemes(c, t, r); 1633 } 1634 1635 damon_for_each_scheme(s, c) { 1636 if (c->passed_sample_intervals != s->next_apply_sis) 1637 continue; 1638 s->next_apply_sis += 1639 (s->apply_interval_us ? s->apply_interval_us : 1640 c->attrs.aggr_interval) / sample_interval; 1641 } 1642 } 1643 1644 /* 1645 * Merge two adjacent regions into one region 1646 */ 1647 static void damon_merge_two_regions(struct damon_target *t, 1648 struct damon_region *l, struct damon_region *r) 1649 { 1650 unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r); 1651 1652 l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) / 1653 (sz_l + sz_r); 1654 l->nr_accesses_bp = l->nr_accesses * 10000; 1655 l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r); 1656 l->ar.end = r->ar.end; 1657 damon_destroy_region(r, t); 1658 } 1659 1660 /* 1661 * Merge adjacent regions having similar access frequencies 1662 * 1663 * t target affected by this merge operation 1664 * thres '->nr_accesses' diff threshold for the merge 1665 * sz_limit size upper limit of each region 1666 */ 1667 static void damon_merge_regions_of(struct damon_target *t, unsigned int thres, 1668 unsigned long sz_limit) 1669 { 1670 struct damon_region *r, *prev = NULL, *next; 1671 1672 damon_for_each_region_safe(r, next, t) { 1673 if (abs(r->nr_accesses - r->last_nr_accesses) > thres) 1674 r->age = 0; 1675 else 1676 r->age++; 1677 1678 if (prev && prev->ar.end == r->ar.start && 1679 abs(prev->nr_accesses - r->nr_accesses) <= thres && 1680 damon_sz_region(prev) + damon_sz_region(r) <= sz_limit) 1681 damon_merge_two_regions(t, prev, r); 1682 else 1683 prev = r; 1684 } 1685 } 1686 1687 /* 1688 * Merge adjacent regions having similar access frequencies 1689 * 1690 * threshold '->nr_accesses' diff threshold for the merge 1691 * sz_limit size upper limit of each region 1692 * 1693 * This function merges monitoring target regions which are adjacent and their 1694 * access frequencies are similar. This is for minimizing the monitoring 1695 * overhead under the dynamically changeable access pattern. If a merge was 1696 * unnecessarily made, later 'kdamond_split_regions()' will revert it. 1697 * 1698 * The total number of regions could be higher than the user-defined limit, 1699 * max_nr_regions for some cases. For example, the user can update 1700 * max_nr_regions to a number that lower than the current number of regions 1701 * while DAMON is running. For such a case, repeat merging until the limit is 1702 * met while increasing @threshold up to possible maximum level. 1703 */ 1704 static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold, 1705 unsigned long sz_limit) 1706 { 1707 struct damon_target *t; 1708 unsigned int nr_regions; 1709 unsigned int max_thres; 1710 1711 max_thres = c->attrs.aggr_interval / 1712 (c->attrs.sample_interval ? c->attrs.sample_interval : 1); 1713 do { 1714 nr_regions = 0; 1715 damon_for_each_target(t, c) { 1716 damon_merge_regions_of(t, threshold, sz_limit); 1717 nr_regions += damon_nr_regions(t); 1718 } 1719 threshold = max(1, threshold * 2); 1720 } while (nr_regions > c->attrs.max_nr_regions && 1721 threshold / 2 < max_thres); 1722 } 1723 1724 /* 1725 * Split a region in two 1726 * 1727 * r the region to be split 1728 * sz_r size of the first sub-region that will be made 1729 */ 1730 static void damon_split_region_at(struct damon_target *t, 1731 struct damon_region *r, unsigned long sz_r) 1732 { 1733 struct damon_region *new; 1734 1735 new = damon_new_region(r->ar.start + sz_r, r->ar.end); 1736 if (!new) 1737 return; 1738 1739 r->ar.end = new->ar.start; 1740 1741 new->age = r->age; 1742 new->last_nr_accesses = r->last_nr_accesses; 1743 new->nr_accesses_bp = r->nr_accesses_bp; 1744 new->nr_accesses = r->nr_accesses; 1745 1746 damon_insert_region(new, r, damon_next_region(r), t); 1747 } 1748 1749 /* Split every region in the given target into 'nr_subs' regions */ 1750 static void damon_split_regions_of(struct damon_target *t, int nr_subs) 1751 { 1752 struct damon_region *r, *next; 1753 unsigned long sz_region, sz_sub = 0; 1754 int i; 1755 1756 damon_for_each_region_safe(r, next, t) { 1757 sz_region = damon_sz_region(r); 1758 1759 for (i = 0; i < nr_subs - 1 && 1760 sz_region > 2 * DAMON_MIN_REGION; i++) { 1761 /* 1762 * Randomly select size of left sub-region to be at 1763 * least 10 percent and at most 90% of original region 1764 */ 1765 sz_sub = ALIGN_DOWN(damon_rand(1, 10) * 1766 sz_region / 10, DAMON_MIN_REGION); 1767 /* Do not allow blank region */ 1768 if (sz_sub == 0 || sz_sub >= sz_region) 1769 continue; 1770 1771 damon_split_region_at(t, r, sz_sub); 1772 sz_region = sz_sub; 1773 } 1774 } 1775 } 1776 1777 /* 1778 * Split every target region into randomly-sized small regions 1779 * 1780 * This function splits every target region into random-sized small regions if 1781 * current total number of the regions is equal or smaller than half of the 1782 * user-specified maximum number of regions. This is for maximizing the 1783 * monitoring accuracy under the dynamically changeable access patterns. If a 1784 * split was unnecessarily made, later 'kdamond_merge_regions()' will revert 1785 * it. 1786 */ 1787 static void kdamond_split_regions(struct damon_ctx *ctx) 1788 { 1789 struct damon_target *t; 1790 unsigned int nr_regions = 0; 1791 static unsigned int last_nr_regions; 1792 int nr_subregions = 2; 1793 1794 damon_for_each_target(t, ctx) 1795 nr_regions += damon_nr_regions(t); 1796 1797 if (nr_regions > ctx->attrs.max_nr_regions / 2) 1798 return; 1799 1800 /* Maybe the middle of the region has different access frequency */ 1801 if (last_nr_regions == nr_regions && 1802 nr_regions < ctx->attrs.max_nr_regions / 3) 1803 nr_subregions = 3; 1804 1805 damon_for_each_target(t, ctx) 1806 damon_split_regions_of(t, nr_subregions); 1807 1808 last_nr_regions = nr_regions; 1809 } 1810 1811 /* 1812 * Check whether current monitoring should be stopped 1813 * 1814 * The monitoring is stopped when either the user requested to stop, or all 1815 * monitoring targets are invalid. 1816 * 1817 * Returns true if need to stop current monitoring. 1818 */ 1819 static bool kdamond_need_stop(struct damon_ctx *ctx) 1820 { 1821 struct damon_target *t; 1822 1823 if (kthread_should_stop()) 1824 return true; 1825 1826 if (!ctx->ops.target_valid) 1827 return false; 1828 1829 damon_for_each_target(t, ctx) { 1830 if (ctx->ops.target_valid(t)) 1831 return false; 1832 } 1833 1834 return true; 1835 } 1836 1837 static int damos_get_wmark_metric_value(enum damos_wmark_metric metric, 1838 unsigned long *metric_value) 1839 { 1840 switch (metric) { 1841 case DAMOS_WMARK_FREE_MEM_RATE: 1842 *metric_value = global_zone_page_state(NR_FREE_PAGES) * 1000 / 1843 totalram_pages(); 1844 return 0; 1845 default: 1846 break; 1847 } 1848 return -EINVAL; 1849 } 1850 1851 /* 1852 * Returns zero if the scheme is active. Else, returns time to wait for next 1853 * watermark check in micro-seconds. 1854 */ 1855 static unsigned long damos_wmark_wait_us(struct damos *scheme) 1856 { 1857 unsigned long metric; 1858 1859 if (damos_get_wmark_metric_value(scheme->wmarks.metric, &metric)) 1860 return 0; 1861 1862 /* higher than high watermark or lower than low watermark */ 1863 if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) { 1864 if (scheme->wmarks.activated) 1865 pr_debug("deactivate a scheme (%d) for %s wmark\n", 1866 scheme->action, 1867 metric > scheme->wmarks.high ? 1868 "high" : "low"); 1869 scheme->wmarks.activated = false; 1870 return scheme->wmarks.interval; 1871 } 1872 1873 /* inactive and higher than middle watermark */ 1874 if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) && 1875 !scheme->wmarks.activated) 1876 return scheme->wmarks.interval; 1877 1878 if (!scheme->wmarks.activated) 1879 pr_debug("activate a scheme (%d)\n", scheme->action); 1880 scheme->wmarks.activated = true; 1881 return 0; 1882 } 1883 1884 static void kdamond_usleep(unsigned long usecs) 1885 { 1886 /* See Documentation/timers/timers-howto.rst for the thresholds */ 1887 if (usecs > 20 * USEC_PER_MSEC) 1888 schedule_timeout_idle(usecs_to_jiffies(usecs)); 1889 else 1890 usleep_idle_range(usecs, usecs + 1); 1891 } 1892 1893 /* Returns negative error code if it's not activated but should return */ 1894 static int kdamond_wait_activation(struct damon_ctx *ctx) 1895 { 1896 struct damos *s; 1897 unsigned long wait_time; 1898 unsigned long min_wait_time = 0; 1899 bool init_wait_time = false; 1900 1901 while (!kdamond_need_stop(ctx)) { 1902 damon_for_each_scheme(s, ctx) { 1903 wait_time = damos_wmark_wait_us(s); 1904 if (!init_wait_time || wait_time < min_wait_time) { 1905 init_wait_time = true; 1906 min_wait_time = wait_time; 1907 } 1908 } 1909 if (!min_wait_time) 1910 return 0; 1911 1912 kdamond_usleep(min_wait_time); 1913 1914 if (ctx->callback.after_wmarks_check && 1915 ctx->callback.after_wmarks_check(ctx)) 1916 break; 1917 } 1918 return -EBUSY; 1919 } 1920 1921 static void kdamond_init_intervals_sis(struct damon_ctx *ctx) 1922 { 1923 unsigned long sample_interval = ctx->attrs.sample_interval ? 1924 ctx->attrs.sample_interval : 1; 1925 unsigned long apply_interval; 1926 struct damos *scheme; 1927 1928 ctx->passed_sample_intervals = 0; 1929 ctx->next_aggregation_sis = ctx->attrs.aggr_interval / sample_interval; 1930 ctx->next_ops_update_sis = ctx->attrs.ops_update_interval / 1931 sample_interval; 1932 1933 damon_for_each_scheme(scheme, ctx) { 1934 apply_interval = scheme->apply_interval_us ? 1935 scheme->apply_interval_us : ctx->attrs.aggr_interval; 1936 scheme->next_apply_sis = apply_interval / sample_interval; 1937 } 1938 } 1939 1940 /* 1941 * The monitoring daemon that runs as a kernel thread 1942 */ 1943 static int kdamond_fn(void *data) 1944 { 1945 struct damon_ctx *ctx = data; 1946 struct damon_target *t; 1947 struct damon_region *r, *next; 1948 unsigned int max_nr_accesses = 0; 1949 unsigned long sz_limit = 0; 1950 1951 pr_debug("kdamond (%d) starts\n", current->pid); 1952 1953 complete(&ctx->kdamond_started); 1954 kdamond_init_intervals_sis(ctx); 1955 1956 if (ctx->ops.init) 1957 ctx->ops.init(ctx); 1958 if (ctx->callback.before_start && ctx->callback.before_start(ctx)) 1959 goto done; 1960 1961 sz_limit = damon_region_sz_limit(ctx); 1962 1963 while (!kdamond_need_stop(ctx)) { 1964 /* 1965 * ctx->attrs and ctx->next_{aggregation,ops_update}_sis could 1966 * be changed from after_wmarks_check() or after_aggregation() 1967 * callbacks. Read the values here, and use those for this 1968 * iteration. That is, damon_set_attrs() updated new values 1969 * are respected from next iteration. 1970 */ 1971 unsigned long next_aggregation_sis = ctx->next_aggregation_sis; 1972 unsigned long next_ops_update_sis = ctx->next_ops_update_sis; 1973 unsigned long sample_interval = ctx->attrs.sample_interval; 1974 1975 if (kdamond_wait_activation(ctx)) 1976 break; 1977 1978 if (ctx->ops.prepare_access_checks) 1979 ctx->ops.prepare_access_checks(ctx); 1980 if (ctx->callback.after_sampling && 1981 ctx->callback.after_sampling(ctx)) 1982 break; 1983 1984 kdamond_usleep(sample_interval); 1985 ctx->passed_sample_intervals++; 1986 1987 if (ctx->ops.check_accesses) 1988 max_nr_accesses = ctx->ops.check_accesses(ctx); 1989 1990 if (ctx->passed_sample_intervals == next_aggregation_sis) { 1991 kdamond_merge_regions(ctx, 1992 max_nr_accesses / 10, 1993 sz_limit); 1994 if (ctx->callback.after_aggregation && 1995 ctx->callback.after_aggregation(ctx)) 1996 break; 1997 } 1998 1999 /* 2000 * do kdamond_apply_schemes() after kdamond_merge_regions() if 2001 * possible, to reduce overhead 2002 */ 2003 if (!list_empty(&ctx->schemes)) 2004 kdamond_apply_schemes(ctx); 2005 2006 sample_interval = ctx->attrs.sample_interval ? 2007 ctx->attrs.sample_interval : 1; 2008 if (ctx->passed_sample_intervals == next_aggregation_sis) { 2009 ctx->next_aggregation_sis = next_aggregation_sis + 2010 ctx->attrs.aggr_interval / sample_interval; 2011 2012 kdamond_reset_aggregated(ctx); 2013 kdamond_split_regions(ctx); 2014 if (ctx->ops.reset_aggregated) 2015 ctx->ops.reset_aggregated(ctx); 2016 } 2017 2018 if (ctx->passed_sample_intervals == next_ops_update_sis) { 2019 ctx->next_ops_update_sis = next_ops_update_sis + 2020 ctx->attrs.ops_update_interval / 2021 sample_interval; 2022 if (ctx->ops.update) 2023 ctx->ops.update(ctx); 2024 sz_limit = damon_region_sz_limit(ctx); 2025 } 2026 } 2027 done: 2028 damon_for_each_target(t, ctx) { 2029 damon_for_each_region_safe(r, next, t) 2030 damon_destroy_region(r, t); 2031 } 2032 2033 if (ctx->callback.before_terminate) 2034 ctx->callback.before_terminate(ctx); 2035 if (ctx->ops.cleanup) 2036 ctx->ops.cleanup(ctx); 2037 2038 pr_debug("kdamond (%d) finishes\n", current->pid); 2039 mutex_lock(&ctx->kdamond_lock); 2040 ctx->kdamond = NULL; 2041 mutex_unlock(&ctx->kdamond_lock); 2042 2043 mutex_lock(&damon_lock); 2044 nr_running_ctxs--; 2045 if (!nr_running_ctxs && running_exclusive_ctxs) 2046 running_exclusive_ctxs = false; 2047 mutex_unlock(&damon_lock); 2048 2049 return 0; 2050 } 2051 2052 /* 2053 * struct damon_system_ram_region - System RAM resource address region of 2054 * [@start, @end). 2055 * @start: Start address of the region (inclusive). 2056 * @end: End address of the region (exclusive). 2057 */ 2058 struct damon_system_ram_region { 2059 unsigned long start; 2060 unsigned long end; 2061 }; 2062 2063 static int walk_system_ram(struct resource *res, void *arg) 2064 { 2065 struct damon_system_ram_region *a = arg; 2066 2067 if (a->end - a->start < resource_size(res)) { 2068 a->start = res->start; 2069 a->end = res->end; 2070 } 2071 return 0; 2072 } 2073 2074 /* 2075 * Find biggest 'System RAM' resource and store its start and end address in 2076 * @start and @end, respectively. If no System RAM is found, returns false. 2077 */ 2078 static bool damon_find_biggest_system_ram(unsigned long *start, 2079 unsigned long *end) 2080 2081 { 2082 struct damon_system_ram_region arg = {}; 2083 2084 walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram); 2085 if (arg.end <= arg.start) 2086 return false; 2087 2088 *start = arg.start; 2089 *end = arg.end; 2090 return true; 2091 } 2092 2093 /** 2094 * damon_set_region_biggest_system_ram_default() - Set the region of the given 2095 * monitoring target as requested, or biggest 'System RAM'. 2096 * @t: The monitoring target to set the region. 2097 * @start: The pointer to the start address of the region. 2098 * @end: The pointer to the end address of the region. 2099 * 2100 * This function sets the region of @t as requested by @start and @end. If the 2101 * values of @start and @end are zero, however, this function finds the biggest 2102 * 'System RAM' resource and sets the region to cover the resource. In the 2103 * latter case, this function saves the start and end addresses of the resource 2104 * in @start and @end, respectively. 2105 * 2106 * Return: 0 on success, negative error code otherwise. 2107 */ 2108 int damon_set_region_biggest_system_ram_default(struct damon_target *t, 2109 unsigned long *start, unsigned long *end) 2110 { 2111 struct damon_addr_range addr_range; 2112 2113 if (*start > *end) 2114 return -EINVAL; 2115 2116 if (!*start && !*end && 2117 !damon_find_biggest_system_ram(start, end)) 2118 return -EINVAL; 2119 2120 addr_range.start = *start; 2121 addr_range.end = *end; 2122 return damon_set_regions(t, &addr_range, 1); 2123 } 2124 2125 /* 2126 * damon_moving_sum() - Calculate an inferred moving sum value. 2127 * @mvsum: Inferred sum of the last @len_window values. 2128 * @nomvsum: Non-moving sum of the last discrete @len_window window values. 2129 * @len_window: The number of last values to take care of. 2130 * @new_value: New value that will be added to the pseudo moving sum. 2131 * 2132 * Moving sum (moving average * window size) is good for handling noise, but 2133 * the cost of keeping past values can be high for arbitrary window size. This 2134 * function implements a lightweight pseudo moving sum function that doesn't 2135 * keep the past window values. 2136 * 2137 * It simply assumes there was no noise in the past, and get the no-noise 2138 * assumed past value to drop from @nomvsum and @len_window. @nomvsum is a 2139 * non-moving sum of the last window. For example, if @len_window is 10 and we 2140 * have 25 values, @nomvsum is the sum of the 11th to 20th values of the 25 2141 * values. Hence, this function simply drops @nomvsum / @len_window from 2142 * given @mvsum and add @new_value. 2143 * 2144 * For example, if @len_window is 10 and @nomvsum is 50, the last 10 values for 2145 * the last window could be vary, e.g., 0, 10, 0, 10, 0, 10, 0, 0, 0, 20. For 2146 * calculating next moving sum with a new value, we should drop 0 from 50 and 2147 * add the new value. However, this function assumes it got value 5 for each 2148 * of the last ten times. Based on the assumption, when the next value is 2149 * measured, it drops the assumed past value, 5 from the current sum, and add 2150 * the new value to get the updated pseduo-moving average. 2151 * 2152 * This means the value could have errors, but the errors will be disappeared 2153 * for every @len_window aligned calls. For example, if @len_window is 10, the 2154 * pseudo moving sum with 11th value to 19th value would have an error. But 2155 * the sum with 20th value will not have the error. 2156 * 2157 * Return: Pseudo-moving average after getting the @new_value. 2158 */ 2159 static unsigned int damon_moving_sum(unsigned int mvsum, unsigned int nomvsum, 2160 unsigned int len_window, unsigned int new_value) 2161 { 2162 return mvsum - nomvsum / len_window + new_value; 2163 } 2164 2165 /** 2166 * damon_update_region_access_rate() - Update the access rate of a region. 2167 * @r: The DAMON region to update for its access check result. 2168 * @accessed: Whether the region has accessed during last sampling interval. 2169 * @attrs: The damon_attrs of the DAMON context. 2170 * 2171 * Update the access rate of a region with the region's last sampling interval 2172 * access check result. 2173 * 2174 * Usually this will be called by &damon_operations->check_accesses callback. 2175 */ 2176 void damon_update_region_access_rate(struct damon_region *r, bool accessed, 2177 struct damon_attrs *attrs) 2178 { 2179 unsigned int len_window = 1; 2180 2181 /* 2182 * sample_interval can be zero, but cannot be larger than 2183 * aggr_interval, owing to validation of damon_set_attrs(). 2184 */ 2185 if (attrs->sample_interval) 2186 len_window = damon_max_nr_accesses(attrs); 2187 r->nr_accesses_bp = damon_moving_sum(r->nr_accesses_bp, 2188 r->last_nr_accesses * 10000, len_window, 2189 accessed ? 10000 : 0); 2190 2191 if (accessed) 2192 r->nr_accesses++; 2193 } 2194 2195 static int __init damon_init(void) 2196 { 2197 damon_region_cache = KMEM_CACHE(damon_region, 0); 2198 if (unlikely(!damon_region_cache)) { 2199 pr_err("creating damon_region_cache fails\n"); 2200 return -ENOMEM; 2201 } 2202 2203 return 0; 2204 } 2205 2206 subsys_initcall(damon_init); 2207 2208 #include "core-test.h" 2209