xref: /linux/mm/compaction.c (revision f3449bf31d352f70c80a7993c272a7854ae98086)
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include "internal.h"
18 
19 /*
20  * compact_control is used to track pages being migrated and the free pages
21  * they are being migrated to during memory compaction. The free_pfn starts
22  * at the end of a zone and migrate_pfn begins at the start. Movable pages
23  * are moved to the end of a zone during a compaction run and the run
24  * completes when free_pfn <= migrate_pfn
25  */
26 struct compact_control {
27 	struct list_head freepages;	/* List of free pages to migrate to */
28 	struct list_head migratepages;	/* List of pages being migrated */
29 	unsigned long nr_freepages;	/* Number of isolated free pages */
30 	unsigned long nr_migratepages;	/* Number of pages to migrate */
31 	unsigned long free_pfn;		/* isolate_freepages search base */
32 	unsigned long migrate_pfn;	/* isolate_migratepages search base */
33 
34 	/* Account for isolated anon and file pages */
35 	unsigned long nr_anon;
36 	unsigned long nr_file;
37 
38 	unsigned int order;		/* order a direct compactor needs */
39 	int migratetype;		/* MOVABLE, RECLAIMABLE etc */
40 	struct zone *zone;
41 };
42 
43 static unsigned long release_freepages(struct list_head *freelist)
44 {
45 	struct page *page, *next;
46 	unsigned long count = 0;
47 
48 	list_for_each_entry_safe(page, next, freelist, lru) {
49 		list_del(&page->lru);
50 		__free_page(page);
51 		count++;
52 	}
53 
54 	return count;
55 }
56 
57 /* Isolate free pages onto a private freelist. Must hold zone->lock */
58 static unsigned long isolate_freepages_block(struct zone *zone,
59 				unsigned long blockpfn,
60 				struct list_head *freelist)
61 {
62 	unsigned long zone_end_pfn, end_pfn;
63 	int total_isolated = 0;
64 	struct page *cursor;
65 
66 	/* Get the last PFN we should scan for free pages at */
67 	zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
68 	end_pfn = min(blockpfn + pageblock_nr_pages, zone_end_pfn);
69 
70 	/* Find the first usable PFN in the block to initialse page cursor */
71 	for (; blockpfn < end_pfn; blockpfn++) {
72 		if (pfn_valid_within(blockpfn))
73 			break;
74 	}
75 	cursor = pfn_to_page(blockpfn);
76 
77 	/* Isolate free pages. This assumes the block is valid */
78 	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
79 		int isolated, i;
80 		struct page *page = cursor;
81 
82 		if (!pfn_valid_within(blockpfn))
83 			continue;
84 
85 		if (!PageBuddy(page))
86 			continue;
87 
88 		/* Found a free page, break it into order-0 pages */
89 		isolated = split_free_page(page);
90 		total_isolated += isolated;
91 		for (i = 0; i < isolated; i++) {
92 			list_add(&page->lru, freelist);
93 			page++;
94 		}
95 
96 		/* If a page was split, advance to the end of it */
97 		if (isolated) {
98 			blockpfn += isolated - 1;
99 			cursor += isolated - 1;
100 		}
101 	}
102 
103 	return total_isolated;
104 }
105 
106 /* Returns true if the page is within a block suitable for migration to */
107 static bool suitable_migration_target(struct page *page)
108 {
109 
110 	int migratetype = get_pageblock_migratetype(page);
111 
112 	/* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
113 	if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
114 		return false;
115 
116 	/* If the page is a large free page, then allow migration */
117 	if (PageBuddy(page) && page_order(page) >= pageblock_order)
118 		return true;
119 
120 	/* If the block is MIGRATE_MOVABLE, allow migration */
121 	if (migratetype == MIGRATE_MOVABLE)
122 		return true;
123 
124 	/* Otherwise skip the block */
125 	return false;
126 }
127 
128 /*
129  * Based on information in the current compact_control, find blocks
130  * suitable for isolating free pages from and then isolate them.
131  */
132 static void isolate_freepages(struct zone *zone,
133 				struct compact_control *cc)
134 {
135 	struct page *page;
136 	unsigned long high_pfn, low_pfn, pfn;
137 	unsigned long flags;
138 	int nr_freepages = cc->nr_freepages;
139 	struct list_head *freelist = &cc->freepages;
140 
141 	pfn = cc->free_pfn;
142 	low_pfn = cc->migrate_pfn + pageblock_nr_pages;
143 	high_pfn = low_pfn;
144 
145 	/*
146 	 * Isolate free pages until enough are available to migrate the
147 	 * pages on cc->migratepages. We stop searching if the migrate
148 	 * and free page scanners meet or enough free pages are isolated.
149 	 */
150 	spin_lock_irqsave(&zone->lock, flags);
151 	for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
152 					pfn -= pageblock_nr_pages) {
153 		unsigned long isolated;
154 
155 		if (!pfn_valid(pfn))
156 			continue;
157 
158 		/*
159 		 * Check for overlapping nodes/zones. It's possible on some
160 		 * configurations to have a setup like
161 		 * node0 node1 node0
162 		 * i.e. it's possible that all pages within a zones range of
163 		 * pages do not belong to a single zone.
164 		 */
165 		page = pfn_to_page(pfn);
166 		if (page_zone(page) != zone)
167 			continue;
168 
169 		/* Check the block is suitable for migration */
170 		if (!suitable_migration_target(page))
171 			continue;
172 
173 		/* Found a block suitable for isolating free pages from */
174 		isolated = isolate_freepages_block(zone, pfn, freelist);
175 		nr_freepages += isolated;
176 
177 		/*
178 		 * Record the highest PFN we isolated pages from. When next
179 		 * looking for free pages, the search will restart here as
180 		 * page migration may have returned some pages to the allocator
181 		 */
182 		if (isolated)
183 			high_pfn = max(high_pfn, pfn);
184 	}
185 	spin_unlock_irqrestore(&zone->lock, flags);
186 
187 	/* split_free_page does not map the pages */
188 	list_for_each_entry(page, freelist, lru) {
189 		arch_alloc_page(page, 0);
190 		kernel_map_pages(page, 1, 1);
191 	}
192 
193 	cc->free_pfn = high_pfn;
194 	cc->nr_freepages = nr_freepages;
195 }
196 
197 /* Update the number of anon and file isolated pages in the zone */
198 static void acct_isolated(struct zone *zone, struct compact_control *cc)
199 {
200 	struct page *page;
201 	unsigned int count[NR_LRU_LISTS] = { 0, };
202 
203 	list_for_each_entry(page, &cc->migratepages, lru) {
204 		int lru = page_lru_base_type(page);
205 		count[lru]++;
206 	}
207 
208 	cc->nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
209 	cc->nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
210 	__mod_zone_page_state(zone, NR_ISOLATED_ANON, cc->nr_anon);
211 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, cc->nr_file);
212 }
213 
214 /* Similar to reclaim, but different enough that they don't share logic */
215 static bool too_many_isolated(struct zone *zone)
216 {
217 	unsigned long active, inactive, isolated;
218 
219 	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
220 					zone_page_state(zone, NR_INACTIVE_ANON);
221 	active = zone_page_state(zone, NR_ACTIVE_FILE) +
222 					zone_page_state(zone, NR_ACTIVE_ANON);
223 	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
224 					zone_page_state(zone, NR_ISOLATED_ANON);
225 
226 	return isolated > (inactive + active) / 2;
227 }
228 
229 /*
230  * Isolate all pages that can be migrated from the block pointed to by
231  * the migrate scanner within compact_control.
232  */
233 static unsigned long isolate_migratepages(struct zone *zone,
234 					struct compact_control *cc)
235 {
236 	unsigned long low_pfn, end_pfn;
237 	struct list_head *migratelist = &cc->migratepages;
238 
239 	/* Do not scan outside zone boundaries */
240 	low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
241 
242 	/* Only scan within a pageblock boundary */
243 	end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
244 
245 	/* Do not cross the free scanner or scan within a memory hole */
246 	if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
247 		cc->migrate_pfn = end_pfn;
248 		return 0;
249 	}
250 
251 	/*
252 	 * Ensure that there are not too many pages isolated from the LRU
253 	 * list by either parallel reclaimers or compaction. If there are,
254 	 * delay for some time until fewer pages are isolated
255 	 */
256 	while (unlikely(too_many_isolated(zone))) {
257 		congestion_wait(BLK_RW_ASYNC, HZ/10);
258 
259 		if (fatal_signal_pending(current))
260 			return 0;
261 	}
262 
263 	/* Time to isolate some pages for migration */
264 	spin_lock_irq(&zone->lru_lock);
265 	for (; low_pfn < end_pfn; low_pfn++) {
266 		struct page *page;
267 		if (!pfn_valid_within(low_pfn))
268 			continue;
269 
270 		/* Get the page and skip if free */
271 		page = pfn_to_page(low_pfn);
272 		if (PageBuddy(page))
273 			continue;
274 
275 		/* Try isolate the page */
276 		if (__isolate_lru_page(page, ISOLATE_BOTH, 0) != 0)
277 			continue;
278 
279 		/* Successfully isolated */
280 		del_page_from_lru_list(zone, page, page_lru(page));
281 		list_add(&page->lru, migratelist);
282 		mem_cgroup_del_lru(page);
283 		cc->nr_migratepages++;
284 
285 		/* Avoid isolating too much */
286 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
287 			break;
288 	}
289 
290 	acct_isolated(zone, cc);
291 
292 	spin_unlock_irq(&zone->lru_lock);
293 	cc->migrate_pfn = low_pfn;
294 
295 	return cc->nr_migratepages;
296 }
297 
298 /*
299  * This is a migrate-callback that "allocates" freepages by taking pages
300  * from the isolated freelists in the block we are migrating to.
301  */
302 static struct page *compaction_alloc(struct page *migratepage,
303 					unsigned long data,
304 					int **result)
305 {
306 	struct compact_control *cc = (struct compact_control *)data;
307 	struct page *freepage;
308 
309 	/* Isolate free pages if necessary */
310 	if (list_empty(&cc->freepages)) {
311 		isolate_freepages(cc->zone, cc);
312 
313 		if (list_empty(&cc->freepages))
314 			return NULL;
315 	}
316 
317 	freepage = list_entry(cc->freepages.next, struct page, lru);
318 	list_del(&freepage->lru);
319 	cc->nr_freepages--;
320 
321 	return freepage;
322 }
323 
324 /*
325  * We cannot control nr_migratepages and nr_freepages fully when migration is
326  * running as migrate_pages() has no knowledge of compact_control. When
327  * migration is complete, we count the number of pages on the lists by hand.
328  */
329 static void update_nr_listpages(struct compact_control *cc)
330 {
331 	int nr_migratepages = 0;
332 	int nr_freepages = 0;
333 	struct page *page;
334 
335 	list_for_each_entry(page, &cc->migratepages, lru)
336 		nr_migratepages++;
337 	list_for_each_entry(page, &cc->freepages, lru)
338 		nr_freepages++;
339 
340 	cc->nr_migratepages = nr_migratepages;
341 	cc->nr_freepages = nr_freepages;
342 }
343 
344 static int compact_finished(struct zone *zone,
345 						struct compact_control *cc)
346 {
347 	unsigned int order;
348 	unsigned long watermark = low_wmark_pages(zone) + (1 << cc->order);
349 
350 	if (fatal_signal_pending(current))
351 		return COMPACT_PARTIAL;
352 
353 	/* Compaction run completes if the migrate and free scanner meet */
354 	if (cc->free_pfn <= cc->migrate_pfn)
355 		return COMPACT_COMPLETE;
356 
357 	/* Compaction run is not finished if the watermark is not met */
358 	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
359 		return COMPACT_CONTINUE;
360 
361 	if (cc->order == -1)
362 		return COMPACT_CONTINUE;
363 
364 	/* Direct compactor: Is a suitable page free? */
365 	for (order = cc->order; order < MAX_ORDER; order++) {
366 		/* Job done if page is free of the right migratetype */
367 		if (!list_empty(&zone->free_area[order].free_list[cc->migratetype]))
368 			return COMPACT_PARTIAL;
369 
370 		/* Job done if allocation would set block type */
371 		if (order >= pageblock_order && zone->free_area[order].nr_free)
372 			return COMPACT_PARTIAL;
373 	}
374 
375 	return COMPACT_CONTINUE;
376 }
377 
378 static int compact_zone(struct zone *zone, struct compact_control *cc)
379 {
380 	int ret;
381 
382 	/* Setup to move all movable pages to the end of the zone */
383 	cc->migrate_pfn = zone->zone_start_pfn;
384 	cc->free_pfn = cc->migrate_pfn + zone->spanned_pages;
385 	cc->free_pfn &= ~(pageblock_nr_pages-1);
386 
387 	migrate_prep_local();
388 
389 	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
390 		unsigned long nr_migrate, nr_remaining;
391 
392 		if (!isolate_migratepages(zone, cc))
393 			continue;
394 
395 		nr_migrate = cc->nr_migratepages;
396 		migrate_pages(&cc->migratepages, compaction_alloc,
397 						(unsigned long)cc, 0);
398 		update_nr_listpages(cc);
399 		nr_remaining = cc->nr_migratepages;
400 
401 		count_vm_event(COMPACTBLOCKS);
402 		count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
403 		if (nr_remaining)
404 			count_vm_events(COMPACTPAGEFAILED, nr_remaining);
405 
406 		/* Release LRU pages not migrated */
407 		if (!list_empty(&cc->migratepages)) {
408 			putback_lru_pages(&cc->migratepages);
409 			cc->nr_migratepages = 0;
410 		}
411 
412 	}
413 
414 	/* Release free pages and check accounting */
415 	cc->nr_freepages -= release_freepages(&cc->freepages);
416 	VM_BUG_ON(cc->nr_freepages != 0);
417 
418 	return ret;
419 }
420 
421 static unsigned long compact_zone_order(struct zone *zone,
422 						int order, gfp_t gfp_mask)
423 {
424 	struct compact_control cc = {
425 		.nr_freepages = 0,
426 		.nr_migratepages = 0,
427 		.order = order,
428 		.migratetype = allocflags_to_migratetype(gfp_mask),
429 		.zone = zone,
430 	};
431 	INIT_LIST_HEAD(&cc.freepages);
432 	INIT_LIST_HEAD(&cc.migratepages);
433 
434 	return compact_zone(zone, &cc);
435 }
436 
437 int sysctl_extfrag_threshold = 500;
438 
439 /**
440  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
441  * @zonelist: The zonelist used for the current allocation
442  * @order: The order of the current allocation
443  * @gfp_mask: The GFP mask of the current allocation
444  * @nodemask: The allowed nodes to allocate from
445  *
446  * This is the main entry point for direct page compaction.
447  */
448 unsigned long try_to_compact_pages(struct zonelist *zonelist,
449 			int order, gfp_t gfp_mask, nodemask_t *nodemask)
450 {
451 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
452 	int may_enter_fs = gfp_mask & __GFP_FS;
453 	int may_perform_io = gfp_mask & __GFP_IO;
454 	unsigned long watermark;
455 	struct zoneref *z;
456 	struct zone *zone;
457 	int rc = COMPACT_SKIPPED;
458 
459 	/*
460 	 * Check whether it is worth even starting compaction. The order check is
461 	 * made because an assumption is made that the page allocator can satisfy
462 	 * the "cheaper" orders without taking special steps
463 	 */
464 	if (order <= PAGE_ALLOC_COSTLY_ORDER || !may_enter_fs || !may_perform_io)
465 		return rc;
466 
467 	count_vm_event(COMPACTSTALL);
468 
469 	/* Compact each zone in the list */
470 	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
471 								nodemask) {
472 		int fragindex;
473 		int status;
474 
475 		/*
476 		 * Watermarks for order-0 must be met for compaction. Note
477 		 * the 2UL. This is because during migration, copies of
478 		 * pages need to be allocated and for a short time, the
479 		 * footprint is higher
480 		 */
481 		watermark = low_wmark_pages(zone) + (2UL << order);
482 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
483 			continue;
484 
485 		/*
486 		 * fragmentation index determines if allocation failures are
487 		 * due to low memory or external fragmentation
488 		 *
489 		 * index of -1 implies allocations might succeed depending
490 		 * 	on watermarks
491 		 * index towards 0 implies failure is due to lack of memory
492 		 * index towards 1000 implies failure is due to fragmentation
493 		 *
494 		 * Only compact if a failure would be due to fragmentation.
495 		 */
496 		fragindex = fragmentation_index(zone, order);
497 		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
498 			continue;
499 
500 		if (fragindex == -1 && zone_watermark_ok(zone, order, watermark, 0, 0)) {
501 			rc = COMPACT_PARTIAL;
502 			break;
503 		}
504 
505 		status = compact_zone_order(zone, order, gfp_mask);
506 		rc = max(status, rc);
507 
508 		if (zone_watermark_ok(zone, order, watermark, 0, 0))
509 			break;
510 	}
511 
512 	return rc;
513 }
514 
515 
516 /* Compact all zones within a node */
517 static int compact_node(int nid)
518 {
519 	int zoneid;
520 	pg_data_t *pgdat;
521 	struct zone *zone;
522 
523 	if (nid < 0 || nid >= nr_node_ids || !node_online(nid))
524 		return -EINVAL;
525 	pgdat = NODE_DATA(nid);
526 
527 	/* Flush pending updates to the LRU lists */
528 	lru_add_drain_all();
529 
530 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
531 		struct compact_control cc = {
532 			.nr_freepages = 0,
533 			.nr_migratepages = 0,
534 			.order = -1,
535 		};
536 
537 		zone = &pgdat->node_zones[zoneid];
538 		if (!populated_zone(zone))
539 			continue;
540 
541 		cc.zone = zone;
542 		INIT_LIST_HEAD(&cc.freepages);
543 		INIT_LIST_HEAD(&cc.migratepages);
544 
545 		compact_zone(zone, &cc);
546 
547 		VM_BUG_ON(!list_empty(&cc.freepages));
548 		VM_BUG_ON(!list_empty(&cc.migratepages));
549 	}
550 
551 	return 0;
552 }
553 
554 /* Compact all nodes in the system */
555 static int compact_nodes(void)
556 {
557 	int nid;
558 
559 	for_each_online_node(nid)
560 		compact_node(nid);
561 
562 	return COMPACT_COMPLETE;
563 }
564 
565 /* The written value is actually unused, all memory is compacted */
566 int sysctl_compact_memory;
567 
568 /* This is the entry point for compacting all nodes via /proc/sys/vm */
569 int sysctl_compaction_handler(struct ctl_table *table, int write,
570 			void __user *buffer, size_t *length, loff_t *ppos)
571 {
572 	if (write)
573 		return compact_nodes();
574 
575 	return 0;
576 }
577 
578 int sysctl_extfrag_handler(struct ctl_table *table, int write,
579 			void __user *buffer, size_t *length, loff_t *ppos)
580 {
581 	proc_dointvec_minmax(table, write, buffer, length, ppos);
582 
583 	return 0;
584 }
585 
586 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
587 ssize_t sysfs_compact_node(struct sys_device *dev,
588 			struct sysdev_attribute *attr,
589 			const char *buf, size_t count)
590 {
591 	compact_node(dev->id);
592 
593 	return count;
594 }
595 static SYSDEV_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
596 
597 int compaction_register_node(struct node *node)
598 {
599 	return sysdev_create_file(&node->sysdev, &attr_compact);
600 }
601 
602 void compaction_unregister_node(struct node *node)
603 {
604 	return sysdev_remove_file(&node->sysdev, &attr_compact);
605 }
606 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
607