1 /* 2 * linux/mm/compaction.c 3 * 4 * Memory compaction for the reduction of external fragmentation. Note that 5 * this heavily depends upon page migration to do all the real heavy 6 * lifting 7 * 8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 9 */ 10 #include <linux/swap.h> 11 #include <linux/migrate.h> 12 #include <linux/compaction.h> 13 #include <linux/mm_inline.h> 14 #include <linux/backing-dev.h> 15 #include <linux/sysctl.h> 16 #include <linux/sysfs.h> 17 #include "internal.h" 18 19 /* 20 * compact_control is used to track pages being migrated and the free pages 21 * they are being migrated to during memory compaction. The free_pfn starts 22 * at the end of a zone and migrate_pfn begins at the start. Movable pages 23 * are moved to the end of a zone during a compaction run and the run 24 * completes when free_pfn <= migrate_pfn 25 */ 26 struct compact_control { 27 struct list_head freepages; /* List of free pages to migrate to */ 28 struct list_head migratepages; /* List of pages being migrated */ 29 unsigned long nr_freepages; /* Number of isolated free pages */ 30 unsigned long nr_migratepages; /* Number of pages to migrate */ 31 unsigned long free_pfn; /* isolate_freepages search base */ 32 unsigned long migrate_pfn; /* isolate_migratepages search base */ 33 34 /* Account for isolated anon and file pages */ 35 unsigned long nr_anon; 36 unsigned long nr_file; 37 38 unsigned int order; /* order a direct compactor needs */ 39 int migratetype; /* MOVABLE, RECLAIMABLE etc */ 40 struct zone *zone; 41 }; 42 43 static unsigned long release_freepages(struct list_head *freelist) 44 { 45 struct page *page, *next; 46 unsigned long count = 0; 47 48 list_for_each_entry_safe(page, next, freelist, lru) { 49 list_del(&page->lru); 50 __free_page(page); 51 count++; 52 } 53 54 return count; 55 } 56 57 /* Isolate free pages onto a private freelist. Must hold zone->lock */ 58 static unsigned long isolate_freepages_block(struct zone *zone, 59 unsigned long blockpfn, 60 struct list_head *freelist) 61 { 62 unsigned long zone_end_pfn, end_pfn; 63 int total_isolated = 0; 64 struct page *cursor; 65 66 /* Get the last PFN we should scan for free pages at */ 67 zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages; 68 end_pfn = min(blockpfn + pageblock_nr_pages, zone_end_pfn); 69 70 /* Find the first usable PFN in the block to initialse page cursor */ 71 for (; blockpfn < end_pfn; blockpfn++) { 72 if (pfn_valid_within(blockpfn)) 73 break; 74 } 75 cursor = pfn_to_page(blockpfn); 76 77 /* Isolate free pages. This assumes the block is valid */ 78 for (; blockpfn < end_pfn; blockpfn++, cursor++) { 79 int isolated, i; 80 struct page *page = cursor; 81 82 if (!pfn_valid_within(blockpfn)) 83 continue; 84 85 if (!PageBuddy(page)) 86 continue; 87 88 /* Found a free page, break it into order-0 pages */ 89 isolated = split_free_page(page); 90 total_isolated += isolated; 91 for (i = 0; i < isolated; i++) { 92 list_add(&page->lru, freelist); 93 page++; 94 } 95 96 /* If a page was split, advance to the end of it */ 97 if (isolated) { 98 blockpfn += isolated - 1; 99 cursor += isolated - 1; 100 } 101 } 102 103 return total_isolated; 104 } 105 106 /* Returns true if the page is within a block suitable for migration to */ 107 static bool suitable_migration_target(struct page *page) 108 { 109 110 int migratetype = get_pageblock_migratetype(page); 111 112 /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */ 113 if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE) 114 return false; 115 116 /* If the page is a large free page, then allow migration */ 117 if (PageBuddy(page) && page_order(page) >= pageblock_order) 118 return true; 119 120 /* If the block is MIGRATE_MOVABLE, allow migration */ 121 if (migratetype == MIGRATE_MOVABLE) 122 return true; 123 124 /* Otherwise skip the block */ 125 return false; 126 } 127 128 /* 129 * Based on information in the current compact_control, find blocks 130 * suitable for isolating free pages from and then isolate them. 131 */ 132 static void isolate_freepages(struct zone *zone, 133 struct compact_control *cc) 134 { 135 struct page *page; 136 unsigned long high_pfn, low_pfn, pfn; 137 unsigned long flags; 138 int nr_freepages = cc->nr_freepages; 139 struct list_head *freelist = &cc->freepages; 140 141 pfn = cc->free_pfn; 142 low_pfn = cc->migrate_pfn + pageblock_nr_pages; 143 high_pfn = low_pfn; 144 145 /* 146 * Isolate free pages until enough are available to migrate the 147 * pages on cc->migratepages. We stop searching if the migrate 148 * and free page scanners meet or enough free pages are isolated. 149 */ 150 spin_lock_irqsave(&zone->lock, flags); 151 for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages; 152 pfn -= pageblock_nr_pages) { 153 unsigned long isolated; 154 155 if (!pfn_valid(pfn)) 156 continue; 157 158 /* 159 * Check for overlapping nodes/zones. It's possible on some 160 * configurations to have a setup like 161 * node0 node1 node0 162 * i.e. it's possible that all pages within a zones range of 163 * pages do not belong to a single zone. 164 */ 165 page = pfn_to_page(pfn); 166 if (page_zone(page) != zone) 167 continue; 168 169 /* Check the block is suitable for migration */ 170 if (!suitable_migration_target(page)) 171 continue; 172 173 /* Found a block suitable for isolating free pages from */ 174 isolated = isolate_freepages_block(zone, pfn, freelist); 175 nr_freepages += isolated; 176 177 /* 178 * Record the highest PFN we isolated pages from. When next 179 * looking for free pages, the search will restart here as 180 * page migration may have returned some pages to the allocator 181 */ 182 if (isolated) 183 high_pfn = max(high_pfn, pfn); 184 } 185 spin_unlock_irqrestore(&zone->lock, flags); 186 187 /* split_free_page does not map the pages */ 188 list_for_each_entry(page, freelist, lru) { 189 arch_alloc_page(page, 0); 190 kernel_map_pages(page, 1, 1); 191 } 192 193 cc->free_pfn = high_pfn; 194 cc->nr_freepages = nr_freepages; 195 } 196 197 /* Update the number of anon and file isolated pages in the zone */ 198 static void acct_isolated(struct zone *zone, struct compact_control *cc) 199 { 200 struct page *page; 201 unsigned int count[NR_LRU_LISTS] = { 0, }; 202 203 list_for_each_entry(page, &cc->migratepages, lru) { 204 int lru = page_lru_base_type(page); 205 count[lru]++; 206 } 207 208 cc->nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON]; 209 cc->nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE]; 210 __mod_zone_page_state(zone, NR_ISOLATED_ANON, cc->nr_anon); 211 __mod_zone_page_state(zone, NR_ISOLATED_FILE, cc->nr_file); 212 } 213 214 /* Similar to reclaim, but different enough that they don't share logic */ 215 static bool too_many_isolated(struct zone *zone) 216 { 217 unsigned long active, inactive, isolated; 218 219 inactive = zone_page_state(zone, NR_INACTIVE_FILE) + 220 zone_page_state(zone, NR_INACTIVE_ANON); 221 active = zone_page_state(zone, NR_ACTIVE_FILE) + 222 zone_page_state(zone, NR_ACTIVE_ANON); 223 isolated = zone_page_state(zone, NR_ISOLATED_FILE) + 224 zone_page_state(zone, NR_ISOLATED_ANON); 225 226 return isolated > (inactive + active) / 2; 227 } 228 229 /* 230 * Isolate all pages that can be migrated from the block pointed to by 231 * the migrate scanner within compact_control. 232 */ 233 static unsigned long isolate_migratepages(struct zone *zone, 234 struct compact_control *cc) 235 { 236 unsigned long low_pfn, end_pfn; 237 struct list_head *migratelist = &cc->migratepages; 238 239 /* Do not scan outside zone boundaries */ 240 low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn); 241 242 /* Only scan within a pageblock boundary */ 243 end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages); 244 245 /* Do not cross the free scanner or scan within a memory hole */ 246 if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) { 247 cc->migrate_pfn = end_pfn; 248 return 0; 249 } 250 251 /* 252 * Ensure that there are not too many pages isolated from the LRU 253 * list by either parallel reclaimers or compaction. If there are, 254 * delay for some time until fewer pages are isolated 255 */ 256 while (unlikely(too_many_isolated(zone))) { 257 congestion_wait(BLK_RW_ASYNC, HZ/10); 258 259 if (fatal_signal_pending(current)) 260 return 0; 261 } 262 263 /* Time to isolate some pages for migration */ 264 spin_lock_irq(&zone->lru_lock); 265 for (; low_pfn < end_pfn; low_pfn++) { 266 struct page *page; 267 if (!pfn_valid_within(low_pfn)) 268 continue; 269 270 /* Get the page and skip if free */ 271 page = pfn_to_page(low_pfn); 272 if (PageBuddy(page)) 273 continue; 274 275 /* Try isolate the page */ 276 if (__isolate_lru_page(page, ISOLATE_BOTH, 0) != 0) 277 continue; 278 279 /* Successfully isolated */ 280 del_page_from_lru_list(zone, page, page_lru(page)); 281 list_add(&page->lru, migratelist); 282 mem_cgroup_del_lru(page); 283 cc->nr_migratepages++; 284 285 /* Avoid isolating too much */ 286 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) 287 break; 288 } 289 290 acct_isolated(zone, cc); 291 292 spin_unlock_irq(&zone->lru_lock); 293 cc->migrate_pfn = low_pfn; 294 295 return cc->nr_migratepages; 296 } 297 298 /* 299 * This is a migrate-callback that "allocates" freepages by taking pages 300 * from the isolated freelists in the block we are migrating to. 301 */ 302 static struct page *compaction_alloc(struct page *migratepage, 303 unsigned long data, 304 int **result) 305 { 306 struct compact_control *cc = (struct compact_control *)data; 307 struct page *freepage; 308 309 /* Isolate free pages if necessary */ 310 if (list_empty(&cc->freepages)) { 311 isolate_freepages(cc->zone, cc); 312 313 if (list_empty(&cc->freepages)) 314 return NULL; 315 } 316 317 freepage = list_entry(cc->freepages.next, struct page, lru); 318 list_del(&freepage->lru); 319 cc->nr_freepages--; 320 321 return freepage; 322 } 323 324 /* 325 * We cannot control nr_migratepages and nr_freepages fully when migration is 326 * running as migrate_pages() has no knowledge of compact_control. When 327 * migration is complete, we count the number of pages on the lists by hand. 328 */ 329 static void update_nr_listpages(struct compact_control *cc) 330 { 331 int nr_migratepages = 0; 332 int nr_freepages = 0; 333 struct page *page; 334 335 list_for_each_entry(page, &cc->migratepages, lru) 336 nr_migratepages++; 337 list_for_each_entry(page, &cc->freepages, lru) 338 nr_freepages++; 339 340 cc->nr_migratepages = nr_migratepages; 341 cc->nr_freepages = nr_freepages; 342 } 343 344 static int compact_finished(struct zone *zone, 345 struct compact_control *cc) 346 { 347 unsigned int order; 348 unsigned long watermark = low_wmark_pages(zone) + (1 << cc->order); 349 350 if (fatal_signal_pending(current)) 351 return COMPACT_PARTIAL; 352 353 /* Compaction run completes if the migrate and free scanner meet */ 354 if (cc->free_pfn <= cc->migrate_pfn) 355 return COMPACT_COMPLETE; 356 357 /* Compaction run is not finished if the watermark is not met */ 358 if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0)) 359 return COMPACT_CONTINUE; 360 361 if (cc->order == -1) 362 return COMPACT_CONTINUE; 363 364 /* Direct compactor: Is a suitable page free? */ 365 for (order = cc->order; order < MAX_ORDER; order++) { 366 /* Job done if page is free of the right migratetype */ 367 if (!list_empty(&zone->free_area[order].free_list[cc->migratetype])) 368 return COMPACT_PARTIAL; 369 370 /* Job done if allocation would set block type */ 371 if (order >= pageblock_order && zone->free_area[order].nr_free) 372 return COMPACT_PARTIAL; 373 } 374 375 return COMPACT_CONTINUE; 376 } 377 378 static int compact_zone(struct zone *zone, struct compact_control *cc) 379 { 380 int ret; 381 382 /* Setup to move all movable pages to the end of the zone */ 383 cc->migrate_pfn = zone->zone_start_pfn; 384 cc->free_pfn = cc->migrate_pfn + zone->spanned_pages; 385 cc->free_pfn &= ~(pageblock_nr_pages-1); 386 387 migrate_prep_local(); 388 389 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) { 390 unsigned long nr_migrate, nr_remaining; 391 392 if (!isolate_migratepages(zone, cc)) 393 continue; 394 395 nr_migrate = cc->nr_migratepages; 396 migrate_pages(&cc->migratepages, compaction_alloc, 397 (unsigned long)cc, 0); 398 update_nr_listpages(cc); 399 nr_remaining = cc->nr_migratepages; 400 401 count_vm_event(COMPACTBLOCKS); 402 count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining); 403 if (nr_remaining) 404 count_vm_events(COMPACTPAGEFAILED, nr_remaining); 405 406 /* Release LRU pages not migrated */ 407 if (!list_empty(&cc->migratepages)) { 408 putback_lru_pages(&cc->migratepages); 409 cc->nr_migratepages = 0; 410 } 411 412 } 413 414 /* Release free pages and check accounting */ 415 cc->nr_freepages -= release_freepages(&cc->freepages); 416 VM_BUG_ON(cc->nr_freepages != 0); 417 418 return ret; 419 } 420 421 static unsigned long compact_zone_order(struct zone *zone, 422 int order, gfp_t gfp_mask) 423 { 424 struct compact_control cc = { 425 .nr_freepages = 0, 426 .nr_migratepages = 0, 427 .order = order, 428 .migratetype = allocflags_to_migratetype(gfp_mask), 429 .zone = zone, 430 }; 431 INIT_LIST_HEAD(&cc.freepages); 432 INIT_LIST_HEAD(&cc.migratepages); 433 434 return compact_zone(zone, &cc); 435 } 436 437 int sysctl_extfrag_threshold = 500; 438 439 /** 440 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 441 * @zonelist: The zonelist used for the current allocation 442 * @order: The order of the current allocation 443 * @gfp_mask: The GFP mask of the current allocation 444 * @nodemask: The allowed nodes to allocate from 445 * 446 * This is the main entry point for direct page compaction. 447 */ 448 unsigned long try_to_compact_pages(struct zonelist *zonelist, 449 int order, gfp_t gfp_mask, nodemask_t *nodemask) 450 { 451 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 452 int may_enter_fs = gfp_mask & __GFP_FS; 453 int may_perform_io = gfp_mask & __GFP_IO; 454 unsigned long watermark; 455 struct zoneref *z; 456 struct zone *zone; 457 int rc = COMPACT_SKIPPED; 458 459 /* 460 * Check whether it is worth even starting compaction. The order check is 461 * made because an assumption is made that the page allocator can satisfy 462 * the "cheaper" orders without taking special steps 463 */ 464 if (order <= PAGE_ALLOC_COSTLY_ORDER || !may_enter_fs || !may_perform_io) 465 return rc; 466 467 count_vm_event(COMPACTSTALL); 468 469 /* Compact each zone in the list */ 470 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx, 471 nodemask) { 472 int fragindex; 473 int status; 474 475 /* 476 * Watermarks for order-0 must be met for compaction. Note 477 * the 2UL. This is because during migration, copies of 478 * pages need to be allocated and for a short time, the 479 * footprint is higher 480 */ 481 watermark = low_wmark_pages(zone) + (2UL << order); 482 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 483 continue; 484 485 /* 486 * fragmentation index determines if allocation failures are 487 * due to low memory or external fragmentation 488 * 489 * index of -1 implies allocations might succeed depending 490 * on watermarks 491 * index towards 0 implies failure is due to lack of memory 492 * index towards 1000 implies failure is due to fragmentation 493 * 494 * Only compact if a failure would be due to fragmentation. 495 */ 496 fragindex = fragmentation_index(zone, order); 497 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 498 continue; 499 500 if (fragindex == -1 && zone_watermark_ok(zone, order, watermark, 0, 0)) { 501 rc = COMPACT_PARTIAL; 502 break; 503 } 504 505 status = compact_zone_order(zone, order, gfp_mask); 506 rc = max(status, rc); 507 508 if (zone_watermark_ok(zone, order, watermark, 0, 0)) 509 break; 510 } 511 512 return rc; 513 } 514 515 516 /* Compact all zones within a node */ 517 static int compact_node(int nid) 518 { 519 int zoneid; 520 pg_data_t *pgdat; 521 struct zone *zone; 522 523 if (nid < 0 || nid >= nr_node_ids || !node_online(nid)) 524 return -EINVAL; 525 pgdat = NODE_DATA(nid); 526 527 /* Flush pending updates to the LRU lists */ 528 lru_add_drain_all(); 529 530 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 531 struct compact_control cc = { 532 .nr_freepages = 0, 533 .nr_migratepages = 0, 534 .order = -1, 535 }; 536 537 zone = &pgdat->node_zones[zoneid]; 538 if (!populated_zone(zone)) 539 continue; 540 541 cc.zone = zone; 542 INIT_LIST_HEAD(&cc.freepages); 543 INIT_LIST_HEAD(&cc.migratepages); 544 545 compact_zone(zone, &cc); 546 547 VM_BUG_ON(!list_empty(&cc.freepages)); 548 VM_BUG_ON(!list_empty(&cc.migratepages)); 549 } 550 551 return 0; 552 } 553 554 /* Compact all nodes in the system */ 555 static int compact_nodes(void) 556 { 557 int nid; 558 559 for_each_online_node(nid) 560 compact_node(nid); 561 562 return COMPACT_COMPLETE; 563 } 564 565 /* The written value is actually unused, all memory is compacted */ 566 int sysctl_compact_memory; 567 568 /* This is the entry point for compacting all nodes via /proc/sys/vm */ 569 int sysctl_compaction_handler(struct ctl_table *table, int write, 570 void __user *buffer, size_t *length, loff_t *ppos) 571 { 572 if (write) 573 return compact_nodes(); 574 575 return 0; 576 } 577 578 int sysctl_extfrag_handler(struct ctl_table *table, int write, 579 void __user *buffer, size_t *length, loff_t *ppos) 580 { 581 proc_dointvec_minmax(table, write, buffer, length, ppos); 582 583 return 0; 584 } 585 586 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 587 ssize_t sysfs_compact_node(struct sys_device *dev, 588 struct sysdev_attribute *attr, 589 const char *buf, size_t count) 590 { 591 compact_node(dev->id); 592 593 return count; 594 } 595 static SYSDEV_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node); 596 597 int compaction_register_node(struct node *node) 598 { 599 return sysdev_create_file(&node->sysdev, &attr_compact); 600 } 601 602 void compaction_unregister_node(struct node *node) 603 { 604 return sysdev_remove_file(&node->sysdev, &attr_compact); 605 } 606 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 607