xref: /linux/mm/compaction.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include "internal.h"
18 
19 #define CREATE_TRACE_POINTS
20 #include <trace/events/compaction.h>
21 
22 /*
23  * compact_control is used to track pages being migrated and the free pages
24  * they are being migrated to during memory compaction. The free_pfn starts
25  * at the end of a zone and migrate_pfn begins at the start. Movable pages
26  * are moved to the end of a zone during a compaction run and the run
27  * completes when free_pfn <= migrate_pfn
28  */
29 struct compact_control {
30 	struct list_head freepages;	/* List of free pages to migrate to */
31 	struct list_head migratepages;	/* List of pages being migrated */
32 	unsigned long nr_freepages;	/* Number of isolated free pages */
33 	unsigned long nr_migratepages;	/* Number of pages to migrate */
34 	unsigned long free_pfn;		/* isolate_freepages search base */
35 	unsigned long migrate_pfn;	/* isolate_migratepages search base */
36 	bool sync;			/* Synchronous migration */
37 
38 	unsigned int order;		/* order a direct compactor needs */
39 	int migratetype;		/* MOVABLE, RECLAIMABLE etc */
40 	struct zone *zone;
41 };
42 
43 static unsigned long release_freepages(struct list_head *freelist)
44 {
45 	struct page *page, *next;
46 	unsigned long count = 0;
47 
48 	list_for_each_entry_safe(page, next, freelist, lru) {
49 		list_del(&page->lru);
50 		__free_page(page);
51 		count++;
52 	}
53 
54 	return count;
55 }
56 
57 /* Isolate free pages onto a private freelist. Must hold zone->lock */
58 static unsigned long isolate_freepages_block(struct zone *zone,
59 				unsigned long blockpfn,
60 				struct list_head *freelist)
61 {
62 	unsigned long zone_end_pfn, end_pfn;
63 	int nr_scanned = 0, total_isolated = 0;
64 	struct page *cursor;
65 
66 	/* Get the last PFN we should scan for free pages at */
67 	zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
68 	end_pfn = min(blockpfn + pageblock_nr_pages, zone_end_pfn);
69 
70 	/* Find the first usable PFN in the block to initialse page cursor */
71 	for (; blockpfn < end_pfn; blockpfn++) {
72 		if (pfn_valid_within(blockpfn))
73 			break;
74 	}
75 	cursor = pfn_to_page(blockpfn);
76 
77 	/* Isolate free pages. This assumes the block is valid */
78 	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
79 		int isolated, i;
80 		struct page *page = cursor;
81 
82 		if (!pfn_valid_within(blockpfn))
83 			continue;
84 		nr_scanned++;
85 
86 		if (!PageBuddy(page))
87 			continue;
88 
89 		/* Found a free page, break it into order-0 pages */
90 		isolated = split_free_page(page);
91 		total_isolated += isolated;
92 		for (i = 0; i < isolated; i++) {
93 			list_add(&page->lru, freelist);
94 			page++;
95 		}
96 
97 		/* If a page was split, advance to the end of it */
98 		if (isolated) {
99 			blockpfn += isolated - 1;
100 			cursor += isolated - 1;
101 		}
102 	}
103 
104 	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
105 	return total_isolated;
106 }
107 
108 /* Returns true if the page is within a block suitable for migration to */
109 static bool suitable_migration_target(struct page *page)
110 {
111 
112 	int migratetype = get_pageblock_migratetype(page);
113 
114 	/* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
115 	if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
116 		return false;
117 
118 	/* If the page is a large free page, then allow migration */
119 	if (PageBuddy(page) && page_order(page) >= pageblock_order)
120 		return true;
121 
122 	/* If the block is MIGRATE_MOVABLE, allow migration */
123 	if (migratetype == MIGRATE_MOVABLE)
124 		return true;
125 
126 	/* Otherwise skip the block */
127 	return false;
128 }
129 
130 /*
131  * Based on information in the current compact_control, find blocks
132  * suitable for isolating free pages from and then isolate them.
133  */
134 static void isolate_freepages(struct zone *zone,
135 				struct compact_control *cc)
136 {
137 	struct page *page;
138 	unsigned long high_pfn, low_pfn, pfn;
139 	unsigned long flags;
140 	int nr_freepages = cc->nr_freepages;
141 	struct list_head *freelist = &cc->freepages;
142 
143 	/*
144 	 * Initialise the free scanner. The starting point is where we last
145 	 * scanned from (or the end of the zone if starting). The low point
146 	 * is the end of the pageblock the migration scanner is using.
147 	 */
148 	pfn = cc->free_pfn;
149 	low_pfn = cc->migrate_pfn + pageblock_nr_pages;
150 
151 	/*
152 	 * Take care that if the migration scanner is at the end of the zone
153 	 * that the free scanner does not accidentally move to the next zone
154 	 * in the next isolation cycle.
155 	 */
156 	high_pfn = min(low_pfn, pfn);
157 
158 	/*
159 	 * Isolate free pages until enough are available to migrate the
160 	 * pages on cc->migratepages. We stop searching if the migrate
161 	 * and free page scanners meet or enough free pages are isolated.
162 	 */
163 	for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
164 					pfn -= pageblock_nr_pages) {
165 		unsigned long isolated;
166 
167 		if (!pfn_valid(pfn))
168 			continue;
169 
170 		/*
171 		 * Check for overlapping nodes/zones. It's possible on some
172 		 * configurations to have a setup like
173 		 * node0 node1 node0
174 		 * i.e. it's possible that all pages within a zones range of
175 		 * pages do not belong to a single zone.
176 		 */
177 		page = pfn_to_page(pfn);
178 		if (page_zone(page) != zone)
179 			continue;
180 
181 		/* Check the block is suitable for migration */
182 		if (!suitable_migration_target(page))
183 			continue;
184 
185 		/*
186 		 * Found a block suitable for isolating free pages from. Now
187 		 * we disabled interrupts, double check things are ok and
188 		 * isolate the pages. This is to minimise the time IRQs
189 		 * are disabled
190 		 */
191 		isolated = 0;
192 		spin_lock_irqsave(&zone->lock, flags);
193 		if (suitable_migration_target(page)) {
194 			isolated = isolate_freepages_block(zone, pfn, freelist);
195 			nr_freepages += isolated;
196 		}
197 		spin_unlock_irqrestore(&zone->lock, flags);
198 
199 		/*
200 		 * Record the highest PFN we isolated pages from. When next
201 		 * looking for free pages, the search will restart here as
202 		 * page migration may have returned some pages to the allocator
203 		 */
204 		if (isolated)
205 			high_pfn = max(high_pfn, pfn);
206 	}
207 
208 	/* split_free_page does not map the pages */
209 	list_for_each_entry(page, freelist, lru) {
210 		arch_alloc_page(page, 0);
211 		kernel_map_pages(page, 1, 1);
212 	}
213 
214 	cc->free_pfn = high_pfn;
215 	cc->nr_freepages = nr_freepages;
216 }
217 
218 /* Update the number of anon and file isolated pages in the zone */
219 static void acct_isolated(struct zone *zone, struct compact_control *cc)
220 {
221 	struct page *page;
222 	unsigned int count[2] = { 0, };
223 
224 	list_for_each_entry(page, &cc->migratepages, lru)
225 		count[!!page_is_file_cache(page)]++;
226 
227 	__mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
228 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
229 }
230 
231 /* Similar to reclaim, but different enough that they don't share logic */
232 static bool too_many_isolated(struct zone *zone)
233 {
234 	unsigned long active, inactive, isolated;
235 
236 	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
237 					zone_page_state(zone, NR_INACTIVE_ANON);
238 	active = zone_page_state(zone, NR_ACTIVE_FILE) +
239 					zone_page_state(zone, NR_ACTIVE_ANON);
240 	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
241 					zone_page_state(zone, NR_ISOLATED_ANON);
242 
243 	return isolated > (inactive + active) / 2;
244 }
245 
246 /* possible outcome of isolate_migratepages */
247 typedef enum {
248 	ISOLATE_ABORT,		/* Abort compaction now */
249 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
250 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
251 } isolate_migrate_t;
252 
253 /*
254  * Isolate all pages that can be migrated from the block pointed to by
255  * the migrate scanner within compact_control.
256  */
257 static isolate_migrate_t isolate_migratepages(struct zone *zone,
258 					struct compact_control *cc)
259 {
260 	unsigned long low_pfn, end_pfn;
261 	unsigned long last_pageblock_nr = 0, pageblock_nr;
262 	unsigned long nr_scanned = 0, nr_isolated = 0;
263 	struct list_head *migratelist = &cc->migratepages;
264 	isolate_mode_t mode = ISOLATE_ACTIVE|ISOLATE_INACTIVE;
265 
266 	/* Do not scan outside zone boundaries */
267 	low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
268 
269 	/* Only scan within a pageblock boundary */
270 	end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
271 
272 	/* Do not cross the free scanner or scan within a memory hole */
273 	if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
274 		cc->migrate_pfn = end_pfn;
275 		return ISOLATE_NONE;
276 	}
277 
278 	/*
279 	 * Ensure that there are not too many pages isolated from the LRU
280 	 * list by either parallel reclaimers or compaction. If there are,
281 	 * delay for some time until fewer pages are isolated
282 	 */
283 	while (unlikely(too_many_isolated(zone))) {
284 		/* async migration should just abort */
285 		if (!cc->sync)
286 			return ISOLATE_ABORT;
287 
288 		congestion_wait(BLK_RW_ASYNC, HZ/10);
289 
290 		if (fatal_signal_pending(current))
291 			return ISOLATE_ABORT;
292 	}
293 
294 	/* Time to isolate some pages for migration */
295 	cond_resched();
296 	spin_lock_irq(&zone->lru_lock);
297 	for (; low_pfn < end_pfn; low_pfn++) {
298 		struct page *page;
299 		bool locked = true;
300 
301 		/* give a chance to irqs before checking need_resched() */
302 		if (!((low_pfn+1) % SWAP_CLUSTER_MAX)) {
303 			spin_unlock_irq(&zone->lru_lock);
304 			locked = false;
305 		}
306 		if (need_resched() || spin_is_contended(&zone->lru_lock)) {
307 			if (locked)
308 				spin_unlock_irq(&zone->lru_lock);
309 			cond_resched();
310 			spin_lock_irq(&zone->lru_lock);
311 			if (fatal_signal_pending(current))
312 				break;
313 		} else if (!locked)
314 			spin_lock_irq(&zone->lru_lock);
315 
316 		if (!pfn_valid_within(low_pfn))
317 			continue;
318 		nr_scanned++;
319 
320 		/* Get the page and skip if free */
321 		page = pfn_to_page(low_pfn);
322 		if (PageBuddy(page))
323 			continue;
324 
325 		/*
326 		 * For async migration, also only scan in MOVABLE blocks. Async
327 		 * migration is optimistic to see if the minimum amount of work
328 		 * satisfies the allocation
329 		 */
330 		pageblock_nr = low_pfn >> pageblock_order;
331 		if (!cc->sync && last_pageblock_nr != pageblock_nr &&
332 				get_pageblock_migratetype(page) != MIGRATE_MOVABLE) {
333 			low_pfn += pageblock_nr_pages;
334 			low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
335 			last_pageblock_nr = pageblock_nr;
336 			continue;
337 		}
338 
339 		if (!PageLRU(page))
340 			continue;
341 
342 		/*
343 		 * PageLRU is set, and lru_lock excludes isolation,
344 		 * splitting and collapsing (collapsing has already
345 		 * happened if PageLRU is set).
346 		 */
347 		if (PageTransHuge(page)) {
348 			low_pfn += (1 << compound_order(page)) - 1;
349 			continue;
350 		}
351 
352 		if (!cc->sync)
353 			mode |= ISOLATE_CLEAN;
354 
355 		/* Try isolate the page */
356 		if (__isolate_lru_page(page, mode, 0) != 0)
357 			continue;
358 
359 		VM_BUG_ON(PageTransCompound(page));
360 
361 		/* Successfully isolated */
362 		del_page_from_lru_list(zone, page, page_lru(page));
363 		list_add(&page->lru, migratelist);
364 		cc->nr_migratepages++;
365 		nr_isolated++;
366 
367 		/* Avoid isolating too much */
368 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
369 			break;
370 	}
371 
372 	acct_isolated(zone, cc);
373 
374 	spin_unlock_irq(&zone->lru_lock);
375 	cc->migrate_pfn = low_pfn;
376 
377 	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
378 
379 	return ISOLATE_SUCCESS;
380 }
381 
382 /*
383  * This is a migrate-callback that "allocates" freepages by taking pages
384  * from the isolated freelists in the block we are migrating to.
385  */
386 static struct page *compaction_alloc(struct page *migratepage,
387 					unsigned long data,
388 					int **result)
389 {
390 	struct compact_control *cc = (struct compact_control *)data;
391 	struct page *freepage;
392 
393 	/* Isolate free pages if necessary */
394 	if (list_empty(&cc->freepages)) {
395 		isolate_freepages(cc->zone, cc);
396 
397 		if (list_empty(&cc->freepages))
398 			return NULL;
399 	}
400 
401 	freepage = list_entry(cc->freepages.next, struct page, lru);
402 	list_del(&freepage->lru);
403 	cc->nr_freepages--;
404 
405 	return freepage;
406 }
407 
408 /*
409  * We cannot control nr_migratepages and nr_freepages fully when migration is
410  * running as migrate_pages() has no knowledge of compact_control. When
411  * migration is complete, we count the number of pages on the lists by hand.
412  */
413 static void update_nr_listpages(struct compact_control *cc)
414 {
415 	int nr_migratepages = 0;
416 	int nr_freepages = 0;
417 	struct page *page;
418 
419 	list_for_each_entry(page, &cc->migratepages, lru)
420 		nr_migratepages++;
421 	list_for_each_entry(page, &cc->freepages, lru)
422 		nr_freepages++;
423 
424 	cc->nr_migratepages = nr_migratepages;
425 	cc->nr_freepages = nr_freepages;
426 }
427 
428 static int compact_finished(struct zone *zone,
429 			    struct compact_control *cc)
430 {
431 	unsigned int order;
432 	unsigned long watermark;
433 
434 	if (fatal_signal_pending(current))
435 		return COMPACT_PARTIAL;
436 
437 	/* Compaction run completes if the migrate and free scanner meet */
438 	if (cc->free_pfn <= cc->migrate_pfn)
439 		return COMPACT_COMPLETE;
440 
441 	/*
442 	 * order == -1 is expected when compacting via
443 	 * /proc/sys/vm/compact_memory
444 	 */
445 	if (cc->order == -1)
446 		return COMPACT_CONTINUE;
447 
448 	/* Compaction run is not finished if the watermark is not met */
449 	watermark = low_wmark_pages(zone);
450 	watermark += (1 << cc->order);
451 
452 	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
453 		return COMPACT_CONTINUE;
454 
455 	/* Direct compactor: Is a suitable page free? */
456 	for (order = cc->order; order < MAX_ORDER; order++) {
457 		/* Job done if page is free of the right migratetype */
458 		if (!list_empty(&zone->free_area[order].free_list[cc->migratetype]))
459 			return COMPACT_PARTIAL;
460 
461 		/* Job done if allocation would set block type */
462 		if (order >= pageblock_order && zone->free_area[order].nr_free)
463 			return COMPACT_PARTIAL;
464 	}
465 
466 	return COMPACT_CONTINUE;
467 }
468 
469 /*
470  * compaction_suitable: Is this suitable to run compaction on this zone now?
471  * Returns
472  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
473  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
474  *   COMPACT_CONTINUE - If compaction should run now
475  */
476 unsigned long compaction_suitable(struct zone *zone, int order)
477 {
478 	int fragindex;
479 	unsigned long watermark;
480 
481 	/*
482 	 * order == -1 is expected when compacting via
483 	 * /proc/sys/vm/compact_memory
484 	 */
485 	if (order == -1)
486 		return COMPACT_CONTINUE;
487 
488 	/*
489 	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
490 	 * This is because during migration, copies of pages need to be
491 	 * allocated and for a short time, the footprint is higher
492 	 */
493 	watermark = low_wmark_pages(zone) + (2UL << order);
494 	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
495 		return COMPACT_SKIPPED;
496 
497 	/*
498 	 * fragmentation index determines if allocation failures are due to
499 	 * low memory or external fragmentation
500 	 *
501 	 * index of -1000 implies allocations might succeed depending on
502 	 * watermarks
503 	 * index towards 0 implies failure is due to lack of memory
504 	 * index towards 1000 implies failure is due to fragmentation
505 	 *
506 	 * Only compact if a failure would be due to fragmentation.
507 	 */
508 	fragindex = fragmentation_index(zone, order);
509 	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
510 		return COMPACT_SKIPPED;
511 
512 	if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
513 	    0, 0))
514 		return COMPACT_PARTIAL;
515 
516 	return COMPACT_CONTINUE;
517 }
518 
519 static int compact_zone(struct zone *zone, struct compact_control *cc)
520 {
521 	int ret;
522 
523 	ret = compaction_suitable(zone, cc->order);
524 	switch (ret) {
525 	case COMPACT_PARTIAL:
526 	case COMPACT_SKIPPED:
527 		/* Compaction is likely to fail */
528 		return ret;
529 	case COMPACT_CONTINUE:
530 		/* Fall through to compaction */
531 		;
532 	}
533 
534 	/* Setup to move all movable pages to the end of the zone */
535 	cc->migrate_pfn = zone->zone_start_pfn;
536 	cc->free_pfn = cc->migrate_pfn + zone->spanned_pages;
537 	cc->free_pfn &= ~(pageblock_nr_pages-1);
538 
539 	migrate_prep_local();
540 
541 	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
542 		unsigned long nr_migrate, nr_remaining;
543 		int err;
544 
545 		switch (isolate_migratepages(zone, cc)) {
546 		case ISOLATE_ABORT:
547 			ret = COMPACT_PARTIAL;
548 			goto out;
549 		case ISOLATE_NONE:
550 			continue;
551 		case ISOLATE_SUCCESS:
552 			;
553 		}
554 
555 		nr_migrate = cc->nr_migratepages;
556 		err = migrate_pages(&cc->migratepages, compaction_alloc,
557 				(unsigned long)cc, false,
558 				cc->sync);
559 		update_nr_listpages(cc);
560 		nr_remaining = cc->nr_migratepages;
561 
562 		count_vm_event(COMPACTBLOCKS);
563 		count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
564 		if (nr_remaining)
565 			count_vm_events(COMPACTPAGEFAILED, nr_remaining);
566 		trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
567 						nr_remaining);
568 
569 		/* Release LRU pages not migrated */
570 		if (err) {
571 			putback_lru_pages(&cc->migratepages);
572 			cc->nr_migratepages = 0;
573 		}
574 
575 	}
576 
577 out:
578 	/* Release free pages and check accounting */
579 	cc->nr_freepages -= release_freepages(&cc->freepages);
580 	VM_BUG_ON(cc->nr_freepages != 0);
581 
582 	return ret;
583 }
584 
585 static unsigned long compact_zone_order(struct zone *zone,
586 				 int order, gfp_t gfp_mask,
587 				 bool sync)
588 {
589 	struct compact_control cc = {
590 		.nr_freepages = 0,
591 		.nr_migratepages = 0,
592 		.order = order,
593 		.migratetype = allocflags_to_migratetype(gfp_mask),
594 		.zone = zone,
595 		.sync = sync,
596 	};
597 	INIT_LIST_HEAD(&cc.freepages);
598 	INIT_LIST_HEAD(&cc.migratepages);
599 
600 	return compact_zone(zone, &cc);
601 }
602 
603 int sysctl_extfrag_threshold = 500;
604 
605 /**
606  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
607  * @zonelist: The zonelist used for the current allocation
608  * @order: The order of the current allocation
609  * @gfp_mask: The GFP mask of the current allocation
610  * @nodemask: The allowed nodes to allocate from
611  * @sync: Whether migration is synchronous or not
612  *
613  * This is the main entry point for direct page compaction.
614  */
615 unsigned long try_to_compact_pages(struct zonelist *zonelist,
616 			int order, gfp_t gfp_mask, nodemask_t *nodemask,
617 			bool sync)
618 {
619 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
620 	int may_enter_fs = gfp_mask & __GFP_FS;
621 	int may_perform_io = gfp_mask & __GFP_IO;
622 	struct zoneref *z;
623 	struct zone *zone;
624 	int rc = COMPACT_SKIPPED;
625 
626 	/*
627 	 * Check whether it is worth even starting compaction. The order check is
628 	 * made because an assumption is made that the page allocator can satisfy
629 	 * the "cheaper" orders without taking special steps
630 	 */
631 	if (!order || !may_enter_fs || !may_perform_io)
632 		return rc;
633 
634 	count_vm_event(COMPACTSTALL);
635 
636 	/* Compact each zone in the list */
637 	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
638 								nodemask) {
639 		int status;
640 
641 		status = compact_zone_order(zone, order, gfp_mask, sync);
642 		rc = max(status, rc);
643 
644 		/* If a normal allocation would succeed, stop compacting */
645 		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
646 			break;
647 	}
648 
649 	return rc;
650 }
651 
652 
653 /* Compact all zones within a node */
654 static int compact_node(int nid)
655 {
656 	int zoneid;
657 	pg_data_t *pgdat;
658 	struct zone *zone;
659 
660 	if (nid < 0 || nid >= nr_node_ids || !node_online(nid))
661 		return -EINVAL;
662 	pgdat = NODE_DATA(nid);
663 
664 	/* Flush pending updates to the LRU lists */
665 	lru_add_drain_all();
666 
667 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
668 		struct compact_control cc = {
669 			.nr_freepages = 0,
670 			.nr_migratepages = 0,
671 			.order = -1,
672 		};
673 
674 		zone = &pgdat->node_zones[zoneid];
675 		if (!populated_zone(zone))
676 			continue;
677 
678 		cc.zone = zone;
679 		INIT_LIST_HEAD(&cc.freepages);
680 		INIT_LIST_HEAD(&cc.migratepages);
681 
682 		compact_zone(zone, &cc);
683 
684 		VM_BUG_ON(!list_empty(&cc.freepages));
685 		VM_BUG_ON(!list_empty(&cc.migratepages));
686 	}
687 
688 	return 0;
689 }
690 
691 /* Compact all nodes in the system */
692 static int compact_nodes(void)
693 {
694 	int nid;
695 
696 	for_each_online_node(nid)
697 		compact_node(nid);
698 
699 	return COMPACT_COMPLETE;
700 }
701 
702 /* The written value is actually unused, all memory is compacted */
703 int sysctl_compact_memory;
704 
705 /* This is the entry point for compacting all nodes via /proc/sys/vm */
706 int sysctl_compaction_handler(struct ctl_table *table, int write,
707 			void __user *buffer, size_t *length, loff_t *ppos)
708 {
709 	if (write)
710 		return compact_nodes();
711 
712 	return 0;
713 }
714 
715 int sysctl_extfrag_handler(struct ctl_table *table, int write,
716 			void __user *buffer, size_t *length, loff_t *ppos)
717 {
718 	proc_dointvec_minmax(table, write, buffer, length, ppos);
719 
720 	return 0;
721 }
722 
723 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
724 ssize_t sysfs_compact_node(struct sys_device *dev,
725 			struct sysdev_attribute *attr,
726 			const char *buf, size_t count)
727 {
728 	compact_node(dev->id);
729 
730 	return count;
731 }
732 static SYSDEV_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
733 
734 int compaction_register_node(struct node *node)
735 {
736 	return sysdev_create_file(&node->sysdev, &attr_compact);
737 }
738 
739 void compaction_unregister_node(struct node *node)
740 {
741 	return sysdev_remove_file(&node->sysdev, &attr_compact);
742 }
743 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
744