1 /* 2 * linux/mm/compaction.c 3 * 4 * Memory compaction for the reduction of external fragmentation. Note that 5 * this heavily depends upon page migration to do all the real heavy 6 * lifting 7 * 8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 9 */ 10 #include <linux/swap.h> 11 #include <linux/migrate.h> 12 #include <linux/compaction.h> 13 #include <linux/mm_inline.h> 14 #include <linux/backing-dev.h> 15 #include <linux/sysctl.h> 16 #include <linux/sysfs.h> 17 #include "internal.h" 18 19 #define CREATE_TRACE_POINTS 20 #include <trace/events/compaction.h> 21 22 /* 23 * compact_control is used to track pages being migrated and the free pages 24 * they are being migrated to during memory compaction. The free_pfn starts 25 * at the end of a zone and migrate_pfn begins at the start. Movable pages 26 * are moved to the end of a zone during a compaction run and the run 27 * completes when free_pfn <= migrate_pfn 28 */ 29 struct compact_control { 30 struct list_head freepages; /* List of free pages to migrate to */ 31 struct list_head migratepages; /* List of pages being migrated */ 32 unsigned long nr_freepages; /* Number of isolated free pages */ 33 unsigned long nr_migratepages; /* Number of pages to migrate */ 34 unsigned long free_pfn; /* isolate_freepages search base */ 35 unsigned long migrate_pfn; /* isolate_migratepages search base */ 36 bool sync; /* Synchronous migration */ 37 38 unsigned int order; /* order a direct compactor needs */ 39 int migratetype; /* MOVABLE, RECLAIMABLE etc */ 40 struct zone *zone; 41 }; 42 43 static unsigned long release_freepages(struct list_head *freelist) 44 { 45 struct page *page, *next; 46 unsigned long count = 0; 47 48 list_for_each_entry_safe(page, next, freelist, lru) { 49 list_del(&page->lru); 50 __free_page(page); 51 count++; 52 } 53 54 return count; 55 } 56 57 /* Isolate free pages onto a private freelist. Must hold zone->lock */ 58 static unsigned long isolate_freepages_block(struct zone *zone, 59 unsigned long blockpfn, 60 struct list_head *freelist) 61 { 62 unsigned long zone_end_pfn, end_pfn; 63 int nr_scanned = 0, total_isolated = 0; 64 struct page *cursor; 65 66 /* Get the last PFN we should scan for free pages at */ 67 zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages; 68 end_pfn = min(blockpfn + pageblock_nr_pages, zone_end_pfn); 69 70 /* Find the first usable PFN in the block to initialse page cursor */ 71 for (; blockpfn < end_pfn; blockpfn++) { 72 if (pfn_valid_within(blockpfn)) 73 break; 74 } 75 cursor = pfn_to_page(blockpfn); 76 77 /* Isolate free pages. This assumes the block is valid */ 78 for (; blockpfn < end_pfn; blockpfn++, cursor++) { 79 int isolated, i; 80 struct page *page = cursor; 81 82 if (!pfn_valid_within(blockpfn)) 83 continue; 84 nr_scanned++; 85 86 if (!PageBuddy(page)) 87 continue; 88 89 /* Found a free page, break it into order-0 pages */ 90 isolated = split_free_page(page); 91 total_isolated += isolated; 92 for (i = 0; i < isolated; i++) { 93 list_add(&page->lru, freelist); 94 page++; 95 } 96 97 /* If a page was split, advance to the end of it */ 98 if (isolated) { 99 blockpfn += isolated - 1; 100 cursor += isolated - 1; 101 } 102 } 103 104 trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated); 105 return total_isolated; 106 } 107 108 /* Returns true if the page is within a block suitable for migration to */ 109 static bool suitable_migration_target(struct page *page) 110 { 111 112 int migratetype = get_pageblock_migratetype(page); 113 114 /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */ 115 if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE) 116 return false; 117 118 /* If the page is a large free page, then allow migration */ 119 if (PageBuddy(page) && page_order(page) >= pageblock_order) 120 return true; 121 122 /* If the block is MIGRATE_MOVABLE, allow migration */ 123 if (migratetype == MIGRATE_MOVABLE) 124 return true; 125 126 /* Otherwise skip the block */ 127 return false; 128 } 129 130 /* 131 * Based on information in the current compact_control, find blocks 132 * suitable for isolating free pages from and then isolate them. 133 */ 134 static void isolate_freepages(struct zone *zone, 135 struct compact_control *cc) 136 { 137 struct page *page; 138 unsigned long high_pfn, low_pfn, pfn; 139 unsigned long flags; 140 int nr_freepages = cc->nr_freepages; 141 struct list_head *freelist = &cc->freepages; 142 143 /* 144 * Initialise the free scanner. The starting point is where we last 145 * scanned from (or the end of the zone if starting). The low point 146 * is the end of the pageblock the migration scanner is using. 147 */ 148 pfn = cc->free_pfn; 149 low_pfn = cc->migrate_pfn + pageblock_nr_pages; 150 151 /* 152 * Take care that if the migration scanner is at the end of the zone 153 * that the free scanner does not accidentally move to the next zone 154 * in the next isolation cycle. 155 */ 156 high_pfn = min(low_pfn, pfn); 157 158 /* 159 * Isolate free pages until enough are available to migrate the 160 * pages on cc->migratepages. We stop searching if the migrate 161 * and free page scanners meet or enough free pages are isolated. 162 */ 163 for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages; 164 pfn -= pageblock_nr_pages) { 165 unsigned long isolated; 166 167 if (!pfn_valid(pfn)) 168 continue; 169 170 /* 171 * Check for overlapping nodes/zones. It's possible on some 172 * configurations to have a setup like 173 * node0 node1 node0 174 * i.e. it's possible that all pages within a zones range of 175 * pages do not belong to a single zone. 176 */ 177 page = pfn_to_page(pfn); 178 if (page_zone(page) != zone) 179 continue; 180 181 /* Check the block is suitable for migration */ 182 if (!suitable_migration_target(page)) 183 continue; 184 185 /* 186 * Found a block suitable for isolating free pages from. Now 187 * we disabled interrupts, double check things are ok and 188 * isolate the pages. This is to minimise the time IRQs 189 * are disabled 190 */ 191 isolated = 0; 192 spin_lock_irqsave(&zone->lock, flags); 193 if (suitable_migration_target(page)) { 194 isolated = isolate_freepages_block(zone, pfn, freelist); 195 nr_freepages += isolated; 196 } 197 spin_unlock_irqrestore(&zone->lock, flags); 198 199 /* 200 * Record the highest PFN we isolated pages from. When next 201 * looking for free pages, the search will restart here as 202 * page migration may have returned some pages to the allocator 203 */ 204 if (isolated) 205 high_pfn = max(high_pfn, pfn); 206 } 207 208 /* split_free_page does not map the pages */ 209 list_for_each_entry(page, freelist, lru) { 210 arch_alloc_page(page, 0); 211 kernel_map_pages(page, 1, 1); 212 } 213 214 cc->free_pfn = high_pfn; 215 cc->nr_freepages = nr_freepages; 216 } 217 218 /* Update the number of anon and file isolated pages in the zone */ 219 static void acct_isolated(struct zone *zone, struct compact_control *cc) 220 { 221 struct page *page; 222 unsigned int count[2] = { 0, }; 223 224 list_for_each_entry(page, &cc->migratepages, lru) 225 count[!!page_is_file_cache(page)]++; 226 227 __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]); 228 __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]); 229 } 230 231 /* Similar to reclaim, but different enough that they don't share logic */ 232 static bool too_many_isolated(struct zone *zone) 233 { 234 unsigned long active, inactive, isolated; 235 236 inactive = zone_page_state(zone, NR_INACTIVE_FILE) + 237 zone_page_state(zone, NR_INACTIVE_ANON); 238 active = zone_page_state(zone, NR_ACTIVE_FILE) + 239 zone_page_state(zone, NR_ACTIVE_ANON); 240 isolated = zone_page_state(zone, NR_ISOLATED_FILE) + 241 zone_page_state(zone, NR_ISOLATED_ANON); 242 243 return isolated > (inactive + active) / 2; 244 } 245 246 /* possible outcome of isolate_migratepages */ 247 typedef enum { 248 ISOLATE_ABORT, /* Abort compaction now */ 249 ISOLATE_NONE, /* No pages isolated, continue scanning */ 250 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 251 } isolate_migrate_t; 252 253 /* 254 * Isolate all pages that can be migrated from the block pointed to by 255 * the migrate scanner within compact_control. 256 */ 257 static isolate_migrate_t isolate_migratepages(struct zone *zone, 258 struct compact_control *cc) 259 { 260 unsigned long low_pfn, end_pfn; 261 unsigned long last_pageblock_nr = 0, pageblock_nr; 262 unsigned long nr_scanned = 0, nr_isolated = 0; 263 struct list_head *migratelist = &cc->migratepages; 264 isolate_mode_t mode = ISOLATE_ACTIVE|ISOLATE_INACTIVE; 265 266 /* Do not scan outside zone boundaries */ 267 low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn); 268 269 /* Only scan within a pageblock boundary */ 270 end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages); 271 272 /* Do not cross the free scanner or scan within a memory hole */ 273 if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) { 274 cc->migrate_pfn = end_pfn; 275 return ISOLATE_NONE; 276 } 277 278 /* 279 * Ensure that there are not too many pages isolated from the LRU 280 * list by either parallel reclaimers or compaction. If there are, 281 * delay for some time until fewer pages are isolated 282 */ 283 while (unlikely(too_many_isolated(zone))) { 284 /* async migration should just abort */ 285 if (!cc->sync) 286 return ISOLATE_ABORT; 287 288 congestion_wait(BLK_RW_ASYNC, HZ/10); 289 290 if (fatal_signal_pending(current)) 291 return ISOLATE_ABORT; 292 } 293 294 /* Time to isolate some pages for migration */ 295 cond_resched(); 296 spin_lock_irq(&zone->lru_lock); 297 for (; low_pfn < end_pfn; low_pfn++) { 298 struct page *page; 299 bool locked = true; 300 301 /* give a chance to irqs before checking need_resched() */ 302 if (!((low_pfn+1) % SWAP_CLUSTER_MAX)) { 303 spin_unlock_irq(&zone->lru_lock); 304 locked = false; 305 } 306 if (need_resched() || spin_is_contended(&zone->lru_lock)) { 307 if (locked) 308 spin_unlock_irq(&zone->lru_lock); 309 cond_resched(); 310 spin_lock_irq(&zone->lru_lock); 311 if (fatal_signal_pending(current)) 312 break; 313 } else if (!locked) 314 spin_lock_irq(&zone->lru_lock); 315 316 if (!pfn_valid_within(low_pfn)) 317 continue; 318 nr_scanned++; 319 320 /* Get the page and skip if free */ 321 page = pfn_to_page(low_pfn); 322 if (PageBuddy(page)) 323 continue; 324 325 /* 326 * For async migration, also only scan in MOVABLE blocks. Async 327 * migration is optimistic to see if the minimum amount of work 328 * satisfies the allocation 329 */ 330 pageblock_nr = low_pfn >> pageblock_order; 331 if (!cc->sync && last_pageblock_nr != pageblock_nr && 332 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) { 333 low_pfn += pageblock_nr_pages; 334 low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1; 335 last_pageblock_nr = pageblock_nr; 336 continue; 337 } 338 339 if (!PageLRU(page)) 340 continue; 341 342 /* 343 * PageLRU is set, and lru_lock excludes isolation, 344 * splitting and collapsing (collapsing has already 345 * happened if PageLRU is set). 346 */ 347 if (PageTransHuge(page)) { 348 low_pfn += (1 << compound_order(page)) - 1; 349 continue; 350 } 351 352 if (!cc->sync) 353 mode |= ISOLATE_CLEAN; 354 355 /* Try isolate the page */ 356 if (__isolate_lru_page(page, mode, 0) != 0) 357 continue; 358 359 VM_BUG_ON(PageTransCompound(page)); 360 361 /* Successfully isolated */ 362 del_page_from_lru_list(zone, page, page_lru(page)); 363 list_add(&page->lru, migratelist); 364 cc->nr_migratepages++; 365 nr_isolated++; 366 367 /* Avoid isolating too much */ 368 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) 369 break; 370 } 371 372 acct_isolated(zone, cc); 373 374 spin_unlock_irq(&zone->lru_lock); 375 cc->migrate_pfn = low_pfn; 376 377 trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated); 378 379 return ISOLATE_SUCCESS; 380 } 381 382 /* 383 * This is a migrate-callback that "allocates" freepages by taking pages 384 * from the isolated freelists in the block we are migrating to. 385 */ 386 static struct page *compaction_alloc(struct page *migratepage, 387 unsigned long data, 388 int **result) 389 { 390 struct compact_control *cc = (struct compact_control *)data; 391 struct page *freepage; 392 393 /* Isolate free pages if necessary */ 394 if (list_empty(&cc->freepages)) { 395 isolate_freepages(cc->zone, cc); 396 397 if (list_empty(&cc->freepages)) 398 return NULL; 399 } 400 401 freepage = list_entry(cc->freepages.next, struct page, lru); 402 list_del(&freepage->lru); 403 cc->nr_freepages--; 404 405 return freepage; 406 } 407 408 /* 409 * We cannot control nr_migratepages and nr_freepages fully when migration is 410 * running as migrate_pages() has no knowledge of compact_control. When 411 * migration is complete, we count the number of pages on the lists by hand. 412 */ 413 static void update_nr_listpages(struct compact_control *cc) 414 { 415 int nr_migratepages = 0; 416 int nr_freepages = 0; 417 struct page *page; 418 419 list_for_each_entry(page, &cc->migratepages, lru) 420 nr_migratepages++; 421 list_for_each_entry(page, &cc->freepages, lru) 422 nr_freepages++; 423 424 cc->nr_migratepages = nr_migratepages; 425 cc->nr_freepages = nr_freepages; 426 } 427 428 static int compact_finished(struct zone *zone, 429 struct compact_control *cc) 430 { 431 unsigned int order; 432 unsigned long watermark; 433 434 if (fatal_signal_pending(current)) 435 return COMPACT_PARTIAL; 436 437 /* Compaction run completes if the migrate and free scanner meet */ 438 if (cc->free_pfn <= cc->migrate_pfn) 439 return COMPACT_COMPLETE; 440 441 /* 442 * order == -1 is expected when compacting via 443 * /proc/sys/vm/compact_memory 444 */ 445 if (cc->order == -1) 446 return COMPACT_CONTINUE; 447 448 /* Compaction run is not finished if the watermark is not met */ 449 watermark = low_wmark_pages(zone); 450 watermark += (1 << cc->order); 451 452 if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0)) 453 return COMPACT_CONTINUE; 454 455 /* Direct compactor: Is a suitable page free? */ 456 for (order = cc->order; order < MAX_ORDER; order++) { 457 /* Job done if page is free of the right migratetype */ 458 if (!list_empty(&zone->free_area[order].free_list[cc->migratetype])) 459 return COMPACT_PARTIAL; 460 461 /* Job done if allocation would set block type */ 462 if (order >= pageblock_order && zone->free_area[order].nr_free) 463 return COMPACT_PARTIAL; 464 } 465 466 return COMPACT_CONTINUE; 467 } 468 469 /* 470 * compaction_suitable: Is this suitable to run compaction on this zone now? 471 * Returns 472 * COMPACT_SKIPPED - If there are too few free pages for compaction 473 * COMPACT_PARTIAL - If the allocation would succeed without compaction 474 * COMPACT_CONTINUE - If compaction should run now 475 */ 476 unsigned long compaction_suitable(struct zone *zone, int order) 477 { 478 int fragindex; 479 unsigned long watermark; 480 481 /* 482 * order == -1 is expected when compacting via 483 * /proc/sys/vm/compact_memory 484 */ 485 if (order == -1) 486 return COMPACT_CONTINUE; 487 488 /* 489 * Watermarks for order-0 must be met for compaction. Note the 2UL. 490 * This is because during migration, copies of pages need to be 491 * allocated and for a short time, the footprint is higher 492 */ 493 watermark = low_wmark_pages(zone) + (2UL << order); 494 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 495 return COMPACT_SKIPPED; 496 497 /* 498 * fragmentation index determines if allocation failures are due to 499 * low memory or external fragmentation 500 * 501 * index of -1000 implies allocations might succeed depending on 502 * watermarks 503 * index towards 0 implies failure is due to lack of memory 504 * index towards 1000 implies failure is due to fragmentation 505 * 506 * Only compact if a failure would be due to fragmentation. 507 */ 508 fragindex = fragmentation_index(zone, order); 509 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 510 return COMPACT_SKIPPED; 511 512 if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark, 513 0, 0)) 514 return COMPACT_PARTIAL; 515 516 return COMPACT_CONTINUE; 517 } 518 519 static int compact_zone(struct zone *zone, struct compact_control *cc) 520 { 521 int ret; 522 523 ret = compaction_suitable(zone, cc->order); 524 switch (ret) { 525 case COMPACT_PARTIAL: 526 case COMPACT_SKIPPED: 527 /* Compaction is likely to fail */ 528 return ret; 529 case COMPACT_CONTINUE: 530 /* Fall through to compaction */ 531 ; 532 } 533 534 /* Setup to move all movable pages to the end of the zone */ 535 cc->migrate_pfn = zone->zone_start_pfn; 536 cc->free_pfn = cc->migrate_pfn + zone->spanned_pages; 537 cc->free_pfn &= ~(pageblock_nr_pages-1); 538 539 migrate_prep_local(); 540 541 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) { 542 unsigned long nr_migrate, nr_remaining; 543 int err; 544 545 switch (isolate_migratepages(zone, cc)) { 546 case ISOLATE_ABORT: 547 ret = COMPACT_PARTIAL; 548 goto out; 549 case ISOLATE_NONE: 550 continue; 551 case ISOLATE_SUCCESS: 552 ; 553 } 554 555 nr_migrate = cc->nr_migratepages; 556 err = migrate_pages(&cc->migratepages, compaction_alloc, 557 (unsigned long)cc, false, 558 cc->sync); 559 update_nr_listpages(cc); 560 nr_remaining = cc->nr_migratepages; 561 562 count_vm_event(COMPACTBLOCKS); 563 count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining); 564 if (nr_remaining) 565 count_vm_events(COMPACTPAGEFAILED, nr_remaining); 566 trace_mm_compaction_migratepages(nr_migrate - nr_remaining, 567 nr_remaining); 568 569 /* Release LRU pages not migrated */ 570 if (err) { 571 putback_lru_pages(&cc->migratepages); 572 cc->nr_migratepages = 0; 573 } 574 575 } 576 577 out: 578 /* Release free pages and check accounting */ 579 cc->nr_freepages -= release_freepages(&cc->freepages); 580 VM_BUG_ON(cc->nr_freepages != 0); 581 582 return ret; 583 } 584 585 static unsigned long compact_zone_order(struct zone *zone, 586 int order, gfp_t gfp_mask, 587 bool sync) 588 { 589 struct compact_control cc = { 590 .nr_freepages = 0, 591 .nr_migratepages = 0, 592 .order = order, 593 .migratetype = allocflags_to_migratetype(gfp_mask), 594 .zone = zone, 595 .sync = sync, 596 }; 597 INIT_LIST_HEAD(&cc.freepages); 598 INIT_LIST_HEAD(&cc.migratepages); 599 600 return compact_zone(zone, &cc); 601 } 602 603 int sysctl_extfrag_threshold = 500; 604 605 /** 606 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 607 * @zonelist: The zonelist used for the current allocation 608 * @order: The order of the current allocation 609 * @gfp_mask: The GFP mask of the current allocation 610 * @nodemask: The allowed nodes to allocate from 611 * @sync: Whether migration is synchronous or not 612 * 613 * This is the main entry point for direct page compaction. 614 */ 615 unsigned long try_to_compact_pages(struct zonelist *zonelist, 616 int order, gfp_t gfp_mask, nodemask_t *nodemask, 617 bool sync) 618 { 619 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 620 int may_enter_fs = gfp_mask & __GFP_FS; 621 int may_perform_io = gfp_mask & __GFP_IO; 622 struct zoneref *z; 623 struct zone *zone; 624 int rc = COMPACT_SKIPPED; 625 626 /* 627 * Check whether it is worth even starting compaction. The order check is 628 * made because an assumption is made that the page allocator can satisfy 629 * the "cheaper" orders without taking special steps 630 */ 631 if (!order || !may_enter_fs || !may_perform_io) 632 return rc; 633 634 count_vm_event(COMPACTSTALL); 635 636 /* Compact each zone in the list */ 637 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx, 638 nodemask) { 639 int status; 640 641 status = compact_zone_order(zone, order, gfp_mask, sync); 642 rc = max(status, rc); 643 644 /* If a normal allocation would succeed, stop compacting */ 645 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0)) 646 break; 647 } 648 649 return rc; 650 } 651 652 653 /* Compact all zones within a node */ 654 static int compact_node(int nid) 655 { 656 int zoneid; 657 pg_data_t *pgdat; 658 struct zone *zone; 659 660 if (nid < 0 || nid >= nr_node_ids || !node_online(nid)) 661 return -EINVAL; 662 pgdat = NODE_DATA(nid); 663 664 /* Flush pending updates to the LRU lists */ 665 lru_add_drain_all(); 666 667 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 668 struct compact_control cc = { 669 .nr_freepages = 0, 670 .nr_migratepages = 0, 671 .order = -1, 672 }; 673 674 zone = &pgdat->node_zones[zoneid]; 675 if (!populated_zone(zone)) 676 continue; 677 678 cc.zone = zone; 679 INIT_LIST_HEAD(&cc.freepages); 680 INIT_LIST_HEAD(&cc.migratepages); 681 682 compact_zone(zone, &cc); 683 684 VM_BUG_ON(!list_empty(&cc.freepages)); 685 VM_BUG_ON(!list_empty(&cc.migratepages)); 686 } 687 688 return 0; 689 } 690 691 /* Compact all nodes in the system */ 692 static int compact_nodes(void) 693 { 694 int nid; 695 696 for_each_online_node(nid) 697 compact_node(nid); 698 699 return COMPACT_COMPLETE; 700 } 701 702 /* The written value is actually unused, all memory is compacted */ 703 int sysctl_compact_memory; 704 705 /* This is the entry point for compacting all nodes via /proc/sys/vm */ 706 int sysctl_compaction_handler(struct ctl_table *table, int write, 707 void __user *buffer, size_t *length, loff_t *ppos) 708 { 709 if (write) 710 return compact_nodes(); 711 712 return 0; 713 } 714 715 int sysctl_extfrag_handler(struct ctl_table *table, int write, 716 void __user *buffer, size_t *length, loff_t *ppos) 717 { 718 proc_dointvec_minmax(table, write, buffer, length, ppos); 719 720 return 0; 721 } 722 723 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 724 ssize_t sysfs_compact_node(struct sys_device *dev, 725 struct sysdev_attribute *attr, 726 const char *buf, size_t count) 727 { 728 compact_node(dev->id); 729 730 return count; 731 } 732 static SYSDEV_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node); 733 734 int compaction_register_node(struct node *node) 735 { 736 return sysdev_create_file(&node->sysdev, &attr_compact); 737 } 738 739 void compaction_unregister_node(struct node *node) 740 { 741 return sysdev_remove_file(&node->sysdev, &attr_compact); 742 } 743 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 744