xref: /linux/mm/compaction.c (revision ec8a42e7343234802b9054874fe01810880289ce)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27 
28 #ifdef CONFIG_COMPACTION
29 static inline void count_compact_event(enum vm_event_item item)
30 {
31 	count_vm_event(item);
32 }
33 
34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36 	count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42 
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47 
48 #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)
52 
53 /*
54  * Fragmentation score check interval for proactive compaction purposes.
55  */
56 static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
57 
58 /*
59  * Page order with-respect-to which proactive compaction
60  * calculates external fragmentation, which is used as
61  * the "fragmentation score" of a node/zone.
62  */
63 #if defined CONFIG_TRANSPARENT_HUGEPAGE
64 #define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
65 #elif defined CONFIG_HUGETLBFS
66 #define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
67 #else
68 #define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
69 #endif
70 
71 static unsigned long release_freepages(struct list_head *freelist)
72 {
73 	struct page *page, *next;
74 	unsigned long high_pfn = 0;
75 
76 	list_for_each_entry_safe(page, next, freelist, lru) {
77 		unsigned long pfn = page_to_pfn(page);
78 		list_del(&page->lru);
79 		__free_page(page);
80 		if (pfn > high_pfn)
81 			high_pfn = pfn;
82 	}
83 
84 	return high_pfn;
85 }
86 
87 static void split_map_pages(struct list_head *list)
88 {
89 	unsigned int i, order, nr_pages;
90 	struct page *page, *next;
91 	LIST_HEAD(tmp_list);
92 
93 	list_for_each_entry_safe(page, next, list, lru) {
94 		list_del(&page->lru);
95 
96 		order = page_private(page);
97 		nr_pages = 1 << order;
98 
99 		post_alloc_hook(page, order, __GFP_MOVABLE);
100 		if (order)
101 			split_page(page, order);
102 
103 		for (i = 0; i < nr_pages; i++) {
104 			list_add(&page->lru, &tmp_list);
105 			page++;
106 		}
107 	}
108 
109 	list_splice(&tmp_list, list);
110 }
111 
112 #ifdef CONFIG_COMPACTION
113 
114 int PageMovable(struct page *page)
115 {
116 	struct address_space *mapping;
117 
118 	VM_BUG_ON_PAGE(!PageLocked(page), page);
119 	if (!__PageMovable(page))
120 		return 0;
121 
122 	mapping = page_mapping(page);
123 	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
124 		return 1;
125 
126 	return 0;
127 }
128 EXPORT_SYMBOL(PageMovable);
129 
130 void __SetPageMovable(struct page *page, struct address_space *mapping)
131 {
132 	VM_BUG_ON_PAGE(!PageLocked(page), page);
133 	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
134 	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
135 }
136 EXPORT_SYMBOL(__SetPageMovable);
137 
138 void __ClearPageMovable(struct page *page)
139 {
140 	VM_BUG_ON_PAGE(!PageLocked(page), page);
141 	VM_BUG_ON_PAGE(!PageMovable(page), page);
142 	/*
143 	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
144 	 * flag so that VM can catch up released page by driver after isolation.
145 	 * With it, VM migration doesn't try to put it back.
146 	 */
147 	page->mapping = (void *)((unsigned long)page->mapping &
148 				PAGE_MAPPING_MOVABLE);
149 }
150 EXPORT_SYMBOL(__ClearPageMovable);
151 
152 /* Do not skip compaction more than 64 times */
153 #define COMPACT_MAX_DEFER_SHIFT 6
154 
155 /*
156  * Compaction is deferred when compaction fails to result in a page
157  * allocation success. 1 << compact_defer_shift, compactions are skipped up
158  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
159  */
160 static void defer_compaction(struct zone *zone, int order)
161 {
162 	zone->compact_considered = 0;
163 	zone->compact_defer_shift++;
164 
165 	if (order < zone->compact_order_failed)
166 		zone->compact_order_failed = order;
167 
168 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
169 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
170 
171 	trace_mm_compaction_defer_compaction(zone, order);
172 }
173 
174 /* Returns true if compaction should be skipped this time */
175 static bool compaction_deferred(struct zone *zone, int order)
176 {
177 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
178 
179 	if (order < zone->compact_order_failed)
180 		return false;
181 
182 	/* Avoid possible overflow */
183 	if (++zone->compact_considered >= defer_limit) {
184 		zone->compact_considered = defer_limit;
185 		return false;
186 	}
187 
188 	trace_mm_compaction_deferred(zone, order);
189 
190 	return true;
191 }
192 
193 /*
194  * Update defer tracking counters after successful compaction of given order,
195  * which means an allocation either succeeded (alloc_success == true) or is
196  * expected to succeed.
197  */
198 void compaction_defer_reset(struct zone *zone, int order,
199 		bool alloc_success)
200 {
201 	if (alloc_success) {
202 		zone->compact_considered = 0;
203 		zone->compact_defer_shift = 0;
204 	}
205 	if (order >= zone->compact_order_failed)
206 		zone->compact_order_failed = order + 1;
207 
208 	trace_mm_compaction_defer_reset(zone, order);
209 }
210 
211 /* Returns true if restarting compaction after many failures */
212 static bool compaction_restarting(struct zone *zone, int order)
213 {
214 	if (order < zone->compact_order_failed)
215 		return false;
216 
217 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
218 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
219 }
220 
221 /* Returns true if the pageblock should be scanned for pages to isolate. */
222 static inline bool isolation_suitable(struct compact_control *cc,
223 					struct page *page)
224 {
225 	if (cc->ignore_skip_hint)
226 		return true;
227 
228 	return !get_pageblock_skip(page);
229 }
230 
231 static void reset_cached_positions(struct zone *zone)
232 {
233 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
234 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
235 	zone->compact_cached_free_pfn =
236 				pageblock_start_pfn(zone_end_pfn(zone) - 1);
237 }
238 
239 /*
240  * Compound pages of >= pageblock_order should consistently be skipped until
241  * released. It is always pointless to compact pages of such order (if they are
242  * migratable), and the pageblocks they occupy cannot contain any free pages.
243  */
244 static bool pageblock_skip_persistent(struct page *page)
245 {
246 	if (!PageCompound(page))
247 		return false;
248 
249 	page = compound_head(page);
250 
251 	if (compound_order(page) >= pageblock_order)
252 		return true;
253 
254 	return false;
255 }
256 
257 static bool
258 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
259 							bool check_target)
260 {
261 	struct page *page = pfn_to_online_page(pfn);
262 	struct page *block_page;
263 	struct page *end_page;
264 	unsigned long block_pfn;
265 
266 	if (!page)
267 		return false;
268 	if (zone != page_zone(page))
269 		return false;
270 	if (pageblock_skip_persistent(page))
271 		return false;
272 
273 	/*
274 	 * If skip is already cleared do no further checking once the
275 	 * restart points have been set.
276 	 */
277 	if (check_source && check_target && !get_pageblock_skip(page))
278 		return true;
279 
280 	/*
281 	 * If clearing skip for the target scanner, do not select a
282 	 * non-movable pageblock as the starting point.
283 	 */
284 	if (!check_source && check_target &&
285 	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
286 		return false;
287 
288 	/* Ensure the start of the pageblock or zone is online and valid */
289 	block_pfn = pageblock_start_pfn(pfn);
290 	block_pfn = max(block_pfn, zone->zone_start_pfn);
291 	block_page = pfn_to_online_page(block_pfn);
292 	if (block_page) {
293 		page = block_page;
294 		pfn = block_pfn;
295 	}
296 
297 	/* Ensure the end of the pageblock or zone is online and valid */
298 	block_pfn = pageblock_end_pfn(pfn) - 1;
299 	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
300 	end_page = pfn_to_online_page(block_pfn);
301 	if (!end_page)
302 		return false;
303 
304 	/*
305 	 * Only clear the hint if a sample indicates there is either a
306 	 * free page or an LRU page in the block. One or other condition
307 	 * is necessary for the block to be a migration source/target.
308 	 */
309 	do {
310 		if (pfn_valid_within(pfn)) {
311 			if (check_source && PageLRU(page)) {
312 				clear_pageblock_skip(page);
313 				return true;
314 			}
315 
316 			if (check_target && PageBuddy(page)) {
317 				clear_pageblock_skip(page);
318 				return true;
319 			}
320 		}
321 
322 		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
323 		pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
324 	} while (page <= end_page);
325 
326 	return false;
327 }
328 
329 /*
330  * This function is called to clear all cached information on pageblocks that
331  * should be skipped for page isolation when the migrate and free page scanner
332  * meet.
333  */
334 static void __reset_isolation_suitable(struct zone *zone)
335 {
336 	unsigned long migrate_pfn = zone->zone_start_pfn;
337 	unsigned long free_pfn = zone_end_pfn(zone) - 1;
338 	unsigned long reset_migrate = free_pfn;
339 	unsigned long reset_free = migrate_pfn;
340 	bool source_set = false;
341 	bool free_set = false;
342 
343 	if (!zone->compact_blockskip_flush)
344 		return;
345 
346 	zone->compact_blockskip_flush = false;
347 
348 	/*
349 	 * Walk the zone and update pageblock skip information. Source looks
350 	 * for PageLRU while target looks for PageBuddy. When the scanner
351 	 * is found, both PageBuddy and PageLRU are checked as the pageblock
352 	 * is suitable as both source and target.
353 	 */
354 	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
355 					free_pfn -= pageblock_nr_pages) {
356 		cond_resched();
357 
358 		/* Update the migrate PFN */
359 		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
360 		    migrate_pfn < reset_migrate) {
361 			source_set = true;
362 			reset_migrate = migrate_pfn;
363 			zone->compact_init_migrate_pfn = reset_migrate;
364 			zone->compact_cached_migrate_pfn[0] = reset_migrate;
365 			zone->compact_cached_migrate_pfn[1] = reset_migrate;
366 		}
367 
368 		/* Update the free PFN */
369 		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
370 		    free_pfn > reset_free) {
371 			free_set = true;
372 			reset_free = free_pfn;
373 			zone->compact_init_free_pfn = reset_free;
374 			zone->compact_cached_free_pfn = reset_free;
375 		}
376 	}
377 
378 	/* Leave no distance if no suitable block was reset */
379 	if (reset_migrate >= reset_free) {
380 		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
381 		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
382 		zone->compact_cached_free_pfn = free_pfn;
383 	}
384 }
385 
386 void reset_isolation_suitable(pg_data_t *pgdat)
387 {
388 	int zoneid;
389 
390 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
391 		struct zone *zone = &pgdat->node_zones[zoneid];
392 		if (!populated_zone(zone))
393 			continue;
394 
395 		/* Only flush if a full compaction finished recently */
396 		if (zone->compact_blockskip_flush)
397 			__reset_isolation_suitable(zone);
398 	}
399 }
400 
401 /*
402  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
403  * locks are not required for read/writers. Returns true if it was already set.
404  */
405 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
406 							unsigned long pfn)
407 {
408 	bool skip;
409 
410 	/* Do no update if skip hint is being ignored */
411 	if (cc->ignore_skip_hint)
412 		return false;
413 
414 	if (!IS_ALIGNED(pfn, pageblock_nr_pages))
415 		return false;
416 
417 	skip = get_pageblock_skip(page);
418 	if (!skip && !cc->no_set_skip_hint)
419 		set_pageblock_skip(page);
420 
421 	return skip;
422 }
423 
424 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
425 {
426 	struct zone *zone = cc->zone;
427 
428 	pfn = pageblock_end_pfn(pfn);
429 
430 	/* Set for isolation rather than compaction */
431 	if (cc->no_set_skip_hint)
432 		return;
433 
434 	if (pfn > zone->compact_cached_migrate_pfn[0])
435 		zone->compact_cached_migrate_pfn[0] = pfn;
436 	if (cc->mode != MIGRATE_ASYNC &&
437 	    pfn > zone->compact_cached_migrate_pfn[1])
438 		zone->compact_cached_migrate_pfn[1] = pfn;
439 }
440 
441 /*
442  * If no pages were isolated then mark this pageblock to be skipped in the
443  * future. The information is later cleared by __reset_isolation_suitable().
444  */
445 static void update_pageblock_skip(struct compact_control *cc,
446 			struct page *page, unsigned long pfn)
447 {
448 	struct zone *zone = cc->zone;
449 
450 	if (cc->no_set_skip_hint)
451 		return;
452 
453 	if (!page)
454 		return;
455 
456 	set_pageblock_skip(page);
457 
458 	/* Update where async and sync compaction should restart */
459 	if (pfn < zone->compact_cached_free_pfn)
460 		zone->compact_cached_free_pfn = pfn;
461 }
462 #else
463 static inline bool isolation_suitable(struct compact_control *cc,
464 					struct page *page)
465 {
466 	return true;
467 }
468 
469 static inline bool pageblock_skip_persistent(struct page *page)
470 {
471 	return false;
472 }
473 
474 static inline void update_pageblock_skip(struct compact_control *cc,
475 			struct page *page, unsigned long pfn)
476 {
477 }
478 
479 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
480 {
481 }
482 
483 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
484 							unsigned long pfn)
485 {
486 	return false;
487 }
488 #endif /* CONFIG_COMPACTION */
489 
490 /*
491  * Compaction requires the taking of some coarse locks that are potentially
492  * very heavily contended. For async compaction, trylock and record if the
493  * lock is contended. The lock will still be acquired but compaction will
494  * abort when the current block is finished regardless of success rate.
495  * Sync compaction acquires the lock.
496  *
497  * Always returns true which makes it easier to track lock state in callers.
498  */
499 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
500 						struct compact_control *cc)
501 	__acquires(lock)
502 {
503 	/* Track if the lock is contended in async mode */
504 	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
505 		if (spin_trylock_irqsave(lock, *flags))
506 			return true;
507 
508 		cc->contended = true;
509 	}
510 
511 	spin_lock_irqsave(lock, *flags);
512 	return true;
513 }
514 
515 /*
516  * Compaction requires the taking of some coarse locks that are potentially
517  * very heavily contended. The lock should be periodically unlocked to avoid
518  * having disabled IRQs for a long time, even when there is nobody waiting on
519  * the lock. It might also be that allowing the IRQs will result in
520  * need_resched() becoming true. If scheduling is needed, async compaction
521  * aborts. Sync compaction schedules.
522  * Either compaction type will also abort if a fatal signal is pending.
523  * In either case if the lock was locked, it is dropped and not regained.
524  *
525  * Returns true if compaction should abort due to fatal signal pending, or
526  *		async compaction due to need_resched()
527  * Returns false when compaction can continue (sync compaction might have
528  *		scheduled)
529  */
530 static bool compact_unlock_should_abort(spinlock_t *lock,
531 		unsigned long flags, bool *locked, struct compact_control *cc)
532 {
533 	if (*locked) {
534 		spin_unlock_irqrestore(lock, flags);
535 		*locked = false;
536 	}
537 
538 	if (fatal_signal_pending(current)) {
539 		cc->contended = true;
540 		return true;
541 	}
542 
543 	cond_resched();
544 
545 	return false;
546 }
547 
548 /*
549  * Isolate free pages onto a private freelist. If @strict is true, will abort
550  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
551  * (even though it may still end up isolating some pages).
552  */
553 static unsigned long isolate_freepages_block(struct compact_control *cc,
554 				unsigned long *start_pfn,
555 				unsigned long end_pfn,
556 				struct list_head *freelist,
557 				unsigned int stride,
558 				bool strict)
559 {
560 	int nr_scanned = 0, total_isolated = 0;
561 	struct page *cursor;
562 	unsigned long flags = 0;
563 	bool locked = false;
564 	unsigned long blockpfn = *start_pfn;
565 	unsigned int order;
566 
567 	/* Strict mode is for isolation, speed is secondary */
568 	if (strict)
569 		stride = 1;
570 
571 	cursor = pfn_to_page(blockpfn);
572 
573 	/* Isolate free pages. */
574 	for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
575 		int isolated;
576 		struct page *page = cursor;
577 
578 		/*
579 		 * Periodically drop the lock (if held) regardless of its
580 		 * contention, to give chance to IRQs. Abort if fatal signal
581 		 * pending or async compaction detects need_resched()
582 		 */
583 		if (!(blockpfn % SWAP_CLUSTER_MAX)
584 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
585 								&locked, cc))
586 			break;
587 
588 		nr_scanned++;
589 		if (!pfn_valid_within(blockpfn))
590 			goto isolate_fail;
591 
592 		/*
593 		 * For compound pages such as THP and hugetlbfs, we can save
594 		 * potentially a lot of iterations if we skip them at once.
595 		 * The check is racy, but we can consider only valid values
596 		 * and the only danger is skipping too much.
597 		 */
598 		if (PageCompound(page)) {
599 			const unsigned int order = compound_order(page);
600 
601 			if (likely(order < MAX_ORDER)) {
602 				blockpfn += (1UL << order) - 1;
603 				cursor += (1UL << order) - 1;
604 			}
605 			goto isolate_fail;
606 		}
607 
608 		if (!PageBuddy(page))
609 			goto isolate_fail;
610 
611 		/*
612 		 * If we already hold the lock, we can skip some rechecking.
613 		 * Note that if we hold the lock now, checked_pageblock was
614 		 * already set in some previous iteration (or strict is true),
615 		 * so it is correct to skip the suitable migration target
616 		 * recheck as well.
617 		 */
618 		if (!locked) {
619 			locked = compact_lock_irqsave(&cc->zone->lock,
620 								&flags, cc);
621 
622 			/* Recheck this is a buddy page under lock */
623 			if (!PageBuddy(page))
624 				goto isolate_fail;
625 		}
626 
627 		/* Found a free page, will break it into order-0 pages */
628 		order = buddy_order(page);
629 		isolated = __isolate_free_page(page, order);
630 		if (!isolated)
631 			break;
632 		set_page_private(page, order);
633 
634 		total_isolated += isolated;
635 		cc->nr_freepages += isolated;
636 		list_add_tail(&page->lru, freelist);
637 
638 		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
639 			blockpfn += isolated;
640 			break;
641 		}
642 		/* Advance to the end of split page */
643 		blockpfn += isolated - 1;
644 		cursor += isolated - 1;
645 		continue;
646 
647 isolate_fail:
648 		if (strict)
649 			break;
650 		else
651 			continue;
652 
653 	}
654 
655 	if (locked)
656 		spin_unlock_irqrestore(&cc->zone->lock, flags);
657 
658 	/*
659 	 * There is a tiny chance that we have read bogus compound_order(),
660 	 * so be careful to not go outside of the pageblock.
661 	 */
662 	if (unlikely(blockpfn > end_pfn))
663 		blockpfn = end_pfn;
664 
665 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
666 					nr_scanned, total_isolated);
667 
668 	/* Record how far we have got within the block */
669 	*start_pfn = blockpfn;
670 
671 	/*
672 	 * If strict isolation is requested by CMA then check that all the
673 	 * pages requested were isolated. If there were any failures, 0 is
674 	 * returned and CMA will fail.
675 	 */
676 	if (strict && blockpfn < end_pfn)
677 		total_isolated = 0;
678 
679 	cc->total_free_scanned += nr_scanned;
680 	if (total_isolated)
681 		count_compact_events(COMPACTISOLATED, total_isolated);
682 	return total_isolated;
683 }
684 
685 /**
686  * isolate_freepages_range() - isolate free pages.
687  * @cc:        Compaction control structure.
688  * @start_pfn: The first PFN to start isolating.
689  * @end_pfn:   The one-past-last PFN.
690  *
691  * Non-free pages, invalid PFNs, or zone boundaries within the
692  * [start_pfn, end_pfn) range are considered errors, cause function to
693  * undo its actions and return zero.
694  *
695  * Otherwise, function returns one-past-the-last PFN of isolated page
696  * (which may be greater then end_pfn if end fell in a middle of
697  * a free page).
698  */
699 unsigned long
700 isolate_freepages_range(struct compact_control *cc,
701 			unsigned long start_pfn, unsigned long end_pfn)
702 {
703 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
704 	LIST_HEAD(freelist);
705 
706 	pfn = start_pfn;
707 	block_start_pfn = pageblock_start_pfn(pfn);
708 	if (block_start_pfn < cc->zone->zone_start_pfn)
709 		block_start_pfn = cc->zone->zone_start_pfn;
710 	block_end_pfn = pageblock_end_pfn(pfn);
711 
712 	for (; pfn < end_pfn; pfn += isolated,
713 				block_start_pfn = block_end_pfn,
714 				block_end_pfn += pageblock_nr_pages) {
715 		/* Protect pfn from changing by isolate_freepages_block */
716 		unsigned long isolate_start_pfn = pfn;
717 
718 		block_end_pfn = min(block_end_pfn, end_pfn);
719 
720 		/*
721 		 * pfn could pass the block_end_pfn if isolated freepage
722 		 * is more than pageblock order. In this case, we adjust
723 		 * scanning range to right one.
724 		 */
725 		if (pfn >= block_end_pfn) {
726 			block_start_pfn = pageblock_start_pfn(pfn);
727 			block_end_pfn = pageblock_end_pfn(pfn);
728 			block_end_pfn = min(block_end_pfn, end_pfn);
729 		}
730 
731 		if (!pageblock_pfn_to_page(block_start_pfn,
732 					block_end_pfn, cc->zone))
733 			break;
734 
735 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
736 					block_end_pfn, &freelist, 0, true);
737 
738 		/*
739 		 * In strict mode, isolate_freepages_block() returns 0 if
740 		 * there are any holes in the block (ie. invalid PFNs or
741 		 * non-free pages).
742 		 */
743 		if (!isolated)
744 			break;
745 
746 		/*
747 		 * If we managed to isolate pages, it is always (1 << n) *
748 		 * pageblock_nr_pages for some non-negative n.  (Max order
749 		 * page may span two pageblocks).
750 		 */
751 	}
752 
753 	/* __isolate_free_page() does not map the pages */
754 	split_map_pages(&freelist);
755 
756 	if (pfn < end_pfn) {
757 		/* Loop terminated early, cleanup. */
758 		release_freepages(&freelist);
759 		return 0;
760 	}
761 
762 	/* We don't use freelists for anything. */
763 	return pfn;
764 }
765 
766 /* Similar to reclaim, but different enough that they don't share logic */
767 static bool too_many_isolated(pg_data_t *pgdat)
768 {
769 	unsigned long active, inactive, isolated;
770 
771 	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
772 			node_page_state(pgdat, NR_INACTIVE_ANON);
773 	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
774 			node_page_state(pgdat, NR_ACTIVE_ANON);
775 	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
776 			node_page_state(pgdat, NR_ISOLATED_ANON);
777 
778 	return isolated > (inactive + active) / 2;
779 }
780 
781 /**
782  * isolate_migratepages_block() - isolate all migrate-able pages within
783  *				  a single pageblock
784  * @cc:		Compaction control structure.
785  * @low_pfn:	The first PFN to isolate
786  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
787  * @isolate_mode: Isolation mode to be used.
788  *
789  * Isolate all pages that can be migrated from the range specified by
790  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
791  * Returns zero if there is a fatal signal pending, otherwise PFN of the
792  * first page that was not scanned (which may be both less, equal to or more
793  * than end_pfn).
794  *
795  * The pages are isolated on cc->migratepages list (not required to be empty),
796  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
797  * is neither read nor updated.
798  */
799 static unsigned long
800 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
801 			unsigned long end_pfn, isolate_mode_t isolate_mode)
802 {
803 	pg_data_t *pgdat = cc->zone->zone_pgdat;
804 	unsigned long nr_scanned = 0, nr_isolated = 0;
805 	struct lruvec *lruvec;
806 	unsigned long flags = 0;
807 	struct lruvec *locked = NULL;
808 	struct page *page = NULL, *valid_page = NULL;
809 	unsigned long start_pfn = low_pfn;
810 	bool skip_on_failure = false;
811 	unsigned long next_skip_pfn = 0;
812 	bool skip_updated = false;
813 
814 	/*
815 	 * Ensure that there are not too many pages isolated from the LRU
816 	 * list by either parallel reclaimers or compaction. If there are,
817 	 * delay for some time until fewer pages are isolated
818 	 */
819 	while (unlikely(too_many_isolated(pgdat))) {
820 		/* stop isolation if there are still pages not migrated */
821 		if (cc->nr_migratepages)
822 			return 0;
823 
824 		/* async migration should just abort */
825 		if (cc->mode == MIGRATE_ASYNC)
826 			return 0;
827 
828 		congestion_wait(BLK_RW_ASYNC, HZ/10);
829 
830 		if (fatal_signal_pending(current))
831 			return 0;
832 	}
833 
834 	cond_resched();
835 
836 	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
837 		skip_on_failure = true;
838 		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
839 	}
840 
841 	/* Time to isolate some pages for migration */
842 	for (; low_pfn < end_pfn; low_pfn++) {
843 
844 		if (skip_on_failure && low_pfn >= next_skip_pfn) {
845 			/*
846 			 * We have isolated all migration candidates in the
847 			 * previous order-aligned block, and did not skip it due
848 			 * to failure. We should migrate the pages now and
849 			 * hopefully succeed compaction.
850 			 */
851 			if (nr_isolated)
852 				break;
853 
854 			/*
855 			 * We failed to isolate in the previous order-aligned
856 			 * block. Set the new boundary to the end of the
857 			 * current block. Note we can't simply increase
858 			 * next_skip_pfn by 1 << order, as low_pfn might have
859 			 * been incremented by a higher number due to skipping
860 			 * a compound or a high-order buddy page in the
861 			 * previous loop iteration.
862 			 */
863 			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
864 		}
865 
866 		/*
867 		 * Periodically drop the lock (if held) regardless of its
868 		 * contention, to give chance to IRQs. Abort completely if
869 		 * a fatal signal is pending.
870 		 */
871 		if (!(low_pfn % SWAP_CLUSTER_MAX)) {
872 			if (locked) {
873 				unlock_page_lruvec_irqrestore(locked, flags);
874 				locked = NULL;
875 			}
876 
877 			if (fatal_signal_pending(current)) {
878 				cc->contended = true;
879 
880 				low_pfn = 0;
881 				goto fatal_pending;
882 			}
883 
884 			cond_resched();
885 		}
886 
887 		if (!pfn_valid_within(low_pfn))
888 			goto isolate_fail;
889 		nr_scanned++;
890 
891 		page = pfn_to_page(low_pfn);
892 
893 		/*
894 		 * Check if the pageblock has already been marked skipped.
895 		 * Only the aligned PFN is checked as the caller isolates
896 		 * COMPACT_CLUSTER_MAX at a time so the second call must
897 		 * not falsely conclude that the block should be skipped.
898 		 */
899 		if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
900 			if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
901 				low_pfn = end_pfn;
902 				page = NULL;
903 				goto isolate_abort;
904 			}
905 			valid_page = page;
906 		}
907 
908 		/*
909 		 * Skip if free. We read page order here without zone lock
910 		 * which is generally unsafe, but the race window is small and
911 		 * the worst thing that can happen is that we skip some
912 		 * potential isolation targets.
913 		 */
914 		if (PageBuddy(page)) {
915 			unsigned long freepage_order = buddy_order_unsafe(page);
916 
917 			/*
918 			 * Without lock, we cannot be sure that what we got is
919 			 * a valid page order. Consider only values in the
920 			 * valid order range to prevent low_pfn overflow.
921 			 */
922 			if (freepage_order > 0 && freepage_order < MAX_ORDER)
923 				low_pfn += (1UL << freepage_order) - 1;
924 			continue;
925 		}
926 
927 		/*
928 		 * Regardless of being on LRU, compound pages such as THP and
929 		 * hugetlbfs are not to be compacted unless we are attempting
930 		 * an allocation much larger than the huge page size (eg CMA).
931 		 * We can potentially save a lot of iterations if we skip them
932 		 * at once. The check is racy, but we can consider only valid
933 		 * values and the only danger is skipping too much.
934 		 */
935 		if (PageCompound(page) && !cc->alloc_contig) {
936 			const unsigned int order = compound_order(page);
937 
938 			if (likely(order < MAX_ORDER))
939 				low_pfn += (1UL << order) - 1;
940 			goto isolate_fail;
941 		}
942 
943 		/*
944 		 * Check may be lockless but that's ok as we recheck later.
945 		 * It's possible to migrate LRU and non-lru movable pages.
946 		 * Skip any other type of page
947 		 */
948 		if (!PageLRU(page)) {
949 			/*
950 			 * __PageMovable can return false positive so we need
951 			 * to verify it under page_lock.
952 			 */
953 			if (unlikely(__PageMovable(page)) &&
954 					!PageIsolated(page)) {
955 				if (locked) {
956 					unlock_page_lruvec_irqrestore(locked, flags);
957 					locked = NULL;
958 				}
959 
960 				if (!isolate_movable_page(page, isolate_mode))
961 					goto isolate_success;
962 			}
963 
964 			goto isolate_fail;
965 		}
966 
967 		/*
968 		 * Migration will fail if an anonymous page is pinned in memory,
969 		 * so avoid taking lru_lock and isolating it unnecessarily in an
970 		 * admittedly racy check.
971 		 */
972 		if (!page_mapping(page) &&
973 		    page_count(page) > page_mapcount(page))
974 			goto isolate_fail;
975 
976 		/*
977 		 * Only allow to migrate anonymous pages in GFP_NOFS context
978 		 * because those do not depend on fs locks.
979 		 */
980 		if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
981 			goto isolate_fail;
982 
983 		/*
984 		 * Be careful not to clear PageLRU until after we're
985 		 * sure the page is not being freed elsewhere -- the
986 		 * page release code relies on it.
987 		 */
988 		if (unlikely(!get_page_unless_zero(page)))
989 			goto isolate_fail;
990 
991 		if (__isolate_lru_page_prepare(page, isolate_mode) != 0)
992 			goto isolate_fail_put;
993 
994 		/* Try isolate the page */
995 		if (!TestClearPageLRU(page))
996 			goto isolate_fail_put;
997 
998 		rcu_read_lock();
999 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1000 
1001 		/* If we already hold the lock, we can skip some rechecking */
1002 		if (lruvec != locked) {
1003 			if (locked)
1004 				unlock_page_lruvec_irqrestore(locked, flags);
1005 
1006 			compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1007 			locked = lruvec;
1008 			rcu_read_unlock();
1009 
1010 			lruvec_memcg_debug(lruvec, page);
1011 
1012 			/* Try get exclusive access under lock */
1013 			if (!skip_updated) {
1014 				skip_updated = true;
1015 				if (test_and_set_skip(cc, page, low_pfn))
1016 					goto isolate_abort;
1017 			}
1018 
1019 			/*
1020 			 * Page become compound since the non-locked check,
1021 			 * and it's on LRU. It can only be a THP so the order
1022 			 * is safe to read and it's 0 for tail pages.
1023 			 */
1024 			if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1025 				low_pfn += compound_nr(page) - 1;
1026 				SetPageLRU(page);
1027 				goto isolate_fail_put;
1028 			}
1029 		} else
1030 			rcu_read_unlock();
1031 
1032 		/* The whole page is taken off the LRU; skip the tail pages. */
1033 		if (PageCompound(page))
1034 			low_pfn += compound_nr(page) - 1;
1035 
1036 		/* Successfully isolated */
1037 		del_page_from_lru_list(page, lruvec, page_lru(page));
1038 		mod_node_page_state(page_pgdat(page),
1039 				NR_ISOLATED_ANON + page_is_file_lru(page),
1040 				thp_nr_pages(page));
1041 
1042 isolate_success:
1043 		list_add(&page->lru, &cc->migratepages);
1044 		cc->nr_migratepages += compound_nr(page);
1045 		nr_isolated += compound_nr(page);
1046 
1047 		/*
1048 		 * Avoid isolating too much unless this block is being
1049 		 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1050 		 * or a lock is contended. For contention, isolate quickly to
1051 		 * potentially remove one source of contention.
1052 		 */
1053 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1054 		    !cc->rescan && !cc->contended) {
1055 			++low_pfn;
1056 			break;
1057 		}
1058 
1059 		continue;
1060 
1061 isolate_fail_put:
1062 		/* Avoid potential deadlock in freeing page under lru_lock */
1063 		if (locked) {
1064 			unlock_page_lruvec_irqrestore(locked, flags);
1065 			locked = NULL;
1066 		}
1067 		put_page(page);
1068 
1069 isolate_fail:
1070 		if (!skip_on_failure)
1071 			continue;
1072 
1073 		/*
1074 		 * We have isolated some pages, but then failed. Release them
1075 		 * instead of migrating, as we cannot form the cc->order buddy
1076 		 * page anyway.
1077 		 */
1078 		if (nr_isolated) {
1079 			if (locked) {
1080 				unlock_page_lruvec_irqrestore(locked, flags);
1081 				locked = NULL;
1082 			}
1083 			putback_movable_pages(&cc->migratepages);
1084 			cc->nr_migratepages = 0;
1085 			nr_isolated = 0;
1086 		}
1087 
1088 		if (low_pfn < next_skip_pfn) {
1089 			low_pfn = next_skip_pfn - 1;
1090 			/*
1091 			 * The check near the loop beginning would have updated
1092 			 * next_skip_pfn too, but this is a bit simpler.
1093 			 */
1094 			next_skip_pfn += 1UL << cc->order;
1095 		}
1096 	}
1097 
1098 	/*
1099 	 * The PageBuddy() check could have potentially brought us outside
1100 	 * the range to be scanned.
1101 	 */
1102 	if (unlikely(low_pfn > end_pfn))
1103 		low_pfn = end_pfn;
1104 
1105 	page = NULL;
1106 
1107 isolate_abort:
1108 	if (locked)
1109 		unlock_page_lruvec_irqrestore(locked, flags);
1110 	if (page) {
1111 		SetPageLRU(page);
1112 		put_page(page);
1113 	}
1114 
1115 	/*
1116 	 * Updated the cached scanner pfn once the pageblock has been scanned
1117 	 * Pages will either be migrated in which case there is no point
1118 	 * scanning in the near future or migration failed in which case the
1119 	 * failure reason may persist. The block is marked for skipping if
1120 	 * there were no pages isolated in the block or if the block is
1121 	 * rescanned twice in a row.
1122 	 */
1123 	if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1124 		if (valid_page && !skip_updated)
1125 			set_pageblock_skip(valid_page);
1126 		update_cached_migrate(cc, low_pfn);
1127 	}
1128 
1129 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1130 						nr_scanned, nr_isolated);
1131 
1132 fatal_pending:
1133 	cc->total_migrate_scanned += nr_scanned;
1134 	if (nr_isolated)
1135 		count_compact_events(COMPACTISOLATED, nr_isolated);
1136 
1137 	return low_pfn;
1138 }
1139 
1140 /**
1141  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1142  * @cc:        Compaction control structure.
1143  * @start_pfn: The first PFN to start isolating.
1144  * @end_pfn:   The one-past-last PFN.
1145  *
1146  * Returns zero if isolation fails fatally due to e.g. pending signal.
1147  * Otherwise, function returns one-past-the-last PFN of isolated page
1148  * (which may be greater than end_pfn if end fell in a middle of a THP page).
1149  */
1150 unsigned long
1151 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1152 							unsigned long end_pfn)
1153 {
1154 	unsigned long pfn, block_start_pfn, block_end_pfn;
1155 
1156 	/* Scan block by block. First and last block may be incomplete */
1157 	pfn = start_pfn;
1158 	block_start_pfn = pageblock_start_pfn(pfn);
1159 	if (block_start_pfn < cc->zone->zone_start_pfn)
1160 		block_start_pfn = cc->zone->zone_start_pfn;
1161 	block_end_pfn = pageblock_end_pfn(pfn);
1162 
1163 	for (; pfn < end_pfn; pfn = block_end_pfn,
1164 				block_start_pfn = block_end_pfn,
1165 				block_end_pfn += pageblock_nr_pages) {
1166 
1167 		block_end_pfn = min(block_end_pfn, end_pfn);
1168 
1169 		if (!pageblock_pfn_to_page(block_start_pfn,
1170 					block_end_pfn, cc->zone))
1171 			continue;
1172 
1173 		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1174 							ISOLATE_UNEVICTABLE);
1175 
1176 		if (!pfn)
1177 			break;
1178 
1179 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1180 			break;
1181 	}
1182 
1183 	return pfn;
1184 }
1185 
1186 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1187 #ifdef CONFIG_COMPACTION
1188 
1189 static bool suitable_migration_source(struct compact_control *cc,
1190 							struct page *page)
1191 {
1192 	int block_mt;
1193 
1194 	if (pageblock_skip_persistent(page))
1195 		return false;
1196 
1197 	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1198 		return true;
1199 
1200 	block_mt = get_pageblock_migratetype(page);
1201 
1202 	if (cc->migratetype == MIGRATE_MOVABLE)
1203 		return is_migrate_movable(block_mt);
1204 	else
1205 		return block_mt == cc->migratetype;
1206 }
1207 
1208 /* Returns true if the page is within a block suitable for migration to */
1209 static bool suitable_migration_target(struct compact_control *cc,
1210 							struct page *page)
1211 {
1212 	/* If the page is a large free page, then disallow migration */
1213 	if (PageBuddy(page)) {
1214 		/*
1215 		 * We are checking page_order without zone->lock taken. But
1216 		 * the only small danger is that we skip a potentially suitable
1217 		 * pageblock, so it's not worth to check order for valid range.
1218 		 */
1219 		if (buddy_order_unsafe(page) >= pageblock_order)
1220 			return false;
1221 	}
1222 
1223 	if (cc->ignore_block_suitable)
1224 		return true;
1225 
1226 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1227 	if (is_migrate_movable(get_pageblock_migratetype(page)))
1228 		return true;
1229 
1230 	/* Otherwise skip the block */
1231 	return false;
1232 }
1233 
1234 static inline unsigned int
1235 freelist_scan_limit(struct compact_control *cc)
1236 {
1237 	unsigned short shift = BITS_PER_LONG - 1;
1238 
1239 	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1240 }
1241 
1242 /*
1243  * Test whether the free scanner has reached the same or lower pageblock than
1244  * the migration scanner, and compaction should thus terminate.
1245  */
1246 static inline bool compact_scanners_met(struct compact_control *cc)
1247 {
1248 	return (cc->free_pfn >> pageblock_order)
1249 		<= (cc->migrate_pfn >> pageblock_order);
1250 }
1251 
1252 /*
1253  * Used when scanning for a suitable migration target which scans freelists
1254  * in reverse. Reorders the list such as the unscanned pages are scanned
1255  * first on the next iteration of the free scanner
1256  */
1257 static void
1258 move_freelist_head(struct list_head *freelist, struct page *freepage)
1259 {
1260 	LIST_HEAD(sublist);
1261 
1262 	if (!list_is_last(freelist, &freepage->lru)) {
1263 		list_cut_before(&sublist, freelist, &freepage->lru);
1264 		if (!list_empty(&sublist))
1265 			list_splice_tail(&sublist, freelist);
1266 	}
1267 }
1268 
1269 /*
1270  * Similar to move_freelist_head except used by the migration scanner
1271  * when scanning forward. It's possible for these list operations to
1272  * move against each other if they search the free list exactly in
1273  * lockstep.
1274  */
1275 static void
1276 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1277 {
1278 	LIST_HEAD(sublist);
1279 
1280 	if (!list_is_first(freelist, &freepage->lru)) {
1281 		list_cut_position(&sublist, freelist, &freepage->lru);
1282 		if (!list_empty(&sublist))
1283 			list_splice_tail(&sublist, freelist);
1284 	}
1285 }
1286 
1287 static void
1288 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1289 {
1290 	unsigned long start_pfn, end_pfn;
1291 	struct page *page = pfn_to_page(pfn);
1292 
1293 	/* Do not search around if there are enough pages already */
1294 	if (cc->nr_freepages >= cc->nr_migratepages)
1295 		return;
1296 
1297 	/* Minimise scanning during async compaction */
1298 	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1299 		return;
1300 
1301 	/* Pageblock boundaries */
1302 	start_pfn = pageblock_start_pfn(pfn);
1303 	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1;
1304 
1305 	/* Scan before */
1306 	if (start_pfn != pfn) {
1307 		isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1308 		if (cc->nr_freepages >= cc->nr_migratepages)
1309 			return;
1310 	}
1311 
1312 	/* Scan after */
1313 	start_pfn = pfn + nr_isolated;
1314 	if (start_pfn < end_pfn)
1315 		isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1316 
1317 	/* Skip this pageblock in the future as it's full or nearly full */
1318 	if (cc->nr_freepages < cc->nr_migratepages)
1319 		set_pageblock_skip(page);
1320 }
1321 
1322 /* Search orders in round-robin fashion */
1323 static int next_search_order(struct compact_control *cc, int order)
1324 {
1325 	order--;
1326 	if (order < 0)
1327 		order = cc->order - 1;
1328 
1329 	/* Search wrapped around? */
1330 	if (order == cc->search_order) {
1331 		cc->search_order--;
1332 		if (cc->search_order < 0)
1333 			cc->search_order = cc->order - 1;
1334 		return -1;
1335 	}
1336 
1337 	return order;
1338 }
1339 
1340 static unsigned long
1341 fast_isolate_freepages(struct compact_control *cc)
1342 {
1343 	unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1344 	unsigned int nr_scanned = 0;
1345 	unsigned long low_pfn, min_pfn, highest = 0;
1346 	unsigned long nr_isolated = 0;
1347 	unsigned long distance;
1348 	struct page *page = NULL;
1349 	bool scan_start = false;
1350 	int order;
1351 
1352 	/* Full compaction passes in a negative order */
1353 	if (cc->order <= 0)
1354 		return cc->free_pfn;
1355 
1356 	/*
1357 	 * If starting the scan, use a deeper search and use the highest
1358 	 * PFN found if a suitable one is not found.
1359 	 */
1360 	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1361 		limit = pageblock_nr_pages >> 1;
1362 		scan_start = true;
1363 	}
1364 
1365 	/*
1366 	 * Preferred point is in the top quarter of the scan space but take
1367 	 * a pfn from the top half if the search is problematic.
1368 	 */
1369 	distance = (cc->free_pfn - cc->migrate_pfn);
1370 	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1371 	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1372 
1373 	if (WARN_ON_ONCE(min_pfn > low_pfn))
1374 		low_pfn = min_pfn;
1375 
1376 	/*
1377 	 * Search starts from the last successful isolation order or the next
1378 	 * order to search after a previous failure
1379 	 */
1380 	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1381 
1382 	for (order = cc->search_order;
1383 	     !page && order >= 0;
1384 	     order = next_search_order(cc, order)) {
1385 		struct free_area *area = &cc->zone->free_area[order];
1386 		struct list_head *freelist;
1387 		struct page *freepage;
1388 		unsigned long flags;
1389 		unsigned int order_scanned = 0;
1390 		unsigned long high_pfn = 0;
1391 
1392 		if (!area->nr_free)
1393 			continue;
1394 
1395 		spin_lock_irqsave(&cc->zone->lock, flags);
1396 		freelist = &area->free_list[MIGRATE_MOVABLE];
1397 		list_for_each_entry_reverse(freepage, freelist, lru) {
1398 			unsigned long pfn;
1399 
1400 			order_scanned++;
1401 			nr_scanned++;
1402 			pfn = page_to_pfn(freepage);
1403 
1404 			if (pfn >= highest)
1405 				highest = pageblock_start_pfn(pfn);
1406 
1407 			if (pfn >= low_pfn) {
1408 				cc->fast_search_fail = 0;
1409 				cc->search_order = order;
1410 				page = freepage;
1411 				break;
1412 			}
1413 
1414 			if (pfn >= min_pfn && pfn > high_pfn) {
1415 				high_pfn = pfn;
1416 
1417 				/* Shorten the scan if a candidate is found */
1418 				limit >>= 1;
1419 			}
1420 
1421 			if (order_scanned >= limit)
1422 				break;
1423 		}
1424 
1425 		/* Use a minimum pfn if a preferred one was not found */
1426 		if (!page && high_pfn) {
1427 			page = pfn_to_page(high_pfn);
1428 
1429 			/* Update freepage for the list reorder below */
1430 			freepage = page;
1431 		}
1432 
1433 		/* Reorder to so a future search skips recent pages */
1434 		move_freelist_head(freelist, freepage);
1435 
1436 		/* Isolate the page if available */
1437 		if (page) {
1438 			if (__isolate_free_page(page, order)) {
1439 				set_page_private(page, order);
1440 				nr_isolated = 1 << order;
1441 				cc->nr_freepages += nr_isolated;
1442 				list_add_tail(&page->lru, &cc->freepages);
1443 				count_compact_events(COMPACTISOLATED, nr_isolated);
1444 			} else {
1445 				/* If isolation fails, abort the search */
1446 				order = cc->search_order + 1;
1447 				page = NULL;
1448 			}
1449 		}
1450 
1451 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1452 
1453 		/*
1454 		 * Smaller scan on next order so the total scan ig related
1455 		 * to freelist_scan_limit.
1456 		 */
1457 		if (order_scanned >= limit)
1458 			limit = min(1U, limit >> 1);
1459 	}
1460 
1461 	if (!page) {
1462 		cc->fast_search_fail++;
1463 		if (scan_start) {
1464 			/*
1465 			 * Use the highest PFN found above min. If one was
1466 			 * not found, be pessimistic for direct compaction
1467 			 * and use the min mark.
1468 			 */
1469 			if (highest) {
1470 				page = pfn_to_page(highest);
1471 				cc->free_pfn = highest;
1472 			} else {
1473 				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1474 					page = pageblock_pfn_to_page(min_pfn,
1475 						pageblock_end_pfn(min_pfn),
1476 						cc->zone);
1477 					cc->free_pfn = min_pfn;
1478 				}
1479 			}
1480 		}
1481 	}
1482 
1483 	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1484 		highest -= pageblock_nr_pages;
1485 		cc->zone->compact_cached_free_pfn = highest;
1486 	}
1487 
1488 	cc->total_free_scanned += nr_scanned;
1489 	if (!page)
1490 		return cc->free_pfn;
1491 
1492 	low_pfn = page_to_pfn(page);
1493 	fast_isolate_around(cc, low_pfn, nr_isolated);
1494 	return low_pfn;
1495 }
1496 
1497 /*
1498  * Based on information in the current compact_control, find blocks
1499  * suitable for isolating free pages from and then isolate them.
1500  */
1501 static void isolate_freepages(struct compact_control *cc)
1502 {
1503 	struct zone *zone = cc->zone;
1504 	struct page *page;
1505 	unsigned long block_start_pfn;	/* start of current pageblock */
1506 	unsigned long isolate_start_pfn; /* exact pfn we start at */
1507 	unsigned long block_end_pfn;	/* end of current pageblock */
1508 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1509 	struct list_head *freelist = &cc->freepages;
1510 	unsigned int stride;
1511 
1512 	/* Try a small search of the free lists for a candidate */
1513 	isolate_start_pfn = fast_isolate_freepages(cc);
1514 	if (cc->nr_freepages)
1515 		goto splitmap;
1516 
1517 	/*
1518 	 * Initialise the free scanner. The starting point is where we last
1519 	 * successfully isolated from, zone-cached value, or the end of the
1520 	 * zone when isolating for the first time. For looping we also need
1521 	 * this pfn aligned down to the pageblock boundary, because we do
1522 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1523 	 * For ending point, take care when isolating in last pageblock of a
1524 	 * zone which ends in the middle of a pageblock.
1525 	 * The low boundary is the end of the pageblock the migration scanner
1526 	 * is using.
1527 	 */
1528 	isolate_start_pfn = cc->free_pfn;
1529 	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1530 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1531 						zone_end_pfn(zone));
1532 	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1533 	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1534 
1535 	/*
1536 	 * Isolate free pages until enough are available to migrate the
1537 	 * pages on cc->migratepages. We stop searching if the migrate
1538 	 * and free page scanners meet or enough free pages are isolated.
1539 	 */
1540 	for (; block_start_pfn >= low_pfn;
1541 				block_end_pfn = block_start_pfn,
1542 				block_start_pfn -= pageblock_nr_pages,
1543 				isolate_start_pfn = block_start_pfn) {
1544 		unsigned long nr_isolated;
1545 
1546 		/*
1547 		 * This can iterate a massively long zone without finding any
1548 		 * suitable migration targets, so periodically check resched.
1549 		 */
1550 		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1551 			cond_resched();
1552 
1553 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1554 									zone);
1555 		if (!page)
1556 			continue;
1557 
1558 		/* Check the block is suitable for migration */
1559 		if (!suitable_migration_target(cc, page))
1560 			continue;
1561 
1562 		/* If isolation recently failed, do not retry */
1563 		if (!isolation_suitable(cc, page))
1564 			continue;
1565 
1566 		/* Found a block suitable for isolating free pages from. */
1567 		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1568 					block_end_pfn, freelist, stride, false);
1569 
1570 		/* Update the skip hint if the full pageblock was scanned */
1571 		if (isolate_start_pfn == block_end_pfn)
1572 			update_pageblock_skip(cc, page, block_start_pfn);
1573 
1574 		/* Are enough freepages isolated? */
1575 		if (cc->nr_freepages >= cc->nr_migratepages) {
1576 			if (isolate_start_pfn >= block_end_pfn) {
1577 				/*
1578 				 * Restart at previous pageblock if more
1579 				 * freepages can be isolated next time.
1580 				 */
1581 				isolate_start_pfn =
1582 					block_start_pfn - pageblock_nr_pages;
1583 			}
1584 			break;
1585 		} else if (isolate_start_pfn < block_end_pfn) {
1586 			/*
1587 			 * If isolation failed early, do not continue
1588 			 * needlessly.
1589 			 */
1590 			break;
1591 		}
1592 
1593 		/* Adjust stride depending on isolation */
1594 		if (nr_isolated) {
1595 			stride = 1;
1596 			continue;
1597 		}
1598 		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1599 	}
1600 
1601 	/*
1602 	 * Record where the free scanner will restart next time. Either we
1603 	 * broke from the loop and set isolate_start_pfn based on the last
1604 	 * call to isolate_freepages_block(), or we met the migration scanner
1605 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1606 	 */
1607 	cc->free_pfn = isolate_start_pfn;
1608 
1609 splitmap:
1610 	/* __isolate_free_page() does not map the pages */
1611 	split_map_pages(freelist);
1612 }
1613 
1614 /*
1615  * This is a migrate-callback that "allocates" freepages by taking pages
1616  * from the isolated freelists in the block we are migrating to.
1617  */
1618 static struct page *compaction_alloc(struct page *migratepage,
1619 					unsigned long data)
1620 {
1621 	struct compact_control *cc = (struct compact_control *)data;
1622 	struct page *freepage;
1623 
1624 	if (list_empty(&cc->freepages)) {
1625 		isolate_freepages(cc);
1626 
1627 		if (list_empty(&cc->freepages))
1628 			return NULL;
1629 	}
1630 
1631 	freepage = list_entry(cc->freepages.next, struct page, lru);
1632 	list_del(&freepage->lru);
1633 	cc->nr_freepages--;
1634 
1635 	return freepage;
1636 }
1637 
1638 /*
1639  * This is a migrate-callback that "frees" freepages back to the isolated
1640  * freelist.  All pages on the freelist are from the same zone, so there is no
1641  * special handling needed for NUMA.
1642  */
1643 static void compaction_free(struct page *page, unsigned long data)
1644 {
1645 	struct compact_control *cc = (struct compact_control *)data;
1646 
1647 	list_add(&page->lru, &cc->freepages);
1648 	cc->nr_freepages++;
1649 }
1650 
1651 /* possible outcome of isolate_migratepages */
1652 typedef enum {
1653 	ISOLATE_ABORT,		/* Abort compaction now */
1654 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1655 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1656 } isolate_migrate_t;
1657 
1658 /*
1659  * Allow userspace to control policy on scanning the unevictable LRU for
1660  * compactable pages.
1661  */
1662 #ifdef CONFIG_PREEMPT_RT
1663 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1664 #else
1665 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1666 #endif
1667 
1668 static inline void
1669 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1670 {
1671 	if (cc->fast_start_pfn == ULONG_MAX)
1672 		return;
1673 
1674 	if (!cc->fast_start_pfn)
1675 		cc->fast_start_pfn = pfn;
1676 
1677 	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1678 }
1679 
1680 static inline unsigned long
1681 reinit_migrate_pfn(struct compact_control *cc)
1682 {
1683 	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1684 		return cc->migrate_pfn;
1685 
1686 	cc->migrate_pfn = cc->fast_start_pfn;
1687 	cc->fast_start_pfn = ULONG_MAX;
1688 
1689 	return cc->migrate_pfn;
1690 }
1691 
1692 /*
1693  * Briefly search the free lists for a migration source that already has
1694  * some free pages to reduce the number of pages that need migration
1695  * before a pageblock is free.
1696  */
1697 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1698 {
1699 	unsigned int limit = freelist_scan_limit(cc);
1700 	unsigned int nr_scanned = 0;
1701 	unsigned long distance;
1702 	unsigned long pfn = cc->migrate_pfn;
1703 	unsigned long high_pfn;
1704 	int order;
1705 
1706 	/* Skip hints are relied on to avoid repeats on the fast search */
1707 	if (cc->ignore_skip_hint)
1708 		return pfn;
1709 
1710 	/*
1711 	 * If the migrate_pfn is not at the start of a zone or the start
1712 	 * of a pageblock then assume this is a continuation of a previous
1713 	 * scan restarted due to COMPACT_CLUSTER_MAX.
1714 	 */
1715 	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1716 		return pfn;
1717 
1718 	/*
1719 	 * For smaller orders, just linearly scan as the number of pages
1720 	 * to migrate should be relatively small and does not necessarily
1721 	 * justify freeing up a large block for a small allocation.
1722 	 */
1723 	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1724 		return pfn;
1725 
1726 	/*
1727 	 * Only allow kcompactd and direct requests for movable pages to
1728 	 * quickly clear out a MOVABLE pageblock for allocation. This
1729 	 * reduces the risk that a large movable pageblock is freed for
1730 	 * an unmovable/reclaimable small allocation.
1731 	 */
1732 	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1733 		return pfn;
1734 
1735 	/*
1736 	 * When starting the migration scanner, pick any pageblock within the
1737 	 * first half of the search space. Otherwise try and pick a pageblock
1738 	 * within the first eighth to reduce the chances that a migration
1739 	 * target later becomes a source.
1740 	 */
1741 	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1742 	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1743 		distance >>= 2;
1744 	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1745 
1746 	for (order = cc->order - 1;
1747 	     order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit;
1748 	     order--) {
1749 		struct free_area *area = &cc->zone->free_area[order];
1750 		struct list_head *freelist;
1751 		unsigned long flags;
1752 		struct page *freepage;
1753 
1754 		if (!area->nr_free)
1755 			continue;
1756 
1757 		spin_lock_irqsave(&cc->zone->lock, flags);
1758 		freelist = &area->free_list[MIGRATE_MOVABLE];
1759 		list_for_each_entry(freepage, freelist, lru) {
1760 			unsigned long free_pfn;
1761 
1762 			nr_scanned++;
1763 			free_pfn = page_to_pfn(freepage);
1764 			if (free_pfn < high_pfn) {
1765 				/*
1766 				 * Avoid if skipped recently. Ideally it would
1767 				 * move to the tail but even safe iteration of
1768 				 * the list assumes an entry is deleted, not
1769 				 * reordered.
1770 				 */
1771 				if (get_pageblock_skip(freepage)) {
1772 					if (list_is_last(freelist, &freepage->lru))
1773 						break;
1774 
1775 					continue;
1776 				}
1777 
1778 				/* Reorder to so a future search skips recent pages */
1779 				move_freelist_tail(freelist, freepage);
1780 
1781 				update_fast_start_pfn(cc, free_pfn);
1782 				pfn = pageblock_start_pfn(free_pfn);
1783 				cc->fast_search_fail = 0;
1784 				set_pageblock_skip(freepage);
1785 				break;
1786 			}
1787 
1788 			if (nr_scanned >= limit) {
1789 				cc->fast_search_fail++;
1790 				move_freelist_tail(freelist, freepage);
1791 				break;
1792 			}
1793 		}
1794 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1795 	}
1796 
1797 	cc->total_migrate_scanned += nr_scanned;
1798 
1799 	/*
1800 	 * If fast scanning failed then use a cached entry for a page block
1801 	 * that had free pages as the basis for starting a linear scan.
1802 	 */
1803 	if (pfn == cc->migrate_pfn)
1804 		pfn = reinit_migrate_pfn(cc);
1805 
1806 	return pfn;
1807 }
1808 
1809 /*
1810  * Isolate all pages that can be migrated from the first suitable block,
1811  * starting at the block pointed to by the migrate scanner pfn within
1812  * compact_control.
1813  */
1814 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1815 {
1816 	unsigned long block_start_pfn;
1817 	unsigned long block_end_pfn;
1818 	unsigned long low_pfn;
1819 	struct page *page;
1820 	const isolate_mode_t isolate_mode =
1821 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1822 		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1823 	bool fast_find_block;
1824 
1825 	/*
1826 	 * Start at where we last stopped, or beginning of the zone as
1827 	 * initialized by compact_zone(). The first failure will use
1828 	 * the lowest PFN as the starting point for linear scanning.
1829 	 */
1830 	low_pfn = fast_find_migrateblock(cc);
1831 	block_start_pfn = pageblock_start_pfn(low_pfn);
1832 	if (block_start_pfn < cc->zone->zone_start_pfn)
1833 		block_start_pfn = cc->zone->zone_start_pfn;
1834 
1835 	/*
1836 	 * fast_find_migrateblock marks a pageblock skipped so to avoid
1837 	 * the isolation_suitable check below, check whether the fast
1838 	 * search was successful.
1839 	 */
1840 	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1841 
1842 	/* Only scan within a pageblock boundary */
1843 	block_end_pfn = pageblock_end_pfn(low_pfn);
1844 
1845 	/*
1846 	 * Iterate over whole pageblocks until we find the first suitable.
1847 	 * Do not cross the free scanner.
1848 	 */
1849 	for (; block_end_pfn <= cc->free_pfn;
1850 			fast_find_block = false,
1851 			low_pfn = block_end_pfn,
1852 			block_start_pfn = block_end_pfn,
1853 			block_end_pfn += pageblock_nr_pages) {
1854 
1855 		/*
1856 		 * This can potentially iterate a massively long zone with
1857 		 * many pageblocks unsuitable, so periodically check if we
1858 		 * need to schedule.
1859 		 */
1860 		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1861 			cond_resched();
1862 
1863 		page = pageblock_pfn_to_page(block_start_pfn,
1864 						block_end_pfn, cc->zone);
1865 		if (!page)
1866 			continue;
1867 
1868 		/*
1869 		 * If isolation recently failed, do not retry. Only check the
1870 		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1871 		 * to be visited multiple times. Assume skip was checked
1872 		 * before making it "skip" so other compaction instances do
1873 		 * not scan the same block.
1874 		 */
1875 		if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1876 		    !fast_find_block && !isolation_suitable(cc, page))
1877 			continue;
1878 
1879 		/*
1880 		 * For async compaction, also only scan in MOVABLE blocks
1881 		 * without huge pages. Async compaction is optimistic to see
1882 		 * if the minimum amount of work satisfies the allocation.
1883 		 * The cached PFN is updated as it's possible that all
1884 		 * remaining blocks between source and target are unsuitable
1885 		 * and the compaction scanners fail to meet.
1886 		 */
1887 		if (!suitable_migration_source(cc, page)) {
1888 			update_cached_migrate(cc, block_end_pfn);
1889 			continue;
1890 		}
1891 
1892 		/* Perform the isolation */
1893 		low_pfn = isolate_migratepages_block(cc, low_pfn,
1894 						block_end_pfn, isolate_mode);
1895 
1896 		if (!low_pfn)
1897 			return ISOLATE_ABORT;
1898 
1899 		/*
1900 		 * Either we isolated something and proceed with migration. Or
1901 		 * we failed and compact_zone should decide if we should
1902 		 * continue or not.
1903 		 */
1904 		break;
1905 	}
1906 
1907 	/* Record where migration scanner will be restarted. */
1908 	cc->migrate_pfn = low_pfn;
1909 
1910 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1911 }
1912 
1913 /*
1914  * order == -1 is expected when compacting via
1915  * /proc/sys/vm/compact_memory
1916  */
1917 static inline bool is_via_compact_memory(int order)
1918 {
1919 	return order == -1;
1920 }
1921 
1922 static bool kswapd_is_running(pg_data_t *pgdat)
1923 {
1924 	return pgdat->kswapd && (pgdat->kswapd->state == TASK_RUNNING);
1925 }
1926 
1927 /*
1928  * A zone's fragmentation score is the external fragmentation wrt to the
1929  * COMPACTION_HPAGE_ORDER scaled by the zone's size. It returns a value
1930  * in the range [0, 100].
1931  *
1932  * The scaling factor ensures that proactive compaction focuses on larger
1933  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
1934  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
1935  * and thus never exceeds the high threshold for proactive compaction.
1936  */
1937 static unsigned int fragmentation_score_zone(struct zone *zone)
1938 {
1939 	unsigned long score;
1940 
1941 	score = zone->present_pages *
1942 			extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1943 	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
1944 }
1945 
1946 /*
1947  * The per-node proactive (background) compaction process is started by its
1948  * corresponding kcompactd thread when the node's fragmentation score
1949  * exceeds the high threshold. The compaction process remains active till
1950  * the node's score falls below the low threshold, or one of the back-off
1951  * conditions is met.
1952  */
1953 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
1954 {
1955 	unsigned int score = 0;
1956 	int zoneid;
1957 
1958 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1959 		struct zone *zone;
1960 
1961 		zone = &pgdat->node_zones[zoneid];
1962 		score += fragmentation_score_zone(zone);
1963 	}
1964 
1965 	return score;
1966 }
1967 
1968 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
1969 {
1970 	unsigned int wmark_low;
1971 
1972 	/*
1973 	 * Cap the low watermak to avoid excessive compaction
1974 	 * activity in case a user sets the proactivess tunable
1975 	 * close to 100 (maximum).
1976 	 */
1977 	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
1978 	return low ? wmark_low : min(wmark_low + 10, 100U);
1979 }
1980 
1981 static bool should_proactive_compact_node(pg_data_t *pgdat)
1982 {
1983 	int wmark_high;
1984 
1985 	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
1986 		return false;
1987 
1988 	wmark_high = fragmentation_score_wmark(pgdat, false);
1989 	return fragmentation_score_node(pgdat) > wmark_high;
1990 }
1991 
1992 static enum compact_result __compact_finished(struct compact_control *cc)
1993 {
1994 	unsigned int order;
1995 	const int migratetype = cc->migratetype;
1996 	int ret;
1997 
1998 	/* Compaction run completes if the migrate and free scanner meet */
1999 	if (compact_scanners_met(cc)) {
2000 		/* Let the next compaction start anew. */
2001 		reset_cached_positions(cc->zone);
2002 
2003 		/*
2004 		 * Mark that the PG_migrate_skip information should be cleared
2005 		 * by kswapd when it goes to sleep. kcompactd does not set the
2006 		 * flag itself as the decision to be clear should be directly
2007 		 * based on an allocation request.
2008 		 */
2009 		if (cc->direct_compaction)
2010 			cc->zone->compact_blockskip_flush = true;
2011 
2012 		if (cc->whole_zone)
2013 			return COMPACT_COMPLETE;
2014 		else
2015 			return COMPACT_PARTIAL_SKIPPED;
2016 	}
2017 
2018 	if (cc->proactive_compaction) {
2019 		int score, wmark_low;
2020 		pg_data_t *pgdat;
2021 
2022 		pgdat = cc->zone->zone_pgdat;
2023 		if (kswapd_is_running(pgdat))
2024 			return COMPACT_PARTIAL_SKIPPED;
2025 
2026 		score = fragmentation_score_zone(cc->zone);
2027 		wmark_low = fragmentation_score_wmark(pgdat, true);
2028 
2029 		if (score > wmark_low)
2030 			ret = COMPACT_CONTINUE;
2031 		else
2032 			ret = COMPACT_SUCCESS;
2033 
2034 		goto out;
2035 	}
2036 
2037 	if (is_via_compact_memory(cc->order))
2038 		return COMPACT_CONTINUE;
2039 
2040 	/*
2041 	 * Always finish scanning a pageblock to reduce the possibility of
2042 	 * fallbacks in the future. This is particularly important when
2043 	 * migration source is unmovable/reclaimable but it's not worth
2044 	 * special casing.
2045 	 */
2046 	if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2047 		return COMPACT_CONTINUE;
2048 
2049 	/* Direct compactor: Is a suitable page free? */
2050 	ret = COMPACT_NO_SUITABLE_PAGE;
2051 	for (order = cc->order; order < MAX_ORDER; order++) {
2052 		struct free_area *area = &cc->zone->free_area[order];
2053 		bool can_steal;
2054 
2055 		/* Job done if page is free of the right migratetype */
2056 		if (!free_area_empty(area, migratetype))
2057 			return COMPACT_SUCCESS;
2058 
2059 #ifdef CONFIG_CMA
2060 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2061 		if (migratetype == MIGRATE_MOVABLE &&
2062 			!free_area_empty(area, MIGRATE_CMA))
2063 			return COMPACT_SUCCESS;
2064 #endif
2065 		/*
2066 		 * Job done if allocation would steal freepages from
2067 		 * other migratetype buddy lists.
2068 		 */
2069 		if (find_suitable_fallback(area, order, migratetype,
2070 						true, &can_steal) != -1) {
2071 
2072 			/* movable pages are OK in any pageblock */
2073 			if (migratetype == MIGRATE_MOVABLE)
2074 				return COMPACT_SUCCESS;
2075 
2076 			/*
2077 			 * We are stealing for a non-movable allocation. Make
2078 			 * sure we finish compacting the current pageblock
2079 			 * first so it is as free as possible and we won't
2080 			 * have to steal another one soon. This only applies
2081 			 * to sync compaction, as async compaction operates
2082 			 * on pageblocks of the same migratetype.
2083 			 */
2084 			if (cc->mode == MIGRATE_ASYNC ||
2085 					IS_ALIGNED(cc->migrate_pfn,
2086 							pageblock_nr_pages)) {
2087 				return COMPACT_SUCCESS;
2088 			}
2089 
2090 			ret = COMPACT_CONTINUE;
2091 			break;
2092 		}
2093 	}
2094 
2095 out:
2096 	if (cc->contended || fatal_signal_pending(current))
2097 		ret = COMPACT_CONTENDED;
2098 
2099 	return ret;
2100 }
2101 
2102 static enum compact_result compact_finished(struct compact_control *cc)
2103 {
2104 	int ret;
2105 
2106 	ret = __compact_finished(cc);
2107 	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2108 	if (ret == COMPACT_NO_SUITABLE_PAGE)
2109 		ret = COMPACT_CONTINUE;
2110 
2111 	return ret;
2112 }
2113 
2114 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2115 					unsigned int alloc_flags,
2116 					int highest_zoneidx,
2117 					unsigned long wmark_target)
2118 {
2119 	unsigned long watermark;
2120 
2121 	if (is_via_compact_memory(order))
2122 		return COMPACT_CONTINUE;
2123 
2124 	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2125 	/*
2126 	 * If watermarks for high-order allocation are already met, there
2127 	 * should be no need for compaction at all.
2128 	 */
2129 	if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2130 								alloc_flags))
2131 		return COMPACT_SUCCESS;
2132 
2133 	/*
2134 	 * Watermarks for order-0 must be met for compaction to be able to
2135 	 * isolate free pages for migration targets. This means that the
2136 	 * watermark and alloc_flags have to match, or be more pessimistic than
2137 	 * the check in __isolate_free_page(). We don't use the direct
2138 	 * compactor's alloc_flags, as they are not relevant for freepage
2139 	 * isolation. We however do use the direct compactor's highest_zoneidx
2140 	 * to skip over zones where lowmem reserves would prevent allocation
2141 	 * even if compaction succeeds.
2142 	 * For costly orders, we require low watermark instead of min for
2143 	 * compaction to proceed to increase its chances.
2144 	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2145 	 * suitable migration targets
2146 	 */
2147 	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2148 				low_wmark_pages(zone) : min_wmark_pages(zone);
2149 	watermark += compact_gap(order);
2150 	if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2151 						ALLOC_CMA, wmark_target))
2152 		return COMPACT_SKIPPED;
2153 
2154 	return COMPACT_CONTINUE;
2155 }
2156 
2157 /*
2158  * compaction_suitable: Is this suitable to run compaction on this zone now?
2159  * Returns
2160  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2161  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2162  *   COMPACT_CONTINUE - If compaction should run now
2163  */
2164 enum compact_result compaction_suitable(struct zone *zone, int order,
2165 					unsigned int alloc_flags,
2166 					int highest_zoneidx)
2167 {
2168 	enum compact_result ret;
2169 	int fragindex;
2170 
2171 	ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2172 				    zone_page_state(zone, NR_FREE_PAGES));
2173 	/*
2174 	 * fragmentation index determines if allocation failures are due to
2175 	 * low memory or external fragmentation
2176 	 *
2177 	 * index of -1000 would imply allocations might succeed depending on
2178 	 * watermarks, but we already failed the high-order watermark check
2179 	 * index towards 0 implies failure is due to lack of memory
2180 	 * index towards 1000 implies failure is due to fragmentation
2181 	 *
2182 	 * Only compact if a failure would be due to fragmentation. Also
2183 	 * ignore fragindex for non-costly orders where the alternative to
2184 	 * a successful reclaim/compaction is OOM. Fragindex and the
2185 	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2186 	 * excessive compaction for costly orders, but it should not be at the
2187 	 * expense of system stability.
2188 	 */
2189 	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2190 		fragindex = fragmentation_index(zone, order);
2191 		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2192 			ret = COMPACT_NOT_SUITABLE_ZONE;
2193 	}
2194 
2195 	trace_mm_compaction_suitable(zone, order, ret);
2196 	if (ret == COMPACT_NOT_SUITABLE_ZONE)
2197 		ret = COMPACT_SKIPPED;
2198 
2199 	return ret;
2200 }
2201 
2202 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2203 		int alloc_flags)
2204 {
2205 	struct zone *zone;
2206 	struct zoneref *z;
2207 
2208 	/*
2209 	 * Make sure at least one zone would pass __compaction_suitable if we continue
2210 	 * retrying the reclaim.
2211 	 */
2212 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2213 				ac->highest_zoneidx, ac->nodemask) {
2214 		unsigned long available;
2215 		enum compact_result compact_result;
2216 
2217 		/*
2218 		 * Do not consider all the reclaimable memory because we do not
2219 		 * want to trash just for a single high order allocation which
2220 		 * is even not guaranteed to appear even if __compaction_suitable
2221 		 * is happy about the watermark check.
2222 		 */
2223 		available = zone_reclaimable_pages(zone) / order;
2224 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2225 		compact_result = __compaction_suitable(zone, order, alloc_flags,
2226 				ac->highest_zoneidx, available);
2227 		if (compact_result != COMPACT_SKIPPED)
2228 			return true;
2229 	}
2230 
2231 	return false;
2232 }
2233 
2234 static enum compact_result
2235 compact_zone(struct compact_control *cc, struct capture_control *capc)
2236 {
2237 	enum compact_result ret;
2238 	unsigned long start_pfn = cc->zone->zone_start_pfn;
2239 	unsigned long end_pfn = zone_end_pfn(cc->zone);
2240 	unsigned long last_migrated_pfn;
2241 	const bool sync = cc->mode != MIGRATE_ASYNC;
2242 	bool update_cached;
2243 
2244 	/*
2245 	 * These counters track activities during zone compaction.  Initialize
2246 	 * them before compacting a new zone.
2247 	 */
2248 	cc->total_migrate_scanned = 0;
2249 	cc->total_free_scanned = 0;
2250 	cc->nr_migratepages = 0;
2251 	cc->nr_freepages = 0;
2252 	INIT_LIST_HEAD(&cc->freepages);
2253 	INIT_LIST_HEAD(&cc->migratepages);
2254 
2255 	cc->migratetype = gfp_migratetype(cc->gfp_mask);
2256 	ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2257 							cc->highest_zoneidx);
2258 	/* Compaction is likely to fail */
2259 	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2260 		return ret;
2261 
2262 	/* huh, compaction_suitable is returning something unexpected */
2263 	VM_BUG_ON(ret != COMPACT_CONTINUE);
2264 
2265 	/*
2266 	 * Clear pageblock skip if there were failures recently and compaction
2267 	 * is about to be retried after being deferred.
2268 	 */
2269 	if (compaction_restarting(cc->zone, cc->order))
2270 		__reset_isolation_suitable(cc->zone);
2271 
2272 	/*
2273 	 * Setup to move all movable pages to the end of the zone. Used cached
2274 	 * information on where the scanners should start (unless we explicitly
2275 	 * want to compact the whole zone), but check that it is initialised
2276 	 * by ensuring the values are within zone boundaries.
2277 	 */
2278 	cc->fast_start_pfn = 0;
2279 	if (cc->whole_zone) {
2280 		cc->migrate_pfn = start_pfn;
2281 		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2282 	} else {
2283 		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2284 		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2285 		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2286 			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2287 			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2288 		}
2289 		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2290 			cc->migrate_pfn = start_pfn;
2291 			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2292 			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2293 		}
2294 
2295 		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2296 			cc->whole_zone = true;
2297 	}
2298 
2299 	last_migrated_pfn = 0;
2300 
2301 	/*
2302 	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2303 	 * the basis that some migrations will fail in ASYNC mode. However,
2304 	 * if the cached PFNs match and pageblocks are skipped due to having
2305 	 * no isolation candidates, then the sync state does not matter.
2306 	 * Until a pageblock with isolation candidates is found, keep the
2307 	 * cached PFNs in sync to avoid revisiting the same blocks.
2308 	 */
2309 	update_cached = !sync &&
2310 		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2311 
2312 	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2313 				cc->free_pfn, end_pfn, sync);
2314 
2315 	migrate_prep_local();
2316 
2317 	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2318 		int err;
2319 		unsigned long iteration_start_pfn = cc->migrate_pfn;
2320 
2321 		/*
2322 		 * Avoid multiple rescans which can happen if a page cannot be
2323 		 * isolated (dirty/writeback in async mode) or if the migrated
2324 		 * pages are being allocated before the pageblock is cleared.
2325 		 * The first rescan will capture the entire pageblock for
2326 		 * migration. If it fails, it'll be marked skip and scanning
2327 		 * will proceed as normal.
2328 		 */
2329 		cc->rescan = false;
2330 		if (pageblock_start_pfn(last_migrated_pfn) ==
2331 		    pageblock_start_pfn(iteration_start_pfn)) {
2332 			cc->rescan = true;
2333 		}
2334 
2335 		switch (isolate_migratepages(cc)) {
2336 		case ISOLATE_ABORT:
2337 			ret = COMPACT_CONTENDED;
2338 			putback_movable_pages(&cc->migratepages);
2339 			cc->nr_migratepages = 0;
2340 			goto out;
2341 		case ISOLATE_NONE:
2342 			if (update_cached) {
2343 				cc->zone->compact_cached_migrate_pfn[1] =
2344 					cc->zone->compact_cached_migrate_pfn[0];
2345 			}
2346 
2347 			/*
2348 			 * We haven't isolated and migrated anything, but
2349 			 * there might still be unflushed migrations from
2350 			 * previous cc->order aligned block.
2351 			 */
2352 			goto check_drain;
2353 		case ISOLATE_SUCCESS:
2354 			update_cached = false;
2355 			last_migrated_pfn = iteration_start_pfn;
2356 		}
2357 
2358 		err = migrate_pages(&cc->migratepages, compaction_alloc,
2359 				compaction_free, (unsigned long)cc, cc->mode,
2360 				MR_COMPACTION);
2361 
2362 		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2363 							&cc->migratepages);
2364 
2365 		/* All pages were either migrated or will be released */
2366 		cc->nr_migratepages = 0;
2367 		if (err) {
2368 			putback_movable_pages(&cc->migratepages);
2369 			/*
2370 			 * migrate_pages() may return -ENOMEM when scanners meet
2371 			 * and we want compact_finished() to detect it
2372 			 */
2373 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2374 				ret = COMPACT_CONTENDED;
2375 				goto out;
2376 			}
2377 			/*
2378 			 * We failed to migrate at least one page in the current
2379 			 * order-aligned block, so skip the rest of it.
2380 			 */
2381 			if (cc->direct_compaction &&
2382 						(cc->mode == MIGRATE_ASYNC)) {
2383 				cc->migrate_pfn = block_end_pfn(
2384 						cc->migrate_pfn - 1, cc->order);
2385 				/* Draining pcplists is useless in this case */
2386 				last_migrated_pfn = 0;
2387 			}
2388 		}
2389 
2390 check_drain:
2391 		/*
2392 		 * Has the migration scanner moved away from the previous
2393 		 * cc->order aligned block where we migrated from? If yes,
2394 		 * flush the pages that were freed, so that they can merge and
2395 		 * compact_finished() can detect immediately if allocation
2396 		 * would succeed.
2397 		 */
2398 		if (cc->order > 0 && last_migrated_pfn) {
2399 			unsigned long current_block_start =
2400 				block_start_pfn(cc->migrate_pfn, cc->order);
2401 
2402 			if (last_migrated_pfn < current_block_start) {
2403 				lru_add_drain_cpu_zone(cc->zone);
2404 				/* No more flushing until we migrate again */
2405 				last_migrated_pfn = 0;
2406 			}
2407 		}
2408 
2409 		/* Stop if a page has been captured */
2410 		if (capc && capc->page) {
2411 			ret = COMPACT_SUCCESS;
2412 			break;
2413 		}
2414 	}
2415 
2416 out:
2417 	/*
2418 	 * Release free pages and update where the free scanner should restart,
2419 	 * so we don't leave any returned pages behind in the next attempt.
2420 	 */
2421 	if (cc->nr_freepages > 0) {
2422 		unsigned long free_pfn = release_freepages(&cc->freepages);
2423 
2424 		cc->nr_freepages = 0;
2425 		VM_BUG_ON(free_pfn == 0);
2426 		/* The cached pfn is always the first in a pageblock */
2427 		free_pfn = pageblock_start_pfn(free_pfn);
2428 		/*
2429 		 * Only go back, not forward. The cached pfn might have been
2430 		 * already reset to zone end in compact_finished()
2431 		 */
2432 		if (free_pfn > cc->zone->compact_cached_free_pfn)
2433 			cc->zone->compact_cached_free_pfn = free_pfn;
2434 	}
2435 
2436 	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2437 	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2438 
2439 	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2440 				cc->free_pfn, end_pfn, sync, ret);
2441 
2442 	return ret;
2443 }
2444 
2445 static enum compact_result compact_zone_order(struct zone *zone, int order,
2446 		gfp_t gfp_mask, enum compact_priority prio,
2447 		unsigned int alloc_flags, int highest_zoneidx,
2448 		struct page **capture)
2449 {
2450 	enum compact_result ret;
2451 	struct compact_control cc = {
2452 		.order = order,
2453 		.search_order = order,
2454 		.gfp_mask = gfp_mask,
2455 		.zone = zone,
2456 		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2457 					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2458 		.alloc_flags = alloc_flags,
2459 		.highest_zoneidx = highest_zoneidx,
2460 		.direct_compaction = true,
2461 		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2462 		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2463 		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2464 	};
2465 	struct capture_control capc = {
2466 		.cc = &cc,
2467 		.page = NULL,
2468 	};
2469 
2470 	/*
2471 	 * Make sure the structs are really initialized before we expose the
2472 	 * capture control, in case we are interrupted and the interrupt handler
2473 	 * frees a page.
2474 	 */
2475 	barrier();
2476 	WRITE_ONCE(current->capture_control, &capc);
2477 
2478 	ret = compact_zone(&cc, &capc);
2479 
2480 	VM_BUG_ON(!list_empty(&cc.freepages));
2481 	VM_BUG_ON(!list_empty(&cc.migratepages));
2482 
2483 	/*
2484 	 * Make sure we hide capture control first before we read the captured
2485 	 * page pointer, otherwise an interrupt could free and capture a page
2486 	 * and we would leak it.
2487 	 */
2488 	WRITE_ONCE(current->capture_control, NULL);
2489 	*capture = READ_ONCE(capc.page);
2490 
2491 	return ret;
2492 }
2493 
2494 int sysctl_extfrag_threshold = 500;
2495 
2496 /**
2497  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2498  * @gfp_mask: The GFP mask of the current allocation
2499  * @order: The order of the current allocation
2500  * @alloc_flags: The allocation flags of the current allocation
2501  * @ac: The context of current allocation
2502  * @prio: Determines how hard direct compaction should try to succeed
2503  * @capture: Pointer to free page created by compaction will be stored here
2504  *
2505  * This is the main entry point for direct page compaction.
2506  */
2507 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2508 		unsigned int alloc_flags, const struct alloc_context *ac,
2509 		enum compact_priority prio, struct page **capture)
2510 {
2511 	int may_perform_io = gfp_mask & __GFP_IO;
2512 	struct zoneref *z;
2513 	struct zone *zone;
2514 	enum compact_result rc = COMPACT_SKIPPED;
2515 
2516 	/*
2517 	 * Check if the GFP flags allow compaction - GFP_NOIO is really
2518 	 * tricky context because the migration might require IO
2519 	 */
2520 	if (!may_perform_io)
2521 		return COMPACT_SKIPPED;
2522 
2523 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2524 
2525 	/* Compact each zone in the list */
2526 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2527 					ac->highest_zoneidx, ac->nodemask) {
2528 		enum compact_result status;
2529 
2530 		if (prio > MIN_COMPACT_PRIORITY
2531 					&& compaction_deferred(zone, order)) {
2532 			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2533 			continue;
2534 		}
2535 
2536 		status = compact_zone_order(zone, order, gfp_mask, prio,
2537 				alloc_flags, ac->highest_zoneidx, capture);
2538 		rc = max(status, rc);
2539 
2540 		/* The allocation should succeed, stop compacting */
2541 		if (status == COMPACT_SUCCESS) {
2542 			/*
2543 			 * We think the allocation will succeed in this zone,
2544 			 * but it is not certain, hence the false. The caller
2545 			 * will repeat this with true if allocation indeed
2546 			 * succeeds in this zone.
2547 			 */
2548 			compaction_defer_reset(zone, order, false);
2549 
2550 			break;
2551 		}
2552 
2553 		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2554 					status == COMPACT_PARTIAL_SKIPPED))
2555 			/*
2556 			 * We think that allocation won't succeed in this zone
2557 			 * so we defer compaction there. If it ends up
2558 			 * succeeding after all, it will be reset.
2559 			 */
2560 			defer_compaction(zone, order);
2561 
2562 		/*
2563 		 * We might have stopped compacting due to need_resched() in
2564 		 * async compaction, or due to a fatal signal detected. In that
2565 		 * case do not try further zones
2566 		 */
2567 		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2568 					|| fatal_signal_pending(current))
2569 			break;
2570 	}
2571 
2572 	return rc;
2573 }
2574 
2575 /*
2576  * Compact all zones within a node till each zone's fragmentation score
2577  * reaches within proactive compaction thresholds (as determined by the
2578  * proactiveness tunable).
2579  *
2580  * It is possible that the function returns before reaching score targets
2581  * due to various back-off conditions, such as, contention on per-node or
2582  * per-zone locks.
2583  */
2584 static void proactive_compact_node(pg_data_t *pgdat)
2585 {
2586 	int zoneid;
2587 	struct zone *zone;
2588 	struct compact_control cc = {
2589 		.order = -1,
2590 		.mode = MIGRATE_SYNC_LIGHT,
2591 		.ignore_skip_hint = true,
2592 		.whole_zone = true,
2593 		.gfp_mask = GFP_KERNEL,
2594 		.proactive_compaction = true,
2595 	};
2596 
2597 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2598 		zone = &pgdat->node_zones[zoneid];
2599 		if (!populated_zone(zone))
2600 			continue;
2601 
2602 		cc.zone = zone;
2603 
2604 		compact_zone(&cc, NULL);
2605 
2606 		VM_BUG_ON(!list_empty(&cc.freepages));
2607 		VM_BUG_ON(!list_empty(&cc.migratepages));
2608 	}
2609 }
2610 
2611 /* Compact all zones within a node */
2612 static void compact_node(int nid)
2613 {
2614 	pg_data_t *pgdat = NODE_DATA(nid);
2615 	int zoneid;
2616 	struct zone *zone;
2617 	struct compact_control cc = {
2618 		.order = -1,
2619 		.mode = MIGRATE_SYNC,
2620 		.ignore_skip_hint = true,
2621 		.whole_zone = true,
2622 		.gfp_mask = GFP_KERNEL,
2623 	};
2624 
2625 
2626 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2627 
2628 		zone = &pgdat->node_zones[zoneid];
2629 		if (!populated_zone(zone))
2630 			continue;
2631 
2632 		cc.zone = zone;
2633 
2634 		compact_zone(&cc, NULL);
2635 
2636 		VM_BUG_ON(!list_empty(&cc.freepages));
2637 		VM_BUG_ON(!list_empty(&cc.migratepages));
2638 	}
2639 }
2640 
2641 /* Compact all nodes in the system */
2642 static void compact_nodes(void)
2643 {
2644 	int nid;
2645 
2646 	/* Flush pending updates to the LRU lists */
2647 	lru_add_drain_all();
2648 
2649 	for_each_online_node(nid)
2650 		compact_node(nid);
2651 }
2652 
2653 /* The written value is actually unused, all memory is compacted */
2654 int sysctl_compact_memory;
2655 
2656 /*
2657  * Tunable for proactive compaction. It determines how
2658  * aggressively the kernel should compact memory in the
2659  * background. It takes values in the range [0, 100].
2660  */
2661 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2662 
2663 /*
2664  * This is the entry point for compacting all nodes via
2665  * /proc/sys/vm/compact_memory
2666  */
2667 int sysctl_compaction_handler(struct ctl_table *table, int write,
2668 			void *buffer, size_t *length, loff_t *ppos)
2669 {
2670 	if (write)
2671 		compact_nodes();
2672 
2673 	return 0;
2674 }
2675 
2676 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2677 static ssize_t sysfs_compact_node(struct device *dev,
2678 			struct device_attribute *attr,
2679 			const char *buf, size_t count)
2680 {
2681 	int nid = dev->id;
2682 
2683 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2684 		/* Flush pending updates to the LRU lists */
2685 		lru_add_drain_all();
2686 
2687 		compact_node(nid);
2688 	}
2689 
2690 	return count;
2691 }
2692 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2693 
2694 int compaction_register_node(struct node *node)
2695 {
2696 	return device_create_file(&node->dev, &dev_attr_compact);
2697 }
2698 
2699 void compaction_unregister_node(struct node *node)
2700 {
2701 	return device_remove_file(&node->dev, &dev_attr_compact);
2702 }
2703 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2704 
2705 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2706 {
2707 	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
2708 }
2709 
2710 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2711 {
2712 	int zoneid;
2713 	struct zone *zone;
2714 	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2715 
2716 	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2717 		zone = &pgdat->node_zones[zoneid];
2718 
2719 		if (!populated_zone(zone))
2720 			continue;
2721 
2722 		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2723 					highest_zoneidx) == COMPACT_CONTINUE)
2724 			return true;
2725 	}
2726 
2727 	return false;
2728 }
2729 
2730 static void kcompactd_do_work(pg_data_t *pgdat)
2731 {
2732 	/*
2733 	 * With no special task, compact all zones so that a page of requested
2734 	 * order is allocatable.
2735 	 */
2736 	int zoneid;
2737 	struct zone *zone;
2738 	struct compact_control cc = {
2739 		.order = pgdat->kcompactd_max_order,
2740 		.search_order = pgdat->kcompactd_max_order,
2741 		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2742 		.mode = MIGRATE_SYNC_LIGHT,
2743 		.ignore_skip_hint = false,
2744 		.gfp_mask = GFP_KERNEL,
2745 	};
2746 	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2747 							cc.highest_zoneidx);
2748 	count_compact_event(KCOMPACTD_WAKE);
2749 
2750 	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2751 		int status;
2752 
2753 		zone = &pgdat->node_zones[zoneid];
2754 		if (!populated_zone(zone))
2755 			continue;
2756 
2757 		if (compaction_deferred(zone, cc.order))
2758 			continue;
2759 
2760 		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2761 							COMPACT_CONTINUE)
2762 			continue;
2763 
2764 		if (kthread_should_stop())
2765 			return;
2766 
2767 		cc.zone = zone;
2768 		status = compact_zone(&cc, NULL);
2769 
2770 		if (status == COMPACT_SUCCESS) {
2771 			compaction_defer_reset(zone, cc.order, false);
2772 		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2773 			/*
2774 			 * Buddy pages may become stranded on pcps that could
2775 			 * otherwise coalesce on the zone's free area for
2776 			 * order >= cc.order.  This is ratelimited by the
2777 			 * upcoming deferral.
2778 			 */
2779 			drain_all_pages(zone);
2780 
2781 			/*
2782 			 * We use sync migration mode here, so we defer like
2783 			 * sync direct compaction does.
2784 			 */
2785 			defer_compaction(zone, cc.order);
2786 		}
2787 
2788 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2789 				     cc.total_migrate_scanned);
2790 		count_compact_events(KCOMPACTD_FREE_SCANNED,
2791 				     cc.total_free_scanned);
2792 
2793 		VM_BUG_ON(!list_empty(&cc.freepages));
2794 		VM_BUG_ON(!list_empty(&cc.migratepages));
2795 	}
2796 
2797 	/*
2798 	 * Regardless of success, we are done until woken up next. But remember
2799 	 * the requested order/highest_zoneidx in case it was higher/tighter
2800 	 * than our current ones
2801 	 */
2802 	if (pgdat->kcompactd_max_order <= cc.order)
2803 		pgdat->kcompactd_max_order = 0;
2804 	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2805 		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2806 }
2807 
2808 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2809 {
2810 	if (!order)
2811 		return;
2812 
2813 	if (pgdat->kcompactd_max_order < order)
2814 		pgdat->kcompactd_max_order = order;
2815 
2816 	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2817 		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2818 
2819 	/*
2820 	 * Pairs with implicit barrier in wait_event_freezable()
2821 	 * such that wakeups are not missed.
2822 	 */
2823 	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2824 		return;
2825 
2826 	if (!kcompactd_node_suitable(pgdat))
2827 		return;
2828 
2829 	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2830 							highest_zoneidx);
2831 	wake_up_interruptible(&pgdat->kcompactd_wait);
2832 }
2833 
2834 /*
2835  * The background compaction daemon, started as a kernel thread
2836  * from the init process.
2837  */
2838 static int kcompactd(void *p)
2839 {
2840 	pg_data_t *pgdat = (pg_data_t*)p;
2841 	struct task_struct *tsk = current;
2842 	unsigned int proactive_defer = 0;
2843 
2844 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2845 
2846 	if (!cpumask_empty(cpumask))
2847 		set_cpus_allowed_ptr(tsk, cpumask);
2848 
2849 	set_freezable();
2850 
2851 	pgdat->kcompactd_max_order = 0;
2852 	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2853 
2854 	while (!kthread_should_stop()) {
2855 		unsigned long pflags;
2856 
2857 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2858 		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2859 			kcompactd_work_requested(pgdat),
2860 			msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC))) {
2861 
2862 			psi_memstall_enter(&pflags);
2863 			kcompactd_do_work(pgdat);
2864 			psi_memstall_leave(&pflags);
2865 			continue;
2866 		}
2867 
2868 		/* kcompactd wait timeout */
2869 		if (should_proactive_compact_node(pgdat)) {
2870 			unsigned int prev_score, score;
2871 
2872 			if (proactive_defer) {
2873 				proactive_defer--;
2874 				continue;
2875 			}
2876 			prev_score = fragmentation_score_node(pgdat);
2877 			proactive_compact_node(pgdat);
2878 			score = fragmentation_score_node(pgdat);
2879 			/*
2880 			 * Defer proactive compaction if the fragmentation
2881 			 * score did not go down i.e. no progress made.
2882 			 */
2883 			proactive_defer = score < prev_score ?
2884 					0 : 1 << COMPACT_MAX_DEFER_SHIFT;
2885 		}
2886 	}
2887 
2888 	return 0;
2889 }
2890 
2891 /*
2892  * This kcompactd start function will be called by init and node-hot-add.
2893  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2894  */
2895 int kcompactd_run(int nid)
2896 {
2897 	pg_data_t *pgdat = NODE_DATA(nid);
2898 	int ret = 0;
2899 
2900 	if (pgdat->kcompactd)
2901 		return 0;
2902 
2903 	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2904 	if (IS_ERR(pgdat->kcompactd)) {
2905 		pr_err("Failed to start kcompactd on node %d\n", nid);
2906 		ret = PTR_ERR(pgdat->kcompactd);
2907 		pgdat->kcompactd = NULL;
2908 	}
2909 	return ret;
2910 }
2911 
2912 /*
2913  * Called by memory hotplug when all memory in a node is offlined. Caller must
2914  * hold mem_hotplug_begin/end().
2915  */
2916 void kcompactd_stop(int nid)
2917 {
2918 	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2919 
2920 	if (kcompactd) {
2921 		kthread_stop(kcompactd);
2922 		NODE_DATA(nid)->kcompactd = NULL;
2923 	}
2924 }
2925 
2926 /*
2927  * It's optimal to keep kcompactd on the same CPUs as their memory, but
2928  * not required for correctness. So if the last cpu in a node goes
2929  * away, we get changed to run anywhere: as the first one comes back,
2930  * restore their cpu bindings.
2931  */
2932 static int kcompactd_cpu_online(unsigned int cpu)
2933 {
2934 	int nid;
2935 
2936 	for_each_node_state(nid, N_MEMORY) {
2937 		pg_data_t *pgdat = NODE_DATA(nid);
2938 		const struct cpumask *mask;
2939 
2940 		mask = cpumask_of_node(pgdat->node_id);
2941 
2942 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2943 			/* One of our CPUs online: restore mask */
2944 			set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2945 	}
2946 	return 0;
2947 }
2948 
2949 static int __init kcompactd_init(void)
2950 {
2951 	int nid;
2952 	int ret;
2953 
2954 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2955 					"mm/compaction:online",
2956 					kcompactd_cpu_online, NULL);
2957 	if (ret < 0) {
2958 		pr_err("kcompactd: failed to register hotplug callbacks.\n");
2959 		return ret;
2960 	}
2961 
2962 	for_each_node_state(nid, N_MEMORY)
2963 		kcompactd_run(nid);
2964 	return 0;
2965 }
2966 subsys_initcall(kcompactd_init)
2967 
2968 #endif /* CONFIG_COMPACTION */
2969