xref: /linux/mm/compaction.c (revision e0bf6c5ca2d3281f231c5f0c9bf145e9513644de)
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include <linux/kasan.h>
20 #include "internal.h"
21 
22 #ifdef CONFIG_COMPACTION
23 static inline void count_compact_event(enum vm_event_item item)
24 {
25 	count_vm_event(item);
26 }
27 
28 static inline void count_compact_events(enum vm_event_item item, long delta)
29 {
30 	count_vm_events(item, delta);
31 }
32 #else
33 #define count_compact_event(item) do { } while (0)
34 #define count_compact_events(item, delta) do { } while (0)
35 #endif
36 
37 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
38 #ifdef CONFIG_TRACEPOINTS
39 static const char *const compaction_status_string[] = {
40 	"deferred",
41 	"skipped",
42 	"continue",
43 	"partial",
44 	"complete",
45 	"no_suitable_page",
46 	"not_suitable_zone",
47 };
48 #endif
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52 
53 static unsigned long release_freepages(struct list_head *freelist)
54 {
55 	struct page *page, *next;
56 	unsigned long high_pfn = 0;
57 
58 	list_for_each_entry_safe(page, next, freelist, lru) {
59 		unsigned long pfn = page_to_pfn(page);
60 		list_del(&page->lru);
61 		__free_page(page);
62 		if (pfn > high_pfn)
63 			high_pfn = pfn;
64 	}
65 
66 	return high_pfn;
67 }
68 
69 static void map_pages(struct list_head *list)
70 {
71 	struct page *page;
72 
73 	list_for_each_entry(page, list, lru) {
74 		arch_alloc_page(page, 0);
75 		kernel_map_pages(page, 1, 1);
76 		kasan_alloc_pages(page, 0);
77 	}
78 }
79 
80 static inline bool migrate_async_suitable(int migratetype)
81 {
82 	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
83 }
84 
85 /*
86  * Check that the whole (or subset of) a pageblock given by the interval of
87  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
88  * with the migration of free compaction scanner. The scanners then need to
89  * use only pfn_valid_within() check for arches that allow holes within
90  * pageblocks.
91  *
92  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
93  *
94  * It's possible on some configurations to have a setup like node0 node1 node0
95  * i.e. it's possible that all pages within a zones range of pages do not
96  * belong to a single zone. We assume that a border between node0 and node1
97  * can occur within a single pageblock, but not a node0 node1 node0
98  * interleaving within a single pageblock. It is therefore sufficient to check
99  * the first and last page of a pageblock and avoid checking each individual
100  * page in a pageblock.
101  */
102 static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
103 				unsigned long end_pfn, struct zone *zone)
104 {
105 	struct page *start_page;
106 	struct page *end_page;
107 
108 	/* end_pfn is one past the range we are checking */
109 	end_pfn--;
110 
111 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
112 		return NULL;
113 
114 	start_page = pfn_to_page(start_pfn);
115 
116 	if (page_zone(start_page) != zone)
117 		return NULL;
118 
119 	end_page = pfn_to_page(end_pfn);
120 
121 	/* This gives a shorter code than deriving page_zone(end_page) */
122 	if (page_zone_id(start_page) != page_zone_id(end_page))
123 		return NULL;
124 
125 	return start_page;
126 }
127 
128 #ifdef CONFIG_COMPACTION
129 
130 /* Do not skip compaction more than 64 times */
131 #define COMPACT_MAX_DEFER_SHIFT 6
132 
133 /*
134  * Compaction is deferred when compaction fails to result in a page
135  * allocation success. 1 << compact_defer_limit compactions are skipped up
136  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
137  */
138 void defer_compaction(struct zone *zone, int order)
139 {
140 	zone->compact_considered = 0;
141 	zone->compact_defer_shift++;
142 
143 	if (order < zone->compact_order_failed)
144 		zone->compact_order_failed = order;
145 
146 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
147 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
148 
149 	trace_mm_compaction_defer_compaction(zone, order);
150 }
151 
152 /* Returns true if compaction should be skipped this time */
153 bool compaction_deferred(struct zone *zone, int order)
154 {
155 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
156 
157 	if (order < zone->compact_order_failed)
158 		return false;
159 
160 	/* Avoid possible overflow */
161 	if (++zone->compact_considered > defer_limit)
162 		zone->compact_considered = defer_limit;
163 
164 	if (zone->compact_considered >= defer_limit)
165 		return false;
166 
167 	trace_mm_compaction_deferred(zone, order);
168 
169 	return true;
170 }
171 
172 /*
173  * Update defer tracking counters after successful compaction of given order,
174  * which means an allocation either succeeded (alloc_success == true) or is
175  * expected to succeed.
176  */
177 void compaction_defer_reset(struct zone *zone, int order,
178 		bool alloc_success)
179 {
180 	if (alloc_success) {
181 		zone->compact_considered = 0;
182 		zone->compact_defer_shift = 0;
183 	}
184 	if (order >= zone->compact_order_failed)
185 		zone->compact_order_failed = order + 1;
186 
187 	trace_mm_compaction_defer_reset(zone, order);
188 }
189 
190 /* Returns true if restarting compaction after many failures */
191 bool compaction_restarting(struct zone *zone, int order)
192 {
193 	if (order < zone->compact_order_failed)
194 		return false;
195 
196 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
197 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
198 }
199 
200 /* Returns true if the pageblock should be scanned for pages to isolate. */
201 static inline bool isolation_suitable(struct compact_control *cc,
202 					struct page *page)
203 {
204 	if (cc->ignore_skip_hint)
205 		return true;
206 
207 	return !get_pageblock_skip(page);
208 }
209 
210 /*
211  * This function is called to clear all cached information on pageblocks that
212  * should be skipped for page isolation when the migrate and free page scanner
213  * meet.
214  */
215 static void __reset_isolation_suitable(struct zone *zone)
216 {
217 	unsigned long start_pfn = zone->zone_start_pfn;
218 	unsigned long end_pfn = zone_end_pfn(zone);
219 	unsigned long pfn;
220 
221 	zone->compact_cached_migrate_pfn[0] = start_pfn;
222 	zone->compact_cached_migrate_pfn[1] = start_pfn;
223 	zone->compact_cached_free_pfn = end_pfn;
224 	zone->compact_blockskip_flush = false;
225 
226 	/* Walk the zone and mark every pageblock as suitable for isolation */
227 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
228 		struct page *page;
229 
230 		cond_resched();
231 
232 		if (!pfn_valid(pfn))
233 			continue;
234 
235 		page = pfn_to_page(pfn);
236 		if (zone != page_zone(page))
237 			continue;
238 
239 		clear_pageblock_skip(page);
240 	}
241 }
242 
243 void reset_isolation_suitable(pg_data_t *pgdat)
244 {
245 	int zoneid;
246 
247 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
248 		struct zone *zone = &pgdat->node_zones[zoneid];
249 		if (!populated_zone(zone))
250 			continue;
251 
252 		/* Only flush if a full compaction finished recently */
253 		if (zone->compact_blockskip_flush)
254 			__reset_isolation_suitable(zone);
255 	}
256 }
257 
258 /*
259  * If no pages were isolated then mark this pageblock to be skipped in the
260  * future. The information is later cleared by __reset_isolation_suitable().
261  */
262 static void update_pageblock_skip(struct compact_control *cc,
263 			struct page *page, unsigned long nr_isolated,
264 			bool migrate_scanner)
265 {
266 	struct zone *zone = cc->zone;
267 	unsigned long pfn;
268 
269 	if (cc->ignore_skip_hint)
270 		return;
271 
272 	if (!page)
273 		return;
274 
275 	if (nr_isolated)
276 		return;
277 
278 	set_pageblock_skip(page);
279 
280 	pfn = page_to_pfn(page);
281 
282 	/* Update where async and sync compaction should restart */
283 	if (migrate_scanner) {
284 		if (pfn > zone->compact_cached_migrate_pfn[0])
285 			zone->compact_cached_migrate_pfn[0] = pfn;
286 		if (cc->mode != MIGRATE_ASYNC &&
287 		    pfn > zone->compact_cached_migrate_pfn[1])
288 			zone->compact_cached_migrate_pfn[1] = pfn;
289 	} else {
290 		if (pfn < zone->compact_cached_free_pfn)
291 			zone->compact_cached_free_pfn = pfn;
292 	}
293 }
294 #else
295 static inline bool isolation_suitable(struct compact_control *cc,
296 					struct page *page)
297 {
298 	return true;
299 }
300 
301 static void update_pageblock_skip(struct compact_control *cc,
302 			struct page *page, unsigned long nr_isolated,
303 			bool migrate_scanner)
304 {
305 }
306 #endif /* CONFIG_COMPACTION */
307 
308 /*
309  * Compaction requires the taking of some coarse locks that are potentially
310  * very heavily contended. For async compaction, back out if the lock cannot
311  * be taken immediately. For sync compaction, spin on the lock if needed.
312  *
313  * Returns true if the lock is held
314  * Returns false if the lock is not held and compaction should abort
315  */
316 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
317 						struct compact_control *cc)
318 {
319 	if (cc->mode == MIGRATE_ASYNC) {
320 		if (!spin_trylock_irqsave(lock, *flags)) {
321 			cc->contended = COMPACT_CONTENDED_LOCK;
322 			return false;
323 		}
324 	} else {
325 		spin_lock_irqsave(lock, *flags);
326 	}
327 
328 	return true;
329 }
330 
331 /*
332  * Compaction requires the taking of some coarse locks that are potentially
333  * very heavily contended. The lock should be periodically unlocked to avoid
334  * having disabled IRQs for a long time, even when there is nobody waiting on
335  * the lock. It might also be that allowing the IRQs will result in
336  * need_resched() becoming true. If scheduling is needed, async compaction
337  * aborts. Sync compaction schedules.
338  * Either compaction type will also abort if a fatal signal is pending.
339  * In either case if the lock was locked, it is dropped and not regained.
340  *
341  * Returns true if compaction should abort due to fatal signal pending, or
342  *		async compaction due to need_resched()
343  * Returns false when compaction can continue (sync compaction might have
344  *		scheduled)
345  */
346 static bool compact_unlock_should_abort(spinlock_t *lock,
347 		unsigned long flags, bool *locked, struct compact_control *cc)
348 {
349 	if (*locked) {
350 		spin_unlock_irqrestore(lock, flags);
351 		*locked = false;
352 	}
353 
354 	if (fatal_signal_pending(current)) {
355 		cc->contended = COMPACT_CONTENDED_SCHED;
356 		return true;
357 	}
358 
359 	if (need_resched()) {
360 		if (cc->mode == MIGRATE_ASYNC) {
361 			cc->contended = COMPACT_CONTENDED_SCHED;
362 			return true;
363 		}
364 		cond_resched();
365 	}
366 
367 	return false;
368 }
369 
370 /*
371  * Aside from avoiding lock contention, compaction also periodically checks
372  * need_resched() and either schedules in sync compaction or aborts async
373  * compaction. This is similar to what compact_unlock_should_abort() does, but
374  * is used where no lock is concerned.
375  *
376  * Returns false when no scheduling was needed, or sync compaction scheduled.
377  * Returns true when async compaction should abort.
378  */
379 static inline bool compact_should_abort(struct compact_control *cc)
380 {
381 	/* async compaction aborts if contended */
382 	if (need_resched()) {
383 		if (cc->mode == MIGRATE_ASYNC) {
384 			cc->contended = COMPACT_CONTENDED_SCHED;
385 			return true;
386 		}
387 
388 		cond_resched();
389 	}
390 
391 	return false;
392 }
393 
394 /* Returns true if the page is within a block suitable for migration to */
395 static bool suitable_migration_target(struct page *page)
396 {
397 	/* If the page is a large free page, then disallow migration */
398 	if (PageBuddy(page)) {
399 		/*
400 		 * We are checking page_order without zone->lock taken. But
401 		 * the only small danger is that we skip a potentially suitable
402 		 * pageblock, so it's not worth to check order for valid range.
403 		 */
404 		if (page_order_unsafe(page) >= pageblock_order)
405 			return false;
406 	}
407 
408 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
409 	if (migrate_async_suitable(get_pageblock_migratetype(page)))
410 		return true;
411 
412 	/* Otherwise skip the block */
413 	return false;
414 }
415 
416 /*
417  * Isolate free pages onto a private freelist. If @strict is true, will abort
418  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
419  * (even though it may still end up isolating some pages).
420  */
421 static unsigned long isolate_freepages_block(struct compact_control *cc,
422 				unsigned long *start_pfn,
423 				unsigned long end_pfn,
424 				struct list_head *freelist,
425 				bool strict)
426 {
427 	int nr_scanned = 0, total_isolated = 0;
428 	struct page *cursor, *valid_page = NULL;
429 	unsigned long flags = 0;
430 	bool locked = false;
431 	unsigned long blockpfn = *start_pfn;
432 
433 	cursor = pfn_to_page(blockpfn);
434 
435 	/* Isolate free pages. */
436 	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
437 		int isolated, i;
438 		struct page *page = cursor;
439 
440 		/*
441 		 * Periodically drop the lock (if held) regardless of its
442 		 * contention, to give chance to IRQs. Abort if fatal signal
443 		 * pending or async compaction detects need_resched()
444 		 */
445 		if (!(blockpfn % SWAP_CLUSTER_MAX)
446 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
447 								&locked, cc))
448 			break;
449 
450 		nr_scanned++;
451 		if (!pfn_valid_within(blockpfn))
452 			goto isolate_fail;
453 
454 		if (!valid_page)
455 			valid_page = page;
456 		if (!PageBuddy(page))
457 			goto isolate_fail;
458 
459 		/*
460 		 * If we already hold the lock, we can skip some rechecking.
461 		 * Note that if we hold the lock now, checked_pageblock was
462 		 * already set in some previous iteration (or strict is true),
463 		 * so it is correct to skip the suitable migration target
464 		 * recheck as well.
465 		 */
466 		if (!locked) {
467 			/*
468 			 * The zone lock must be held to isolate freepages.
469 			 * Unfortunately this is a very coarse lock and can be
470 			 * heavily contended if there are parallel allocations
471 			 * or parallel compactions. For async compaction do not
472 			 * spin on the lock and we acquire the lock as late as
473 			 * possible.
474 			 */
475 			locked = compact_trylock_irqsave(&cc->zone->lock,
476 								&flags, cc);
477 			if (!locked)
478 				break;
479 
480 			/* Recheck this is a buddy page under lock */
481 			if (!PageBuddy(page))
482 				goto isolate_fail;
483 		}
484 
485 		/* Found a free page, break it into order-0 pages */
486 		isolated = split_free_page(page);
487 		total_isolated += isolated;
488 		for (i = 0; i < isolated; i++) {
489 			list_add(&page->lru, freelist);
490 			page++;
491 		}
492 
493 		/* If a page was split, advance to the end of it */
494 		if (isolated) {
495 			cc->nr_freepages += isolated;
496 			if (!strict &&
497 				cc->nr_migratepages <= cc->nr_freepages) {
498 				blockpfn += isolated;
499 				break;
500 			}
501 
502 			blockpfn += isolated - 1;
503 			cursor += isolated - 1;
504 			continue;
505 		}
506 
507 isolate_fail:
508 		if (strict)
509 			break;
510 		else
511 			continue;
512 
513 	}
514 
515 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
516 					nr_scanned, total_isolated);
517 
518 	/* Record how far we have got within the block */
519 	*start_pfn = blockpfn;
520 
521 	/*
522 	 * If strict isolation is requested by CMA then check that all the
523 	 * pages requested were isolated. If there were any failures, 0 is
524 	 * returned and CMA will fail.
525 	 */
526 	if (strict && blockpfn < end_pfn)
527 		total_isolated = 0;
528 
529 	if (locked)
530 		spin_unlock_irqrestore(&cc->zone->lock, flags);
531 
532 	/* Update the pageblock-skip if the whole pageblock was scanned */
533 	if (blockpfn == end_pfn)
534 		update_pageblock_skip(cc, valid_page, total_isolated, false);
535 
536 	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
537 	if (total_isolated)
538 		count_compact_events(COMPACTISOLATED, total_isolated);
539 	return total_isolated;
540 }
541 
542 /**
543  * isolate_freepages_range() - isolate free pages.
544  * @start_pfn: The first PFN to start isolating.
545  * @end_pfn:   The one-past-last PFN.
546  *
547  * Non-free pages, invalid PFNs, or zone boundaries within the
548  * [start_pfn, end_pfn) range are considered errors, cause function to
549  * undo its actions and return zero.
550  *
551  * Otherwise, function returns one-past-the-last PFN of isolated page
552  * (which may be greater then end_pfn if end fell in a middle of
553  * a free page).
554  */
555 unsigned long
556 isolate_freepages_range(struct compact_control *cc,
557 			unsigned long start_pfn, unsigned long end_pfn)
558 {
559 	unsigned long isolated, pfn, block_end_pfn;
560 	LIST_HEAD(freelist);
561 
562 	pfn = start_pfn;
563 	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
564 
565 	for (; pfn < end_pfn; pfn += isolated,
566 				block_end_pfn += pageblock_nr_pages) {
567 		/* Protect pfn from changing by isolate_freepages_block */
568 		unsigned long isolate_start_pfn = pfn;
569 
570 		block_end_pfn = min(block_end_pfn, end_pfn);
571 
572 		/*
573 		 * pfn could pass the block_end_pfn if isolated freepage
574 		 * is more than pageblock order. In this case, we adjust
575 		 * scanning range to right one.
576 		 */
577 		if (pfn >= block_end_pfn) {
578 			block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
579 			block_end_pfn = min(block_end_pfn, end_pfn);
580 		}
581 
582 		if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
583 			break;
584 
585 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
586 						block_end_pfn, &freelist, true);
587 
588 		/*
589 		 * In strict mode, isolate_freepages_block() returns 0 if
590 		 * there are any holes in the block (ie. invalid PFNs or
591 		 * non-free pages).
592 		 */
593 		if (!isolated)
594 			break;
595 
596 		/*
597 		 * If we managed to isolate pages, it is always (1 << n) *
598 		 * pageblock_nr_pages for some non-negative n.  (Max order
599 		 * page may span two pageblocks).
600 		 */
601 	}
602 
603 	/* split_free_page does not map the pages */
604 	map_pages(&freelist);
605 
606 	if (pfn < end_pfn) {
607 		/* Loop terminated early, cleanup. */
608 		release_freepages(&freelist);
609 		return 0;
610 	}
611 
612 	/* We don't use freelists for anything. */
613 	return pfn;
614 }
615 
616 /* Update the number of anon and file isolated pages in the zone */
617 static void acct_isolated(struct zone *zone, struct compact_control *cc)
618 {
619 	struct page *page;
620 	unsigned int count[2] = { 0, };
621 
622 	if (list_empty(&cc->migratepages))
623 		return;
624 
625 	list_for_each_entry(page, &cc->migratepages, lru)
626 		count[!!page_is_file_cache(page)]++;
627 
628 	mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
629 	mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
630 }
631 
632 /* Similar to reclaim, but different enough that they don't share logic */
633 static bool too_many_isolated(struct zone *zone)
634 {
635 	unsigned long active, inactive, isolated;
636 
637 	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
638 					zone_page_state(zone, NR_INACTIVE_ANON);
639 	active = zone_page_state(zone, NR_ACTIVE_FILE) +
640 					zone_page_state(zone, NR_ACTIVE_ANON);
641 	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
642 					zone_page_state(zone, NR_ISOLATED_ANON);
643 
644 	return isolated > (inactive + active) / 2;
645 }
646 
647 /**
648  * isolate_migratepages_block() - isolate all migrate-able pages within
649  *				  a single pageblock
650  * @cc:		Compaction control structure.
651  * @low_pfn:	The first PFN to isolate
652  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
653  * @isolate_mode: Isolation mode to be used.
654  *
655  * Isolate all pages that can be migrated from the range specified by
656  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
657  * Returns zero if there is a fatal signal pending, otherwise PFN of the
658  * first page that was not scanned (which may be both less, equal to or more
659  * than end_pfn).
660  *
661  * The pages are isolated on cc->migratepages list (not required to be empty),
662  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
663  * is neither read nor updated.
664  */
665 static unsigned long
666 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
667 			unsigned long end_pfn, isolate_mode_t isolate_mode)
668 {
669 	struct zone *zone = cc->zone;
670 	unsigned long nr_scanned = 0, nr_isolated = 0;
671 	struct list_head *migratelist = &cc->migratepages;
672 	struct lruvec *lruvec;
673 	unsigned long flags = 0;
674 	bool locked = false;
675 	struct page *page = NULL, *valid_page = NULL;
676 	unsigned long start_pfn = low_pfn;
677 
678 	/*
679 	 * Ensure that there are not too many pages isolated from the LRU
680 	 * list by either parallel reclaimers or compaction. If there are,
681 	 * delay for some time until fewer pages are isolated
682 	 */
683 	while (unlikely(too_many_isolated(zone))) {
684 		/* async migration should just abort */
685 		if (cc->mode == MIGRATE_ASYNC)
686 			return 0;
687 
688 		congestion_wait(BLK_RW_ASYNC, HZ/10);
689 
690 		if (fatal_signal_pending(current))
691 			return 0;
692 	}
693 
694 	if (compact_should_abort(cc))
695 		return 0;
696 
697 	/* Time to isolate some pages for migration */
698 	for (; low_pfn < end_pfn; low_pfn++) {
699 		/*
700 		 * Periodically drop the lock (if held) regardless of its
701 		 * contention, to give chance to IRQs. Abort async compaction
702 		 * if contended.
703 		 */
704 		if (!(low_pfn % SWAP_CLUSTER_MAX)
705 		    && compact_unlock_should_abort(&zone->lru_lock, flags,
706 								&locked, cc))
707 			break;
708 
709 		if (!pfn_valid_within(low_pfn))
710 			continue;
711 		nr_scanned++;
712 
713 		page = pfn_to_page(low_pfn);
714 
715 		if (!valid_page)
716 			valid_page = page;
717 
718 		/*
719 		 * Skip if free. We read page order here without zone lock
720 		 * which is generally unsafe, but the race window is small and
721 		 * the worst thing that can happen is that we skip some
722 		 * potential isolation targets.
723 		 */
724 		if (PageBuddy(page)) {
725 			unsigned long freepage_order = page_order_unsafe(page);
726 
727 			/*
728 			 * Without lock, we cannot be sure that what we got is
729 			 * a valid page order. Consider only values in the
730 			 * valid order range to prevent low_pfn overflow.
731 			 */
732 			if (freepage_order > 0 && freepage_order < MAX_ORDER)
733 				low_pfn += (1UL << freepage_order) - 1;
734 			continue;
735 		}
736 
737 		/*
738 		 * Check may be lockless but that's ok as we recheck later.
739 		 * It's possible to migrate LRU pages and balloon pages
740 		 * Skip any other type of page
741 		 */
742 		if (!PageLRU(page)) {
743 			if (unlikely(balloon_page_movable(page))) {
744 				if (balloon_page_isolate(page)) {
745 					/* Successfully isolated */
746 					goto isolate_success;
747 				}
748 			}
749 			continue;
750 		}
751 
752 		/*
753 		 * PageLRU is set. lru_lock normally excludes isolation
754 		 * splitting and collapsing (collapsing has already happened
755 		 * if PageLRU is set) but the lock is not necessarily taken
756 		 * here and it is wasteful to take it just to check transhuge.
757 		 * Check TransHuge without lock and skip the whole pageblock if
758 		 * it's either a transhuge or hugetlbfs page, as calling
759 		 * compound_order() without preventing THP from splitting the
760 		 * page underneath us may return surprising results.
761 		 */
762 		if (PageTransHuge(page)) {
763 			if (!locked)
764 				low_pfn = ALIGN(low_pfn + 1,
765 						pageblock_nr_pages) - 1;
766 			else
767 				low_pfn += (1 << compound_order(page)) - 1;
768 
769 			continue;
770 		}
771 
772 		/*
773 		 * Migration will fail if an anonymous page is pinned in memory,
774 		 * so avoid taking lru_lock and isolating it unnecessarily in an
775 		 * admittedly racy check.
776 		 */
777 		if (!page_mapping(page) &&
778 		    page_count(page) > page_mapcount(page))
779 			continue;
780 
781 		/* If we already hold the lock, we can skip some rechecking */
782 		if (!locked) {
783 			locked = compact_trylock_irqsave(&zone->lru_lock,
784 								&flags, cc);
785 			if (!locked)
786 				break;
787 
788 			/* Recheck PageLRU and PageTransHuge under lock */
789 			if (!PageLRU(page))
790 				continue;
791 			if (PageTransHuge(page)) {
792 				low_pfn += (1 << compound_order(page)) - 1;
793 				continue;
794 			}
795 		}
796 
797 		lruvec = mem_cgroup_page_lruvec(page, zone);
798 
799 		/* Try isolate the page */
800 		if (__isolate_lru_page(page, isolate_mode) != 0)
801 			continue;
802 
803 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
804 
805 		/* Successfully isolated */
806 		del_page_from_lru_list(page, lruvec, page_lru(page));
807 
808 isolate_success:
809 		list_add(&page->lru, migratelist);
810 		cc->nr_migratepages++;
811 		nr_isolated++;
812 
813 		/* Avoid isolating too much */
814 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
815 			++low_pfn;
816 			break;
817 		}
818 	}
819 
820 	/*
821 	 * The PageBuddy() check could have potentially brought us outside
822 	 * the range to be scanned.
823 	 */
824 	if (unlikely(low_pfn > end_pfn))
825 		low_pfn = end_pfn;
826 
827 	if (locked)
828 		spin_unlock_irqrestore(&zone->lru_lock, flags);
829 
830 	/*
831 	 * Update the pageblock-skip information and cached scanner pfn,
832 	 * if the whole pageblock was scanned without isolating any page.
833 	 */
834 	if (low_pfn == end_pfn)
835 		update_pageblock_skip(cc, valid_page, nr_isolated, true);
836 
837 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
838 						nr_scanned, nr_isolated);
839 
840 	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
841 	if (nr_isolated)
842 		count_compact_events(COMPACTISOLATED, nr_isolated);
843 
844 	return low_pfn;
845 }
846 
847 /**
848  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
849  * @cc:        Compaction control structure.
850  * @start_pfn: The first PFN to start isolating.
851  * @end_pfn:   The one-past-last PFN.
852  *
853  * Returns zero if isolation fails fatally due to e.g. pending signal.
854  * Otherwise, function returns one-past-the-last PFN of isolated page
855  * (which may be greater than end_pfn if end fell in a middle of a THP page).
856  */
857 unsigned long
858 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
859 							unsigned long end_pfn)
860 {
861 	unsigned long pfn, block_end_pfn;
862 
863 	/* Scan block by block. First and last block may be incomplete */
864 	pfn = start_pfn;
865 	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
866 
867 	for (; pfn < end_pfn; pfn = block_end_pfn,
868 				block_end_pfn += pageblock_nr_pages) {
869 
870 		block_end_pfn = min(block_end_pfn, end_pfn);
871 
872 		if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
873 			continue;
874 
875 		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
876 							ISOLATE_UNEVICTABLE);
877 
878 		/*
879 		 * In case of fatal failure, release everything that might
880 		 * have been isolated in the previous iteration, and signal
881 		 * the failure back to caller.
882 		 */
883 		if (!pfn) {
884 			putback_movable_pages(&cc->migratepages);
885 			cc->nr_migratepages = 0;
886 			break;
887 		}
888 
889 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
890 			break;
891 	}
892 	acct_isolated(cc->zone, cc);
893 
894 	return pfn;
895 }
896 
897 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
898 #ifdef CONFIG_COMPACTION
899 /*
900  * Based on information in the current compact_control, find blocks
901  * suitable for isolating free pages from and then isolate them.
902  */
903 static void isolate_freepages(struct compact_control *cc)
904 {
905 	struct zone *zone = cc->zone;
906 	struct page *page;
907 	unsigned long block_start_pfn;	/* start of current pageblock */
908 	unsigned long isolate_start_pfn; /* exact pfn we start at */
909 	unsigned long block_end_pfn;	/* end of current pageblock */
910 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
911 	struct list_head *freelist = &cc->freepages;
912 
913 	/*
914 	 * Initialise the free scanner. The starting point is where we last
915 	 * successfully isolated from, zone-cached value, or the end of the
916 	 * zone when isolating for the first time. For looping we also need
917 	 * this pfn aligned down to the pageblock boundary, because we do
918 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
919 	 * For ending point, take care when isolating in last pageblock of a
920 	 * a zone which ends in the middle of a pageblock.
921 	 * The low boundary is the end of the pageblock the migration scanner
922 	 * is using.
923 	 */
924 	isolate_start_pfn = cc->free_pfn;
925 	block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
926 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
927 						zone_end_pfn(zone));
928 	low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
929 
930 	/*
931 	 * Isolate free pages until enough are available to migrate the
932 	 * pages on cc->migratepages. We stop searching if the migrate
933 	 * and free page scanners meet or enough free pages are isolated.
934 	 */
935 	for (; block_start_pfn >= low_pfn &&
936 			cc->nr_migratepages > cc->nr_freepages;
937 				block_end_pfn = block_start_pfn,
938 				block_start_pfn -= pageblock_nr_pages,
939 				isolate_start_pfn = block_start_pfn) {
940 
941 		/*
942 		 * This can iterate a massively long zone without finding any
943 		 * suitable migration targets, so periodically check if we need
944 		 * to schedule, or even abort async compaction.
945 		 */
946 		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
947 						&& compact_should_abort(cc))
948 			break;
949 
950 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
951 									zone);
952 		if (!page)
953 			continue;
954 
955 		/* Check the block is suitable for migration */
956 		if (!suitable_migration_target(page))
957 			continue;
958 
959 		/* If isolation recently failed, do not retry */
960 		if (!isolation_suitable(cc, page))
961 			continue;
962 
963 		/* Found a block suitable for isolating free pages from. */
964 		isolate_freepages_block(cc, &isolate_start_pfn,
965 					block_end_pfn, freelist, false);
966 
967 		/*
968 		 * Remember where the free scanner should restart next time,
969 		 * which is where isolate_freepages_block() left off.
970 		 * But if it scanned the whole pageblock, isolate_start_pfn
971 		 * now points at block_end_pfn, which is the start of the next
972 		 * pageblock.
973 		 * In that case we will however want to restart at the start
974 		 * of the previous pageblock.
975 		 */
976 		cc->free_pfn = (isolate_start_pfn < block_end_pfn) ?
977 				isolate_start_pfn :
978 				block_start_pfn - pageblock_nr_pages;
979 
980 		/*
981 		 * isolate_freepages_block() might have aborted due to async
982 		 * compaction being contended
983 		 */
984 		if (cc->contended)
985 			break;
986 	}
987 
988 	/* split_free_page does not map the pages */
989 	map_pages(freelist);
990 
991 	/*
992 	 * If we crossed the migrate scanner, we want to keep it that way
993 	 * so that compact_finished() may detect this
994 	 */
995 	if (block_start_pfn < low_pfn)
996 		cc->free_pfn = cc->migrate_pfn;
997 }
998 
999 /*
1000  * This is a migrate-callback that "allocates" freepages by taking pages
1001  * from the isolated freelists in the block we are migrating to.
1002  */
1003 static struct page *compaction_alloc(struct page *migratepage,
1004 					unsigned long data,
1005 					int **result)
1006 {
1007 	struct compact_control *cc = (struct compact_control *)data;
1008 	struct page *freepage;
1009 
1010 	/*
1011 	 * Isolate free pages if necessary, and if we are not aborting due to
1012 	 * contention.
1013 	 */
1014 	if (list_empty(&cc->freepages)) {
1015 		if (!cc->contended)
1016 			isolate_freepages(cc);
1017 
1018 		if (list_empty(&cc->freepages))
1019 			return NULL;
1020 	}
1021 
1022 	freepage = list_entry(cc->freepages.next, struct page, lru);
1023 	list_del(&freepage->lru);
1024 	cc->nr_freepages--;
1025 
1026 	return freepage;
1027 }
1028 
1029 /*
1030  * This is a migrate-callback that "frees" freepages back to the isolated
1031  * freelist.  All pages on the freelist are from the same zone, so there is no
1032  * special handling needed for NUMA.
1033  */
1034 static void compaction_free(struct page *page, unsigned long data)
1035 {
1036 	struct compact_control *cc = (struct compact_control *)data;
1037 
1038 	list_add(&page->lru, &cc->freepages);
1039 	cc->nr_freepages++;
1040 }
1041 
1042 /* possible outcome of isolate_migratepages */
1043 typedef enum {
1044 	ISOLATE_ABORT,		/* Abort compaction now */
1045 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1046 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1047 } isolate_migrate_t;
1048 
1049 /*
1050  * Isolate all pages that can be migrated from the first suitable block,
1051  * starting at the block pointed to by the migrate scanner pfn within
1052  * compact_control.
1053  */
1054 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1055 					struct compact_control *cc)
1056 {
1057 	unsigned long low_pfn, end_pfn;
1058 	struct page *page;
1059 	const isolate_mode_t isolate_mode =
1060 		(cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1061 
1062 	/*
1063 	 * Start at where we last stopped, or beginning of the zone as
1064 	 * initialized by compact_zone()
1065 	 */
1066 	low_pfn = cc->migrate_pfn;
1067 
1068 	/* Only scan within a pageblock boundary */
1069 	end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
1070 
1071 	/*
1072 	 * Iterate over whole pageblocks until we find the first suitable.
1073 	 * Do not cross the free scanner.
1074 	 */
1075 	for (; end_pfn <= cc->free_pfn;
1076 			low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
1077 
1078 		/*
1079 		 * This can potentially iterate a massively long zone with
1080 		 * many pageblocks unsuitable, so periodically check if we
1081 		 * need to schedule, or even abort async compaction.
1082 		 */
1083 		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1084 						&& compact_should_abort(cc))
1085 			break;
1086 
1087 		page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
1088 		if (!page)
1089 			continue;
1090 
1091 		/* If isolation recently failed, do not retry */
1092 		if (!isolation_suitable(cc, page))
1093 			continue;
1094 
1095 		/*
1096 		 * For async compaction, also only scan in MOVABLE blocks.
1097 		 * Async compaction is optimistic to see if the minimum amount
1098 		 * of work satisfies the allocation.
1099 		 */
1100 		if (cc->mode == MIGRATE_ASYNC &&
1101 		    !migrate_async_suitable(get_pageblock_migratetype(page)))
1102 			continue;
1103 
1104 		/* Perform the isolation */
1105 		low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
1106 								isolate_mode);
1107 
1108 		if (!low_pfn || cc->contended) {
1109 			acct_isolated(zone, cc);
1110 			return ISOLATE_ABORT;
1111 		}
1112 
1113 		/*
1114 		 * Either we isolated something and proceed with migration. Or
1115 		 * we failed and compact_zone should decide if we should
1116 		 * continue or not.
1117 		 */
1118 		break;
1119 	}
1120 
1121 	acct_isolated(zone, cc);
1122 	/*
1123 	 * Record where migration scanner will be restarted. If we end up in
1124 	 * the same pageblock as the free scanner, make the scanners fully
1125 	 * meet so that compact_finished() terminates compaction.
1126 	 */
1127 	cc->migrate_pfn = (end_pfn <= cc->free_pfn) ? low_pfn : cc->free_pfn;
1128 
1129 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1130 }
1131 
1132 static int __compact_finished(struct zone *zone, struct compact_control *cc,
1133 			    const int migratetype)
1134 {
1135 	unsigned int order;
1136 	unsigned long watermark;
1137 
1138 	if (cc->contended || fatal_signal_pending(current))
1139 		return COMPACT_PARTIAL;
1140 
1141 	/* Compaction run completes if the migrate and free scanner meet */
1142 	if (cc->free_pfn <= cc->migrate_pfn) {
1143 		/* Let the next compaction start anew. */
1144 		zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
1145 		zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
1146 		zone->compact_cached_free_pfn = zone_end_pfn(zone);
1147 
1148 		/*
1149 		 * Mark that the PG_migrate_skip information should be cleared
1150 		 * by kswapd when it goes to sleep. kswapd does not set the
1151 		 * flag itself as the decision to be clear should be directly
1152 		 * based on an allocation request.
1153 		 */
1154 		if (!current_is_kswapd())
1155 			zone->compact_blockskip_flush = true;
1156 
1157 		return COMPACT_COMPLETE;
1158 	}
1159 
1160 	/*
1161 	 * order == -1 is expected when compacting via
1162 	 * /proc/sys/vm/compact_memory
1163 	 */
1164 	if (cc->order == -1)
1165 		return COMPACT_CONTINUE;
1166 
1167 	/* Compaction run is not finished if the watermark is not met */
1168 	watermark = low_wmark_pages(zone);
1169 
1170 	if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1171 							cc->alloc_flags))
1172 		return COMPACT_CONTINUE;
1173 
1174 	/* Direct compactor: Is a suitable page free? */
1175 	for (order = cc->order; order < MAX_ORDER; order++) {
1176 		struct free_area *area = &zone->free_area[order];
1177 
1178 		/* Job done if page is free of the right migratetype */
1179 		if (!list_empty(&area->free_list[migratetype]))
1180 			return COMPACT_PARTIAL;
1181 
1182 		/* Job done if allocation would set block type */
1183 		if (order >= pageblock_order && area->nr_free)
1184 			return COMPACT_PARTIAL;
1185 	}
1186 
1187 	return COMPACT_NO_SUITABLE_PAGE;
1188 }
1189 
1190 static int compact_finished(struct zone *zone, struct compact_control *cc,
1191 			    const int migratetype)
1192 {
1193 	int ret;
1194 
1195 	ret = __compact_finished(zone, cc, migratetype);
1196 	trace_mm_compaction_finished(zone, cc->order, ret);
1197 	if (ret == COMPACT_NO_SUITABLE_PAGE)
1198 		ret = COMPACT_CONTINUE;
1199 
1200 	return ret;
1201 }
1202 
1203 /*
1204  * compaction_suitable: Is this suitable to run compaction on this zone now?
1205  * Returns
1206  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1207  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
1208  *   COMPACT_CONTINUE - If compaction should run now
1209  */
1210 static unsigned long __compaction_suitable(struct zone *zone, int order,
1211 					int alloc_flags, int classzone_idx)
1212 {
1213 	int fragindex;
1214 	unsigned long watermark;
1215 
1216 	/*
1217 	 * order == -1 is expected when compacting via
1218 	 * /proc/sys/vm/compact_memory
1219 	 */
1220 	if (order == -1)
1221 		return COMPACT_CONTINUE;
1222 
1223 	watermark = low_wmark_pages(zone);
1224 	/*
1225 	 * If watermarks for high-order allocation are already met, there
1226 	 * should be no need for compaction at all.
1227 	 */
1228 	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1229 								alloc_flags))
1230 		return COMPACT_PARTIAL;
1231 
1232 	/*
1233 	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
1234 	 * This is because during migration, copies of pages need to be
1235 	 * allocated and for a short time, the footprint is higher
1236 	 */
1237 	watermark += (2UL << order);
1238 	if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1239 		return COMPACT_SKIPPED;
1240 
1241 	/*
1242 	 * fragmentation index determines if allocation failures are due to
1243 	 * low memory or external fragmentation
1244 	 *
1245 	 * index of -1000 would imply allocations might succeed depending on
1246 	 * watermarks, but we already failed the high-order watermark check
1247 	 * index towards 0 implies failure is due to lack of memory
1248 	 * index towards 1000 implies failure is due to fragmentation
1249 	 *
1250 	 * Only compact if a failure would be due to fragmentation.
1251 	 */
1252 	fragindex = fragmentation_index(zone, order);
1253 	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1254 		return COMPACT_NOT_SUITABLE_ZONE;
1255 
1256 	return COMPACT_CONTINUE;
1257 }
1258 
1259 unsigned long compaction_suitable(struct zone *zone, int order,
1260 					int alloc_flags, int classzone_idx)
1261 {
1262 	unsigned long ret;
1263 
1264 	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
1265 	trace_mm_compaction_suitable(zone, order, ret);
1266 	if (ret == COMPACT_NOT_SUITABLE_ZONE)
1267 		ret = COMPACT_SKIPPED;
1268 
1269 	return ret;
1270 }
1271 
1272 static int compact_zone(struct zone *zone, struct compact_control *cc)
1273 {
1274 	int ret;
1275 	unsigned long start_pfn = zone->zone_start_pfn;
1276 	unsigned long end_pfn = zone_end_pfn(zone);
1277 	const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1278 	const bool sync = cc->mode != MIGRATE_ASYNC;
1279 	unsigned long last_migrated_pfn = 0;
1280 
1281 	ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1282 							cc->classzone_idx);
1283 	switch (ret) {
1284 	case COMPACT_PARTIAL:
1285 	case COMPACT_SKIPPED:
1286 		/* Compaction is likely to fail */
1287 		return ret;
1288 	case COMPACT_CONTINUE:
1289 		/* Fall through to compaction */
1290 		;
1291 	}
1292 
1293 	/*
1294 	 * Clear pageblock skip if there were failures recently and compaction
1295 	 * is about to be retried after being deferred. kswapd does not do
1296 	 * this reset as it'll reset the cached information when going to sleep.
1297 	 */
1298 	if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
1299 		__reset_isolation_suitable(zone);
1300 
1301 	/*
1302 	 * Setup to move all movable pages to the end of the zone. Used cached
1303 	 * information on where the scanners should start but check that it
1304 	 * is initialised by ensuring the values are within zone boundaries.
1305 	 */
1306 	cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1307 	cc->free_pfn = zone->compact_cached_free_pfn;
1308 	if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
1309 		cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
1310 		zone->compact_cached_free_pfn = cc->free_pfn;
1311 	}
1312 	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1313 		cc->migrate_pfn = start_pfn;
1314 		zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1315 		zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1316 	}
1317 
1318 	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1319 				cc->free_pfn, end_pfn, sync);
1320 
1321 	migrate_prep_local();
1322 
1323 	while ((ret = compact_finished(zone, cc, migratetype)) ==
1324 						COMPACT_CONTINUE) {
1325 		int err;
1326 		unsigned long isolate_start_pfn = cc->migrate_pfn;
1327 
1328 		switch (isolate_migratepages(zone, cc)) {
1329 		case ISOLATE_ABORT:
1330 			ret = COMPACT_PARTIAL;
1331 			putback_movable_pages(&cc->migratepages);
1332 			cc->nr_migratepages = 0;
1333 			goto out;
1334 		case ISOLATE_NONE:
1335 			/*
1336 			 * We haven't isolated and migrated anything, but
1337 			 * there might still be unflushed migrations from
1338 			 * previous cc->order aligned block.
1339 			 */
1340 			goto check_drain;
1341 		case ISOLATE_SUCCESS:
1342 			;
1343 		}
1344 
1345 		err = migrate_pages(&cc->migratepages, compaction_alloc,
1346 				compaction_free, (unsigned long)cc, cc->mode,
1347 				MR_COMPACTION);
1348 
1349 		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1350 							&cc->migratepages);
1351 
1352 		/* All pages were either migrated or will be released */
1353 		cc->nr_migratepages = 0;
1354 		if (err) {
1355 			putback_movable_pages(&cc->migratepages);
1356 			/*
1357 			 * migrate_pages() may return -ENOMEM when scanners meet
1358 			 * and we want compact_finished() to detect it
1359 			 */
1360 			if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1361 				ret = COMPACT_PARTIAL;
1362 				goto out;
1363 			}
1364 		}
1365 
1366 		/*
1367 		 * Record where we could have freed pages by migration and not
1368 		 * yet flushed them to buddy allocator. We use the pfn that
1369 		 * isolate_migratepages() started from in this loop iteration
1370 		 * - this is the lowest page that could have been isolated and
1371 		 * then freed by migration.
1372 		 */
1373 		if (!last_migrated_pfn)
1374 			last_migrated_pfn = isolate_start_pfn;
1375 
1376 check_drain:
1377 		/*
1378 		 * Has the migration scanner moved away from the previous
1379 		 * cc->order aligned block where we migrated from? If yes,
1380 		 * flush the pages that were freed, so that they can merge and
1381 		 * compact_finished() can detect immediately if allocation
1382 		 * would succeed.
1383 		 */
1384 		if (cc->order > 0 && last_migrated_pfn) {
1385 			int cpu;
1386 			unsigned long current_block_start =
1387 				cc->migrate_pfn & ~((1UL << cc->order) - 1);
1388 
1389 			if (last_migrated_pfn < current_block_start) {
1390 				cpu = get_cpu();
1391 				lru_add_drain_cpu(cpu);
1392 				drain_local_pages(zone);
1393 				put_cpu();
1394 				/* No more flushing until we migrate again */
1395 				last_migrated_pfn = 0;
1396 			}
1397 		}
1398 
1399 	}
1400 
1401 out:
1402 	/*
1403 	 * Release free pages and update where the free scanner should restart,
1404 	 * so we don't leave any returned pages behind in the next attempt.
1405 	 */
1406 	if (cc->nr_freepages > 0) {
1407 		unsigned long free_pfn = release_freepages(&cc->freepages);
1408 
1409 		cc->nr_freepages = 0;
1410 		VM_BUG_ON(free_pfn == 0);
1411 		/* The cached pfn is always the first in a pageblock */
1412 		free_pfn &= ~(pageblock_nr_pages-1);
1413 		/*
1414 		 * Only go back, not forward. The cached pfn might have been
1415 		 * already reset to zone end in compact_finished()
1416 		 */
1417 		if (free_pfn > zone->compact_cached_free_pfn)
1418 			zone->compact_cached_free_pfn = free_pfn;
1419 	}
1420 
1421 	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1422 				cc->free_pfn, end_pfn, sync, ret);
1423 
1424 	return ret;
1425 }
1426 
1427 static unsigned long compact_zone_order(struct zone *zone, int order,
1428 		gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1429 		int alloc_flags, int classzone_idx)
1430 {
1431 	unsigned long ret;
1432 	struct compact_control cc = {
1433 		.nr_freepages = 0,
1434 		.nr_migratepages = 0,
1435 		.order = order,
1436 		.gfp_mask = gfp_mask,
1437 		.zone = zone,
1438 		.mode = mode,
1439 		.alloc_flags = alloc_flags,
1440 		.classzone_idx = classzone_idx,
1441 	};
1442 	INIT_LIST_HEAD(&cc.freepages);
1443 	INIT_LIST_HEAD(&cc.migratepages);
1444 
1445 	ret = compact_zone(zone, &cc);
1446 
1447 	VM_BUG_ON(!list_empty(&cc.freepages));
1448 	VM_BUG_ON(!list_empty(&cc.migratepages));
1449 
1450 	*contended = cc.contended;
1451 	return ret;
1452 }
1453 
1454 int sysctl_extfrag_threshold = 500;
1455 
1456 /**
1457  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1458  * @gfp_mask: The GFP mask of the current allocation
1459  * @order: The order of the current allocation
1460  * @alloc_flags: The allocation flags of the current allocation
1461  * @ac: The context of current allocation
1462  * @mode: The migration mode for async, sync light, or sync migration
1463  * @contended: Return value that determines if compaction was aborted due to
1464  *	       need_resched() or lock contention
1465  *
1466  * This is the main entry point for direct page compaction.
1467  */
1468 unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1469 			int alloc_flags, const struct alloc_context *ac,
1470 			enum migrate_mode mode, int *contended)
1471 {
1472 	int may_enter_fs = gfp_mask & __GFP_FS;
1473 	int may_perform_io = gfp_mask & __GFP_IO;
1474 	struct zoneref *z;
1475 	struct zone *zone;
1476 	int rc = COMPACT_DEFERRED;
1477 	int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1478 
1479 	*contended = COMPACT_CONTENDED_NONE;
1480 
1481 	/* Check if the GFP flags allow compaction */
1482 	if (!order || !may_enter_fs || !may_perform_io)
1483 		return COMPACT_SKIPPED;
1484 
1485 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1486 
1487 	/* Compact each zone in the list */
1488 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1489 								ac->nodemask) {
1490 		int status;
1491 		int zone_contended;
1492 
1493 		if (compaction_deferred(zone, order))
1494 			continue;
1495 
1496 		status = compact_zone_order(zone, order, gfp_mask, mode,
1497 				&zone_contended, alloc_flags,
1498 				ac->classzone_idx);
1499 		rc = max(status, rc);
1500 		/*
1501 		 * It takes at least one zone that wasn't lock contended
1502 		 * to clear all_zones_contended.
1503 		 */
1504 		all_zones_contended &= zone_contended;
1505 
1506 		/* If a normal allocation would succeed, stop compacting */
1507 		if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1508 					ac->classzone_idx, alloc_flags)) {
1509 			/*
1510 			 * We think the allocation will succeed in this zone,
1511 			 * but it is not certain, hence the false. The caller
1512 			 * will repeat this with true if allocation indeed
1513 			 * succeeds in this zone.
1514 			 */
1515 			compaction_defer_reset(zone, order, false);
1516 			/*
1517 			 * It is possible that async compaction aborted due to
1518 			 * need_resched() and the watermarks were ok thanks to
1519 			 * somebody else freeing memory. The allocation can
1520 			 * however still fail so we better signal the
1521 			 * need_resched() contention anyway (this will not
1522 			 * prevent the allocation attempt).
1523 			 */
1524 			if (zone_contended == COMPACT_CONTENDED_SCHED)
1525 				*contended = COMPACT_CONTENDED_SCHED;
1526 
1527 			goto break_loop;
1528 		}
1529 
1530 		if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
1531 			/*
1532 			 * We think that allocation won't succeed in this zone
1533 			 * so we defer compaction there. If it ends up
1534 			 * succeeding after all, it will be reset.
1535 			 */
1536 			defer_compaction(zone, order);
1537 		}
1538 
1539 		/*
1540 		 * We might have stopped compacting due to need_resched() in
1541 		 * async compaction, or due to a fatal signal detected. In that
1542 		 * case do not try further zones and signal need_resched()
1543 		 * contention.
1544 		 */
1545 		if ((zone_contended == COMPACT_CONTENDED_SCHED)
1546 					|| fatal_signal_pending(current)) {
1547 			*contended = COMPACT_CONTENDED_SCHED;
1548 			goto break_loop;
1549 		}
1550 
1551 		continue;
1552 break_loop:
1553 		/*
1554 		 * We might not have tried all the zones, so  be conservative
1555 		 * and assume they are not all lock contended.
1556 		 */
1557 		all_zones_contended = 0;
1558 		break;
1559 	}
1560 
1561 	/*
1562 	 * If at least one zone wasn't deferred or skipped, we report if all
1563 	 * zones that were tried were lock contended.
1564 	 */
1565 	if (rc > COMPACT_SKIPPED && all_zones_contended)
1566 		*contended = COMPACT_CONTENDED_LOCK;
1567 
1568 	return rc;
1569 }
1570 
1571 
1572 /* Compact all zones within a node */
1573 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1574 {
1575 	int zoneid;
1576 	struct zone *zone;
1577 
1578 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1579 
1580 		zone = &pgdat->node_zones[zoneid];
1581 		if (!populated_zone(zone))
1582 			continue;
1583 
1584 		cc->nr_freepages = 0;
1585 		cc->nr_migratepages = 0;
1586 		cc->zone = zone;
1587 		INIT_LIST_HEAD(&cc->freepages);
1588 		INIT_LIST_HEAD(&cc->migratepages);
1589 
1590 		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1591 			compact_zone(zone, cc);
1592 
1593 		if (cc->order > 0) {
1594 			if (zone_watermark_ok(zone, cc->order,
1595 						low_wmark_pages(zone), 0, 0))
1596 				compaction_defer_reset(zone, cc->order, false);
1597 		}
1598 
1599 		VM_BUG_ON(!list_empty(&cc->freepages));
1600 		VM_BUG_ON(!list_empty(&cc->migratepages));
1601 	}
1602 }
1603 
1604 void compact_pgdat(pg_data_t *pgdat, int order)
1605 {
1606 	struct compact_control cc = {
1607 		.order = order,
1608 		.mode = MIGRATE_ASYNC,
1609 	};
1610 
1611 	if (!order)
1612 		return;
1613 
1614 	__compact_pgdat(pgdat, &cc);
1615 }
1616 
1617 static void compact_node(int nid)
1618 {
1619 	struct compact_control cc = {
1620 		.order = -1,
1621 		.mode = MIGRATE_SYNC,
1622 		.ignore_skip_hint = true,
1623 	};
1624 
1625 	__compact_pgdat(NODE_DATA(nid), &cc);
1626 }
1627 
1628 /* Compact all nodes in the system */
1629 static void compact_nodes(void)
1630 {
1631 	int nid;
1632 
1633 	/* Flush pending updates to the LRU lists */
1634 	lru_add_drain_all();
1635 
1636 	for_each_online_node(nid)
1637 		compact_node(nid);
1638 }
1639 
1640 /* The written value is actually unused, all memory is compacted */
1641 int sysctl_compact_memory;
1642 
1643 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1644 int sysctl_compaction_handler(struct ctl_table *table, int write,
1645 			void __user *buffer, size_t *length, loff_t *ppos)
1646 {
1647 	if (write)
1648 		compact_nodes();
1649 
1650 	return 0;
1651 }
1652 
1653 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1654 			void __user *buffer, size_t *length, loff_t *ppos)
1655 {
1656 	proc_dointvec_minmax(table, write, buffer, length, ppos);
1657 
1658 	return 0;
1659 }
1660 
1661 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1662 static ssize_t sysfs_compact_node(struct device *dev,
1663 			struct device_attribute *attr,
1664 			const char *buf, size_t count)
1665 {
1666 	int nid = dev->id;
1667 
1668 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1669 		/* Flush pending updates to the LRU lists */
1670 		lru_add_drain_all();
1671 
1672 		compact_node(nid);
1673 	}
1674 
1675 	return count;
1676 }
1677 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1678 
1679 int compaction_register_node(struct node *node)
1680 {
1681 	return device_create_file(&node->dev, &dev_attr_compact);
1682 }
1683 
1684 void compaction_unregister_node(struct node *node)
1685 {
1686 	return device_remove_file(&node->dev, &dev_attr_compact);
1687 }
1688 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1689 
1690 #endif /* CONFIG_COMPACTION */
1691