xref: /linux/mm/compaction.c (revision d8310914848223de7ec04d55bd15f013f0dad803)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27 
28 #ifdef CONFIG_COMPACTION
29 /*
30  * Fragmentation score check interval for proactive compaction purposes.
31  */
32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC	(500)
33 
34 static inline void count_compact_event(enum vm_event_item item)
35 {
36 	count_vm_event(item);
37 }
38 
39 static inline void count_compact_events(enum vm_event_item item, long delta)
40 {
41 	count_vm_events(item, delta);
42 }
43 #else
44 #define count_compact_event(item) do { } while (0)
45 #define count_compact_events(item, delta) do { } while (0)
46 #endif
47 
48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52 
53 #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
54 #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
55 
56 /*
57  * Page order with-respect-to which proactive compaction
58  * calculates external fragmentation, which is used as
59  * the "fragmentation score" of a node/zone.
60  */
61 #if defined CONFIG_TRANSPARENT_HUGEPAGE
62 #define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
63 #elif defined CONFIG_HUGETLBFS
64 #define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
65 #else
66 #define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
67 #endif
68 
69 static unsigned long release_freepages(struct list_head *freelist)
70 {
71 	struct page *page, *next;
72 	unsigned long high_pfn = 0;
73 
74 	list_for_each_entry_safe(page, next, freelist, lru) {
75 		unsigned long pfn = page_to_pfn(page);
76 		list_del(&page->lru);
77 		__free_page(page);
78 		if (pfn > high_pfn)
79 			high_pfn = pfn;
80 	}
81 
82 	return high_pfn;
83 }
84 
85 static void split_map_pages(struct list_head *list)
86 {
87 	unsigned int i, order, nr_pages;
88 	struct page *page, *next;
89 	LIST_HEAD(tmp_list);
90 
91 	list_for_each_entry_safe(page, next, list, lru) {
92 		list_del(&page->lru);
93 
94 		order = page_private(page);
95 		nr_pages = 1 << order;
96 
97 		post_alloc_hook(page, order, __GFP_MOVABLE);
98 		if (order)
99 			split_page(page, order);
100 
101 		for (i = 0; i < nr_pages; i++) {
102 			list_add(&page->lru, &tmp_list);
103 			page++;
104 		}
105 	}
106 
107 	list_splice(&tmp_list, list);
108 }
109 
110 #ifdef CONFIG_COMPACTION
111 bool PageMovable(struct page *page)
112 {
113 	const struct movable_operations *mops;
114 
115 	VM_BUG_ON_PAGE(!PageLocked(page), page);
116 	if (!__PageMovable(page))
117 		return false;
118 
119 	mops = page_movable_ops(page);
120 	if (mops)
121 		return true;
122 
123 	return false;
124 }
125 
126 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
127 {
128 	VM_BUG_ON_PAGE(!PageLocked(page), page);
129 	VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
130 	page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
131 }
132 EXPORT_SYMBOL(__SetPageMovable);
133 
134 void __ClearPageMovable(struct page *page)
135 {
136 	VM_BUG_ON_PAGE(!PageMovable(page), page);
137 	/*
138 	 * This page still has the type of a movable page, but it's
139 	 * actually not movable any more.
140 	 */
141 	page->mapping = (void *)PAGE_MAPPING_MOVABLE;
142 }
143 EXPORT_SYMBOL(__ClearPageMovable);
144 
145 /* Do not skip compaction more than 64 times */
146 #define COMPACT_MAX_DEFER_SHIFT 6
147 
148 /*
149  * Compaction is deferred when compaction fails to result in a page
150  * allocation success. 1 << compact_defer_shift, compactions are skipped up
151  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
152  */
153 static void defer_compaction(struct zone *zone, int order)
154 {
155 	zone->compact_considered = 0;
156 	zone->compact_defer_shift++;
157 
158 	if (order < zone->compact_order_failed)
159 		zone->compact_order_failed = order;
160 
161 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
162 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
163 
164 	trace_mm_compaction_defer_compaction(zone, order);
165 }
166 
167 /* Returns true if compaction should be skipped this time */
168 static bool compaction_deferred(struct zone *zone, int order)
169 {
170 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
171 
172 	if (order < zone->compact_order_failed)
173 		return false;
174 
175 	/* Avoid possible overflow */
176 	if (++zone->compact_considered >= defer_limit) {
177 		zone->compact_considered = defer_limit;
178 		return false;
179 	}
180 
181 	trace_mm_compaction_deferred(zone, order);
182 
183 	return true;
184 }
185 
186 /*
187  * Update defer tracking counters after successful compaction of given order,
188  * which means an allocation either succeeded (alloc_success == true) or is
189  * expected to succeed.
190  */
191 void compaction_defer_reset(struct zone *zone, int order,
192 		bool alloc_success)
193 {
194 	if (alloc_success) {
195 		zone->compact_considered = 0;
196 		zone->compact_defer_shift = 0;
197 	}
198 	if (order >= zone->compact_order_failed)
199 		zone->compact_order_failed = order + 1;
200 
201 	trace_mm_compaction_defer_reset(zone, order);
202 }
203 
204 /* Returns true if restarting compaction after many failures */
205 static bool compaction_restarting(struct zone *zone, int order)
206 {
207 	if (order < zone->compact_order_failed)
208 		return false;
209 
210 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
211 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
212 }
213 
214 /* Returns true if the pageblock should be scanned for pages to isolate. */
215 static inline bool isolation_suitable(struct compact_control *cc,
216 					struct page *page)
217 {
218 	if (cc->ignore_skip_hint)
219 		return true;
220 
221 	return !get_pageblock_skip(page);
222 }
223 
224 static void reset_cached_positions(struct zone *zone)
225 {
226 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
227 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
228 	zone->compact_cached_free_pfn =
229 				pageblock_start_pfn(zone_end_pfn(zone) - 1);
230 }
231 
232 #ifdef CONFIG_SPARSEMEM
233 /*
234  * If the PFN falls into an offline section, return the start PFN of the
235  * next online section. If the PFN falls into an online section or if
236  * there is no next online section, return 0.
237  */
238 static unsigned long skip_offline_sections(unsigned long start_pfn)
239 {
240 	unsigned long start_nr = pfn_to_section_nr(start_pfn);
241 
242 	if (online_section_nr(start_nr))
243 		return 0;
244 
245 	while (++start_nr <= __highest_present_section_nr) {
246 		if (online_section_nr(start_nr))
247 			return section_nr_to_pfn(start_nr);
248 	}
249 
250 	return 0;
251 }
252 
253 /*
254  * If the PFN falls into an offline section, return the end PFN of the
255  * next online section in reverse. If the PFN falls into an online section
256  * or if there is no next online section in reverse, return 0.
257  */
258 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
259 {
260 	unsigned long start_nr = pfn_to_section_nr(start_pfn);
261 
262 	if (!start_nr || online_section_nr(start_nr))
263 		return 0;
264 
265 	while (start_nr-- > 0) {
266 		if (online_section_nr(start_nr))
267 			return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION;
268 	}
269 
270 	return 0;
271 }
272 #else
273 static unsigned long skip_offline_sections(unsigned long start_pfn)
274 {
275 	return 0;
276 }
277 
278 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
279 {
280 	return 0;
281 }
282 #endif
283 
284 /*
285  * Compound pages of >= pageblock_order should consistently be skipped until
286  * released. It is always pointless to compact pages of such order (if they are
287  * migratable), and the pageblocks they occupy cannot contain any free pages.
288  */
289 static bool pageblock_skip_persistent(struct page *page)
290 {
291 	if (!PageCompound(page))
292 		return false;
293 
294 	page = compound_head(page);
295 
296 	if (compound_order(page) >= pageblock_order)
297 		return true;
298 
299 	return false;
300 }
301 
302 static bool
303 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
304 							bool check_target)
305 {
306 	struct page *page = pfn_to_online_page(pfn);
307 	struct page *block_page;
308 	struct page *end_page;
309 	unsigned long block_pfn;
310 
311 	if (!page)
312 		return false;
313 	if (zone != page_zone(page))
314 		return false;
315 	if (pageblock_skip_persistent(page))
316 		return false;
317 
318 	/*
319 	 * If skip is already cleared do no further checking once the
320 	 * restart points have been set.
321 	 */
322 	if (check_source && check_target && !get_pageblock_skip(page))
323 		return true;
324 
325 	/*
326 	 * If clearing skip for the target scanner, do not select a
327 	 * non-movable pageblock as the starting point.
328 	 */
329 	if (!check_source && check_target &&
330 	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
331 		return false;
332 
333 	/* Ensure the start of the pageblock or zone is online and valid */
334 	block_pfn = pageblock_start_pfn(pfn);
335 	block_pfn = max(block_pfn, zone->zone_start_pfn);
336 	block_page = pfn_to_online_page(block_pfn);
337 	if (block_page) {
338 		page = block_page;
339 		pfn = block_pfn;
340 	}
341 
342 	/* Ensure the end of the pageblock or zone is online and valid */
343 	block_pfn = pageblock_end_pfn(pfn) - 1;
344 	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
345 	end_page = pfn_to_online_page(block_pfn);
346 	if (!end_page)
347 		return false;
348 
349 	/*
350 	 * Only clear the hint if a sample indicates there is either a
351 	 * free page or an LRU page in the block. One or other condition
352 	 * is necessary for the block to be a migration source/target.
353 	 */
354 	do {
355 		if (check_source && PageLRU(page)) {
356 			clear_pageblock_skip(page);
357 			return true;
358 		}
359 
360 		if (check_target && PageBuddy(page)) {
361 			clear_pageblock_skip(page);
362 			return true;
363 		}
364 
365 		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
366 	} while (page <= end_page);
367 
368 	return false;
369 }
370 
371 /*
372  * This function is called to clear all cached information on pageblocks that
373  * should be skipped for page isolation when the migrate and free page scanner
374  * meet.
375  */
376 static void __reset_isolation_suitable(struct zone *zone)
377 {
378 	unsigned long migrate_pfn = zone->zone_start_pfn;
379 	unsigned long free_pfn = zone_end_pfn(zone) - 1;
380 	unsigned long reset_migrate = free_pfn;
381 	unsigned long reset_free = migrate_pfn;
382 	bool source_set = false;
383 	bool free_set = false;
384 
385 	/* Only flush if a full compaction finished recently */
386 	if (!zone->compact_blockskip_flush)
387 		return;
388 
389 	zone->compact_blockskip_flush = false;
390 
391 	/*
392 	 * Walk the zone and update pageblock skip information. Source looks
393 	 * for PageLRU while target looks for PageBuddy. When the scanner
394 	 * is found, both PageBuddy and PageLRU are checked as the pageblock
395 	 * is suitable as both source and target.
396 	 */
397 	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
398 					free_pfn -= pageblock_nr_pages) {
399 		cond_resched();
400 
401 		/* Update the migrate PFN */
402 		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
403 		    migrate_pfn < reset_migrate) {
404 			source_set = true;
405 			reset_migrate = migrate_pfn;
406 			zone->compact_init_migrate_pfn = reset_migrate;
407 			zone->compact_cached_migrate_pfn[0] = reset_migrate;
408 			zone->compact_cached_migrate_pfn[1] = reset_migrate;
409 		}
410 
411 		/* Update the free PFN */
412 		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
413 		    free_pfn > reset_free) {
414 			free_set = true;
415 			reset_free = free_pfn;
416 			zone->compact_init_free_pfn = reset_free;
417 			zone->compact_cached_free_pfn = reset_free;
418 		}
419 	}
420 
421 	/* Leave no distance if no suitable block was reset */
422 	if (reset_migrate >= reset_free) {
423 		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
424 		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
425 		zone->compact_cached_free_pfn = free_pfn;
426 	}
427 }
428 
429 void reset_isolation_suitable(pg_data_t *pgdat)
430 {
431 	int zoneid;
432 
433 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
434 		struct zone *zone = &pgdat->node_zones[zoneid];
435 		if (!populated_zone(zone))
436 			continue;
437 
438 		__reset_isolation_suitable(zone);
439 	}
440 }
441 
442 /*
443  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
444  * locks are not required for read/writers. Returns true if it was already set.
445  */
446 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
447 {
448 	bool skip;
449 
450 	/* Do not update if skip hint is being ignored */
451 	if (cc->ignore_skip_hint)
452 		return false;
453 
454 	skip = get_pageblock_skip(page);
455 	if (!skip && !cc->no_set_skip_hint)
456 		set_pageblock_skip(page);
457 
458 	return skip;
459 }
460 
461 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
462 {
463 	struct zone *zone = cc->zone;
464 
465 	/* Set for isolation rather than compaction */
466 	if (cc->no_set_skip_hint)
467 		return;
468 
469 	pfn = pageblock_end_pfn(pfn);
470 
471 	/* Update where async and sync compaction should restart */
472 	if (pfn > zone->compact_cached_migrate_pfn[0])
473 		zone->compact_cached_migrate_pfn[0] = pfn;
474 	if (cc->mode != MIGRATE_ASYNC &&
475 	    pfn > zone->compact_cached_migrate_pfn[1])
476 		zone->compact_cached_migrate_pfn[1] = pfn;
477 }
478 
479 /*
480  * If no pages were isolated then mark this pageblock to be skipped in the
481  * future. The information is later cleared by __reset_isolation_suitable().
482  */
483 static void update_pageblock_skip(struct compact_control *cc,
484 			struct page *page, unsigned long pfn)
485 {
486 	struct zone *zone = cc->zone;
487 
488 	if (cc->no_set_skip_hint)
489 		return;
490 
491 	set_pageblock_skip(page);
492 
493 	if (pfn < zone->compact_cached_free_pfn)
494 		zone->compact_cached_free_pfn = pfn;
495 }
496 #else
497 static inline bool isolation_suitable(struct compact_control *cc,
498 					struct page *page)
499 {
500 	return true;
501 }
502 
503 static inline bool pageblock_skip_persistent(struct page *page)
504 {
505 	return false;
506 }
507 
508 static inline void update_pageblock_skip(struct compact_control *cc,
509 			struct page *page, unsigned long pfn)
510 {
511 }
512 
513 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
514 {
515 }
516 
517 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
518 {
519 	return false;
520 }
521 #endif /* CONFIG_COMPACTION */
522 
523 /*
524  * Compaction requires the taking of some coarse locks that are potentially
525  * very heavily contended. For async compaction, trylock and record if the
526  * lock is contended. The lock will still be acquired but compaction will
527  * abort when the current block is finished regardless of success rate.
528  * Sync compaction acquires the lock.
529  *
530  * Always returns true which makes it easier to track lock state in callers.
531  */
532 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
533 						struct compact_control *cc)
534 	__acquires(lock)
535 {
536 	/* Track if the lock is contended in async mode */
537 	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
538 		if (spin_trylock_irqsave(lock, *flags))
539 			return true;
540 
541 		cc->contended = true;
542 	}
543 
544 	spin_lock_irqsave(lock, *flags);
545 	return true;
546 }
547 
548 /*
549  * Compaction requires the taking of some coarse locks that are potentially
550  * very heavily contended. The lock should be periodically unlocked to avoid
551  * having disabled IRQs for a long time, even when there is nobody waiting on
552  * the lock. It might also be that allowing the IRQs will result in
553  * need_resched() becoming true. If scheduling is needed, compaction schedules.
554  * Either compaction type will also abort if a fatal signal is pending.
555  * In either case if the lock was locked, it is dropped and not regained.
556  *
557  * Returns true if compaction should abort due to fatal signal pending.
558  * Returns false when compaction can continue.
559  */
560 static bool compact_unlock_should_abort(spinlock_t *lock,
561 		unsigned long flags, bool *locked, struct compact_control *cc)
562 {
563 	if (*locked) {
564 		spin_unlock_irqrestore(lock, flags);
565 		*locked = false;
566 	}
567 
568 	if (fatal_signal_pending(current)) {
569 		cc->contended = true;
570 		return true;
571 	}
572 
573 	cond_resched();
574 
575 	return false;
576 }
577 
578 /*
579  * Isolate free pages onto a private freelist. If @strict is true, will abort
580  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
581  * (even though it may still end up isolating some pages).
582  */
583 static unsigned long isolate_freepages_block(struct compact_control *cc,
584 				unsigned long *start_pfn,
585 				unsigned long end_pfn,
586 				struct list_head *freelist,
587 				unsigned int stride,
588 				bool strict)
589 {
590 	int nr_scanned = 0, total_isolated = 0;
591 	struct page *page;
592 	unsigned long flags = 0;
593 	bool locked = false;
594 	unsigned long blockpfn = *start_pfn;
595 	unsigned int order;
596 
597 	/* Strict mode is for isolation, speed is secondary */
598 	if (strict)
599 		stride = 1;
600 
601 	page = pfn_to_page(blockpfn);
602 
603 	/* Isolate free pages. */
604 	for (; blockpfn < end_pfn; blockpfn += stride, page += stride) {
605 		int isolated;
606 
607 		/*
608 		 * Periodically drop the lock (if held) regardless of its
609 		 * contention, to give chance to IRQs. Abort if fatal signal
610 		 * pending.
611 		 */
612 		if (!(blockpfn % COMPACT_CLUSTER_MAX)
613 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
614 								&locked, cc))
615 			break;
616 
617 		nr_scanned++;
618 
619 		/*
620 		 * For compound pages such as THP and hugetlbfs, we can save
621 		 * potentially a lot of iterations if we skip them at once.
622 		 * The check is racy, but we can consider only valid values
623 		 * and the only danger is skipping too much.
624 		 */
625 		if (PageCompound(page)) {
626 			const unsigned int order = compound_order(page);
627 
628 			if (blockpfn + (1UL << order) <= end_pfn) {
629 				blockpfn += (1UL << order) - 1;
630 				page += (1UL << order) - 1;
631 				nr_scanned += (1UL << order) - 1;
632 			}
633 
634 			goto isolate_fail;
635 		}
636 
637 		if (!PageBuddy(page))
638 			goto isolate_fail;
639 
640 		/* If we already hold the lock, we can skip some rechecking. */
641 		if (!locked) {
642 			locked = compact_lock_irqsave(&cc->zone->lock,
643 								&flags, cc);
644 
645 			/* Recheck this is a buddy page under lock */
646 			if (!PageBuddy(page))
647 				goto isolate_fail;
648 		}
649 
650 		/* Found a free page, will break it into order-0 pages */
651 		order = buddy_order(page);
652 		isolated = __isolate_free_page(page, order);
653 		if (!isolated)
654 			break;
655 		set_page_private(page, order);
656 
657 		nr_scanned += isolated - 1;
658 		total_isolated += isolated;
659 		cc->nr_freepages += isolated;
660 		list_add_tail(&page->lru, freelist);
661 
662 		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
663 			blockpfn += isolated;
664 			break;
665 		}
666 		/* Advance to the end of split page */
667 		blockpfn += isolated - 1;
668 		page += isolated - 1;
669 		continue;
670 
671 isolate_fail:
672 		if (strict)
673 			break;
674 
675 	}
676 
677 	if (locked)
678 		spin_unlock_irqrestore(&cc->zone->lock, flags);
679 
680 	/*
681 	 * Be careful to not go outside of the pageblock.
682 	 */
683 	if (unlikely(blockpfn > end_pfn))
684 		blockpfn = end_pfn;
685 
686 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
687 					nr_scanned, total_isolated);
688 
689 	/* Record how far we have got within the block */
690 	*start_pfn = blockpfn;
691 
692 	/*
693 	 * If strict isolation is requested by CMA then check that all the
694 	 * pages requested were isolated. If there were any failures, 0 is
695 	 * returned and CMA will fail.
696 	 */
697 	if (strict && blockpfn < end_pfn)
698 		total_isolated = 0;
699 
700 	cc->total_free_scanned += nr_scanned;
701 	if (total_isolated)
702 		count_compact_events(COMPACTISOLATED, total_isolated);
703 	return total_isolated;
704 }
705 
706 /**
707  * isolate_freepages_range() - isolate free pages.
708  * @cc:        Compaction control structure.
709  * @start_pfn: The first PFN to start isolating.
710  * @end_pfn:   The one-past-last PFN.
711  *
712  * Non-free pages, invalid PFNs, or zone boundaries within the
713  * [start_pfn, end_pfn) range are considered errors, cause function to
714  * undo its actions and return zero.
715  *
716  * Otherwise, function returns one-past-the-last PFN of isolated page
717  * (which may be greater then end_pfn if end fell in a middle of
718  * a free page).
719  */
720 unsigned long
721 isolate_freepages_range(struct compact_control *cc,
722 			unsigned long start_pfn, unsigned long end_pfn)
723 {
724 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
725 	LIST_HEAD(freelist);
726 
727 	pfn = start_pfn;
728 	block_start_pfn = pageblock_start_pfn(pfn);
729 	if (block_start_pfn < cc->zone->zone_start_pfn)
730 		block_start_pfn = cc->zone->zone_start_pfn;
731 	block_end_pfn = pageblock_end_pfn(pfn);
732 
733 	for (; pfn < end_pfn; pfn += isolated,
734 				block_start_pfn = block_end_pfn,
735 				block_end_pfn += pageblock_nr_pages) {
736 		/* Protect pfn from changing by isolate_freepages_block */
737 		unsigned long isolate_start_pfn = pfn;
738 
739 		/*
740 		 * pfn could pass the block_end_pfn if isolated freepage
741 		 * is more than pageblock order. In this case, we adjust
742 		 * scanning range to right one.
743 		 */
744 		if (pfn >= block_end_pfn) {
745 			block_start_pfn = pageblock_start_pfn(pfn);
746 			block_end_pfn = pageblock_end_pfn(pfn);
747 		}
748 
749 		block_end_pfn = min(block_end_pfn, end_pfn);
750 
751 		if (!pageblock_pfn_to_page(block_start_pfn,
752 					block_end_pfn, cc->zone))
753 			break;
754 
755 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
756 					block_end_pfn, &freelist, 0, true);
757 
758 		/*
759 		 * In strict mode, isolate_freepages_block() returns 0 if
760 		 * there are any holes in the block (ie. invalid PFNs or
761 		 * non-free pages).
762 		 */
763 		if (!isolated)
764 			break;
765 
766 		/*
767 		 * If we managed to isolate pages, it is always (1 << n) *
768 		 * pageblock_nr_pages for some non-negative n.  (Max order
769 		 * page may span two pageblocks).
770 		 */
771 	}
772 
773 	/* __isolate_free_page() does not map the pages */
774 	split_map_pages(&freelist);
775 
776 	if (pfn < end_pfn) {
777 		/* Loop terminated early, cleanup. */
778 		release_freepages(&freelist);
779 		return 0;
780 	}
781 
782 	/* We don't use freelists for anything. */
783 	return pfn;
784 }
785 
786 /* Similar to reclaim, but different enough that they don't share logic */
787 static bool too_many_isolated(struct compact_control *cc)
788 {
789 	pg_data_t *pgdat = cc->zone->zone_pgdat;
790 	bool too_many;
791 
792 	unsigned long active, inactive, isolated;
793 
794 	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
795 			node_page_state(pgdat, NR_INACTIVE_ANON);
796 	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
797 			node_page_state(pgdat, NR_ACTIVE_ANON);
798 	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
799 			node_page_state(pgdat, NR_ISOLATED_ANON);
800 
801 	/*
802 	 * Allow GFP_NOFS to isolate past the limit set for regular
803 	 * compaction runs. This prevents an ABBA deadlock when other
804 	 * compactors have already isolated to the limit, but are
805 	 * blocked on filesystem locks held by the GFP_NOFS thread.
806 	 */
807 	if (cc->gfp_mask & __GFP_FS) {
808 		inactive >>= 3;
809 		active >>= 3;
810 	}
811 
812 	too_many = isolated > (inactive + active) / 2;
813 	if (!too_many)
814 		wake_throttle_isolated(pgdat);
815 
816 	return too_many;
817 }
818 
819 /**
820  * isolate_migratepages_block() - isolate all migrate-able pages within
821  *				  a single pageblock
822  * @cc:		Compaction control structure.
823  * @low_pfn:	The first PFN to isolate
824  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
825  * @mode:	Isolation mode to be used.
826  *
827  * Isolate all pages that can be migrated from the range specified by
828  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
829  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
830  * -ENOMEM in case we could not allocate a page, or 0.
831  * cc->migrate_pfn will contain the next pfn to scan.
832  *
833  * The pages are isolated on cc->migratepages list (not required to be empty),
834  * and cc->nr_migratepages is updated accordingly.
835  */
836 static int
837 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
838 			unsigned long end_pfn, isolate_mode_t mode)
839 {
840 	pg_data_t *pgdat = cc->zone->zone_pgdat;
841 	unsigned long nr_scanned = 0, nr_isolated = 0;
842 	struct lruvec *lruvec;
843 	unsigned long flags = 0;
844 	struct lruvec *locked = NULL;
845 	struct folio *folio = NULL;
846 	struct page *page = NULL, *valid_page = NULL;
847 	struct address_space *mapping;
848 	unsigned long start_pfn = low_pfn;
849 	bool skip_on_failure = false;
850 	unsigned long next_skip_pfn = 0;
851 	bool skip_updated = false;
852 	int ret = 0;
853 
854 	cc->migrate_pfn = low_pfn;
855 
856 	/*
857 	 * Ensure that there are not too many pages isolated from the LRU
858 	 * list by either parallel reclaimers or compaction. If there are,
859 	 * delay for some time until fewer pages are isolated
860 	 */
861 	while (unlikely(too_many_isolated(cc))) {
862 		/* stop isolation if there are still pages not migrated */
863 		if (cc->nr_migratepages)
864 			return -EAGAIN;
865 
866 		/* async migration should just abort */
867 		if (cc->mode == MIGRATE_ASYNC)
868 			return -EAGAIN;
869 
870 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
871 
872 		if (fatal_signal_pending(current))
873 			return -EINTR;
874 	}
875 
876 	cond_resched();
877 
878 	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
879 		skip_on_failure = true;
880 		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
881 	}
882 
883 	/* Time to isolate some pages for migration */
884 	for (; low_pfn < end_pfn; low_pfn++) {
885 		bool is_dirty, is_unevictable;
886 
887 		if (skip_on_failure && low_pfn >= next_skip_pfn) {
888 			/*
889 			 * We have isolated all migration candidates in the
890 			 * previous order-aligned block, and did not skip it due
891 			 * to failure. We should migrate the pages now and
892 			 * hopefully succeed compaction.
893 			 */
894 			if (nr_isolated)
895 				break;
896 
897 			/*
898 			 * We failed to isolate in the previous order-aligned
899 			 * block. Set the new boundary to the end of the
900 			 * current block. Note we can't simply increase
901 			 * next_skip_pfn by 1 << order, as low_pfn might have
902 			 * been incremented by a higher number due to skipping
903 			 * a compound or a high-order buddy page in the
904 			 * previous loop iteration.
905 			 */
906 			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
907 		}
908 
909 		/*
910 		 * Periodically drop the lock (if held) regardless of its
911 		 * contention, to give chance to IRQs. Abort completely if
912 		 * a fatal signal is pending.
913 		 */
914 		if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
915 			if (locked) {
916 				unlock_page_lruvec_irqrestore(locked, flags);
917 				locked = NULL;
918 			}
919 
920 			if (fatal_signal_pending(current)) {
921 				cc->contended = true;
922 				ret = -EINTR;
923 
924 				goto fatal_pending;
925 			}
926 
927 			cond_resched();
928 		}
929 
930 		nr_scanned++;
931 
932 		page = pfn_to_page(low_pfn);
933 
934 		/*
935 		 * Check if the pageblock has already been marked skipped.
936 		 * Only the first PFN is checked as the caller isolates
937 		 * COMPACT_CLUSTER_MAX at a time so the second call must
938 		 * not falsely conclude that the block should be skipped.
939 		 */
940 		if (!valid_page && (pageblock_aligned(low_pfn) ||
941 				    low_pfn == cc->zone->zone_start_pfn)) {
942 			if (!isolation_suitable(cc, page)) {
943 				low_pfn = end_pfn;
944 				folio = NULL;
945 				goto isolate_abort;
946 			}
947 			valid_page = page;
948 		}
949 
950 		if (PageHuge(page) && cc->alloc_contig) {
951 			if (locked) {
952 				unlock_page_lruvec_irqrestore(locked, flags);
953 				locked = NULL;
954 			}
955 
956 			ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
957 
958 			/*
959 			 * Fail isolation in case isolate_or_dissolve_huge_page()
960 			 * reports an error. In case of -ENOMEM, abort right away.
961 			 */
962 			if (ret < 0) {
963 				 /* Do not report -EBUSY down the chain */
964 				if (ret == -EBUSY)
965 					ret = 0;
966 				low_pfn += compound_nr(page) - 1;
967 				nr_scanned += compound_nr(page) - 1;
968 				goto isolate_fail;
969 			}
970 
971 			if (PageHuge(page)) {
972 				/*
973 				 * Hugepage was successfully isolated and placed
974 				 * on the cc->migratepages list.
975 				 */
976 				folio = page_folio(page);
977 				low_pfn += folio_nr_pages(folio) - 1;
978 				goto isolate_success_no_list;
979 			}
980 
981 			/*
982 			 * Ok, the hugepage was dissolved. Now these pages are
983 			 * Buddy and cannot be re-allocated because they are
984 			 * isolated. Fall-through as the check below handles
985 			 * Buddy pages.
986 			 */
987 		}
988 
989 		/*
990 		 * Skip if free. We read page order here without zone lock
991 		 * which is generally unsafe, but the race window is small and
992 		 * the worst thing that can happen is that we skip some
993 		 * potential isolation targets.
994 		 */
995 		if (PageBuddy(page)) {
996 			unsigned long freepage_order = buddy_order_unsafe(page);
997 
998 			/*
999 			 * Without lock, we cannot be sure that what we got is
1000 			 * a valid page order. Consider only values in the
1001 			 * valid order range to prevent low_pfn overflow.
1002 			 */
1003 			if (freepage_order > 0 && freepage_order <= MAX_PAGE_ORDER) {
1004 				low_pfn += (1UL << freepage_order) - 1;
1005 				nr_scanned += (1UL << freepage_order) - 1;
1006 			}
1007 			continue;
1008 		}
1009 
1010 		/*
1011 		 * Regardless of being on LRU, compound pages such as THP and
1012 		 * hugetlbfs are not to be compacted unless we are attempting
1013 		 * an allocation much larger than the huge page size (eg CMA).
1014 		 * We can potentially save a lot of iterations if we skip them
1015 		 * at once. The check is racy, but we can consider only valid
1016 		 * values and the only danger is skipping too much.
1017 		 */
1018 		if (PageCompound(page) && !cc->alloc_contig) {
1019 			const unsigned int order = compound_order(page);
1020 
1021 			if (likely(order <= MAX_PAGE_ORDER)) {
1022 				low_pfn += (1UL << order) - 1;
1023 				nr_scanned += (1UL << order) - 1;
1024 			}
1025 			goto isolate_fail;
1026 		}
1027 
1028 		/*
1029 		 * Check may be lockless but that's ok as we recheck later.
1030 		 * It's possible to migrate LRU and non-lru movable pages.
1031 		 * Skip any other type of page
1032 		 */
1033 		if (!PageLRU(page)) {
1034 			/*
1035 			 * __PageMovable can return false positive so we need
1036 			 * to verify it under page_lock.
1037 			 */
1038 			if (unlikely(__PageMovable(page)) &&
1039 					!PageIsolated(page)) {
1040 				if (locked) {
1041 					unlock_page_lruvec_irqrestore(locked, flags);
1042 					locked = NULL;
1043 				}
1044 
1045 				if (isolate_movable_page(page, mode)) {
1046 					folio = page_folio(page);
1047 					goto isolate_success;
1048 				}
1049 			}
1050 
1051 			goto isolate_fail;
1052 		}
1053 
1054 		/*
1055 		 * Be careful not to clear PageLRU until after we're
1056 		 * sure the page is not being freed elsewhere -- the
1057 		 * page release code relies on it.
1058 		 */
1059 		folio = folio_get_nontail_page(page);
1060 		if (unlikely(!folio))
1061 			goto isolate_fail;
1062 
1063 		/*
1064 		 * Migration will fail if an anonymous page is pinned in memory,
1065 		 * so avoid taking lru_lock and isolating it unnecessarily in an
1066 		 * admittedly racy check.
1067 		 */
1068 		mapping = folio_mapping(folio);
1069 		if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio))
1070 			goto isolate_fail_put;
1071 
1072 		/*
1073 		 * Only allow to migrate anonymous pages in GFP_NOFS context
1074 		 * because those do not depend on fs locks.
1075 		 */
1076 		if (!(cc->gfp_mask & __GFP_FS) && mapping)
1077 			goto isolate_fail_put;
1078 
1079 		/* Only take pages on LRU: a check now makes later tests safe */
1080 		if (!folio_test_lru(folio))
1081 			goto isolate_fail_put;
1082 
1083 		is_unevictable = folio_test_unevictable(folio);
1084 
1085 		/* Compaction might skip unevictable pages but CMA takes them */
1086 		if (!(mode & ISOLATE_UNEVICTABLE) && is_unevictable)
1087 			goto isolate_fail_put;
1088 
1089 		/*
1090 		 * To minimise LRU disruption, the caller can indicate with
1091 		 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1092 		 * it will be able to migrate without blocking - clean pages
1093 		 * for the most part.  PageWriteback would require blocking.
1094 		 */
1095 		if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio))
1096 			goto isolate_fail_put;
1097 
1098 		is_dirty = folio_test_dirty(folio);
1099 
1100 		if (((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) ||
1101 		    (mapping && is_unevictable)) {
1102 			bool migrate_dirty = true;
1103 			bool is_unmovable;
1104 
1105 			/*
1106 			 * Only folios without mappings or that have
1107 			 * a ->migrate_folio callback are possible to migrate
1108 			 * without blocking.
1109 			 *
1110 			 * Folios from unmovable mappings are not migratable.
1111 			 *
1112 			 * However, we can be racing with truncation, which can
1113 			 * free the mapping that we need to check. Truncation
1114 			 * holds the folio lock until after the folio is removed
1115 			 * from the page so holding it ourselves is sufficient.
1116 			 *
1117 			 * To avoid locking the folio just to check unmovable,
1118 			 * assume every unmovable folio is also unevictable,
1119 			 * which is a cheaper test.  If our assumption goes
1120 			 * wrong, it's not a correctness bug, just potentially
1121 			 * wasted cycles.
1122 			 */
1123 			if (!folio_trylock(folio))
1124 				goto isolate_fail_put;
1125 
1126 			mapping = folio_mapping(folio);
1127 			if ((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) {
1128 				migrate_dirty = !mapping ||
1129 						mapping->a_ops->migrate_folio;
1130 			}
1131 			is_unmovable = mapping && mapping_unmovable(mapping);
1132 			folio_unlock(folio);
1133 			if (!migrate_dirty || is_unmovable)
1134 				goto isolate_fail_put;
1135 		}
1136 
1137 		/* Try isolate the folio */
1138 		if (!folio_test_clear_lru(folio))
1139 			goto isolate_fail_put;
1140 
1141 		lruvec = folio_lruvec(folio);
1142 
1143 		/* If we already hold the lock, we can skip some rechecking */
1144 		if (lruvec != locked) {
1145 			if (locked)
1146 				unlock_page_lruvec_irqrestore(locked, flags);
1147 
1148 			compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1149 			locked = lruvec;
1150 
1151 			lruvec_memcg_debug(lruvec, folio);
1152 
1153 			/*
1154 			 * Try get exclusive access under lock. If marked for
1155 			 * skip, the scan is aborted unless the current context
1156 			 * is a rescan to reach the end of the pageblock.
1157 			 */
1158 			if (!skip_updated && valid_page) {
1159 				skip_updated = true;
1160 				if (test_and_set_skip(cc, valid_page) &&
1161 				    !cc->finish_pageblock) {
1162 					low_pfn = end_pfn;
1163 					goto isolate_abort;
1164 				}
1165 			}
1166 
1167 			/*
1168 			 * folio become large since the non-locked check,
1169 			 * and it's on LRU.
1170 			 */
1171 			if (unlikely(folio_test_large(folio) && !cc->alloc_contig)) {
1172 				low_pfn += folio_nr_pages(folio) - 1;
1173 				nr_scanned += folio_nr_pages(folio) - 1;
1174 				folio_set_lru(folio);
1175 				goto isolate_fail_put;
1176 			}
1177 		}
1178 
1179 		/* The folio is taken off the LRU */
1180 		if (folio_test_large(folio))
1181 			low_pfn += folio_nr_pages(folio) - 1;
1182 
1183 		/* Successfully isolated */
1184 		lruvec_del_folio(lruvec, folio);
1185 		node_stat_mod_folio(folio,
1186 				NR_ISOLATED_ANON + folio_is_file_lru(folio),
1187 				folio_nr_pages(folio));
1188 
1189 isolate_success:
1190 		list_add(&folio->lru, &cc->migratepages);
1191 isolate_success_no_list:
1192 		cc->nr_migratepages += folio_nr_pages(folio);
1193 		nr_isolated += folio_nr_pages(folio);
1194 		nr_scanned += folio_nr_pages(folio) - 1;
1195 
1196 		/*
1197 		 * Avoid isolating too much unless this block is being
1198 		 * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1199 		 * or a lock is contended. For contention, isolate quickly to
1200 		 * potentially remove one source of contention.
1201 		 */
1202 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1203 		    !cc->finish_pageblock && !cc->contended) {
1204 			++low_pfn;
1205 			break;
1206 		}
1207 
1208 		continue;
1209 
1210 isolate_fail_put:
1211 		/* Avoid potential deadlock in freeing page under lru_lock */
1212 		if (locked) {
1213 			unlock_page_lruvec_irqrestore(locked, flags);
1214 			locked = NULL;
1215 		}
1216 		folio_put(folio);
1217 
1218 isolate_fail:
1219 		if (!skip_on_failure && ret != -ENOMEM)
1220 			continue;
1221 
1222 		/*
1223 		 * We have isolated some pages, but then failed. Release them
1224 		 * instead of migrating, as we cannot form the cc->order buddy
1225 		 * page anyway.
1226 		 */
1227 		if (nr_isolated) {
1228 			if (locked) {
1229 				unlock_page_lruvec_irqrestore(locked, flags);
1230 				locked = NULL;
1231 			}
1232 			putback_movable_pages(&cc->migratepages);
1233 			cc->nr_migratepages = 0;
1234 			nr_isolated = 0;
1235 		}
1236 
1237 		if (low_pfn < next_skip_pfn) {
1238 			low_pfn = next_skip_pfn - 1;
1239 			/*
1240 			 * The check near the loop beginning would have updated
1241 			 * next_skip_pfn too, but this is a bit simpler.
1242 			 */
1243 			next_skip_pfn += 1UL << cc->order;
1244 		}
1245 
1246 		if (ret == -ENOMEM)
1247 			break;
1248 	}
1249 
1250 	/*
1251 	 * The PageBuddy() check could have potentially brought us outside
1252 	 * the range to be scanned.
1253 	 */
1254 	if (unlikely(low_pfn > end_pfn))
1255 		low_pfn = end_pfn;
1256 
1257 	folio = NULL;
1258 
1259 isolate_abort:
1260 	if (locked)
1261 		unlock_page_lruvec_irqrestore(locked, flags);
1262 	if (folio) {
1263 		folio_set_lru(folio);
1264 		folio_put(folio);
1265 	}
1266 
1267 	/*
1268 	 * Update the cached scanner pfn once the pageblock has been scanned.
1269 	 * Pages will either be migrated in which case there is no point
1270 	 * scanning in the near future or migration failed in which case the
1271 	 * failure reason may persist. The block is marked for skipping if
1272 	 * there were no pages isolated in the block or if the block is
1273 	 * rescanned twice in a row.
1274 	 */
1275 	if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1276 		if (!cc->no_set_skip_hint && valid_page && !skip_updated)
1277 			set_pageblock_skip(valid_page);
1278 		update_cached_migrate(cc, low_pfn);
1279 	}
1280 
1281 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1282 						nr_scanned, nr_isolated);
1283 
1284 fatal_pending:
1285 	cc->total_migrate_scanned += nr_scanned;
1286 	if (nr_isolated)
1287 		count_compact_events(COMPACTISOLATED, nr_isolated);
1288 
1289 	cc->migrate_pfn = low_pfn;
1290 
1291 	return ret;
1292 }
1293 
1294 /**
1295  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1296  * @cc:        Compaction control structure.
1297  * @start_pfn: The first PFN to start isolating.
1298  * @end_pfn:   The one-past-last PFN.
1299  *
1300  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1301  * in case we could not allocate a page, or 0.
1302  */
1303 int
1304 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1305 							unsigned long end_pfn)
1306 {
1307 	unsigned long pfn, block_start_pfn, block_end_pfn;
1308 	int ret = 0;
1309 
1310 	/* Scan block by block. First and last block may be incomplete */
1311 	pfn = start_pfn;
1312 	block_start_pfn = pageblock_start_pfn(pfn);
1313 	if (block_start_pfn < cc->zone->zone_start_pfn)
1314 		block_start_pfn = cc->zone->zone_start_pfn;
1315 	block_end_pfn = pageblock_end_pfn(pfn);
1316 
1317 	for (; pfn < end_pfn; pfn = block_end_pfn,
1318 				block_start_pfn = block_end_pfn,
1319 				block_end_pfn += pageblock_nr_pages) {
1320 
1321 		block_end_pfn = min(block_end_pfn, end_pfn);
1322 
1323 		if (!pageblock_pfn_to_page(block_start_pfn,
1324 					block_end_pfn, cc->zone))
1325 			continue;
1326 
1327 		ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1328 						 ISOLATE_UNEVICTABLE);
1329 
1330 		if (ret)
1331 			break;
1332 
1333 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1334 			break;
1335 	}
1336 
1337 	return ret;
1338 }
1339 
1340 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1341 #ifdef CONFIG_COMPACTION
1342 
1343 static bool suitable_migration_source(struct compact_control *cc,
1344 							struct page *page)
1345 {
1346 	int block_mt;
1347 
1348 	if (pageblock_skip_persistent(page))
1349 		return false;
1350 
1351 	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1352 		return true;
1353 
1354 	block_mt = get_pageblock_migratetype(page);
1355 
1356 	if (cc->migratetype == MIGRATE_MOVABLE)
1357 		return is_migrate_movable(block_mt);
1358 	else
1359 		return block_mt == cc->migratetype;
1360 }
1361 
1362 /* Returns true if the page is within a block suitable for migration to */
1363 static bool suitable_migration_target(struct compact_control *cc,
1364 							struct page *page)
1365 {
1366 	/* If the page is a large free page, then disallow migration */
1367 	if (PageBuddy(page)) {
1368 		/*
1369 		 * We are checking page_order without zone->lock taken. But
1370 		 * the only small danger is that we skip a potentially suitable
1371 		 * pageblock, so it's not worth to check order for valid range.
1372 		 */
1373 		if (buddy_order_unsafe(page) >= pageblock_order)
1374 			return false;
1375 	}
1376 
1377 	if (cc->ignore_block_suitable)
1378 		return true;
1379 
1380 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1381 	if (is_migrate_movable(get_pageblock_migratetype(page)))
1382 		return true;
1383 
1384 	/* Otherwise skip the block */
1385 	return false;
1386 }
1387 
1388 static inline unsigned int
1389 freelist_scan_limit(struct compact_control *cc)
1390 {
1391 	unsigned short shift = BITS_PER_LONG - 1;
1392 
1393 	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1394 }
1395 
1396 /*
1397  * Test whether the free scanner has reached the same or lower pageblock than
1398  * the migration scanner, and compaction should thus terminate.
1399  */
1400 static inline bool compact_scanners_met(struct compact_control *cc)
1401 {
1402 	return (cc->free_pfn >> pageblock_order)
1403 		<= (cc->migrate_pfn >> pageblock_order);
1404 }
1405 
1406 /*
1407  * Used when scanning for a suitable migration target which scans freelists
1408  * in reverse. Reorders the list such as the unscanned pages are scanned
1409  * first on the next iteration of the free scanner
1410  */
1411 static void
1412 move_freelist_head(struct list_head *freelist, struct page *freepage)
1413 {
1414 	LIST_HEAD(sublist);
1415 
1416 	if (!list_is_first(&freepage->buddy_list, freelist)) {
1417 		list_cut_before(&sublist, freelist, &freepage->buddy_list);
1418 		list_splice_tail(&sublist, freelist);
1419 	}
1420 }
1421 
1422 /*
1423  * Similar to move_freelist_head except used by the migration scanner
1424  * when scanning forward. It's possible for these list operations to
1425  * move against each other if they search the free list exactly in
1426  * lockstep.
1427  */
1428 static void
1429 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1430 {
1431 	LIST_HEAD(sublist);
1432 
1433 	if (!list_is_last(&freepage->buddy_list, freelist)) {
1434 		list_cut_position(&sublist, freelist, &freepage->buddy_list);
1435 		list_splice_tail(&sublist, freelist);
1436 	}
1437 }
1438 
1439 static void
1440 fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1441 {
1442 	unsigned long start_pfn, end_pfn;
1443 	struct page *page;
1444 
1445 	/* Do not search around if there are enough pages already */
1446 	if (cc->nr_freepages >= cc->nr_migratepages)
1447 		return;
1448 
1449 	/* Minimise scanning during async compaction */
1450 	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1451 		return;
1452 
1453 	/* Pageblock boundaries */
1454 	start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1455 	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1456 
1457 	page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1458 	if (!page)
1459 		return;
1460 
1461 	isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1462 
1463 	/* Skip this pageblock in the future as it's full or nearly full */
1464 	if (start_pfn == end_pfn && !cc->no_set_skip_hint)
1465 		set_pageblock_skip(page);
1466 }
1467 
1468 /* Search orders in round-robin fashion */
1469 static int next_search_order(struct compact_control *cc, int order)
1470 {
1471 	order--;
1472 	if (order < 0)
1473 		order = cc->order - 1;
1474 
1475 	/* Search wrapped around? */
1476 	if (order == cc->search_order) {
1477 		cc->search_order--;
1478 		if (cc->search_order < 0)
1479 			cc->search_order = cc->order - 1;
1480 		return -1;
1481 	}
1482 
1483 	return order;
1484 }
1485 
1486 static void fast_isolate_freepages(struct compact_control *cc)
1487 {
1488 	unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1489 	unsigned int nr_scanned = 0, total_isolated = 0;
1490 	unsigned long low_pfn, min_pfn, highest = 0;
1491 	unsigned long nr_isolated = 0;
1492 	unsigned long distance;
1493 	struct page *page = NULL;
1494 	bool scan_start = false;
1495 	int order;
1496 
1497 	/* Full compaction passes in a negative order */
1498 	if (cc->order <= 0)
1499 		return;
1500 
1501 	/*
1502 	 * If starting the scan, use a deeper search and use the highest
1503 	 * PFN found if a suitable one is not found.
1504 	 */
1505 	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1506 		limit = pageblock_nr_pages >> 1;
1507 		scan_start = true;
1508 	}
1509 
1510 	/*
1511 	 * Preferred point is in the top quarter of the scan space but take
1512 	 * a pfn from the top half if the search is problematic.
1513 	 */
1514 	distance = (cc->free_pfn - cc->migrate_pfn);
1515 	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1516 	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1517 
1518 	if (WARN_ON_ONCE(min_pfn > low_pfn))
1519 		low_pfn = min_pfn;
1520 
1521 	/*
1522 	 * Search starts from the last successful isolation order or the next
1523 	 * order to search after a previous failure
1524 	 */
1525 	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1526 
1527 	for (order = cc->search_order;
1528 	     !page && order >= 0;
1529 	     order = next_search_order(cc, order)) {
1530 		struct free_area *area = &cc->zone->free_area[order];
1531 		struct list_head *freelist;
1532 		struct page *freepage;
1533 		unsigned long flags;
1534 		unsigned int order_scanned = 0;
1535 		unsigned long high_pfn = 0;
1536 
1537 		if (!area->nr_free)
1538 			continue;
1539 
1540 		spin_lock_irqsave(&cc->zone->lock, flags);
1541 		freelist = &area->free_list[MIGRATE_MOVABLE];
1542 		list_for_each_entry_reverse(freepage, freelist, buddy_list) {
1543 			unsigned long pfn;
1544 
1545 			order_scanned++;
1546 			nr_scanned++;
1547 			pfn = page_to_pfn(freepage);
1548 
1549 			if (pfn >= highest)
1550 				highest = max(pageblock_start_pfn(pfn),
1551 					      cc->zone->zone_start_pfn);
1552 
1553 			if (pfn >= low_pfn) {
1554 				cc->fast_search_fail = 0;
1555 				cc->search_order = order;
1556 				page = freepage;
1557 				break;
1558 			}
1559 
1560 			if (pfn >= min_pfn && pfn > high_pfn) {
1561 				high_pfn = pfn;
1562 
1563 				/* Shorten the scan if a candidate is found */
1564 				limit >>= 1;
1565 			}
1566 
1567 			if (order_scanned >= limit)
1568 				break;
1569 		}
1570 
1571 		/* Use a maximum candidate pfn if a preferred one was not found */
1572 		if (!page && high_pfn) {
1573 			page = pfn_to_page(high_pfn);
1574 
1575 			/* Update freepage for the list reorder below */
1576 			freepage = page;
1577 		}
1578 
1579 		/* Reorder to so a future search skips recent pages */
1580 		move_freelist_head(freelist, freepage);
1581 
1582 		/* Isolate the page if available */
1583 		if (page) {
1584 			if (__isolate_free_page(page, order)) {
1585 				set_page_private(page, order);
1586 				nr_isolated = 1 << order;
1587 				nr_scanned += nr_isolated - 1;
1588 				total_isolated += nr_isolated;
1589 				cc->nr_freepages += nr_isolated;
1590 				list_add_tail(&page->lru, &cc->freepages);
1591 				count_compact_events(COMPACTISOLATED, nr_isolated);
1592 			} else {
1593 				/* If isolation fails, abort the search */
1594 				order = cc->search_order + 1;
1595 				page = NULL;
1596 			}
1597 		}
1598 
1599 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1600 
1601 		/* Skip fast search if enough freepages isolated */
1602 		if (cc->nr_freepages >= cc->nr_migratepages)
1603 			break;
1604 
1605 		/*
1606 		 * Smaller scan on next order so the total scan is related
1607 		 * to freelist_scan_limit.
1608 		 */
1609 		if (order_scanned >= limit)
1610 			limit = max(1U, limit >> 1);
1611 	}
1612 
1613 	trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn,
1614 						   nr_scanned, total_isolated);
1615 
1616 	if (!page) {
1617 		cc->fast_search_fail++;
1618 		if (scan_start) {
1619 			/*
1620 			 * Use the highest PFN found above min. If one was
1621 			 * not found, be pessimistic for direct compaction
1622 			 * and use the min mark.
1623 			 */
1624 			if (highest >= min_pfn) {
1625 				page = pfn_to_page(highest);
1626 				cc->free_pfn = highest;
1627 			} else {
1628 				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1629 					page = pageblock_pfn_to_page(min_pfn,
1630 						min(pageblock_end_pfn(min_pfn),
1631 						    zone_end_pfn(cc->zone)),
1632 						cc->zone);
1633 					if (page && !suitable_migration_target(cc, page))
1634 						page = NULL;
1635 
1636 					cc->free_pfn = min_pfn;
1637 				}
1638 			}
1639 		}
1640 	}
1641 
1642 	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1643 		highest -= pageblock_nr_pages;
1644 		cc->zone->compact_cached_free_pfn = highest;
1645 	}
1646 
1647 	cc->total_free_scanned += nr_scanned;
1648 	if (!page)
1649 		return;
1650 
1651 	low_pfn = page_to_pfn(page);
1652 	fast_isolate_around(cc, low_pfn);
1653 }
1654 
1655 /*
1656  * Based on information in the current compact_control, find blocks
1657  * suitable for isolating free pages from and then isolate them.
1658  */
1659 static void isolate_freepages(struct compact_control *cc)
1660 {
1661 	struct zone *zone = cc->zone;
1662 	struct page *page;
1663 	unsigned long block_start_pfn;	/* start of current pageblock */
1664 	unsigned long isolate_start_pfn; /* exact pfn we start at */
1665 	unsigned long block_end_pfn;	/* end of current pageblock */
1666 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1667 	struct list_head *freelist = &cc->freepages;
1668 	unsigned int stride;
1669 
1670 	/* Try a small search of the free lists for a candidate */
1671 	fast_isolate_freepages(cc);
1672 	if (cc->nr_freepages)
1673 		goto splitmap;
1674 
1675 	/*
1676 	 * Initialise the free scanner. The starting point is where we last
1677 	 * successfully isolated from, zone-cached value, or the end of the
1678 	 * zone when isolating for the first time. For looping we also need
1679 	 * this pfn aligned down to the pageblock boundary, because we do
1680 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1681 	 * For ending point, take care when isolating in last pageblock of a
1682 	 * zone which ends in the middle of a pageblock.
1683 	 * The low boundary is the end of the pageblock the migration scanner
1684 	 * is using.
1685 	 */
1686 	isolate_start_pfn = cc->free_pfn;
1687 	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1688 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1689 						zone_end_pfn(zone));
1690 	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1691 	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1692 
1693 	/*
1694 	 * Isolate free pages until enough are available to migrate the
1695 	 * pages on cc->migratepages. We stop searching if the migrate
1696 	 * and free page scanners meet or enough free pages are isolated.
1697 	 */
1698 	for (; block_start_pfn >= low_pfn;
1699 				block_end_pfn = block_start_pfn,
1700 				block_start_pfn -= pageblock_nr_pages,
1701 				isolate_start_pfn = block_start_pfn) {
1702 		unsigned long nr_isolated;
1703 
1704 		/*
1705 		 * This can iterate a massively long zone without finding any
1706 		 * suitable migration targets, so periodically check resched.
1707 		 */
1708 		if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1709 			cond_resched();
1710 
1711 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1712 									zone);
1713 		if (!page) {
1714 			unsigned long next_pfn;
1715 
1716 			next_pfn = skip_offline_sections_reverse(block_start_pfn);
1717 			if (next_pfn)
1718 				block_start_pfn = max(next_pfn, low_pfn);
1719 
1720 			continue;
1721 		}
1722 
1723 		/* Check the block is suitable for migration */
1724 		if (!suitable_migration_target(cc, page))
1725 			continue;
1726 
1727 		/* If isolation recently failed, do not retry */
1728 		if (!isolation_suitable(cc, page))
1729 			continue;
1730 
1731 		/* Found a block suitable for isolating free pages from. */
1732 		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1733 					block_end_pfn, freelist, stride, false);
1734 
1735 		/* Update the skip hint if the full pageblock was scanned */
1736 		if (isolate_start_pfn == block_end_pfn)
1737 			update_pageblock_skip(cc, page, block_start_pfn -
1738 					      pageblock_nr_pages);
1739 
1740 		/* Are enough freepages isolated? */
1741 		if (cc->nr_freepages >= cc->nr_migratepages) {
1742 			if (isolate_start_pfn >= block_end_pfn) {
1743 				/*
1744 				 * Restart at previous pageblock if more
1745 				 * freepages can be isolated next time.
1746 				 */
1747 				isolate_start_pfn =
1748 					block_start_pfn - pageblock_nr_pages;
1749 			}
1750 			break;
1751 		} else if (isolate_start_pfn < block_end_pfn) {
1752 			/*
1753 			 * If isolation failed early, do not continue
1754 			 * needlessly.
1755 			 */
1756 			break;
1757 		}
1758 
1759 		/* Adjust stride depending on isolation */
1760 		if (nr_isolated) {
1761 			stride = 1;
1762 			continue;
1763 		}
1764 		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1765 	}
1766 
1767 	/*
1768 	 * Record where the free scanner will restart next time. Either we
1769 	 * broke from the loop and set isolate_start_pfn based on the last
1770 	 * call to isolate_freepages_block(), or we met the migration scanner
1771 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1772 	 */
1773 	cc->free_pfn = isolate_start_pfn;
1774 
1775 splitmap:
1776 	/* __isolate_free_page() does not map the pages */
1777 	split_map_pages(freelist);
1778 }
1779 
1780 /*
1781  * This is a migrate-callback that "allocates" freepages by taking pages
1782  * from the isolated freelists in the block we are migrating to.
1783  */
1784 static struct folio *compaction_alloc(struct folio *src, unsigned long data)
1785 {
1786 	struct compact_control *cc = (struct compact_control *)data;
1787 	struct folio *dst;
1788 
1789 	if (list_empty(&cc->freepages)) {
1790 		isolate_freepages(cc);
1791 
1792 		if (list_empty(&cc->freepages))
1793 			return NULL;
1794 	}
1795 
1796 	dst = list_entry(cc->freepages.next, struct folio, lru);
1797 	list_del(&dst->lru);
1798 	cc->nr_freepages--;
1799 	cc->nr_migratepages--;
1800 
1801 	return dst;
1802 }
1803 
1804 /*
1805  * This is a migrate-callback that "frees" freepages back to the isolated
1806  * freelist.  All pages on the freelist are from the same zone, so there is no
1807  * special handling needed for NUMA.
1808  */
1809 static void compaction_free(struct folio *dst, unsigned long data)
1810 {
1811 	struct compact_control *cc = (struct compact_control *)data;
1812 
1813 	list_add(&dst->lru, &cc->freepages);
1814 	cc->nr_freepages++;
1815 	cc->nr_migratepages++;
1816 }
1817 
1818 /* possible outcome of isolate_migratepages */
1819 typedef enum {
1820 	ISOLATE_ABORT,		/* Abort compaction now */
1821 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1822 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1823 } isolate_migrate_t;
1824 
1825 /*
1826  * Allow userspace to control policy on scanning the unevictable LRU for
1827  * compactable pages.
1828  */
1829 static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1830 /*
1831  * Tunable for proactive compaction. It determines how
1832  * aggressively the kernel should compact memory in the
1833  * background. It takes values in the range [0, 100].
1834  */
1835 static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1836 static int sysctl_extfrag_threshold = 500;
1837 static int __read_mostly sysctl_compact_memory;
1838 
1839 static inline void
1840 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1841 {
1842 	if (cc->fast_start_pfn == ULONG_MAX)
1843 		return;
1844 
1845 	if (!cc->fast_start_pfn)
1846 		cc->fast_start_pfn = pfn;
1847 
1848 	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1849 }
1850 
1851 static inline unsigned long
1852 reinit_migrate_pfn(struct compact_control *cc)
1853 {
1854 	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1855 		return cc->migrate_pfn;
1856 
1857 	cc->migrate_pfn = cc->fast_start_pfn;
1858 	cc->fast_start_pfn = ULONG_MAX;
1859 
1860 	return cc->migrate_pfn;
1861 }
1862 
1863 /*
1864  * Briefly search the free lists for a migration source that already has
1865  * some free pages to reduce the number of pages that need migration
1866  * before a pageblock is free.
1867  */
1868 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1869 {
1870 	unsigned int limit = freelist_scan_limit(cc);
1871 	unsigned int nr_scanned = 0;
1872 	unsigned long distance;
1873 	unsigned long pfn = cc->migrate_pfn;
1874 	unsigned long high_pfn;
1875 	int order;
1876 	bool found_block = false;
1877 
1878 	/* Skip hints are relied on to avoid repeats on the fast search */
1879 	if (cc->ignore_skip_hint)
1880 		return pfn;
1881 
1882 	/*
1883 	 * If the pageblock should be finished then do not select a different
1884 	 * pageblock.
1885 	 */
1886 	if (cc->finish_pageblock)
1887 		return pfn;
1888 
1889 	/*
1890 	 * If the migrate_pfn is not at the start of a zone or the start
1891 	 * of a pageblock then assume this is a continuation of a previous
1892 	 * scan restarted due to COMPACT_CLUSTER_MAX.
1893 	 */
1894 	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1895 		return pfn;
1896 
1897 	/*
1898 	 * For smaller orders, just linearly scan as the number of pages
1899 	 * to migrate should be relatively small and does not necessarily
1900 	 * justify freeing up a large block for a small allocation.
1901 	 */
1902 	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1903 		return pfn;
1904 
1905 	/*
1906 	 * Only allow kcompactd and direct requests for movable pages to
1907 	 * quickly clear out a MOVABLE pageblock for allocation. This
1908 	 * reduces the risk that a large movable pageblock is freed for
1909 	 * an unmovable/reclaimable small allocation.
1910 	 */
1911 	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1912 		return pfn;
1913 
1914 	/*
1915 	 * When starting the migration scanner, pick any pageblock within the
1916 	 * first half of the search space. Otherwise try and pick a pageblock
1917 	 * within the first eighth to reduce the chances that a migration
1918 	 * target later becomes a source.
1919 	 */
1920 	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1921 	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1922 		distance >>= 2;
1923 	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1924 
1925 	for (order = cc->order - 1;
1926 	     order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1927 	     order--) {
1928 		struct free_area *area = &cc->zone->free_area[order];
1929 		struct list_head *freelist;
1930 		unsigned long flags;
1931 		struct page *freepage;
1932 
1933 		if (!area->nr_free)
1934 			continue;
1935 
1936 		spin_lock_irqsave(&cc->zone->lock, flags);
1937 		freelist = &area->free_list[MIGRATE_MOVABLE];
1938 		list_for_each_entry(freepage, freelist, buddy_list) {
1939 			unsigned long free_pfn;
1940 
1941 			if (nr_scanned++ >= limit) {
1942 				move_freelist_tail(freelist, freepage);
1943 				break;
1944 			}
1945 
1946 			free_pfn = page_to_pfn(freepage);
1947 			if (free_pfn < high_pfn) {
1948 				/*
1949 				 * Avoid if skipped recently. Ideally it would
1950 				 * move to the tail but even safe iteration of
1951 				 * the list assumes an entry is deleted, not
1952 				 * reordered.
1953 				 */
1954 				if (get_pageblock_skip(freepage))
1955 					continue;
1956 
1957 				/* Reorder to so a future search skips recent pages */
1958 				move_freelist_tail(freelist, freepage);
1959 
1960 				update_fast_start_pfn(cc, free_pfn);
1961 				pfn = pageblock_start_pfn(free_pfn);
1962 				if (pfn < cc->zone->zone_start_pfn)
1963 					pfn = cc->zone->zone_start_pfn;
1964 				cc->fast_search_fail = 0;
1965 				found_block = true;
1966 				break;
1967 			}
1968 		}
1969 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1970 	}
1971 
1972 	cc->total_migrate_scanned += nr_scanned;
1973 
1974 	/*
1975 	 * If fast scanning failed then use a cached entry for a page block
1976 	 * that had free pages as the basis for starting a linear scan.
1977 	 */
1978 	if (!found_block) {
1979 		cc->fast_search_fail++;
1980 		pfn = reinit_migrate_pfn(cc);
1981 	}
1982 	return pfn;
1983 }
1984 
1985 /*
1986  * Isolate all pages that can be migrated from the first suitable block,
1987  * starting at the block pointed to by the migrate scanner pfn within
1988  * compact_control.
1989  */
1990 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1991 {
1992 	unsigned long block_start_pfn;
1993 	unsigned long block_end_pfn;
1994 	unsigned long low_pfn;
1995 	struct page *page;
1996 	const isolate_mode_t isolate_mode =
1997 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1998 		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1999 	bool fast_find_block;
2000 
2001 	/*
2002 	 * Start at where we last stopped, or beginning of the zone as
2003 	 * initialized by compact_zone(). The first failure will use
2004 	 * the lowest PFN as the starting point for linear scanning.
2005 	 */
2006 	low_pfn = fast_find_migrateblock(cc);
2007 	block_start_pfn = pageblock_start_pfn(low_pfn);
2008 	if (block_start_pfn < cc->zone->zone_start_pfn)
2009 		block_start_pfn = cc->zone->zone_start_pfn;
2010 
2011 	/*
2012 	 * fast_find_migrateblock() has already ensured the pageblock is not
2013 	 * set with a skipped flag, so to avoid the isolation_suitable check
2014 	 * below again, check whether the fast search was successful.
2015 	 */
2016 	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
2017 
2018 	/* Only scan within a pageblock boundary */
2019 	block_end_pfn = pageblock_end_pfn(low_pfn);
2020 
2021 	/*
2022 	 * Iterate over whole pageblocks until we find the first suitable.
2023 	 * Do not cross the free scanner.
2024 	 */
2025 	for (; block_end_pfn <= cc->free_pfn;
2026 			fast_find_block = false,
2027 			cc->migrate_pfn = low_pfn = block_end_pfn,
2028 			block_start_pfn = block_end_pfn,
2029 			block_end_pfn += pageblock_nr_pages) {
2030 
2031 		/*
2032 		 * This can potentially iterate a massively long zone with
2033 		 * many pageblocks unsuitable, so periodically check if we
2034 		 * need to schedule.
2035 		 */
2036 		if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
2037 			cond_resched();
2038 
2039 		page = pageblock_pfn_to_page(block_start_pfn,
2040 						block_end_pfn, cc->zone);
2041 		if (!page) {
2042 			unsigned long next_pfn;
2043 
2044 			next_pfn = skip_offline_sections(block_start_pfn);
2045 			if (next_pfn)
2046 				block_end_pfn = min(next_pfn, cc->free_pfn);
2047 			continue;
2048 		}
2049 
2050 		/*
2051 		 * If isolation recently failed, do not retry. Only check the
2052 		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
2053 		 * to be visited multiple times. Assume skip was checked
2054 		 * before making it "skip" so other compaction instances do
2055 		 * not scan the same block.
2056 		 */
2057 		if ((pageblock_aligned(low_pfn) ||
2058 		     low_pfn == cc->zone->zone_start_pfn) &&
2059 		    !fast_find_block && !isolation_suitable(cc, page))
2060 			continue;
2061 
2062 		/*
2063 		 * For async direct compaction, only scan the pageblocks of the
2064 		 * same migratetype without huge pages. Async direct compaction
2065 		 * is optimistic to see if the minimum amount of work satisfies
2066 		 * the allocation. The cached PFN is updated as it's possible
2067 		 * that all remaining blocks between source and target are
2068 		 * unsuitable and the compaction scanners fail to meet.
2069 		 */
2070 		if (!suitable_migration_source(cc, page)) {
2071 			update_cached_migrate(cc, block_end_pfn);
2072 			continue;
2073 		}
2074 
2075 		/* Perform the isolation */
2076 		if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
2077 						isolate_mode))
2078 			return ISOLATE_ABORT;
2079 
2080 		/*
2081 		 * Either we isolated something and proceed with migration. Or
2082 		 * we failed and compact_zone should decide if we should
2083 		 * continue or not.
2084 		 */
2085 		break;
2086 	}
2087 
2088 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
2089 }
2090 
2091 /*
2092  * order == -1 is expected when compacting proactively via
2093  * 1. /proc/sys/vm/compact_memory
2094  * 2. /sys/devices/system/node/nodex/compact
2095  * 3. /proc/sys/vm/compaction_proactiveness
2096  */
2097 static inline bool is_via_compact_memory(int order)
2098 {
2099 	return order == -1;
2100 }
2101 
2102 /*
2103  * Determine whether kswapd is (or recently was!) running on this node.
2104  *
2105  * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
2106  * zero it.
2107  */
2108 static bool kswapd_is_running(pg_data_t *pgdat)
2109 {
2110 	bool running;
2111 
2112 	pgdat_kswapd_lock(pgdat);
2113 	running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2114 	pgdat_kswapd_unlock(pgdat);
2115 
2116 	return running;
2117 }
2118 
2119 /*
2120  * A zone's fragmentation score is the external fragmentation wrt to the
2121  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2122  */
2123 static unsigned int fragmentation_score_zone(struct zone *zone)
2124 {
2125 	return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2126 }
2127 
2128 /*
2129  * A weighted zone's fragmentation score is the external fragmentation
2130  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2131  * returns a value in the range [0, 100].
2132  *
2133  * The scaling factor ensures that proactive compaction focuses on larger
2134  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2135  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2136  * and thus never exceeds the high threshold for proactive compaction.
2137  */
2138 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2139 {
2140 	unsigned long score;
2141 
2142 	score = zone->present_pages * fragmentation_score_zone(zone);
2143 	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2144 }
2145 
2146 /*
2147  * The per-node proactive (background) compaction process is started by its
2148  * corresponding kcompactd thread when the node's fragmentation score
2149  * exceeds the high threshold. The compaction process remains active till
2150  * the node's score falls below the low threshold, or one of the back-off
2151  * conditions is met.
2152  */
2153 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2154 {
2155 	unsigned int score = 0;
2156 	int zoneid;
2157 
2158 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2159 		struct zone *zone;
2160 
2161 		zone = &pgdat->node_zones[zoneid];
2162 		if (!populated_zone(zone))
2163 			continue;
2164 		score += fragmentation_score_zone_weighted(zone);
2165 	}
2166 
2167 	return score;
2168 }
2169 
2170 static unsigned int fragmentation_score_wmark(bool low)
2171 {
2172 	unsigned int wmark_low;
2173 
2174 	/*
2175 	 * Cap the low watermark to avoid excessive compaction
2176 	 * activity in case a user sets the proactiveness tunable
2177 	 * close to 100 (maximum).
2178 	 */
2179 	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2180 	return low ? wmark_low : min(wmark_low + 10, 100U);
2181 }
2182 
2183 static bool should_proactive_compact_node(pg_data_t *pgdat)
2184 {
2185 	int wmark_high;
2186 
2187 	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2188 		return false;
2189 
2190 	wmark_high = fragmentation_score_wmark(false);
2191 	return fragmentation_score_node(pgdat) > wmark_high;
2192 }
2193 
2194 static enum compact_result __compact_finished(struct compact_control *cc)
2195 {
2196 	unsigned int order;
2197 	const int migratetype = cc->migratetype;
2198 	int ret;
2199 
2200 	/* Compaction run completes if the migrate and free scanner meet */
2201 	if (compact_scanners_met(cc)) {
2202 		/* Let the next compaction start anew. */
2203 		reset_cached_positions(cc->zone);
2204 
2205 		/*
2206 		 * Mark that the PG_migrate_skip information should be cleared
2207 		 * by kswapd when it goes to sleep. kcompactd does not set the
2208 		 * flag itself as the decision to be clear should be directly
2209 		 * based on an allocation request.
2210 		 */
2211 		if (cc->direct_compaction)
2212 			cc->zone->compact_blockskip_flush = true;
2213 
2214 		if (cc->whole_zone)
2215 			return COMPACT_COMPLETE;
2216 		else
2217 			return COMPACT_PARTIAL_SKIPPED;
2218 	}
2219 
2220 	if (cc->proactive_compaction) {
2221 		int score, wmark_low;
2222 		pg_data_t *pgdat;
2223 
2224 		pgdat = cc->zone->zone_pgdat;
2225 		if (kswapd_is_running(pgdat))
2226 			return COMPACT_PARTIAL_SKIPPED;
2227 
2228 		score = fragmentation_score_zone(cc->zone);
2229 		wmark_low = fragmentation_score_wmark(true);
2230 
2231 		if (score > wmark_low)
2232 			ret = COMPACT_CONTINUE;
2233 		else
2234 			ret = COMPACT_SUCCESS;
2235 
2236 		goto out;
2237 	}
2238 
2239 	if (is_via_compact_memory(cc->order))
2240 		return COMPACT_CONTINUE;
2241 
2242 	/*
2243 	 * Always finish scanning a pageblock to reduce the possibility of
2244 	 * fallbacks in the future. This is particularly important when
2245 	 * migration source is unmovable/reclaimable but it's not worth
2246 	 * special casing.
2247 	 */
2248 	if (!pageblock_aligned(cc->migrate_pfn))
2249 		return COMPACT_CONTINUE;
2250 
2251 	/* Direct compactor: Is a suitable page free? */
2252 	ret = COMPACT_NO_SUITABLE_PAGE;
2253 	for (order = cc->order; order < NR_PAGE_ORDERS; order++) {
2254 		struct free_area *area = &cc->zone->free_area[order];
2255 		bool can_steal;
2256 
2257 		/* Job done if page is free of the right migratetype */
2258 		if (!free_area_empty(area, migratetype))
2259 			return COMPACT_SUCCESS;
2260 
2261 #ifdef CONFIG_CMA
2262 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2263 		if (migratetype == MIGRATE_MOVABLE &&
2264 			!free_area_empty(area, MIGRATE_CMA))
2265 			return COMPACT_SUCCESS;
2266 #endif
2267 		/*
2268 		 * Job done if allocation would steal freepages from
2269 		 * other migratetype buddy lists.
2270 		 */
2271 		if (find_suitable_fallback(area, order, migratetype,
2272 						true, &can_steal) != -1)
2273 			/*
2274 			 * Movable pages are OK in any pageblock. If we are
2275 			 * stealing for a non-movable allocation, make sure
2276 			 * we finish compacting the current pageblock first
2277 			 * (which is assured by the above migrate_pfn align
2278 			 * check) so it is as free as possible and we won't
2279 			 * have to steal another one soon.
2280 			 */
2281 			return COMPACT_SUCCESS;
2282 	}
2283 
2284 out:
2285 	if (cc->contended || fatal_signal_pending(current))
2286 		ret = COMPACT_CONTENDED;
2287 
2288 	return ret;
2289 }
2290 
2291 static enum compact_result compact_finished(struct compact_control *cc)
2292 {
2293 	int ret;
2294 
2295 	ret = __compact_finished(cc);
2296 	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2297 	if (ret == COMPACT_NO_SUITABLE_PAGE)
2298 		ret = COMPACT_CONTINUE;
2299 
2300 	return ret;
2301 }
2302 
2303 static bool __compaction_suitable(struct zone *zone, int order,
2304 				  int highest_zoneidx,
2305 				  unsigned long wmark_target)
2306 {
2307 	unsigned long watermark;
2308 	/*
2309 	 * Watermarks for order-0 must be met for compaction to be able to
2310 	 * isolate free pages for migration targets. This means that the
2311 	 * watermark and alloc_flags have to match, or be more pessimistic than
2312 	 * the check in __isolate_free_page(). We don't use the direct
2313 	 * compactor's alloc_flags, as they are not relevant for freepage
2314 	 * isolation. We however do use the direct compactor's highest_zoneidx
2315 	 * to skip over zones where lowmem reserves would prevent allocation
2316 	 * even if compaction succeeds.
2317 	 * For costly orders, we require low watermark instead of min for
2318 	 * compaction to proceed to increase its chances.
2319 	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2320 	 * suitable migration targets
2321 	 */
2322 	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2323 				low_wmark_pages(zone) : min_wmark_pages(zone);
2324 	watermark += compact_gap(order);
2325 	return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2326 				   ALLOC_CMA, wmark_target);
2327 }
2328 
2329 /*
2330  * compaction_suitable: Is this suitable to run compaction on this zone now?
2331  */
2332 bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx)
2333 {
2334 	enum compact_result compact_result;
2335 	bool suitable;
2336 
2337 	suitable = __compaction_suitable(zone, order, highest_zoneidx,
2338 					 zone_page_state(zone, NR_FREE_PAGES));
2339 	/*
2340 	 * fragmentation index determines if allocation failures are due to
2341 	 * low memory or external fragmentation
2342 	 *
2343 	 * index of -1000 would imply allocations might succeed depending on
2344 	 * watermarks, but we already failed the high-order watermark check
2345 	 * index towards 0 implies failure is due to lack of memory
2346 	 * index towards 1000 implies failure is due to fragmentation
2347 	 *
2348 	 * Only compact if a failure would be due to fragmentation. Also
2349 	 * ignore fragindex for non-costly orders where the alternative to
2350 	 * a successful reclaim/compaction is OOM. Fragindex and the
2351 	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2352 	 * excessive compaction for costly orders, but it should not be at the
2353 	 * expense of system stability.
2354 	 */
2355 	if (suitable) {
2356 		compact_result = COMPACT_CONTINUE;
2357 		if (order > PAGE_ALLOC_COSTLY_ORDER) {
2358 			int fragindex = fragmentation_index(zone, order);
2359 
2360 			if (fragindex >= 0 &&
2361 			    fragindex <= sysctl_extfrag_threshold) {
2362 				suitable = false;
2363 				compact_result = COMPACT_NOT_SUITABLE_ZONE;
2364 			}
2365 		}
2366 	} else {
2367 		compact_result = COMPACT_SKIPPED;
2368 	}
2369 
2370 	trace_mm_compaction_suitable(zone, order, compact_result);
2371 
2372 	return suitable;
2373 }
2374 
2375 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2376 		int alloc_flags)
2377 {
2378 	struct zone *zone;
2379 	struct zoneref *z;
2380 
2381 	/*
2382 	 * Make sure at least one zone would pass __compaction_suitable if we continue
2383 	 * retrying the reclaim.
2384 	 */
2385 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2386 				ac->highest_zoneidx, ac->nodemask) {
2387 		unsigned long available;
2388 
2389 		/*
2390 		 * Do not consider all the reclaimable memory because we do not
2391 		 * want to trash just for a single high order allocation which
2392 		 * is even not guaranteed to appear even if __compaction_suitable
2393 		 * is happy about the watermark check.
2394 		 */
2395 		available = zone_reclaimable_pages(zone) / order;
2396 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2397 		if (__compaction_suitable(zone, order, ac->highest_zoneidx,
2398 					  available))
2399 			return true;
2400 	}
2401 
2402 	return false;
2403 }
2404 
2405 /*
2406  * Should we do compaction for target allocation order.
2407  * Return COMPACT_SUCCESS if allocation for target order can be already
2408  * satisfied
2409  * Return COMPACT_SKIPPED if compaction for target order is likely to fail
2410  * Return COMPACT_CONTINUE if compaction for target order should be ran
2411  */
2412 static enum compact_result
2413 compaction_suit_allocation_order(struct zone *zone, unsigned int order,
2414 				 int highest_zoneidx, unsigned int alloc_flags)
2415 {
2416 	unsigned long watermark;
2417 
2418 	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2419 	if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2420 			      alloc_flags))
2421 		return COMPACT_SUCCESS;
2422 
2423 	if (!compaction_suitable(zone, order, highest_zoneidx))
2424 		return COMPACT_SKIPPED;
2425 
2426 	return COMPACT_CONTINUE;
2427 }
2428 
2429 static enum compact_result
2430 compact_zone(struct compact_control *cc, struct capture_control *capc)
2431 {
2432 	enum compact_result ret;
2433 	unsigned long start_pfn = cc->zone->zone_start_pfn;
2434 	unsigned long end_pfn = zone_end_pfn(cc->zone);
2435 	unsigned long last_migrated_pfn;
2436 	const bool sync = cc->mode != MIGRATE_ASYNC;
2437 	bool update_cached;
2438 	unsigned int nr_succeeded = 0, nr_migratepages;
2439 
2440 	/*
2441 	 * These counters track activities during zone compaction.  Initialize
2442 	 * them before compacting a new zone.
2443 	 */
2444 	cc->total_migrate_scanned = 0;
2445 	cc->total_free_scanned = 0;
2446 	cc->nr_migratepages = 0;
2447 	cc->nr_freepages = 0;
2448 	INIT_LIST_HEAD(&cc->freepages);
2449 	INIT_LIST_HEAD(&cc->migratepages);
2450 
2451 	cc->migratetype = gfp_migratetype(cc->gfp_mask);
2452 
2453 	if (!is_via_compact_memory(cc->order)) {
2454 		ret = compaction_suit_allocation_order(cc->zone, cc->order,
2455 						       cc->highest_zoneidx,
2456 						       cc->alloc_flags);
2457 		if (ret != COMPACT_CONTINUE)
2458 			return ret;
2459 	}
2460 
2461 	/*
2462 	 * Clear pageblock skip if there were failures recently and compaction
2463 	 * is about to be retried after being deferred.
2464 	 */
2465 	if (compaction_restarting(cc->zone, cc->order))
2466 		__reset_isolation_suitable(cc->zone);
2467 
2468 	/*
2469 	 * Setup to move all movable pages to the end of the zone. Used cached
2470 	 * information on where the scanners should start (unless we explicitly
2471 	 * want to compact the whole zone), but check that it is initialised
2472 	 * by ensuring the values are within zone boundaries.
2473 	 */
2474 	cc->fast_start_pfn = 0;
2475 	if (cc->whole_zone) {
2476 		cc->migrate_pfn = start_pfn;
2477 		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2478 	} else {
2479 		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2480 		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2481 		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2482 			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2483 			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2484 		}
2485 		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2486 			cc->migrate_pfn = start_pfn;
2487 			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2488 			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2489 		}
2490 
2491 		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2492 			cc->whole_zone = true;
2493 	}
2494 
2495 	last_migrated_pfn = 0;
2496 
2497 	/*
2498 	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2499 	 * the basis that some migrations will fail in ASYNC mode. However,
2500 	 * if the cached PFNs match and pageblocks are skipped due to having
2501 	 * no isolation candidates, then the sync state does not matter.
2502 	 * Until a pageblock with isolation candidates is found, keep the
2503 	 * cached PFNs in sync to avoid revisiting the same blocks.
2504 	 */
2505 	update_cached = !sync &&
2506 		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2507 
2508 	trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2509 
2510 	/* lru_add_drain_all could be expensive with involving other CPUs */
2511 	lru_add_drain();
2512 
2513 	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2514 		int err;
2515 		unsigned long iteration_start_pfn = cc->migrate_pfn;
2516 
2517 		/*
2518 		 * Avoid multiple rescans of the same pageblock which can
2519 		 * happen if a page cannot be isolated (dirty/writeback in
2520 		 * async mode) or if the migrated pages are being allocated
2521 		 * before the pageblock is cleared.  The first rescan will
2522 		 * capture the entire pageblock for migration. If it fails,
2523 		 * it'll be marked skip and scanning will proceed as normal.
2524 		 */
2525 		cc->finish_pageblock = false;
2526 		if (pageblock_start_pfn(last_migrated_pfn) ==
2527 		    pageblock_start_pfn(iteration_start_pfn)) {
2528 			cc->finish_pageblock = true;
2529 		}
2530 
2531 rescan:
2532 		switch (isolate_migratepages(cc)) {
2533 		case ISOLATE_ABORT:
2534 			ret = COMPACT_CONTENDED;
2535 			putback_movable_pages(&cc->migratepages);
2536 			cc->nr_migratepages = 0;
2537 			goto out;
2538 		case ISOLATE_NONE:
2539 			if (update_cached) {
2540 				cc->zone->compact_cached_migrate_pfn[1] =
2541 					cc->zone->compact_cached_migrate_pfn[0];
2542 			}
2543 
2544 			/*
2545 			 * We haven't isolated and migrated anything, but
2546 			 * there might still be unflushed migrations from
2547 			 * previous cc->order aligned block.
2548 			 */
2549 			goto check_drain;
2550 		case ISOLATE_SUCCESS:
2551 			update_cached = false;
2552 			last_migrated_pfn = max(cc->zone->zone_start_pfn,
2553 				pageblock_start_pfn(cc->migrate_pfn - 1));
2554 		}
2555 
2556 		/*
2557 		 * Record the number of pages to migrate since the
2558 		 * compaction_alloc/free() will update cc->nr_migratepages
2559 		 * properly.
2560 		 */
2561 		nr_migratepages = cc->nr_migratepages;
2562 		err = migrate_pages(&cc->migratepages, compaction_alloc,
2563 				compaction_free, (unsigned long)cc, cc->mode,
2564 				MR_COMPACTION, &nr_succeeded);
2565 
2566 		trace_mm_compaction_migratepages(nr_migratepages, nr_succeeded);
2567 
2568 		/* All pages were either migrated or will be released */
2569 		cc->nr_migratepages = 0;
2570 		if (err) {
2571 			putback_movable_pages(&cc->migratepages);
2572 			/*
2573 			 * migrate_pages() may return -ENOMEM when scanners meet
2574 			 * and we want compact_finished() to detect it
2575 			 */
2576 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2577 				ret = COMPACT_CONTENDED;
2578 				goto out;
2579 			}
2580 			/*
2581 			 * If an ASYNC or SYNC_LIGHT fails to migrate a page
2582 			 * within the pageblock_order-aligned block and
2583 			 * fast_find_migrateblock may be used then scan the
2584 			 * remainder of the pageblock. This will mark the
2585 			 * pageblock "skip" to avoid rescanning in the near
2586 			 * future. This will isolate more pages than necessary
2587 			 * for the request but avoid loops due to
2588 			 * fast_find_migrateblock revisiting blocks that were
2589 			 * recently partially scanned.
2590 			 */
2591 			if (!pageblock_aligned(cc->migrate_pfn) &&
2592 			    !cc->ignore_skip_hint && !cc->finish_pageblock &&
2593 			    (cc->mode < MIGRATE_SYNC)) {
2594 				cc->finish_pageblock = true;
2595 
2596 				/*
2597 				 * Draining pcplists does not help THP if
2598 				 * any page failed to migrate. Even after
2599 				 * drain, the pageblock will not be free.
2600 				 */
2601 				if (cc->order == COMPACTION_HPAGE_ORDER)
2602 					last_migrated_pfn = 0;
2603 
2604 				goto rescan;
2605 			}
2606 		}
2607 
2608 		/* Stop if a page has been captured */
2609 		if (capc && capc->page) {
2610 			ret = COMPACT_SUCCESS;
2611 			break;
2612 		}
2613 
2614 check_drain:
2615 		/*
2616 		 * Has the migration scanner moved away from the previous
2617 		 * cc->order aligned block where we migrated from? If yes,
2618 		 * flush the pages that were freed, so that they can merge and
2619 		 * compact_finished() can detect immediately if allocation
2620 		 * would succeed.
2621 		 */
2622 		if (cc->order > 0 && last_migrated_pfn) {
2623 			unsigned long current_block_start =
2624 				block_start_pfn(cc->migrate_pfn, cc->order);
2625 
2626 			if (last_migrated_pfn < current_block_start) {
2627 				lru_add_drain_cpu_zone(cc->zone);
2628 				/* No more flushing until we migrate again */
2629 				last_migrated_pfn = 0;
2630 			}
2631 		}
2632 	}
2633 
2634 out:
2635 	/*
2636 	 * Release free pages and update where the free scanner should restart,
2637 	 * so we don't leave any returned pages behind in the next attempt.
2638 	 */
2639 	if (cc->nr_freepages > 0) {
2640 		unsigned long free_pfn = release_freepages(&cc->freepages);
2641 
2642 		cc->nr_freepages = 0;
2643 		VM_BUG_ON(free_pfn == 0);
2644 		/* The cached pfn is always the first in a pageblock */
2645 		free_pfn = pageblock_start_pfn(free_pfn);
2646 		/*
2647 		 * Only go back, not forward. The cached pfn might have been
2648 		 * already reset to zone end in compact_finished()
2649 		 */
2650 		if (free_pfn > cc->zone->compact_cached_free_pfn)
2651 			cc->zone->compact_cached_free_pfn = free_pfn;
2652 	}
2653 
2654 	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2655 	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2656 
2657 	trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2658 
2659 	VM_BUG_ON(!list_empty(&cc->freepages));
2660 	VM_BUG_ON(!list_empty(&cc->migratepages));
2661 
2662 	return ret;
2663 }
2664 
2665 static enum compact_result compact_zone_order(struct zone *zone, int order,
2666 		gfp_t gfp_mask, enum compact_priority prio,
2667 		unsigned int alloc_flags, int highest_zoneidx,
2668 		struct page **capture)
2669 {
2670 	enum compact_result ret;
2671 	struct compact_control cc = {
2672 		.order = order,
2673 		.search_order = order,
2674 		.gfp_mask = gfp_mask,
2675 		.zone = zone,
2676 		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2677 					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2678 		.alloc_flags = alloc_flags,
2679 		.highest_zoneidx = highest_zoneidx,
2680 		.direct_compaction = true,
2681 		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2682 		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2683 		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2684 	};
2685 	struct capture_control capc = {
2686 		.cc = &cc,
2687 		.page = NULL,
2688 	};
2689 
2690 	/*
2691 	 * Make sure the structs are really initialized before we expose the
2692 	 * capture control, in case we are interrupted and the interrupt handler
2693 	 * frees a page.
2694 	 */
2695 	barrier();
2696 	WRITE_ONCE(current->capture_control, &capc);
2697 
2698 	ret = compact_zone(&cc, &capc);
2699 
2700 	/*
2701 	 * Make sure we hide capture control first before we read the captured
2702 	 * page pointer, otherwise an interrupt could free and capture a page
2703 	 * and we would leak it.
2704 	 */
2705 	WRITE_ONCE(current->capture_control, NULL);
2706 	*capture = READ_ONCE(capc.page);
2707 	/*
2708 	 * Technically, it is also possible that compaction is skipped but
2709 	 * the page is still captured out of luck(IRQ came and freed the page).
2710 	 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2711 	 * the COMPACT[STALL|FAIL] when compaction is skipped.
2712 	 */
2713 	if (*capture)
2714 		ret = COMPACT_SUCCESS;
2715 
2716 	return ret;
2717 }
2718 
2719 /**
2720  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2721  * @gfp_mask: The GFP mask of the current allocation
2722  * @order: The order of the current allocation
2723  * @alloc_flags: The allocation flags of the current allocation
2724  * @ac: The context of current allocation
2725  * @prio: Determines how hard direct compaction should try to succeed
2726  * @capture: Pointer to free page created by compaction will be stored here
2727  *
2728  * This is the main entry point for direct page compaction.
2729  */
2730 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2731 		unsigned int alloc_flags, const struct alloc_context *ac,
2732 		enum compact_priority prio, struct page **capture)
2733 {
2734 	int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
2735 	struct zoneref *z;
2736 	struct zone *zone;
2737 	enum compact_result rc = COMPACT_SKIPPED;
2738 
2739 	/*
2740 	 * Check if the GFP flags allow compaction - GFP_NOIO is really
2741 	 * tricky context because the migration might require IO
2742 	 */
2743 	if (!may_perform_io)
2744 		return COMPACT_SKIPPED;
2745 
2746 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2747 
2748 	/* Compact each zone in the list */
2749 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2750 					ac->highest_zoneidx, ac->nodemask) {
2751 		enum compact_result status;
2752 
2753 		if (prio > MIN_COMPACT_PRIORITY
2754 					&& compaction_deferred(zone, order)) {
2755 			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2756 			continue;
2757 		}
2758 
2759 		status = compact_zone_order(zone, order, gfp_mask, prio,
2760 				alloc_flags, ac->highest_zoneidx, capture);
2761 		rc = max(status, rc);
2762 
2763 		/* The allocation should succeed, stop compacting */
2764 		if (status == COMPACT_SUCCESS) {
2765 			/*
2766 			 * We think the allocation will succeed in this zone,
2767 			 * but it is not certain, hence the false. The caller
2768 			 * will repeat this with true if allocation indeed
2769 			 * succeeds in this zone.
2770 			 */
2771 			compaction_defer_reset(zone, order, false);
2772 
2773 			break;
2774 		}
2775 
2776 		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2777 					status == COMPACT_PARTIAL_SKIPPED))
2778 			/*
2779 			 * We think that allocation won't succeed in this zone
2780 			 * so we defer compaction there. If it ends up
2781 			 * succeeding after all, it will be reset.
2782 			 */
2783 			defer_compaction(zone, order);
2784 
2785 		/*
2786 		 * We might have stopped compacting due to need_resched() in
2787 		 * async compaction, or due to a fatal signal detected. In that
2788 		 * case do not try further zones
2789 		 */
2790 		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2791 					|| fatal_signal_pending(current))
2792 			break;
2793 	}
2794 
2795 	return rc;
2796 }
2797 
2798 /*
2799  * Compact all zones within a node till each zone's fragmentation score
2800  * reaches within proactive compaction thresholds (as determined by the
2801  * proactiveness tunable).
2802  *
2803  * It is possible that the function returns before reaching score targets
2804  * due to various back-off conditions, such as, contention on per-node or
2805  * per-zone locks.
2806  */
2807 static void proactive_compact_node(pg_data_t *pgdat)
2808 {
2809 	int zoneid;
2810 	struct zone *zone;
2811 	struct compact_control cc = {
2812 		.order = -1,
2813 		.mode = MIGRATE_SYNC_LIGHT,
2814 		.ignore_skip_hint = true,
2815 		.whole_zone = true,
2816 		.gfp_mask = GFP_KERNEL,
2817 		.proactive_compaction = true,
2818 	};
2819 
2820 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2821 		zone = &pgdat->node_zones[zoneid];
2822 		if (!populated_zone(zone))
2823 			continue;
2824 
2825 		cc.zone = zone;
2826 
2827 		compact_zone(&cc, NULL);
2828 
2829 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2830 				     cc.total_migrate_scanned);
2831 		count_compact_events(KCOMPACTD_FREE_SCANNED,
2832 				     cc.total_free_scanned);
2833 	}
2834 }
2835 
2836 /* Compact all zones within a node */
2837 static void compact_node(int nid)
2838 {
2839 	pg_data_t *pgdat = NODE_DATA(nid);
2840 	int zoneid;
2841 	struct zone *zone;
2842 	struct compact_control cc = {
2843 		.order = -1,
2844 		.mode = MIGRATE_SYNC,
2845 		.ignore_skip_hint = true,
2846 		.whole_zone = true,
2847 		.gfp_mask = GFP_KERNEL,
2848 	};
2849 
2850 
2851 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2852 
2853 		zone = &pgdat->node_zones[zoneid];
2854 		if (!populated_zone(zone))
2855 			continue;
2856 
2857 		cc.zone = zone;
2858 
2859 		compact_zone(&cc, NULL);
2860 	}
2861 }
2862 
2863 /* Compact all nodes in the system */
2864 static void compact_nodes(void)
2865 {
2866 	int nid;
2867 
2868 	/* Flush pending updates to the LRU lists */
2869 	lru_add_drain_all();
2870 
2871 	for_each_online_node(nid)
2872 		compact_node(nid);
2873 }
2874 
2875 static int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2876 		void *buffer, size_t *length, loff_t *ppos)
2877 {
2878 	int rc, nid;
2879 
2880 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2881 	if (rc)
2882 		return rc;
2883 
2884 	if (write && sysctl_compaction_proactiveness) {
2885 		for_each_online_node(nid) {
2886 			pg_data_t *pgdat = NODE_DATA(nid);
2887 
2888 			if (pgdat->proactive_compact_trigger)
2889 				continue;
2890 
2891 			pgdat->proactive_compact_trigger = true;
2892 			trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2893 							     pgdat->nr_zones - 1);
2894 			wake_up_interruptible(&pgdat->kcompactd_wait);
2895 		}
2896 	}
2897 
2898 	return 0;
2899 }
2900 
2901 /*
2902  * This is the entry point for compacting all nodes via
2903  * /proc/sys/vm/compact_memory
2904  */
2905 static int sysctl_compaction_handler(struct ctl_table *table, int write,
2906 			void *buffer, size_t *length, loff_t *ppos)
2907 {
2908 	int ret;
2909 
2910 	ret = proc_dointvec(table, write, buffer, length, ppos);
2911 	if (ret)
2912 		return ret;
2913 
2914 	if (sysctl_compact_memory != 1)
2915 		return -EINVAL;
2916 
2917 	if (write)
2918 		compact_nodes();
2919 
2920 	return 0;
2921 }
2922 
2923 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2924 static ssize_t compact_store(struct device *dev,
2925 			     struct device_attribute *attr,
2926 			     const char *buf, size_t count)
2927 {
2928 	int nid = dev->id;
2929 
2930 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2931 		/* Flush pending updates to the LRU lists */
2932 		lru_add_drain_all();
2933 
2934 		compact_node(nid);
2935 	}
2936 
2937 	return count;
2938 }
2939 static DEVICE_ATTR_WO(compact);
2940 
2941 int compaction_register_node(struct node *node)
2942 {
2943 	return device_create_file(&node->dev, &dev_attr_compact);
2944 }
2945 
2946 void compaction_unregister_node(struct node *node)
2947 {
2948 	device_remove_file(&node->dev, &dev_attr_compact);
2949 }
2950 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2951 
2952 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2953 {
2954 	return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2955 		pgdat->proactive_compact_trigger;
2956 }
2957 
2958 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2959 {
2960 	int zoneid;
2961 	struct zone *zone;
2962 	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2963 	enum compact_result ret;
2964 
2965 	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2966 		zone = &pgdat->node_zones[zoneid];
2967 
2968 		if (!populated_zone(zone))
2969 			continue;
2970 
2971 		ret = compaction_suit_allocation_order(zone,
2972 				pgdat->kcompactd_max_order,
2973 				highest_zoneidx, ALLOC_WMARK_MIN);
2974 		if (ret == COMPACT_CONTINUE)
2975 			return true;
2976 	}
2977 
2978 	return false;
2979 }
2980 
2981 static void kcompactd_do_work(pg_data_t *pgdat)
2982 {
2983 	/*
2984 	 * With no special task, compact all zones so that a page of requested
2985 	 * order is allocatable.
2986 	 */
2987 	int zoneid;
2988 	struct zone *zone;
2989 	struct compact_control cc = {
2990 		.order = pgdat->kcompactd_max_order,
2991 		.search_order = pgdat->kcompactd_max_order,
2992 		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2993 		.mode = MIGRATE_SYNC_LIGHT,
2994 		.ignore_skip_hint = false,
2995 		.gfp_mask = GFP_KERNEL,
2996 	};
2997 	enum compact_result ret;
2998 
2999 	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
3000 							cc.highest_zoneidx);
3001 	count_compact_event(KCOMPACTD_WAKE);
3002 
3003 	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
3004 		int status;
3005 
3006 		zone = &pgdat->node_zones[zoneid];
3007 		if (!populated_zone(zone))
3008 			continue;
3009 
3010 		if (compaction_deferred(zone, cc.order))
3011 			continue;
3012 
3013 		ret = compaction_suit_allocation_order(zone,
3014 				cc.order, zoneid, ALLOC_WMARK_MIN);
3015 		if (ret != COMPACT_CONTINUE)
3016 			continue;
3017 
3018 		if (kthread_should_stop())
3019 			return;
3020 
3021 		cc.zone = zone;
3022 		status = compact_zone(&cc, NULL);
3023 
3024 		if (status == COMPACT_SUCCESS) {
3025 			compaction_defer_reset(zone, cc.order, false);
3026 		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
3027 			/*
3028 			 * Buddy pages may become stranded on pcps that could
3029 			 * otherwise coalesce on the zone's free area for
3030 			 * order >= cc.order.  This is ratelimited by the
3031 			 * upcoming deferral.
3032 			 */
3033 			drain_all_pages(zone);
3034 
3035 			/*
3036 			 * We use sync migration mode here, so we defer like
3037 			 * sync direct compaction does.
3038 			 */
3039 			defer_compaction(zone, cc.order);
3040 		}
3041 
3042 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
3043 				     cc.total_migrate_scanned);
3044 		count_compact_events(KCOMPACTD_FREE_SCANNED,
3045 				     cc.total_free_scanned);
3046 	}
3047 
3048 	/*
3049 	 * Regardless of success, we are done until woken up next. But remember
3050 	 * the requested order/highest_zoneidx in case it was higher/tighter
3051 	 * than our current ones
3052 	 */
3053 	if (pgdat->kcompactd_max_order <= cc.order)
3054 		pgdat->kcompactd_max_order = 0;
3055 	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
3056 		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3057 }
3058 
3059 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
3060 {
3061 	if (!order)
3062 		return;
3063 
3064 	if (pgdat->kcompactd_max_order < order)
3065 		pgdat->kcompactd_max_order = order;
3066 
3067 	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
3068 		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
3069 
3070 	/*
3071 	 * Pairs with implicit barrier in wait_event_freezable()
3072 	 * such that wakeups are not missed.
3073 	 */
3074 	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
3075 		return;
3076 
3077 	if (!kcompactd_node_suitable(pgdat))
3078 		return;
3079 
3080 	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
3081 							highest_zoneidx);
3082 	wake_up_interruptible(&pgdat->kcompactd_wait);
3083 }
3084 
3085 /*
3086  * The background compaction daemon, started as a kernel thread
3087  * from the init process.
3088  */
3089 static int kcompactd(void *p)
3090 {
3091 	pg_data_t *pgdat = (pg_data_t *)p;
3092 	struct task_struct *tsk = current;
3093 	long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
3094 	long timeout = default_timeout;
3095 
3096 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3097 
3098 	if (!cpumask_empty(cpumask))
3099 		set_cpus_allowed_ptr(tsk, cpumask);
3100 
3101 	set_freezable();
3102 
3103 	pgdat->kcompactd_max_order = 0;
3104 	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3105 
3106 	while (!kthread_should_stop()) {
3107 		unsigned long pflags;
3108 
3109 		/*
3110 		 * Avoid the unnecessary wakeup for proactive compaction
3111 		 * when it is disabled.
3112 		 */
3113 		if (!sysctl_compaction_proactiveness)
3114 			timeout = MAX_SCHEDULE_TIMEOUT;
3115 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
3116 		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
3117 			kcompactd_work_requested(pgdat), timeout) &&
3118 			!pgdat->proactive_compact_trigger) {
3119 
3120 			psi_memstall_enter(&pflags);
3121 			kcompactd_do_work(pgdat);
3122 			psi_memstall_leave(&pflags);
3123 			/*
3124 			 * Reset the timeout value. The defer timeout from
3125 			 * proactive compaction is lost here but that is fine
3126 			 * as the condition of the zone changing substantionally
3127 			 * then carrying on with the previous defer interval is
3128 			 * not useful.
3129 			 */
3130 			timeout = default_timeout;
3131 			continue;
3132 		}
3133 
3134 		/*
3135 		 * Start the proactive work with default timeout. Based
3136 		 * on the fragmentation score, this timeout is updated.
3137 		 */
3138 		timeout = default_timeout;
3139 		if (should_proactive_compact_node(pgdat)) {
3140 			unsigned int prev_score, score;
3141 
3142 			prev_score = fragmentation_score_node(pgdat);
3143 			proactive_compact_node(pgdat);
3144 			score = fragmentation_score_node(pgdat);
3145 			/*
3146 			 * Defer proactive compaction if the fragmentation
3147 			 * score did not go down i.e. no progress made.
3148 			 */
3149 			if (unlikely(score >= prev_score))
3150 				timeout =
3151 				   default_timeout << COMPACT_MAX_DEFER_SHIFT;
3152 		}
3153 		if (unlikely(pgdat->proactive_compact_trigger))
3154 			pgdat->proactive_compact_trigger = false;
3155 	}
3156 
3157 	return 0;
3158 }
3159 
3160 /*
3161  * This kcompactd start function will be called by init and node-hot-add.
3162  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3163  */
3164 void __meminit kcompactd_run(int nid)
3165 {
3166 	pg_data_t *pgdat = NODE_DATA(nid);
3167 
3168 	if (pgdat->kcompactd)
3169 		return;
3170 
3171 	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3172 	if (IS_ERR(pgdat->kcompactd)) {
3173 		pr_err("Failed to start kcompactd on node %d\n", nid);
3174 		pgdat->kcompactd = NULL;
3175 	}
3176 }
3177 
3178 /*
3179  * Called by memory hotplug when all memory in a node is offlined. Caller must
3180  * be holding mem_hotplug_begin/done().
3181  */
3182 void __meminit kcompactd_stop(int nid)
3183 {
3184 	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3185 
3186 	if (kcompactd) {
3187 		kthread_stop(kcompactd);
3188 		NODE_DATA(nid)->kcompactd = NULL;
3189 	}
3190 }
3191 
3192 /*
3193  * It's optimal to keep kcompactd on the same CPUs as their memory, but
3194  * not required for correctness. So if the last cpu in a node goes
3195  * away, we get changed to run anywhere: as the first one comes back,
3196  * restore their cpu bindings.
3197  */
3198 static int kcompactd_cpu_online(unsigned int cpu)
3199 {
3200 	int nid;
3201 
3202 	for_each_node_state(nid, N_MEMORY) {
3203 		pg_data_t *pgdat = NODE_DATA(nid);
3204 		const struct cpumask *mask;
3205 
3206 		mask = cpumask_of_node(pgdat->node_id);
3207 
3208 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3209 			/* One of our CPUs online: restore mask */
3210 			if (pgdat->kcompactd)
3211 				set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3212 	}
3213 	return 0;
3214 }
3215 
3216 static int proc_dointvec_minmax_warn_RT_change(struct ctl_table *table,
3217 		int write, void *buffer, size_t *lenp, loff_t *ppos)
3218 {
3219 	int ret, old;
3220 
3221 	if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3222 		return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3223 
3224 	old = *(int *)table->data;
3225 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3226 	if (ret)
3227 		return ret;
3228 	if (old != *(int *)table->data)
3229 		pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3230 			     table->procname, current->comm,
3231 			     task_pid_nr(current));
3232 	return ret;
3233 }
3234 
3235 static struct ctl_table vm_compaction[] = {
3236 	{
3237 		.procname	= "compact_memory",
3238 		.data		= &sysctl_compact_memory,
3239 		.maxlen		= sizeof(int),
3240 		.mode		= 0200,
3241 		.proc_handler	= sysctl_compaction_handler,
3242 	},
3243 	{
3244 		.procname	= "compaction_proactiveness",
3245 		.data		= &sysctl_compaction_proactiveness,
3246 		.maxlen		= sizeof(sysctl_compaction_proactiveness),
3247 		.mode		= 0644,
3248 		.proc_handler	= compaction_proactiveness_sysctl_handler,
3249 		.extra1		= SYSCTL_ZERO,
3250 		.extra2		= SYSCTL_ONE_HUNDRED,
3251 	},
3252 	{
3253 		.procname	= "extfrag_threshold",
3254 		.data		= &sysctl_extfrag_threshold,
3255 		.maxlen		= sizeof(int),
3256 		.mode		= 0644,
3257 		.proc_handler	= proc_dointvec_minmax,
3258 		.extra1		= SYSCTL_ZERO,
3259 		.extra2		= SYSCTL_ONE_THOUSAND,
3260 	},
3261 	{
3262 		.procname	= "compact_unevictable_allowed",
3263 		.data		= &sysctl_compact_unevictable_allowed,
3264 		.maxlen		= sizeof(int),
3265 		.mode		= 0644,
3266 		.proc_handler	= proc_dointvec_minmax_warn_RT_change,
3267 		.extra1		= SYSCTL_ZERO,
3268 		.extra2		= SYSCTL_ONE,
3269 	},
3270 	{ }
3271 };
3272 
3273 static int __init kcompactd_init(void)
3274 {
3275 	int nid;
3276 	int ret;
3277 
3278 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3279 					"mm/compaction:online",
3280 					kcompactd_cpu_online, NULL);
3281 	if (ret < 0) {
3282 		pr_err("kcompactd: failed to register hotplug callbacks.\n");
3283 		return ret;
3284 	}
3285 
3286 	for_each_node_state(nid, N_MEMORY)
3287 		kcompactd_run(nid);
3288 	register_sysctl_init("vm", vm_compaction);
3289 	return 0;
3290 }
3291 subsys_initcall(kcompactd_init)
3292 
3293 #endif /* CONFIG_COMPACTION */
3294