1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/compaction.c 4 * 5 * Memory compaction for the reduction of external fragmentation. Note that 6 * this heavily depends upon page migration to do all the real heavy 7 * lifting 8 * 9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 10 */ 11 #include <linux/cpu.h> 12 #include <linux/swap.h> 13 #include <linux/migrate.h> 14 #include <linux/compaction.h> 15 #include <linux/mm_inline.h> 16 #include <linux/sched/signal.h> 17 #include <linux/backing-dev.h> 18 #include <linux/sysctl.h> 19 #include <linux/sysfs.h> 20 #include <linux/page-isolation.h> 21 #include <linux/kasan.h> 22 #include <linux/kthread.h> 23 #include <linux/freezer.h> 24 #include <linux/page_owner.h> 25 #include <linux/psi.h> 26 #include "internal.h" 27 28 #ifdef CONFIG_COMPACTION 29 static inline void count_compact_event(enum vm_event_item item) 30 { 31 count_vm_event(item); 32 } 33 34 static inline void count_compact_events(enum vm_event_item item, long delta) 35 { 36 count_vm_events(item, delta); 37 } 38 #else 39 #define count_compact_event(item) do { } while (0) 40 #define count_compact_events(item, delta) do { } while (0) 41 #endif 42 43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/compaction.h> 47 48 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order)) 49 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order)) 50 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order) 51 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order) 52 53 static unsigned long release_freepages(struct list_head *freelist) 54 { 55 struct page *page, *next; 56 unsigned long high_pfn = 0; 57 58 list_for_each_entry_safe(page, next, freelist, lru) { 59 unsigned long pfn = page_to_pfn(page); 60 list_del(&page->lru); 61 __free_page(page); 62 if (pfn > high_pfn) 63 high_pfn = pfn; 64 } 65 66 return high_pfn; 67 } 68 69 static void split_map_pages(struct list_head *list) 70 { 71 unsigned int i, order, nr_pages; 72 struct page *page, *next; 73 LIST_HEAD(tmp_list); 74 75 list_for_each_entry_safe(page, next, list, lru) { 76 list_del(&page->lru); 77 78 order = page_private(page); 79 nr_pages = 1 << order; 80 81 post_alloc_hook(page, order, __GFP_MOVABLE); 82 if (order) 83 split_page(page, order); 84 85 for (i = 0; i < nr_pages; i++) { 86 list_add(&page->lru, &tmp_list); 87 page++; 88 } 89 } 90 91 list_splice(&tmp_list, list); 92 } 93 94 #ifdef CONFIG_COMPACTION 95 96 int PageMovable(struct page *page) 97 { 98 struct address_space *mapping; 99 100 VM_BUG_ON_PAGE(!PageLocked(page), page); 101 if (!__PageMovable(page)) 102 return 0; 103 104 mapping = page_mapping(page); 105 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page) 106 return 1; 107 108 return 0; 109 } 110 EXPORT_SYMBOL(PageMovable); 111 112 void __SetPageMovable(struct page *page, struct address_space *mapping) 113 { 114 VM_BUG_ON_PAGE(!PageLocked(page), page); 115 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page); 116 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE); 117 } 118 EXPORT_SYMBOL(__SetPageMovable); 119 120 void __ClearPageMovable(struct page *page) 121 { 122 VM_BUG_ON_PAGE(!PageLocked(page), page); 123 VM_BUG_ON_PAGE(!PageMovable(page), page); 124 /* 125 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE 126 * flag so that VM can catch up released page by driver after isolation. 127 * With it, VM migration doesn't try to put it back. 128 */ 129 page->mapping = (void *)((unsigned long)page->mapping & 130 PAGE_MAPPING_MOVABLE); 131 } 132 EXPORT_SYMBOL(__ClearPageMovable); 133 134 /* Do not skip compaction more than 64 times */ 135 #define COMPACT_MAX_DEFER_SHIFT 6 136 137 /* 138 * Compaction is deferred when compaction fails to result in a page 139 * allocation success. 1 << compact_defer_limit compactions are skipped up 140 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 141 */ 142 void defer_compaction(struct zone *zone, int order) 143 { 144 zone->compact_considered = 0; 145 zone->compact_defer_shift++; 146 147 if (order < zone->compact_order_failed) 148 zone->compact_order_failed = order; 149 150 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 151 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 152 153 trace_mm_compaction_defer_compaction(zone, order); 154 } 155 156 /* Returns true if compaction should be skipped this time */ 157 bool compaction_deferred(struct zone *zone, int order) 158 { 159 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 160 161 if (order < zone->compact_order_failed) 162 return false; 163 164 /* Avoid possible overflow */ 165 if (++zone->compact_considered > defer_limit) 166 zone->compact_considered = defer_limit; 167 168 if (zone->compact_considered >= defer_limit) 169 return false; 170 171 trace_mm_compaction_deferred(zone, order); 172 173 return true; 174 } 175 176 /* 177 * Update defer tracking counters after successful compaction of given order, 178 * which means an allocation either succeeded (alloc_success == true) or is 179 * expected to succeed. 180 */ 181 void compaction_defer_reset(struct zone *zone, int order, 182 bool alloc_success) 183 { 184 if (alloc_success) { 185 zone->compact_considered = 0; 186 zone->compact_defer_shift = 0; 187 } 188 if (order >= zone->compact_order_failed) 189 zone->compact_order_failed = order + 1; 190 191 trace_mm_compaction_defer_reset(zone, order); 192 } 193 194 /* Returns true if restarting compaction after many failures */ 195 bool compaction_restarting(struct zone *zone, int order) 196 { 197 if (order < zone->compact_order_failed) 198 return false; 199 200 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 201 zone->compact_considered >= 1UL << zone->compact_defer_shift; 202 } 203 204 /* Returns true if the pageblock should be scanned for pages to isolate. */ 205 static inline bool isolation_suitable(struct compact_control *cc, 206 struct page *page) 207 { 208 if (cc->ignore_skip_hint) 209 return true; 210 211 return !get_pageblock_skip(page); 212 } 213 214 static void reset_cached_positions(struct zone *zone) 215 { 216 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 217 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 218 zone->compact_cached_free_pfn = 219 pageblock_start_pfn(zone_end_pfn(zone) - 1); 220 } 221 222 /* 223 * Compound pages of >= pageblock_order should consistenly be skipped until 224 * released. It is always pointless to compact pages of such order (if they are 225 * migratable), and the pageblocks they occupy cannot contain any free pages. 226 */ 227 static bool pageblock_skip_persistent(struct page *page) 228 { 229 if (!PageCompound(page)) 230 return false; 231 232 page = compound_head(page); 233 234 if (compound_order(page) >= pageblock_order) 235 return true; 236 237 return false; 238 } 239 240 static bool 241 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source, 242 bool check_target) 243 { 244 struct page *page = pfn_to_online_page(pfn); 245 struct page *block_page; 246 struct page *end_page; 247 unsigned long block_pfn; 248 249 if (!page) 250 return false; 251 if (zone != page_zone(page)) 252 return false; 253 if (pageblock_skip_persistent(page)) 254 return false; 255 256 /* 257 * If skip is already cleared do no further checking once the 258 * restart points have been set. 259 */ 260 if (check_source && check_target && !get_pageblock_skip(page)) 261 return true; 262 263 /* 264 * If clearing skip for the target scanner, do not select a 265 * non-movable pageblock as the starting point. 266 */ 267 if (!check_source && check_target && 268 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 269 return false; 270 271 /* Ensure the start of the pageblock or zone is online and valid */ 272 block_pfn = pageblock_start_pfn(pfn); 273 block_pfn = max(block_pfn, zone->zone_start_pfn); 274 block_page = pfn_to_online_page(block_pfn); 275 if (block_page) { 276 page = block_page; 277 pfn = block_pfn; 278 } 279 280 /* Ensure the end of the pageblock or zone is online and valid */ 281 block_pfn = pageblock_end_pfn(pfn) - 1; 282 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1); 283 end_page = pfn_to_online_page(block_pfn); 284 if (!end_page) 285 return false; 286 287 /* 288 * Only clear the hint if a sample indicates there is either a 289 * free page or an LRU page in the block. One or other condition 290 * is necessary for the block to be a migration source/target. 291 */ 292 do { 293 if (pfn_valid_within(pfn)) { 294 if (check_source && PageLRU(page)) { 295 clear_pageblock_skip(page); 296 return true; 297 } 298 299 if (check_target && PageBuddy(page)) { 300 clear_pageblock_skip(page); 301 return true; 302 } 303 } 304 305 page += (1 << PAGE_ALLOC_COSTLY_ORDER); 306 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER); 307 } while (page <= end_page); 308 309 return false; 310 } 311 312 /* 313 * This function is called to clear all cached information on pageblocks that 314 * should be skipped for page isolation when the migrate and free page scanner 315 * meet. 316 */ 317 static void __reset_isolation_suitable(struct zone *zone) 318 { 319 unsigned long migrate_pfn = zone->zone_start_pfn; 320 unsigned long free_pfn = zone_end_pfn(zone) - 1; 321 unsigned long reset_migrate = free_pfn; 322 unsigned long reset_free = migrate_pfn; 323 bool source_set = false; 324 bool free_set = false; 325 326 if (!zone->compact_blockskip_flush) 327 return; 328 329 zone->compact_blockskip_flush = false; 330 331 /* 332 * Walk the zone and update pageblock skip information. Source looks 333 * for PageLRU while target looks for PageBuddy. When the scanner 334 * is found, both PageBuddy and PageLRU are checked as the pageblock 335 * is suitable as both source and target. 336 */ 337 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages, 338 free_pfn -= pageblock_nr_pages) { 339 cond_resched(); 340 341 /* Update the migrate PFN */ 342 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) && 343 migrate_pfn < reset_migrate) { 344 source_set = true; 345 reset_migrate = migrate_pfn; 346 zone->compact_init_migrate_pfn = reset_migrate; 347 zone->compact_cached_migrate_pfn[0] = reset_migrate; 348 zone->compact_cached_migrate_pfn[1] = reset_migrate; 349 } 350 351 /* Update the free PFN */ 352 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) && 353 free_pfn > reset_free) { 354 free_set = true; 355 reset_free = free_pfn; 356 zone->compact_init_free_pfn = reset_free; 357 zone->compact_cached_free_pfn = reset_free; 358 } 359 } 360 361 /* Leave no distance if no suitable block was reset */ 362 if (reset_migrate >= reset_free) { 363 zone->compact_cached_migrate_pfn[0] = migrate_pfn; 364 zone->compact_cached_migrate_pfn[1] = migrate_pfn; 365 zone->compact_cached_free_pfn = free_pfn; 366 } 367 } 368 369 void reset_isolation_suitable(pg_data_t *pgdat) 370 { 371 int zoneid; 372 373 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 374 struct zone *zone = &pgdat->node_zones[zoneid]; 375 if (!populated_zone(zone)) 376 continue; 377 378 /* Only flush if a full compaction finished recently */ 379 if (zone->compact_blockskip_flush) 380 __reset_isolation_suitable(zone); 381 } 382 } 383 384 /* 385 * Sets the pageblock skip bit if it was clear. Note that this is a hint as 386 * locks are not required for read/writers. Returns true if it was already set. 387 */ 388 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 389 unsigned long pfn) 390 { 391 bool skip; 392 393 /* Do no update if skip hint is being ignored */ 394 if (cc->ignore_skip_hint) 395 return false; 396 397 if (!IS_ALIGNED(pfn, pageblock_nr_pages)) 398 return false; 399 400 skip = get_pageblock_skip(page); 401 if (!skip && !cc->no_set_skip_hint) 402 set_pageblock_skip(page); 403 404 return skip; 405 } 406 407 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 408 { 409 struct zone *zone = cc->zone; 410 411 pfn = pageblock_end_pfn(pfn); 412 413 /* Set for isolation rather than compaction */ 414 if (cc->no_set_skip_hint) 415 return; 416 417 if (pfn > zone->compact_cached_migrate_pfn[0]) 418 zone->compact_cached_migrate_pfn[0] = pfn; 419 if (cc->mode != MIGRATE_ASYNC && 420 pfn > zone->compact_cached_migrate_pfn[1]) 421 zone->compact_cached_migrate_pfn[1] = pfn; 422 } 423 424 /* 425 * If no pages were isolated then mark this pageblock to be skipped in the 426 * future. The information is later cleared by __reset_isolation_suitable(). 427 */ 428 static void update_pageblock_skip(struct compact_control *cc, 429 struct page *page, unsigned long pfn) 430 { 431 struct zone *zone = cc->zone; 432 433 if (cc->no_set_skip_hint) 434 return; 435 436 if (!page) 437 return; 438 439 set_pageblock_skip(page); 440 441 /* Update where async and sync compaction should restart */ 442 if (pfn < zone->compact_cached_free_pfn) 443 zone->compact_cached_free_pfn = pfn; 444 } 445 #else 446 static inline bool isolation_suitable(struct compact_control *cc, 447 struct page *page) 448 { 449 return true; 450 } 451 452 static inline bool pageblock_skip_persistent(struct page *page) 453 { 454 return false; 455 } 456 457 static inline void update_pageblock_skip(struct compact_control *cc, 458 struct page *page, unsigned long pfn) 459 { 460 } 461 462 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 463 { 464 } 465 466 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 467 unsigned long pfn) 468 { 469 return false; 470 } 471 #endif /* CONFIG_COMPACTION */ 472 473 /* 474 * Compaction requires the taking of some coarse locks that are potentially 475 * very heavily contended. For async compaction, trylock and record if the 476 * lock is contended. The lock will still be acquired but compaction will 477 * abort when the current block is finished regardless of success rate. 478 * Sync compaction acquires the lock. 479 * 480 * Always returns true which makes it easier to track lock state in callers. 481 */ 482 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags, 483 struct compact_control *cc) 484 { 485 /* Track if the lock is contended in async mode */ 486 if (cc->mode == MIGRATE_ASYNC && !cc->contended) { 487 if (spin_trylock_irqsave(lock, *flags)) 488 return true; 489 490 cc->contended = true; 491 } 492 493 spin_lock_irqsave(lock, *flags); 494 return true; 495 } 496 497 /* 498 * Compaction requires the taking of some coarse locks that are potentially 499 * very heavily contended. The lock should be periodically unlocked to avoid 500 * having disabled IRQs for a long time, even when there is nobody waiting on 501 * the lock. It might also be that allowing the IRQs will result in 502 * need_resched() becoming true. If scheduling is needed, async compaction 503 * aborts. Sync compaction schedules. 504 * Either compaction type will also abort if a fatal signal is pending. 505 * In either case if the lock was locked, it is dropped and not regained. 506 * 507 * Returns true if compaction should abort due to fatal signal pending, or 508 * async compaction due to need_resched() 509 * Returns false when compaction can continue (sync compaction might have 510 * scheduled) 511 */ 512 static bool compact_unlock_should_abort(spinlock_t *lock, 513 unsigned long flags, bool *locked, struct compact_control *cc) 514 { 515 if (*locked) { 516 spin_unlock_irqrestore(lock, flags); 517 *locked = false; 518 } 519 520 if (fatal_signal_pending(current)) { 521 cc->contended = true; 522 return true; 523 } 524 525 cond_resched(); 526 527 return false; 528 } 529 530 /* 531 * Isolate free pages onto a private freelist. If @strict is true, will abort 532 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 533 * (even though it may still end up isolating some pages). 534 */ 535 static unsigned long isolate_freepages_block(struct compact_control *cc, 536 unsigned long *start_pfn, 537 unsigned long end_pfn, 538 struct list_head *freelist, 539 unsigned int stride, 540 bool strict) 541 { 542 int nr_scanned = 0, total_isolated = 0; 543 struct page *cursor; 544 unsigned long flags = 0; 545 bool locked = false; 546 unsigned long blockpfn = *start_pfn; 547 unsigned int order; 548 549 /* Strict mode is for isolation, speed is secondary */ 550 if (strict) 551 stride = 1; 552 553 cursor = pfn_to_page(blockpfn); 554 555 /* Isolate free pages. */ 556 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) { 557 int isolated; 558 struct page *page = cursor; 559 560 /* 561 * Periodically drop the lock (if held) regardless of its 562 * contention, to give chance to IRQs. Abort if fatal signal 563 * pending or async compaction detects need_resched() 564 */ 565 if (!(blockpfn % SWAP_CLUSTER_MAX) 566 && compact_unlock_should_abort(&cc->zone->lock, flags, 567 &locked, cc)) 568 break; 569 570 nr_scanned++; 571 if (!pfn_valid_within(blockpfn)) 572 goto isolate_fail; 573 574 /* 575 * For compound pages such as THP and hugetlbfs, we can save 576 * potentially a lot of iterations if we skip them at once. 577 * The check is racy, but we can consider only valid values 578 * and the only danger is skipping too much. 579 */ 580 if (PageCompound(page)) { 581 const unsigned int order = compound_order(page); 582 583 if (likely(order < MAX_ORDER)) { 584 blockpfn += (1UL << order) - 1; 585 cursor += (1UL << order) - 1; 586 } 587 goto isolate_fail; 588 } 589 590 if (!PageBuddy(page)) 591 goto isolate_fail; 592 593 /* 594 * If we already hold the lock, we can skip some rechecking. 595 * Note that if we hold the lock now, checked_pageblock was 596 * already set in some previous iteration (or strict is true), 597 * so it is correct to skip the suitable migration target 598 * recheck as well. 599 */ 600 if (!locked) { 601 locked = compact_lock_irqsave(&cc->zone->lock, 602 &flags, cc); 603 604 /* Recheck this is a buddy page under lock */ 605 if (!PageBuddy(page)) 606 goto isolate_fail; 607 } 608 609 /* Found a free page, will break it into order-0 pages */ 610 order = page_order(page); 611 isolated = __isolate_free_page(page, order); 612 if (!isolated) 613 break; 614 set_page_private(page, order); 615 616 total_isolated += isolated; 617 cc->nr_freepages += isolated; 618 list_add_tail(&page->lru, freelist); 619 620 if (!strict && cc->nr_migratepages <= cc->nr_freepages) { 621 blockpfn += isolated; 622 break; 623 } 624 /* Advance to the end of split page */ 625 blockpfn += isolated - 1; 626 cursor += isolated - 1; 627 continue; 628 629 isolate_fail: 630 if (strict) 631 break; 632 else 633 continue; 634 635 } 636 637 if (locked) 638 spin_unlock_irqrestore(&cc->zone->lock, flags); 639 640 /* 641 * There is a tiny chance that we have read bogus compound_order(), 642 * so be careful to not go outside of the pageblock. 643 */ 644 if (unlikely(blockpfn > end_pfn)) 645 blockpfn = end_pfn; 646 647 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 648 nr_scanned, total_isolated); 649 650 /* Record how far we have got within the block */ 651 *start_pfn = blockpfn; 652 653 /* 654 * If strict isolation is requested by CMA then check that all the 655 * pages requested were isolated. If there were any failures, 0 is 656 * returned and CMA will fail. 657 */ 658 if (strict && blockpfn < end_pfn) 659 total_isolated = 0; 660 661 cc->total_free_scanned += nr_scanned; 662 if (total_isolated) 663 count_compact_events(COMPACTISOLATED, total_isolated); 664 return total_isolated; 665 } 666 667 /** 668 * isolate_freepages_range() - isolate free pages. 669 * @cc: Compaction control structure. 670 * @start_pfn: The first PFN to start isolating. 671 * @end_pfn: The one-past-last PFN. 672 * 673 * Non-free pages, invalid PFNs, or zone boundaries within the 674 * [start_pfn, end_pfn) range are considered errors, cause function to 675 * undo its actions and return zero. 676 * 677 * Otherwise, function returns one-past-the-last PFN of isolated page 678 * (which may be greater then end_pfn if end fell in a middle of 679 * a free page). 680 */ 681 unsigned long 682 isolate_freepages_range(struct compact_control *cc, 683 unsigned long start_pfn, unsigned long end_pfn) 684 { 685 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 686 LIST_HEAD(freelist); 687 688 pfn = start_pfn; 689 block_start_pfn = pageblock_start_pfn(pfn); 690 if (block_start_pfn < cc->zone->zone_start_pfn) 691 block_start_pfn = cc->zone->zone_start_pfn; 692 block_end_pfn = pageblock_end_pfn(pfn); 693 694 for (; pfn < end_pfn; pfn += isolated, 695 block_start_pfn = block_end_pfn, 696 block_end_pfn += pageblock_nr_pages) { 697 /* Protect pfn from changing by isolate_freepages_block */ 698 unsigned long isolate_start_pfn = pfn; 699 700 block_end_pfn = min(block_end_pfn, end_pfn); 701 702 /* 703 * pfn could pass the block_end_pfn if isolated freepage 704 * is more than pageblock order. In this case, we adjust 705 * scanning range to right one. 706 */ 707 if (pfn >= block_end_pfn) { 708 block_start_pfn = pageblock_start_pfn(pfn); 709 block_end_pfn = pageblock_end_pfn(pfn); 710 block_end_pfn = min(block_end_pfn, end_pfn); 711 } 712 713 if (!pageblock_pfn_to_page(block_start_pfn, 714 block_end_pfn, cc->zone)) 715 break; 716 717 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 718 block_end_pfn, &freelist, 0, true); 719 720 /* 721 * In strict mode, isolate_freepages_block() returns 0 if 722 * there are any holes in the block (ie. invalid PFNs or 723 * non-free pages). 724 */ 725 if (!isolated) 726 break; 727 728 /* 729 * If we managed to isolate pages, it is always (1 << n) * 730 * pageblock_nr_pages for some non-negative n. (Max order 731 * page may span two pageblocks). 732 */ 733 } 734 735 /* __isolate_free_page() does not map the pages */ 736 split_map_pages(&freelist); 737 738 if (pfn < end_pfn) { 739 /* Loop terminated early, cleanup. */ 740 release_freepages(&freelist); 741 return 0; 742 } 743 744 /* We don't use freelists for anything. */ 745 return pfn; 746 } 747 748 /* Similar to reclaim, but different enough that they don't share logic */ 749 static bool too_many_isolated(pg_data_t *pgdat) 750 { 751 unsigned long active, inactive, isolated; 752 753 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) + 754 node_page_state(pgdat, NR_INACTIVE_ANON); 755 active = node_page_state(pgdat, NR_ACTIVE_FILE) + 756 node_page_state(pgdat, NR_ACTIVE_ANON); 757 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) + 758 node_page_state(pgdat, NR_ISOLATED_ANON); 759 760 return isolated > (inactive + active) / 2; 761 } 762 763 /** 764 * isolate_migratepages_block() - isolate all migrate-able pages within 765 * a single pageblock 766 * @cc: Compaction control structure. 767 * @low_pfn: The first PFN to isolate 768 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 769 * @isolate_mode: Isolation mode to be used. 770 * 771 * Isolate all pages that can be migrated from the range specified by 772 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 773 * Returns zero if there is a fatal signal pending, otherwise PFN of the 774 * first page that was not scanned (which may be both less, equal to or more 775 * than end_pfn). 776 * 777 * The pages are isolated on cc->migratepages list (not required to be empty), 778 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field 779 * is neither read nor updated. 780 */ 781 static unsigned long 782 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 783 unsigned long end_pfn, isolate_mode_t isolate_mode) 784 { 785 pg_data_t *pgdat = cc->zone->zone_pgdat; 786 unsigned long nr_scanned = 0, nr_isolated = 0; 787 struct lruvec *lruvec; 788 unsigned long flags = 0; 789 bool locked = false; 790 struct page *page = NULL, *valid_page = NULL; 791 unsigned long start_pfn = low_pfn; 792 bool skip_on_failure = false; 793 unsigned long next_skip_pfn = 0; 794 bool skip_updated = false; 795 796 /* 797 * Ensure that there are not too many pages isolated from the LRU 798 * list by either parallel reclaimers or compaction. If there are, 799 * delay for some time until fewer pages are isolated 800 */ 801 while (unlikely(too_many_isolated(pgdat))) { 802 /* async migration should just abort */ 803 if (cc->mode == MIGRATE_ASYNC) 804 return 0; 805 806 congestion_wait(BLK_RW_ASYNC, HZ/10); 807 808 if (fatal_signal_pending(current)) 809 return 0; 810 } 811 812 cond_resched(); 813 814 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { 815 skip_on_failure = true; 816 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 817 } 818 819 /* Time to isolate some pages for migration */ 820 for (; low_pfn < end_pfn; low_pfn++) { 821 822 if (skip_on_failure && low_pfn >= next_skip_pfn) { 823 /* 824 * We have isolated all migration candidates in the 825 * previous order-aligned block, and did not skip it due 826 * to failure. We should migrate the pages now and 827 * hopefully succeed compaction. 828 */ 829 if (nr_isolated) 830 break; 831 832 /* 833 * We failed to isolate in the previous order-aligned 834 * block. Set the new boundary to the end of the 835 * current block. Note we can't simply increase 836 * next_skip_pfn by 1 << order, as low_pfn might have 837 * been incremented by a higher number due to skipping 838 * a compound or a high-order buddy page in the 839 * previous loop iteration. 840 */ 841 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 842 } 843 844 /* 845 * Periodically drop the lock (if held) regardless of its 846 * contention, to give chance to IRQs. Abort completely if 847 * a fatal signal is pending. 848 */ 849 if (!(low_pfn % SWAP_CLUSTER_MAX) 850 && compact_unlock_should_abort(&pgdat->lru_lock, 851 flags, &locked, cc)) { 852 low_pfn = 0; 853 goto fatal_pending; 854 } 855 856 if (!pfn_valid_within(low_pfn)) 857 goto isolate_fail; 858 nr_scanned++; 859 860 page = pfn_to_page(low_pfn); 861 862 /* 863 * Check if the pageblock has already been marked skipped. 864 * Only the aligned PFN is checked as the caller isolates 865 * COMPACT_CLUSTER_MAX at a time so the second call must 866 * not falsely conclude that the block should be skipped. 867 */ 868 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) { 869 if (!cc->ignore_skip_hint && get_pageblock_skip(page)) { 870 low_pfn = end_pfn; 871 goto isolate_abort; 872 } 873 valid_page = page; 874 } 875 876 /* 877 * Skip if free. We read page order here without zone lock 878 * which is generally unsafe, but the race window is small and 879 * the worst thing that can happen is that we skip some 880 * potential isolation targets. 881 */ 882 if (PageBuddy(page)) { 883 unsigned long freepage_order = page_order_unsafe(page); 884 885 /* 886 * Without lock, we cannot be sure that what we got is 887 * a valid page order. Consider only values in the 888 * valid order range to prevent low_pfn overflow. 889 */ 890 if (freepage_order > 0 && freepage_order < MAX_ORDER) 891 low_pfn += (1UL << freepage_order) - 1; 892 continue; 893 } 894 895 /* 896 * Regardless of being on LRU, compound pages such as THP and 897 * hugetlbfs are not to be compacted. We can potentially save 898 * a lot of iterations if we skip them at once. The check is 899 * racy, but we can consider only valid values and the only 900 * danger is skipping too much. 901 */ 902 if (PageCompound(page)) { 903 const unsigned int order = compound_order(page); 904 905 if (likely(order < MAX_ORDER)) 906 low_pfn += (1UL << order) - 1; 907 goto isolate_fail; 908 } 909 910 /* 911 * Check may be lockless but that's ok as we recheck later. 912 * It's possible to migrate LRU and non-lru movable pages. 913 * Skip any other type of page 914 */ 915 if (!PageLRU(page)) { 916 /* 917 * __PageMovable can return false positive so we need 918 * to verify it under page_lock. 919 */ 920 if (unlikely(__PageMovable(page)) && 921 !PageIsolated(page)) { 922 if (locked) { 923 spin_unlock_irqrestore(&pgdat->lru_lock, 924 flags); 925 locked = false; 926 } 927 928 if (!isolate_movable_page(page, isolate_mode)) 929 goto isolate_success; 930 } 931 932 goto isolate_fail; 933 } 934 935 /* 936 * Migration will fail if an anonymous page is pinned in memory, 937 * so avoid taking lru_lock and isolating it unnecessarily in an 938 * admittedly racy check. 939 */ 940 if (!page_mapping(page) && 941 page_count(page) > page_mapcount(page)) 942 goto isolate_fail; 943 944 /* 945 * Only allow to migrate anonymous pages in GFP_NOFS context 946 * because those do not depend on fs locks. 947 */ 948 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page)) 949 goto isolate_fail; 950 951 /* If we already hold the lock, we can skip some rechecking */ 952 if (!locked) { 953 locked = compact_lock_irqsave(&pgdat->lru_lock, 954 &flags, cc); 955 956 /* Try get exclusive access under lock */ 957 if (!skip_updated) { 958 skip_updated = true; 959 if (test_and_set_skip(cc, page, low_pfn)) 960 goto isolate_abort; 961 } 962 963 /* Recheck PageLRU and PageCompound under lock */ 964 if (!PageLRU(page)) 965 goto isolate_fail; 966 967 /* 968 * Page become compound since the non-locked check, 969 * and it's on LRU. It can only be a THP so the order 970 * is safe to read and it's 0 for tail pages. 971 */ 972 if (unlikely(PageCompound(page))) { 973 low_pfn += compound_nr(page) - 1; 974 goto isolate_fail; 975 } 976 } 977 978 lruvec = mem_cgroup_page_lruvec(page, pgdat); 979 980 /* Try isolate the page */ 981 if (__isolate_lru_page(page, isolate_mode) != 0) 982 goto isolate_fail; 983 984 VM_BUG_ON_PAGE(PageCompound(page), page); 985 986 /* Successfully isolated */ 987 del_page_from_lru_list(page, lruvec, page_lru(page)); 988 inc_node_page_state(page, 989 NR_ISOLATED_ANON + page_is_file_cache(page)); 990 991 isolate_success: 992 list_add(&page->lru, &cc->migratepages); 993 cc->nr_migratepages++; 994 nr_isolated++; 995 996 /* 997 * Avoid isolating too much unless this block is being 998 * rescanned (e.g. dirty/writeback pages, parallel allocation) 999 * or a lock is contended. For contention, isolate quickly to 1000 * potentially remove one source of contention. 1001 */ 1002 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX && 1003 !cc->rescan && !cc->contended) { 1004 ++low_pfn; 1005 break; 1006 } 1007 1008 continue; 1009 isolate_fail: 1010 if (!skip_on_failure) 1011 continue; 1012 1013 /* 1014 * We have isolated some pages, but then failed. Release them 1015 * instead of migrating, as we cannot form the cc->order buddy 1016 * page anyway. 1017 */ 1018 if (nr_isolated) { 1019 if (locked) { 1020 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 1021 locked = false; 1022 } 1023 putback_movable_pages(&cc->migratepages); 1024 cc->nr_migratepages = 0; 1025 nr_isolated = 0; 1026 } 1027 1028 if (low_pfn < next_skip_pfn) { 1029 low_pfn = next_skip_pfn - 1; 1030 /* 1031 * The check near the loop beginning would have updated 1032 * next_skip_pfn too, but this is a bit simpler. 1033 */ 1034 next_skip_pfn += 1UL << cc->order; 1035 } 1036 } 1037 1038 /* 1039 * The PageBuddy() check could have potentially brought us outside 1040 * the range to be scanned. 1041 */ 1042 if (unlikely(low_pfn > end_pfn)) 1043 low_pfn = end_pfn; 1044 1045 isolate_abort: 1046 if (locked) 1047 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 1048 1049 /* 1050 * Updated the cached scanner pfn once the pageblock has been scanned 1051 * Pages will either be migrated in which case there is no point 1052 * scanning in the near future or migration failed in which case the 1053 * failure reason may persist. The block is marked for skipping if 1054 * there were no pages isolated in the block or if the block is 1055 * rescanned twice in a row. 1056 */ 1057 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) { 1058 if (valid_page && !skip_updated) 1059 set_pageblock_skip(valid_page); 1060 update_cached_migrate(cc, low_pfn); 1061 } 1062 1063 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 1064 nr_scanned, nr_isolated); 1065 1066 fatal_pending: 1067 cc->total_migrate_scanned += nr_scanned; 1068 if (nr_isolated) 1069 count_compact_events(COMPACTISOLATED, nr_isolated); 1070 1071 return low_pfn; 1072 } 1073 1074 /** 1075 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 1076 * @cc: Compaction control structure. 1077 * @start_pfn: The first PFN to start isolating. 1078 * @end_pfn: The one-past-last PFN. 1079 * 1080 * Returns zero if isolation fails fatally due to e.g. pending signal. 1081 * Otherwise, function returns one-past-the-last PFN of isolated page 1082 * (which may be greater than end_pfn if end fell in a middle of a THP page). 1083 */ 1084 unsigned long 1085 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 1086 unsigned long end_pfn) 1087 { 1088 unsigned long pfn, block_start_pfn, block_end_pfn; 1089 1090 /* Scan block by block. First and last block may be incomplete */ 1091 pfn = start_pfn; 1092 block_start_pfn = pageblock_start_pfn(pfn); 1093 if (block_start_pfn < cc->zone->zone_start_pfn) 1094 block_start_pfn = cc->zone->zone_start_pfn; 1095 block_end_pfn = pageblock_end_pfn(pfn); 1096 1097 for (; pfn < end_pfn; pfn = block_end_pfn, 1098 block_start_pfn = block_end_pfn, 1099 block_end_pfn += pageblock_nr_pages) { 1100 1101 block_end_pfn = min(block_end_pfn, end_pfn); 1102 1103 if (!pageblock_pfn_to_page(block_start_pfn, 1104 block_end_pfn, cc->zone)) 1105 continue; 1106 1107 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn, 1108 ISOLATE_UNEVICTABLE); 1109 1110 if (!pfn) 1111 break; 1112 1113 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) 1114 break; 1115 } 1116 1117 return pfn; 1118 } 1119 1120 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 1121 #ifdef CONFIG_COMPACTION 1122 1123 static bool suitable_migration_source(struct compact_control *cc, 1124 struct page *page) 1125 { 1126 int block_mt; 1127 1128 if (pageblock_skip_persistent(page)) 1129 return false; 1130 1131 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction) 1132 return true; 1133 1134 block_mt = get_pageblock_migratetype(page); 1135 1136 if (cc->migratetype == MIGRATE_MOVABLE) 1137 return is_migrate_movable(block_mt); 1138 else 1139 return block_mt == cc->migratetype; 1140 } 1141 1142 /* Returns true if the page is within a block suitable for migration to */ 1143 static bool suitable_migration_target(struct compact_control *cc, 1144 struct page *page) 1145 { 1146 /* If the page is a large free page, then disallow migration */ 1147 if (PageBuddy(page)) { 1148 /* 1149 * We are checking page_order without zone->lock taken. But 1150 * the only small danger is that we skip a potentially suitable 1151 * pageblock, so it's not worth to check order for valid range. 1152 */ 1153 if (page_order_unsafe(page) >= pageblock_order) 1154 return false; 1155 } 1156 1157 if (cc->ignore_block_suitable) 1158 return true; 1159 1160 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 1161 if (is_migrate_movable(get_pageblock_migratetype(page))) 1162 return true; 1163 1164 /* Otherwise skip the block */ 1165 return false; 1166 } 1167 1168 static inline unsigned int 1169 freelist_scan_limit(struct compact_control *cc) 1170 { 1171 unsigned short shift = BITS_PER_LONG - 1; 1172 1173 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1; 1174 } 1175 1176 /* 1177 * Test whether the free scanner has reached the same or lower pageblock than 1178 * the migration scanner, and compaction should thus terminate. 1179 */ 1180 static inline bool compact_scanners_met(struct compact_control *cc) 1181 { 1182 return (cc->free_pfn >> pageblock_order) 1183 <= (cc->migrate_pfn >> pageblock_order); 1184 } 1185 1186 /* 1187 * Used when scanning for a suitable migration target which scans freelists 1188 * in reverse. Reorders the list such as the unscanned pages are scanned 1189 * first on the next iteration of the free scanner 1190 */ 1191 static void 1192 move_freelist_head(struct list_head *freelist, struct page *freepage) 1193 { 1194 LIST_HEAD(sublist); 1195 1196 if (!list_is_last(freelist, &freepage->lru)) { 1197 list_cut_before(&sublist, freelist, &freepage->lru); 1198 if (!list_empty(&sublist)) 1199 list_splice_tail(&sublist, freelist); 1200 } 1201 } 1202 1203 /* 1204 * Similar to move_freelist_head except used by the migration scanner 1205 * when scanning forward. It's possible for these list operations to 1206 * move against each other if they search the free list exactly in 1207 * lockstep. 1208 */ 1209 static void 1210 move_freelist_tail(struct list_head *freelist, struct page *freepage) 1211 { 1212 LIST_HEAD(sublist); 1213 1214 if (!list_is_first(freelist, &freepage->lru)) { 1215 list_cut_position(&sublist, freelist, &freepage->lru); 1216 if (!list_empty(&sublist)) 1217 list_splice_tail(&sublist, freelist); 1218 } 1219 } 1220 1221 static void 1222 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated) 1223 { 1224 unsigned long start_pfn, end_pfn; 1225 struct page *page = pfn_to_page(pfn); 1226 1227 /* Do not search around if there are enough pages already */ 1228 if (cc->nr_freepages >= cc->nr_migratepages) 1229 return; 1230 1231 /* Minimise scanning during async compaction */ 1232 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC) 1233 return; 1234 1235 /* Pageblock boundaries */ 1236 start_pfn = pageblock_start_pfn(pfn); 1237 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1; 1238 1239 /* Scan before */ 1240 if (start_pfn != pfn) { 1241 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false); 1242 if (cc->nr_freepages >= cc->nr_migratepages) 1243 return; 1244 } 1245 1246 /* Scan after */ 1247 start_pfn = pfn + nr_isolated; 1248 if (start_pfn < end_pfn) 1249 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false); 1250 1251 /* Skip this pageblock in the future as it's full or nearly full */ 1252 if (cc->nr_freepages < cc->nr_migratepages) 1253 set_pageblock_skip(page); 1254 } 1255 1256 /* Search orders in round-robin fashion */ 1257 static int next_search_order(struct compact_control *cc, int order) 1258 { 1259 order--; 1260 if (order < 0) 1261 order = cc->order - 1; 1262 1263 /* Search wrapped around? */ 1264 if (order == cc->search_order) { 1265 cc->search_order--; 1266 if (cc->search_order < 0) 1267 cc->search_order = cc->order - 1; 1268 return -1; 1269 } 1270 1271 return order; 1272 } 1273 1274 static unsigned long 1275 fast_isolate_freepages(struct compact_control *cc) 1276 { 1277 unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1); 1278 unsigned int nr_scanned = 0; 1279 unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0; 1280 unsigned long nr_isolated = 0; 1281 unsigned long distance; 1282 struct page *page = NULL; 1283 bool scan_start = false; 1284 int order; 1285 1286 /* Full compaction passes in a negative order */ 1287 if (cc->order <= 0) 1288 return cc->free_pfn; 1289 1290 /* 1291 * If starting the scan, use a deeper search and use the highest 1292 * PFN found if a suitable one is not found. 1293 */ 1294 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) { 1295 limit = pageblock_nr_pages >> 1; 1296 scan_start = true; 1297 } 1298 1299 /* 1300 * Preferred point is in the top quarter of the scan space but take 1301 * a pfn from the top half if the search is problematic. 1302 */ 1303 distance = (cc->free_pfn - cc->migrate_pfn); 1304 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2)); 1305 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1)); 1306 1307 if (WARN_ON_ONCE(min_pfn > low_pfn)) 1308 low_pfn = min_pfn; 1309 1310 /* 1311 * Search starts from the last successful isolation order or the next 1312 * order to search after a previous failure 1313 */ 1314 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order); 1315 1316 for (order = cc->search_order; 1317 !page && order >= 0; 1318 order = next_search_order(cc, order)) { 1319 struct free_area *area = &cc->zone->free_area[order]; 1320 struct list_head *freelist; 1321 struct page *freepage; 1322 unsigned long flags; 1323 unsigned int order_scanned = 0; 1324 1325 if (!area->nr_free) 1326 continue; 1327 1328 spin_lock_irqsave(&cc->zone->lock, flags); 1329 freelist = &area->free_list[MIGRATE_MOVABLE]; 1330 list_for_each_entry_reverse(freepage, freelist, lru) { 1331 unsigned long pfn; 1332 1333 order_scanned++; 1334 nr_scanned++; 1335 pfn = page_to_pfn(freepage); 1336 1337 if (pfn >= highest) 1338 highest = pageblock_start_pfn(pfn); 1339 1340 if (pfn >= low_pfn) { 1341 cc->fast_search_fail = 0; 1342 cc->search_order = order; 1343 page = freepage; 1344 break; 1345 } 1346 1347 if (pfn >= min_pfn && pfn > high_pfn) { 1348 high_pfn = pfn; 1349 1350 /* Shorten the scan if a candidate is found */ 1351 limit >>= 1; 1352 } 1353 1354 if (order_scanned >= limit) 1355 break; 1356 } 1357 1358 /* Use a minimum pfn if a preferred one was not found */ 1359 if (!page && high_pfn) { 1360 page = pfn_to_page(high_pfn); 1361 1362 /* Update freepage for the list reorder below */ 1363 freepage = page; 1364 } 1365 1366 /* Reorder to so a future search skips recent pages */ 1367 move_freelist_head(freelist, freepage); 1368 1369 /* Isolate the page if available */ 1370 if (page) { 1371 if (__isolate_free_page(page, order)) { 1372 set_page_private(page, order); 1373 nr_isolated = 1 << order; 1374 cc->nr_freepages += nr_isolated; 1375 list_add_tail(&page->lru, &cc->freepages); 1376 count_compact_events(COMPACTISOLATED, nr_isolated); 1377 } else { 1378 /* If isolation fails, abort the search */ 1379 order = cc->search_order + 1; 1380 page = NULL; 1381 } 1382 } 1383 1384 spin_unlock_irqrestore(&cc->zone->lock, flags); 1385 1386 /* 1387 * Smaller scan on next order so the total scan ig related 1388 * to freelist_scan_limit. 1389 */ 1390 if (order_scanned >= limit) 1391 limit = min(1U, limit >> 1); 1392 } 1393 1394 if (!page) { 1395 cc->fast_search_fail++; 1396 if (scan_start) { 1397 /* 1398 * Use the highest PFN found above min. If one was 1399 * not found, be pessemistic for direct compaction 1400 * and use the min mark. 1401 */ 1402 if (highest) { 1403 page = pfn_to_page(highest); 1404 cc->free_pfn = highest; 1405 } else { 1406 if (cc->direct_compaction && pfn_valid(min_pfn)) { 1407 page = pfn_to_page(min_pfn); 1408 cc->free_pfn = min_pfn; 1409 } 1410 } 1411 } 1412 } 1413 1414 if (highest && highest >= cc->zone->compact_cached_free_pfn) { 1415 highest -= pageblock_nr_pages; 1416 cc->zone->compact_cached_free_pfn = highest; 1417 } 1418 1419 cc->total_free_scanned += nr_scanned; 1420 if (!page) 1421 return cc->free_pfn; 1422 1423 low_pfn = page_to_pfn(page); 1424 fast_isolate_around(cc, low_pfn, nr_isolated); 1425 return low_pfn; 1426 } 1427 1428 /* 1429 * Based on information in the current compact_control, find blocks 1430 * suitable for isolating free pages from and then isolate them. 1431 */ 1432 static void isolate_freepages(struct compact_control *cc) 1433 { 1434 struct zone *zone = cc->zone; 1435 struct page *page; 1436 unsigned long block_start_pfn; /* start of current pageblock */ 1437 unsigned long isolate_start_pfn; /* exact pfn we start at */ 1438 unsigned long block_end_pfn; /* end of current pageblock */ 1439 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 1440 struct list_head *freelist = &cc->freepages; 1441 unsigned int stride; 1442 1443 /* Try a small search of the free lists for a candidate */ 1444 isolate_start_pfn = fast_isolate_freepages(cc); 1445 if (cc->nr_freepages) 1446 goto splitmap; 1447 1448 /* 1449 * Initialise the free scanner. The starting point is where we last 1450 * successfully isolated from, zone-cached value, or the end of the 1451 * zone when isolating for the first time. For looping we also need 1452 * this pfn aligned down to the pageblock boundary, because we do 1453 * block_start_pfn -= pageblock_nr_pages in the for loop. 1454 * For ending point, take care when isolating in last pageblock of a 1455 * a zone which ends in the middle of a pageblock. 1456 * The low boundary is the end of the pageblock the migration scanner 1457 * is using. 1458 */ 1459 isolate_start_pfn = cc->free_pfn; 1460 block_start_pfn = pageblock_start_pfn(isolate_start_pfn); 1461 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 1462 zone_end_pfn(zone)); 1463 low_pfn = pageblock_end_pfn(cc->migrate_pfn); 1464 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1; 1465 1466 /* 1467 * Isolate free pages until enough are available to migrate the 1468 * pages on cc->migratepages. We stop searching if the migrate 1469 * and free page scanners meet or enough free pages are isolated. 1470 */ 1471 for (; block_start_pfn >= low_pfn; 1472 block_end_pfn = block_start_pfn, 1473 block_start_pfn -= pageblock_nr_pages, 1474 isolate_start_pfn = block_start_pfn) { 1475 unsigned long nr_isolated; 1476 1477 /* 1478 * This can iterate a massively long zone without finding any 1479 * suitable migration targets, so periodically check resched. 1480 */ 1481 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))) 1482 cond_resched(); 1483 1484 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1485 zone); 1486 if (!page) 1487 continue; 1488 1489 /* Check the block is suitable for migration */ 1490 if (!suitable_migration_target(cc, page)) 1491 continue; 1492 1493 /* If isolation recently failed, do not retry */ 1494 if (!isolation_suitable(cc, page)) 1495 continue; 1496 1497 /* Found a block suitable for isolating free pages from. */ 1498 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn, 1499 block_end_pfn, freelist, stride, false); 1500 1501 /* Update the skip hint if the full pageblock was scanned */ 1502 if (isolate_start_pfn == block_end_pfn) 1503 update_pageblock_skip(cc, page, block_start_pfn); 1504 1505 /* Are enough freepages isolated? */ 1506 if (cc->nr_freepages >= cc->nr_migratepages) { 1507 if (isolate_start_pfn >= block_end_pfn) { 1508 /* 1509 * Restart at previous pageblock if more 1510 * freepages can be isolated next time. 1511 */ 1512 isolate_start_pfn = 1513 block_start_pfn - pageblock_nr_pages; 1514 } 1515 break; 1516 } else if (isolate_start_pfn < block_end_pfn) { 1517 /* 1518 * If isolation failed early, do not continue 1519 * needlessly. 1520 */ 1521 break; 1522 } 1523 1524 /* Adjust stride depending on isolation */ 1525 if (nr_isolated) { 1526 stride = 1; 1527 continue; 1528 } 1529 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1); 1530 } 1531 1532 /* 1533 * Record where the free scanner will restart next time. Either we 1534 * broke from the loop and set isolate_start_pfn based on the last 1535 * call to isolate_freepages_block(), or we met the migration scanner 1536 * and the loop terminated due to isolate_start_pfn < low_pfn 1537 */ 1538 cc->free_pfn = isolate_start_pfn; 1539 1540 splitmap: 1541 /* __isolate_free_page() does not map the pages */ 1542 split_map_pages(freelist); 1543 } 1544 1545 /* 1546 * This is a migrate-callback that "allocates" freepages by taking pages 1547 * from the isolated freelists in the block we are migrating to. 1548 */ 1549 static struct page *compaction_alloc(struct page *migratepage, 1550 unsigned long data) 1551 { 1552 struct compact_control *cc = (struct compact_control *)data; 1553 struct page *freepage; 1554 1555 if (list_empty(&cc->freepages)) { 1556 isolate_freepages(cc); 1557 1558 if (list_empty(&cc->freepages)) 1559 return NULL; 1560 } 1561 1562 freepage = list_entry(cc->freepages.next, struct page, lru); 1563 list_del(&freepage->lru); 1564 cc->nr_freepages--; 1565 1566 return freepage; 1567 } 1568 1569 /* 1570 * This is a migrate-callback that "frees" freepages back to the isolated 1571 * freelist. All pages on the freelist are from the same zone, so there is no 1572 * special handling needed for NUMA. 1573 */ 1574 static void compaction_free(struct page *page, unsigned long data) 1575 { 1576 struct compact_control *cc = (struct compact_control *)data; 1577 1578 list_add(&page->lru, &cc->freepages); 1579 cc->nr_freepages++; 1580 } 1581 1582 /* possible outcome of isolate_migratepages */ 1583 typedef enum { 1584 ISOLATE_ABORT, /* Abort compaction now */ 1585 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1586 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1587 } isolate_migrate_t; 1588 1589 /* 1590 * Allow userspace to control policy on scanning the unevictable LRU for 1591 * compactable pages. 1592 */ 1593 int sysctl_compact_unevictable_allowed __read_mostly = 1; 1594 1595 static inline void 1596 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn) 1597 { 1598 if (cc->fast_start_pfn == ULONG_MAX) 1599 return; 1600 1601 if (!cc->fast_start_pfn) 1602 cc->fast_start_pfn = pfn; 1603 1604 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn); 1605 } 1606 1607 static inline unsigned long 1608 reinit_migrate_pfn(struct compact_control *cc) 1609 { 1610 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX) 1611 return cc->migrate_pfn; 1612 1613 cc->migrate_pfn = cc->fast_start_pfn; 1614 cc->fast_start_pfn = ULONG_MAX; 1615 1616 return cc->migrate_pfn; 1617 } 1618 1619 /* 1620 * Briefly search the free lists for a migration source that already has 1621 * some free pages to reduce the number of pages that need migration 1622 * before a pageblock is free. 1623 */ 1624 static unsigned long fast_find_migrateblock(struct compact_control *cc) 1625 { 1626 unsigned int limit = freelist_scan_limit(cc); 1627 unsigned int nr_scanned = 0; 1628 unsigned long distance; 1629 unsigned long pfn = cc->migrate_pfn; 1630 unsigned long high_pfn; 1631 int order; 1632 1633 /* Skip hints are relied on to avoid repeats on the fast search */ 1634 if (cc->ignore_skip_hint) 1635 return pfn; 1636 1637 /* 1638 * If the migrate_pfn is not at the start of a zone or the start 1639 * of a pageblock then assume this is a continuation of a previous 1640 * scan restarted due to COMPACT_CLUSTER_MAX. 1641 */ 1642 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn)) 1643 return pfn; 1644 1645 /* 1646 * For smaller orders, just linearly scan as the number of pages 1647 * to migrate should be relatively small and does not necessarily 1648 * justify freeing up a large block for a small allocation. 1649 */ 1650 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER) 1651 return pfn; 1652 1653 /* 1654 * Only allow kcompactd and direct requests for movable pages to 1655 * quickly clear out a MOVABLE pageblock for allocation. This 1656 * reduces the risk that a large movable pageblock is freed for 1657 * an unmovable/reclaimable small allocation. 1658 */ 1659 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE) 1660 return pfn; 1661 1662 /* 1663 * When starting the migration scanner, pick any pageblock within the 1664 * first half of the search space. Otherwise try and pick a pageblock 1665 * within the first eighth to reduce the chances that a migration 1666 * target later becomes a source. 1667 */ 1668 distance = (cc->free_pfn - cc->migrate_pfn) >> 1; 1669 if (cc->migrate_pfn != cc->zone->zone_start_pfn) 1670 distance >>= 2; 1671 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance); 1672 1673 for (order = cc->order - 1; 1674 order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit; 1675 order--) { 1676 struct free_area *area = &cc->zone->free_area[order]; 1677 struct list_head *freelist; 1678 unsigned long flags; 1679 struct page *freepage; 1680 1681 if (!area->nr_free) 1682 continue; 1683 1684 spin_lock_irqsave(&cc->zone->lock, flags); 1685 freelist = &area->free_list[MIGRATE_MOVABLE]; 1686 list_for_each_entry(freepage, freelist, lru) { 1687 unsigned long free_pfn; 1688 1689 nr_scanned++; 1690 free_pfn = page_to_pfn(freepage); 1691 if (free_pfn < high_pfn) { 1692 /* 1693 * Avoid if skipped recently. Ideally it would 1694 * move to the tail but even safe iteration of 1695 * the list assumes an entry is deleted, not 1696 * reordered. 1697 */ 1698 if (get_pageblock_skip(freepage)) { 1699 if (list_is_last(freelist, &freepage->lru)) 1700 break; 1701 1702 continue; 1703 } 1704 1705 /* Reorder to so a future search skips recent pages */ 1706 move_freelist_tail(freelist, freepage); 1707 1708 update_fast_start_pfn(cc, free_pfn); 1709 pfn = pageblock_start_pfn(free_pfn); 1710 cc->fast_search_fail = 0; 1711 set_pageblock_skip(freepage); 1712 break; 1713 } 1714 1715 if (nr_scanned >= limit) { 1716 cc->fast_search_fail++; 1717 move_freelist_tail(freelist, freepage); 1718 break; 1719 } 1720 } 1721 spin_unlock_irqrestore(&cc->zone->lock, flags); 1722 } 1723 1724 cc->total_migrate_scanned += nr_scanned; 1725 1726 /* 1727 * If fast scanning failed then use a cached entry for a page block 1728 * that had free pages as the basis for starting a linear scan. 1729 */ 1730 if (pfn == cc->migrate_pfn) 1731 pfn = reinit_migrate_pfn(cc); 1732 1733 return pfn; 1734 } 1735 1736 /* 1737 * Isolate all pages that can be migrated from the first suitable block, 1738 * starting at the block pointed to by the migrate scanner pfn within 1739 * compact_control. 1740 */ 1741 static isolate_migrate_t isolate_migratepages(struct compact_control *cc) 1742 { 1743 unsigned long block_start_pfn; 1744 unsigned long block_end_pfn; 1745 unsigned long low_pfn; 1746 struct page *page; 1747 const isolate_mode_t isolate_mode = 1748 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 1749 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0); 1750 bool fast_find_block; 1751 1752 /* 1753 * Start at where we last stopped, or beginning of the zone as 1754 * initialized by compact_zone(). The first failure will use 1755 * the lowest PFN as the starting point for linear scanning. 1756 */ 1757 low_pfn = fast_find_migrateblock(cc); 1758 block_start_pfn = pageblock_start_pfn(low_pfn); 1759 if (block_start_pfn < cc->zone->zone_start_pfn) 1760 block_start_pfn = cc->zone->zone_start_pfn; 1761 1762 /* 1763 * fast_find_migrateblock marks a pageblock skipped so to avoid 1764 * the isolation_suitable check below, check whether the fast 1765 * search was successful. 1766 */ 1767 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail; 1768 1769 /* Only scan within a pageblock boundary */ 1770 block_end_pfn = pageblock_end_pfn(low_pfn); 1771 1772 /* 1773 * Iterate over whole pageblocks until we find the first suitable. 1774 * Do not cross the free scanner. 1775 */ 1776 for (; block_end_pfn <= cc->free_pfn; 1777 fast_find_block = false, 1778 low_pfn = block_end_pfn, 1779 block_start_pfn = block_end_pfn, 1780 block_end_pfn += pageblock_nr_pages) { 1781 1782 /* 1783 * This can potentially iterate a massively long zone with 1784 * many pageblocks unsuitable, so periodically check if we 1785 * need to schedule. 1786 */ 1787 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))) 1788 cond_resched(); 1789 1790 page = pageblock_pfn_to_page(block_start_pfn, 1791 block_end_pfn, cc->zone); 1792 if (!page) 1793 continue; 1794 1795 /* 1796 * If isolation recently failed, do not retry. Only check the 1797 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock 1798 * to be visited multiple times. Assume skip was checked 1799 * before making it "skip" so other compaction instances do 1800 * not scan the same block. 1801 */ 1802 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) && 1803 !fast_find_block && !isolation_suitable(cc, page)) 1804 continue; 1805 1806 /* 1807 * For async compaction, also only scan in MOVABLE blocks 1808 * without huge pages. Async compaction is optimistic to see 1809 * if the minimum amount of work satisfies the allocation. 1810 * The cached PFN is updated as it's possible that all 1811 * remaining blocks between source and target are unsuitable 1812 * and the compaction scanners fail to meet. 1813 */ 1814 if (!suitable_migration_source(cc, page)) { 1815 update_cached_migrate(cc, block_end_pfn); 1816 continue; 1817 } 1818 1819 /* Perform the isolation */ 1820 low_pfn = isolate_migratepages_block(cc, low_pfn, 1821 block_end_pfn, isolate_mode); 1822 1823 if (!low_pfn) 1824 return ISOLATE_ABORT; 1825 1826 /* 1827 * Either we isolated something and proceed with migration. Or 1828 * we failed and compact_zone should decide if we should 1829 * continue or not. 1830 */ 1831 break; 1832 } 1833 1834 /* Record where migration scanner will be restarted. */ 1835 cc->migrate_pfn = low_pfn; 1836 1837 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 1838 } 1839 1840 /* 1841 * order == -1 is expected when compacting via 1842 * /proc/sys/vm/compact_memory 1843 */ 1844 static inline bool is_via_compact_memory(int order) 1845 { 1846 return order == -1; 1847 } 1848 1849 static enum compact_result __compact_finished(struct compact_control *cc) 1850 { 1851 unsigned int order; 1852 const int migratetype = cc->migratetype; 1853 int ret; 1854 1855 /* Compaction run completes if the migrate and free scanner meet */ 1856 if (compact_scanners_met(cc)) { 1857 /* Let the next compaction start anew. */ 1858 reset_cached_positions(cc->zone); 1859 1860 /* 1861 * Mark that the PG_migrate_skip information should be cleared 1862 * by kswapd when it goes to sleep. kcompactd does not set the 1863 * flag itself as the decision to be clear should be directly 1864 * based on an allocation request. 1865 */ 1866 if (cc->direct_compaction) 1867 cc->zone->compact_blockskip_flush = true; 1868 1869 if (cc->whole_zone) 1870 return COMPACT_COMPLETE; 1871 else 1872 return COMPACT_PARTIAL_SKIPPED; 1873 } 1874 1875 if (is_via_compact_memory(cc->order)) 1876 return COMPACT_CONTINUE; 1877 1878 /* 1879 * Always finish scanning a pageblock to reduce the possibility of 1880 * fallbacks in the future. This is particularly important when 1881 * migration source is unmovable/reclaimable but it's not worth 1882 * special casing. 1883 */ 1884 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages)) 1885 return COMPACT_CONTINUE; 1886 1887 /* Direct compactor: Is a suitable page free? */ 1888 ret = COMPACT_NO_SUITABLE_PAGE; 1889 for (order = cc->order; order < MAX_ORDER; order++) { 1890 struct free_area *area = &cc->zone->free_area[order]; 1891 bool can_steal; 1892 1893 /* Job done if page is free of the right migratetype */ 1894 if (!free_area_empty(area, migratetype)) 1895 return COMPACT_SUCCESS; 1896 1897 #ifdef CONFIG_CMA 1898 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 1899 if (migratetype == MIGRATE_MOVABLE && 1900 !free_area_empty(area, MIGRATE_CMA)) 1901 return COMPACT_SUCCESS; 1902 #endif 1903 /* 1904 * Job done if allocation would steal freepages from 1905 * other migratetype buddy lists. 1906 */ 1907 if (find_suitable_fallback(area, order, migratetype, 1908 true, &can_steal) != -1) { 1909 1910 /* movable pages are OK in any pageblock */ 1911 if (migratetype == MIGRATE_MOVABLE) 1912 return COMPACT_SUCCESS; 1913 1914 /* 1915 * We are stealing for a non-movable allocation. Make 1916 * sure we finish compacting the current pageblock 1917 * first so it is as free as possible and we won't 1918 * have to steal another one soon. This only applies 1919 * to sync compaction, as async compaction operates 1920 * on pageblocks of the same migratetype. 1921 */ 1922 if (cc->mode == MIGRATE_ASYNC || 1923 IS_ALIGNED(cc->migrate_pfn, 1924 pageblock_nr_pages)) { 1925 return COMPACT_SUCCESS; 1926 } 1927 1928 ret = COMPACT_CONTINUE; 1929 break; 1930 } 1931 } 1932 1933 if (cc->contended || fatal_signal_pending(current)) 1934 ret = COMPACT_CONTENDED; 1935 1936 return ret; 1937 } 1938 1939 static enum compact_result compact_finished(struct compact_control *cc) 1940 { 1941 int ret; 1942 1943 ret = __compact_finished(cc); 1944 trace_mm_compaction_finished(cc->zone, cc->order, ret); 1945 if (ret == COMPACT_NO_SUITABLE_PAGE) 1946 ret = COMPACT_CONTINUE; 1947 1948 return ret; 1949 } 1950 1951 /* 1952 * compaction_suitable: Is this suitable to run compaction on this zone now? 1953 * Returns 1954 * COMPACT_SKIPPED - If there are too few free pages for compaction 1955 * COMPACT_SUCCESS - If the allocation would succeed without compaction 1956 * COMPACT_CONTINUE - If compaction should run now 1957 */ 1958 static enum compact_result __compaction_suitable(struct zone *zone, int order, 1959 unsigned int alloc_flags, 1960 int classzone_idx, 1961 unsigned long wmark_target) 1962 { 1963 unsigned long watermark; 1964 1965 if (is_via_compact_memory(order)) 1966 return COMPACT_CONTINUE; 1967 1968 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 1969 /* 1970 * If watermarks for high-order allocation are already met, there 1971 * should be no need for compaction at all. 1972 */ 1973 if (zone_watermark_ok(zone, order, watermark, classzone_idx, 1974 alloc_flags)) 1975 return COMPACT_SUCCESS; 1976 1977 /* 1978 * Watermarks for order-0 must be met for compaction to be able to 1979 * isolate free pages for migration targets. This means that the 1980 * watermark and alloc_flags have to match, or be more pessimistic than 1981 * the check in __isolate_free_page(). We don't use the direct 1982 * compactor's alloc_flags, as they are not relevant for freepage 1983 * isolation. We however do use the direct compactor's classzone_idx to 1984 * skip over zones where lowmem reserves would prevent allocation even 1985 * if compaction succeeds. 1986 * For costly orders, we require low watermark instead of min for 1987 * compaction to proceed to increase its chances. 1988 * ALLOC_CMA is used, as pages in CMA pageblocks are considered 1989 * suitable migration targets 1990 */ 1991 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ? 1992 low_wmark_pages(zone) : min_wmark_pages(zone); 1993 watermark += compact_gap(order); 1994 if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx, 1995 ALLOC_CMA, wmark_target)) 1996 return COMPACT_SKIPPED; 1997 1998 return COMPACT_CONTINUE; 1999 } 2000 2001 enum compact_result compaction_suitable(struct zone *zone, int order, 2002 unsigned int alloc_flags, 2003 int classzone_idx) 2004 { 2005 enum compact_result ret; 2006 int fragindex; 2007 2008 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx, 2009 zone_page_state(zone, NR_FREE_PAGES)); 2010 /* 2011 * fragmentation index determines if allocation failures are due to 2012 * low memory or external fragmentation 2013 * 2014 * index of -1000 would imply allocations might succeed depending on 2015 * watermarks, but we already failed the high-order watermark check 2016 * index towards 0 implies failure is due to lack of memory 2017 * index towards 1000 implies failure is due to fragmentation 2018 * 2019 * Only compact if a failure would be due to fragmentation. Also 2020 * ignore fragindex for non-costly orders where the alternative to 2021 * a successful reclaim/compaction is OOM. Fragindex and the 2022 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent 2023 * excessive compaction for costly orders, but it should not be at the 2024 * expense of system stability. 2025 */ 2026 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) { 2027 fragindex = fragmentation_index(zone, order); 2028 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 2029 ret = COMPACT_NOT_SUITABLE_ZONE; 2030 } 2031 2032 trace_mm_compaction_suitable(zone, order, ret); 2033 if (ret == COMPACT_NOT_SUITABLE_ZONE) 2034 ret = COMPACT_SKIPPED; 2035 2036 return ret; 2037 } 2038 2039 bool compaction_zonelist_suitable(struct alloc_context *ac, int order, 2040 int alloc_flags) 2041 { 2042 struct zone *zone; 2043 struct zoneref *z; 2044 2045 /* 2046 * Make sure at least one zone would pass __compaction_suitable if we continue 2047 * retrying the reclaim. 2048 */ 2049 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 2050 ac->nodemask) { 2051 unsigned long available; 2052 enum compact_result compact_result; 2053 2054 /* 2055 * Do not consider all the reclaimable memory because we do not 2056 * want to trash just for a single high order allocation which 2057 * is even not guaranteed to appear even if __compaction_suitable 2058 * is happy about the watermark check. 2059 */ 2060 available = zone_reclaimable_pages(zone) / order; 2061 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 2062 compact_result = __compaction_suitable(zone, order, alloc_flags, 2063 ac_classzone_idx(ac), available); 2064 if (compact_result != COMPACT_SKIPPED) 2065 return true; 2066 } 2067 2068 return false; 2069 } 2070 2071 static enum compact_result 2072 compact_zone(struct compact_control *cc, struct capture_control *capc) 2073 { 2074 enum compact_result ret; 2075 unsigned long start_pfn = cc->zone->zone_start_pfn; 2076 unsigned long end_pfn = zone_end_pfn(cc->zone); 2077 unsigned long last_migrated_pfn; 2078 const bool sync = cc->mode != MIGRATE_ASYNC; 2079 bool update_cached; 2080 2081 /* 2082 * These counters track activities during zone compaction. Initialize 2083 * them before compacting a new zone. 2084 */ 2085 cc->total_migrate_scanned = 0; 2086 cc->total_free_scanned = 0; 2087 cc->nr_migratepages = 0; 2088 cc->nr_freepages = 0; 2089 INIT_LIST_HEAD(&cc->freepages); 2090 INIT_LIST_HEAD(&cc->migratepages); 2091 2092 cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask); 2093 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags, 2094 cc->classzone_idx); 2095 /* Compaction is likely to fail */ 2096 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED) 2097 return ret; 2098 2099 /* huh, compaction_suitable is returning something unexpected */ 2100 VM_BUG_ON(ret != COMPACT_CONTINUE); 2101 2102 /* 2103 * Clear pageblock skip if there were failures recently and compaction 2104 * is about to be retried after being deferred. 2105 */ 2106 if (compaction_restarting(cc->zone, cc->order)) 2107 __reset_isolation_suitable(cc->zone); 2108 2109 /* 2110 * Setup to move all movable pages to the end of the zone. Used cached 2111 * information on where the scanners should start (unless we explicitly 2112 * want to compact the whole zone), but check that it is initialised 2113 * by ensuring the values are within zone boundaries. 2114 */ 2115 cc->fast_start_pfn = 0; 2116 if (cc->whole_zone) { 2117 cc->migrate_pfn = start_pfn; 2118 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2119 } else { 2120 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync]; 2121 cc->free_pfn = cc->zone->compact_cached_free_pfn; 2122 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 2123 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2124 cc->zone->compact_cached_free_pfn = cc->free_pfn; 2125 } 2126 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 2127 cc->migrate_pfn = start_pfn; 2128 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 2129 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 2130 } 2131 2132 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn) 2133 cc->whole_zone = true; 2134 } 2135 2136 last_migrated_pfn = 0; 2137 2138 /* 2139 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on 2140 * the basis that some migrations will fail in ASYNC mode. However, 2141 * if the cached PFNs match and pageblocks are skipped due to having 2142 * no isolation candidates, then the sync state does not matter. 2143 * Until a pageblock with isolation candidates is found, keep the 2144 * cached PFNs in sync to avoid revisiting the same blocks. 2145 */ 2146 update_cached = !sync && 2147 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1]; 2148 2149 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, 2150 cc->free_pfn, end_pfn, sync); 2151 2152 migrate_prep_local(); 2153 2154 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) { 2155 int err; 2156 unsigned long start_pfn = cc->migrate_pfn; 2157 2158 /* 2159 * Avoid multiple rescans which can happen if a page cannot be 2160 * isolated (dirty/writeback in async mode) or if the migrated 2161 * pages are being allocated before the pageblock is cleared. 2162 * The first rescan will capture the entire pageblock for 2163 * migration. If it fails, it'll be marked skip and scanning 2164 * will proceed as normal. 2165 */ 2166 cc->rescan = false; 2167 if (pageblock_start_pfn(last_migrated_pfn) == 2168 pageblock_start_pfn(start_pfn)) { 2169 cc->rescan = true; 2170 } 2171 2172 switch (isolate_migratepages(cc)) { 2173 case ISOLATE_ABORT: 2174 ret = COMPACT_CONTENDED; 2175 putback_movable_pages(&cc->migratepages); 2176 cc->nr_migratepages = 0; 2177 last_migrated_pfn = 0; 2178 goto out; 2179 case ISOLATE_NONE: 2180 if (update_cached) { 2181 cc->zone->compact_cached_migrate_pfn[1] = 2182 cc->zone->compact_cached_migrate_pfn[0]; 2183 } 2184 2185 /* 2186 * We haven't isolated and migrated anything, but 2187 * there might still be unflushed migrations from 2188 * previous cc->order aligned block. 2189 */ 2190 goto check_drain; 2191 case ISOLATE_SUCCESS: 2192 update_cached = false; 2193 last_migrated_pfn = start_pfn; 2194 ; 2195 } 2196 2197 err = migrate_pages(&cc->migratepages, compaction_alloc, 2198 compaction_free, (unsigned long)cc, cc->mode, 2199 MR_COMPACTION); 2200 2201 trace_mm_compaction_migratepages(cc->nr_migratepages, err, 2202 &cc->migratepages); 2203 2204 /* All pages were either migrated or will be released */ 2205 cc->nr_migratepages = 0; 2206 if (err) { 2207 putback_movable_pages(&cc->migratepages); 2208 /* 2209 * migrate_pages() may return -ENOMEM when scanners meet 2210 * and we want compact_finished() to detect it 2211 */ 2212 if (err == -ENOMEM && !compact_scanners_met(cc)) { 2213 ret = COMPACT_CONTENDED; 2214 goto out; 2215 } 2216 /* 2217 * We failed to migrate at least one page in the current 2218 * order-aligned block, so skip the rest of it. 2219 */ 2220 if (cc->direct_compaction && 2221 (cc->mode == MIGRATE_ASYNC)) { 2222 cc->migrate_pfn = block_end_pfn( 2223 cc->migrate_pfn - 1, cc->order); 2224 /* Draining pcplists is useless in this case */ 2225 last_migrated_pfn = 0; 2226 } 2227 } 2228 2229 check_drain: 2230 /* 2231 * Has the migration scanner moved away from the previous 2232 * cc->order aligned block where we migrated from? If yes, 2233 * flush the pages that were freed, so that they can merge and 2234 * compact_finished() can detect immediately if allocation 2235 * would succeed. 2236 */ 2237 if (cc->order > 0 && last_migrated_pfn) { 2238 int cpu; 2239 unsigned long current_block_start = 2240 block_start_pfn(cc->migrate_pfn, cc->order); 2241 2242 if (last_migrated_pfn < current_block_start) { 2243 cpu = get_cpu(); 2244 lru_add_drain_cpu(cpu); 2245 drain_local_pages(cc->zone); 2246 put_cpu(); 2247 /* No more flushing until we migrate again */ 2248 last_migrated_pfn = 0; 2249 } 2250 } 2251 2252 /* Stop if a page has been captured */ 2253 if (capc && capc->page) { 2254 ret = COMPACT_SUCCESS; 2255 break; 2256 } 2257 } 2258 2259 out: 2260 /* 2261 * Release free pages and update where the free scanner should restart, 2262 * so we don't leave any returned pages behind in the next attempt. 2263 */ 2264 if (cc->nr_freepages > 0) { 2265 unsigned long free_pfn = release_freepages(&cc->freepages); 2266 2267 cc->nr_freepages = 0; 2268 VM_BUG_ON(free_pfn == 0); 2269 /* The cached pfn is always the first in a pageblock */ 2270 free_pfn = pageblock_start_pfn(free_pfn); 2271 /* 2272 * Only go back, not forward. The cached pfn might have been 2273 * already reset to zone end in compact_finished() 2274 */ 2275 if (free_pfn > cc->zone->compact_cached_free_pfn) 2276 cc->zone->compact_cached_free_pfn = free_pfn; 2277 } 2278 2279 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned); 2280 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned); 2281 2282 trace_mm_compaction_end(start_pfn, cc->migrate_pfn, 2283 cc->free_pfn, end_pfn, sync, ret); 2284 2285 return ret; 2286 } 2287 2288 static enum compact_result compact_zone_order(struct zone *zone, int order, 2289 gfp_t gfp_mask, enum compact_priority prio, 2290 unsigned int alloc_flags, int classzone_idx, 2291 struct page **capture) 2292 { 2293 enum compact_result ret; 2294 struct compact_control cc = { 2295 .order = order, 2296 .search_order = order, 2297 .gfp_mask = gfp_mask, 2298 .zone = zone, 2299 .mode = (prio == COMPACT_PRIO_ASYNC) ? 2300 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT, 2301 .alloc_flags = alloc_flags, 2302 .classzone_idx = classzone_idx, 2303 .direct_compaction = true, 2304 .whole_zone = (prio == MIN_COMPACT_PRIORITY), 2305 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY), 2306 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY) 2307 }; 2308 struct capture_control capc = { 2309 .cc = &cc, 2310 .page = NULL, 2311 }; 2312 2313 if (capture) 2314 current->capture_control = &capc; 2315 2316 ret = compact_zone(&cc, &capc); 2317 2318 VM_BUG_ON(!list_empty(&cc.freepages)); 2319 VM_BUG_ON(!list_empty(&cc.migratepages)); 2320 2321 *capture = capc.page; 2322 current->capture_control = NULL; 2323 2324 return ret; 2325 } 2326 2327 int sysctl_extfrag_threshold = 500; 2328 2329 /** 2330 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 2331 * @gfp_mask: The GFP mask of the current allocation 2332 * @order: The order of the current allocation 2333 * @alloc_flags: The allocation flags of the current allocation 2334 * @ac: The context of current allocation 2335 * @prio: Determines how hard direct compaction should try to succeed 2336 * 2337 * This is the main entry point for direct page compaction. 2338 */ 2339 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 2340 unsigned int alloc_flags, const struct alloc_context *ac, 2341 enum compact_priority prio, struct page **capture) 2342 { 2343 int may_perform_io = gfp_mask & __GFP_IO; 2344 struct zoneref *z; 2345 struct zone *zone; 2346 enum compact_result rc = COMPACT_SKIPPED; 2347 2348 /* 2349 * Check if the GFP flags allow compaction - GFP_NOIO is really 2350 * tricky context because the migration might require IO 2351 */ 2352 if (!may_perform_io) 2353 return COMPACT_SKIPPED; 2354 2355 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio); 2356 2357 /* Compact each zone in the list */ 2358 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 2359 ac->nodemask) { 2360 enum compact_result status; 2361 2362 if (prio > MIN_COMPACT_PRIORITY 2363 && compaction_deferred(zone, order)) { 2364 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); 2365 continue; 2366 } 2367 2368 status = compact_zone_order(zone, order, gfp_mask, prio, 2369 alloc_flags, ac_classzone_idx(ac), capture); 2370 rc = max(status, rc); 2371 2372 /* The allocation should succeed, stop compacting */ 2373 if (status == COMPACT_SUCCESS) { 2374 /* 2375 * We think the allocation will succeed in this zone, 2376 * but it is not certain, hence the false. The caller 2377 * will repeat this with true if allocation indeed 2378 * succeeds in this zone. 2379 */ 2380 compaction_defer_reset(zone, order, false); 2381 2382 break; 2383 } 2384 2385 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE || 2386 status == COMPACT_PARTIAL_SKIPPED)) 2387 /* 2388 * We think that allocation won't succeed in this zone 2389 * so we defer compaction there. If it ends up 2390 * succeeding after all, it will be reset. 2391 */ 2392 defer_compaction(zone, order); 2393 2394 /* 2395 * We might have stopped compacting due to need_resched() in 2396 * async compaction, or due to a fatal signal detected. In that 2397 * case do not try further zones 2398 */ 2399 if ((prio == COMPACT_PRIO_ASYNC && need_resched()) 2400 || fatal_signal_pending(current)) 2401 break; 2402 } 2403 2404 return rc; 2405 } 2406 2407 2408 /* Compact all zones within a node */ 2409 static void compact_node(int nid) 2410 { 2411 pg_data_t *pgdat = NODE_DATA(nid); 2412 int zoneid; 2413 struct zone *zone; 2414 struct compact_control cc = { 2415 .order = -1, 2416 .mode = MIGRATE_SYNC, 2417 .ignore_skip_hint = true, 2418 .whole_zone = true, 2419 .gfp_mask = GFP_KERNEL, 2420 }; 2421 2422 2423 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2424 2425 zone = &pgdat->node_zones[zoneid]; 2426 if (!populated_zone(zone)) 2427 continue; 2428 2429 cc.zone = zone; 2430 2431 compact_zone(&cc, NULL); 2432 2433 VM_BUG_ON(!list_empty(&cc.freepages)); 2434 VM_BUG_ON(!list_empty(&cc.migratepages)); 2435 } 2436 } 2437 2438 /* Compact all nodes in the system */ 2439 static void compact_nodes(void) 2440 { 2441 int nid; 2442 2443 /* Flush pending updates to the LRU lists */ 2444 lru_add_drain_all(); 2445 2446 for_each_online_node(nid) 2447 compact_node(nid); 2448 } 2449 2450 /* The written value is actually unused, all memory is compacted */ 2451 int sysctl_compact_memory; 2452 2453 /* 2454 * This is the entry point for compacting all nodes via 2455 * /proc/sys/vm/compact_memory 2456 */ 2457 int sysctl_compaction_handler(struct ctl_table *table, int write, 2458 void __user *buffer, size_t *length, loff_t *ppos) 2459 { 2460 if (write) 2461 compact_nodes(); 2462 2463 return 0; 2464 } 2465 2466 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 2467 static ssize_t sysfs_compact_node(struct device *dev, 2468 struct device_attribute *attr, 2469 const char *buf, size_t count) 2470 { 2471 int nid = dev->id; 2472 2473 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 2474 /* Flush pending updates to the LRU lists */ 2475 lru_add_drain_all(); 2476 2477 compact_node(nid); 2478 } 2479 2480 return count; 2481 } 2482 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node); 2483 2484 int compaction_register_node(struct node *node) 2485 { 2486 return device_create_file(&node->dev, &dev_attr_compact); 2487 } 2488 2489 void compaction_unregister_node(struct node *node) 2490 { 2491 return device_remove_file(&node->dev, &dev_attr_compact); 2492 } 2493 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 2494 2495 static inline bool kcompactd_work_requested(pg_data_t *pgdat) 2496 { 2497 return pgdat->kcompactd_max_order > 0 || kthread_should_stop(); 2498 } 2499 2500 static bool kcompactd_node_suitable(pg_data_t *pgdat) 2501 { 2502 int zoneid; 2503 struct zone *zone; 2504 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx; 2505 2506 for (zoneid = 0; zoneid <= classzone_idx; zoneid++) { 2507 zone = &pgdat->node_zones[zoneid]; 2508 2509 if (!populated_zone(zone)) 2510 continue; 2511 2512 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0, 2513 classzone_idx) == COMPACT_CONTINUE) 2514 return true; 2515 } 2516 2517 return false; 2518 } 2519 2520 static void kcompactd_do_work(pg_data_t *pgdat) 2521 { 2522 /* 2523 * With no special task, compact all zones so that a page of requested 2524 * order is allocatable. 2525 */ 2526 int zoneid; 2527 struct zone *zone; 2528 struct compact_control cc = { 2529 .order = pgdat->kcompactd_max_order, 2530 .search_order = pgdat->kcompactd_max_order, 2531 .classzone_idx = pgdat->kcompactd_classzone_idx, 2532 .mode = MIGRATE_SYNC_LIGHT, 2533 .ignore_skip_hint = false, 2534 .gfp_mask = GFP_KERNEL, 2535 }; 2536 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 2537 cc.classzone_idx); 2538 count_compact_event(KCOMPACTD_WAKE); 2539 2540 for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) { 2541 int status; 2542 2543 zone = &pgdat->node_zones[zoneid]; 2544 if (!populated_zone(zone)) 2545 continue; 2546 2547 if (compaction_deferred(zone, cc.order)) 2548 continue; 2549 2550 if (compaction_suitable(zone, cc.order, 0, zoneid) != 2551 COMPACT_CONTINUE) 2552 continue; 2553 2554 if (kthread_should_stop()) 2555 return; 2556 2557 cc.zone = zone; 2558 status = compact_zone(&cc, NULL); 2559 2560 if (status == COMPACT_SUCCESS) { 2561 compaction_defer_reset(zone, cc.order, false); 2562 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { 2563 /* 2564 * Buddy pages may become stranded on pcps that could 2565 * otherwise coalesce on the zone's free area for 2566 * order >= cc.order. This is ratelimited by the 2567 * upcoming deferral. 2568 */ 2569 drain_all_pages(zone); 2570 2571 /* 2572 * We use sync migration mode here, so we defer like 2573 * sync direct compaction does. 2574 */ 2575 defer_compaction(zone, cc.order); 2576 } 2577 2578 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 2579 cc.total_migrate_scanned); 2580 count_compact_events(KCOMPACTD_FREE_SCANNED, 2581 cc.total_free_scanned); 2582 2583 VM_BUG_ON(!list_empty(&cc.freepages)); 2584 VM_BUG_ON(!list_empty(&cc.migratepages)); 2585 } 2586 2587 /* 2588 * Regardless of success, we are done until woken up next. But remember 2589 * the requested order/classzone_idx in case it was higher/tighter than 2590 * our current ones 2591 */ 2592 if (pgdat->kcompactd_max_order <= cc.order) 2593 pgdat->kcompactd_max_order = 0; 2594 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx) 2595 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1; 2596 } 2597 2598 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx) 2599 { 2600 if (!order) 2601 return; 2602 2603 if (pgdat->kcompactd_max_order < order) 2604 pgdat->kcompactd_max_order = order; 2605 2606 if (pgdat->kcompactd_classzone_idx > classzone_idx) 2607 pgdat->kcompactd_classzone_idx = classzone_idx; 2608 2609 /* 2610 * Pairs with implicit barrier in wait_event_freezable() 2611 * such that wakeups are not missed. 2612 */ 2613 if (!wq_has_sleeper(&pgdat->kcompactd_wait)) 2614 return; 2615 2616 if (!kcompactd_node_suitable(pgdat)) 2617 return; 2618 2619 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 2620 classzone_idx); 2621 wake_up_interruptible(&pgdat->kcompactd_wait); 2622 } 2623 2624 /* 2625 * The background compaction daemon, started as a kernel thread 2626 * from the init process. 2627 */ 2628 static int kcompactd(void *p) 2629 { 2630 pg_data_t *pgdat = (pg_data_t*)p; 2631 struct task_struct *tsk = current; 2632 2633 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2634 2635 if (!cpumask_empty(cpumask)) 2636 set_cpus_allowed_ptr(tsk, cpumask); 2637 2638 set_freezable(); 2639 2640 pgdat->kcompactd_max_order = 0; 2641 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1; 2642 2643 while (!kthread_should_stop()) { 2644 unsigned long pflags; 2645 2646 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 2647 wait_event_freezable(pgdat->kcompactd_wait, 2648 kcompactd_work_requested(pgdat)); 2649 2650 psi_memstall_enter(&pflags); 2651 kcompactd_do_work(pgdat); 2652 psi_memstall_leave(&pflags); 2653 } 2654 2655 return 0; 2656 } 2657 2658 /* 2659 * This kcompactd start function will be called by init and node-hot-add. 2660 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 2661 */ 2662 int kcompactd_run(int nid) 2663 { 2664 pg_data_t *pgdat = NODE_DATA(nid); 2665 int ret = 0; 2666 2667 if (pgdat->kcompactd) 2668 return 0; 2669 2670 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); 2671 if (IS_ERR(pgdat->kcompactd)) { 2672 pr_err("Failed to start kcompactd on node %d\n", nid); 2673 ret = PTR_ERR(pgdat->kcompactd); 2674 pgdat->kcompactd = NULL; 2675 } 2676 return ret; 2677 } 2678 2679 /* 2680 * Called by memory hotplug when all memory in a node is offlined. Caller must 2681 * hold mem_hotplug_begin/end(). 2682 */ 2683 void kcompactd_stop(int nid) 2684 { 2685 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 2686 2687 if (kcompactd) { 2688 kthread_stop(kcompactd); 2689 NODE_DATA(nid)->kcompactd = NULL; 2690 } 2691 } 2692 2693 /* 2694 * It's optimal to keep kcompactd on the same CPUs as their memory, but 2695 * not required for correctness. So if the last cpu in a node goes 2696 * away, we get changed to run anywhere: as the first one comes back, 2697 * restore their cpu bindings. 2698 */ 2699 static int kcompactd_cpu_online(unsigned int cpu) 2700 { 2701 int nid; 2702 2703 for_each_node_state(nid, N_MEMORY) { 2704 pg_data_t *pgdat = NODE_DATA(nid); 2705 const struct cpumask *mask; 2706 2707 mask = cpumask_of_node(pgdat->node_id); 2708 2709 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 2710 /* One of our CPUs online: restore mask */ 2711 set_cpus_allowed_ptr(pgdat->kcompactd, mask); 2712 } 2713 return 0; 2714 } 2715 2716 static int __init kcompactd_init(void) 2717 { 2718 int nid; 2719 int ret; 2720 2721 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 2722 "mm/compaction:online", 2723 kcompactd_cpu_online, NULL); 2724 if (ret < 0) { 2725 pr_err("kcompactd: failed to register hotplug callbacks.\n"); 2726 return ret; 2727 } 2728 2729 for_each_node_state(nid, N_MEMORY) 2730 kcompactd_run(nid); 2731 return 0; 2732 } 2733 subsys_initcall(kcompactd_init) 2734 2735 #endif /* CONFIG_COMPACTION */ 2736