xref: /linux/mm/compaction.c (revision cc3ae7b0af27118994c1e491382b253be3b762bf)
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/cpu.h>
11 #include <linux/swap.h>
12 #include <linux/migrate.h>
13 #include <linux/compaction.h>
14 #include <linux/mm_inline.h>
15 #include <linux/backing-dev.h>
16 #include <linux/sysctl.h>
17 #include <linux/sysfs.h>
18 #include <linux/balloon_compaction.h>
19 #include <linux/page-isolation.h>
20 #include <linux/kasan.h>
21 #include <linux/kthread.h>
22 #include <linux/freezer.h>
23 #include "internal.h"
24 
25 #ifdef CONFIG_COMPACTION
26 static inline void count_compact_event(enum vm_event_item item)
27 {
28 	count_vm_event(item);
29 }
30 
31 static inline void count_compact_events(enum vm_event_item item, long delta)
32 {
33 	count_vm_events(item, delta);
34 }
35 #else
36 #define count_compact_event(item) do { } while (0)
37 #define count_compact_events(item, delta) do { } while (0)
38 #endif
39 
40 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
41 
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/compaction.h>
44 
45 #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
46 #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
47 #define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
48 #define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)
49 
50 static unsigned long release_freepages(struct list_head *freelist)
51 {
52 	struct page *page, *next;
53 	unsigned long high_pfn = 0;
54 
55 	list_for_each_entry_safe(page, next, freelist, lru) {
56 		unsigned long pfn = page_to_pfn(page);
57 		list_del(&page->lru);
58 		__free_page(page);
59 		if (pfn > high_pfn)
60 			high_pfn = pfn;
61 	}
62 
63 	return high_pfn;
64 }
65 
66 static void map_pages(struct list_head *list)
67 {
68 	struct page *page;
69 
70 	list_for_each_entry(page, list, lru) {
71 		arch_alloc_page(page, 0);
72 		kernel_map_pages(page, 1, 1);
73 		kasan_alloc_pages(page, 0);
74 	}
75 }
76 
77 static inline bool migrate_async_suitable(int migratetype)
78 {
79 	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
80 }
81 
82 #ifdef CONFIG_COMPACTION
83 
84 /* Do not skip compaction more than 64 times */
85 #define COMPACT_MAX_DEFER_SHIFT 6
86 
87 /*
88  * Compaction is deferred when compaction fails to result in a page
89  * allocation success. 1 << compact_defer_limit compactions are skipped up
90  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
91  */
92 void defer_compaction(struct zone *zone, int order)
93 {
94 	zone->compact_considered = 0;
95 	zone->compact_defer_shift++;
96 
97 	if (order < zone->compact_order_failed)
98 		zone->compact_order_failed = order;
99 
100 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
101 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
102 
103 	trace_mm_compaction_defer_compaction(zone, order);
104 }
105 
106 /* Returns true if compaction should be skipped this time */
107 bool compaction_deferred(struct zone *zone, int order)
108 {
109 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
110 
111 	if (order < zone->compact_order_failed)
112 		return false;
113 
114 	/* Avoid possible overflow */
115 	if (++zone->compact_considered > defer_limit)
116 		zone->compact_considered = defer_limit;
117 
118 	if (zone->compact_considered >= defer_limit)
119 		return false;
120 
121 	trace_mm_compaction_deferred(zone, order);
122 
123 	return true;
124 }
125 
126 /*
127  * Update defer tracking counters after successful compaction of given order,
128  * which means an allocation either succeeded (alloc_success == true) or is
129  * expected to succeed.
130  */
131 void compaction_defer_reset(struct zone *zone, int order,
132 		bool alloc_success)
133 {
134 	if (alloc_success) {
135 		zone->compact_considered = 0;
136 		zone->compact_defer_shift = 0;
137 	}
138 	if (order >= zone->compact_order_failed)
139 		zone->compact_order_failed = order + 1;
140 
141 	trace_mm_compaction_defer_reset(zone, order);
142 }
143 
144 /* Returns true if restarting compaction after many failures */
145 bool compaction_restarting(struct zone *zone, int order)
146 {
147 	if (order < zone->compact_order_failed)
148 		return false;
149 
150 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
151 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
152 }
153 
154 /* Returns true if the pageblock should be scanned for pages to isolate. */
155 static inline bool isolation_suitable(struct compact_control *cc,
156 					struct page *page)
157 {
158 	if (cc->ignore_skip_hint)
159 		return true;
160 
161 	return !get_pageblock_skip(page);
162 }
163 
164 static void reset_cached_positions(struct zone *zone)
165 {
166 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
167 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
168 	zone->compact_cached_free_pfn =
169 				pageblock_start_pfn(zone_end_pfn(zone) - 1);
170 }
171 
172 /*
173  * This function is called to clear all cached information on pageblocks that
174  * should be skipped for page isolation when the migrate and free page scanner
175  * meet.
176  */
177 static void __reset_isolation_suitable(struct zone *zone)
178 {
179 	unsigned long start_pfn = zone->zone_start_pfn;
180 	unsigned long end_pfn = zone_end_pfn(zone);
181 	unsigned long pfn;
182 
183 	zone->compact_blockskip_flush = false;
184 
185 	/* Walk the zone and mark every pageblock as suitable for isolation */
186 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
187 		struct page *page;
188 
189 		cond_resched();
190 
191 		if (!pfn_valid(pfn))
192 			continue;
193 
194 		page = pfn_to_page(pfn);
195 		if (zone != page_zone(page))
196 			continue;
197 
198 		clear_pageblock_skip(page);
199 	}
200 
201 	reset_cached_positions(zone);
202 }
203 
204 void reset_isolation_suitable(pg_data_t *pgdat)
205 {
206 	int zoneid;
207 
208 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
209 		struct zone *zone = &pgdat->node_zones[zoneid];
210 		if (!populated_zone(zone))
211 			continue;
212 
213 		/* Only flush if a full compaction finished recently */
214 		if (zone->compact_blockskip_flush)
215 			__reset_isolation_suitable(zone);
216 	}
217 }
218 
219 /*
220  * If no pages were isolated then mark this pageblock to be skipped in the
221  * future. The information is later cleared by __reset_isolation_suitable().
222  */
223 static void update_pageblock_skip(struct compact_control *cc,
224 			struct page *page, unsigned long nr_isolated,
225 			bool migrate_scanner)
226 {
227 	struct zone *zone = cc->zone;
228 	unsigned long pfn;
229 
230 	if (cc->ignore_skip_hint)
231 		return;
232 
233 	if (!page)
234 		return;
235 
236 	if (nr_isolated)
237 		return;
238 
239 	set_pageblock_skip(page);
240 
241 	pfn = page_to_pfn(page);
242 
243 	/* Update where async and sync compaction should restart */
244 	if (migrate_scanner) {
245 		if (pfn > zone->compact_cached_migrate_pfn[0])
246 			zone->compact_cached_migrate_pfn[0] = pfn;
247 		if (cc->mode != MIGRATE_ASYNC &&
248 		    pfn > zone->compact_cached_migrate_pfn[1])
249 			zone->compact_cached_migrate_pfn[1] = pfn;
250 	} else {
251 		if (pfn < zone->compact_cached_free_pfn)
252 			zone->compact_cached_free_pfn = pfn;
253 	}
254 }
255 #else
256 static inline bool isolation_suitable(struct compact_control *cc,
257 					struct page *page)
258 {
259 	return true;
260 }
261 
262 static void update_pageblock_skip(struct compact_control *cc,
263 			struct page *page, unsigned long nr_isolated,
264 			bool migrate_scanner)
265 {
266 }
267 #endif /* CONFIG_COMPACTION */
268 
269 /*
270  * Compaction requires the taking of some coarse locks that are potentially
271  * very heavily contended. For async compaction, back out if the lock cannot
272  * be taken immediately. For sync compaction, spin on the lock if needed.
273  *
274  * Returns true if the lock is held
275  * Returns false if the lock is not held and compaction should abort
276  */
277 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
278 						struct compact_control *cc)
279 {
280 	if (cc->mode == MIGRATE_ASYNC) {
281 		if (!spin_trylock_irqsave(lock, *flags)) {
282 			cc->contended = COMPACT_CONTENDED_LOCK;
283 			return false;
284 		}
285 	} else {
286 		spin_lock_irqsave(lock, *flags);
287 	}
288 
289 	return true;
290 }
291 
292 /*
293  * Compaction requires the taking of some coarse locks that are potentially
294  * very heavily contended. The lock should be periodically unlocked to avoid
295  * having disabled IRQs for a long time, even when there is nobody waiting on
296  * the lock. It might also be that allowing the IRQs will result in
297  * need_resched() becoming true. If scheduling is needed, async compaction
298  * aborts. Sync compaction schedules.
299  * Either compaction type will also abort if a fatal signal is pending.
300  * In either case if the lock was locked, it is dropped and not regained.
301  *
302  * Returns true if compaction should abort due to fatal signal pending, or
303  *		async compaction due to need_resched()
304  * Returns false when compaction can continue (sync compaction might have
305  *		scheduled)
306  */
307 static bool compact_unlock_should_abort(spinlock_t *lock,
308 		unsigned long flags, bool *locked, struct compact_control *cc)
309 {
310 	if (*locked) {
311 		spin_unlock_irqrestore(lock, flags);
312 		*locked = false;
313 	}
314 
315 	if (fatal_signal_pending(current)) {
316 		cc->contended = COMPACT_CONTENDED_SCHED;
317 		return true;
318 	}
319 
320 	if (need_resched()) {
321 		if (cc->mode == MIGRATE_ASYNC) {
322 			cc->contended = COMPACT_CONTENDED_SCHED;
323 			return true;
324 		}
325 		cond_resched();
326 	}
327 
328 	return false;
329 }
330 
331 /*
332  * Aside from avoiding lock contention, compaction also periodically checks
333  * need_resched() and either schedules in sync compaction or aborts async
334  * compaction. This is similar to what compact_unlock_should_abort() does, but
335  * is used where no lock is concerned.
336  *
337  * Returns false when no scheduling was needed, or sync compaction scheduled.
338  * Returns true when async compaction should abort.
339  */
340 static inline bool compact_should_abort(struct compact_control *cc)
341 {
342 	/* async compaction aborts if contended */
343 	if (need_resched()) {
344 		if (cc->mode == MIGRATE_ASYNC) {
345 			cc->contended = COMPACT_CONTENDED_SCHED;
346 			return true;
347 		}
348 
349 		cond_resched();
350 	}
351 
352 	return false;
353 }
354 
355 /*
356  * Isolate free pages onto a private freelist. If @strict is true, will abort
357  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
358  * (even though it may still end up isolating some pages).
359  */
360 static unsigned long isolate_freepages_block(struct compact_control *cc,
361 				unsigned long *start_pfn,
362 				unsigned long end_pfn,
363 				struct list_head *freelist,
364 				bool strict)
365 {
366 	int nr_scanned = 0, total_isolated = 0;
367 	struct page *cursor, *valid_page = NULL;
368 	unsigned long flags = 0;
369 	bool locked = false;
370 	unsigned long blockpfn = *start_pfn;
371 
372 	cursor = pfn_to_page(blockpfn);
373 
374 	/* Isolate free pages. */
375 	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
376 		int isolated, i;
377 		struct page *page = cursor;
378 
379 		/*
380 		 * Periodically drop the lock (if held) regardless of its
381 		 * contention, to give chance to IRQs. Abort if fatal signal
382 		 * pending or async compaction detects need_resched()
383 		 */
384 		if (!(blockpfn % SWAP_CLUSTER_MAX)
385 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
386 								&locked, cc))
387 			break;
388 
389 		nr_scanned++;
390 		if (!pfn_valid_within(blockpfn))
391 			goto isolate_fail;
392 
393 		if (!valid_page)
394 			valid_page = page;
395 
396 		/*
397 		 * For compound pages such as THP and hugetlbfs, we can save
398 		 * potentially a lot of iterations if we skip them at once.
399 		 * The check is racy, but we can consider only valid values
400 		 * and the only danger is skipping too much.
401 		 */
402 		if (PageCompound(page)) {
403 			unsigned int comp_order = compound_order(page);
404 
405 			if (likely(comp_order < MAX_ORDER)) {
406 				blockpfn += (1UL << comp_order) - 1;
407 				cursor += (1UL << comp_order) - 1;
408 			}
409 
410 			goto isolate_fail;
411 		}
412 
413 		if (!PageBuddy(page))
414 			goto isolate_fail;
415 
416 		/*
417 		 * If we already hold the lock, we can skip some rechecking.
418 		 * Note that if we hold the lock now, checked_pageblock was
419 		 * already set in some previous iteration (or strict is true),
420 		 * so it is correct to skip the suitable migration target
421 		 * recheck as well.
422 		 */
423 		if (!locked) {
424 			/*
425 			 * The zone lock must be held to isolate freepages.
426 			 * Unfortunately this is a very coarse lock and can be
427 			 * heavily contended if there are parallel allocations
428 			 * or parallel compactions. For async compaction do not
429 			 * spin on the lock and we acquire the lock as late as
430 			 * possible.
431 			 */
432 			locked = compact_trylock_irqsave(&cc->zone->lock,
433 								&flags, cc);
434 			if (!locked)
435 				break;
436 
437 			/* Recheck this is a buddy page under lock */
438 			if (!PageBuddy(page))
439 				goto isolate_fail;
440 		}
441 
442 		/* Found a free page, break it into order-0 pages */
443 		isolated = split_free_page(page);
444 		if (!isolated)
445 			break;
446 
447 		total_isolated += isolated;
448 		cc->nr_freepages += isolated;
449 		for (i = 0; i < isolated; i++) {
450 			list_add(&page->lru, freelist);
451 			page++;
452 		}
453 		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
454 			blockpfn += isolated;
455 			break;
456 		}
457 		/* Advance to the end of split page */
458 		blockpfn += isolated - 1;
459 		cursor += isolated - 1;
460 		continue;
461 
462 isolate_fail:
463 		if (strict)
464 			break;
465 		else
466 			continue;
467 
468 	}
469 
470 	if (locked)
471 		spin_unlock_irqrestore(&cc->zone->lock, flags);
472 
473 	/*
474 	 * There is a tiny chance that we have read bogus compound_order(),
475 	 * so be careful to not go outside of the pageblock.
476 	 */
477 	if (unlikely(blockpfn > end_pfn))
478 		blockpfn = end_pfn;
479 
480 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
481 					nr_scanned, total_isolated);
482 
483 	/* Record how far we have got within the block */
484 	*start_pfn = blockpfn;
485 
486 	/*
487 	 * If strict isolation is requested by CMA then check that all the
488 	 * pages requested were isolated. If there were any failures, 0 is
489 	 * returned and CMA will fail.
490 	 */
491 	if (strict && blockpfn < end_pfn)
492 		total_isolated = 0;
493 
494 	/* Update the pageblock-skip if the whole pageblock was scanned */
495 	if (blockpfn == end_pfn)
496 		update_pageblock_skip(cc, valid_page, total_isolated, false);
497 
498 	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
499 	if (total_isolated)
500 		count_compact_events(COMPACTISOLATED, total_isolated);
501 	return total_isolated;
502 }
503 
504 /**
505  * isolate_freepages_range() - isolate free pages.
506  * @start_pfn: The first PFN to start isolating.
507  * @end_pfn:   The one-past-last PFN.
508  *
509  * Non-free pages, invalid PFNs, or zone boundaries within the
510  * [start_pfn, end_pfn) range are considered errors, cause function to
511  * undo its actions and return zero.
512  *
513  * Otherwise, function returns one-past-the-last PFN of isolated page
514  * (which may be greater then end_pfn if end fell in a middle of
515  * a free page).
516  */
517 unsigned long
518 isolate_freepages_range(struct compact_control *cc,
519 			unsigned long start_pfn, unsigned long end_pfn)
520 {
521 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
522 	LIST_HEAD(freelist);
523 
524 	pfn = start_pfn;
525 	block_start_pfn = pageblock_start_pfn(pfn);
526 	if (block_start_pfn < cc->zone->zone_start_pfn)
527 		block_start_pfn = cc->zone->zone_start_pfn;
528 	block_end_pfn = pageblock_end_pfn(pfn);
529 
530 	for (; pfn < end_pfn; pfn += isolated,
531 				block_start_pfn = block_end_pfn,
532 				block_end_pfn += pageblock_nr_pages) {
533 		/* Protect pfn from changing by isolate_freepages_block */
534 		unsigned long isolate_start_pfn = pfn;
535 
536 		block_end_pfn = min(block_end_pfn, end_pfn);
537 
538 		/*
539 		 * pfn could pass the block_end_pfn if isolated freepage
540 		 * is more than pageblock order. In this case, we adjust
541 		 * scanning range to right one.
542 		 */
543 		if (pfn >= block_end_pfn) {
544 			block_start_pfn = pageblock_start_pfn(pfn);
545 			block_end_pfn = pageblock_end_pfn(pfn);
546 			block_end_pfn = min(block_end_pfn, end_pfn);
547 		}
548 
549 		if (!pageblock_pfn_to_page(block_start_pfn,
550 					block_end_pfn, cc->zone))
551 			break;
552 
553 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
554 						block_end_pfn, &freelist, true);
555 
556 		/*
557 		 * In strict mode, isolate_freepages_block() returns 0 if
558 		 * there are any holes in the block (ie. invalid PFNs or
559 		 * non-free pages).
560 		 */
561 		if (!isolated)
562 			break;
563 
564 		/*
565 		 * If we managed to isolate pages, it is always (1 << n) *
566 		 * pageblock_nr_pages for some non-negative n.  (Max order
567 		 * page may span two pageblocks).
568 		 */
569 	}
570 
571 	/* split_free_page does not map the pages */
572 	map_pages(&freelist);
573 
574 	if (pfn < end_pfn) {
575 		/* Loop terminated early, cleanup. */
576 		release_freepages(&freelist);
577 		return 0;
578 	}
579 
580 	/* We don't use freelists for anything. */
581 	return pfn;
582 }
583 
584 /* Update the number of anon and file isolated pages in the zone */
585 static void acct_isolated(struct zone *zone, struct compact_control *cc)
586 {
587 	struct page *page;
588 	unsigned int count[2] = { 0, };
589 
590 	if (list_empty(&cc->migratepages))
591 		return;
592 
593 	list_for_each_entry(page, &cc->migratepages, lru)
594 		count[!!page_is_file_cache(page)]++;
595 
596 	mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
597 	mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
598 }
599 
600 /* Similar to reclaim, but different enough that they don't share logic */
601 static bool too_many_isolated(struct zone *zone)
602 {
603 	unsigned long active, inactive, isolated;
604 
605 	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
606 					zone_page_state(zone, NR_INACTIVE_ANON);
607 	active = zone_page_state(zone, NR_ACTIVE_FILE) +
608 					zone_page_state(zone, NR_ACTIVE_ANON);
609 	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
610 					zone_page_state(zone, NR_ISOLATED_ANON);
611 
612 	return isolated > (inactive + active) / 2;
613 }
614 
615 /**
616  * isolate_migratepages_block() - isolate all migrate-able pages within
617  *				  a single pageblock
618  * @cc:		Compaction control structure.
619  * @low_pfn:	The first PFN to isolate
620  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
621  * @isolate_mode: Isolation mode to be used.
622  *
623  * Isolate all pages that can be migrated from the range specified by
624  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
625  * Returns zero if there is a fatal signal pending, otherwise PFN of the
626  * first page that was not scanned (which may be both less, equal to or more
627  * than end_pfn).
628  *
629  * The pages are isolated on cc->migratepages list (not required to be empty),
630  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
631  * is neither read nor updated.
632  */
633 static unsigned long
634 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
635 			unsigned long end_pfn, isolate_mode_t isolate_mode)
636 {
637 	struct zone *zone = cc->zone;
638 	unsigned long nr_scanned = 0, nr_isolated = 0;
639 	struct lruvec *lruvec;
640 	unsigned long flags = 0;
641 	bool locked = false;
642 	struct page *page = NULL, *valid_page = NULL;
643 	unsigned long start_pfn = low_pfn;
644 	bool skip_on_failure = false;
645 	unsigned long next_skip_pfn = 0;
646 
647 	/*
648 	 * Ensure that there are not too many pages isolated from the LRU
649 	 * list by either parallel reclaimers or compaction. If there are,
650 	 * delay for some time until fewer pages are isolated
651 	 */
652 	while (unlikely(too_many_isolated(zone))) {
653 		/* async migration should just abort */
654 		if (cc->mode == MIGRATE_ASYNC)
655 			return 0;
656 
657 		congestion_wait(BLK_RW_ASYNC, HZ/10);
658 
659 		if (fatal_signal_pending(current))
660 			return 0;
661 	}
662 
663 	if (compact_should_abort(cc))
664 		return 0;
665 
666 	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
667 		skip_on_failure = true;
668 		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
669 	}
670 
671 	/* Time to isolate some pages for migration */
672 	for (; low_pfn < end_pfn; low_pfn++) {
673 		bool is_lru;
674 
675 		if (skip_on_failure && low_pfn >= next_skip_pfn) {
676 			/*
677 			 * We have isolated all migration candidates in the
678 			 * previous order-aligned block, and did not skip it due
679 			 * to failure. We should migrate the pages now and
680 			 * hopefully succeed compaction.
681 			 */
682 			if (nr_isolated)
683 				break;
684 
685 			/*
686 			 * We failed to isolate in the previous order-aligned
687 			 * block. Set the new boundary to the end of the
688 			 * current block. Note we can't simply increase
689 			 * next_skip_pfn by 1 << order, as low_pfn might have
690 			 * been incremented by a higher number due to skipping
691 			 * a compound or a high-order buddy page in the
692 			 * previous loop iteration.
693 			 */
694 			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
695 		}
696 
697 		/*
698 		 * Periodically drop the lock (if held) regardless of its
699 		 * contention, to give chance to IRQs. Abort async compaction
700 		 * if contended.
701 		 */
702 		if (!(low_pfn % SWAP_CLUSTER_MAX)
703 		    && compact_unlock_should_abort(&zone->lru_lock, flags,
704 								&locked, cc))
705 			break;
706 
707 		if (!pfn_valid_within(low_pfn))
708 			goto isolate_fail;
709 		nr_scanned++;
710 
711 		page = pfn_to_page(low_pfn);
712 
713 		if (!valid_page)
714 			valid_page = page;
715 
716 		/*
717 		 * Skip if free. We read page order here without zone lock
718 		 * which is generally unsafe, but the race window is small and
719 		 * the worst thing that can happen is that we skip some
720 		 * potential isolation targets.
721 		 */
722 		if (PageBuddy(page)) {
723 			unsigned long freepage_order = page_order_unsafe(page);
724 
725 			/*
726 			 * Without lock, we cannot be sure that what we got is
727 			 * a valid page order. Consider only values in the
728 			 * valid order range to prevent low_pfn overflow.
729 			 */
730 			if (freepage_order > 0 && freepage_order < MAX_ORDER)
731 				low_pfn += (1UL << freepage_order) - 1;
732 			continue;
733 		}
734 
735 		/*
736 		 * Check may be lockless but that's ok as we recheck later.
737 		 * It's possible to migrate LRU pages and balloon pages
738 		 * Skip any other type of page
739 		 */
740 		is_lru = PageLRU(page);
741 		if (!is_lru) {
742 			if (unlikely(balloon_page_movable(page))) {
743 				if (balloon_page_isolate(page)) {
744 					/* Successfully isolated */
745 					goto isolate_success;
746 				}
747 			}
748 		}
749 
750 		/*
751 		 * Regardless of being on LRU, compound pages such as THP and
752 		 * hugetlbfs are not to be compacted. We can potentially save
753 		 * a lot of iterations if we skip them at once. The check is
754 		 * racy, but we can consider only valid values and the only
755 		 * danger is skipping too much.
756 		 */
757 		if (PageCompound(page)) {
758 			unsigned int comp_order = compound_order(page);
759 
760 			if (likely(comp_order < MAX_ORDER))
761 				low_pfn += (1UL << comp_order) - 1;
762 
763 			goto isolate_fail;
764 		}
765 
766 		if (!is_lru)
767 			goto isolate_fail;
768 
769 		/*
770 		 * Migration will fail if an anonymous page is pinned in memory,
771 		 * so avoid taking lru_lock and isolating it unnecessarily in an
772 		 * admittedly racy check.
773 		 */
774 		if (!page_mapping(page) &&
775 		    page_count(page) > page_mapcount(page))
776 			goto isolate_fail;
777 
778 		/* If we already hold the lock, we can skip some rechecking */
779 		if (!locked) {
780 			locked = compact_trylock_irqsave(&zone->lru_lock,
781 								&flags, cc);
782 			if (!locked)
783 				break;
784 
785 			/* Recheck PageLRU and PageCompound under lock */
786 			if (!PageLRU(page))
787 				goto isolate_fail;
788 
789 			/*
790 			 * Page become compound since the non-locked check,
791 			 * and it's on LRU. It can only be a THP so the order
792 			 * is safe to read and it's 0 for tail pages.
793 			 */
794 			if (unlikely(PageCompound(page))) {
795 				low_pfn += (1UL << compound_order(page)) - 1;
796 				goto isolate_fail;
797 			}
798 		}
799 
800 		lruvec = mem_cgroup_page_lruvec(page, zone);
801 
802 		/* Try isolate the page */
803 		if (__isolate_lru_page(page, isolate_mode) != 0)
804 			goto isolate_fail;
805 
806 		VM_BUG_ON_PAGE(PageCompound(page), page);
807 
808 		/* Successfully isolated */
809 		del_page_from_lru_list(page, lruvec, page_lru(page));
810 
811 isolate_success:
812 		list_add(&page->lru, &cc->migratepages);
813 		cc->nr_migratepages++;
814 		nr_isolated++;
815 
816 		/*
817 		 * Record where we could have freed pages by migration and not
818 		 * yet flushed them to buddy allocator.
819 		 * - this is the lowest page that was isolated and likely be
820 		 * then freed by migration.
821 		 */
822 		if (!cc->last_migrated_pfn)
823 			cc->last_migrated_pfn = low_pfn;
824 
825 		/* Avoid isolating too much */
826 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
827 			++low_pfn;
828 			break;
829 		}
830 
831 		continue;
832 isolate_fail:
833 		if (!skip_on_failure)
834 			continue;
835 
836 		/*
837 		 * We have isolated some pages, but then failed. Release them
838 		 * instead of migrating, as we cannot form the cc->order buddy
839 		 * page anyway.
840 		 */
841 		if (nr_isolated) {
842 			if (locked) {
843 				spin_unlock_irqrestore(&zone->lru_lock,	flags);
844 				locked = false;
845 			}
846 			acct_isolated(zone, cc);
847 			putback_movable_pages(&cc->migratepages);
848 			cc->nr_migratepages = 0;
849 			cc->last_migrated_pfn = 0;
850 			nr_isolated = 0;
851 		}
852 
853 		if (low_pfn < next_skip_pfn) {
854 			low_pfn = next_skip_pfn - 1;
855 			/*
856 			 * The check near the loop beginning would have updated
857 			 * next_skip_pfn too, but this is a bit simpler.
858 			 */
859 			next_skip_pfn += 1UL << cc->order;
860 		}
861 	}
862 
863 	/*
864 	 * The PageBuddy() check could have potentially brought us outside
865 	 * the range to be scanned.
866 	 */
867 	if (unlikely(low_pfn > end_pfn))
868 		low_pfn = end_pfn;
869 
870 	if (locked)
871 		spin_unlock_irqrestore(&zone->lru_lock, flags);
872 
873 	/*
874 	 * Update the pageblock-skip information and cached scanner pfn,
875 	 * if the whole pageblock was scanned without isolating any page.
876 	 */
877 	if (low_pfn == end_pfn)
878 		update_pageblock_skip(cc, valid_page, nr_isolated, true);
879 
880 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
881 						nr_scanned, nr_isolated);
882 
883 	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
884 	if (nr_isolated)
885 		count_compact_events(COMPACTISOLATED, nr_isolated);
886 
887 	return low_pfn;
888 }
889 
890 /**
891  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
892  * @cc:        Compaction control structure.
893  * @start_pfn: The first PFN to start isolating.
894  * @end_pfn:   The one-past-last PFN.
895  *
896  * Returns zero if isolation fails fatally due to e.g. pending signal.
897  * Otherwise, function returns one-past-the-last PFN of isolated page
898  * (which may be greater than end_pfn if end fell in a middle of a THP page).
899  */
900 unsigned long
901 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
902 							unsigned long end_pfn)
903 {
904 	unsigned long pfn, block_start_pfn, block_end_pfn;
905 
906 	/* Scan block by block. First and last block may be incomplete */
907 	pfn = start_pfn;
908 	block_start_pfn = pageblock_start_pfn(pfn);
909 	if (block_start_pfn < cc->zone->zone_start_pfn)
910 		block_start_pfn = cc->zone->zone_start_pfn;
911 	block_end_pfn = pageblock_end_pfn(pfn);
912 
913 	for (; pfn < end_pfn; pfn = block_end_pfn,
914 				block_start_pfn = block_end_pfn,
915 				block_end_pfn += pageblock_nr_pages) {
916 
917 		block_end_pfn = min(block_end_pfn, end_pfn);
918 
919 		if (!pageblock_pfn_to_page(block_start_pfn,
920 					block_end_pfn, cc->zone))
921 			continue;
922 
923 		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
924 							ISOLATE_UNEVICTABLE);
925 
926 		if (!pfn)
927 			break;
928 
929 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
930 			break;
931 	}
932 	acct_isolated(cc->zone, cc);
933 
934 	return pfn;
935 }
936 
937 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
938 #ifdef CONFIG_COMPACTION
939 
940 /* Returns true if the page is within a block suitable for migration to */
941 static bool suitable_migration_target(struct page *page)
942 {
943 	/* If the page is a large free page, then disallow migration */
944 	if (PageBuddy(page)) {
945 		/*
946 		 * We are checking page_order without zone->lock taken. But
947 		 * the only small danger is that we skip a potentially suitable
948 		 * pageblock, so it's not worth to check order for valid range.
949 		 */
950 		if (page_order_unsafe(page) >= pageblock_order)
951 			return false;
952 	}
953 
954 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
955 	if (migrate_async_suitable(get_pageblock_migratetype(page)))
956 		return true;
957 
958 	/* Otherwise skip the block */
959 	return false;
960 }
961 
962 /*
963  * Test whether the free scanner has reached the same or lower pageblock than
964  * the migration scanner, and compaction should thus terminate.
965  */
966 static inline bool compact_scanners_met(struct compact_control *cc)
967 {
968 	return (cc->free_pfn >> pageblock_order)
969 		<= (cc->migrate_pfn >> pageblock_order);
970 }
971 
972 /*
973  * Based on information in the current compact_control, find blocks
974  * suitable for isolating free pages from and then isolate them.
975  */
976 static void isolate_freepages(struct compact_control *cc)
977 {
978 	struct zone *zone = cc->zone;
979 	struct page *page;
980 	unsigned long block_start_pfn;	/* start of current pageblock */
981 	unsigned long isolate_start_pfn; /* exact pfn we start at */
982 	unsigned long block_end_pfn;	/* end of current pageblock */
983 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
984 	struct list_head *freelist = &cc->freepages;
985 
986 	/*
987 	 * Initialise the free scanner. The starting point is where we last
988 	 * successfully isolated from, zone-cached value, or the end of the
989 	 * zone when isolating for the first time. For looping we also need
990 	 * this pfn aligned down to the pageblock boundary, because we do
991 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
992 	 * For ending point, take care when isolating in last pageblock of a
993 	 * a zone which ends in the middle of a pageblock.
994 	 * The low boundary is the end of the pageblock the migration scanner
995 	 * is using.
996 	 */
997 	isolate_start_pfn = cc->free_pfn;
998 	block_start_pfn = pageblock_start_pfn(cc->free_pfn);
999 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1000 						zone_end_pfn(zone));
1001 	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1002 
1003 	/*
1004 	 * Isolate free pages until enough are available to migrate the
1005 	 * pages on cc->migratepages. We stop searching if the migrate
1006 	 * and free page scanners meet or enough free pages are isolated.
1007 	 */
1008 	for (; block_start_pfn >= low_pfn;
1009 				block_end_pfn = block_start_pfn,
1010 				block_start_pfn -= pageblock_nr_pages,
1011 				isolate_start_pfn = block_start_pfn) {
1012 		unsigned long isolated;
1013 
1014 		/*
1015 		 * This can iterate a massively long zone without finding any
1016 		 * suitable migration targets, so periodically check if we need
1017 		 * to schedule, or even abort async compaction.
1018 		 */
1019 		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1020 						&& compact_should_abort(cc))
1021 			break;
1022 
1023 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1024 									zone);
1025 		if (!page)
1026 			continue;
1027 
1028 		/* Check the block is suitable for migration */
1029 		if (!suitable_migration_target(page))
1030 			continue;
1031 
1032 		/* If isolation recently failed, do not retry */
1033 		if (!isolation_suitable(cc, page))
1034 			continue;
1035 
1036 		/* Found a block suitable for isolating free pages from. */
1037 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1038 						block_end_pfn, freelist, false);
1039 		/* If isolation failed early, do not continue needlessly */
1040 		if (!isolated && isolate_start_pfn < block_end_pfn &&
1041 		    cc->nr_migratepages > cc->nr_freepages)
1042 			break;
1043 
1044 		/*
1045 		 * If we isolated enough freepages, or aborted due to async
1046 		 * compaction being contended, terminate the loop.
1047 		 * Remember where the free scanner should restart next time,
1048 		 * which is where isolate_freepages_block() left off.
1049 		 * But if it scanned the whole pageblock, isolate_start_pfn
1050 		 * now points at block_end_pfn, which is the start of the next
1051 		 * pageblock.
1052 		 * In that case we will however want to restart at the start
1053 		 * of the previous pageblock.
1054 		 */
1055 		if ((cc->nr_freepages >= cc->nr_migratepages)
1056 							|| cc->contended) {
1057 			if (isolate_start_pfn >= block_end_pfn)
1058 				isolate_start_pfn =
1059 					block_start_pfn - pageblock_nr_pages;
1060 			break;
1061 		} else {
1062 			/*
1063 			 * isolate_freepages_block() should not terminate
1064 			 * prematurely unless contended, or isolated enough
1065 			 */
1066 			VM_BUG_ON(isolate_start_pfn < block_end_pfn);
1067 		}
1068 	}
1069 
1070 	/* split_free_page does not map the pages */
1071 	map_pages(freelist);
1072 
1073 	/*
1074 	 * Record where the free scanner will restart next time. Either we
1075 	 * broke from the loop and set isolate_start_pfn based on the last
1076 	 * call to isolate_freepages_block(), or we met the migration scanner
1077 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1078 	 */
1079 	cc->free_pfn = isolate_start_pfn;
1080 }
1081 
1082 /*
1083  * This is a migrate-callback that "allocates" freepages by taking pages
1084  * from the isolated freelists in the block we are migrating to.
1085  */
1086 static struct page *compaction_alloc(struct page *migratepage,
1087 					unsigned long data,
1088 					int **result)
1089 {
1090 	struct compact_control *cc = (struct compact_control *)data;
1091 	struct page *freepage;
1092 
1093 	/*
1094 	 * Isolate free pages if necessary, and if we are not aborting due to
1095 	 * contention.
1096 	 */
1097 	if (list_empty(&cc->freepages)) {
1098 		if (!cc->contended)
1099 			isolate_freepages(cc);
1100 
1101 		if (list_empty(&cc->freepages))
1102 			return NULL;
1103 	}
1104 
1105 	freepage = list_entry(cc->freepages.next, struct page, lru);
1106 	list_del(&freepage->lru);
1107 	cc->nr_freepages--;
1108 
1109 	return freepage;
1110 }
1111 
1112 /*
1113  * This is a migrate-callback that "frees" freepages back to the isolated
1114  * freelist.  All pages on the freelist are from the same zone, so there is no
1115  * special handling needed for NUMA.
1116  */
1117 static void compaction_free(struct page *page, unsigned long data)
1118 {
1119 	struct compact_control *cc = (struct compact_control *)data;
1120 
1121 	list_add(&page->lru, &cc->freepages);
1122 	cc->nr_freepages++;
1123 }
1124 
1125 /* possible outcome of isolate_migratepages */
1126 typedef enum {
1127 	ISOLATE_ABORT,		/* Abort compaction now */
1128 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1129 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1130 } isolate_migrate_t;
1131 
1132 /*
1133  * Allow userspace to control policy on scanning the unevictable LRU for
1134  * compactable pages.
1135  */
1136 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1137 
1138 /*
1139  * Isolate all pages that can be migrated from the first suitable block,
1140  * starting at the block pointed to by the migrate scanner pfn within
1141  * compact_control.
1142  */
1143 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1144 					struct compact_control *cc)
1145 {
1146 	unsigned long block_start_pfn;
1147 	unsigned long block_end_pfn;
1148 	unsigned long low_pfn;
1149 	struct page *page;
1150 	const isolate_mode_t isolate_mode =
1151 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1152 		(cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1153 
1154 	/*
1155 	 * Start at where we last stopped, or beginning of the zone as
1156 	 * initialized by compact_zone()
1157 	 */
1158 	low_pfn = cc->migrate_pfn;
1159 	block_start_pfn = pageblock_start_pfn(low_pfn);
1160 	if (block_start_pfn < zone->zone_start_pfn)
1161 		block_start_pfn = zone->zone_start_pfn;
1162 
1163 	/* Only scan within a pageblock boundary */
1164 	block_end_pfn = pageblock_end_pfn(low_pfn);
1165 
1166 	/*
1167 	 * Iterate over whole pageblocks until we find the first suitable.
1168 	 * Do not cross the free scanner.
1169 	 */
1170 	for (; block_end_pfn <= cc->free_pfn;
1171 			low_pfn = block_end_pfn,
1172 			block_start_pfn = block_end_pfn,
1173 			block_end_pfn += pageblock_nr_pages) {
1174 
1175 		/*
1176 		 * This can potentially iterate a massively long zone with
1177 		 * many pageblocks unsuitable, so periodically check if we
1178 		 * need to schedule, or even abort async compaction.
1179 		 */
1180 		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1181 						&& compact_should_abort(cc))
1182 			break;
1183 
1184 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1185 									zone);
1186 		if (!page)
1187 			continue;
1188 
1189 		/* If isolation recently failed, do not retry */
1190 		if (!isolation_suitable(cc, page))
1191 			continue;
1192 
1193 		/*
1194 		 * For async compaction, also only scan in MOVABLE blocks.
1195 		 * Async compaction is optimistic to see if the minimum amount
1196 		 * of work satisfies the allocation.
1197 		 */
1198 		if (cc->mode == MIGRATE_ASYNC &&
1199 		    !migrate_async_suitable(get_pageblock_migratetype(page)))
1200 			continue;
1201 
1202 		/* Perform the isolation */
1203 		low_pfn = isolate_migratepages_block(cc, low_pfn,
1204 						block_end_pfn, isolate_mode);
1205 
1206 		if (!low_pfn || cc->contended) {
1207 			acct_isolated(zone, cc);
1208 			return ISOLATE_ABORT;
1209 		}
1210 
1211 		/*
1212 		 * Either we isolated something and proceed with migration. Or
1213 		 * we failed and compact_zone should decide if we should
1214 		 * continue or not.
1215 		 */
1216 		break;
1217 	}
1218 
1219 	acct_isolated(zone, cc);
1220 	/* Record where migration scanner will be restarted. */
1221 	cc->migrate_pfn = low_pfn;
1222 
1223 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1224 }
1225 
1226 /*
1227  * order == -1 is expected when compacting via
1228  * /proc/sys/vm/compact_memory
1229  */
1230 static inline bool is_via_compact_memory(int order)
1231 {
1232 	return order == -1;
1233 }
1234 
1235 static enum compact_result __compact_finished(struct zone *zone, struct compact_control *cc,
1236 			    const int migratetype)
1237 {
1238 	unsigned int order;
1239 	unsigned long watermark;
1240 
1241 	if (cc->contended || fatal_signal_pending(current))
1242 		return COMPACT_CONTENDED;
1243 
1244 	/* Compaction run completes if the migrate and free scanner meet */
1245 	if (compact_scanners_met(cc)) {
1246 		/* Let the next compaction start anew. */
1247 		reset_cached_positions(zone);
1248 
1249 		/*
1250 		 * Mark that the PG_migrate_skip information should be cleared
1251 		 * by kswapd when it goes to sleep. kcompactd does not set the
1252 		 * flag itself as the decision to be clear should be directly
1253 		 * based on an allocation request.
1254 		 */
1255 		if (cc->direct_compaction)
1256 			zone->compact_blockskip_flush = true;
1257 
1258 		if (cc->whole_zone)
1259 			return COMPACT_COMPLETE;
1260 		else
1261 			return COMPACT_PARTIAL_SKIPPED;
1262 	}
1263 
1264 	if (is_via_compact_memory(cc->order))
1265 		return COMPACT_CONTINUE;
1266 
1267 	/* Compaction run is not finished if the watermark is not met */
1268 	watermark = low_wmark_pages(zone);
1269 
1270 	if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1271 							cc->alloc_flags))
1272 		return COMPACT_CONTINUE;
1273 
1274 	/* Direct compactor: Is a suitable page free? */
1275 	for (order = cc->order; order < MAX_ORDER; order++) {
1276 		struct free_area *area = &zone->free_area[order];
1277 		bool can_steal;
1278 
1279 		/* Job done if page is free of the right migratetype */
1280 		if (!list_empty(&area->free_list[migratetype]))
1281 			return COMPACT_PARTIAL;
1282 
1283 #ifdef CONFIG_CMA
1284 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1285 		if (migratetype == MIGRATE_MOVABLE &&
1286 			!list_empty(&area->free_list[MIGRATE_CMA]))
1287 			return COMPACT_PARTIAL;
1288 #endif
1289 		/*
1290 		 * Job done if allocation would steal freepages from
1291 		 * other migratetype buddy lists.
1292 		 */
1293 		if (find_suitable_fallback(area, order, migratetype,
1294 						true, &can_steal) != -1)
1295 			return COMPACT_PARTIAL;
1296 	}
1297 
1298 	return COMPACT_NO_SUITABLE_PAGE;
1299 }
1300 
1301 static enum compact_result compact_finished(struct zone *zone,
1302 			struct compact_control *cc,
1303 			const int migratetype)
1304 {
1305 	int ret;
1306 
1307 	ret = __compact_finished(zone, cc, migratetype);
1308 	trace_mm_compaction_finished(zone, cc->order, ret);
1309 	if (ret == COMPACT_NO_SUITABLE_PAGE)
1310 		ret = COMPACT_CONTINUE;
1311 
1312 	return ret;
1313 }
1314 
1315 /*
1316  * compaction_suitable: Is this suitable to run compaction on this zone now?
1317  * Returns
1318  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1319  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
1320  *   COMPACT_CONTINUE - If compaction should run now
1321  */
1322 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1323 					unsigned int alloc_flags,
1324 					int classzone_idx,
1325 					unsigned long wmark_target)
1326 {
1327 	int fragindex;
1328 	unsigned long watermark;
1329 
1330 	if (is_via_compact_memory(order))
1331 		return COMPACT_CONTINUE;
1332 
1333 	watermark = low_wmark_pages(zone);
1334 	/*
1335 	 * If watermarks for high-order allocation are already met, there
1336 	 * should be no need for compaction at all.
1337 	 */
1338 	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1339 								alloc_flags))
1340 		return COMPACT_PARTIAL;
1341 
1342 	/*
1343 	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
1344 	 * This is because during migration, copies of pages need to be
1345 	 * allocated and for a short time, the footprint is higher
1346 	 */
1347 	watermark += (2UL << order);
1348 	if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1349 				 alloc_flags, wmark_target))
1350 		return COMPACT_SKIPPED;
1351 
1352 	/*
1353 	 * fragmentation index determines if allocation failures are due to
1354 	 * low memory or external fragmentation
1355 	 *
1356 	 * index of -1000 would imply allocations might succeed depending on
1357 	 * watermarks, but we already failed the high-order watermark check
1358 	 * index towards 0 implies failure is due to lack of memory
1359 	 * index towards 1000 implies failure is due to fragmentation
1360 	 *
1361 	 * Only compact if a failure would be due to fragmentation.
1362 	 */
1363 	fragindex = fragmentation_index(zone, order);
1364 	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1365 		return COMPACT_NOT_SUITABLE_ZONE;
1366 
1367 	return COMPACT_CONTINUE;
1368 }
1369 
1370 enum compact_result compaction_suitable(struct zone *zone, int order,
1371 					unsigned int alloc_flags,
1372 					int classzone_idx)
1373 {
1374 	enum compact_result ret;
1375 
1376 	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
1377 				    zone_page_state(zone, NR_FREE_PAGES));
1378 	trace_mm_compaction_suitable(zone, order, ret);
1379 	if (ret == COMPACT_NOT_SUITABLE_ZONE)
1380 		ret = COMPACT_SKIPPED;
1381 
1382 	return ret;
1383 }
1384 
1385 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
1386 		int alloc_flags)
1387 {
1388 	struct zone *zone;
1389 	struct zoneref *z;
1390 
1391 	/*
1392 	 * Make sure at least one zone would pass __compaction_suitable if we continue
1393 	 * retrying the reclaim.
1394 	 */
1395 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1396 					ac->nodemask) {
1397 		unsigned long available;
1398 		enum compact_result compact_result;
1399 
1400 		/*
1401 		 * Do not consider all the reclaimable memory because we do not
1402 		 * want to trash just for a single high order allocation which
1403 		 * is even not guaranteed to appear even if __compaction_suitable
1404 		 * is happy about the watermark check.
1405 		 */
1406 		available = zone_reclaimable_pages(zone) / order;
1407 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
1408 		compact_result = __compaction_suitable(zone, order, alloc_flags,
1409 				ac_classzone_idx(ac), available);
1410 		if (compact_result != COMPACT_SKIPPED &&
1411 				compact_result != COMPACT_NOT_SUITABLE_ZONE)
1412 			return true;
1413 	}
1414 
1415 	return false;
1416 }
1417 
1418 static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
1419 {
1420 	enum compact_result ret;
1421 	unsigned long start_pfn = zone->zone_start_pfn;
1422 	unsigned long end_pfn = zone_end_pfn(zone);
1423 	const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1424 	const bool sync = cc->mode != MIGRATE_ASYNC;
1425 
1426 	ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1427 							cc->classzone_idx);
1428 	/* Compaction is likely to fail */
1429 	if (ret == COMPACT_PARTIAL || ret == COMPACT_SKIPPED)
1430 		return ret;
1431 
1432 	/* huh, compaction_suitable is returning something unexpected */
1433 	VM_BUG_ON(ret != COMPACT_CONTINUE);
1434 
1435 	/*
1436 	 * Clear pageblock skip if there were failures recently and compaction
1437 	 * is about to be retried after being deferred.
1438 	 */
1439 	if (compaction_restarting(zone, cc->order))
1440 		__reset_isolation_suitable(zone);
1441 
1442 	/*
1443 	 * Setup to move all movable pages to the end of the zone. Used cached
1444 	 * information on where the scanners should start but check that it
1445 	 * is initialised by ensuring the values are within zone boundaries.
1446 	 */
1447 	cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1448 	cc->free_pfn = zone->compact_cached_free_pfn;
1449 	if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1450 		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1451 		zone->compact_cached_free_pfn = cc->free_pfn;
1452 	}
1453 	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1454 		cc->migrate_pfn = start_pfn;
1455 		zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1456 		zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1457 	}
1458 
1459 	if (cc->migrate_pfn == start_pfn)
1460 		cc->whole_zone = true;
1461 
1462 	cc->last_migrated_pfn = 0;
1463 
1464 	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1465 				cc->free_pfn, end_pfn, sync);
1466 
1467 	migrate_prep_local();
1468 
1469 	while ((ret = compact_finished(zone, cc, migratetype)) ==
1470 						COMPACT_CONTINUE) {
1471 		int err;
1472 
1473 		switch (isolate_migratepages(zone, cc)) {
1474 		case ISOLATE_ABORT:
1475 			ret = COMPACT_CONTENDED;
1476 			putback_movable_pages(&cc->migratepages);
1477 			cc->nr_migratepages = 0;
1478 			goto out;
1479 		case ISOLATE_NONE:
1480 			/*
1481 			 * We haven't isolated and migrated anything, but
1482 			 * there might still be unflushed migrations from
1483 			 * previous cc->order aligned block.
1484 			 */
1485 			goto check_drain;
1486 		case ISOLATE_SUCCESS:
1487 			;
1488 		}
1489 
1490 		err = migrate_pages(&cc->migratepages, compaction_alloc,
1491 				compaction_free, (unsigned long)cc, cc->mode,
1492 				MR_COMPACTION);
1493 
1494 		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1495 							&cc->migratepages);
1496 
1497 		/* All pages were either migrated or will be released */
1498 		cc->nr_migratepages = 0;
1499 		if (err) {
1500 			putback_movable_pages(&cc->migratepages);
1501 			/*
1502 			 * migrate_pages() may return -ENOMEM when scanners meet
1503 			 * and we want compact_finished() to detect it
1504 			 */
1505 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
1506 				ret = COMPACT_CONTENDED;
1507 				goto out;
1508 			}
1509 			/*
1510 			 * We failed to migrate at least one page in the current
1511 			 * order-aligned block, so skip the rest of it.
1512 			 */
1513 			if (cc->direct_compaction &&
1514 						(cc->mode == MIGRATE_ASYNC)) {
1515 				cc->migrate_pfn = block_end_pfn(
1516 						cc->migrate_pfn - 1, cc->order);
1517 				/* Draining pcplists is useless in this case */
1518 				cc->last_migrated_pfn = 0;
1519 
1520 			}
1521 		}
1522 
1523 check_drain:
1524 		/*
1525 		 * Has the migration scanner moved away from the previous
1526 		 * cc->order aligned block where we migrated from? If yes,
1527 		 * flush the pages that were freed, so that they can merge and
1528 		 * compact_finished() can detect immediately if allocation
1529 		 * would succeed.
1530 		 */
1531 		if (cc->order > 0 && cc->last_migrated_pfn) {
1532 			int cpu;
1533 			unsigned long current_block_start =
1534 				block_start_pfn(cc->migrate_pfn, cc->order);
1535 
1536 			if (cc->last_migrated_pfn < current_block_start) {
1537 				cpu = get_cpu();
1538 				lru_add_drain_cpu(cpu);
1539 				drain_local_pages(zone);
1540 				put_cpu();
1541 				/* No more flushing until we migrate again */
1542 				cc->last_migrated_pfn = 0;
1543 			}
1544 		}
1545 
1546 	}
1547 
1548 out:
1549 	/*
1550 	 * Release free pages and update where the free scanner should restart,
1551 	 * so we don't leave any returned pages behind in the next attempt.
1552 	 */
1553 	if (cc->nr_freepages > 0) {
1554 		unsigned long free_pfn = release_freepages(&cc->freepages);
1555 
1556 		cc->nr_freepages = 0;
1557 		VM_BUG_ON(free_pfn == 0);
1558 		/* The cached pfn is always the first in a pageblock */
1559 		free_pfn = pageblock_start_pfn(free_pfn);
1560 		/*
1561 		 * Only go back, not forward. The cached pfn might have been
1562 		 * already reset to zone end in compact_finished()
1563 		 */
1564 		if (free_pfn > zone->compact_cached_free_pfn)
1565 			zone->compact_cached_free_pfn = free_pfn;
1566 	}
1567 
1568 	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1569 				cc->free_pfn, end_pfn, sync, ret);
1570 
1571 	if (ret == COMPACT_CONTENDED)
1572 		ret = COMPACT_PARTIAL;
1573 
1574 	return ret;
1575 }
1576 
1577 static enum compact_result compact_zone_order(struct zone *zone, int order,
1578 		gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1579 		unsigned int alloc_flags, int classzone_idx)
1580 {
1581 	enum compact_result ret;
1582 	struct compact_control cc = {
1583 		.nr_freepages = 0,
1584 		.nr_migratepages = 0,
1585 		.order = order,
1586 		.gfp_mask = gfp_mask,
1587 		.zone = zone,
1588 		.mode = mode,
1589 		.alloc_flags = alloc_flags,
1590 		.classzone_idx = classzone_idx,
1591 		.direct_compaction = true,
1592 	};
1593 	INIT_LIST_HEAD(&cc.freepages);
1594 	INIT_LIST_HEAD(&cc.migratepages);
1595 
1596 	ret = compact_zone(zone, &cc);
1597 
1598 	VM_BUG_ON(!list_empty(&cc.freepages));
1599 	VM_BUG_ON(!list_empty(&cc.migratepages));
1600 
1601 	*contended = cc.contended;
1602 	return ret;
1603 }
1604 
1605 int sysctl_extfrag_threshold = 500;
1606 
1607 /**
1608  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1609  * @gfp_mask: The GFP mask of the current allocation
1610  * @order: The order of the current allocation
1611  * @alloc_flags: The allocation flags of the current allocation
1612  * @ac: The context of current allocation
1613  * @mode: The migration mode for async, sync light, or sync migration
1614  * @contended: Return value that determines if compaction was aborted due to
1615  *	       need_resched() or lock contention
1616  *
1617  * This is the main entry point for direct page compaction.
1618  */
1619 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1620 		unsigned int alloc_flags, const struct alloc_context *ac,
1621 		enum migrate_mode mode, int *contended)
1622 {
1623 	int may_enter_fs = gfp_mask & __GFP_FS;
1624 	int may_perform_io = gfp_mask & __GFP_IO;
1625 	struct zoneref *z;
1626 	struct zone *zone;
1627 	enum compact_result rc = COMPACT_SKIPPED;
1628 	int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1629 
1630 	*contended = COMPACT_CONTENDED_NONE;
1631 
1632 	/* Check if the GFP flags allow compaction */
1633 	if (!order || !may_enter_fs || !may_perform_io)
1634 		return COMPACT_SKIPPED;
1635 
1636 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1637 
1638 	/* Compact each zone in the list */
1639 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1640 								ac->nodemask) {
1641 		enum compact_result status;
1642 		int zone_contended;
1643 
1644 		if (compaction_deferred(zone, order)) {
1645 			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
1646 			continue;
1647 		}
1648 
1649 		status = compact_zone_order(zone, order, gfp_mask, mode,
1650 				&zone_contended, alloc_flags,
1651 				ac_classzone_idx(ac));
1652 		rc = max(status, rc);
1653 		/*
1654 		 * It takes at least one zone that wasn't lock contended
1655 		 * to clear all_zones_contended.
1656 		 */
1657 		all_zones_contended &= zone_contended;
1658 
1659 		/* If a normal allocation would succeed, stop compacting */
1660 		if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1661 					ac_classzone_idx(ac), alloc_flags)) {
1662 			/*
1663 			 * We think the allocation will succeed in this zone,
1664 			 * but it is not certain, hence the false. The caller
1665 			 * will repeat this with true if allocation indeed
1666 			 * succeeds in this zone.
1667 			 */
1668 			compaction_defer_reset(zone, order, false);
1669 			/*
1670 			 * It is possible that async compaction aborted due to
1671 			 * need_resched() and the watermarks were ok thanks to
1672 			 * somebody else freeing memory. The allocation can
1673 			 * however still fail so we better signal the
1674 			 * need_resched() contention anyway (this will not
1675 			 * prevent the allocation attempt).
1676 			 */
1677 			if (zone_contended == COMPACT_CONTENDED_SCHED)
1678 				*contended = COMPACT_CONTENDED_SCHED;
1679 
1680 			goto break_loop;
1681 		}
1682 
1683 		if (mode != MIGRATE_ASYNC && (status == COMPACT_COMPLETE ||
1684 					status == COMPACT_PARTIAL_SKIPPED)) {
1685 			/*
1686 			 * We think that allocation won't succeed in this zone
1687 			 * so we defer compaction there. If it ends up
1688 			 * succeeding after all, it will be reset.
1689 			 */
1690 			defer_compaction(zone, order);
1691 		}
1692 
1693 		/*
1694 		 * We might have stopped compacting due to need_resched() in
1695 		 * async compaction, or due to a fatal signal detected. In that
1696 		 * case do not try further zones and signal need_resched()
1697 		 * contention.
1698 		 */
1699 		if ((zone_contended == COMPACT_CONTENDED_SCHED)
1700 					|| fatal_signal_pending(current)) {
1701 			*contended = COMPACT_CONTENDED_SCHED;
1702 			goto break_loop;
1703 		}
1704 
1705 		continue;
1706 break_loop:
1707 		/*
1708 		 * We might not have tried all the zones, so  be conservative
1709 		 * and assume they are not all lock contended.
1710 		 */
1711 		all_zones_contended = 0;
1712 		break;
1713 	}
1714 
1715 	/*
1716 	 * If at least one zone wasn't deferred or skipped, we report if all
1717 	 * zones that were tried were lock contended.
1718 	 */
1719 	if (rc > COMPACT_INACTIVE && all_zones_contended)
1720 		*contended = COMPACT_CONTENDED_LOCK;
1721 
1722 	return rc;
1723 }
1724 
1725 
1726 /* Compact all zones within a node */
1727 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1728 {
1729 	int zoneid;
1730 	struct zone *zone;
1731 
1732 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1733 
1734 		zone = &pgdat->node_zones[zoneid];
1735 		if (!populated_zone(zone))
1736 			continue;
1737 
1738 		cc->nr_freepages = 0;
1739 		cc->nr_migratepages = 0;
1740 		cc->zone = zone;
1741 		INIT_LIST_HEAD(&cc->freepages);
1742 		INIT_LIST_HEAD(&cc->migratepages);
1743 
1744 		/*
1745 		 * When called via /proc/sys/vm/compact_memory
1746 		 * this makes sure we compact the whole zone regardless of
1747 		 * cached scanner positions.
1748 		 */
1749 		if (is_via_compact_memory(cc->order))
1750 			__reset_isolation_suitable(zone);
1751 
1752 		if (is_via_compact_memory(cc->order) ||
1753 				!compaction_deferred(zone, cc->order))
1754 			compact_zone(zone, cc);
1755 
1756 		VM_BUG_ON(!list_empty(&cc->freepages));
1757 		VM_BUG_ON(!list_empty(&cc->migratepages));
1758 
1759 		if (is_via_compact_memory(cc->order))
1760 			continue;
1761 
1762 		if (zone_watermark_ok(zone, cc->order,
1763 				low_wmark_pages(zone), 0, 0))
1764 			compaction_defer_reset(zone, cc->order, false);
1765 	}
1766 }
1767 
1768 void compact_pgdat(pg_data_t *pgdat, int order)
1769 {
1770 	struct compact_control cc = {
1771 		.order = order,
1772 		.mode = MIGRATE_ASYNC,
1773 	};
1774 
1775 	if (!order)
1776 		return;
1777 
1778 	__compact_pgdat(pgdat, &cc);
1779 }
1780 
1781 static void compact_node(int nid)
1782 {
1783 	struct compact_control cc = {
1784 		.order = -1,
1785 		.mode = MIGRATE_SYNC,
1786 		.ignore_skip_hint = true,
1787 	};
1788 
1789 	__compact_pgdat(NODE_DATA(nid), &cc);
1790 }
1791 
1792 /* Compact all nodes in the system */
1793 static void compact_nodes(void)
1794 {
1795 	int nid;
1796 
1797 	/* Flush pending updates to the LRU lists */
1798 	lru_add_drain_all();
1799 
1800 	for_each_online_node(nid)
1801 		compact_node(nid);
1802 }
1803 
1804 /* The written value is actually unused, all memory is compacted */
1805 int sysctl_compact_memory;
1806 
1807 /*
1808  * This is the entry point for compacting all nodes via
1809  * /proc/sys/vm/compact_memory
1810  */
1811 int sysctl_compaction_handler(struct ctl_table *table, int write,
1812 			void __user *buffer, size_t *length, loff_t *ppos)
1813 {
1814 	if (write)
1815 		compact_nodes();
1816 
1817 	return 0;
1818 }
1819 
1820 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1821 			void __user *buffer, size_t *length, loff_t *ppos)
1822 {
1823 	proc_dointvec_minmax(table, write, buffer, length, ppos);
1824 
1825 	return 0;
1826 }
1827 
1828 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1829 static ssize_t sysfs_compact_node(struct device *dev,
1830 			struct device_attribute *attr,
1831 			const char *buf, size_t count)
1832 {
1833 	int nid = dev->id;
1834 
1835 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1836 		/* Flush pending updates to the LRU lists */
1837 		lru_add_drain_all();
1838 
1839 		compact_node(nid);
1840 	}
1841 
1842 	return count;
1843 }
1844 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1845 
1846 int compaction_register_node(struct node *node)
1847 {
1848 	return device_create_file(&node->dev, &dev_attr_compact);
1849 }
1850 
1851 void compaction_unregister_node(struct node *node)
1852 {
1853 	return device_remove_file(&node->dev, &dev_attr_compact);
1854 }
1855 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1856 
1857 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1858 {
1859 	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1860 }
1861 
1862 static bool kcompactd_node_suitable(pg_data_t *pgdat)
1863 {
1864 	int zoneid;
1865 	struct zone *zone;
1866 	enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1867 
1868 	for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
1869 		zone = &pgdat->node_zones[zoneid];
1870 
1871 		if (!populated_zone(zone))
1872 			continue;
1873 
1874 		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1875 					classzone_idx) == COMPACT_CONTINUE)
1876 			return true;
1877 	}
1878 
1879 	return false;
1880 }
1881 
1882 static void kcompactd_do_work(pg_data_t *pgdat)
1883 {
1884 	/*
1885 	 * With no special task, compact all zones so that a page of requested
1886 	 * order is allocatable.
1887 	 */
1888 	int zoneid;
1889 	struct zone *zone;
1890 	struct compact_control cc = {
1891 		.order = pgdat->kcompactd_max_order,
1892 		.classzone_idx = pgdat->kcompactd_classzone_idx,
1893 		.mode = MIGRATE_SYNC_LIGHT,
1894 		.ignore_skip_hint = true,
1895 
1896 	};
1897 	bool success = false;
1898 
1899 	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1900 							cc.classzone_idx);
1901 	count_vm_event(KCOMPACTD_WAKE);
1902 
1903 	for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
1904 		int status;
1905 
1906 		zone = &pgdat->node_zones[zoneid];
1907 		if (!populated_zone(zone))
1908 			continue;
1909 
1910 		if (compaction_deferred(zone, cc.order))
1911 			continue;
1912 
1913 		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1914 							COMPACT_CONTINUE)
1915 			continue;
1916 
1917 		cc.nr_freepages = 0;
1918 		cc.nr_migratepages = 0;
1919 		cc.zone = zone;
1920 		INIT_LIST_HEAD(&cc.freepages);
1921 		INIT_LIST_HEAD(&cc.migratepages);
1922 
1923 		if (kthread_should_stop())
1924 			return;
1925 		status = compact_zone(zone, &cc);
1926 
1927 		if (zone_watermark_ok(zone, cc.order, low_wmark_pages(zone),
1928 						cc.classzone_idx, 0)) {
1929 			success = true;
1930 			compaction_defer_reset(zone, cc.order, false);
1931 		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
1932 			/*
1933 			 * We use sync migration mode here, so we defer like
1934 			 * sync direct compaction does.
1935 			 */
1936 			defer_compaction(zone, cc.order);
1937 		}
1938 
1939 		VM_BUG_ON(!list_empty(&cc.freepages));
1940 		VM_BUG_ON(!list_empty(&cc.migratepages));
1941 	}
1942 
1943 	/*
1944 	 * Regardless of success, we are done until woken up next. But remember
1945 	 * the requested order/classzone_idx in case it was higher/tighter than
1946 	 * our current ones
1947 	 */
1948 	if (pgdat->kcompactd_max_order <= cc.order)
1949 		pgdat->kcompactd_max_order = 0;
1950 	if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
1951 		pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1952 }
1953 
1954 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
1955 {
1956 	if (!order)
1957 		return;
1958 
1959 	if (pgdat->kcompactd_max_order < order)
1960 		pgdat->kcompactd_max_order = order;
1961 
1962 	if (pgdat->kcompactd_classzone_idx > classzone_idx)
1963 		pgdat->kcompactd_classzone_idx = classzone_idx;
1964 
1965 	if (!waitqueue_active(&pgdat->kcompactd_wait))
1966 		return;
1967 
1968 	if (!kcompactd_node_suitable(pgdat))
1969 		return;
1970 
1971 	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
1972 							classzone_idx);
1973 	wake_up_interruptible(&pgdat->kcompactd_wait);
1974 }
1975 
1976 /*
1977  * The background compaction daemon, started as a kernel thread
1978  * from the init process.
1979  */
1980 static int kcompactd(void *p)
1981 {
1982 	pg_data_t *pgdat = (pg_data_t*)p;
1983 	struct task_struct *tsk = current;
1984 
1985 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1986 
1987 	if (!cpumask_empty(cpumask))
1988 		set_cpus_allowed_ptr(tsk, cpumask);
1989 
1990 	set_freezable();
1991 
1992 	pgdat->kcompactd_max_order = 0;
1993 	pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1994 
1995 	while (!kthread_should_stop()) {
1996 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
1997 		wait_event_freezable(pgdat->kcompactd_wait,
1998 				kcompactd_work_requested(pgdat));
1999 
2000 		kcompactd_do_work(pgdat);
2001 	}
2002 
2003 	return 0;
2004 }
2005 
2006 /*
2007  * This kcompactd start function will be called by init and node-hot-add.
2008  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2009  */
2010 int kcompactd_run(int nid)
2011 {
2012 	pg_data_t *pgdat = NODE_DATA(nid);
2013 	int ret = 0;
2014 
2015 	if (pgdat->kcompactd)
2016 		return 0;
2017 
2018 	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2019 	if (IS_ERR(pgdat->kcompactd)) {
2020 		pr_err("Failed to start kcompactd on node %d\n", nid);
2021 		ret = PTR_ERR(pgdat->kcompactd);
2022 		pgdat->kcompactd = NULL;
2023 	}
2024 	return ret;
2025 }
2026 
2027 /*
2028  * Called by memory hotplug when all memory in a node is offlined. Caller must
2029  * hold mem_hotplug_begin/end().
2030  */
2031 void kcompactd_stop(int nid)
2032 {
2033 	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2034 
2035 	if (kcompactd) {
2036 		kthread_stop(kcompactd);
2037 		NODE_DATA(nid)->kcompactd = NULL;
2038 	}
2039 }
2040 
2041 /*
2042  * It's optimal to keep kcompactd on the same CPUs as their memory, but
2043  * not required for correctness. So if the last cpu in a node goes
2044  * away, we get changed to run anywhere: as the first one comes back,
2045  * restore their cpu bindings.
2046  */
2047 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
2048 			void *hcpu)
2049 {
2050 	int nid;
2051 
2052 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2053 		for_each_node_state(nid, N_MEMORY) {
2054 			pg_data_t *pgdat = NODE_DATA(nid);
2055 			const struct cpumask *mask;
2056 
2057 			mask = cpumask_of_node(pgdat->node_id);
2058 
2059 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2060 				/* One of our CPUs online: restore mask */
2061 				set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2062 		}
2063 	}
2064 	return NOTIFY_OK;
2065 }
2066 
2067 static int __init kcompactd_init(void)
2068 {
2069 	int nid;
2070 
2071 	for_each_node_state(nid, N_MEMORY)
2072 		kcompactd_run(nid);
2073 	hotcpu_notifier(cpu_callback, 0);
2074 	return 0;
2075 }
2076 subsys_initcall(kcompactd_init)
2077 
2078 #endif /* CONFIG_COMPACTION */
2079