1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/compaction.c 4 * 5 * Memory compaction for the reduction of external fragmentation. Note that 6 * this heavily depends upon page migration to do all the real heavy 7 * lifting 8 * 9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 10 */ 11 #include <linux/cpu.h> 12 #include <linux/swap.h> 13 #include <linux/migrate.h> 14 #include <linux/compaction.h> 15 #include <linux/mm_inline.h> 16 #include <linux/sched/signal.h> 17 #include <linux/backing-dev.h> 18 #include <linux/sysctl.h> 19 #include <linux/sysfs.h> 20 #include <linux/page-isolation.h> 21 #include <linux/kasan.h> 22 #include <linux/kthread.h> 23 #include <linux/freezer.h> 24 #include <linux/page_owner.h> 25 #include <linux/psi.h> 26 #include "internal.h" 27 28 #ifdef CONFIG_COMPACTION 29 static inline void count_compact_event(enum vm_event_item item) 30 { 31 count_vm_event(item); 32 } 33 34 static inline void count_compact_events(enum vm_event_item item, long delta) 35 { 36 count_vm_events(item, delta); 37 } 38 #else 39 #define count_compact_event(item) do { } while (0) 40 #define count_compact_events(item, delta) do { } while (0) 41 #endif 42 43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/compaction.h> 47 48 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order)) 49 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order)) 50 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order) 51 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order) 52 53 /* 54 * Fragmentation score check interval for proactive compaction purposes. 55 */ 56 static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500; 57 58 /* 59 * Page order with-respect-to which proactive compaction 60 * calculates external fragmentation, which is used as 61 * the "fragmentation score" of a node/zone. 62 */ 63 #if defined CONFIG_TRANSPARENT_HUGEPAGE 64 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER 65 #elif defined CONFIG_HUGETLBFS 66 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER 67 #else 68 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT) 69 #endif 70 71 static unsigned long release_freepages(struct list_head *freelist) 72 { 73 struct page *page, *next; 74 unsigned long high_pfn = 0; 75 76 list_for_each_entry_safe(page, next, freelist, lru) { 77 unsigned long pfn = page_to_pfn(page); 78 list_del(&page->lru); 79 __free_page(page); 80 if (pfn > high_pfn) 81 high_pfn = pfn; 82 } 83 84 return high_pfn; 85 } 86 87 static void split_map_pages(struct list_head *list) 88 { 89 unsigned int i, order, nr_pages; 90 struct page *page, *next; 91 LIST_HEAD(tmp_list); 92 93 list_for_each_entry_safe(page, next, list, lru) { 94 list_del(&page->lru); 95 96 order = page_private(page); 97 nr_pages = 1 << order; 98 99 post_alloc_hook(page, order, __GFP_MOVABLE); 100 if (order) 101 split_page(page, order); 102 103 for (i = 0; i < nr_pages; i++) { 104 list_add(&page->lru, &tmp_list); 105 page++; 106 } 107 } 108 109 list_splice(&tmp_list, list); 110 } 111 112 #ifdef CONFIG_COMPACTION 113 114 int PageMovable(struct page *page) 115 { 116 struct address_space *mapping; 117 118 VM_BUG_ON_PAGE(!PageLocked(page), page); 119 if (!__PageMovable(page)) 120 return 0; 121 122 mapping = page_mapping(page); 123 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page) 124 return 1; 125 126 return 0; 127 } 128 EXPORT_SYMBOL(PageMovable); 129 130 void __SetPageMovable(struct page *page, struct address_space *mapping) 131 { 132 VM_BUG_ON_PAGE(!PageLocked(page), page); 133 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page); 134 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE); 135 } 136 EXPORT_SYMBOL(__SetPageMovable); 137 138 void __ClearPageMovable(struct page *page) 139 { 140 VM_BUG_ON_PAGE(!PageLocked(page), page); 141 VM_BUG_ON_PAGE(!PageMovable(page), page); 142 /* 143 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE 144 * flag so that VM can catch up released page by driver after isolation. 145 * With it, VM migration doesn't try to put it back. 146 */ 147 page->mapping = (void *)((unsigned long)page->mapping & 148 PAGE_MAPPING_MOVABLE); 149 } 150 EXPORT_SYMBOL(__ClearPageMovable); 151 152 /* Do not skip compaction more than 64 times */ 153 #define COMPACT_MAX_DEFER_SHIFT 6 154 155 /* 156 * Compaction is deferred when compaction fails to result in a page 157 * allocation success. 1 << compact_defer_shift, compactions are skipped up 158 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 159 */ 160 static void defer_compaction(struct zone *zone, int order) 161 { 162 zone->compact_considered = 0; 163 zone->compact_defer_shift++; 164 165 if (order < zone->compact_order_failed) 166 zone->compact_order_failed = order; 167 168 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 169 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 170 171 trace_mm_compaction_defer_compaction(zone, order); 172 } 173 174 /* Returns true if compaction should be skipped this time */ 175 static bool compaction_deferred(struct zone *zone, int order) 176 { 177 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 178 179 if (order < zone->compact_order_failed) 180 return false; 181 182 /* Avoid possible overflow */ 183 if (++zone->compact_considered >= defer_limit) { 184 zone->compact_considered = defer_limit; 185 return false; 186 } 187 188 trace_mm_compaction_deferred(zone, order); 189 190 return true; 191 } 192 193 /* 194 * Update defer tracking counters after successful compaction of given order, 195 * which means an allocation either succeeded (alloc_success == true) or is 196 * expected to succeed. 197 */ 198 void compaction_defer_reset(struct zone *zone, int order, 199 bool alloc_success) 200 { 201 if (alloc_success) { 202 zone->compact_considered = 0; 203 zone->compact_defer_shift = 0; 204 } 205 if (order >= zone->compact_order_failed) 206 zone->compact_order_failed = order + 1; 207 208 trace_mm_compaction_defer_reset(zone, order); 209 } 210 211 /* Returns true if restarting compaction after many failures */ 212 static bool compaction_restarting(struct zone *zone, int order) 213 { 214 if (order < zone->compact_order_failed) 215 return false; 216 217 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 218 zone->compact_considered >= 1UL << zone->compact_defer_shift; 219 } 220 221 /* Returns true if the pageblock should be scanned for pages to isolate. */ 222 static inline bool isolation_suitable(struct compact_control *cc, 223 struct page *page) 224 { 225 if (cc->ignore_skip_hint) 226 return true; 227 228 return !get_pageblock_skip(page); 229 } 230 231 static void reset_cached_positions(struct zone *zone) 232 { 233 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 234 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 235 zone->compact_cached_free_pfn = 236 pageblock_start_pfn(zone_end_pfn(zone) - 1); 237 } 238 239 /* 240 * Compound pages of >= pageblock_order should consistently be skipped until 241 * released. It is always pointless to compact pages of such order (if they are 242 * migratable), and the pageblocks they occupy cannot contain any free pages. 243 */ 244 static bool pageblock_skip_persistent(struct page *page) 245 { 246 if (!PageCompound(page)) 247 return false; 248 249 page = compound_head(page); 250 251 if (compound_order(page) >= pageblock_order) 252 return true; 253 254 return false; 255 } 256 257 static bool 258 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source, 259 bool check_target) 260 { 261 struct page *page = pfn_to_online_page(pfn); 262 struct page *block_page; 263 struct page *end_page; 264 unsigned long block_pfn; 265 266 if (!page) 267 return false; 268 if (zone != page_zone(page)) 269 return false; 270 if (pageblock_skip_persistent(page)) 271 return false; 272 273 /* 274 * If skip is already cleared do no further checking once the 275 * restart points have been set. 276 */ 277 if (check_source && check_target && !get_pageblock_skip(page)) 278 return true; 279 280 /* 281 * If clearing skip for the target scanner, do not select a 282 * non-movable pageblock as the starting point. 283 */ 284 if (!check_source && check_target && 285 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 286 return false; 287 288 /* Ensure the start of the pageblock or zone is online and valid */ 289 block_pfn = pageblock_start_pfn(pfn); 290 block_pfn = max(block_pfn, zone->zone_start_pfn); 291 block_page = pfn_to_online_page(block_pfn); 292 if (block_page) { 293 page = block_page; 294 pfn = block_pfn; 295 } 296 297 /* Ensure the end of the pageblock or zone is online and valid */ 298 block_pfn = pageblock_end_pfn(pfn) - 1; 299 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1); 300 end_page = pfn_to_online_page(block_pfn); 301 if (!end_page) 302 return false; 303 304 /* 305 * Only clear the hint if a sample indicates there is either a 306 * free page or an LRU page in the block. One or other condition 307 * is necessary for the block to be a migration source/target. 308 */ 309 do { 310 if (pfn_valid_within(pfn)) { 311 if (check_source && PageLRU(page)) { 312 clear_pageblock_skip(page); 313 return true; 314 } 315 316 if (check_target && PageBuddy(page)) { 317 clear_pageblock_skip(page); 318 return true; 319 } 320 } 321 322 page += (1 << PAGE_ALLOC_COSTLY_ORDER); 323 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER); 324 } while (page <= end_page); 325 326 return false; 327 } 328 329 /* 330 * This function is called to clear all cached information on pageblocks that 331 * should be skipped for page isolation when the migrate and free page scanner 332 * meet. 333 */ 334 static void __reset_isolation_suitable(struct zone *zone) 335 { 336 unsigned long migrate_pfn = zone->zone_start_pfn; 337 unsigned long free_pfn = zone_end_pfn(zone) - 1; 338 unsigned long reset_migrate = free_pfn; 339 unsigned long reset_free = migrate_pfn; 340 bool source_set = false; 341 bool free_set = false; 342 343 if (!zone->compact_blockskip_flush) 344 return; 345 346 zone->compact_blockskip_flush = false; 347 348 /* 349 * Walk the zone and update pageblock skip information. Source looks 350 * for PageLRU while target looks for PageBuddy. When the scanner 351 * is found, both PageBuddy and PageLRU are checked as the pageblock 352 * is suitable as both source and target. 353 */ 354 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages, 355 free_pfn -= pageblock_nr_pages) { 356 cond_resched(); 357 358 /* Update the migrate PFN */ 359 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) && 360 migrate_pfn < reset_migrate) { 361 source_set = true; 362 reset_migrate = migrate_pfn; 363 zone->compact_init_migrate_pfn = reset_migrate; 364 zone->compact_cached_migrate_pfn[0] = reset_migrate; 365 zone->compact_cached_migrate_pfn[1] = reset_migrate; 366 } 367 368 /* Update the free PFN */ 369 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) && 370 free_pfn > reset_free) { 371 free_set = true; 372 reset_free = free_pfn; 373 zone->compact_init_free_pfn = reset_free; 374 zone->compact_cached_free_pfn = reset_free; 375 } 376 } 377 378 /* Leave no distance if no suitable block was reset */ 379 if (reset_migrate >= reset_free) { 380 zone->compact_cached_migrate_pfn[0] = migrate_pfn; 381 zone->compact_cached_migrate_pfn[1] = migrate_pfn; 382 zone->compact_cached_free_pfn = free_pfn; 383 } 384 } 385 386 void reset_isolation_suitable(pg_data_t *pgdat) 387 { 388 int zoneid; 389 390 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 391 struct zone *zone = &pgdat->node_zones[zoneid]; 392 if (!populated_zone(zone)) 393 continue; 394 395 /* Only flush if a full compaction finished recently */ 396 if (zone->compact_blockskip_flush) 397 __reset_isolation_suitable(zone); 398 } 399 } 400 401 /* 402 * Sets the pageblock skip bit if it was clear. Note that this is a hint as 403 * locks are not required for read/writers. Returns true if it was already set. 404 */ 405 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 406 unsigned long pfn) 407 { 408 bool skip; 409 410 /* Do no update if skip hint is being ignored */ 411 if (cc->ignore_skip_hint) 412 return false; 413 414 if (!IS_ALIGNED(pfn, pageblock_nr_pages)) 415 return false; 416 417 skip = get_pageblock_skip(page); 418 if (!skip && !cc->no_set_skip_hint) 419 set_pageblock_skip(page); 420 421 return skip; 422 } 423 424 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 425 { 426 struct zone *zone = cc->zone; 427 428 pfn = pageblock_end_pfn(pfn); 429 430 /* Set for isolation rather than compaction */ 431 if (cc->no_set_skip_hint) 432 return; 433 434 if (pfn > zone->compact_cached_migrate_pfn[0]) 435 zone->compact_cached_migrate_pfn[0] = pfn; 436 if (cc->mode != MIGRATE_ASYNC && 437 pfn > zone->compact_cached_migrate_pfn[1]) 438 zone->compact_cached_migrate_pfn[1] = pfn; 439 } 440 441 /* 442 * If no pages were isolated then mark this pageblock to be skipped in the 443 * future. The information is later cleared by __reset_isolation_suitable(). 444 */ 445 static void update_pageblock_skip(struct compact_control *cc, 446 struct page *page, unsigned long pfn) 447 { 448 struct zone *zone = cc->zone; 449 450 if (cc->no_set_skip_hint) 451 return; 452 453 if (!page) 454 return; 455 456 set_pageblock_skip(page); 457 458 /* Update where async and sync compaction should restart */ 459 if (pfn < zone->compact_cached_free_pfn) 460 zone->compact_cached_free_pfn = pfn; 461 } 462 #else 463 static inline bool isolation_suitable(struct compact_control *cc, 464 struct page *page) 465 { 466 return true; 467 } 468 469 static inline bool pageblock_skip_persistent(struct page *page) 470 { 471 return false; 472 } 473 474 static inline void update_pageblock_skip(struct compact_control *cc, 475 struct page *page, unsigned long pfn) 476 { 477 } 478 479 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 480 { 481 } 482 483 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 484 unsigned long pfn) 485 { 486 return false; 487 } 488 #endif /* CONFIG_COMPACTION */ 489 490 /* 491 * Compaction requires the taking of some coarse locks that are potentially 492 * very heavily contended. For async compaction, trylock and record if the 493 * lock is contended. The lock will still be acquired but compaction will 494 * abort when the current block is finished regardless of success rate. 495 * Sync compaction acquires the lock. 496 * 497 * Always returns true which makes it easier to track lock state in callers. 498 */ 499 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags, 500 struct compact_control *cc) 501 __acquires(lock) 502 { 503 /* Track if the lock is contended in async mode */ 504 if (cc->mode == MIGRATE_ASYNC && !cc->contended) { 505 if (spin_trylock_irqsave(lock, *flags)) 506 return true; 507 508 cc->contended = true; 509 } 510 511 spin_lock_irqsave(lock, *flags); 512 return true; 513 } 514 515 /* 516 * Compaction requires the taking of some coarse locks that are potentially 517 * very heavily contended. The lock should be periodically unlocked to avoid 518 * having disabled IRQs for a long time, even when there is nobody waiting on 519 * the lock. It might also be that allowing the IRQs will result in 520 * need_resched() becoming true. If scheduling is needed, async compaction 521 * aborts. Sync compaction schedules. 522 * Either compaction type will also abort if a fatal signal is pending. 523 * In either case if the lock was locked, it is dropped and not regained. 524 * 525 * Returns true if compaction should abort due to fatal signal pending, or 526 * async compaction due to need_resched() 527 * Returns false when compaction can continue (sync compaction might have 528 * scheduled) 529 */ 530 static bool compact_unlock_should_abort(spinlock_t *lock, 531 unsigned long flags, bool *locked, struct compact_control *cc) 532 { 533 if (*locked) { 534 spin_unlock_irqrestore(lock, flags); 535 *locked = false; 536 } 537 538 if (fatal_signal_pending(current)) { 539 cc->contended = true; 540 return true; 541 } 542 543 cond_resched(); 544 545 return false; 546 } 547 548 /* 549 * Isolate free pages onto a private freelist. If @strict is true, will abort 550 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 551 * (even though it may still end up isolating some pages). 552 */ 553 static unsigned long isolate_freepages_block(struct compact_control *cc, 554 unsigned long *start_pfn, 555 unsigned long end_pfn, 556 struct list_head *freelist, 557 unsigned int stride, 558 bool strict) 559 { 560 int nr_scanned = 0, total_isolated = 0; 561 struct page *cursor; 562 unsigned long flags = 0; 563 bool locked = false; 564 unsigned long blockpfn = *start_pfn; 565 unsigned int order; 566 567 /* Strict mode is for isolation, speed is secondary */ 568 if (strict) 569 stride = 1; 570 571 cursor = pfn_to_page(blockpfn); 572 573 /* Isolate free pages. */ 574 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) { 575 int isolated; 576 struct page *page = cursor; 577 578 /* 579 * Periodically drop the lock (if held) regardless of its 580 * contention, to give chance to IRQs. Abort if fatal signal 581 * pending or async compaction detects need_resched() 582 */ 583 if (!(blockpfn % SWAP_CLUSTER_MAX) 584 && compact_unlock_should_abort(&cc->zone->lock, flags, 585 &locked, cc)) 586 break; 587 588 nr_scanned++; 589 if (!pfn_valid_within(blockpfn)) 590 goto isolate_fail; 591 592 /* 593 * For compound pages such as THP and hugetlbfs, we can save 594 * potentially a lot of iterations if we skip them at once. 595 * The check is racy, but we can consider only valid values 596 * and the only danger is skipping too much. 597 */ 598 if (PageCompound(page)) { 599 const unsigned int order = compound_order(page); 600 601 if (likely(order < MAX_ORDER)) { 602 blockpfn += (1UL << order) - 1; 603 cursor += (1UL << order) - 1; 604 } 605 goto isolate_fail; 606 } 607 608 if (!PageBuddy(page)) 609 goto isolate_fail; 610 611 /* 612 * If we already hold the lock, we can skip some rechecking. 613 * Note that if we hold the lock now, checked_pageblock was 614 * already set in some previous iteration (or strict is true), 615 * so it is correct to skip the suitable migration target 616 * recheck as well. 617 */ 618 if (!locked) { 619 locked = compact_lock_irqsave(&cc->zone->lock, 620 &flags, cc); 621 622 /* Recheck this is a buddy page under lock */ 623 if (!PageBuddy(page)) 624 goto isolate_fail; 625 } 626 627 /* Found a free page, will break it into order-0 pages */ 628 order = buddy_order(page); 629 isolated = __isolate_free_page(page, order); 630 if (!isolated) 631 break; 632 set_page_private(page, order); 633 634 total_isolated += isolated; 635 cc->nr_freepages += isolated; 636 list_add_tail(&page->lru, freelist); 637 638 if (!strict && cc->nr_migratepages <= cc->nr_freepages) { 639 blockpfn += isolated; 640 break; 641 } 642 /* Advance to the end of split page */ 643 blockpfn += isolated - 1; 644 cursor += isolated - 1; 645 continue; 646 647 isolate_fail: 648 if (strict) 649 break; 650 else 651 continue; 652 653 } 654 655 if (locked) 656 spin_unlock_irqrestore(&cc->zone->lock, flags); 657 658 /* 659 * There is a tiny chance that we have read bogus compound_order(), 660 * so be careful to not go outside of the pageblock. 661 */ 662 if (unlikely(blockpfn > end_pfn)) 663 blockpfn = end_pfn; 664 665 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 666 nr_scanned, total_isolated); 667 668 /* Record how far we have got within the block */ 669 *start_pfn = blockpfn; 670 671 /* 672 * If strict isolation is requested by CMA then check that all the 673 * pages requested were isolated. If there were any failures, 0 is 674 * returned and CMA will fail. 675 */ 676 if (strict && blockpfn < end_pfn) 677 total_isolated = 0; 678 679 cc->total_free_scanned += nr_scanned; 680 if (total_isolated) 681 count_compact_events(COMPACTISOLATED, total_isolated); 682 return total_isolated; 683 } 684 685 /** 686 * isolate_freepages_range() - isolate free pages. 687 * @cc: Compaction control structure. 688 * @start_pfn: The first PFN to start isolating. 689 * @end_pfn: The one-past-last PFN. 690 * 691 * Non-free pages, invalid PFNs, or zone boundaries within the 692 * [start_pfn, end_pfn) range are considered errors, cause function to 693 * undo its actions and return zero. 694 * 695 * Otherwise, function returns one-past-the-last PFN of isolated page 696 * (which may be greater then end_pfn if end fell in a middle of 697 * a free page). 698 */ 699 unsigned long 700 isolate_freepages_range(struct compact_control *cc, 701 unsigned long start_pfn, unsigned long end_pfn) 702 { 703 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 704 LIST_HEAD(freelist); 705 706 pfn = start_pfn; 707 block_start_pfn = pageblock_start_pfn(pfn); 708 if (block_start_pfn < cc->zone->zone_start_pfn) 709 block_start_pfn = cc->zone->zone_start_pfn; 710 block_end_pfn = pageblock_end_pfn(pfn); 711 712 for (; pfn < end_pfn; pfn += isolated, 713 block_start_pfn = block_end_pfn, 714 block_end_pfn += pageblock_nr_pages) { 715 /* Protect pfn from changing by isolate_freepages_block */ 716 unsigned long isolate_start_pfn = pfn; 717 718 block_end_pfn = min(block_end_pfn, end_pfn); 719 720 /* 721 * pfn could pass the block_end_pfn if isolated freepage 722 * is more than pageblock order. In this case, we adjust 723 * scanning range to right one. 724 */ 725 if (pfn >= block_end_pfn) { 726 block_start_pfn = pageblock_start_pfn(pfn); 727 block_end_pfn = pageblock_end_pfn(pfn); 728 block_end_pfn = min(block_end_pfn, end_pfn); 729 } 730 731 if (!pageblock_pfn_to_page(block_start_pfn, 732 block_end_pfn, cc->zone)) 733 break; 734 735 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 736 block_end_pfn, &freelist, 0, true); 737 738 /* 739 * In strict mode, isolate_freepages_block() returns 0 if 740 * there are any holes in the block (ie. invalid PFNs or 741 * non-free pages). 742 */ 743 if (!isolated) 744 break; 745 746 /* 747 * If we managed to isolate pages, it is always (1 << n) * 748 * pageblock_nr_pages for some non-negative n. (Max order 749 * page may span two pageblocks). 750 */ 751 } 752 753 /* __isolate_free_page() does not map the pages */ 754 split_map_pages(&freelist); 755 756 if (pfn < end_pfn) { 757 /* Loop terminated early, cleanup. */ 758 release_freepages(&freelist); 759 return 0; 760 } 761 762 /* We don't use freelists for anything. */ 763 return pfn; 764 } 765 766 /* Similar to reclaim, but different enough that they don't share logic */ 767 static bool too_many_isolated(pg_data_t *pgdat) 768 { 769 unsigned long active, inactive, isolated; 770 771 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) + 772 node_page_state(pgdat, NR_INACTIVE_ANON); 773 active = node_page_state(pgdat, NR_ACTIVE_FILE) + 774 node_page_state(pgdat, NR_ACTIVE_ANON); 775 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) + 776 node_page_state(pgdat, NR_ISOLATED_ANON); 777 778 return isolated > (inactive + active) / 2; 779 } 780 781 /** 782 * isolate_migratepages_block() - isolate all migrate-able pages within 783 * a single pageblock 784 * @cc: Compaction control structure. 785 * @low_pfn: The first PFN to isolate 786 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 787 * @isolate_mode: Isolation mode to be used. 788 * 789 * Isolate all pages that can be migrated from the range specified by 790 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 791 * Returns zero if there is a fatal signal pending, otherwise PFN of the 792 * first page that was not scanned (which may be both less, equal to or more 793 * than end_pfn). 794 * 795 * The pages are isolated on cc->migratepages list (not required to be empty), 796 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field 797 * is neither read nor updated. 798 */ 799 static unsigned long 800 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 801 unsigned long end_pfn, isolate_mode_t isolate_mode) 802 { 803 pg_data_t *pgdat = cc->zone->zone_pgdat; 804 unsigned long nr_scanned = 0, nr_isolated = 0; 805 struct lruvec *lruvec; 806 unsigned long flags = 0; 807 struct lruvec *locked = NULL; 808 struct page *page = NULL, *valid_page = NULL; 809 unsigned long start_pfn = low_pfn; 810 bool skip_on_failure = false; 811 unsigned long next_skip_pfn = 0; 812 bool skip_updated = false; 813 814 /* 815 * Ensure that there are not too many pages isolated from the LRU 816 * list by either parallel reclaimers or compaction. If there are, 817 * delay for some time until fewer pages are isolated 818 */ 819 while (unlikely(too_many_isolated(pgdat))) { 820 /* stop isolation if there are still pages not migrated */ 821 if (cc->nr_migratepages) 822 return 0; 823 824 /* async migration should just abort */ 825 if (cc->mode == MIGRATE_ASYNC) 826 return 0; 827 828 congestion_wait(BLK_RW_ASYNC, HZ/10); 829 830 if (fatal_signal_pending(current)) 831 return 0; 832 } 833 834 cond_resched(); 835 836 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { 837 skip_on_failure = true; 838 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 839 } 840 841 /* Time to isolate some pages for migration */ 842 for (; low_pfn < end_pfn; low_pfn++) { 843 844 if (skip_on_failure && low_pfn >= next_skip_pfn) { 845 /* 846 * We have isolated all migration candidates in the 847 * previous order-aligned block, and did not skip it due 848 * to failure. We should migrate the pages now and 849 * hopefully succeed compaction. 850 */ 851 if (nr_isolated) 852 break; 853 854 /* 855 * We failed to isolate in the previous order-aligned 856 * block. Set the new boundary to the end of the 857 * current block. Note we can't simply increase 858 * next_skip_pfn by 1 << order, as low_pfn might have 859 * been incremented by a higher number due to skipping 860 * a compound or a high-order buddy page in the 861 * previous loop iteration. 862 */ 863 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 864 } 865 866 /* 867 * Periodically drop the lock (if held) regardless of its 868 * contention, to give chance to IRQs. Abort completely if 869 * a fatal signal is pending. 870 */ 871 if (!(low_pfn % SWAP_CLUSTER_MAX)) { 872 if (locked) { 873 unlock_page_lruvec_irqrestore(locked, flags); 874 locked = NULL; 875 } 876 877 if (fatal_signal_pending(current)) { 878 cc->contended = true; 879 880 low_pfn = 0; 881 goto fatal_pending; 882 } 883 884 cond_resched(); 885 } 886 887 if (!pfn_valid_within(low_pfn)) 888 goto isolate_fail; 889 nr_scanned++; 890 891 page = pfn_to_page(low_pfn); 892 893 /* 894 * Check if the pageblock has already been marked skipped. 895 * Only the aligned PFN is checked as the caller isolates 896 * COMPACT_CLUSTER_MAX at a time so the second call must 897 * not falsely conclude that the block should be skipped. 898 */ 899 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) { 900 if (!cc->ignore_skip_hint && get_pageblock_skip(page)) { 901 low_pfn = end_pfn; 902 page = NULL; 903 goto isolate_abort; 904 } 905 valid_page = page; 906 } 907 908 /* 909 * Skip if free. We read page order here without zone lock 910 * which is generally unsafe, but the race window is small and 911 * the worst thing that can happen is that we skip some 912 * potential isolation targets. 913 */ 914 if (PageBuddy(page)) { 915 unsigned long freepage_order = buddy_order_unsafe(page); 916 917 /* 918 * Without lock, we cannot be sure that what we got is 919 * a valid page order. Consider only values in the 920 * valid order range to prevent low_pfn overflow. 921 */ 922 if (freepage_order > 0 && freepage_order < MAX_ORDER) 923 low_pfn += (1UL << freepage_order) - 1; 924 continue; 925 } 926 927 /* 928 * Regardless of being on LRU, compound pages such as THP and 929 * hugetlbfs are not to be compacted unless we are attempting 930 * an allocation much larger than the huge page size (eg CMA). 931 * We can potentially save a lot of iterations if we skip them 932 * at once. The check is racy, but we can consider only valid 933 * values and the only danger is skipping too much. 934 */ 935 if (PageCompound(page) && !cc->alloc_contig) { 936 const unsigned int order = compound_order(page); 937 938 if (likely(order < MAX_ORDER)) 939 low_pfn += (1UL << order) - 1; 940 goto isolate_fail; 941 } 942 943 /* 944 * Check may be lockless but that's ok as we recheck later. 945 * It's possible to migrate LRU and non-lru movable pages. 946 * Skip any other type of page 947 */ 948 if (!PageLRU(page)) { 949 /* 950 * __PageMovable can return false positive so we need 951 * to verify it under page_lock. 952 */ 953 if (unlikely(__PageMovable(page)) && 954 !PageIsolated(page)) { 955 if (locked) { 956 unlock_page_lruvec_irqrestore(locked, flags); 957 locked = NULL; 958 } 959 960 if (!isolate_movable_page(page, isolate_mode)) 961 goto isolate_success; 962 } 963 964 goto isolate_fail; 965 } 966 967 /* 968 * Migration will fail if an anonymous page is pinned in memory, 969 * so avoid taking lru_lock and isolating it unnecessarily in an 970 * admittedly racy check. 971 */ 972 if (!page_mapping(page) && 973 page_count(page) > page_mapcount(page)) 974 goto isolate_fail; 975 976 /* 977 * Only allow to migrate anonymous pages in GFP_NOFS context 978 * because those do not depend on fs locks. 979 */ 980 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page)) 981 goto isolate_fail; 982 983 /* 984 * Be careful not to clear PageLRU until after we're 985 * sure the page is not being freed elsewhere -- the 986 * page release code relies on it. 987 */ 988 if (unlikely(!get_page_unless_zero(page))) 989 goto isolate_fail; 990 991 if (__isolate_lru_page_prepare(page, isolate_mode) != 0) 992 goto isolate_fail_put; 993 994 /* Try isolate the page */ 995 if (!TestClearPageLRU(page)) 996 goto isolate_fail_put; 997 998 rcu_read_lock(); 999 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1000 1001 /* If we already hold the lock, we can skip some rechecking */ 1002 if (lruvec != locked) { 1003 if (locked) 1004 unlock_page_lruvec_irqrestore(locked, flags); 1005 1006 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc); 1007 locked = lruvec; 1008 rcu_read_unlock(); 1009 1010 lruvec_memcg_debug(lruvec, page); 1011 1012 /* Try get exclusive access under lock */ 1013 if (!skip_updated) { 1014 skip_updated = true; 1015 if (test_and_set_skip(cc, page, low_pfn)) 1016 goto isolate_abort; 1017 } 1018 1019 /* 1020 * Page become compound since the non-locked check, 1021 * and it's on LRU. It can only be a THP so the order 1022 * is safe to read and it's 0 for tail pages. 1023 */ 1024 if (unlikely(PageCompound(page) && !cc->alloc_contig)) { 1025 low_pfn += compound_nr(page) - 1; 1026 SetPageLRU(page); 1027 goto isolate_fail_put; 1028 } 1029 } else 1030 rcu_read_unlock(); 1031 1032 /* The whole page is taken off the LRU; skip the tail pages. */ 1033 if (PageCompound(page)) 1034 low_pfn += compound_nr(page) - 1; 1035 1036 /* Successfully isolated */ 1037 del_page_from_lru_list(page, lruvec, page_lru(page)); 1038 mod_node_page_state(page_pgdat(page), 1039 NR_ISOLATED_ANON + page_is_file_lru(page), 1040 thp_nr_pages(page)); 1041 1042 isolate_success: 1043 list_add(&page->lru, &cc->migratepages); 1044 cc->nr_migratepages += compound_nr(page); 1045 nr_isolated += compound_nr(page); 1046 1047 /* 1048 * Avoid isolating too much unless this block is being 1049 * rescanned (e.g. dirty/writeback pages, parallel allocation) 1050 * or a lock is contended. For contention, isolate quickly to 1051 * potentially remove one source of contention. 1052 */ 1053 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX && 1054 !cc->rescan && !cc->contended) { 1055 ++low_pfn; 1056 break; 1057 } 1058 1059 continue; 1060 1061 isolate_fail_put: 1062 /* Avoid potential deadlock in freeing page under lru_lock */ 1063 if (locked) { 1064 unlock_page_lruvec_irqrestore(locked, flags); 1065 locked = NULL; 1066 } 1067 put_page(page); 1068 1069 isolate_fail: 1070 if (!skip_on_failure) 1071 continue; 1072 1073 /* 1074 * We have isolated some pages, but then failed. Release them 1075 * instead of migrating, as we cannot form the cc->order buddy 1076 * page anyway. 1077 */ 1078 if (nr_isolated) { 1079 if (locked) { 1080 unlock_page_lruvec_irqrestore(locked, flags); 1081 locked = NULL; 1082 } 1083 putback_movable_pages(&cc->migratepages); 1084 cc->nr_migratepages = 0; 1085 nr_isolated = 0; 1086 } 1087 1088 if (low_pfn < next_skip_pfn) { 1089 low_pfn = next_skip_pfn - 1; 1090 /* 1091 * The check near the loop beginning would have updated 1092 * next_skip_pfn too, but this is a bit simpler. 1093 */ 1094 next_skip_pfn += 1UL << cc->order; 1095 } 1096 } 1097 1098 /* 1099 * The PageBuddy() check could have potentially brought us outside 1100 * the range to be scanned. 1101 */ 1102 if (unlikely(low_pfn > end_pfn)) 1103 low_pfn = end_pfn; 1104 1105 page = NULL; 1106 1107 isolate_abort: 1108 if (locked) 1109 unlock_page_lruvec_irqrestore(locked, flags); 1110 if (page) { 1111 SetPageLRU(page); 1112 put_page(page); 1113 } 1114 1115 /* 1116 * Updated the cached scanner pfn once the pageblock has been scanned 1117 * Pages will either be migrated in which case there is no point 1118 * scanning in the near future or migration failed in which case the 1119 * failure reason may persist. The block is marked for skipping if 1120 * there were no pages isolated in the block or if the block is 1121 * rescanned twice in a row. 1122 */ 1123 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) { 1124 if (valid_page && !skip_updated) 1125 set_pageblock_skip(valid_page); 1126 update_cached_migrate(cc, low_pfn); 1127 } 1128 1129 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 1130 nr_scanned, nr_isolated); 1131 1132 fatal_pending: 1133 cc->total_migrate_scanned += nr_scanned; 1134 if (nr_isolated) 1135 count_compact_events(COMPACTISOLATED, nr_isolated); 1136 1137 return low_pfn; 1138 } 1139 1140 /** 1141 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 1142 * @cc: Compaction control structure. 1143 * @start_pfn: The first PFN to start isolating. 1144 * @end_pfn: The one-past-last PFN. 1145 * 1146 * Returns zero if isolation fails fatally due to e.g. pending signal. 1147 * Otherwise, function returns one-past-the-last PFN of isolated page 1148 * (which may be greater than end_pfn if end fell in a middle of a THP page). 1149 */ 1150 unsigned long 1151 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 1152 unsigned long end_pfn) 1153 { 1154 unsigned long pfn, block_start_pfn, block_end_pfn; 1155 1156 /* Scan block by block. First and last block may be incomplete */ 1157 pfn = start_pfn; 1158 block_start_pfn = pageblock_start_pfn(pfn); 1159 if (block_start_pfn < cc->zone->zone_start_pfn) 1160 block_start_pfn = cc->zone->zone_start_pfn; 1161 block_end_pfn = pageblock_end_pfn(pfn); 1162 1163 for (; pfn < end_pfn; pfn = block_end_pfn, 1164 block_start_pfn = block_end_pfn, 1165 block_end_pfn += pageblock_nr_pages) { 1166 1167 block_end_pfn = min(block_end_pfn, end_pfn); 1168 1169 if (!pageblock_pfn_to_page(block_start_pfn, 1170 block_end_pfn, cc->zone)) 1171 continue; 1172 1173 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn, 1174 ISOLATE_UNEVICTABLE); 1175 1176 if (!pfn) 1177 break; 1178 1179 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX) 1180 break; 1181 } 1182 1183 return pfn; 1184 } 1185 1186 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 1187 #ifdef CONFIG_COMPACTION 1188 1189 static bool suitable_migration_source(struct compact_control *cc, 1190 struct page *page) 1191 { 1192 int block_mt; 1193 1194 if (pageblock_skip_persistent(page)) 1195 return false; 1196 1197 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction) 1198 return true; 1199 1200 block_mt = get_pageblock_migratetype(page); 1201 1202 if (cc->migratetype == MIGRATE_MOVABLE) 1203 return is_migrate_movable(block_mt); 1204 else 1205 return block_mt == cc->migratetype; 1206 } 1207 1208 /* Returns true if the page is within a block suitable for migration to */ 1209 static bool suitable_migration_target(struct compact_control *cc, 1210 struct page *page) 1211 { 1212 /* If the page is a large free page, then disallow migration */ 1213 if (PageBuddy(page)) { 1214 /* 1215 * We are checking page_order without zone->lock taken. But 1216 * the only small danger is that we skip a potentially suitable 1217 * pageblock, so it's not worth to check order for valid range. 1218 */ 1219 if (buddy_order_unsafe(page) >= pageblock_order) 1220 return false; 1221 } 1222 1223 if (cc->ignore_block_suitable) 1224 return true; 1225 1226 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 1227 if (is_migrate_movable(get_pageblock_migratetype(page))) 1228 return true; 1229 1230 /* Otherwise skip the block */ 1231 return false; 1232 } 1233 1234 static inline unsigned int 1235 freelist_scan_limit(struct compact_control *cc) 1236 { 1237 unsigned short shift = BITS_PER_LONG - 1; 1238 1239 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1; 1240 } 1241 1242 /* 1243 * Test whether the free scanner has reached the same or lower pageblock than 1244 * the migration scanner, and compaction should thus terminate. 1245 */ 1246 static inline bool compact_scanners_met(struct compact_control *cc) 1247 { 1248 return (cc->free_pfn >> pageblock_order) 1249 <= (cc->migrate_pfn >> pageblock_order); 1250 } 1251 1252 /* 1253 * Used when scanning for a suitable migration target which scans freelists 1254 * in reverse. Reorders the list such as the unscanned pages are scanned 1255 * first on the next iteration of the free scanner 1256 */ 1257 static void 1258 move_freelist_head(struct list_head *freelist, struct page *freepage) 1259 { 1260 LIST_HEAD(sublist); 1261 1262 if (!list_is_last(freelist, &freepage->lru)) { 1263 list_cut_before(&sublist, freelist, &freepage->lru); 1264 if (!list_empty(&sublist)) 1265 list_splice_tail(&sublist, freelist); 1266 } 1267 } 1268 1269 /* 1270 * Similar to move_freelist_head except used by the migration scanner 1271 * when scanning forward. It's possible for these list operations to 1272 * move against each other if they search the free list exactly in 1273 * lockstep. 1274 */ 1275 static void 1276 move_freelist_tail(struct list_head *freelist, struct page *freepage) 1277 { 1278 LIST_HEAD(sublist); 1279 1280 if (!list_is_first(freelist, &freepage->lru)) { 1281 list_cut_position(&sublist, freelist, &freepage->lru); 1282 if (!list_empty(&sublist)) 1283 list_splice_tail(&sublist, freelist); 1284 } 1285 } 1286 1287 static void 1288 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated) 1289 { 1290 unsigned long start_pfn, end_pfn; 1291 struct page *page = pfn_to_page(pfn); 1292 1293 /* Do not search around if there are enough pages already */ 1294 if (cc->nr_freepages >= cc->nr_migratepages) 1295 return; 1296 1297 /* Minimise scanning during async compaction */ 1298 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC) 1299 return; 1300 1301 /* Pageblock boundaries */ 1302 start_pfn = pageblock_start_pfn(pfn); 1303 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1; 1304 1305 /* Scan before */ 1306 if (start_pfn != pfn) { 1307 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false); 1308 if (cc->nr_freepages >= cc->nr_migratepages) 1309 return; 1310 } 1311 1312 /* Scan after */ 1313 start_pfn = pfn + nr_isolated; 1314 if (start_pfn < end_pfn) 1315 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false); 1316 1317 /* Skip this pageblock in the future as it's full or nearly full */ 1318 if (cc->nr_freepages < cc->nr_migratepages) 1319 set_pageblock_skip(page); 1320 } 1321 1322 /* Search orders in round-robin fashion */ 1323 static int next_search_order(struct compact_control *cc, int order) 1324 { 1325 order--; 1326 if (order < 0) 1327 order = cc->order - 1; 1328 1329 /* Search wrapped around? */ 1330 if (order == cc->search_order) { 1331 cc->search_order--; 1332 if (cc->search_order < 0) 1333 cc->search_order = cc->order - 1; 1334 return -1; 1335 } 1336 1337 return order; 1338 } 1339 1340 static unsigned long 1341 fast_isolate_freepages(struct compact_control *cc) 1342 { 1343 unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1); 1344 unsigned int nr_scanned = 0; 1345 unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0; 1346 unsigned long nr_isolated = 0; 1347 unsigned long distance; 1348 struct page *page = NULL; 1349 bool scan_start = false; 1350 int order; 1351 1352 /* Full compaction passes in a negative order */ 1353 if (cc->order <= 0) 1354 return cc->free_pfn; 1355 1356 /* 1357 * If starting the scan, use a deeper search and use the highest 1358 * PFN found if a suitable one is not found. 1359 */ 1360 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) { 1361 limit = pageblock_nr_pages >> 1; 1362 scan_start = true; 1363 } 1364 1365 /* 1366 * Preferred point is in the top quarter of the scan space but take 1367 * a pfn from the top half if the search is problematic. 1368 */ 1369 distance = (cc->free_pfn - cc->migrate_pfn); 1370 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2)); 1371 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1)); 1372 1373 if (WARN_ON_ONCE(min_pfn > low_pfn)) 1374 low_pfn = min_pfn; 1375 1376 /* 1377 * Search starts from the last successful isolation order or the next 1378 * order to search after a previous failure 1379 */ 1380 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order); 1381 1382 for (order = cc->search_order; 1383 !page && order >= 0; 1384 order = next_search_order(cc, order)) { 1385 struct free_area *area = &cc->zone->free_area[order]; 1386 struct list_head *freelist; 1387 struct page *freepage; 1388 unsigned long flags; 1389 unsigned int order_scanned = 0; 1390 1391 if (!area->nr_free) 1392 continue; 1393 1394 spin_lock_irqsave(&cc->zone->lock, flags); 1395 freelist = &area->free_list[MIGRATE_MOVABLE]; 1396 list_for_each_entry_reverse(freepage, freelist, lru) { 1397 unsigned long pfn; 1398 1399 order_scanned++; 1400 nr_scanned++; 1401 pfn = page_to_pfn(freepage); 1402 1403 if (pfn >= highest) 1404 highest = pageblock_start_pfn(pfn); 1405 1406 if (pfn >= low_pfn) { 1407 cc->fast_search_fail = 0; 1408 cc->search_order = order; 1409 page = freepage; 1410 break; 1411 } 1412 1413 if (pfn >= min_pfn && pfn > high_pfn) { 1414 high_pfn = pfn; 1415 1416 /* Shorten the scan if a candidate is found */ 1417 limit >>= 1; 1418 } 1419 1420 if (order_scanned >= limit) 1421 break; 1422 } 1423 1424 /* Use a minimum pfn if a preferred one was not found */ 1425 if (!page && high_pfn) { 1426 page = pfn_to_page(high_pfn); 1427 1428 /* Update freepage for the list reorder below */ 1429 freepage = page; 1430 } 1431 1432 /* Reorder to so a future search skips recent pages */ 1433 move_freelist_head(freelist, freepage); 1434 1435 /* Isolate the page if available */ 1436 if (page) { 1437 if (__isolate_free_page(page, order)) { 1438 set_page_private(page, order); 1439 nr_isolated = 1 << order; 1440 cc->nr_freepages += nr_isolated; 1441 list_add_tail(&page->lru, &cc->freepages); 1442 count_compact_events(COMPACTISOLATED, nr_isolated); 1443 } else { 1444 /* If isolation fails, abort the search */ 1445 order = cc->search_order + 1; 1446 page = NULL; 1447 } 1448 } 1449 1450 spin_unlock_irqrestore(&cc->zone->lock, flags); 1451 1452 /* 1453 * Smaller scan on next order so the total scan ig related 1454 * to freelist_scan_limit. 1455 */ 1456 if (order_scanned >= limit) 1457 limit = min(1U, limit >> 1); 1458 } 1459 1460 if (!page) { 1461 cc->fast_search_fail++; 1462 if (scan_start) { 1463 /* 1464 * Use the highest PFN found above min. If one was 1465 * not found, be pessimistic for direct compaction 1466 * and use the min mark. 1467 */ 1468 if (highest) { 1469 page = pfn_to_page(highest); 1470 cc->free_pfn = highest; 1471 } else { 1472 if (cc->direct_compaction && pfn_valid(min_pfn)) { 1473 page = pageblock_pfn_to_page(min_pfn, 1474 pageblock_end_pfn(min_pfn), 1475 cc->zone); 1476 cc->free_pfn = min_pfn; 1477 } 1478 } 1479 } 1480 } 1481 1482 if (highest && highest >= cc->zone->compact_cached_free_pfn) { 1483 highest -= pageblock_nr_pages; 1484 cc->zone->compact_cached_free_pfn = highest; 1485 } 1486 1487 cc->total_free_scanned += nr_scanned; 1488 if (!page) 1489 return cc->free_pfn; 1490 1491 low_pfn = page_to_pfn(page); 1492 fast_isolate_around(cc, low_pfn, nr_isolated); 1493 return low_pfn; 1494 } 1495 1496 /* 1497 * Based on information in the current compact_control, find blocks 1498 * suitable for isolating free pages from and then isolate them. 1499 */ 1500 static void isolate_freepages(struct compact_control *cc) 1501 { 1502 struct zone *zone = cc->zone; 1503 struct page *page; 1504 unsigned long block_start_pfn; /* start of current pageblock */ 1505 unsigned long isolate_start_pfn; /* exact pfn we start at */ 1506 unsigned long block_end_pfn; /* end of current pageblock */ 1507 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 1508 struct list_head *freelist = &cc->freepages; 1509 unsigned int stride; 1510 1511 /* Try a small search of the free lists for a candidate */ 1512 isolate_start_pfn = fast_isolate_freepages(cc); 1513 if (cc->nr_freepages) 1514 goto splitmap; 1515 1516 /* 1517 * Initialise the free scanner. The starting point is where we last 1518 * successfully isolated from, zone-cached value, or the end of the 1519 * zone when isolating for the first time. For looping we also need 1520 * this pfn aligned down to the pageblock boundary, because we do 1521 * block_start_pfn -= pageblock_nr_pages in the for loop. 1522 * For ending point, take care when isolating in last pageblock of a 1523 * zone which ends in the middle of a pageblock. 1524 * The low boundary is the end of the pageblock the migration scanner 1525 * is using. 1526 */ 1527 isolate_start_pfn = cc->free_pfn; 1528 block_start_pfn = pageblock_start_pfn(isolate_start_pfn); 1529 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 1530 zone_end_pfn(zone)); 1531 low_pfn = pageblock_end_pfn(cc->migrate_pfn); 1532 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1; 1533 1534 /* 1535 * Isolate free pages until enough are available to migrate the 1536 * pages on cc->migratepages. We stop searching if the migrate 1537 * and free page scanners meet or enough free pages are isolated. 1538 */ 1539 for (; block_start_pfn >= low_pfn; 1540 block_end_pfn = block_start_pfn, 1541 block_start_pfn -= pageblock_nr_pages, 1542 isolate_start_pfn = block_start_pfn) { 1543 unsigned long nr_isolated; 1544 1545 /* 1546 * This can iterate a massively long zone without finding any 1547 * suitable migration targets, so periodically check resched. 1548 */ 1549 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))) 1550 cond_resched(); 1551 1552 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1553 zone); 1554 if (!page) 1555 continue; 1556 1557 /* Check the block is suitable for migration */ 1558 if (!suitable_migration_target(cc, page)) 1559 continue; 1560 1561 /* If isolation recently failed, do not retry */ 1562 if (!isolation_suitable(cc, page)) 1563 continue; 1564 1565 /* Found a block suitable for isolating free pages from. */ 1566 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn, 1567 block_end_pfn, freelist, stride, false); 1568 1569 /* Update the skip hint if the full pageblock was scanned */ 1570 if (isolate_start_pfn == block_end_pfn) 1571 update_pageblock_skip(cc, page, block_start_pfn); 1572 1573 /* Are enough freepages isolated? */ 1574 if (cc->nr_freepages >= cc->nr_migratepages) { 1575 if (isolate_start_pfn >= block_end_pfn) { 1576 /* 1577 * Restart at previous pageblock if more 1578 * freepages can be isolated next time. 1579 */ 1580 isolate_start_pfn = 1581 block_start_pfn - pageblock_nr_pages; 1582 } 1583 break; 1584 } else if (isolate_start_pfn < block_end_pfn) { 1585 /* 1586 * If isolation failed early, do not continue 1587 * needlessly. 1588 */ 1589 break; 1590 } 1591 1592 /* Adjust stride depending on isolation */ 1593 if (nr_isolated) { 1594 stride = 1; 1595 continue; 1596 } 1597 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1); 1598 } 1599 1600 /* 1601 * Record where the free scanner will restart next time. Either we 1602 * broke from the loop and set isolate_start_pfn based on the last 1603 * call to isolate_freepages_block(), or we met the migration scanner 1604 * and the loop terminated due to isolate_start_pfn < low_pfn 1605 */ 1606 cc->free_pfn = isolate_start_pfn; 1607 1608 splitmap: 1609 /* __isolate_free_page() does not map the pages */ 1610 split_map_pages(freelist); 1611 } 1612 1613 /* 1614 * This is a migrate-callback that "allocates" freepages by taking pages 1615 * from the isolated freelists in the block we are migrating to. 1616 */ 1617 static struct page *compaction_alloc(struct page *migratepage, 1618 unsigned long data) 1619 { 1620 struct compact_control *cc = (struct compact_control *)data; 1621 struct page *freepage; 1622 1623 if (list_empty(&cc->freepages)) { 1624 isolate_freepages(cc); 1625 1626 if (list_empty(&cc->freepages)) 1627 return NULL; 1628 } 1629 1630 freepage = list_entry(cc->freepages.next, struct page, lru); 1631 list_del(&freepage->lru); 1632 cc->nr_freepages--; 1633 1634 return freepage; 1635 } 1636 1637 /* 1638 * This is a migrate-callback that "frees" freepages back to the isolated 1639 * freelist. All pages on the freelist are from the same zone, so there is no 1640 * special handling needed for NUMA. 1641 */ 1642 static void compaction_free(struct page *page, unsigned long data) 1643 { 1644 struct compact_control *cc = (struct compact_control *)data; 1645 1646 list_add(&page->lru, &cc->freepages); 1647 cc->nr_freepages++; 1648 } 1649 1650 /* possible outcome of isolate_migratepages */ 1651 typedef enum { 1652 ISOLATE_ABORT, /* Abort compaction now */ 1653 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1654 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1655 } isolate_migrate_t; 1656 1657 /* 1658 * Allow userspace to control policy on scanning the unevictable LRU for 1659 * compactable pages. 1660 */ 1661 #ifdef CONFIG_PREEMPT_RT 1662 int sysctl_compact_unevictable_allowed __read_mostly = 0; 1663 #else 1664 int sysctl_compact_unevictable_allowed __read_mostly = 1; 1665 #endif 1666 1667 static inline void 1668 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn) 1669 { 1670 if (cc->fast_start_pfn == ULONG_MAX) 1671 return; 1672 1673 if (!cc->fast_start_pfn) 1674 cc->fast_start_pfn = pfn; 1675 1676 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn); 1677 } 1678 1679 static inline unsigned long 1680 reinit_migrate_pfn(struct compact_control *cc) 1681 { 1682 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX) 1683 return cc->migrate_pfn; 1684 1685 cc->migrate_pfn = cc->fast_start_pfn; 1686 cc->fast_start_pfn = ULONG_MAX; 1687 1688 return cc->migrate_pfn; 1689 } 1690 1691 /* 1692 * Briefly search the free lists for a migration source that already has 1693 * some free pages to reduce the number of pages that need migration 1694 * before a pageblock is free. 1695 */ 1696 static unsigned long fast_find_migrateblock(struct compact_control *cc) 1697 { 1698 unsigned int limit = freelist_scan_limit(cc); 1699 unsigned int nr_scanned = 0; 1700 unsigned long distance; 1701 unsigned long pfn = cc->migrate_pfn; 1702 unsigned long high_pfn; 1703 int order; 1704 1705 /* Skip hints are relied on to avoid repeats on the fast search */ 1706 if (cc->ignore_skip_hint) 1707 return pfn; 1708 1709 /* 1710 * If the migrate_pfn is not at the start of a zone or the start 1711 * of a pageblock then assume this is a continuation of a previous 1712 * scan restarted due to COMPACT_CLUSTER_MAX. 1713 */ 1714 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn)) 1715 return pfn; 1716 1717 /* 1718 * For smaller orders, just linearly scan as the number of pages 1719 * to migrate should be relatively small and does not necessarily 1720 * justify freeing up a large block for a small allocation. 1721 */ 1722 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER) 1723 return pfn; 1724 1725 /* 1726 * Only allow kcompactd and direct requests for movable pages to 1727 * quickly clear out a MOVABLE pageblock for allocation. This 1728 * reduces the risk that a large movable pageblock is freed for 1729 * an unmovable/reclaimable small allocation. 1730 */ 1731 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE) 1732 return pfn; 1733 1734 /* 1735 * When starting the migration scanner, pick any pageblock within the 1736 * first half of the search space. Otherwise try and pick a pageblock 1737 * within the first eighth to reduce the chances that a migration 1738 * target later becomes a source. 1739 */ 1740 distance = (cc->free_pfn - cc->migrate_pfn) >> 1; 1741 if (cc->migrate_pfn != cc->zone->zone_start_pfn) 1742 distance >>= 2; 1743 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance); 1744 1745 for (order = cc->order - 1; 1746 order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit; 1747 order--) { 1748 struct free_area *area = &cc->zone->free_area[order]; 1749 struct list_head *freelist; 1750 unsigned long flags; 1751 struct page *freepage; 1752 1753 if (!area->nr_free) 1754 continue; 1755 1756 spin_lock_irqsave(&cc->zone->lock, flags); 1757 freelist = &area->free_list[MIGRATE_MOVABLE]; 1758 list_for_each_entry(freepage, freelist, lru) { 1759 unsigned long free_pfn; 1760 1761 nr_scanned++; 1762 free_pfn = page_to_pfn(freepage); 1763 if (free_pfn < high_pfn) { 1764 /* 1765 * Avoid if skipped recently. Ideally it would 1766 * move to the tail but even safe iteration of 1767 * the list assumes an entry is deleted, not 1768 * reordered. 1769 */ 1770 if (get_pageblock_skip(freepage)) { 1771 if (list_is_last(freelist, &freepage->lru)) 1772 break; 1773 1774 continue; 1775 } 1776 1777 /* Reorder to so a future search skips recent pages */ 1778 move_freelist_tail(freelist, freepage); 1779 1780 update_fast_start_pfn(cc, free_pfn); 1781 pfn = pageblock_start_pfn(free_pfn); 1782 cc->fast_search_fail = 0; 1783 set_pageblock_skip(freepage); 1784 break; 1785 } 1786 1787 if (nr_scanned >= limit) { 1788 cc->fast_search_fail++; 1789 move_freelist_tail(freelist, freepage); 1790 break; 1791 } 1792 } 1793 spin_unlock_irqrestore(&cc->zone->lock, flags); 1794 } 1795 1796 cc->total_migrate_scanned += nr_scanned; 1797 1798 /* 1799 * If fast scanning failed then use a cached entry for a page block 1800 * that had free pages as the basis for starting a linear scan. 1801 */ 1802 if (pfn == cc->migrate_pfn) 1803 pfn = reinit_migrate_pfn(cc); 1804 1805 return pfn; 1806 } 1807 1808 /* 1809 * Isolate all pages that can be migrated from the first suitable block, 1810 * starting at the block pointed to by the migrate scanner pfn within 1811 * compact_control. 1812 */ 1813 static isolate_migrate_t isolate_migratepages(struct compact_control *cc) 1814 { 1815 unsigned long block_start_pfn; 1816 unsigned long block_end_pfn; 1817 unsigned long low_pfn; 1818 struct page *page; 1819 const isolate_mode_t isolate_mode = 1820 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 1821 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0); 1822 bool fast_find_block; 1823 1824 /* 1825 * Start at where we last stopped, or beginning of the zone as 1826 * initialized by compact_zone(). The first failure will use 1827 * the lowest PFN as the starting point for linear scanning. 1828 */ 1829 low_pfn = fast_find_migrateblock(cc); 1830 block_start_pfn = pageblock_start_pfn(low_pfn); 1831 if (block_start_pfn < cc->zone->zone_start_pfn) 1832 block_start_pfn = cc->zone->zone_start_pfn; 1833 1834 /* 1835 * fast_find_migrateblock marks a pageblock skipped so to avoid 1836 * the isolation_suitable check below, check whether the fast 1837 * search was successful. 1838 */ 1839 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail; 1840 1841 /* Only scan within a pageblock boundary */ 1842 block_end_pfn = pageblock_end_pfn(low_pfn); 1843 1844 /* 1845 * Iterate over whole pageblocks until we find the first suitable. 1846 * Do not cross the free scanner. 1847 */ 1848 for (; block_end_pfn <= cc->free_pfn; 1849 fast_find_block = false, 1850 low_pfn = block_end_pfn, 1851 block_start_pfn = block_end_pfn, 1852 block_end_pfn += pageblock_nr_pages) { 1853 1854 /* 1855 * This can potentially iterate a massively long zone with 1856 * many pageblocks unsuitable, so periodically check if we 1857 * need to schedule. 1858 */ 1859 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))) 1860 cond_resched(); 1861 1862 page = pageblock_pfn_to_page(block_start_pfn, 1863 block_end_pfn, cc->zone); 1864 if (!page) 1865 continue; 1866 1867 /* 1868 * If isolation recently failed, do not retry. Only check the 1869 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock 1870 * to be visited multiple times. Assume skip was checked 1871 * before making it "skip" so other compaction instances do 1872 * not scan the same block. 1873 */ 1874 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) && 1875 !fast_find_block && !isolation_suitable(cc, page)) 1876 continue; 1877 1878 /* 1879 * For async compaction, also only scan in MOVABLE blocks 1880 * without huge pages. Async compaction is optimistic to see 1881 * if the minimum amount of work satisfies the allocation. 1882 * The cached PFN is updated as it's possible that all 1883 * remaining blocks between source and target are unsuitable 1884 * and the compaction scanners fail to meet. 1885 */ 1886 if (!suitable_migration_source(cc, page)) { 1887 update_cached_migrate(cc, block_end_pfn); 1888 continue; 1889 } 1890 1891 /* Perform the isolation */ 1892 low_pfn = isolate_migratepages_block(cc, low_pfn, 1893 block_end_pfn, isolate_mode); 1894 1895 if (!low_pfn) 1896 return ISOLATE_ABORT; 1897 1898 /* 1899 * Either we isolated something and proceed with migration. Or 1900 * we failed and compact_zone should decide if we should 1901 * continue or not. 1902 */ 1903 break; 1904 } 1905 1906 /* Record where migration scanner will be restarted. */ 1907 cc->migrate_pfn = low_pfn; 1908 1909 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 1910 } 1911 1912 /* 1913 * order == -1 is expected when compacting via 1914 * /proc/sys/vm/compact_memory 1915 */ 1916 static inline bool is_via_compact_memory(int order) 1917 { 1918 return order == -1; 1919 } 1920 1921 static bool kswapd_is_running(pg_data_t *pgdat) 1922 { 1923 return pgdat->kswapd && (pgdat->kswapd->state == TASK_RUNNING); 1924 } 1925 1926 /* 1927 * A zone's fragmentation score is the external fragmentation wrt to the 1928 * COMPACTION_HPAGE_ORDER scaled by the zone's size. It returns a value 1929 * in the range [0, 100]. 1930 * 1931 * The scaling factor ensures that proactive compaction focuses on larger 1932 * zones like ZONE_NORMAL, rather than smaller, specialized zones like 1933 * ZONE_DMA32. For smaller zones, the score value remains close to zero, 1934 * and thus never exceeds the high threshold for proactive compaction. 1935 */ 1936 static unsigned int fragmentation_score_zone(struct zone *zone) 1937 { 1938 unsigned long score; 1939 1940 score = zone->present_pages * 1941 extfrag_for_order(zone, COMPACTION_HPAGE_ORDER); 1942 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1); 1943 } 1944 1945 /* 1946 * The per-node proactive (background) compaction process is started by its 1947 * corresponding kcompactd thread when the node's fragmentation score 1948 * exceeds the high threshold. The compaction process remains active till 1949 * the node's score falls below the low threshold, or one of the back-off 1950 * conditions is met. 1951 */ 1952 static unsigned int fragmentation_score_node(pg_data_t *pgdat) 1953 { 1954 unsigned int score = 0; 1955 int zoneid; 1956 1957 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 1958 struct zone *zone; 1959 1960 zone = &pgdat->node_zones[zoneid]; 1961 score += fragmentation_score_zone(zone); 1962 } 1963 1964 return score; 1965 } 1966 1967 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low) 1968 { 1969 unsigned int wmark_low; 1970 1971 /* 1972 * Cap the low watermak to avoid excessive compaction 1973 * activity in case a user sets the proactivess tunable 1974 * close to 100 (maximum). 1975 */ 1976 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U); 1977 return low ? wmark_low : min(wmark_low + 10, 100U); 1978 } 1979 1980 static bool should_proactive_compact_node(pg_data_t *pgdat) 1981 { 1982 int wmark_high; 1983 1984 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat)) 1985 return false; 1986 1987 wmark_high = fragmentation_score_wmark(pgdat, false); 1988 return fragmentation_score_node(pgdat) > wmark_high; 1989 } 1990 1991 static enum compact_result __compact_finished(struct compact_control *cc) 1992 { 1993 unsigned int order; 1994 const int migratetype = cc->migratetype; 1995 int ret; 1996 1997 /* Compaction run completes if the migrate and free scanner meet */ 1998 if (compact_scanners_met(cc)) { 1999 /* Let the next compaction start anew. */ 2000 reset_cached_positions(cc->zone); 2001 2002 /* 2003 * Mark that the PG_migrate_skip information should be cleared 2004 * by kswapd when it goes to sleep. kcompactd does not set the 2005 * flag itself as the decision to be clear should be directly 2006 * based on an allocation request. 2007 */ 2008 if (cc->direct_compaction) 2009 cc->zone->compact_blockskip_flush = true; 2010 2011 if (cc->whole_zone) 2012 return COMPACT_COMPLETE; 2013 else 2014 return COMPACT_PARTIAL_SKIPPED; 2015 } 2016 2017 if (cc->proactive_compaction) { 2018 int score, wmark_low; 2019 pg_data_t *pgdat; 2020 2021 pgdat = cc->zone->zone_pgdat; 2022 if (kswapd_is_running(pgdat)) 2023 return COMPACT_PARTIAL_SKIPPED; 2024 2025 score = fragmentation_score_zone(cc->zone); 2026 wmark_low = fragmentation_score_wmark(pgdat, true); 2027 2028 if (score > wmark_low) 2029 ret = COMPACT_CONTINUE; 2030 else 2031 ret = COMPACT_SUCCESS; 2032 2033 goto out; 2034 } 2035 2036 if (is_via_compact_memory(cc->order)) 2037 return COMPACT_CONTINUE; 2038 2039 /* 2040 * Always finish scanning a pageblock to reduce the possibility of 2041 * fallbacks in the future. This is particularly important when 2042 * migration source is unmovable/reclaimable but it's not worth 2043 * special casing. 2044 */ 2045 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages)) 2046 return COMPACT_CONTINUE; 2047 2048 /* Direct compactor: Is a suitable page free? */ 2049 ret = COMPACT_NO_SUITABLE_PAGE; 2050 for (order = cc->order; order < MAX_ORDER; order++) { 2051 struct free_area *area = &cc->zone->free_area[order]; 2052 bool can_steal; 2053 2054 /* Job done if page is free of the right migratetype */ 2055 if (!free_area_empty(area, migratetype)) 2056 return COMPACT_SUCCESS; 2057 2058 #ifdef CONFIG_CMA 2059 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 2060 if (migratetype == MIGRATE_MOVABLE && 2061 !free_area_empty(area, MIGRATE_CMA)) 2062 return COMPACT_SUCCESS; 2063 #endif 2064 /* 2065 * Job done if allocation would steal freepages from 2066 * other migratetype buddy lists. 2067 */ 2068 if (find_suitable_fallback(area, order, migratetype, 2069 true, &can_steal) != -1) { 2070 2071 /* movable pages are OK in any pageblock */ 2072 if (migratetype == MIGRATE_MOVABLE) 2073 return COMPACT_SUCCESS; 2074 2075 /* 2076 * We are stealing for a non-movable allocation. Make 2077 * sure we finish compacting the current pageblock 2078 * first so it is as free as possible and we won't 2079 * have to steal another one soon. This only applies 2080 * to sync compaction, as async compaction operates 2081 * on pageblocks of the same migratetype. 2082 */ 2083 if (cc->mode == MIGRATE_ASYNC || 2084 IS_ALIGNED(cc->migrate_pfn, 2085 pageblock_nr_pages)) { 2086 return COMPACT_SUCCESS; 2087 } 2088 2089 ret = COMPACT_CONTINUE; 2090 break; 2091 } 2092 } 2093 2094 out: 2095 if (cc->contended || fatal_signal_pending(current)) 2096 ret = COMPACT_CONTENDED; 2097 2098 return ret; 2099 } 2100 2101 static enum compact_result compact_finished(struct compact_control *cc) 2102 { 2103 int ret; 2104 2105 ret = __compact_finished(cc); 2106 trace_mm_compaction_finished(cc->zone, cc->order, ret); 2107 if (ret == COMPACT_NO_SUITABLE_PAGE) 2108 ret = COMPACT_CONTINUE; 2109 2110 return ret; 2111 } 2112 2113 static enum compact_result __compaction_suitable(struct zone *zone, int order, 2114 unsigned int alloc_flags, 2115 int highest_zoneidx, 2116 unsigned long wmark_target) 2117 { 2118 unsigned long watermark; 2119 2120 if (is_via_compact_memory(order)) 2121 return COMPACT_CONTINUE; 2122 2123 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 2124 /* 2125 * If watermarks for high-order allocation are already met, there 2126 * should be no need for compaction at all. 2127 */ 2128 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx, 2129 alloc_flags)) 2130 return COMPACT_SUCCESS; 2131 2132 /* 2133 * Watermarks for order-0 must be met for compaction to be able to 2134 * isolate free pages for migration targets. This means that the 2135 * watermark and alloc_flags have to match, or be more pessimistic than 2136 * the check in __isolate_free_page(). We don't use the direct 2137 * compactor's alloc_flags, as they are not relevant for freepage 2138 * isolation. We however do use the direct compactor's highest_zoneidx 2139 * to skip over zones where lowmem reserves would prevent allocation 2140 * even if compaction succeeds. 2141 * For costly orders, we require low watermark instead of min for 2142 * compaction to proceed to increase its chances. 2143 * ALLOC_CMA is used, as pages in CMA pageblocks are considered 2144 * suitable migration targets 2145 */ 2146 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ? 2147 low_wmark_pages(zone) : min_wmark_pages(zone); 2148 watermark += compact_gap(order); 2149 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx, 2150 ALLOC_CMA, wmark_target)) 2151 return COMPACT_SKIPPED; 2152 2153 return COMPACT_CONTINUE; 2154 } 2155 2156 /* 2157 * compaction_suitable: Is this suitable to run compaction on this zone now? 2158 * Returns 2159 * COMPACT_SKIPPED - If there are too few free pages for compaction 2160 * COMPACT_SUCCESS - If the allocation would succeed without compaction 2161 * COMPACT_CONTINUE - If compaction should run now 2162 */ 2163 enum compact_result compaction_suitable(struct zone *zone, int order, 2164 unsigned int alloc_flags, 2165 int highest_zoneidx) 2166 { 2167 enum compact_result ret; 2168 int fragindex; 2169 2170 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx, 2171 zone_page_state(zone, NR_FREE_PAGES)); 2172 /* 2173 * fragmentation index determines if allocation failures are due to 2174 * low memory or external fragmentation 2175 * 2176 * index of -1000 would imply allocations might succeed depending on 2177 * watermarks, but we already failed the high-order watermark check 2178 * index towards 0 implies failure is due to lack of memory 2179 * index towards 1000 implies failure is due to fragmentation 2180 * 2181 * Only compact if a failure would be due to fragmentation. Also 2182 * ignore fragindex for non-costly orders where the alternative to 2183 * a successful reclaim/compaction is OOM. Fragindex and the 2184 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent 2185 * excessive compaction for costly orders, but it should not be at the 2186 * expense of system stability. 2187 */ 2188 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) { 2189 fragindex = fragmentation_index(zone, order); 2190 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 2191 ret = COMPACT_NOT_SUITABLE_ZONE; 2192 } 2193 2194 trace_mm_compaction_suitable(zone, order, ret); 2195 if (ret == COMPACT_NOT_SUITABLE_ZONE) 2196 ret = COMPACT_SKIPPED; 2197 2198 return ret; 2199 } 2200 2201 bool compaction_zonelist_suitable(struct alloc_context *ac, int order, 2202 int alloc_flags) 2203 { 2204 struct zone *zone; 2205 struct zoneref *z; 2206 2207 /* 2208 * Make sure at least one zone would pass __compaction_suitable if we continue 2209 * retrying the reclaim. 2210 */ 2211 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2212 ac->highest_zoneidx, ac->nodemask) { 2213 unsigned long available; 2214 enum compact_result compact_result; 2215 2216 /* 2217 * Do not consider all the reclaimable memory because we do not 2218 * want to trash just for a single high order allocation which 2219 * is even not guaranteed to appear even if __compaction_suitable 2220 * is happy about the watermark check. 2221 */ 2222 available = zone_reclaimable_pages(zone) / order; 2223 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 2224 compact_result = __compaction_suitable(zone, order, alloc_flags, 2225 ac->highest_zoneidx, available); 2226 if (compact_result != COMPACT_SKIPPED) 2227 return true; 2228 } 2229 2230 return false; 2231 } 2232 2233 static enum compact_result 2234 compact_zone(struct compact_control *cc, struct capture_control *capc) 2235 { 2236 enum compact_result ret; 2237 unsigned long start_pfn = cc->zone->zone_start_pfn; 2238 unsigned long end_pfn = zone_end_pfn(cc->zone); 2239 unsigned long last_migrated_pfn; 2240 const bool sync = cc->mode != MIGRATE_ASYNC; 2241 bool update_cached; 2242 2243 /* 2244 * These counters track activities during zone compaction. Initialize 2245 * them before compacting a new zone. 2246 */ 2247 cc->total_migrate_scanned = 0; 2248 cc->total_free_scanned = 0; 2249 cc->nr_migratepages = 0; 2250 cc->nr_freepages = 0; 2251 INIT_LIST_HEAD(&cc->freepages); 2252 INIT_LIST_HEAD(&cc->migratepages); 2253 2254 cc->migratetype = gfp_migratetype(cc->gfp_mask); 2255 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags, 2256 cc->highest_zoneidx); 2257 /* Compaction is likely to fail */ 2258 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED) 2259 return ret; 2260 2261 /* huh, compaction_suitable is returning something unexpected */ 2262 VM_BUG_ON(ret != COMPACT_CONTINUE); 2263 2264 /* 2265 * Clear pageblock skip if there were failures recently and compaction 2266 * is about to be retried after being deferred. 2267 */ 2268 if (compaction_restarting(cc->zone, cc->order)) 2269 __reset_isolation_suitable(cc->zone); 2270 2271 /* 2272 * Setup to move all movable pages to the end of the zone. Used cached 2273 * information on where the scanners should start (unless we explicitly 2274 * want to compact the whole zone), but check that it is initialised 2275 * by ensuring the values are within zone boundaries. 2276 */ 2277 cc->fast_start_pfn = 0; 2278 if (cc->whole_zone) { 2279 cc->migrate_pfn = start_pfn; 2280 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2281 } else { 2282 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync]; 2283 cc->free_pfn = cc->zone->compact_cached_free_pfn; 2284 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 2285 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2286 cc->zone->compact_cached_free_pfn = cc->free_pfn; 2287 } 2288 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 2289 cc->migrate_pfn = start_pfn; 2290 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 2291 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 2292 } 2293 2294 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn) 2295 cc->whole_zone = true; 2296 } 2297 2298 last_migrated_pfn = 0; 2299 2300 /* 2301 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on 2302 * the basis that some migrations will fail in ASYNC mode. However, 2303 * if the cached PFNs match and pageblocks are skipped due to having 2304 * no isolation candidates, then the sync state does not matter. 2305 * Until a pageblock with isolation candidates is found, keep the 2306 * cached PFNs in sync to avoid revisiting the same blocks. 2307 */ 2308 update_cached = !sync && 2309 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1]; 2310 2311 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, 2312 cc->free_pfn, end_pfn, sync); 2313 2314 migrate_prep_local(); 2315 2316 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) { 2317 int err; 2318 unsigned long iteration_start_pfn = cc->migrate_pfn; 2319 2320 /* 2321 * Avoid multiple rescans which can happen if a page cannot be 2322 * isolated (dirty/writeback in async mode) or if the migrated 2323 * pages are being allocated before the pageblock is cleared. 2324 * The first rescan will capture the entire pageblock for 2325 * migration. If it fails, it'll be marked skip and scanning 2326 * will proceed as normal. 2327 */ 2328 cc->rescan = false; 2329 if (pageblock_start_pfn(last_migrated_pfn) == 2330 pageblock_start_pfn(iteration_start_pfn)) { 2331 cc->rescan = true; 2332 } 2333 2334 switch (isolate_migratepages(cc)) { 2335 case ISOLATE_ABORT: 2336 ret = COMPACT_CONTENDED; 2337 putback_movable_pages(&cc->migratepages); 2338 cc->nr_migratepages = 0; 2339 goto out; 2340 case ISOLATE_NONE: 2341 if (update_cached) { 2342 cc->zone->compact_cached_migrate_pfn[1] = 2343 cc->zone->compact_cached_migrate_pfn[0]; 2344 } 2345 2346 /* 2347 * We haven't isolated and migrated anything, but 2348 * there might still be unflushed migrations from 2349 * previous cc->order aligned block. 2350 */ 2351 goto check_drain; 2352 case ISOLATE_SUCCESS: 2353 update_cached = false; 2354 last_migrated_pfn = iteration_start_pfn; 2355 } 2356 2357 err = migrate_pages(&cc->migratepages, compaction_alloc, 2358 compaction_free, (unsigned long)cc, cc->mode, 2359 MR_COMPACTION); 2360 2361 trace_mm_compaction_migratepages(cc->nr_migratepages, err, 2362 &cc->migratepages); 2363 2364 /* All pages were either migrated or will be released */ 2365 cc->nr_migratepages = 0; 2366 if (err) { 2367 putback_movable_pages(&cc->migratepages); 2368 /* 2369 * migrate_pages() may return -ENOMEM when scanners meet 2370 * and we want compact_finished() to detect it 2371 */ 2372 if (err == -ENOMEM && !compact_scanners_met(cc)) { 2373 ret = COMPACT_CONTENDED; 2374 goto out; 2375 } 2376 /* 2377 * We failed to migrate at least one page in the current 2378 * order-aligned block, so skip the rest of it. 2379 */ 2380 if (cc->direct_compaction && 2381 (cc->mode == MIGRATE_ASYNC)) { 2382 cc->migrate_pfn = block_end_pfn( 2383 cc->migrate_pfn - 1, cc->order); 2384 /* Draining pcplists is useless in this case */ 2385 last_migrated_pfn = 0; 2386 } 2387 } 2388 2389 check_drain: 2390 /* 2391 * Has the migration scanner moved away from the previous 2392 * cc->order aligned block where we migrated from? If yes, 2393 * flush the pages that were freed, so that they can merge and 2394 * compact_finished() can detect immediately if allocation 2395 * would succeed. 2396 */ 2397 if (cc->order > 0 && last_migrated_pfn) { 2398 unsigned long current_block_start = 2399 block_start_pfn(cc->migrate_pfn, cc->order); 2400 2401 if (last_migrated_pfn < current_block_start) { 2402 lru_add_drain_cpu_zone(cc->zone); 2403 /* No more flushing until we migrate again */ 2404 last_migrated_pfn = 0; 2405 } 2406 } 2407 2408 /* Stop if a page has been captured */ 2409 if (capc && capc->page) { 2410 ret = COMPACT_SUCCESS; 2411 break; 2412 } 2413 } 2414 2415 out: 2416 /* 2417 * Release free pages and update where the free scanner should restart, 2418 * so we don't leave any returned pages behind in the next attempt. 2419 */ 2420 if (cc->nr_freepages > 0) { 2421 unsigned long free_pfn = release_freepages(&cc->freepages); 2422 2423 cc->nr_freepages = 0; 2424 VM_BUG_ON(free_pfn == 0); 2425 /* The cached pfn is always the first in a pageblock */ 2426 free_pfn = pageblock_start_pfn(free_pfn); 2427 /* 2428 * Only go back, not forward. The cached pfn might have been 2429 * already reset to zone end in compact_finished() 2430 */ 2431 if (free_pfn > cc->zone->compact_cached_free_pfn) 2432 cc->zone->compact_cached_free_pfn = free_pfn; 2433 } 2434 2435 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned); 2436 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned); 2437 2438 trace_mm_compaction_end(start_pfn, cc->migrate_pfn, 2439 cc->free_pfn, end_pfn, sync, ret); 2440 2441 return ret; 2442 } 2443 2444 static enum compact_result compact_zone_order(struct zone *zone, int order, 2445 gfp_t gfp_mask, enum compact_priority prio, 2446 unsigned int alloc_flags, int highest_zoneidx, 2447 struct page **capture) 2448 { 2449 enum compact_result ret; 2450 struct compact_control cc = { 2451 .order = order, 2452 .search_order = order, 2453 .gfp_mask = gfp_mask, 2454 .zone = zone, 2455 .mode = (prio == COMPACT_PRIO_ASYNC) ? 2456 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT, 2457 .alloc_flags = alloc_flags, 2458 .highest_zoneidx = highest_zoneidx, 2459 .direct_compaction = true, 2460 .whole_zone = (prio == MIN_COMPACT_PRIORITY), 2461 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY), 2462 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY) 2463 }; 2464 struct capture_control capc = { 2465 .cc = &cc, 2466 .page = NULL, 2467 }; 2468 2469 /* 2470 * Make sure the structs are really initialized before we expose the 2471 * capture control, in case we are interrupted and the interrupt handler 2472 * frees a page. 2473 */ 2474 barrier(); 2475 WRITE_ONCE(current->capture_control, &capc); 2476 2477 ret = compact_zone(&cc, &capc); 2478 2479 VM_BUG_ON(!list_empty(&cc.freepages)); 2480 VM_BUG_ON(!list_empty(&cc.migratepages)); 2481 2482 /* 2483 * Make sure we hide capture control first before we read the captured 2484 * page pointer, otherwise an interrupt could free and capture a page 2485 * and we would leak it. 2486 */ 2487 WRITE_ONCE(current->capture_control, NULL); 2488 *capture = READ_ONCE(capc.page); 2489 2490 return ret; 2491 } 2492 2493 int sysctl_extfrag_threshold = 500; 2494 2495 /** 2496 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 2497 * @gfp_mask: The GFP mask of the current allocation 2498 * @order: The order of the current allocation 2499 * @alloc_flags: The allocation flags of the current allocation 2500 * @ac: The context of current allocation 2501 * @prio: Determines how hard direct compaction should try to succeed 2502 * @capture: Pointer to free page created by compaction will be stored here 2503 * 2504 * This is the main entry point for direct page compaction. 2505 */ 2506 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 2507 unsigned int alloc_flags, const struct alloc_context *ac, 2508 enum compact_priority prio, struct page **capture) 2509 { 2510 int may_perform_io = gfp_mask & __GFP_IO; 2511 struct zoneref *z; 2512 struct zone *zone; 2513 enum compact_result rc = COMPACT_SKIPPED; 2514 2515 /* 2516 * Check if the GFP flags allow compaction - GFP_NOIO is really 2517 * tricky context because the migration might require IO 2518 */ 2519 if (!may_perform_io) 2520 return COMPACT_SKIPPED; 2521 2522 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio); 2523 2524 /* Compact each zone in the list */ 2525 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2526 ac->highest_zoneidx, ac->nodemask) { 2527 enum compact_result status; 2528 2529 if (prio > MIN_COMPACT_PRIORITY 2530 && compaction_deferred(zone, order)) { 2531 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); 2532 continue; 2533 } 2534 2535 status = compact_zone_order(zone, order, gfp_mask, prio, 2536 alloc_flags, ac->highest_zoneidx, capture); 2537 rc = max(status, rc); 2538 2539 /* The allocation should succeed, stop compacting */ 2540 if (status == COMPACT_SUCCESS) { 2541 /* 2542 * We think the allocation will succeed in this zone, 2543 * but it is not certain, hence the false. The caller 2544 * will repeat this with true if allocation indeed 2545 * succeeds in this zone. 2546 */ 2547 compaction_defer_reset(zone, order, false); 2548 2549 break; 2550 } 2551 2552 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE || 2553 status == COMPACT_PARTIAL_SKIPPED)) 2554 /* 2555 * We think that allocation won't succeed in this zone 2556 * so we defer compaction there. If it ends up 2557 * succeeding after all, it will be reset. 2558 */ 2559 defer_compaction(zone, order); 2560 2561 /* 2562 * We might have stopped compacting due to need_resched() in 2563 * async compaction, or due to a fatal signal detected. In that 2564 * case do not try further zones 2565 */ 2566 if ((prio == COMPACT_PRIO_ASYNC && need_resched()) 2567 || fatal_signal_pending(current)) 2568 break; 2569 } 2570 2571 return rc; 2572 } 2573 2574 /* 2575 * Compact all zones within a node till each zone's fragmentation score 2576 * reaches within proactive compaction thresholds (as determined by the 2577 * proactiveness tunable). 2578 * 2579 * It is possible that the function returns before reaching score targets 2580 * due to various back-off conditions, such as, contention on per-node or 2581 * per-zone locks. 2582 */ 2583 static void proactive_compact_node(pg_data_t *pgdat) 2584 { 2585 int zoneid; 2586 struct zone *zone; 2587 struct compact_control cc = { 2588 .order = -1, 2589 .mode = MIGRATE_SYNC_LIGHT, 2590 .ignore_skip_hint = true, 2591 .whole_zone = true, 2592 .gfp_mask = GFP_KERNEL, 2593 .proactive_compaction = true, 2594 }; 2595 2596 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2597 zone = &pgdat->node_zones[zoneid]; 2598 if (!populated_zone(zone)) 2599 continue; 2600 2601 cc.zone = zone; 2602 2603 compact_zone(&cc, NULL); 2604 2605 VM_BUG_ON(!list_empty(&cc.freepages)); 2606 VM_BUG_ON(!list_empty(&cc.migratepages)); 2607 } 2608 } 2609 2610 /* Compact all zones within a node */ 2611 static void compact_node(int nid) 2612 { 2613 pg_data_t *pgdat = NODE_DATA(nid); 2614 int zoneid; 2615 struct zone *zone; 2616 struct compact_control cc = { 2617 .order = -1, 2618 .mode = MIGRATE_SYNC, 2619 .ignore_skip_hint = true, 2620 .whole_zone = true, 2621 .gfp_mask = GFP_KERNEL, 2622 }; 2623 2624 2625 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2626 2627 zone = &pgdat->node_zones[zoneid]; 2628 if (!populated_zone(zone)) 2629 continue; 2630 2631 cc.zone = zone; 2632 2633 compact_zone(&cc, NULL); 2634 2635 VM_BUG_ON(!list_empty(&cc.freepages)); 2636 VM_BUG_ON(!list_empty(&cc.migratepages)); 2637 } 2638 } 2639 2640 /* Compact all nodes in the system */ 2641 static void compact_nodes(void) 2642 { 2643 int nid; 2644 2645 /* Flush pending updates to the LRU lists */ 2646 lru_add_drain_all(); 2647 2648 for_each_online_node(nid) 2649 compact_node(nid); 2650 } 2651 2652 /* The written value is actually unused, all memory is compacted */ 2653 int sysctl_compact_memory; 2654 2655 /* 2656 * Tunable for proactive compaction. It determines how 2657 * aggressively the kernel should compact memory in the 2658 * background. It takes values in the range [0, 100]. 2659 */ 2660 unsigned int __read_mostly sysctl_compaction_proactiveness = 20; 2661 2662 /* 2663 * This is the entry point for compacting all nodes via 2664 * /proc/sys/vm/compact_memory 2665 */ 2666 int sysctl_compaction_handler(struct ctl_table *table, int write, 2667 void *buffer, size_t *length, loff_t *ppos) 2668 { 2669 if (write) 2670 compact_nodes(); 2671 2672 return 0; 2673 } 2674 2675 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 2676 static ssize_t sysfs_compact_node(struct device *dev, 2677 struct device_attribute *attr, 2678 const char *buf, size_t count) 2679 { 2680 int nid = dev->id; 2681 2682 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 2683 /* Flush pending updates to the LRU lists */ 2684 lru_add_drain_all(); 2685 2686 compact_node(nid); 2687 } 2688 2689 return count; 2690 } 2691 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node); 2692 2693 int compaction_register_node(struct node *node) 2694 { 2695 return device_create_file(&node->dev, &dev_attr_compact); 2696 } 2697 2698 void compaction_unregister_node(struct node *node) 2699 { 2700 return device_remove_file(&node->dev, &dev_attr_compact); 2701 } 2702 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 2703 2704 static inline bool kcompactd_work_requested(pg_data_t *pgdat) 2705 { 2706 return pgdat->kcompactd_max_order > 0 || kthread_should_stop(); 2707 } 2708 2709 static bool kcompactd_node_suitable(pg_data_t *pgdat) 2710 { 2711 int zoneid; 2712 struct zone *zone; 2713 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx; 2714 2715 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) { 2716 zone = &pgdat->node_zones[zoneid]; 2717 2718 if (!populated_zone(zone)) 2719 continue; 2720 2721 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0, 2722 highest_zoneidx) == COMPACT_CONTINUE) 2723 return true; 2724 } 2725 2726 return false; 2727 } 2728 2729 static void kcompactd_do_work(pg_data_t *pgdat) 2730 { 2731 /* 2732 * With no special task, compact all zones so that a page of requested 2733 * order is allocatable. 2734 */ 2735 int zoneid; 2736 struct zone *zone; 2737 struct compact_control cc = { 2738 .order = pgdat->kcompactd_max_order, 2739 .search_order = pgdat->kcompactd_max_order, 2740 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx, 2741 .mode = MIGRATE_SYNC_LIGHT, 2742 .ignore_skip_hint = false, 2743 .gfp_mask = GFP_KERNEL, 2744 }; 2745 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 2746 cc.highest_zoneidx); 2747 count_compact_event(KCOMPACTD_WAKE); 2748 2749 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) { 2750 int status; 2751 2752 zone = &pgdat->node_zones[zoneid]; 2753 if (!populated_zone(zone)) 2754 continue; 2755 2756 if (compaction_deferred(zone, cc.order)) 2757 continue; 2758 2759 if (compaction_suitable(zone, cc.order, 0, zoneid) != 2760 COMPACT_CONTINUE) 2761 continue; 2762 2763 if (kthread_should_stop()) 2764 return; 2765 2766 cc.zone = zone; 2767 status = compact_zone(&cc, NULL); 2768 2769 if (status == COMPACT_SUCCESS) { 2770 compaction_defer_reset(zone, cc.order, false); 2771 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { 2772 /* 2773 * Buddy pages may become stranded on pcps that could 2774 * otherwise coalesce on the zone's free area for 2775 * order >= cc.order. This is ratelimited by the 2776 * upcoming deferral. 2777 */ 2778 drain_all_pages(zone); 2779 2780 /* 2781 * We use sync migration mode here, so we defer like 2782 * sync direct compaction does. 2783 */ 2784 defer_compaction(zone, cc.order); 2785 } 2786 2787 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 2788 cc.total_migrate_scanned); 2789 count_compact_events(KCOMPACTD_FREE_SCANNED, 2790 cc.total_free_scanned); 2791 2792 VM_BUG_ON(!list_empty(&cc.freepages)); 2793 VM_BUG_ON(!list_empty(&cc.migratepages)); 2794 } 2795 2796 /* 2797 * Regardless of success, we are done until woken up next. But remember 2798 * the requested order/highest_zoneidx in case it was higher/tighter 2799 * than our current ones 2800 */ 2801 if (pgdat->kcompactd_max_order <= cc.order) 2802 pgdat->kcompactd_max_order = 0; 2803 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx) 2804 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 2805 } 2806 2807 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx) 2808 { 2809 if (!order) 2810 return; 2811 2812 if (pgdat->kcompactd_max_order < order) 2813 pgdat->kcompactd_max_order = order; 2814 2815 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx) 2816 pgdat->kcompactd_highest_zoneidx = highest_zoneidx; 2817 2818 /* 2819 * Pairs with implicit barrier in wait_event_freezable() 2820 * such that wakeups are not missed. 2821 */ 2822 if (!wq_has_sleeper(&pgdat->kcompactd_wait)) 2823 return; 2824 2825 if (!kcompactd_node_suitable(pgdat)) 2826 return; 2827 2828 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 2829 highest_zoneidx); 2830 wake_up_interruptible(&pgdat->kcompactd_wait); 2831 } 2832 2833 /* 2834 * The background compaction daemon, started as a kernel thread 2835 * from the init process. 2836 */ 2837 static int kcompactd(void *p) 2838 { 2839 pg_data_t *pgdat = (pg_data_t*)p; 2840 struct task_struct *tsk = current; 2841 unsigned int proactive_defer = 0; 2842 2843 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2844 2845 if (!cpumask_empty(cpumask)) 2846 set_cpus_allowed_ptr(tsk, cpumask); 2847 2848 set_freezable(); 2849 2850 pgdat->kcompactd_max_order = 0; 2851 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 2852 2853 while (!kthread_should_stop()) { 2854 unsigned long pflags; 2855 2856 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 2857 if (wait_event_freezable_timeout(pgdat->kcompactd_wait, 2858 kcompactd_work_requested(pgdat), 2859 msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC))) { 2860 2861 psi_memstall_enter(&pflags); 2862 kcompactd_do_work(pgdat); 2863 psi_memstall_leave(&pflags); 2864 continue; 2865 } 2866 2867 /* kcompactd wait timeout */ 2868 if (should_proactive_compact_node(pgdat)) { 2869 unsigned int prev_score, score; 2870 2871 if (proactive_defer) { 2872 proactive_defer--; 2873 continue; 2874 } 2875 prev_score = fragmentation_score_node(pgdat); 2876 proactive_compact_node(pgdat); 2877 score = fragmentation_score_node(pgdat); 2878 /* 2879 * Defer proactive compaction if the fragmentation 2880 * score did not go down i.e. no progress made. 2881 */ 2882 proactive_defer = score < prev_score ? 2883 0 : 1 << COMPACT_MAX_DEFER_SHIFT; 2884 } 2885 } 2886 2887 return 0; 2888 } 2889 2890 /* 2891 * This kcompactd start function will be called by init and node-hot-add. 2892 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 2893 */ 2894 int kcompactd_run(int nid) 2895 { 2896 pg_data_t *pgdat = NODE_DATA(nid); 2897 int ret = 0; 2898 2899 if (pgdat->kcompactd) 2900 return 0; 2901 2902 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); 2903 if (IS_ERR(pgdat->kcompactd)) { 2904 pr_err("Failed to start kcompactd on node %d\n", nid); 2905 ret = PTR_ERR(pgdat->kcompactd); 2906 pgdat->kcompactd = NULL; 2907 } 2908 return ret; 2909 } 2910 2911 /* 2912 * Called by memory hotplug when all memory in a node is offlined. Caller must 2913 * hold mem_hotplug_begin/end(). 2914 */ 2915 void kcompactd_stop(int nid) 2916 { 2917 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 2918 2919 if (kcompactd) { 2920 kthread_stop(kcompactd); 2921 NODE_DATA(nid)->kcompactd = NULL; 2922 } 2923 } 2924 2925 /* 2926 * It's optimal to keep kcompactd on the same CPUs as their memory, but 2927 * not required for correctness. So if the last cpu in a node goes 2928 * away, we get changed to run anywhere: as the first one comes back, 2929 * restore their cpu bindings. 2930 */ 2931 static int kcompactd_cpu_online(unsigned int cpu) 2932 { 2933 int nid; 2934 2935 for_each_node_state(nid, N_MEMORY) { 2936 pg_data_t *pgdat = NODE_DATA(nid); 2937 const struct cpumask *mask; 2938 2939 mask = cpumask_of_node(pgdat->node_id); 2940 2941 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 2942 /* One of our CPUs online: restore mask */ 2943 set_cpus_allowed_ptr(pgdat->kcompactd, mask); 2944 } 2945 return 0; 2946 } 2947 2948 static int __init kcompactd_init(void) 2949 { 2950 int nid; 2951 int ret; 2952 2953 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 2954 "mm/compaction:online", 2955 kcompactd_cpu_online, NULL); 2956 if (ret < 0) { 2957 pr_err("kcompactd: failed to register hotplug callbacks.\n"); 2958 return ret; 2959 } 2960 2961 for_each_node_state(nid, N_MEMORY) 2962 kcompactd_run(nid); 2963 return 0; 2964 } 2965 subsys_initcall(kcompactd_init) 2966 2967 #endif /* CONFIG_COMPACTION */ 2968