xref: /linux/mm/compaction.c (revision ca853314e78b0a65c20b6a889a23c31f918d4aa2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27 
28 #ifdef CONFIG_COMPACTION
29 static inline void count_compact_event(enum vm_event_item item)
30 {
31 	count_vm_event(item);
32 }
33 
34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36 	count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42 
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47 
48 #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)
52 
53 /*
54  * Fragmentation score check interval for proactive compaction purposes.
55  */
56 static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
57 
58 /*
59  * Page order with-respect-to which proactive compaction
60  * calculates external fragmentation, which is used as
61  * the "fragmentation score" of a node/zone.
62  */
63 #if defined CONFIG_TRANSPARENT_HUGEPAGE
64 #define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
65 #elif defined CONFIG_HUGETLBFS
66 #define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
67 #else
68 #define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
69 #endif
70 
71 static unsigned long release_freepages(struct list_head *freelist)
72 {
73 	struct page *page, *next;
74 	unsigned long high_pfn = 0;
75 
76 	list_for_each_entry_safe(page, next, freelist, lru) {
77 		unsigned long pfn = page_to_pfn(page);
78 		list_del(&page->lru);
79 		__free_page(page);
80 		if (pfn > high_pfn)
81 			high_pfn = pfn;
82 	}
83 
84 	return high_pfn;
85 }
86 
87 static void split_map_pages(struct list_head *list)
88 {
89 	unsigned int i, order, nr_pages;
90 	struct page *page, *next;
91 	LIST_HEAD(tmp_list);
92 
93 	list_for_each_entry_safe(page, next, list, lru) {
94 		list_del(&page->lru);
95 
96 		order = page_private(page);
97 		nr_pages = 1 << order;
98 
99 		post_alloc_hook(page, order, __GFP_MOVABLE);
100 		if (order)
101 			split_page(page, order);
102 
103 		for (i = 0; i < nr_pages; i++) {
104 			list_add(&page->lru, &tmp_list);
105 			page++;
106 		}
107 	}
108 
109 	list_splice(&tmp_list, list);
110 }
111 
112 #ifdef CONFIG_COMPACTION
113 
114 int PageMovable(struct page *page)
115 {
116 	struct address_space *mapping;
117 
118 	VM_BUG_ON_PAGE(!PageLocked(page), page);
119 	if (!__PageMovable(page))
120 		return 0;
121 
122 	mapping = page_mapping(page);
123 	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
124 		return 1;
125 
126 	return 0;
127 }
128 EXPORT_SYMBOL(PageMovable);
129 
130 void __SetPageMovable(struct page *page, struct address_space *mapping)
131 {
132 	VM_BUG_ON_PAGE(!PageLocked(page), page);
133 	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
134 	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
135 }
136 EXPORT_SYMBOL(__SetPageMovable);
137 
138 void __ClearPageMovable(struct page *page)
139 {
140 	VM_BUG_ON_PAGE(!PageLocked(page), page);
141 	VM_BUG_ON_PAGE(!PageMovable(page), page);
142 	/*
143 	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
144 	 * flag so that VM can catch up released page by driver after isolation.
145 	 * With it, VM migration doesn't try to put it back.
146 	 */
147 	page->mapping = (void *)((unsigned long)page->mapping &
148 				PAGE_MAPPING_MOVABLE);
149 }
150 EXPORT_SYMBOL(__ClearPageMovable);
151 
152 /* Do not skip compaction more than 64 times */
153 #define COMPACT_MAX_DEFER_SHIFT 6
154 
155 /*
156  * Compaction is deferred when compaction fails to result in a page
157  * allocation success. 1 << compact_defer_shift, compactions are skipped up
158  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
159  */
160 static void defer_compaction(struct zone *zone, int order)
161 {
162 	zone->compact_considered = 0;
163 	zone->compact_defer_shift++;
164 
165 	if (order < zone->compact_order_failed)
166 		zone->compact_order_failed = order;
167 
168 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
169 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
170 
171 	trace_mm_compaction_defer_compaction(zone, order);
172 }
173 
174 /* Returns true if compaction should be skipped this time */
175 static bool compaction_deferred(struct zone *zone, int order)
176 {
177 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
178 
179 	if (order < zone->compact_order_failed)
180 		return false;
181 
182 	/* Avoid possible overflow */
183 	if (++zone->compact_considered >= defer_limit) {
184 		zone->compact_considered = defer_limit;
185 		return false;
186 	}
187 
188 	trace_mm_compaction_deferred(zone, order);
189 
190 	return true;
191 }
192 
193 /*
194  * Update defer tracking counters after successful compaction of given order,
195  * which means an allocation either succeeded (alloc_success == true) or is
196  * expected to succeed.
197  */
198 void compaction_defer_reset(struct zone *zone, int order,
199 		bool alloc_success)
200 {
201 	if (alloc_success) {
202 		zone->compact_considered = 0;
203 		zone->compact_defer_shift = 0;
204 	}
205 	if (order >= zone->compact_order_failed)
206 		zone->compact_order_failed = order + 1;
207 
208 	trace_mm_compaction_defer_reset(zone, order);
209 }
210 
211 /* Returns true if restarting compaction after many failures */
212 static bool compaction_restarting(struct zone *zone, int order)
213 {
214 	if (order < zone->compact_order_failed)
215 		return false;
216 
217 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
218 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
219 }
220 
221 /* Returns true if the pageblock should be scanned for pages to isolate. */
222 static inline bool isolation_suitable(struct compact_control *cc,
223 					struct page *page)
224 {
225 	if (cc->ignore_skip_hint)
226 		return true;
227 
228 	return !get_pageblock_skip(page);
229 }
230 
231 static void reset_cached_positions(struct zone *zone)
232 {
233 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
234 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
235 	zone->compact_cached_free_pfn =
236 				pageblock_start_pfn(zone_end_pfn(zone) - 1);
237 }
238 
239 /*
240  * Compound pages of >= pageblock_order should consistently be skipped until
241  * released. It is always pointless to compact pages of such order (if they are
242  * migratable), and the pageblocks they occupy cannot contain any free pages.
243  */
244 static bool pageblock_skip_persistent(struct page *page)
245 {
246 	if (!PageCompound(page))
247 		return false;
248 
249 	page = compound_head(page);
250 
251 	if (compound_order(page) >= pageblock_order)
252 		return true;
253 
254 	return false;
255 }
256 
257 static bool
258 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
259 							bool check_target)
260 {
261 	struct page *page = pfn_to_online_page(pfn);
262 	struct page *block_page;
263 	struct page *end_page;
264 	unsigned long block_pfn;
265 
266 	if (!page)
267 		return false;
268 	if (zone != page_zone(page))
269 		return false;
270 	if (pageblock_skip_persistent(page))
271 		return false;
272 
273 	/*
274 	 * If skip is already cleared do no further checking once the
275 	 * restart points have been set.
276 	 */
277 	if (check_source && check_target && !get_pageblock_skip(page))
278 		return true;
279 
280 	/*
281 	 * If clearing skip for the target scanner, do not select a
282 	 * non-movable pageblock as the starting point.
283 	 */
284 	if (!check_source && check_target &&
285 	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
286 		return false;
287 
288 	/* Ensure the start of the pageblock or zone is online and valid */
289 	block_pfn = pageblock_start_pfn(pfn);
290 	block_pfn = max(block_pfn, zone->zone_start_pfn);
291 	block_page = pfn_to_online_page(block_pfn);
292 	if (block_page) {
293 		page = block_page;
294 		pfn = block_pfn;
295 	}
296 
297 	/* Ensure the end of the pageblock or zone is online and valid */
298 	block_pfn = pageblock_end_pfn(pfn) - 1;
299 	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
300 	end_page = pfn_to_online_page(block_pfn);
301 	if (!end_page)
302 		return false;
303 
304 	/*
305 	 * Only clear the hint if a sample indicates there is either a
306 	 * free page or an LRU page in the block. One or other condition
307 	 * is necessary for the block to be a migration source/target.
308 	 */
309 	do {
310 		if (pfn_valid_within(pfn)) {
311 			if (check_source && PageLRU(page)) {
312 				clear_pageblock_skip(page);
313 				return true;
314 			}
315 
316 			if (check_target && PageBuddy(page)) {
317 				clear_pageblock_skip(page);
318 				return true;
319 			}
320 		}
321 
322 		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
323 		pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
324 	} while (page <= end_page);
325 
326 	return false;
327 }
328 
329 /*
330  * This function is called to clear all cached information on pageblocks that
331  * should be skipped for page isolation when the migrate and free page scanner
332  * meet.
333  */
334 static void __reset_isolation_suitable(struct zone *zone)
335 {
336 	unsigned long migrate_pfn = zone->zone_start_pfn;
337 	unsigned long free_pfn = zone_end_pfn(zone) - 1;
338 	unsigned long reset_migrate = free_pfn;
339 	unsigned long reset_free = migrate_pfn;
340 	bool source_set = false;
341 	bool free_set = false;
342 
343 	if (!zone->compact_blockskip_flush)
344 		return;
345 
346 	zone->compact_blockskip_flush = false;
347 
348 	/*
349 	 * Walk the zone and update pageblock skip information. Source looks
350 	 * for PageLRU while target looks for PageBuddy. When the scanner
351 	 * is found, both PageBuddy and PageLRU are checked as the pageblock
352 	 * is suitable as both source and target.
353 	 */
354 	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
355 					free_pfn -= pageblock_nr_pages) {
356 		cond_resched();
357 
358 		/* Update the migrate PFN */
359 		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
360 		    migrate_pfn < reset_migrate) {
361 			source_set = true;
362 			reset_migrate = migrate_pfn;
363 			zone->compact_init_migrate_pfn = reset_migrate;
364 			zone->compact_cached_migrate_pfn[0] = reset_migrate;
365 			zone->compact_cached_migrate_pfn[1] = reset_migrate;
366 		}
367 
368 		/* Update the free PFN */
369 		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
370 		    free_pfn > reset_free) {
371 			free_set = true;
372 			reset_free = free_pfn;
373 			zone->compact_init_free_pfn = reset_free;
374 			zone->compact_cached_free_pfn = reset_free;
375 		}
376 	}
377 
378 	/* Leave no distance if no suitable block was reset */
379 	if (reset_migrate >= reset_free) {
380 		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
381 		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
382 		zone->compact_cached_free_pfn = free_pfn;
383 	}
384 }
385 
386 void reset_isolation_suitable(pg_data_t *pgdat)
387 {
388 	int zoneid;
389 
390 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
391 		struct zone *zone = &pgdat->node_zones[zoneid];
392 		if (!populated_zone(zone))
393 			continue;
394 
395 		/* Only flush if a full compaction finished recently */
396 		if (zone->compact_blockskip_flush)
397 			__reset_isolation_suitable(zone);
398 	}
399 }
400 
401 /*
402  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
403  * locks are not required for read/writers. Returns true if it was already set.
404  */
405 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
406 							unsigned long pfn)
407 {
408 	bool skip;
409 
410 	/* Do no update if skip hint is being ignored */
411 	if (cc->ignore_skip_hint)
412 		return false;
413 
414 	if (!IS_ALIGNED(pfn, pageblock_nr_pages))
415 		return false;
416 
417 	skip = get_pageblock_skip(page);
418 	if (!skip && !cc->no_set_skip_hint)
419 		set_pageblock_skip(page);
420 
421 	return skip;
422 }
423 
424 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
425 {
426 	struct zone *zone = cc->zone;
427 
428 	pfn = pageblock_end_pfn(pfn);
429 
430 	/* Set for isolation rather than compaction */
431 	if (cc->no_set_skip_hint)
432 		return;
433 
434 	if (pfn > zone->compact_cached_migrate_pfn[0])
435 		zone->compact_cached_migrate_pfn[0] = pfn;
436 	if (cc->mode != MIGRATE_ASYNC &&
437 	    pfn > zone->compact_cached_migrate_pfn[1])
438 		zone->compact_cached_migrate_pfn[1] = pfn;
439 }
440 
441 /*
442  * If no pages were isolated then mark this pageblock to be skipped in the
443  * future. The information is later cleared by __reset_isolation_suitable().
444  */
445 static void update_pageblock_skip(struct compact_control *cc,
446 			struct page *page, unsigned long pfn)
447 {
448 	struct zone *zone = cc->zone;
449 
450 	if (cc->no_set_skip_hint)
451 		return;
452 
453 	if (!page)
454 		return;
455 
456 	set_pageblock_skip(page);
457 
458 	/* Update where async and sync compaction should restart */
459 	if (pfn < zone->compact_cached_free_pfn)
460 		zone->compact_cached_free_pfn = pfn;
461 }
462 #else
463 static inline bool isolation_suitable(struct compact_control *cc,
464 					struct page *page)
465 {
466 	return true;
467 }
468 
469 static inline bool pageblock_skip_persistent(struct page *page)
470 {
471 	return false;
472 }
473 
474 static inline void update_pageblock_skip(struct compact_control *cc,
475 			struct page *page, unsigned long pfn)
476 {
477 }
478 
479 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
480 {
481 }
482 
483 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
484 							unsigned long pfn)
485 {
486 	return false;
487 }
488 #endif /* CONFIG_COMPACTION */
489 
490 /*
491  * Compaction requires the taking of some coarse locks that are potentially
492  * very heavily contended. For async compaction, trylock and record if the
493  * lock is contended. The lock will still be acquired but compaction will
494  * abort when the current block is finished regardless of success rate.
495  * Sync compaction acquires the lock.
496  *
497  * Always returns true which makes it easier to track lock state in callers.
498  */
499 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
500 						struct compact_control *cc)
501 	__acquires(lock)
502 {
503 	/* Track if the lock is contended in async mode */
504 	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
505 		if (spin_trylock_irqsave(lock, *flags))
506 			return true;
507 
508 		cc->contended = true;
509 	}
510 
511 	spin_lock_irqsave(lock, *flags);
512 	return true;
513 }
514 
515 /*
516  * Compaction requires the taking of some coarse locks that are potentially
517  * very heavily contended. The lock should be periodically unlocked to avoid
518  * having disabled IRQs for a long time, even when there is nobody waiting on
519  * the lock. It might also be that allowing the IRQs will result in
520  * need_resched() becoming true. If scheduling is needed, async compaction
521  * aborts. Sync compaction schedules.
522  * Either compaction type will also abort if a fatal signal is pending.
523  * In either case if the lock was locked, it is dropped and not regained.
524  *
525  * Returns true if compaction should abort due to fatal signal pending, or
526  *		async compaction due to need_resched()
527  * Returns false when compaction can continue (sync compaction might have
528  *		scheduled)
529  */
530 static bool compact_unlock_should_abort(spinlock_t *lock,
531 		unsigned long flags, bool *locked, struct compact_control *cc)
532 {
533 	if (*locked) {
534 		spin_unlock_irqrestore(lock, flags);
535 		*locked = false;
536 	}
537 
538 	if (fatal_signal_pending(current)) {
539 		cc->contended = true;
540 		return true;
541 	}
542 
543 	cond_resched();
544 
545 	return false;
546 }
547 
548 /*
549  * Isolate free pages onto a private freelist. If @strict is true, will abort
550  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
551  * (even though it may still end up isolating some pages).
552  */
553 static unsigned long isolate_freepages_block(struct compact_control *cc,
554 				unsigned long *start_pfn,
555 				unsigned long end_pfn,
556 				struct list_head *freelist,
557 				unsigned int stride,
558 				bool strict)
559 {
560 	int nr_scanned = 0, total_isolated = 0;
561 	struct page *cursor;
562 	unsigned long flags = 0;
563 	bool locked = false;
564 	unsigned long blockpfn = *start_pfn;
565 	unsigned int order;
566 
567 	/* Strict mode is for isolation, speed is secondary */
568 	if (strict)
569 		stride = 1;
570 
571 	cursor = pfn_to_page(blockpfn);
572 
573 	/* Isolate free pages. */
574 	for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
575 		int isolated;
576 		struct page *page = cursor;
577 
578 		/*
579 		 * Periodically drop the lock (if held) regardless of its
580 		 * contention, to give chance to IRQs. Abort if fatal signal
581 		 * pending or async compaction detects need_resched()
582 		 */
583 		if (!(blockpfn % SWAP_CLUSTER_MAX)
584 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
585 								&locked, cc))
586 			break;
587 
588 		nr_scanned++;
589 		if (!pfn_valid_within(blockpfn))
590 			goto isolate_fail;
591 
592 		/*
593 		 * For compound pages such as THP and hugetlbfs, we can save
594 		 * potentially a lot of iterations if we skip them at once.
595 		 * The check is racy, but we can consider only valid values
596 		 * and the only danger is skipping too much.
597 		 */
598 		if (PageCompound(page)) {
599 			const unsigned int order = compound_order(page);
600 
601 			if (likely(order < MAX_ORDER)) {
602 				blockpfn += (1UL << order) - 1;
603 				cursor += (1UL << order) - 1;
604 			}
605 			goto isolate_fail;
606 		}
607 
608 		if (!PageBuddy(page))
609 			goto isolate_fail;
610 
611 		/*
612 		 * If we already hold the lock, we can skip some rechecking.
613 		 * Note that if we hold the lock now, checked_pageblock was
614 		 * already set in some previous iteration (or strict is true),
615 		 * so it is correct to skip the suitable migration target
616 		 * recheck as well.
617 		 */
618 		if (!locked) {
619 			locked = compact_lock_irqsave(&cc->zone->lock,
620 								&flags, cc);
621 
622 			/* Recheck this is a buddy page under lock */
623 			if (!PageBuddy(page))
624 				goto isolate_fail;
625 		}
626 
627 		/* Found a free page, will break it into order-0 pages */
628 		order = buddy_order(page);
629 		isolated = __isolate_free_page(page, order);
630 		if (!isolated)
631 			break;
632 		set_page_private(page, order);
633 
634 		total_isolated += isolated;
635 		cc->nr_freepages += isolated;
636 		list_add_tail(&page->lru, freelist);
637 
638 		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
639 			blockpfn += isolated;
640 			break;
641 		}
642 		/* Advance to the end of split page */
643 		blockpfn += isolated - 1;
644 		cursor += isolated - 1;
645 		continue;
646 
647 isolate_fail:
648 		if (strict)
649 			break;
650 		else
651 			continue;
652 
653 	}
654 
655 	if (locked)
656 		spin_unlock_irqrestore(&cc->zone->lock, flags);
657 
658 	/*
659 	 * There is a tiny chance that we have read bogus compound_order(),
660 	 * so be careful to not go outside of the pageblock.
661 	 */
662 	if (unlikely(blockpfn > end_pfn))
663 		blockpfn = end_pfn;
664 
665 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
666 					nr_scanned, total_isolated);
667 
668 	/* Record how far we have got within the block */
669 	*start_pfn = blockpfn;
670 
671 	/*
672 	 * If strict isolation is requested by CMA then check that all the
673 	 * pages requested were isolated. If there were any failures, 0 is
674 	 * returned and CMA will fail.
675 	 */
676 	if (strict && blockpfn < end_pfn)
677 		total_isolated = 0;
678 
679 	cc->total_free_scanned += nr_scanned;
680 	if (total_isolated)
681 		count_compact_events(COMPACTISOLATED, total_isolated);
682 	return total_isolated;
683 }
684 
685 /**
686  * isolate_freepages_range() - isolate free pages.
687  * @cc:        Compaction control structure.
688  * @start_pfn: The first PFN to start isolating.
689  * @end_pfn:   The one-past-last PFN.
690  *
691  * Non-free pages, invalid PFNs, or zone boundaries within the
692  * [start_pfn, end_pfn) range are considered errors, cause function to
693  * undo its actions and return zero.
694  *
695  * Otherwise, function returns one-past-the-last PFN of isolated page
696  * (which may be greater then end_pfn if end fell in a middle of
697  * a free page).
698  */
699 unsigned long
700 isolate_freepages_range(struct compact_control *cc,
701 			unsigned long start_pfn, unsigned long end_pfn)
702 {
703 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
704 	LIST_HEAD(freelist);
705 
706 	pfn = start_pfn;
707 	block_start_pfn = pageblock_start_pfn(pfn);
708 	if (block_start_pfn < cc->zone->zone_start_pfn)
709 		block_start_pfn = cc->zone->zone_start_pfn;
710 	block_end_pfn = pageblock_end_pfn(pfn);
711 
712 	for (; pfn < end_pfn; pfn += isolated,
713 				block_start_pfn = block_end_pfn,
714 				block_end_pfn += pageblock_nr_pages) {
715 		/* Protect pfn from changing by isolate_freepages_block */
716 		unsigned long isolate_start_pfn = pfn;
717 
718 		block_end_pfn = min(block_end_pfn, end_pfn);
719 
720 		/*
721 		 * pfn could pass the block_end_pfn if isolated freepage
722 		 * is more than pageblock order. In this case, we adjust
723 		 * scanning range to right one.
724 		 */
725 		if (pfn >= block_end_pfn) {
726 			block_start_pfn = pageblock_start_pfn(pfn);
727 			block_end_pfn = pageblock_end_pfn(pfn);
728 			block_end_pfn = min(block_end_pfn, end_pfn);
729 		}
730 
731 		if (!pageblock_pfn_to_page(block_start_pfn,
732 					block_end_pfn, cc->zone))
733 			break;
734 
735 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
736 					block_end_pfn, &freelist, 0, true);
737 
738 		/*
739 		 * In strict mode, isolate_freepages_block() returns 0 if
740 		 * there are any holes in the block (ie. invalid PFNs or
741 		 * non-free pages).
742 		 */
743 		if (!isolated)
744 			break;
745 
746 		/*
747 		 * If we managed to isolate pages, it is always (1 << n) *
748 		 * pageblock_nr_pages for some non-negative n.  (Max order
749 		 * page may span two pageblocks).
750 		 */
751 	}
752 
753 	/* __isolate_free_page() does not map the pages */
754 	split_map_pages(&freelist);
755 
756 	if (pfn < end_pfn) {
757 		/* Loop terminated early, cleanup. */
758 		release_freepages(&freelist);
759 		return 0;
760 	}
761 
762 	/* We don't use freelists for anything. */
763 	return pfn;
764 }
765 
766 /* Similar to reclaim, but different enough that they don't share logic */
767 static bool too_many_isolated(pg_data_t *pgdat)
768 {
769 	unsigned long active, inactive, isolated;
770 
771 	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
772 			node_page_state(pgdat, NR_INACTIVE_ANON);
773 	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
774 			node_page_state(pgdat, NR_ACTIVE_ANON);
775 	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
776 			node_page_state(pgdat, NR_ISOLATED_ANON);
777 
778 	return isolated > (inactive + active) / 2;
779 }
780 
781 /**
782  * isolate_migratepages_block() - isolate all migrate-able pages within
783  *				  a single pageblock
784  * @cc:		Compaction control structure.
785  * @low_pfn:	The first PFN to isolate
786  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
787  * @isolate_mode: Isolation mode to be used.
788  *
789  * Isolate all pages that can be migrated from the range specified by
790  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
791  * Returns zero if there is a fatal signal pending, otherwise PFN of the
792  * first page that was not scanned (which may be both less, equal to or more
793  * than end_pfn).
794  *
795  * The pages are isolated on cc->migratepages list (not required to be empty),
796  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
797  * is neither read nor updated.
798  */
799 static unsigned long
800 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
801 			unsigned long end_pfn, isolate_mode_t isolate_mode)
802 {
803 	pg_data_t *pgdat = cc->zone->zone_pgdat;
804 	unsigned long nr_scanned = 0, nr_isolated = 0;
805 	struct lruvec *lruvec;
806 	unsigned long flags = 0;
807 	struct lruvec *locked = NULL;
808 	struct page *page = NULL, *valid_page = NULL;
809 	unsigned long start_pfn = low_pfn;
810 	bool skip_on_failure = false;
811 	unsigned long next_skip_pfn = 0;
812 	bool skip_updated = false;
813 
814 	/*
815 	 * Ensure that there are not too many pages isolated from the LRU
816 	 * list by either parallel reclaimers or compaction. If there are,
817 	 * delay for some time until fewer pages are isolated
818 	 */
819 	while (unlikely(too_many_isolated(pgdat))) {
820 		/* stop isolation if there are still pages not migrated */
821 		if (cc->nr_migratepages)
822 			return 0;
823 
824 		/* async migration should just abort */
825 		if (cc->mode == MIGRATE_ASYNC)
826 			return 0;
827 
828 		congestion_wait(BLK_RW_ASYNC, HZ/10);
829 
830 		if (fatal_signal_pending(current))
831 			return 0;
832 	}
833 
834 	cond_resched();
835 
836 	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
837 		skip_on_failure = true;
838 		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
839 	}
840 
841 	/* Time to isolate some pages for migration */
842 	for (; low_pfn < end_pfn; low_pfn++) {
843 
844 		if (skip_on_failure && low_pfn >= next_skip_pfn) {
845 			/*
846 			 * We have isolated all migration candidates in the
847 			 * previous order-aligned block, and did not skip it due
848 			 * to failure. We should migrate the pages now and
849 			 * hopefully succeed compaction.
850 			 */
851 			if (nr_isolated)
852 				break;
853 
854 			/*
855 			 * We failed to isolate in the previous order-aligned
856 			 * block. Set the new boundary to the end of the
857 			 * current block. Note we can't simply increase
858 			 * next_skip_pfn by 1 << order, as low_pfn might have
859 			 * been incremented by a higher number due to skipping
860 			 * a compound or a high-order buddy page in the
861 			 * previous loop iteration.
862 			 */
863 			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
864 		}
865 
866 		/*
867 		 * Periodically drop the lock (if held) regardless of its
868 		 * contention, to give chance to IRQs. Abort completely if
869 		 * a fatal signal is pending.
870 		 */
871 		if (!(low_pfn % SWAP_CLUSTER_MAX)) {
872 			if (locked) {
873 				unlock_page_lruvec_irqrestore(locked, flags);
874 				locked = NULL;
875 			}
876 
877 			if (fatal_signal_pending(current)) {
878 				cc->contended = true;
879 
880 				low_pfn = 0;
881 				goto fatal_pending;
882 			}
883 
884 			cond_resched();
885 		}
886 
887 		if (!pfn_valid_within(low_pfn))
888 			goto isolate_fail;
889 		nr_scanned++;
890 
891 		page = pfn_to_page(low_pfn);
892 
893 		/*
894 		 * Check if the pageblock has already been marked skipped.
895 		 * Only the aligned PFN is checked as the caller isolates
896 		 * COMPACT_CLUSTER_MAX at a time so the second call must
897 		 * not falsely conclude that the block should be skipped.
898 		 */
899 		if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
900 			if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
901 				low_pfn = end_pfn;
902 				page = NULL;
903 				goto isolate_abort;
904 			}
905 			valid_page = page;
906 		}
907 
908 		/*
909 		 * Skip if free. We read page order here without zone lock
910 		 * which is generally unsafe, but the race window is small and
911 		 * the worst thing that can happen is that we skip some
912 		 * potential isolation targets.
913 		 */
914 		if (PageBuddy(page)) {
915 			unsigned long freepage_order = buddy_order_unsafe(page);
916 
917 			/*
918 			 * Without lock, we cannot be sure that what we got is
919 			 * a valid page order. Consider only values in the
920 			 * valid order range to prevent low_pfn overflow.
921 			 */
922 			if (freepage_order > 0 && freepage_order < MAX_ORDER)
923 				low_pfn += (1UL << freepage_order) - 1;
924 			continue;
925 		}
926 
927 		/*
928 		 * Regardless of being on LRU, compound pages such as THP and
929 		 * hugetlbfs are not to be compacted unless we are attempting
930 		 * an allocation much larger than the huge page size (eg CMA).
931 		 * We can potentially save a lot of iterations if we skip them
932 		 * at once. The check is racy, but we can consider only valid
933 		 * values and the only danger is skipping too much.
934 		 */
935 		if (PageCompound(page) && !cc->alloc_contig) {
936 			const unsigned int order = compound_order(page);
937 
938 			if (likely(order < MAX_ORDER))
939 				low_pfn += (1UL << order) - 1;
940 			goto isolate_fail;
941 		}
942 
943 		/*
944 		 * Check may be lockless but that's ok as we recheck later.
945 		 * It's possible to migrate LRU and non-lru movable pages.
946 		 * Skip any other type of page
947 		 */
948 		if (!PageLRU(page)) {
949 			/*
950 			 * __PageMovable can return false positive so we need
951 			 * to verify it under page_lock.
952 			 */
953 			if (unlikely(__PageMovable(page)) &&
954 					!PageIsolated(page)) {
955 				if (locked) {
956 					unlock_page_lruvec_irqrestore(locked, flags);
957 					locked = NULL;
958 				}
959 
960 				if (!isolate_movable_page(page, isolate_mode))
961 					goto isolate_success;
962 			}
963 
964 			goto isolate_fail;
965 		}
966 
967 		/*
968 		 * Migration will fail if an anonymous page is pinned in memory,
969 		 * so avoid taking lru_lock and isolating it unnecessarily in an
970 		 * admittedly racy check.
971 		 */
972 		if (!page_mapping(page) &&
973 		    page_count(page) > page_mapcount(page))
974 			goto isolate_fail;
975 
976 		/*
977 		 * Only allow to migrate anonymous pages in GFP_NOFS context
978 		 * because those do not depend on fs locks.
979 		 */
980 		if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
981 			goto isolate_fail;
982 
983 		/*
984 		 * Be careful not to clear PageLRU until after we're
985 		 * sure the page is not being freed elsewhere -- the
986 		 * page release code relies on it.
987 		 */
988 		if (unlikely(!get_page_unless_zero(page)))
989 			goto isolate_fail;
990 
991 		if (__isolate_lru_page_prepare(page, isolate_mode) != 0)
992 			goto isolate_fail_put;
993 
994 		/* Try isolate the page */
995 		if (!TestClearPageLRU(page))
996 			goto isolate_fail_put;
997 
998 		rcu_read_lock();
999 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1000 
1001 		/* If we already hold the lock, we can skip some rechecking */
1002 		if (lruvec != locked) {
1003 			if (locked)
1004 				unlock_page_lruvec_irqrestore(locked, flags);
1005 
1006 			compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1007 			locked = lruvec;
1008 			rcu_read_unlock();
1009 
1010 			lruvec_memcg_debug(lruvec, page);
1011 
1012 			/* Try get exclusive access under lock */
1013 			if (!skip_updated) {
1014 				skip_updated = true;
1015 				if (test_and_set_skip(cc, page, low_pfn))
1016 					goto isolate_abort;
1017 			}
1018 
1019 			/*
1020 			 * Page become compound since the non-locked check,
1021 			 * and it's on LRU. It can only be a THP so the order
1022 			 * is safe to read and it's 0 for tail pages.
1023 			 */
1024 			if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1025 				low_pfn += compound_nr(page) - 1;
1026 				SetPageLRU(page);
1027 				goto isolate_fail_put;
1028 			}
1029 		} else
1030 			rcu_read_unlock();
1031 
1032 		/* The whole page is taken off the LRU; skip the tail pages. */
1033 		if (PageCompound(page))
1034 			low_pfn += compound_nr(page) - 1;
1035 
1036 		/* Successfully isolated */
1037 		del_page_from_lru_list(page, lruvec, page_lru(page));
1038 		mod_node_page_state(page_pgdat(page),
1039 				NR_ISOLATED_ANON + page_is_file_lru(page),
1040 				thp_nr_pages(page));
1041 
1042 isolate_success:
1043 		list_add(&page->lru, &cc->migratepages);
1044 		cc->nr_migratepages += compound_nr(page);
1045 		nr_isolated += compound_nr(page);
1046 
1047 		/*
1048 		 * Avoid isolating too much unless this block is being
1049 		 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1050 		 * or a lock is contended. For contention, isolate quickly to
1051 		 * potentially remove one source of contention.
1052 		 */
1053 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1054 		    !cc->rescan && !cc->contended) {
1055 			++low_pfn;
1056 			break;
1057 		}
1058 
1059 		continue;
1060 
1061 isolate_fail_put:
1062 		/* Avoid potential deadlock in freeing page under lru_lock */
1063 		if (locked) {
1064 			unlock_page_lruvec_irqrestore(locked, flags);
1065 			locked = NULL;
1066 		}
1067 		put_page(page);
1068 
1069 isolate_fail:
1070 		if (!skip_on_failure)
1071 			continue;
1072 
1073 		/*
1074 		 * We have isolated some pages, but then failed. Release them
1075 		 * instead of migrating, as we cannot form the cc->order buddy
1076 		 * page anyway.
1077 		 */
1078 		if (nr_isolated) {
1079 			if (locked) {
1080 				unlock_page_lruvec_irqrestore(locked, flags);
1081 				locked = NULL;
1082 			}
1083 			putback_movable_pages(&cc->migratepages);
1084 			cc->nr_migratepages = 0;
1085 			nr_isolated = 0;
1086 		}
1087 
1088 		if (low_pfn < next_skip_pfn) {
1089 			low_pfn = next_skip_pfn - 1;
1090 			/*
1091 			 * The check near the loop beginning would have updated
1092 			 * next_skip_pfn too, but this is a bit simpler.
1093 			 */
1094 			next_skip_pfn += 1UL << cc->order;
1095 		}
1096 	}
1097 
1098 	/*
1099 	 * The PageBuddy() check could have potentially brought us outside
1100 	 * the range to be scanned.
1101 	 */
1102 	if (unlikely(low_pfn > end_pfn))
1103 		low_pfn = end_pfn;
1104 
1105 	page = NULL;
1106 
1107 isolate_abort:
1108 	if (locked)
1109 		unlock_page_lruvec_irqrestore(locked, flags);
1110 	if (page) {
1111 		SetPageLRU(page);
1112 		put_page(page);
1113 	}
1114 
1115 	/*
1116 	 * Updated the cached scanner pfn once the pageblock has been scanned
1117 	 * Pages will either be migrated in which case there is no point
1118 	 * scanning in the near future or migration failed in which case the
1119 	 * failure reason may persist. The block is marked for skipping if
1120 	 * there were no pages isolated in the block or if the block is
1121 	 * rescanned twice in a row.
1122 	 */
1123 	if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1124 		if (valid_page && !skip_updated)
1125 			set_pageblock_skip(valid_page);
1126 		update_cached_migrate(cc, low_pfn);
1127 	}
1128 
1129 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1130 						nr_scanned, nr_isolated);
1131 
1132 fatal_pending:
1133 	cc->total_migrate_scanned += nr_scanned;
1134 	if (nr_isolated)
1135 		count_compact_events(COMPACTISOLATED, nr_isolated);
1136 
1137 	return low_pfn;
1138 }
1139 
1140 /**
1141  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1142  * @cc:        Compaction control structure.
1143  * @start_pfn: The first PFN to start isolating.
1144  * @end_pfn:   The one-past-last PFN.
1145  *
1146  * Returns zero if isolation fails fatally due to e.g. pending signal.
1147  * Otherwise, function returns one-past-the-last PFN of isolated page
1148  * (which may be greater than end_pfn if end fell in a middle of a THP page).
1149  */
1150 unsigned long
1151 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1152 							unsigned long end_pfn)
1153 {
1154 	unsigned long pfn, block_start_pfn, block_end_pfn;
1155 
1156 	/* Scan block by block. First and last block may be incomplete */
1157 	pfn = start_pfn;
1158 	block_start_pfn = pageblock_start_pfn(pfn);
1159 	if (block_start_pfn < cc->zone->zone_start_pfn)
1160 		block_start_pfn = cc->zone->zone_start_pfn;
1161 	block_end_pfn = pageblock_end_pfn(pfn);
1162 
1163 	for (; pfn < end_pfn; pfn = block_end_pfn,
1164 				block_start_pfn = block_end_pfn,
1165 				block_end_pfn += pageblock_nr_pages) {
1166 
1167 		block_end_pfn = min(block_end_pfn, end_pfn);
1168 
1169 		if (!pageblock_pfn_to_page(block_start_pfn,
1170 					block_end_pfn, cc->zone))
1171 			continue;
1172 
1173 		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1174 							ISOLATE_UNEVICTABLE);
1175 
1176 		if (!pfn)
1177 			break;
1178 
1179 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1180 			break;
1181 	}
1182 
1183 	return pfn;
1184 }
1185 
1186 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1187 #ifdef CONFIG_COMPACTION
1188 
1189 static bool suitable_migration_source(struct compact_control *cc,
1190 							struct page *page)
1191 {
1192 	int block_mt;
1193 
1194 	if (pageblock_skip_persistent(page))
1195 		return false;
1196 
1197 	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1198 		return true;
1199 
1200 	block_mt = get_pageblock_migratetype(page);
1201 
1202 	if (cc->migratetype == MIGRATE_MOVABLE)
1203 		return is_migrate_movable(block_mt);
1204 	else
1205 		return block_mt == cc->migratetype;
1206 }
1207 
1208 /* Returns true if the page is within a block suitable for migration to */
1209 static bool suitable_migration_target(struct compact_control *cc,
1210 							struct page *page)
1211 {
1212 	/* If the page is a large free page, then disallow migration */
1213 	if (PageBuddy(page)) {
1214 		/*
1215 		 * We are checking page_order without zone->lock taken. But
1216 		 * the only small danger is that we skip a potentially suitable
1217 		 * pageblock, so it's not worth to check order for valid range.
1218 		 */
1219 		if (buddy_order_unsafe(page) >= pageblock_order)
1220 			return false;
1221 	}
1222 
1223 	if (cc->ignore_block_suitable)
1224 		return true;
1225 
1226 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1227 	if (is_migrate_movable(get_pageblock_migratetype(page)))
1228 		return true;
1229 
1230 	/* Otherwise skip the block */
1231 	return false;
1232 }
1233 
1234 static inline unsigned int
1235 freelist_scan_limit(struct compact_control *cc)
1236 {
1237 	unsigned short shift = BITS_PER_LONG - 1;
1238 
1239 	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1240 }
1241 
1242 /*
1243  * Test whether the free scanner has reached the same or lower pageblock than
1244  * the migration scanner, and compaction should thus terminate.
1245  */
1246 static inline bool compact_scanners_met(struct compact_control *cc)
1247 {
1248 	return (cc->free_pfn >> pageblock_order)
1249 		<= (cc->migrate_pfn >> pageblock_order);
1250 }
1251 
1252 /*
1253  * Used when scanning for a suitable migration target which scans freelists
1254  * in reverse. Reorders the list such as the unscanned pages are scanned
1255  * first on the next iteration of the free scanner
1256  */
1257 static void
1258 move_freelist_head(struct list_head *freelist, struct page *freepage)
1259 {
1260 	LIST_HEAD(sublist);
1261 
1262 	if (!list_is_last(freelist, &freepage->lru)) {
1263 		list_cut_before(&sublist, freelist, &freepage->lru);
1264 		if (!list_empty(&sublist))
1265 			list_splice_tail(&sublist, freelist);
1266 	}
1267 }
1268 
1269 /*
1270  * Similar to move_freelist_head except used by the migration scanner
1271  * when scanning forward. It's possible for these list operations to
1272  * move against each other if they search the free list exactly in
1273  * lockstep.
1274  */
1275 static void
1276 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1277 {
1278 	LIST_HEAD(sublist);
1279 
1280 	if (!list_is_first(freelist, &freepage->lru)) {
1281 		list_cut_position(&sublist, freelist, &freepage->lru);
1282 		if (!list_empty(&sublist))
1283 			list_splice_tail(&sublist, freelist);
1284 	}
1285 }
1286 
1287 static void
1288 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1289 {
1290 	unsigned long start_pfn, end_pfn;
1291 	struct page *page = pfn_to_page(pfn);
1292 
1293 	/* Do not search around if there are enough pages already */
1294 	if (cc->nr_freepages >= cc->nr_migratepages)
1295 		return;
1296 
1297 	/* Minimise scanning during async compaction */
1298 	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1299 		return;
1300 
1301 	/* Pageblock boundaries */
1302 	start_pfn = pageblock_start_pfn(pfn);
1303 	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1;
1304 
1305 	/* Scan before */
1306 	if (start_pfn != pfn) {
1307 		isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1308 		if (cc->nr_freepages >= cc->nr_migratepages)
1309 			return;
1310 	}
1311 
1312 	/* Scan after */
1313 	start_pfn = pfn + nr_isolated;
1314 	if (start_pfn < end_pfn)
1315 		isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1316 
1317 	/* Skip this pageblock in the future as it's full or nearly full */
1318 	if (cc->nr_freepages < cc->nr_migratepages)
1319 		set_pageblock_skip(page);
1320 }
1321 
1322 /* Search orders in round-robin fashion */
1323 static int next_search_order(struct compact_control *cc, int order)
1324 {
1325 	order--;
1326 	if (order < 0)
1327 		order = cc->order - 1;
1328 
1329 	/* Search wrapped around? */
1330 	if (order == cc->search_order) {
1331 		cc->search_order--;
1332 		if (cc->search_order < 0)
1333 			cc->search_order = cc->order - 1;
1334 		return -1;
1335 	}
1336 
1337 	return order;
1338 }
1339 
1340 static unsigned long
1341 fast_isolate_freepages(struct compact_control *cc)
1342 {
1343 	unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1344 	unsigned int nr_scanned = 0;
1345 	unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0;
1346 	unsigned long nr_isolated = 0;
1347 	unsigned long distance;
1348 	struct page *page = NULL;
1349 	bool scan_start = false;
1350 	int order;
1351 
1352 	/* Full compaction passes in a negative order */
1353 	if (cc->order <= 0)
1354 		return cc->free_pfn;
1355 
1356 	/*
1357 	 * If starting the scan, use a deeper search and use the highest
1358 	 * PFN found if a suitable one is not found.
1359 	 */
1360 	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1361 		limit = pageblock_nr_pages >> 1;
1362 		scan_start = true;
1363 	}
1364 
1365 	/*
1366 	 * Preferred point is in the top quarter of the scan space but take
1367 	 * a pfn from the top half if the search is problematic.
1368 	 */
1369 	distance = (cc->free_pfn - cc->migrate_pfn);
1370 	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1371 	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1372 
1373 	if (WARN_ON_ONCE(min_pfn > low_pfn))
1374 		low_pfn = min_pfn;
1375 
1376 	/*
1377 	 * Search starts from the last successful isolation order or the next
1378 	 * order to search after a previous failure
1379 	 */
1380 	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1381 
1382 	for (order = cc->search_order;
1383 	     !page && order >= 0;
1384 	     order = next_search_order(cc, order)) {
1385 		struct free_area *area = &cc->zone->free_area[order];
1386 		struct list_head *freelist;
1387 		struct page *freepage;
1388 		unsigned long flags;
1389 		unsigned int order_scanned = 0;
1390 
1391 		if (!area->nr_free)
1392 			continue;
1393 
1394 		spin_lock_irqsave(&cc->zone->lock, flags);
1395 		freelist = &area->free_list[MIGRATE_MOVABLE];
1396 		list_for_each_entry_reverse(freepage, freelist, lru) {
1397 			unsigned long pfn;
1398 
1399 			order_scanned++;
1400 			nr_scanned++;
1401 			pfn = page_to_pfn(freepage);
1402 
1403 			if (pfn >= highest)
1404 				highest = pageblock_start_pfn(pfn);
1405 
1406 			if (pfn >= low_pfn) {
1407 				cc->fast_search_fail = 0;
1408 				cc->search_order = order;
1409 				page = freepage;
1410 				break;
1411 			}
1412 
1413 			if (pfn >= min_pfn && pfn > high_pfn) {
1414 				high_pfn = pfn;
1415 
1416 				/* Shorten the scan if a candidate is found */
1417 				limit >>= 1;
1418 			}
1419 
1420 			if (order_scanned >= limit)
1421 				break;
1422 		}
1423 
1424 		/* Use a minimum pfn if a preferred one was not found */
1425 		if (!page && high_pfn) {
1426 			page = pfn_to_page(high_pfn);
1427 
1428 			/* Update freepage for the list reorder below */
1429 			freepage = page;
1430 		}
1431 
1432 		/* Reorder to so a future search skips recent pages */
1433 		move_freelist_head(freelist, freepage);
1434 
1435 		/* Isolate the page if available */
1436 		if (page) {
1437 			if (__isolate_free_page(page, order)) {
1438 				set_page_private(page, order);
1439 				nr_isolated = 1 << order;
1440 				cc->nr_freepages += nr_isolated;
1441 				list_add_tail(&page->lru, &cc->freepages);
1442 				count_compact_events(COMPACTISOLATED, nr_isolated);
1443 			} else {
1444 				/* If isolation fails, abort the search */
1445 				order = cc->search_order + 1;
1446 				page = NULL;
1447 			}
1448 		}
1449 
1450 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1451 
1452 		/*
1453 		 * Smaller scan on next order so the total scan ig related
1454 		 * to freelist_scan_limit.
1455 		 */
1456 		if (order_scanned >= limit)
1457 			limit = min(1U, limit >> 1);
1458 	}
1459 
1460 	if (!page) {
1461 		cc->fast_search_fail++;
1462 		if (scan_start) {
1463 			/*
1464 			 * Use the highest PFN found above min. If one was
1465 			 * not found, be pessimistic for direct compaction
1466 			 * and use the min mark.
1467 			 */
1468 			if (highest) {
1469 				page = pfn_to_page(highest);
1470 				cc->free_pfn = highest;
1471 			} else {
1472 				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1473 					page = pageblock_pfn_to_page(min_pfn,
1474 						pageblock_end_pfn(min_pfn),
1475 						cc->zone);
1476 					cc->free_pfn = min_pfn;
1477 				}
1478 			}
1479 		}
1480 	}
1481 
1482 	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1483 		highest -= pageblock_nr_pages;
1484 		cc->zone->compact_cached_free_pfn = highest;
1485 	}
1486 
1487 	cc->total_free_scanned += nr_scanned;
1488 	if (!page)
1489 		return cc->free_pfn;
1490 
1491 	low_pfn = page_to_pfn(page);
1492 	fast_isolate_around(cc, low_pfn, nr_isolated);
1493 	return low_pfn;
1494 }
1495 
1496 /*
1497  * Based on information in the current compact_control, find blocks
1498  * suitable for isolating free pages from and then isolate them.
1499  */
1500 static void isolate_freepages(struct compact_control *cc)
1501 {
1502 	struct zone *zone = cc->zone;
1503 	struct page *page;
1504 	unsigned long block_start_pfn;	/* start of current pageblock */
1505 	unsigned long isolate_start_pfn; /* exact pfn we start at */
1506 	unsigned long block_end_pfn;	/* end of current pageblock */
1507 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1508 	struct list_head *freelist = &cc->freepages;
1509 	unsigned int stride;
1510 
1511 	/* Try a small search of the free lists for a candidate */
1512 	isolate_start_pfn = fast_isolate_freepages(cc);
1513 	if (cc->nr_freepages)
1514 		goto splitmap;
1515 
1516 	/*
1517 	 * Initialise the free scanner. The starting point is where we last
1518 	 * successfully isolated from, zone-cached value, or the end of the
1519 	 * zone when isolating for the first time. For looping we also need
1520 	 * this pfn aligned down to the pageblock boundary, because we do
1521 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1522 	 * For ending point, take care when isolating in last pageblock of a
1523 	 * zone which ends in the middle of a pageblock.
1524 	 * The low boundary is the end of the pageblock the migration scanner
1525 	 * is using.
1526 	 */
1527 	isolate_start_pfn = cc->free_pfn;
1528 	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1529 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1530 						zone_end_pfn(zone));
1531 	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1532 	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1533 
1534 	/*
1535 	 * Isolate free pages until enough are available to migrate the
1536 	 * pages on cc->migratepages. We stop searching if the migrate
1537 	 * and free page scanners meet or enough free pages are isolated.
1538 	 */
1539 	for (; block_start_pfn >= low_pfn;
1540 				block_end_pfn = block_start_pfn,
1541 				block_start_pfn -= pageblock_nr_pages,
1542 				isolate_start_pfn = block_start_pfn) {
1543 		unsigned long nr_isolated;
1544 
1545 		/*
1546 		 * This can iterate a massively long zone without finding any
1547 		 * suitable migration targets, so periodically check resched.
1548 		 */
1549 		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1550 			cond_resched();
1551 
1552 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1553 									zone);
1554 		if (!page)
1555 			continue;
1556 
1557 		/* Check the block is suitable for migration */
1558 		if (!suitable_migration_target(cc, page))
1559 			continue;
1560 
1561 		/* If isolation recently failed, do not retry */
1562 		if (!isolation_suitable(cc, page))
1563 			continue;
1564 
1565 		/* Found a block suitable for isolating free pages from. */
1566 		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1567 					block_end_pfn, freelist, stride, false);
1568 
1569 		/* Update the skip hint if the full pageblock was scanned */
1570 		if (isolate_start_pfn == block_end_pfn)
1571 			update_pageblock_skip(cc, page, block_start_pfn);
1572 
1573 		/* Are enough freepages isolated? */
1574 		if (cc->nr_freepages >= cc->nr_migratepages) {
1575 			if (isolate_start_pfn >= block_end_pfn) {
1576 				/*
1577 				 * Restart at previous pageblock if more
1578 				 * freepages can be isolated next time.
1579 				 */
1580 				isolate_start_pfn =
1581 					block_start_pfn - pageblock_nr_pages;
1582 			}
1583 			break;
1584 		} else if (isolate_start_pfn < block_end_pfn) {
1585 			/*
1586 			 * If isolation failed early, do not continue
1587 			 * needlessly.
1588 			 */
1589 			break;
1590 		}
1591 
1592 		/* Adjust stride depending on isolation */
1593 		if (nr_isolated) {
1594 			stride = 1;
1595 			continue;
1596 		}
1597 		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1598 	}
1599 
1600 	/*
1601 	 * Record where the free scanner will restart next time. Either we
1602 	 * broke from the loop and set isolate_start_pfn based on the last
1603 	 * call to isolate_freepages_block(), or we met the migration scanner
1604 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1605 	 */
1606 	cc->free_pfn = isolate_start_pfn;
1607 
1608 splitmap:
1609 	/* __isolate_free_page() does not map the pages */
1610 	split_map_pages(freelist);
1611 }
1612 
1613 /*
1614  * This is a migrate-callback that "allocates" freepages by taking pages
1615  * from the isolated freelists in the block we are migrating to.
1616  */
1617 static struct page *compaction_alloc(struct page *migratepage,
1618 					unsigned long data)
1619 {
1620 	struct compact_control *cc = (struct compact_control *)data;
1621 	struct page *freepage;
1622 
1623 	if (list_empty(&cc->freepages)) {
1624 		isolate_freepages(cc);
1625 
1626 		if (list_empty(&cc->freepages))
1627 			return NULL;
1628 	}
1629 
1630 	freepage = list_entry(cc->freepages.next, struct page, lru);
1631 	list_del(&freepage->lru);
1632 	cc->nr_freepages--;
1633 
1634 	return freepage;
1635 }
1636 
1637 /*
1638  * This is a migrate-callback that "frees" freepages back to the isolated
1639  * freelist.  All pages on the freelist are from the same zone, so there is no
1640  * special handling needed for NUMA.
1641  */
1642 static void compaction_free(struct page *page, unsigned long data)
1643 {
1644 	struct compact_control *cc = (struct compact_control *)data;
1645 
1646 	list_add(&page->lru, &cc->freepages);
1647 	cc->nr_freepages++;
1648 }
1649 
1650 /* possible outcome of isolate_migratepages */
1651 typedef enum {
1652 	ISOLATE_ABORT,		/* Abort compaction now */
1653 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1654 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1655 } isolate_migrate_t;
1656 
1657 /*
1658  * Allow userspace to control policy on scanning the unevictable LRU for
1659  * compactable pages.
1660  */
1661 #ifdef CONFIG_PREEMPT_RT
1662 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1663 #else
1664 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1665 #endif
1666 
1667 static inline void
1668 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1669 {
1670 	if (cc->fast_start_pfn == ULONG_MAX)
1671 		return;
1672 
1673 	if (!cc->fast_start_pfn)
1674 		cc->fast_start_pfn = pfn;
1675 
1676 	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1677 }
1678 
1679 static inline unsigned long
1680 reinit_migrate_pfn(struct compact_control *cc)
1681 {
1682 	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1683 		return cc->migrate_pfn;
1684 
1685 	cc->migrate_pfn = cc->fast_start_pfn;
1686 	cc->fast_start_pfn = ULONG_MAX;
1687 
1688 	return cc->migrate_pfn;
1689 }
1690 
1691 /*
1692  * Briefly search the free lists for a migration source that already has
1693  * some free pages to reduce the number of pages that need migration
1694  * before a pageblock is free.
1695  */
1696 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1697 {
1698 	unsigned int limit = freelist_scan_limit(cc);
1699 	unsigned int nr_scanned = 0;
1700 	unsigned long distance;
1701 	unsigned long pfn = cc->migrate_pfn;
1702 	unsigned long high_pfn;
1703 	int order;
1704 
1705 	/* Skip hints are relied on to avoid repeats on the fast search */
1706 	if (cc->ignore_skip_hint)
1707 		return pfn;
1708 
1709 	/*
1710 	 * If the migrate_pfn is not at the start of a zone or the start
1711 	 * of a pageblock then assume this is a continuation of a previous
1712 	 * scan restarted due to COMPACT_CLUSTER_MAX.
1713 	 */
1714 	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1715 		return pfn;
1716 
1717 	/*
1718 	 * For smaller orders, just linearly scan as the number of pages
1719 	 * to migrate should be relatively small and does not necessarily
1720 	 * justify freeing up a large block for a small allocation.
1721 	 */
1722 	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1723 		return pfn;
1724 
1725 	/*
1726 	 * Only allow kcompactd and direct requests for movable pages to
1727 	 * quickly clear out a MOVABLE pageblock for allocation. This
1728 	 * reduces the risk that a large movable pageblock is freed for
1729 	 * an unmovable/reclaimable small allocation.
1730 	 */
1731 	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1732 		return pfn;
1733 
1734 	/*
1735 	 * When starting the migration scanner, pick any pageblock within the
1736 	 * first half of the search space. Otherwise try and pick a pageblock
1737 	 * within the first eighth to reduce the chances that a migration
1738 	 * target later becomes a source.
1739 	 */
1740 	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1741 	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1742 		distance >>= 2;
1743 	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1744 
1745 	for (order = cc->order - 1;
1746 	     order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit;
1747 	     order--) {
1748 		struct free_area *area = &cc->zone->free_area[order];
1749 		struct list_head *freelist;
1750 		unsigned long flags;
1751 		struct page *freepage;
1752 
1753 		if (!area->nr_free)
1754 			continue;
1755 
1756 		spin_lock_irqsave(&cc->zone->lock, flags);
1757 		freelist = &area->free_list[MIGRATE_MOVABLE];
1758 		list_for_each_entry(freepage, freelist, lru) {
1759 			unsigned long free_pfn;
1760 
1761 			nr_scanned++;
1762 			free_pfn = page_to_pfn(freepage);
1763 			if (free_pfn < high_pfn) {
1764 				/*
1765 				 * Avoid if skipped recently. Ideally it would
1766 				 * move to the tail but even safe iteration of
1767 				 * the list assumes an entry is deleted, not
1768 				 * reordered.
1769 				 */
1770 				if (get_pageblock_skip(freepage)) {
1771 					if (list_is_last(freelist, &freepage->lru))
1772 						break;
1773 
1774 					continue;
1775 				}
1776 
1777 				/* Reorder to so a future search skips recent pages */
1778 				move_freelist_tail(freelist, freepage);
1779 
1780 				update_fast_start_pfn(cc, free_pfn);
1781 				pfn = pageblock_start_pfn(free_pfn);
1782 				cc->fast_search_fail = 0;
1783 				set_pageblock_skip(freepage);
1784 				break;
1785 			}
1786 
1787 			if (nr_scanned >= limit) {
1788 				cc->fast_search_fail++;
1789 				move_freelist_tail(freelist, freepage);
1790 				break;
1791 			}
1792 		}
1793 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1794 	}
1795 
1796 	cc->total_migrate_scanned += nr_scanned;
1797 
1798 	/*
1799 	 * If fast scanning failed then use a cached entry for a page block
1800 	 * that had free pages as the basis for starting a linear scan.
1801 	 */
1802 	if (pfn == cc->migrate_pfn)
1803 		pfn = reinit_migrate_pfn(cc);
1804 
1805 	return pfn;
1806 }
1807 
1808 /*
1809  * Isolate all pages that can be migrated from the first suitable block,
1810  * starting at the block pointed to by the migrate scanner pfn within
1811  * compact_control.
1812  */
1813 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1814 {
1815 	unsigned long block_start_pfn;
1816 	unsigned long block_end_pfn;
1817 	unsigned long low_pfn;
1818 	struct page *page;
1819 	const isolate_mode_t isolate_mode =
1820 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1821 		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1822 	bool fast_find_block;
1823 
1824 	/*
1825 	 * Start at where we last stopped, or beginning of the zone as
1826 	 * initialized by compact_zone(). The first failure will use
1827 	 * the lowest PFN as the starting point for linear scanning.
1828 	 */
1829 	low_pfn = fast_find_migrateblock(cc);
1830 	block_start_pfn = pageblock_start_pfn(low_pfn);
1831 	if (block_start_pfn < cc->zone->zone_start_pfn)
1832 		block_start_pfn = cc->zone->zone_start_pfn;
1833 
1834 	/*
1835 	 * fast_find_migrateblock marks a pageblock skipped so to avoid
1836 	 * the isolation_suitable check below, check whether the fast
1837 	 * search was successful.
1838 	 */
1839 	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1840 
1841 	/* Only scan within a pageblock boundary */
1842 	block_end_pfn = pageblock_end_pfn(low_pfn);
1843 
1844 	/*
1845 	 * Iterate over whole pageblocks until we find the first suitable.
1846 	 * Do not cross the free scanner.
1847 	 */
1848 	for (; block_end_pfn <= cc->free_pfn;
1849 			fast_find_block = false,
1850 			low_pfn = block_end_pfn,
1851 			block_start_pfn = block_end_pfn,
1852 			block_end_pfn += pageblock_nr_pages) {
1853 
1854 		/*
1855 		 * This can potentially iterate a massively long zone with
1856 		 * many pageblocks unsuitable, so periodically check if we
1857 		 * need to schedule.
1858 		 */
1859 		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1860 			cond_resched();
1861 
1862 		page = pageblock_pfn_to_page(block_start_pfn,
1863 						block_end_pfn, cc->zone);
1864 		if (!page)
1865 			continue;
1866 
1867 		/*
1868 		 * If isolation recently failed, do not retry. Only check the
1869 		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1870 		 * to be visited multiple times. Assume skip was checked
1871 		 * before making it "skip" so other compaction instances do
1872 		 * not scan the same block.
1873 		 */
1874 		if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1875 		    !fast_find_block && !isolation_suitable(cc, page))
1876 			continue;
1877 
1878 		/*
1879 		 * For async compaction, also only scan in MOVABLE blocks
1880 		 * without huge pages. Async compaction is optimistic to see
1881 		 * if the minimum amount of work satisfies the allocation.
1882 		 * The cached PFN is updated as it's possible that all
1883 		 * remaining blocks between source and target are unsuitable
1884 		 * and the compaction scanners fail to meet.
1885 		 */
1886 		if (!suitable_migration_source(cc, page)) {
1887 			update_cached_migrate(cc, block_end_pfn);
1888 			continue;
1889 		}
1890 
1891 		/* Perform the isolation */
1892 		low_pfn = isolate_migratepages_block(cc, low_pfn,
1893 						block_end_pfn, isolate_mode);
1894 
1895 		if (!low_pfn)
1896 			return ISOLATE_ABORT;
1897 
1898 		/*
1899 		 * Either we isolated something and proceed with migration. Or
1900 		 * we failed and compact_zone should decide if we should
1901 		 * continue or not.
1902 		 */
1903 		break;
1904 	}
1905 
1906 	/* Record where migration scanner will be restarted. */
1907 	cc->migrate_pfn = low_pfn;
1908 
1909 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1910 }
1911 
1912 /*
1913  * order == -1 is expected when compacting via
1914  * /proc/sys/vm/compact_memory
1915  */
1916 static inline bool is_via_compact_memory(int order)
1917 {
1918 	return order == -1;
1919 }
1920 
1921 static bool kswapd_is_running(pg_data_t *pgdat)
1922 {
1923 	return pgdat->kswapd && (pgdat->kswapd->state == TASK_RUNNING);
1924 }
1925 
1926 /*
1927  * A zone's fragmentation score is the external fragmentation wrt to the
1928  * COMPACTION_HPAGE_ORDER scaled by the zone's size. It returns a value
1929  * in the range [0, 100].
1930  *
1931  * The scaling factor ensures that proactive compaction focuses on larger
1932  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
1933  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
1934  * and thus never exceeds the high threshold for proactive compaction.
1935  */
1936 static unsigned int fragmentation_score_zone(struct zone *zone)
1937 {
1938 	unsigned long score;
1939 
1940 	score = zone->present_pages *
1941 			extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1942 	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
1943 }
1944 
1945 /*
1946  * The per-node proactive (background) compaction process is started by its
1947  * corresponding kcompactd thread when the node's fragmentation score
1948  * exceeds the high threshold. The compaction process remains active till
1949  * the node's score falls below the low threshold, or one of the back-off
1950  * conditions is met.
1951  */
1952 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
1953 {
1954 	unsigned int score = 0;
1955 	int zoneid;
1956 
1957 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1958 		struct zone *zone;
1959 
1960 		zone = &pgdat->node_zones[zoneid];
1961 		score += fragmentation_score_zone(zone);
1962 	}
1963 
1964 	return score;
1965 }
1966 
1967 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
1968 {
1969 	unsigned int wmark_low;
1970 
1971 	/*
1972 	 * Cap the low watermak to avoid excessive compaction
1973 	 * activity in case a user sets the proactivess tunable
1974 	 * close to 100 (maximum).
1975 	 */
1976 	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
1977 	return low ? wmark_low : min(wmark_low + 10, 100U);
1978 }
1979 
1980 static bool should_proactive_compact_node(pg_data_t *pgdat)
1981 {
1982 	int wmark_high;
1983 
1984 	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
1985 		return false;
1986 
1987 	wmark_high = fragmentation_score_wmark(pgdat, false);
1988 	return fragmentation_score_node(pgdat) > wmark_high;
1989 }
1990 
1991 static enum compact_result __compact_finished(struct compact_control *cc)
1992 {
1993 	unsigned int order;
1994 	const int migratetype = cc->migratetype;
1995 	int ret;
1996 
1997 	/* Compaction run completes if the migrate and free scanner meet */
1998 	if (compact_scanners_met(cc)) {
1999 		/* Let the next compaction start anew. */
2000 		reset_cached_positions(cc->zone);
2001 
2002 		/*
2003 		 * Mark that the PG_migrate_skip information should be cleared
2004 		 * by kswapd when it goes to sleep. kcompactd does not set the
2005 		 * flag itself as the decision to be clear should be directly
2006 		 * based on an allocation request.
2007 		 */
2008 		if (cc->direct_compaction)
2009 			cc->zone->compact_blockskip_flush = true;
2010 
2011 		if (cc->whole_zone)
2012 			return COMPACT_COMPLETE;
2013 		else
2014 			return COMPACT_PARTIAL_SKIPPED;
2015 	}
2016 
2017 	if (cc->proactive_compaction) {
2018 		int score, wmark_low;
2019 		pg_data_t *pgdat;
2020 
2021 		pgdat = cc->zone->zone_pgdat;
2022 		if (kswapd_is_running(pgdat))
2023 			return COMPACT_PARTIAL_SKIPPED;
2024 
2025 		score = fragmentation_score_zone(cc->zone);
2026 		wmark_low = fragmentation_score_wmark(pgdat, true);
2027 
2028 		if (score > wmark_low)
2029 			ret = COMPACT_CONTINUE;
2030 		else
2031 			ret = COMPACT_SUCCESS;
2032 
2033 		goto out;
2034 	}
2035 
2036 	if (is_via_compact_memory(cc->order))
2037 		return COMPACT_CONTINUE;
2038 
2039 	/*
2040 	 * Always finish scanning a pageblock to reduce the possibility of
2041 	 * fallbacks in the future. This is particularly important when
2042 	 * migration source is unmovable/reclaimable but it's not worth
2043 	 * special casing.
2044 	 */
2045 	if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2046 		return COMPACT_CONTINUE;
2047 
2048 	/* Direct compactor: Is a suitable page free? */
2049 	ret = COMPACT_NO_SUITABLE_PAGE;
2050 	for (order = cc->order; order < MAX_ORDER; order++) {
2051 		struct free_area *area = &cc->zone->free_area[order];
2052 		bool can_steal;
2053 
2054 		/* Job done if page is free of the right migratetype */
2055 		if (!free_area_empty(area, migratetype))
2056 			return COMPACT_SUCCESS;
2057 
2058 #ifdef CONFIG_CMA
2059 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2060 		if (migratetype == MIGRATE_MOVABLE &&
2061 			!free_area_empty(area, MIGRATE_CMA))
2062 			return COMPACT_SUCCESS;
2063 #endif
2064 		/*
2065 		 * Job done if allocation would steal freepages from
2066 		 * other migratetype buddy lists.
2067 		 */
2068 		if (find_suitable_fallback(area, order, migratetype,
2069 						true, &can_steal) != -1) {
2070 
2071 			/* movable pages are OK in any pageblock */
2072 			if (migratetype == MIGRATE_MOVABLE)
2073 				return COMPACT_SUCCESS;
2074 
2075 			/*
2076 			 * We are stealing for a non-movable allocation. Make
2077 			 * sure we finish compacting the current pageblock
2078 			 * first so it is as free as possible and we won't
2079 			 * have to steal another one soon. This only applies
2080 			 * to sync compaction, as async compaction operates
2081 			 * on pageblocks of the same migratetype.
2082 			 */
2083 			if (cc->mode == MIGRATE_ASYNC ||
2084 					IS_ALIGNED(cc->migrate_pfn,
2085 							pageblock_nr_pages)) {
2086 				return COMPACT_SUCCESS;
2087 			}
2088 
2089 			ret = COMPACT_CONTINUE;
2090 			break;
2091 		}
2092 	}
2093 
2094 out:
2095 	if (cc->contended || fatal_signal_pending(current))
2096 		ret = COMPACT_CONTENDED;
2097 
2098 	return ret;
2099 }
2100 
2101 static enum compact_result compact_finished(struct compact_control *cc)
2102 {
2103 	int ret;
2104 
2105 	ret = __compact_finished(cc);
2106 	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2107 	if (ret == COMPACT_NO_SUITABLE_PAGE)
2108 		ret = COMPACT_CONTINUE;
2109 
2110 	return ret;
2111 }
2112 
2113 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2114 					unsigned int alloc_flags,
2115 					int highest_zoneidx,
2116 					unsigned long wmark_target)
2117 {
2118 	unsigned long watermark;
2119 
2120 	if (is_via_compact_memory(order))
2121 		return COMPACT_CONTINUE;
2122 
2123 	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2124 	/*
2125 	 * If watermarks for high-order allocation are already met, there
2126 	 * should be no need for compaction at all.
2127 	 */
2128 	if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2129 								alloc_flags))
2130 		return COMPACT_SUCCESS;
2131 
2132 	/*
2133 	 * Watermarks for order-0 must be met for compaction to be able to
2134 	 * isolate free pages for migration targets. This means that the
2135 	 * watermark and alloc_flags have to match, or be more pessimistic than
2136 	 * the check in __isolate_free_page(). We don't use the direct
2137 	 * compactor's alloc_flags, as they are not relevant for freepage
2138 	 * isolation. We however do use the direct compactor's highest_zoneidx
2139 	 * to skip over zones where lowmem reserves would prevent allocation
2140 	 * even if compaction succeeds.
2141 	 * For costly orders, we require low watermark instead of min for
2142 	 * compaction to proceed to increase its chances.
2143 	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2144 	 * suitable migration targets
2145 	 */
2146 	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2147 				low_wmark_pages(zone) : min_wmark_pages(zone);
2148 	watermark += compact_gap(order);
2149 	if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2150 						ALLOC_CMA, wmark_target))
2151 		return COMPACT_SKIPPED;
2152 
2153 	return COMPACT_CONTINUE;
2154 }
2155 
2156 /*
2157  * compaction_suitable: Is this suitable to run compaction on this zone now?
2158  * Returns
2159  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2160  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2161  *   COMPACT_CONTINUE - If compaction should run now
2162  */
2163 enum compact_result compaction_suitable(struct zone *zone, int order,
2164 					unsigned int alloc_flags,
2165 					int highest_zoneidx)
2166 {
2167 	enum compact_result ret;
2168 	int fragindex;
2169 
2170 	ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2171 				    zone_page_state(zone, NR_FREE_PAGES));
2172 	/*
2173 	 * fragmentation index determines if allocation failures are due to
2174 	 * low memory or external fragmentation
2175 	 *
2176 	 * index of -1000 would imply allocations might succeed depending on
2177 	 * watermarks, but we already failed the high-order watermark check
2178 	 * index towards 0 implies failure is due to lack of memory
2179 	 * index towards 1000 implies failure is due to fragmentation
2180 	 *
2181 	 * Only compact if a failure would be due to fragmentation. Also
2182 	 * ignore fragindex for non-costly orders where the alternative to
2183 	 * a successful reclaim/compaction is OOM. Fragindex and the
2184 	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2185 	 * excessive compaction for costly orders, but it should not be at the
2186 	 * expense of system stability.
2187 	 */
2188 	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2189 		fragindex = fragmentation_index(zone, order);
2190 		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2191 			ret = COMPACT_NOT_SUITABLE_ZONE;
2192 	}
2193 
2194 	trace_mm_compaction_suitable(zone, order, ret);
2195 	if (ret == COMPACT_NOT_SUITABLE_ZONE)
2196 		ret = COMPACT_SKIPPED;
2197 
2198 	return ret;
2199 }
2200 
2201 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2202 		int alloc_flags)
2203 {
2204 	struct zone *zone;
2205 	struct zoneref *z;
2206 
2207 	/*
2208 	 * Make sure at least one zone would pass __compaction_suitable if we continue
2209 	 * retrying the reclaim.
2210 	 */
2211 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2212 				ac->highest_zoneidx, ac->nodemask) {
2213 		unsigned long available;
2214 		enum compact_result compact_result;
2215 
2216 		/*
2217 		 * Do not consider all the reclaimable memory because we do not
2218 		 * want to trash just for a single high order allocation which
2219 		 * is even not guaranteed to appear even if __compaction_suitable
2220 		 * is happy about the watermark check.
2221 		 */
2222 		available = zone_reclaimable_pages(zone) / order;
2223 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2224 		compact_result = __compaction_suitable(zone, order, alloc_flags,
2225 				ac->highest_zoneidx, available);
2226 		if (compact_result != COMPACT_SKIPPED)
2227 			return true;
2228 	}
2229 
2230 	return false;
2231 }
2232 
2233 static enum compact_result
2234 compact_zone(struct compact_control *cc, struct capture_control *capc)
2235 {
2236 	enum compact_result ret;
2237 	unsigned long start_pfn = cc->zone->zone_start_pfn;
2238 	unsigned long end_pfn = zone_end_pfn(cc->zone);
2239 	unsigned long last_migrated_pfn;
2240 	const bool sync = cc->mode != MIGRATE_ASYNC;
2241 	bool update_cached;
2242 
2243 	/*
2244 	 * These counters track activities during zone compaction.  Initialize
2245 	 * them before compacting a new zone.
2246 	 */
2247 	cc->total_migrate_scanned = 0;
2248 	cc->total_free_scanned = 0;
2249 	cc->nr_migratepages = 0;
2250 	cc->nr_freepages = 0;
2251 	INIT_LIST_HEAD(&cc->freepages);
2252 	INIT_LIST_HEAD(&cc->migratepages);
2253 
2254 	cc->migratetype = gfp_migratetype(cc->gfp_mask);
2255 	ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2256 							cc->highest_zoneidx);
2257 	/* Compaction is likely to fail */
2258 	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2259 		return ret;
2260 
2261 	/* huh, compaction_suitable is returning something unexpected */
2262 	VM_BUG_ON(ret != COMPACT_CONTINUE);
2263 
2264 	/*
2265 	 * Clear pageblock skip if there were failures recently and compaction
2266 	 * is about to be retried after being deferred.
2267 	 */
2268 	if (compaction_restarting(cc->zone, cc->order))
2269 		__reset_isolation_suitable(cc->zone);
2270 
2271 	/*
2272 	 * Setup to move all movable pages to the end of the zone. Used cached
2273 	 * information on where the scanners should start (unless we explicitly
2274 	 * want to compact the whole zone), but check that it is initialised
2275 	 * by ensuring the values are within zone boundaries.
2276 	 */
2277 	cc->fast_start_pfn = 0;
2278 	if (cc->whole_zone) {
2279 		cc->migrate_pfn = start_pfn;
2280 		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2281 	} else {
2282 		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2283 		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2284 		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2285 			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2286 			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2287 		}
2288 		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2289 			cc->migrate_pfn = start_pfn;
2290 			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2291 			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2292 		}
2293 
2294 		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2295 			cc->whole_zone = true;
2296 	}
2297 
2298 	last_migrated_pfn = 0;
2299 
2300 	/*
2301 	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2302 	 * the basis that some migrations will fail in ASYNC mode. However,
2303 	 * if the cached PFNs match and pageblocks are skipped due to having
2304 	 * no isolation candidates, then the sync state does not matter.
2305 	 * Until a pageblock with isolation candidates is found, keep the
2306 	 * cached PFNs in sync to avoid revisiting the same blocks.
2307 	 */
2308 	update_cached = !sync &&
2309 		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2310 
2311 	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2312 				cc->free_pfn, end_pfn, sync);
2313 
2314 	migrate_prep_local();
2315 
2316 	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2317 		int err;
2318 		unsigned long iteration_start_pfn = cc->migrate_pfn;
2319 
2320 		/*
2321 		 * Avoid multiple rescans which can happen if a page cannot be
2322 		 * isolated (dirty/writeback in async mode) or if the migrated
2323 		 * pages are being allocated before the pageblock is cleared.
2324 		 * The first rescan will capture the entire pageblock for
2325 		 * migration. If it fails, it'll be marked skip and scanning
2326 		 * will proceed as normal.
2327 		 */
2328 		cc->rescan = false;
2329 		if (pageblock_start_pfn(last_migrated_pfn) ==
2330 		    pageblock_start_pfn(iteration_start_pfn)) {
2331 			cc->rescan = true;
2332 		}
2333 
2334 		switch (isolate_migratepages(cc)) {
2335 		case ISOLATE_ABORT:
2336 			ret = COMPACT_CONTENDED;
2337 			putback_movable_pages(&cc->migratepages);
2338 			cc->nr_migratepages = 0;
2339 			goto out;
2340 		case ISOLATE_NONE:
2341 			if (update_cached) {
2342 				cc->zone->compact_cached_migrate_pfn[1] =
2343 					cc->zone->compact_cached_migrate_pfn[0];
2344 			}
2345 
2346 			/*
2347 			 * We haven't isolated and migrated anything, but
2348 			 * there might still be unflushed migrations from
2349 			 * previous cc->order aligned block.
2350 			 */
2351 			goto check_drain;
2352 		case ISOLATE_SUCCESS:
2353 			update_cached = false;
2354 			last_migrated_pfn = iteration_start_pfn;
2355 		}
2356 
2357 		err = migrate_pages(&cc->migratepages, compaction_alloc,
2358 				compaction_free, (unsigned long)cc, cc->mode,
2359 				MR_COMPACTION);
2360 
2361 		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2362 							&cc->migratepages);
2363 
2364 		/* All pages were either migrated or will be released */
2365 		cc->nr_migratepages = 0;
2366 		if (err) {
2367 			putback_movable_pages(&cc->migratepages);
2368 			/*
2369 			 * migrate_pages() may return -ENOMEM when scanners meet
2370 			 * and we want compact_finished() to detect it
2371 			 */
2372 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2373 				ret = COMPACT_CONTENDED;
2374 				goto out;
2375 			}
2376 			/*
2377 			 * We failed to migrate at least one page in the current
2378 			 * order-aligned block, so skip the rest of it.
2379 			 */
2380 			if (cc->direct_compaction &&
2381 						(cc->mode == MIGRATE_ASYNC)) {
2382 				cc->migrate_pfn = block_end_pfn(
2383 						cc->migrate_pfn - 1, cc->order);
2384 				/* Draining pcplists is useless in this case */
2385 				last_migrated_pfn = 0;
2386 			}
2387 		}
2388 
2389 check_drain:
2390 		/*
2391 		 * Has the migration scanner moved away from the previous
2392 		 * cc->order aligned block where we migrated from? If yes,
2393 		 * flush the pages that were freed, so that they can merge and
2394 		 * compact_finished() can detect immediately if allocation
2395 		 * would succeed.
2396 		 */
2397 		if (cc->order > 0 && last_migrated_pfn) {
2398 			unsigned long current_block_start =
2399 				block_start_pfn(cc->migrate_pfn, cc->order);
2400 
2401 			if (last_migrated_pfn < current_block_start) {
2402 				lru_add_drain_cpu_zone(cc->zone);
2403 				/* No more flushing until we migrate again */
2404 				last_migrated_pfn = 0;
2405 			}
2406 		}
2407 
2408 		/* Stop if a page has been captured */
2409 		if (capc && capc->page) {
2410 			ret = COMPACT_SUCCESS;
2411 			break;
2412 		}
2413 	}
2414 
2415 out:
2416 	/*
2417 	 * Release free pages and update where the free scanner should restart,
2418 	 * so we don't leave any returned pages behind in the next attempt.
2419 	 */
2420 	if (cc->nr_freepages > 0) {
2421 		unsigned long free_pfn = release_freepages(&cc->freepages);
2422 
2423 		cc->nr_freepages = 0;
2424 		VM_BUG_ON(free_pfn == 0);
2425 		/* The cached pfn is always the first in a pageblock */
2426 		free_pfn = pageblock_start_pfn(free_pfn);
2427 		/*
2428 		 * Only go back, not forward. The cached pfn might have been
2429 		 * already reset to zone end in compact_finished()
2430 		 */
2431 		if (free_pfn > cc->zone->compact_cached_free_pfn)
2432 			cc->zone->compact_cached_free_pfn = free_pfn;
2433 	}
2434 
2435 	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2436 	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2437 
2438 	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2439 				cc->free_pfn, end_pfn, sync, ret);
2440 
2441 	return ret;
2442 }
2443 
2444 static enum compact_result compact_zone_order(struct zone *zone, int order,
2445 		gfp_t gfp_mask, enum compact_priority prio,
2446 		unsigned int alloc_flags, int highest_zoneidx,
2447 		struct page **capture)
2448 {
2449 	enum compact_result ret;
2450 	struct compact_control cc = {
2451 		.order = order,
2452 		.search_order = order,
2453 		.gfp_mask = gfp_mask,
2454 		.zone = zone,
2455 		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2456 					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2457 		.alloc_flags = alloc_flags,
2458 		.highest_zoneidx = highest_zoneidx,
2459 		.direct_compaction = true,
2460 		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2461 		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2462 		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2463 	};
2464 	struct capture_control capc = {
2465 		.cc = &cc,
2466 		.page = NULL,
2467 	};
2468 
2469 	/*
2470 	 * Make sure the structs are really initialized before we expose the
2471 	 * capture control, in case we are interrupted and the interrupt handler
2472 	 * frees a page.
2473 	 */
2474 	barrier();
2475 	WRITE_ONCE(current->capture_control, &capc);
2476 
2477 	ret = compact_zone(&cc, &capc);
2478 
2479 	VM_BUG_ON(!list_empty(&cc.freepages));
2480 	VM_BUG_ON(!list_empty(&cc.migratepages));
2481 
2482 	/*
2483 	 * Make sure we hide capture control first before we read the captured
2484 	 * page pointer, otherwise an interrupt could free and capture a page
2485 	 * and we would leak it.
2486 	 */
2487 	WRITE_ONCE(current->capture_control, NULL);
2488 	*capture = READ_ONCE(capc.page);
2489 
2490 	return ret;
2491 }
2492 
2493 int sysctl_extfrag_threshold = 500;
2494 
2495 /**
2496  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2497  * @gfp_mask: The GFP mask of the current allocation
2498  * @order: The order of the current allocation
2499  * @alloc_flags: The allocation flags of the current allocation
2500  * @ac: The context of current allocation
2501  * @prio: Determines how hard direct compaction should try to succeed
2502  * @capture: Pointer to free page created by compaction will be stored here
2503  *
2504  * This is the main entry point for direct page compaction.
2505  */
2506 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2507 		unsigned int alloc_flags, const struct alloc_context *ac,
2508 		enum compact_priority prio, struct page **capture)
2509 {
2510 	int may_perform_io = gfp_mask & __GFP_IO;
2511 	struct zoneref *z;
2512 	struct zone *zone;
2513 	enum compact_result rc = COMPACT_SKIPPED;
2514 
2515 	/*
2516 	 * Check if the GFP flags allow compaction - GFP_NOIO is really
2517 	 * tricky context because the migration might require IO
2518 	 */
2519 	if (!may_perform_io)
2520 		return COMPACT_SKIPPED;
2521 
2522 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2523 
2524 	/* Compact each zone in the list */
2525 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2526 					ac->highest_zoneidx, ac->nodemask) {
2527 		enum compact_result status;
2528 
2529 		if (prio > MIN_COMPACT_PRIORITY
2530 					&& compaction_deferred(zone, order)) {
2531 			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2532 			continue;
2533 		}
2534 
2535 		status = compact_zone_order(zone, order, gfp_mask, prio,
2536 				alloc_flags, ac->highest_zoneidx, capture);
2537 		rc = max(status, rc);
2538 
2539 		/* The allocation should succeed, stop compacting */
2540 		if (status == COMPACT_SUCCESS) {
2541 			/*
2542 			 * We think the allocation will succeed in this zone,
2543 			 * but it is not certain, hence the false. The caller
2544 			 * will repeat this with true if allocation indeed
2545 			 * succeeds in this zone.
2546 			 */
2547 			compaction_defer_reset(zone, order, false);
2548 
2549 			break;
2550 		}
2551 
2552 		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2553 					status == COMPACT_PARTIAL_SKIPPED))
2554 			/*
2555 			 * We think that allocation won't succeed in this zone
2556 			 * so we defer compaction there. If it ends up
2557 			 * succeeding after all, it will be reset.
2558 			 */
2559 			defer_compaction(zone, order);
2560 
2561 		/*
2562 		 * We might have stopped compacting due to need_resched() in
2563 		 * async compaction, or due to a fatal signal detected. In that
2564 		 * case do not try further zones
2565 		 */
2566 		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2567 					|| fatal_signal_pending(current))
2568 			break;
2569 	}
2570 
2571 	return rc;
2572 }
2573 
2574 /*
2575  * Compact all zones within a node till each zone's fragmentation score
2576  * reaches within proactive compaction thresholds (as determined by the
2577  * proactiveness tunable).
2578  *
2579  * It is possible that the function returns before reaching score targets
2580  * due to various back-off conditions, such as, contention on per-node or
2581  * per-zone locks.
2582  */
2583 static void proactive_compact_node(pg_data_t *pgdat)
2584 {
2585 	int zoneid;
2586 	struct zone *zone;
2587 	struct compact_control cc = {
2588 		.order = -1,
2589 		.mode = MIGRATE_SYNC_LIGHT,
2590 		.ignore_skip_hint = true,
2591 		.whole_zone = true,
2592 		.gfp_mask = GFP_KERNEL,
2593 		.proactive_compaction = true,
2594 	};
2595 
2596 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2597 		zone = &pgdat->node_zones[zoneid];
2598 		if (!populated_zone(zone))
2599 			continue;
2600 
2601 		cc.zone = zone;
2602 
2603 		compact_zone(&cc, NULL);
2604 
2605 		VM_BUG_ON(!list_empty(&cc.freepages));
2606 		VM_BUG_ON(!list_empty(&cc.migratepages));
2607 	}
2608 }
2609 
2610 /* Compact all zones within a node */
2611 static void compact_node(int nid)
2612 {
2613 	pg_data_t *pgdat = NODE_DATA(nid);
2614 	int zoneid;
2615 	struct zone *zone;
2616 	struct compact_control cc = {
2617 		.order = -1,
2618 		.mode = MIGRATE_SYNC,
2619 		.ignore_skip_hint = true,
2620 		.whole_zone = true,
2621 		.gfp_mask = GFP_KERNEL,
2622 	};
2623 
2624 
2625 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2626 
2627 		zone = &pgdat->node_zones[zoneid];
2628 		if (!populated_zone(zone))
2629 			continue;
2630 
2631 		cc.zone = zone;
2632 
2633 		compact_zone(&cc, NULL);
2634 
2635 		VM_BUG_ON(!list_empty(&cc.freepages));
2636 		VM_BUG_ON(!list_empty(&cc.migratepages));
2637 	}
2638 }
2639 
2640 /* Compact all nodes in the system */
2641 static void compact_nodes(void)
2642 {
2643 	int nid;
2644 
2645 	/* Flush pending updates to the LRU lists */
2646 	lru_add_drain_all();
2647 
2648 	for_each_online_node(nid)
2649 		compact_node(nid);
2650 }
2651 
2652 /* The written value is actually unused, all memory is compacted */
2653 int sysctl_compact_memory;
2654 
2655 /*
2656  * Tunable for proactive compaction. It determines how
2657  * aggressively the kernel should compact memory in the
2658  * background. It takes values in the range [0, 100].
2659  */
2660 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2661 
2662 /*
2663  * This is the entry point for compacting all nodes via
2664  * /proc/sys/vm/compact_memory
2665  */
2666 int sysctl_compaction_handler(struct ctl_table *table, int write,
2667 			void *buffer, size_t *length, loff_t *ppos)
2668 {
2669 	if (write)
2670 		compact_nodes();
2671 
2672 	return 0;
2673 }
2674 
2675 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2676 static ssize_t sysfs_compact_node(struct device *dev,
2677 			struct device_attribute *attr,
2678 			const char *buf, size_t count)
2679 {
2680 	int nid = dev->id;
2681 
2682 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2683 		/* Flush pending updates to the LRU lists */
2684 		lru_add_drain_all();
2685 
2686 		compact_node(nid);
2687 	}
2688 
2689 	return count;
2690 }
2691 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2692 
2693 int compaction_register_node(struct node *node)
2694 {
2695 	return device_create_file(&node->dev, &dev_attr_compact);
2696 }
2697 
2698 void compaction_unregister_node(struct node *node)
2699 {
2700 	return device_remove_file(&node->dev, &dev_attr_compact);
2701 }
2702 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2703 
2704 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2705 {
2706 	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
2707 }
2708 
2709 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2710 {
2711 	int zoneid;
2712 	struct zone *zone;
2713 	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2714 
2715 	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2716 		zone = &pgdat->node_zones[zoneid];
2717 
2718 		if (!populated_zone(zone))
2719 			continue;
2720 
2721 		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2722 					highest_zoneidx) == COMPACT_CONTINUE)
2723 			return true;
2724 	}
2725 
2726 	return false;
2727 }
2728 
2729 static void kcompactd_do_work(pg_data_t *pgdat)
2730 {
2731 	/*
2732 	 * With no special task, compact all zones so that a page of requested
2733 	 * order is allocatable.
2734 	 */
2735 	int zoneid;
2736 	struct zone *zone;
2737 	struct compact_control cc = {
2738 		.order = pgdat->kcompactd_max_order,
2739 		.search_order = pgdat->kcompactd_max_order,
2740 		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2741 		.mode = MIGRATE_SYNC_LIGHT,
2742 		.ignore_skip_hint = false,
2743 		.gfp_mask = GFP_KERNEL,
2744 	};
2745 	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2746 							cc.highest_zoneidx);
2747 	count_compact_event(KCOMPACTD_WAKE);
2748 
2749 	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2750 		int status;
2751 
2752 		zone = &pgdat->node_zones[zoneid];
2753 		if (!populated_zone(zone))
2754 			continue;
2755 
2756 		if (compaction_deferred(zone, cc.order))
2757 			continue;
2758 
2759 		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2760 							COMPACT_CONTINUE)
2761 			continue;
2762 
2763 		if (kthread_should_stop())
2764 			return;
2765 
2766 		cc.zone = zone;
2767 		status = compact_zone(&cc, NULL);
2768 
2769 		if (status == COMPACT_SUCCESS) {
2770 			compaction_defer_reset(zone, cc.order, false);
2771 		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2772 			/*
2773 			 * Buddy pages may become stranded on pcps that could
2774 			 * otherwise coalesce on the zone's free area for
2775 			 * order >= cc.order.  This is ratelimited by the
2776 			 * upcoming deferral.
2777 			 */
2778 			drain_all_pages(zone);
2779 
2780 			/*
2781 			 * We use sync migration mode here, so we defer like
2782 			 * sync direct compaction does.
2783 			 */
2784 			defer_compaction(zone, cc.order);
2785 		}
2786 
2787 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2788 				     cc.total_migrate_scanned);
2789 		count_compact_events(KCOMPACTD_FREE_SCANNED,
2790 				     cc.total_free_scanned);
2791 
2792 		VM_BUG_ON(!list_empty(&cc.freepages));
2793 		VM_BUG_ON(!list_empty(&cc.migratepages));
2794 	}
2795 
2796 	/*
2797 	 * Regardless of success, we are done until woken up next. But remember
2798 	 * the requested order/highest_zoneidx in case it was higher/tighter
2799 	 * than our current ones
2800 	 */
2801 	if (pgdat->kcompactd_max_order <= cc.order)
2802 		pgdat->kcompactd_max_order = 0;
2803 	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2804 		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2805 }
2806 
2807 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2808 {
2809 	if (!order)
2810 		return;
2811 
2812 	if (pgdat->kcompactd_max_order < order)
2813 		pgdat->kcompactd_max_order = order;
2814 
2815 	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2816 		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2817 
2818 	/*
2819 	 * Pairs with implicit barrier in wait_event_freezable()
2820 	 * such that wakeups are not missed.
2821 	 */
2822 	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2823 		return;
2824 
2825 	if (!kcompactd_node_suitable(pgdat))
2826 		return;
2827 
2828 	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2829 							highest_zoneidx);
2830 	wake_up_interruptible(&pgdat->kcompactd_wait);
2831 }
2832 
2833 /*
2834  * The background compaction daemon, started as a kernel thread
2835  * from the init process.
2836  */
2837 static int kcompactd(void *p)
2838 {
2839 	pg_data_t *pgdat = (pg_data_t*)p;
2840 	struct task_struct *tsk = current;
2841 	unsigned int proactive_defer = 0;
2842 
2843 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2844 
2845 	if (!cpumask_empty(cpumask))
2846 		set_cpus_allowed_ptr(tsk, cpumask);
2847 
2848 	set_freezable();
2849 
2850 	pgdat->kcompactd_max_order = 0;
2851 	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2852 
2853 	while (!kthread_should_stop()) {
2854 		unsigned long pflags;
2855 
2856 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2857 		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2858 			kcompactd_work_requested(pgdat),
2859 			msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC))) {
2860 
2861 			psi_memstall_enter(&pflags);
2862 			kcompactd_do_work(pgdat);
2863 			psi_memstall_leave(&pflags);
2864 			continue;
2865 		}
2866 
2867 		/* kcompactd wait timeout */
2868 		if (should_proactive_compact_node(pgdat)) {
2869 			unsigned int prev_score, score;
2870 
2871 			if (proactive_defer) {
2872 				proactive_defer--;
2873 				continue;
2874 			}
2875 			prev_score = fragmentation_score_node(pgdat);
2876 			proactive_compact_node(pgdat);
2877 			score = fragmentation_score_node(pgdat);
2878 			/*
2879 			 * Defer proactive compaction if the fragmentation
2880 			 * score did not go down i.e. no progress made.
2881 			 */
2882 			proactive_defer = score < prev_score ?
2883 					0 : 1 << COMPACT_MAX_DEFER_SHIFT;
2884 		}
2885 	}
2886 
2887 	return 0;
2888 }
2889 
2890 /*
2891  * This kcompactd start function will be called by init and node-hot-add.
2892  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2893  */
2894 int kcompactd_run(int nid)
2895 {
2896 	pg_data_t *pgdat = NODE_DATA(nid);
2897 	int ret = 0;
2898 
2899 	if (pgdat->kcompactd)
2900 		return 0;
2901 
2902 	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2903 	if (IS_ERR(pgdat->kcompactd)) {
2904 		pr_err("Failed to start kcompactd on node %d\n", nid);
2905 		ret = PTR_ERR(pgdat->kcompactd);
2906 		pgdat->kcompactd = NULL;
2907 	}
2908 	return ret;
2909 }
2910 
2911 /*
2912  * Called by memory hotplug when all memory in a node is offlined. Caller must
2913  * hold mem_hotplug_begin/end().
2914  */
2915 void kcompactd_stop(int nid)
2916 {
2917 	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2918 
2919 	if (kcompactd) {
2920 		kthread_stop(kcompactd);
2921 		NODE_DATA(nid)->kcompactd = NULL;
2922 	}
2923 }
2924 
2925 /*
2926  * It's optimal to keep kcompactd on the same CPUs as their memory, but
2927  * not required for correctness. So if the last cpu in a node goes
2928  * away, we get changed to run anywhere: as the first one comes back,
2929  * restore their cpu bindings.
2930  */
2931 static int kcompactd_cpu_online(unsigned int cpu)
2932 {
2933 	int nid;
2934 
2935 	for_each_node_state(nid, N_MEMORY) {
2936 		pg_data_t *pgdat = NODE_DATA(nid);
2937 		const struct cpumask *mask;
2938 
2939 		mask = cpumask_of_node(pgdat->node_id);
2940 
2941 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2942 			/* One of our CPUs online: restore mask */
2943 			set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2944 	}
2945 	return 0;
2946 }
2947 
2948 static int __init kcompactd_init(void)
2949 {
2950 	int nid;
2951 	int ret;
2952 
2953 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2954 					"mm/compaction:online",
2955 					kcompactd_cpu_online, NULL);
2956 	if (ret < 0) {
2957 		pr_err("kcompactd: failed to register hotplug callbacks.\n");
2958 		return ret;
2959 	}
2960 
2961 	for_each_node_state(nid, N_MEMORY)
2962 		kcompactd_run(nid);
2963 	return 0;
2964 }
2965 subsys_initcall(kcompactd_init)
2966 
2967 #endif /* CONFIG_COMPACTION */
2968