xref: /linux/mm/compaction.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include <linux/kasan.h>
20 #include "internal.h"
21 
22 #ifdef CONFIG_COMPACTION
23 static inline void count_compact_event(enum vm_event_item item)
24 {
25 	count_vm_event(item);
26 }
27 
28 static inline void count_compact_events(enum vm_event_item item, long delta)
29 {
30 	count_vm_events(item, delta);
31 }
32 #else
33 #define count_compact_event(item) do { } while (0)
34 #define count_compact_events(item, delta) do { } while (0)
35 #endif
36 
37 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
38 #ifdef CONFIG_TRACEPOINTS
39 static const char *const compaction_status_string[] = {
40 	"deferred",
41 	"skipped",
42 	"continue",
43 	"partial",
44 	"complete",
45 	"no_suitable_page",
46 	"not_suitable_zone",
47 };
48 #endif
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52 
53 static unsigned long release_freepages(struct list_head *freelist)
54 {
55 	struct page *page, *next;
56 	unsigned long high_pfn = 0;
57 
58 	list_for_each_entry_safe(page, next, freelist, lru) {
59 		unsigned long pfn = page_to_pfn(page);
60 		list_del(&page->lru);
61 		__free_page(page);
62 		if (pfn > high_pfn)
63 			high_pfn = pfn;
64 	}
65 
66 	return high_pfn;
67 }
68 
69 static void map_pages(struct list_head *list)
70 {
71 	struct page *page;
72 
73 	list_for_each_entry(page, list, lru) {
74 		arch_alloc_page(page, 0);
75 		kernel_map_pages(page, 1, 1);
76 		kasan_alloc_pages(page, 0);
77 	}
78 }
79 
80 static inline bool migrate_async_suitable(int migratetype)
81 {
82 	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
83 }
84 
85 /*
86  * Check that the whole (or subset of) a pageblock given by the interval of
87  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
88  * with the migration of free compaction scanner. The scanners then need to
89  * use only pfn_valid_within() check for arches that allow holes within
90  * pageblocks.
91  *
92  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
93  *
94  * It's possible on some configurations to have a setup like node0 node1 node0
95  * i.e. it's possible that all pages within a zones range of pages do not
96  * belong to a single zone. We assume that a border between node0 and node1
97  * can occur within a single pageblock, but not a node0 node1 node0
98  * interleaving within a single pageblock. It is therefore sufficient to check
99  * the first and last page of a pageblock and avoid checking each individual
100  * page in a pageblock.
101  */
102 static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
103 				unsigned long end_pfn, struct zone *zone)
104 {
105 	struct page *start_page;
106 	struct page *end_page;
107 
108 	/* end_pfn is one past the range we are checking */
109 	end_pfn--;
110 
111 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
112 		return NULL;
113 
114 	start_page = pfn_to_page(start_pfn);
115 
116 	if (page_zone(start_page) != zone)
117 		return NULL;
118 
119 	end_page = pfn_to_page(end_pfn);
120 
121 	/* This gives a shorter code than deriving page_zone(end_page) */
122 	if (page_zone_id(start_page) != page_zone_id(end_page))
123 		return NULL;
124 
125 	return start_page;
126 }
127 
128 #ifdef CONFIG_COMPACTION
129 
130 /* Do not skip compaction more than 64 times */
131 #define COMPACT_MAX_DEFER_SHIFT 6
132 
133 /*
134  * Compaction is deferred when compaction fails to result in a page
135  * allocation success. 1 << compact_defer_limit compactions are skipped up
136  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
137  */
138 void defer_compaction(struct zone *zone, int order)
139 {
140 	zone->compact_considered = 0;
141 	zone->compact_defer_shift++;
142 
143 	if (order < zone->compact_order_failed)
144 		zone->compact_order_failed = order;
145 
146 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
147 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
148 
149 	trace_mm_compaction_defer_compaction(zone, order);
150 }
151 
152 /* Returns true if compaction should be skipped this time */
153 bool compaction_deferred(struct zone *zone, int order)
154 {
155 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
156 
157 	if (order < zone->compact_order_failed)
158 		return false;
159 
160 	/* Avoid possible overflow */
161 	if (++zone->compact_considered > defer_limit)
162 		zone->compact_considered = defer_limit;
163 
164 	if (zone->compact_considered >= defer_limit)
165 		return false;
166 
167 	trace_mm_compaction_deferred(zone, order);
168 
169 	return true;
170 }
171 
172 /*
173  * Update defer tracking counters after successful compaction of given order,
174  * which means an allocation either succeeded (alloc_success == true) or is
175  * expected to succeed.
176  */
177 void compaction_defer_reset(struct zone *zone, int order,
178 		bool alloc_success)
179 {
180 	if (alloc_success) {
181 		zone->compact_considered = 0;
182 		zone->compact_defer_shift = 0;
183 	}
184 	if (order >= zone->compact_order_failed)
185 		zone->compact_order_failed = order + 1;
186 
187 	trace_mm_compaction_defer_reset(zone, order);
188 }
189 
190 /* Returns true if restarting compaction after many failures */
191 bool compaction_restarting(struct zone *zone, int order)
192 {
193 	if (order < zone->compact_order_failed)
194 		return false;
195 
196 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
197 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
198 }
199 
200 /* Returns true if the pageblock should be scanned for pages to isolate. */
201 static inline bool isolation_suitable(struct compact_control *cc,
202 					struct page *page)
203 {
204 	if (cc->ignore_skip_hint)
205 		return true;
206 
207 	return !get_pageblock_skip(page);
208 }
209 
210 static void reset_cached_positions(struct zone *zone)
211 {
212 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
213 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
214 	zone->compact_cached_free_pfn = zone_end_pfn(zone);
215 }
216 
217 /*
218  * This function is called to clear all cached information on pageblocks that
219  * should be skipped for page isolation when the migrate and free page scanner
220  * meet.
221  */
222 static void __reset_isolation_suitable(struct zone *zone)
223 {
224 	unsigned long start_pfn = zone->zone_start_pfn;
225 	unsigned long end_pfn = zone_end_pfn(zone);
226 	unsigned long pfn;
227 
228 	zone->compact_blockskip_flush = false;
229 
230 	/* Walk the zone and mark every pageblock as suitable for isolation */
231 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
232 		struct page *page;
233 
234 		cond_resched();
235 
236 		if (!pfn_valid(pfn))
237 			continue;
238 
239 		page = pfn_to_page(pfn);
240 		if (zone != page_zone(page))
241 			continue;
242 
243 		clear_pageblock_skip(page);
244 	}
245 
246 	reset_cached_positions(zone);
247 }
248 
249 void reset_isolation_suitable(pg_data_t *pgdat)
250 {
251 	int zoneid;
252 
253 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
254 		struct zone *zone = &pgdat->node_zones[zoneid];
255 		if (!populated_zone(zone))
256 			continue;
257 
258 		/* Only flush if a full compaction finished recently */
259 		if (zone->compact_blockskip_flush)
260 			__reset_isolation_suitable(zone);
261 	}
262 }
263 
264 /*
265  * If no pages were isolated then mark this pageblock to be skipped in the
266  * future. The information is later cleared by __reset_isolation_suitable().
267  */
268 static void update_pageblock_skip(struct compact_control *cc,
269 			struct page *page, unsigned long nr_isolated,
270 			bool migrate_scanner)
271 {
272 	struct zone *zone = cc->zone;
273 	unsigned long pfn;
274 
275 	if (cc->ignore_skip_hint)
276 		return;
277 
278 	if (!page)
279 		return;
280 
281 	if (nr_isolated)
282 		return;
283 
284 	set_pageblock_skip(page);
285 
286 	pfn = page_to_pfn(page);
287 
288 	/* Update where async and sync compaction should restart */
289 	if (migrate_scanner) {
290 		if (pfn > zone->compact_cached_migrate_pfn[0])
291 			zone->compact_cached_migrate_pfn[0] = pfn;
292 		if (cc->mode != MIGRATE_ASYNC &&
293 		    pfn > zone->compact_cached_migrate_pfn[1])
294 			zone->compact_cached_migrate_pfn[1] = pfn;
295 	} else {
296 		if (pfn < zone->compact_cached_free_pfn)
297 			zone->compact_cached_free_pfn = pfn;
298 	}
299 }
300 #else
301 static inline bool isolation_suitable(struct compact_control *cc,
302 					struct page *page)
303 {
304 	return true;
305 }
306 
307 static void update_pageblock_skip(struct compact_control *cc,
308 			struct page *page, unsigned long nr_isolated,
309 			bool migrate_scanner)
310 {
311 }
312 #endif /* CONFIG_COMPACTION */
313 
314 /*
315  * Compaction requires the taking of some coarse locks that are potentially
316  * very heavily contended. For async compaction, back out if the lock cannot
317  * be taken immediately. For sync compaction, spin on the lock if needed.
318  *
319  * Returns true if the lock is held
320  * Returns false if the lock is not held and compaction should abort
321  */
322 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
323 						struct compact_control *cc)
324 {
325 	if (cc->mode == MIGRATE_ASYNC) {
326 		if (!spin_trylock_irqsave(lock, *flags)) {
327 			cc->contended = COMPACT_CONTENDED_LOCK;
328 			return false;
329 		}
330 	} else {
331 		spin_lock_irqsave(lock, *flags);
332 	}
333 
334 	return true;
335 }
336 
337 /*
338  * Compaction requires the taking of some coarse locks that are potentially
339  * very heavily contended. The lock should be periodically unlocked to avoid
340  * having disabled IRQs for a long time, even when there is nobody waiting on
341  * the lock. It might also be that allowing the IRQs will result in
342  * need_resched() becoming true. If scheduling is needed, async compaction
343  * aborts. Sync compaction schedules.
344  * Either compaction type will also abort if a fatal signal is pending.
345  * In either case if the lock was locked, it is dropped and not regained.
346  *
347  * Returns true if compaction should abort due to fatal signal pending, or
348  *		async compaction due to need_resched()
349  * Returns false when compaction can continue (sync compaction might have
350  *		scheduled)
351  */
352 static bool compact_unlock_should_abort(spinlock_t *lock,
353 		unsigned long flags, bool *locked, struct compact_control *cc)
354 {
355 	if (*locked) {
356 		spin_unlock_irqrestore(lock, flags);
357 		*locked = false;
358 	}
359 
360 	if (fatal_signal_pending(current)) {
361 		cc->contended = COMPACT_CONTENDED_SCHED;
362 		return true;
363 	}
364 
365 	if (need_resched()) {
366 		if (cc->mode == MIGRATE_ASYNC) {
367 			cc->contended = COMPACT_CONTENDED_SCHED;
368 			return true;
369 		}
370 		cond_resched();
371 	}
372 
373 	return false;
374 }
375 
376 /*
377  * Aside from avoiding lock contention, compaction also periodically checks
378  * need_resched() and either schedules in sync compaction or aborts async
379  * compaction. This is similar to what compact_unlock_should_abort() does, but
380  * is used where no lock is concerned.
381  *
382  * Returns false when no scheduling was needed, or sync compaction scheduled.
383  * Returns true when async compaction should abort.
384  */
385 static inline bool compact_should_abort(struct compact_control *cc)
386 {
387 	/* async compaction aborts if contended */
388 	if (need_resched()) {
389 		if (cc->mode == MIGRATE_ASYNC) {
390 			cc->contended = COMPACT_CONTENDED_SCHED;
391 			return true;
392 		}
393 
394 		cond_resched();
395 	}
396 
397 	return false;
398 }
399 
400 /*
401  * Isolate free pages onto a private freelist. If @strict is true, will abort
402  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
403  * (even though it may still end up isolating some pages).
404  */
405 static unsigned long isolate_freepages_block(struct compact_control *cc,
406 				unsigned long *start_pfn,
407 				unsigned long end_pfn,
408 				struct list_head *freelist,
409 				bool strict)
410 {
411 	int nr_scanned = 0, total_isolated = 0;
412 	struct page *cursor, *valid_page = NULL;
413 	unsigned long flags = 0;
414 	bool locked = false;
415 	unsigned long blockpfn = *start_pfn;
416 
417 	cursor = pfn_to_page(blockpfn);
418 
419 	/* Isolate free pages. */
420 	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
421 		int isolated, i;
422 		struct page *page = cursor;
423 
424 		/*
425 		 * Periodically drop the lock (if held) regardless of its
426 		 * contention, to give chance to IRQs. Abort if fatal signal
427 		 * pending or async compaction detects need_resched()
428 		 */
429 		if (!(blockpfn % SWAP_CLUSTER_MAX)
430 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
431 								&locked, cc))
432 			break;
433 
434 		nr_scanned++;
435 		if (!pfn_valid_within(blockpfn))
436 			goto isolate_fail;
437 
438 		if (!valid_page)
439 			valid_page = page;
440 
441 		/*
442 		 * For compound pages such as THP and hugetlbfs, we can save
443 		 * potentially a lot of iterations if we skip them at once.
444 		 * The check is racy, but we can consider only valid values
445 		 * and the only danger is skipping too much.
446 		 */
447 		if (PageCompound(page)) {
448 			unsigned int comp_order = compound_order(page);
449 
450 			if (likely(comp_order < MAX_ORDER)) {
451 				blockpfn += (1UL << comp_order) - 1;
452 				cursor += (1UL << comp_order) - 1;
453 			}
454 
455 			goto isolate_fail;
456 		}
457 
458 		if (!PageBuddy(page))
459 			goto isolate_fail;
460 
461 		/*
462 		 * If we already hold the lock, we can skip some rechecking.
463 		 * Note that if we hold the lock now, checked_pageblock was
464 		 * already set in some previous iteration (or strict is true),
465 		 * so it is correct to skip the suitable migration target
466 		 * recheck as well.
467 		 */
468 		if (!locked) {
469 			/*
470 			 * The zone lock must be held to isolate freepages.
471 			 * Unfortunately this is a very coarse lock and can be
472 			 * heavily contended if there are parallel allocations
473 			 * or parallel compactions. For async compaction do not
474 			 * spin on the lock and we acquire the lock as late as
475 			 * possible.
476 			 */
477 			locked = compact_trylock_irqsave(&cc->zone->lock,
478 								&flags, cc);
479 			if (!locked)
480 				break;
481 
482 			/* Recheck this is a buddy page under lock */
483 			if (!PageBuddy(page))
484 				goto isolate_fail;
485 		}
486 
487 		/* Found a free page, break it into order-0 pages */
488 		isolated = split_free_page(page);
489 		total_isolated += isolated;
490 		for (i = 0; i < isolated; i++) {
491 			list_add(&page->lru, freelist);
492 			page++;
493 		}
494 
495 		/* If a page was split, advance to the end of it */
496 		if (isolated) {
497 			cc->nr_freepages += isolated;
498 			if (!strict &&
499 				cc->nr_migratepages <= cc->nr_freepages) {
500 				blockpfn += isolated;
501 				break;
502 			}
503 
504 			blockpfn += isolated - 1;
505 			cursor += isolated - 1;
506 			continue;
507 		}
508 
509 isolate_fail:
510 		if (strict)
511 			break;
512 		else
513 			continue;
514 
515 	}
516 
517 	/*
518 	 * There is a tiny chance that we have read bogus compound_order(),
519 	 * so be careful to not go outside of the pageblock.
520 	 */
521 	if (unlikely(blockpfn > end_pfn))
522 		blockpfn = end_pfn;
523 
524 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
525 					nr_scanned, total_isolated);
526 
527 	/* Record how far we have got within the block */
528 	*start_pfn = blockpfn;
529 
530 	/*
531 	 * If strict isolation is requested by CMA then check that all the
532 	 * pages requested were isolated. If there were any failures, 0 is
533 	 * returned and CMA will fail.
534 	 */
535 	if (strict && blockpfn < end_pfn)
536 		total_isolated = 0;
537 
538 	if (locked)
539 		spin_unlock_irqrestore(&cc->zone->lock, flags);
540 
541 	/* Update the pageblock-skip if the whole pageblock was scanned */
542 	if (blockpfn == end_pfn)
543 		update_pageblock_skip(cc, valid_page, total_isolated, false);
544 
545 	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
546 	if (total_isolated)
547 		count_compact_events(COMPACTISOLATED, total_isolated);
548 	return total_isolated;
549 }
550 
551 /**
552  * isolate_freepages_range() - isolate free pages.
553  * @start_pfn: The first PFN to start isolating.
554  * @end_pfn:   The one-past-last PFN.
555  *
556  * Non-free pages, invalid PFNs, or zone boundaries within the
557  * [start_pfn, end_pfn) range are considered errors, cause function to
558  * undo its actions and return zero.
559  *
560  * Otherwise, function returns one-past-the-last PFN of isolated page
561  * (which may be greater then end_pfn if end fell in a middle of
562  * a free page).
563  */
564 unsigned long
565 isolate_freepages_range(struct compact_control *cc,
566 			unsigned long start_pfn, unsigned long end_pfn)
567 {
568 	unsigned long isolated, pfn, block_end_pfn;
569 	LIST_HEAD(freelist);
570 
571 	pfn = start_pfn;
572 	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
573 
574 	for (; pfn < end_pfn; pfn += isolated,
575 				block_end_pfn += pageblock_nr_pages) {
576 		/* Protect pfn from changing by isolate_freepages_block */
577 		unsigned long isolate_start_pfn = pfn;
578 
579 		block_end_pfn = min(block_end_pfn, end_pfn);
580 
581 		/*
582 		 * pfn could pass the block_end_pfn if isolated freepage
583 		 * is more than pageblock order. In this case, we adjust
584 		 * scanning range to right one.
585 		 */
586 		if (pfn >= block_end_pfn) {
587 			block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
588 			block_end_pfn = min(block_end_pfn, end_pfn);
589 		}
590 
591 		if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
592 			break;
593 
594 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
595 						block_end_pfn, &freelist, true);
596 
597 		/*
598 		 * In strict mode, isolate_freepages_block() returns 0 if
599 		 * there are any holes in the block (ie. invalid PFNs or
600 		 * non-free pages).
601 		 */
602 		if (!isolated)
603 			break;
604 
605 		/*
606 		 * If we managed to isolate pages, it is always (1 << n) *
607 		 * pageblock_nr_pages for some non-negative n.  (Max order
608 		 * page may span two pageblocks).
609 		 */
610 	}
611 
612 	/* split_free_page does not map the pages */
613 	map_pages(&freelist);
614 
615 	if (pfn < end_pfn) {
616 		/* Loop terminated early, cleanup. */
617 		release_freepages(&freelist);
618 		return 0;
619 	}
620 
621 	/* We don't use freelists for anything. */
622 	return pfn;
623 }
624 
625 /* Update the number of anon and file isolated pages in the zone */
626 static void acct_isolated(struct zone *zone, struct compact_control *cc)
627 {
628 	struct page *page;
629 	unsigned int count[2] = { 0, };
630 
631 	if (list_empty(&cc->migratepages))
632 		return;
633 
634 	list_for_each_entry(page, &cc->migratepages, lru)
635 		count[!!page_is_file_cache(page)]++;
636 
637 	mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
638 	mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
639 }
640 
641 /* Similar to reclaim, but different enough that they don't share logic */
642 static bool too_many_isolated(struct zone *zone)
643 {
644 	unsigned long active, inactive, isolated;
645 
646 	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
647 					zone_page_state(zone, NR_INACTIVE_ANON);
648 	active = zone_page_state(zone, NR_ACTIVE_FILE) +
649 					zone_page_state(zone, NR_ACTIVE_ANON);
650 	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
651 					zone_page_state(zone, NR_ISOLATED_ANON);
652 
653 	return isolated > (inactive + active) / 2;
654 }
655 
656 /**
657  * isolate_migratepages_block() - isolate all migrate-able pages within
658  *				  a single pageblock
659  * @cc:		Compaction control structure.
660  * @low_pfn:	The first PFN to isolate
661  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
662  * @isolate_mode: Isolation mode to be used.
663  *
664  * Isolate all pages that can be migrated from the range specified by
665  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
666  * Returns zero if there is a fatal signal pending, otherwise PFN of the
667  * first page that was not scanned (which may be both less, equal to or more
668  * than end_pfn).
669  *
670  * The pages are isolated on cc->migratepages list (not required to be empty),
671  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
672  * is neither read nor updated.
673  */
674 static unsigned long
675 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
676 			unsigned long end_pfn, isolate_mode_t isolate_mode)
677 {
678 	struct zone *zone = cc->zone;
679 	unsigned long nr_scanned = 0, nr_isolated = 0;
680 	struct list_head *migratelist = &cc->migratepages;
681 	struct lruvec *lruvec;
682 	unsigned long flags = 0;
683 	bool locked = false;
684 	struct page *page = NULL, *valid_page = NULL;
685 	unsigned long start_pfn = low_pfn;
686 
687 	/*
688 	 * Ensure that there are not too many pages isolated from the LRU
689 	 * list by either parallel reclaimers or compaction. If there are,
690 	 * delay for some time until fewer pages are isolated
691 	 */
692 	while (unlikely(too_many_isolated(zone))) {
693 		/* async migration should just abort */
694 		if (cc->mode == MIGRATE_ASYNC)
695 			return 0;
696 
697 		congestion_wait(BLK_RW_ASYNC, HZ/10);
698 
699 		if (fatal_signal_pending(current))
700 			return 0;
701 	}
702 
703 	if (compact_should_abort(cc))
704 		return 0;
705 
706 	/* Time to isolate some pages for migration */
707 	for (; low_pfn < end_pfn; low_pfn++) {
708 		bool is_lru;
709 
710 		/*
711 		 * Periodically drop the lock (if held) regardless of its
712 		 * contention, to give chance to IRQs. Abort async compaction
713 		 * if contended.
714 		 */
715 		if (!(low_pfn % SWAP_CLUSTER_MAX)
716 		    && compact_unlock_should_abort(&zone->lru_lock, flags,
717 								&locked, cc))
718 			break;
719 
720 		if (!pfn_valid_within(low_pfn))
721 			continue;
722 		nr_scanned++;
723 
724 		page = pfn_to_page(low_pfn);
725 
726 		if (!valid_page)
727 			valid_page = page;
728 
729 		/*
730 		 * Skip if free. We read page order here without zone lock
731 		 * which is generally unsafe, but the race window is small and
732 		 * the worst thing that can happen is that we skip some
733 		 * potential isolation targets.
734 		 */
735 		if (PageBuddy(page)) {
736 			unsigned long freepage_order = page_order_unsafe(page);
737 
738 			/*
739 			 * Without lock, we cannot be sure that what we got is
740 			 * a valid page order. Consider only values in the
741 			 * valid order range to prevent low_pfn overflow.
742 			 */
743 			if (freepage_order > 0 && freepage_order < MAX_ORDER)
744 				low_pfn += (1UL << freepage_order) - 1;
745 			continue;
746 		}
747 
748 		/*
749 		 * Check may be lockless but that's ok as we recheck later.
750 		 * It's possible to migrate LRU pages and balloon pages
751 		 * Skip any other type of page
752 		 */
753 		is_lru = PageLRU(page);
754 		if (!is_lru) {
755 			if (unlikely(balloon_page_movable(page))) {
756 				if (balloon_page_isolate(page)) {
757 					/* Successfully isolated */
758 					goto isolate_success;
759 				}
760 			}
761 		}
762 
763 		/*
764 		 * Regardless of being on LRU, compound pages such as THP and
765 		 * hugetlbfs are not to be compacted. We can potentially save
766 		 * a lot of iterations if we skip them at once. The check is
767 		 * racy, but we can consider only valid values and the only
768 		 * danger is skipping too much.
769 		 */
770 		if (PageCompound(page)) {
771 			unsigned int comp_order = compound_order(page);
772 
773 			if (likely(comp_order < MAX_ORDER))
774 				low_pfn += (1UL << comp_order) - 1;
775 
776 			continue;
777 		}
778 
779 		if (!is_lru)
780 			continue;
781 
782 		/*
783 		 * Migration will fail if an anonymous page is pinned in memory,
784 		 * so avoid taking lru_lock and isolating it unnecessarily in an
785 		 * admittedly racy check.
786 		 */
787 		if (!page_mapping(page) &&
788 		    page_count(page) > page_mapcount(page))
789 			continue;
790 
791 		/* If we already hold the lock, we can skip some rechecking */
792 		if (!locked) {
793 			locked = compact_trylock_irqsave(&zone->lru_lock,
794 								&flags, cc);
795 			if (!locked)
796 				break;
797 
798 			/* Recheck PageLRU and PageCompound under lock */
799 			if (!PageLRU(page))
800 				continue;
801 
802 			/*
803 			 * Page become compound since the non-locked check,
804 			 * and it's on LRU. It can only be a THP so the order
805 			 * is safe to read and it's 0 for tail pages.
806 			 */
807 			if (unlikely(PageCompound(page))) {
808 				low_pfn += (1UL << compound_order(page)) - 1;
809 				continue;
810 			}
811 		}
812 
813 		lruvec = mem_cgroup_page_lruvec(page, zone);
814 
815 		/* Try isolate the page */
816 		if (__isolate_lru_page(page, isolate_mode) != 0)
817 			continue;
818 
819 		VM_BUG_ON_PAGE(PageCompound(page), page);
820 
821 		/* Successfully isolated */
822 		del_page_from_lru_list(page, lruvec, page_lru(page));
823 
824 isolate_success:
825 		list_add(&page->lru, migratelist);
826 		cc->nr_migratepages++;
827 		nr_isolated++;
828 
829 		/* Avoid isolating too much */
830 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
831 			++low_pfn;
832 			break;
833 		}
834 	}
835 
836 	/*
837 	 * The PageBuddy() check could have potentially brought us outside
838 	 * the range to be scanned.
839 	 */
840 	if (unlikely(low_pfn > end_pfn))
841 		low_pfn = end_pfn;
842 
843 	if (locked)
844 		spin_unlock_irqrestore(&zone->lru_lock, flags);
845 
846 	/*
847 	 * Update the pageblock-skip information and cached scanner pfn,
848 	 * if the whole pageblock was scanned without isolating any page.
849 	 */
850 	if (low_pfn == end_pfn)
851 		update_pageblock_skip(cc, valid_page, nr_isolated, true);
852 
853 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
854 						nr_scanned, nr_isolated);
855 
856 	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
857 	if (nr_isolated)
858 		count_compact_events(COMPACTISOLATED, nr_isolated);
859 
860 	return low_pfn;
861 }
862 
863 /**
864  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
865  * @cc:        Compaction control structure.
866  * @start_pfn: The first PFN to start isolating.
867  * @end_pfn:   The one-past-last PFN.
868  *
869  * Returns zero if isolation fails fatally due to e.g. pending signal.
870  * Otherwise, function returns one-past-the-last PFN of isolated page
871  * (which may be greater than end_pfn if end fell in a middle of a THP page).
872  */
873 unsigned long
874 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
875 							unsigned long end_pfn)
876 {
877 	unsigned long pfn, block_end_pfn;
878 
879 	/* Scan block by block. First and last block may be incomplete */
880 	pfn = start_pfn;
881 	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
882 
883 	for (; pfn < end_pfn; pfn = block_end_pfn,
884 				block_end_pfn += pageblock_nr_pages) {
885 
886 		block_end_pfn = min(block_end_pfn, end_pfn);
887 
888 		if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
889 			continue;
890 
891 		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
892 							ISOLATE_UNEVICTABLE);
893 
894 		/*
895 		 * In case of fatal failure, release everything that might
896 		 * have been isolated in the previous iteration, and signal
897 		 * the failure back to caller.
898 		 */
899 		if (!pfn) {
900 			putback_movable_pages(&cc->migratepages);
901 			cc->nr_migratepages = 0;
902 			break;
903 		}
904 
905 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
906 			break;
907 	}
908 	acct_isolated(cc->zone, cc);
909 
910 	return pfn;
911 }
912 
913 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
914 #ifdef CONFIG_COMPACTION
915 
916 /* Returns true if the page is within a block suitable for migration to */
917 static bool suitable_migration_target(struct page *page)
918 {
919 	/* If the page is a large free page, then disallow migration */
920 	if (PageBuddy(page)) {
921 		/*
922 		 * We are checking page_order without zone->lock taken. But
923 		 * the only small danger is that we skip a potentially suitable
924 		 * pageblock, so it's not worth to check order for valid range.
925 		 */
926 		if (page_order_unsafe(page) >= pageblock_order)
927 			return false;
928 	}
929 
930 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
931 	if (migrate_async_suitable(get_pageblock_migratetype(page)))
932 		return true;
933 
934 	/* Otherwise skip the block */
935 	return false;
936 }
937 
938 /*
939  * Test whether the free scanner has reached the same or lower pageblock than
940  * the migration scanner, and compaction should thus terminate.
941  */
942 static inline bool compact_scanners_met(struct compact_control *cc)
943 {
944 	return (cc->free_pfn >> pageblock_order)
945 		<= (cc->migrate_pfn >> pageblock_order);
946 }
947 
948 /*
949  * Based on information in the current compact_control, find blocks
950  * suitable for isolating free pages from and then isolate them.
951  */
952 static void isolate_freepages(struct compact_control *cc)
953 {
954 	struct zone *zone = cc->zone;
955 	struct page *page;
956 	unsigned long block_start_pfn;	/* start of current pageblock */
957 	unsigned long isolate_start_pfn; /* exact pfn we start at */
958 	unsigned long block_end_pfn;	/* end of current pageblock */
959 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
960 	struct list_head *freelist = &cc->freepages;
961 
962 	/*
963 	 * Initialise the free scanner. The starting point is where we last
964 	 * successfully isolated from, zone-cached value, or the end of the
965 	 * zone when isolating for the first time. For looping we also need
966 	 * this pfn aligned down to the pageblock boundary, because we do
967 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
968 	 * For ending point, take care when isolating in last pageblock of a
969 	 * a zone which ends in the middle of a pageblock.
970 	 * The low boundary is the end of the pageblock the migration scanner
971 	 * is using.
972 	 */
973 	isolate_start_pfn = cc->free_pfn;
974 	block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
975 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
976 						zone_end_pfn(zone));
977 	low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
978 
979 	/*
980 	 * Isolate free pages until enough are available to migrate the
981 	 * pages on cc->migratepages. We stop searching if the migrate
982 	 * and free page scanners meet or enough free pages are isolated.
983 	 */
984 	for (; block_start_pfn >= low_pfn;
985 				block_end_pfn = block_start_pfn,
986 				block_start_pfn -= pageblock_nr_pages,
987 				isolate_start_pfn = block_start_pfn) {
988 
989 		/*
990 		 * This can iterate a massively long zone without finding any
991 		 * suitable migration targets, so periodically check if we need
992 		 * to schedule, or even abort async compaction.
993 		 */
994 		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
995 						&& compact_should_abort(cc))
996 			break;
997 
998 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
999 									zone);
1000 		if (!page)
1001 			continue;
1002 
1003 		/* Check the block is suitable for migration */
1004 		if (!suitable_migration_target(page))
1005 			continue;
1006 
1007 		/* If isolation recently failed, do not retry */
1008 		if (!isolation_suitable(cc, page))
1009 			continue;
1010 
1011 		/* Found a block suitable for isolating free pages from. */
1012 		isolate_freepages_block(cc, &isolate_start_pfn,
1013 					block_end_pfn, freelist, false);
1014 
1015 		/*
1016 		 * If we isolated enough freepages, or aborted due to async
1017 		 * compaction being contended, terminate the loop.
1018 		 * Remember where the free scanner should restart next time,
1019 		 * which is where isolate_freepages_block() left off.
1020 		 * But if it scanned the whole pageblock, isolate_start_pfn
1021 		 * now points at block_end_pfn, which is the start of the next
1022 		 * pageblock.
1023 		 * In that case we will however want to restart at the start
1024 		 * of the previous pageblock.
1025 		 */
1026 		if ((cc->nr_freepages >= cc->nr_migratepages)
1027 							|| cc->contended) {
1028 			if (isolate_start_pfn >= block_end_pfn)
1029 				isolate_start_pfn =
1030 					block_start_pfn - pageblock_nr_pages;
1031 			break;
1032 		} else {
1033 			/*
1034 			 * isolate_freepages_block() should not terminate
1035 			 * prematurely unless contended, or isolated enough
1036 			 */
1037 			VM_BUG_ON(isolate_start_pfn < block_end_pfn);
1038 		}
1039 	}
1040 
1041 	/* split_free_page does not map the pages */
1042 	map_pages(freelist);
1043 
1044 	/*
1045 	 * Record where the free scanner will restart next time. Either we
1046 	 * broke from the loop and set isolate_start_pfn based on the last
1047 	 * call to isolate_freepages_block(), or we met the migration scanner
1048 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1049 	 */
1050 	cc->free_pfn = isolate_start_pfn;
1051 }
1052 
1053 /*
1054  * This is a migrate-callback that "allocates" freepages by taking pages
1055  * from the isolated freelists in the block we are migrating to.
1056  */
1057 static struct page *compaction_alloc(struct page *migratepage,
1058 					unsigned long data,
1059 					int **result)
1060 {
1061 	struct compact_control *cc = (struct compact_control *)data;
1062 	struct page *freepage;
1063 
1064 	/*
1065 	 * Isolate free pages if necessary, and if we are not aborting due to
1066 	 * contention.
1067 	 */
1068 	if (list_empty(&cc->freepages)) {
1069 		if (!cc->contended)
1070 			isolate_freepages(cc);
1071 
1072 		if (list_empty(&cc->freepages))
1073 			return NULL;
1074 	}
1075 
1076 	freepage = list_entry(cc->freepages.next, struct page, lru);
1077 	list_del(&freepage->lru);
1078 	cc->nr_freepages--;
1079 
1080 	return freepage;
1081 }
1082 
1083 /*
1084  * This is a migrate-callback that "frees" freepages back to the isolated
1085  * freelist.  All pages on the freelist are from the same zone, so there is no
1086  * special handling needed for NUMA.
1087  */
1088 static void compaction_free(struct page *page, unsigned long data)
1089 {
1090 	struct compact_control *cc = (struct compact_control *)data;
1091 
1092 	list_add(&page->lru, &cc->freepages);
1093 	cc->nr_freepages++;
1094 }
1095 
1096 /* possible outcome of isolate_migratepages */
1097 typedef enum {
1098 	ISOLATE_ABORT,		/* Abort compaction now */
1099 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1100 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1101 } isolate_migrate_t;
1102 
1103 /*
1104  * Allow userspace to control policy on scanning the unevictable LRU for
1105  * compactable pages.
1106  */
1107 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1108 
1109 /*
1110  * Isolate all pages that can be migrated from the first suitable block,
1111  * starting at the block pointed to by the migrate scanner pfn within
1112  * compact_control.
1113  */
1114 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1115 					struct compact_control *cc)
1116 {
1117 	unsigned long low_pfn, end_pfn;
1118 	unsigned long isolate_start_pfn;
1119 	struct page *page;
1120 	const isolate_mode_t isolate_mode =
1121 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1122 		(cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1123 
1124 	/*
1125 	 * Start at where we last stopped, or beginning of the zone as
1126 	 * initialized by compact_zone()
1127 	 */
1128 	low_pfn = cc->migrate_pfn;
1129 
1130 	/* Only scan within a pageblock boundary */
1131 	end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
1132 
1133 	/*
1134 	 * Iterate over whole pageblocks until we find the first suitable.
1135 	 * Do not cross the free scanner.
1136 	 */
1137 	for (; end_pfn <= cc->free_pfn;
1138 			low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
1139 
1140 		/*
1141 		 * This can potentially iterate a massively long zone with
1142 		 * many pageblocks unsuitable, so periodically check if we
1143 		 * need to schedule, or even abort async compaction.
1144 		 */
1145 		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1146 						&& compact_should_abort(cc))
1147 			break;
1148 
1149 		page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
1150 		if (!page)
1151 			continue;
1152 
1153 		/* If isolation recently failed, do not retry */
1154 		if (!isolation_suitable(cc, page))
1155 			continue;
1156 
1157 		/*
1158 		 * For async compaction, also only scan in MOVABLE blocks.
1159 		 * Async compaction is optimistic to see if the minimum amount
1160 		 * of work satisfies the allocation.
1161 		 */
1162 		if (cc->mode == MIGRATE_ASYNC &&
1163 		    !migrate_async_suitable(get_pageblock_migratetype(page)))
1164 			continue;
1165 
1166 		/* Perform the isolation */
1167 		isolate_start_pfn = low_pfn;
1168 		low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
1169 								isolate_mode);
1170 
1171 		if (!low_pfn || cc->contended) {
1172 			acct_isolated(zone, cc);
1173 			return ISOLATE_ABORT;
1174 		}
1175 
1176 		/*
1177 		 * Record where we could have freed pages by migration and not
1178 		 * yet flushed them to buddy allocator.
1179 		 * - this is the lowest page that could have been isolated and
1180 		 * then freed by migration.
1181 		 */
1182 		if (cc->nr_migratepages && !cc->last_migrated_pfn)
1183 			cc->last_migrated_pfn = isolate_start_pfn;
1184 
1185 		/*
1186 		 * Either we isolated something and proceed with migration. Or
1187 		 * we failed and compact_zone should decide if we should
1188 		 * continue or not.
1189 		 */
1190 		break;
1191 	}
1192 
1193 	acct_isolated(zone, cc);
1194 	/* Record where migration scanner will be restarted. */
1195 	cc->migrate_pfn = low_pfn;
1196 
1197 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1198 }
1199 
1200 static int __compact_finished(struct zone *zone, struct compact_control *cc,
1201 			    const int migratetype)
1202 {
1203 	unsigned int order;
1204 	unsigned long watermark;
1205 
1206 	if (cc->contended || fatal_signal_pending(current))
1207 		return COMPACT_PARTIAL;
1208 
1209 	/* Compaction run completes if the migrate and free scanner meet */
1210 	if (compact_scanners_met(cc)) {
1211 		/* Let the next compaction start anew. */
1212 		reset_cached_positions(zone);
1213 
1214 		/*
1215 		 * Mark that the PG_migrate_skip information should be cleared
1216 		 * by kswapd when it goes to sleep. kswapd does not set the
1217 		 * flag itself as the decision to be clear should be directly
1218 		 * based on an allocation request.
1219 		 */
1220 		if (!current_is_kswapd())
1221 			zone->compact_blockskip_flush = true;
1222 
1223 		return COMPACT_COMPLETE;
1224 	}
1225 
1226 	/*
1227 	 * order == -1 is expected when compacting via
1228 	 * /proc/sys/vm/compact_memory
1229 	 */
1230 	if (cc->order == -1)
1231 		return COMPACT_CONTINUE;
1232 
1233 	/* Compaction run is not finished if the watermark is not met */
1234 	watermark = low_wmark_pages(zone);
1235 
1236 	if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1237 							cc->alloc_flags))
1238 		return COMPACT_CONTINUE;
1239 
1240 	/* Direct compactor: Is a suitable page free? */
1241 	for (order = cc->order; order < MAX_ORDER; order++) {
1242 		struct free_area *area = &zone->free_area[order];
1243 		bool can_steal;
1244 
1245 		/* Job done if page is free of the right migratetype */
1246 		if (!list_empty(&area->free_list[migratetype]))
1247 			return COMPACT_PARTIAL;
1248 
1249 #ifdef CONFIG_CMA
1250 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1251 		if (migratetype == MIGRATE_MOVABLE &&
1252 			!list_empty(&area->free_list[MIGRATE_CMA]))
1253 			return COMPACT_PARTIAL;
1254 #endif
1255 		/*
1256 		 * Job done if allocation would steal freepages from
1257 		 * other migratetype buddy lists.
1258 		 */
1259 		if (find_suitable_fallback(area, order, migratetype,
1260 						true, &can_steal) != -1)
1261 			return COMPACT_PARTIAL;
1262 	}
1263 
1264 	return COMPACT_NO_SUITABLE_PAGE;
1265 }
1266 
1267 static int compact_finished(struct zone *zone, struct compact_control *cc,
1268 			    const int migratetype)
1269 {
1270 	int ret;
1271 
1272 	ret = __compact_finished(zone, cc, migratetype);
1273 	trace_mm_compaction_finished(zone, cc->order, ret);
1274 	if (ret == COMPACT_NO_SUITABLE_PAGE)
1275 		ret = COMPACT_CONTINUE;
1276 
1277 	return ret;
1278 }
1279 
1280 /*
1281  * compaction_suitable: Is this suitable to run compaction on this zone now?
1282  * Returns
1283  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1284  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
1285  *   COMPACT_CONTINUE - If compaction should run now
1286  */
1287 static unsigned long __compaction_suitable(struct zone *zone, int order,
1288 					int alloc_flags, int classzone_idx)
1289 {
1290 	int fragindex;
1291 	unsigned long watermark;
1292 
1293 	/*
1294 	 * order == -1 is expected when compacting via
1295 	 * /proc/sys/vm/compact_memory
1296 	 */
1297 	if (order == -1)
1298 		return COMPACT_CONTINUE;
1299 
1300 	watermark = low_wmark_pages(zone);
1301 	/*
1302 	 * If watermarks for high-order allocation are already met, there
1303 	 * should be no need for compaction at all.
1304 	 */
1305 	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1306 								alloc_flags))
1307 		return COMPACT_PARTIAL;
1308 
1309 	/*
1310 	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
1311 	 * This is because during migration, copies of pages need to be
1312 	 * allocated and for a short time, the footprint is higher
1313 	 */
1314 	watermark += (2UL << order);
1315 	if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1316 		return COMPACT_SKIPPED;
1317 
1318 	/*
1319 	 * fragmentation index determines if allocation failures are due to
1320 	 * low memory or external fragmentation
1321 	 *
1322 	 * index of -1000 would imply allocations might succeed depending on
1323 	 * watermarks, but we already failed the high-order watermark check
1324 	 * index towards 0 implies failure is due to lack of memory
1325 	 * index towards 1000 implies failure is due to fragmentation
1326 	 *
1327 	 * Only compact if a failure would be due to fragmentation.
1328 	 */
1329 	fragindex = fragmentation_index(zone, order);
1330 	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1331 		return COMPACT_NOT_SUITABLE_ZONE;
1332 
1333 	return COMPACT_CONTINUE;
1334 }
1335 
1336 unsigned long compaction_suitable(struct zone *zone, int order,
1337 					int alloc_flags, int classzone_idx)
1338 {
1339 	unsigned long ret;
1340 
1341 	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
1342 	trace_mm_compaction_suitable(zone, order, ret);
1343 	if (ret == COMPACT_NOT_SUITABLE_ZONE)
1344 		ret = COMPACT_SKIPPED;
1345 
1346 	return ret;
1347 }
1348 
1349 static int compact_zone(struct zone *zone, struct compact_control *cc)
1350 {
1351 	int ret;
1352 	unsigned long start_pfn = zone->zone_start_pfn;
1353 	unsigned long end_pfn = zone_end_pfn(zone);
1354 	const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1355 	const bool sync = cc->mode != MIGRATE_ASYNC;
1356 
1357 	ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1358 							cc->classzone_idx);
1359 	switch (ret) {
1360 	case COMPACT_PARTIAL:
1361 	case COMPACT_SKIPPED:
1362 		/* Compaction is likely to fail */
1363 		return ret;
1364 	case COMPACT_CONTINUE:
1365 		/* Fall through to compaction */
1366 		;
1367 	}
1368 
1369 	/*
1370 	 * Clear pageblock skip if there were failures recently and compaction
1371 	 * is about to be retried after being deferred. kswapd does not do
1372 	 * this reset as it'll reset the cached information when going to sleep.
1373 	 */
1374 	if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
1375 		__reset_isolation_suitable(zone);
1376 
1377 	/*
1378 	 * Setup to move all movable pages to the end of the zone. Used cached
1379 	 * information on where the scanners should start but check that it
1380 	 * is initialised by ensuring the values are within zone boundaries.
1381 	 */
1382 	cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1383 	cc->free_pfn = zone->compact_cached_free_pfn;
1384 	if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
1385 		cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
1386 		zone->compact_cached_free_pfn = cc->free_pfn;
1387 	}
1388 	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1389 		cc->migrate_pfn = start_pfn;
1390 		zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1391 		zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1392 	}
1393 	cc->last_migrated_pfn = 0;
1394 
1395 	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1396 				cc->free_pfn, end_pfn, sync);
1397 
1398 	migrate_prep_local();
1399 
1400 	while ((ret = compact_finished(zone, cc, migratetype)) ==
1401 						COMPACT_CONTINUE) {
1402 		int err;
1403 
1404 		switch (isolate_migratepages(zone, cc)) {
1405 		case ISOLATE_ABORT:
1406 			ret = COMPACT_PARTIAL;
1407 			putback_movable_pages(&cc->migratepages);
1408 			cc->nr_migratepages = 0;
1409 			goto out;
1410 		case ISOLATE_NONE:
1411 			/*
1412 			 * We haven't isolated and migrated anything, but
1413 			 * there might still be unflushed migrations from
1414 			 * previous cc->order aligned block.
1415 			 */
1416 			goto check_drain;
1417 		case ISOLATE_SUCCESS:
1418 			;
1419 		}
1420 
1421 		err = migrate_pages(&cc->migratepages, compaction_alloc,
1422 				compaction_free, (unsigned long)cc, cc->mode,
1423 				MR_COMPACTION);
1424 
1425 		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1426 							&cc->migratepages);
1427 
1428 		/* All pages were either migrated or will be released */
1429 		cc->nr_migratepages = 0;
1430 		if (err) {
1431 			putback_movable_pages(&cc->migratepages);
1432 			/*
1433 			 * migrate_pages() may return -ENOMEM when scanners meet
1434 			 * and we want compact_finished() to detect it
1435 			 */
1436 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
1437 				ret = COMPACT_PARTIAL;
1438 				goto out;
1439 			}
1440 		}
1441 
1442 check_drain:
1443 		/*
1444 		 * Has the migration scanner moved away from the previous
1445 		 * cc->order aligned block where we migrated from? If yes,
1446 		 * flush the pages that were freed, so that they can merge and
1447 		 * compact_finished() can detect immediately if allocation
1448 		 * would succeed.
1449 		 */
1450 		if (cc->order > 0 && cc->last_migrated_pfn) {
1451 			int cpu;
1452 			unsigned long current_block_start =
1453 				cc->migrate_pfn & ~((1UL << cc->order) - 1);
1454 
1455 			if (cc->last_migrated_pfn < current_block_start) {
1456 				cpu = get_cpu();
1457 				lru_add_drain_cpu(cpu);
1458 				drain_local_pages(zone);
1459 				put_cpu();
1460 				/* No more flushing until we migrate again */
1461 				cc->last_migrated_pfn = 0;
1462 			}
1463 		}
1464 
1465 	}
1466 
1467 out:
1468 	/*
1469 	 * Release free pages and update where the free scanner should restart,
1470 	 * so we don't leave any returned pages behind in the next attempt.
1471 	 */
1472 	if (cc->nr_freepages > 0) {
1473 		unsigned long free_pfn = release_freepages(&cc->freepages);
1474 
1475 		cc->nr_freepages = 0;
1476 		VM_BUG_ON(free_pfn == 0);
1477 		/* The cached pfn is always the first in a pageblock */
1478 		free_pfn &= ~(pageblock_nr_pages-1);
1479 		/*
1480 		 * Only go back, not forward. The cached pfn might have been
1481 		 * already reset to zone end in compact_finished()
1482 		 */
1483 		if (free_pfn > zone->compact_cached_free_pfn)
1484 			zone->compact_cached_free_pfn = free_pfn;
1485 	}
1486 
1487 	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1488 				cc->free_pfn, end_pfn, sync, ret);
1489 
1490 	return ret;
1491 }
1492 
1493 static unsigned long compact_zone_order(struct zone *zone, int order,
1494 		gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1495 		int alloc_flags, int classzone_idx)
1496 {
1497 	unsigned long ret;
1498 	struct compact_control cc = {
1499 		.nr_freepages = 0,
1500 		.nr_migratepages = 0,
1501 		.order = order,
1502 		.gfp_mask = gfp_mask,
1503 		.zone = zone,
1504 		.mode = mode,
1505 		.alloc_flags = alloc_flags,
1506 		.classzone_idx = classzone_idx,
1507 	};
1508 	INIT_LIST_HEAD(&cc.freepages);
1509 	INIT_LIST_HEAD(&cc.migratepages);
1510 
1511 	ret = compact_zone(zone, &cc);
1512 
1513 	VM_BUG_ON(!list_empty(&cc.freepages));
1514 	VM_BUG_ON(!list_empty(&cc.migratepages));
1515 
1516 	*contended = cc.contended;
1517 	return ret;
1518 }
1519 
1520 int sysctl_extfrag_threshold = 500;
1521 
1522 /**
1523  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1524  * @gfp_mask: The GFP mask of the current allocation
1525  * @order: The order of the current allocation
1526  * @alloc_flags: The allocation flags of the current allocation
1527  * @ac: The context of current allocation
1528  * @mode: The migration mode for async, sync light, or sync migration
1529  * @contended: Return value that determines if compaction was aborted due to
1530  *	       need_resched() or lock contention
1531  *
1532  * This is the main entry point for direct page compaction.
1533  */
1534 unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1535 			int alloc_flags, const struct alloc_context *ac,
1536 			enum migrate_mode mode, int *contended)
1537 {
1538 	int may_enter_fs = gfp_mask & __GFP_FS;
1539 	int may_perform_io = gfp_mask & __GFP_IO;
1540 	struct zoneref *z;
1541 	struct zone *zone;
1542 	int rc = COMPACT_DEFERRED;
1543 	int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1544 
1545 	*contended = COMPACT_CONTENDED_NONE;
1546 
1547 	/* Check if the GFP flags allow compaction */
1548 	if (!order || !may_enter_fs || !may_perform_io)
1549 		return COMPACT_SKIPPED;
1550 
1551 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1552 
1553 	/* Compact each zone in the list */
1554 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1555 								ac->nodemask) {
1556 		int status;
1557 		int zone_contended;
1558 
1559 		if (compaction_deferred(zone, order))
1560 			continue;
1561 
1562 		status = compact_zone_order(zone, order, gfp_mask, mode,
1563 				&zone_contended, alloc_flags,
1564 				ac->classzone_idx);
1565 		rc = max(status, rc);
1566 		/*
1567 		 * It takes at least one zone that wasn't lock contended
1568 		 * to clear all_zones_contended.
1569 		 */
1570 		all_zones_contended &= zone_contended;
1571 
1572 		/* If a normal allocation would succeed, stop compacting */
1573 		if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1574 					ac->classzone_idx, alloc_flags)) {
1575 			/*
1576 			 * We think the allocation will succeed in this zone,
1577 			 * but it is not certain, hence the false. The caller
1578 			 * will repeat this with true if allocation indeed
1579 			 * succeeds in this zone.
1580 			 */
1581 			compaction_defer_reset(zone, order, false);
1582 			/*
1583 			 * It is possible that async compaction aborted due to
1584 			 * need_resched() and the watermarks were ok thanks to
1585 			 * somebody else freeing memory. The allocation can
1586 			 * however still fail so we better signal the
1587 			 * need_resched() contention anyway (this will not
1588 			 * prevent the allocation attempt).
1589 			 */
1590 			if (zone_contended == COMPACT_CONTENDED_SCHED)
1591 				*contended = COMPACT_CONTENDED_SCHED;
1592 
1593 			goto break_loop;
1594 		}
1595 
1596 		if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
1597 			/*
1598 			 * We think that allocation won't succeed in this zone
1599 			 * so we defer compaction there. If it ends up
1600 			 * succeeding after all, it will be reset.
1601 			 */
1602 			defer_compaction(zone, order);
1603 		}
1604 
1605 		/*
1606 		 * We might have stopped compacting due to need_resched() in
1607 		 * async compaction, or due to a fatal signal detected. In that
1608 		 * case do not try further zones and signal need_resched()
1609 		 * contention.
1610 		 */
1611 		if ((zone_contended == COMPACT_CONTENDED_SCHED)
1612 					|| fatal_signal_pending(current)) {
1613 			*contended = COMPACT_CONTENDED_SCHED;
1614 			goto break_loop;
1615 		}
1616 
1617 		continue;
1618 break_loop:
1619 		/*
1620 		 * We might not have tried all the zones, so  be conservative
1621 		 * and assume they are not all lock contended.
1622 		 */
1623 		all_zones_contended = 0;
1624 		break;
1625 	}
1626 
1627 	/*
1628 	 * If at least one zone wasn't deferred or skipped, we report if all
1629 	 * zones that were tried were lock contended.
1630 	 */
1631 	if (rc > COMPACT_SKIPPED && all_zones_contended)
1632 		*contended = COMPACT_CONTENDED_LOCK;
1633 
1634 	return rc;
1635 }
1636 
1637 
1638 /* Compact all zones within a node */
1639 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1640 {
1641 	int zoneid;
1642 	struct zone *zone;
1643 
1644 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1645 
1646 		zone = &pgdat->node_zones[zoneid];
1647 		if (!populated_zone(zone))
1648 			continue;
1649 
1650 		cc->nr_freepages = 0;
1651 		cc->nr_migratepages = 0;
1652 		cc->zone = zone;
1653 		INIT_LIST_HEAD(&cc->freepages);
1654 		INIT_LIST_HEAD(&cc->migratepages);
1655 
1656 		/*
1657 		 * When called via /proc/sys/vm/compact_memory
1658 		 * this makes sure we compact the whole zone regardless of
1659 		 * cached scanner positions.
1660 		 */
1661 		if (cc->order == -1)
1662 			__reset_isolation_suitable(zone);
1663 
1664 		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1665 			compact_zone(zone, cc);
1666 
1667 		if (cc->order > 0) {
1668 			if (zone_watermark_ok(zone, cc->order,
1669 						low_wmark_pages(zone), 0, 0))
1670 				compaction_defer_reset(zone, cc->order, false);
1671 		}
1672 
1673 		VM_BUG_ON(!list_empty(&cc->freepages));
1674 		VM_BUG_ON(!list_empty(&cc->migratepages));
1675 	}
1676 }
1677 
1678 void compact_pgdat(pg_data_t *pgdat, int order)
1679 {
1680 	struct compact_control cc = {
1681 		.order = order,
1682 		.mode = MIGRATE_ASYNC,
1683 	};
1684 
1685 	if (!order)
1686 		return;
1687 
1688 	__compact_pgdat(pgdat, &cc);
1689 }
1690 
1691 static void compact_node(int nid)
1692 {
1693 	struct compact_control cc = {
1694 		.order = -1,
1695 		.mode = MIGRATE_SYNC,
1696 		.ignore_skip_hint = true,
1697 	};
1698 
1699 	__compact_pgdat(NODE_DATA(nid), &cc);
1700 }
1701 
1702 /* Compact all nodes in the system */
1703 static void compact_nodes(void)
1704 {
1705 	int nid;
1706 
1707 	/* Flush pending updates to the LRU lists */
1708 	lru_add_drain_all();
1709 
1710 	for_each_online_node(nid)
1711 		compact_node(nid);
1712 }
1713 
1714 /* The written value is actually unused, all memory is compacted */
1715 int sysctl_compact_memory;
1716 
1717 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1718 int sysctl_compaction_handler(struct ctl_table *table, int write,
1719 			void __user *buffer, size_t *length, loff_t *ppos)
1720 {
1721 	if (write)
1722 		compact_nodes();
1723 
1724 	return 0;
1725 }
1726 
1727 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1728 			void __user *buffer, size_t *length, loff_t *ppos)
1729 {
1730 	proc_dointvec_minmax(table, write, buffer, length, ppos);
1731 
1732 	return 0;
1733 }
1734 
1735 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1736 static ssize_t sysfs_compact_node(struct device *dev,
1737 			struct device_attribute *attr,
1738 			const char *buf, size_t count)
1739 {
1740 	int nid = dev->id;
1741 
1742 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1743 		/* Flush pending updates to the LRU lists */
1744 		lru_add_drain_all();
1745 
1746 		compact_node(nid);
1747 	}
1748 
1749 	return count;
1750 }
1751 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1752 
1753 int compaction_register_node(struct node *node)
1754 {
1755 	return device_create_file(&node->dev, &dev_attr_compact);
1756 }
1757 
1758 void compaction_unregister_node(struct node *node)
1759 {
1760 	return device_remove_file(&node->dev, &dev_attr_compact);
1761 }
1762 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1763 
1764 #endif /* CONFIG_COMPACTION */
1765