xref: /linux/mm/compaction.c (revision b889fcf63cb62e7fdb7816565e28f44dbe4a76a5)
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include "internal.h"
19 
20 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
21 
22 #define CREATE_TRACE_POINTS
23 #include <trace/events/compaction.h>
24 
25 static unsigned long release_freepages(struct list_head *freelist)
26 {
27 	struct page *page, *next;
28 	unsigned long count = 0;
29 
30 	list_for_each_entry_safe(page, next, freelist, lru) {
31 		list_del(&page->lru);
32 		__free_page(page);
33 		count++;
34 	}
35 
36 	return count;
37 }
38 
39 static void map_pages(struct list_head *list)
40 {
41 	struct page *page;
42 
43 	list_for_each_entry(page, list, lru) {
44 		arch_alloc_page(page, 0);
45 		kernel_map_pages(page, 1, 1);
46 	}
47 }
48 
49 static inline bool migrate_async_suitable(int migratetype)
50 {
51 	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
52 }
53 
54 #ifdef CONFIG_COMPACTION
55 /* Returns true if the pageblock should be scanned for pages to isolate. */
56 static inline bool isolation_suitable(struct compact_control *cc,
57 					struct page *page)
58 {
59 	if (cc->ignore_skip_hint)
60 		return true;
61 
62 	return !get_pageblock_skip(page);
63 }
64 
65 /*
66  * This function is called to clear all cached information on pageblocks that
67  * should be skipped for page isolation when the migrate and free page scanner
68  * meet.
69  */
70 static void __reset_isolation_suitable(struct zone *zone)
71 {
72 	unsigned long start_pfn = zone->zone_start_pfn;
73 	unsigned long end_pfn = zone->zone_start_pfn + zone->spanned_pages;
74 	unsigned long pfn;
75 
76 	zone->compact_cached_migrate_pfn = start_pfn;
77 	zone->compact_cached_free_pfn = end_pfn;
78 	zone->compact_blockskip_flush = false;
79 
80 	/* Walk the zone and mark every pageblock as suitable for isolation */
81 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
82 		struct page *page;
83 
84 		cond_resched();
85 
86 		if (!pfn_valid(pfn))
87 			continue;
88 
89 		page = pfn_to_page(pfn);
90 		if (zone != page_zone(page))
91 			continue;
92 
93 		clear_pageblock_skip(page);
94 	}
95 }
96 
97 void reset_isolation_suitable(pg_data_t *pgdat)
98 {
99 	int zoneid;
100 
101 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
102 		struct zone *zone = &pgdat->node_zones[zoneid];
103 		if (!populated_zone(zone))
104 			continue;
105 
106 		/* Only flush if a full compaction finished recently */
107 		if (zone->compact_blockskip_flush)
108 			__reset_isolation_suitable(zone);
109 	}
110 }
111 
112 /*
113  * If no pages were isolated then mark this pageblock to be skipped in the
114  * future. The information is later cleared by __reset_isolation_suitable().
115  */
116 static void update_pageblock_skip(struct compact_control *cc,
117 			struct page *page, unsigned long nr_isolated,
118 			bool migrate_scanner)
119 {
120 	struct zone *zone = cc->zone;
121 	if (!page)
122 		return;
123 
124 	if (!nr_isolated) {
125 		unsigned long pfn = page_to_pfn(page);
126 		set_pageblock_skip(page);
127 
128 		/* Update where compaction should restart */
129 		if (migrate_scanner) {
130 			if (!cc->finished_update_migrate &&
131 			    pfn > zone->compact_cached_migrate_pfn)
132 				zone->compact_cached_migrate_pfn = pfn;
133 		} else {
134 			if (!cc->finished_update_free &&
135 			    pfn < zone->compact_cached_free_pfn)
136 				zone->compact_cached_free_pfn = pfn;
137 		}
138 	}
139 }
140 #else
141 static inline bool isolation_suitable(struct compact_control *cc,
142 					struct page *page)
143 {
144 	return true;
145 }
146 
147 static void update_pageblock_skip(struct compact_control *cc,
148 			struct page *page, unsigned long nr_isolated,
149 			bool migrate_scanner)
150 {
151 }
152 #endif /* CONFIG_COMPACTION */
153 
154 static inline bool should_release_lock(spinlock_t *lock)
155 {
156 	return need_resched() || spin_is_contended(lock);
157 }
158 
159 /*
160  * Compaction requires the taking of some coarse locks that are potentially
161  * very heavily contended. Check if the process needs to be scheduled or
162  * if the lock is contended. For async compaction, back out in the event
163  * if contention is severe. For sync compaction, schedule.
164  *
165  * Returns true if the lock is held.
166  * Returns false if the lock is released and compaction should abort
167  */
168 static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
169 				      bool locked, struct compact_control *cc)
170 {
171 	if (should_release_lock(lock)) {
172 		if (locked) {
173 			spin_unlock_irqrestore(lock, *flags);
174 			locked = false;
175 		}
176 
177 		/* async aborts if taking too long or contended */
178 		if (!cc->sync) {
179 			cc->contended = true;
180 			return false;
181 		}
182 
183 		cond_resched();
184 	}
185 
186 	if (!locked)
187 		spin_lock_irqsave(lock, *flags);
188 	return true;
189 }
190 
191 static inline bool compact_trylock_irqsave(spinlock_t *lock,
192 			unsigned long *flags, struct compact_control *cc)
193 {
194 	return compact_checklock_irqsave(lock, flags, false, cc);
195 }
196 
197 /* Returns true if the page is within a block suitable for migration to */
198 static bool suitable_migration_target(struct page *page)
199 {
200 	int migratetype = get_pageblock_migratetype(page);
201 
202 	/* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
203 	if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
204 		return false;
205 
206 	/* If the page is a large free page, then allow migration */
207 	if (PageBuddy(page) && page_order(page) >= pageblock_order)
208 		return true;
209 
210 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
211 	if (migrate_async_suitable(migratetype))
212 		return true;
213 
214 	/* Otherwise skip the block */
215 	return false;
216 }
217 
218 /*
219  * Isolate free pages onto a private freelist. Caller must hold zone->lock.
220  * If @strict is true, will abort returning 0 on any invalid PFNs or non-free
221  * pages inside of the pageblock (even though it may still end up isolating
222  * some pages).
223  */
224 static unsigned long isolate_freepages_block(struct compact_control *cc,
225 				unsigned long blockpfn,
226 				unsigned long end_pfn,
227 				struct list_head *freelist,
228 				bool strict)
229 {
230 	int nr_scanned = 0, total_isolated = 0;
231 	struct page *cursor, *valid_page = NULL;
232 	unsigned long nr_strict_required = end_pfn - blockpfn;
233 	unsigned long flags;
234 	bool locked = false;
235 
236 	cursor = pfn_to_page(blockpfn);
237 
238 	/* Isolate free pages. */
239 	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
240 		int isolated, i;
241 		struct page *page = cursor;
242 
243 		nr_scanned++;
244 		if (!pfn_valid_within(blockpfn))
245 			continue;
246 		if (!valid_page)
247 			valid_page = page;
248 		if (!PageBuddy(page))
249 			continue;
250 
251 		/*
252 		 * The zone lock must be held to isolate freepages.
253 		 * Unfortunately this is a very coarse lock and can be
254 		 * heavily contended if there are parallel allocations
255 		 * or parallel compactions. For async compaction do not
256 		 * spin on the lock and we acquire the lock as late as
257 		 * possible.
258 		 */
259 		locked = compact_checklock_irqsave(&cc->zone->lock, &flags,
260 								locked, cc);
261 		if (!locked)
262 			break;
263 
264 		/* Recheck this is a suitable migration target under lock */
265 		if (!strict && !suitable_migration_target(page))
266 			break;
267 
268 		/* Recheck this is a buddy page under lock */
269 		if (!PageBuddy(page))
270 			continue;
271 
272 		/* Found a free page, break it into order-0 pages */
273 		isolated = split_free_page(page);
274 		if (!isolated && strict)
275 			break;
276 		total_isolated += isolated;
277 		for (i = 0; i < isolated; i++) {
278 			list_add(&page->lru, freelist);
279 			page++;
280 		}
281 
282 		/* If a page was split, advance to the end of it */
283 		if (isolated) {
284 			blockpfn += isolated - 1;
285 			cursor += isolated - 1;
286 		}
287 	}
288 
289 	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
290 
291 	/*
292 	 * If strict isolation is requested by CMA then check that all the
293 	 * pages requested were isolated. If there were any failures, 0 is
294 	 * returned and CMA will fail.
295 	 */
296 	if (strict && nr_strict_required > total_isolated)
297 		total_isolated = 0;
298 
299 	if (locked)
300 		spin_unlock_irqrestore(&cc->zone->lock, flags);
301 
302 	/* Update the pageblock-skip if the whole pageblock was scanned */
303 	if (blockpfn == end_pfn)
304 		update_pageblock_skip(cc, valid_page, total_isolated, false);
305 
306 	count_vm_events(COMPACTFREE_SCANNED, nr_scanned);
307 	if (total_isolated)
308 		count_vm_events(COMPACTISOLATED, total_isolated);
309 
310 	return total_isolated;
311 }
312 
313 /**
314  * isolate_freepages_range() - isolate free pages.
315  * @start_pfn: The first PFN to start isolating.
316  * @end_pfn:   The one-past-last PFN.
317  *
318  * Non-free pages, invalid PFNs, or zone boundaries within the
319  * [start_pfn, end_pfn) range are considered errors, cause function to
320  * undo its actions and return zero.
321  *
322  * Otherwise, function returns one-past-the-last PFN of isolated page
323  * (which may be greater then end_pfn if end fell in a middle of
324  * a free page).
325  */
326 unsigned long
327 isolate_freepages_range(struct compact_control *cc,
328 			unsigned long start_pfn, unsigned long end_pfn)
329 {
330 	unsigned long isolated, pfn, block_end_pfn;
331 	LIST_HEAD(freelist);
332 
333 	for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
334 		if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn)))
335 			break;
336 
337 		/*
338 		 * On subsequent iterations ALIGN() is actually not needed,
339 		 * but we keep it that we not to complicate the code.
340 		 */
341 		block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
342 		block_end_pfn = min(block_end_pfn, end_pfn);
343 
344 		isolated = isolate_freepages_block(cc, pfn, block_end_pfn,
345 						   &freelist, true);
346 
347 		/*
348 		 * In strict mode, isolate_freepages_block() returns 0 if
349 		 * there are any holes in the block (ie. invalid PFNs or
350 		 * non-free pages).
351 		 */
352 		if (!isolated)
353 			break;
354 
355 		/*
356 		 * If we managed to isolate pages, it is always (1 << n) *
357 		 * pageblock_nr_pages for some non-negative n.  (Max order
358 		 * page may span two pageblocks).
359 		 */
360 	}
361 
362 	/* split_free_page does not map the pages */
363 	map_pages(&freelist);
364 
365 	if (pfn < end_pfn) {
366 		/* Loop terminated early, cleanup. */
367 		release_freepages(&freelist);
368 		return 0;
369 	}
370 
371 	/* We don't use freelists for anything. */
372 	return pfn;
373 }
374 
375 /* Update the number of anon and file isolated pages in the zone */
376 static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
377 {
378 	struct page *page;
379 	unsigned int count[2] = { 0, };
380 
381 	list_for_each_entry(page, &cc->migratepages, lru)
382 		count[!!page_is_file_cache(page)]++;
383 
384 	/* If locked we can use the interrupt unsafe versions */
385 	if (locked) {
386 		__mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
387 		__mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
388 	} else {
389 		mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
390 		mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
391 	}
392 }
393 
394 /* Similar to reclaim, but different enough that they don't share logic */
395 static bool too_many_isolated(struct zone *zone)
396 {
397 	unsigned long active, inactive, isolated;
398 
399 	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
400 					zone_page_state(zone, NR_INACTIVE_ANON);
401 	active = zone_page_state(zone, NR_ACTIVE_FILE) +
402 					zone_page_state(zone, NR_ACTIVE_ANON);
403 	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
404 					zone_page_state(zone, NR_ISOLATED_ANON);
405 
406 	return isolated > (inactive + active) / 2;
407 }
408 
409 /**
410  * isolate_migratepages_range() - isolate all migrate-able pages in range.
411  * @zone:	Zone pages are in.
412  * @cc:		Compaction control structure.
413  * @low_pfn:	The first PFN of the range.
414  * @end_pfn:	The one-past-the-last PFN of the range.
415  * @unevictable: true if it allows to isolate unevictable pages
416  *
417  * Isolate all pages that can be migrated from the range specified by
418  * [low_pfn, end_pfn).  Returns zero if there is a fatal signal
419  * pending), otherwise PFN of the first page that was not scanned
420  * (which may be both less, equal to or more then end_pfn).
421  *
422  * Assumes that cc->migratepages is empty and cc->nr_migratepages is
423  * zero.
424  *
425  * Apart from cc->migratepages and cc->nr_migratetypes this function
426  * does not modify any cc's fields, in particular it does not modify
427  * (or read for that matter) cc->migrate_pfn.
428  */
429 unsigned long
430 isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
431 		unsigned long low_pfn, unsigned long end_pfn, bool unevictable)
432 {
433 	unsigned long last_pageblock_nr = 0, pageblock_nr;
434 	unsigned long nr_scanned = 0, nr_isolated = 0;
435 	struct list_head *migratelist = &cc->migratepages;
436 	isolate_mode_t mode = 0;
437 	struct lruvec *lruvec;
438 	unsigned long flags;
439 	bool locked = false;
440 	struct page *page = NULL, *valid_page = NULL;
441 
442 	/*
443 	 * Ensure that there are not too many pages isolated from the LRU
444 	 * list by either parallel reclaimers or compaction. If there are,
445 	 * delay for some time until fewer pages are isolated
446 	 */
447 	while (unlikely(too_many_isolated(zone))) {
448 		/* async migration should just abort */
449 		if (!cc->sync)
450 			return 0;
451 
452 		congestion_wait(BLK_RW_ASYNC, HZ/10);
453 
454 		if (fatal_signal_pending(current))
455 			return 0;
456 	}
457 
458 	/* Time to isolate some pages for migration */
459 	cond_resched();
460 	for (; low_pfn < end_pfn; low_pfn++) {
461 		/* give a chance to irqs before checking need_resched() */
462 		if (locked && !((low_pfn+1) % SWAP_CLUSTER_MAX)) {
463 			if (should_release_lock(&zone->lru_lock)) {
464 				spin_unlock_irqrestore(&zone->lru_lock, flags);
465 				locked = false;
466 			}
467 		}
468 
469 		/*
470 		 * migrate_pfn does not necessarily start aligned to a
471 		 * pageblock. Ensure that pfn_valid is called when moving
472 		 * into a new MAX_ORDER_NR_PAGES range in case of large
473 		 * memory holes within the zone
474 		 */
475 		if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
476 			if (!pfn_valid(low_pfn)) {
477 				low_pfn += MAX_ORDER_NR_PAGES - 1;
478 				continue;
479 			}
480 		}
481 
482 		if (!pfn_valid_within(low_pfn))
483 			continue;
484 		nr_scanned++;
485 
486 		/*
487 		 * Get the page and ensure the page is within the same zone.
488 		 * See the comment in isolate_freepages about overlapping
489 		 * nodes. It is deliberate that the new zone lock is not taken
490 		 * as memory compaction should not move pages between nodes.
491 		 */
492 		page = pfn_to_page(low_pfn);
493 		if (page_zone(page) != zone)
494 			continue;
495 
496 		if (!valid_page)
497 			valid_page = page;
498 
499 		/* If isolation recently failed, do not retry */
500 		pageblock_nr = low_pfn >> pageblock_order;
501 		if (!isolation_suitable(cc, page))
502 			goto next_pageblock;
503 
504 		/* Skip if free */
505 		if (PageBuddy(page))
506 			continue;
507 
508 		/*
509 		 * For async migration, also only scan in MOVABLE blocks. Async
510 		 * migration is optimistic to see if the minimum amount of work
511 		 * satisfies the allocation
512 		 */
513 		if (!cc->sync && last_pageblock_nr != pageblock_nr &&
514 		    !migrate_async_suitable(get_pageblock_migratetype(page))) {
515 			cc->finished_update_migrate = true;
516 			goto next_pageblock;
517 		}
518 
519 		/*
520 		 * Check may be lockless but that's ok as we recheck later.
521 		 * It's possible to migrate LRU pages and balloon pages
522 		 * Skip any other type of page
523 		 */
524 		if (!PageLRU(page)) {
525 			if (unlikely(balloon_page_movable(page))) {
526 				if (locked && balloon_page_isolate(page)) {
527 					/* Successfully isolated */
528 					cc->finished_update_migrate = true;
529 					list_add(&page->lru, migratelist);
530 					cc->nr_migratepages++;
531 					nr_isolated++;
532 					goto check_compact_cluster;
533 				}
534 			}
535 			continue;
536 		}
537 
538 		/*
539 		 * PageLRU is set. lru_lock normally excludes isolation
540 		 * splitting and collapsing (collapsing has already happened
541 		 * if PageLRU is set) but the lock is not necessarily taken
542 		 * here and it is wasteful to take it just to check transhuge.
543 		 * Check TransHuge without lock and skip the whole pageblock if
544 		 * it's either a transhuge or hugetlbfs page, as calling
545 		 * compound_order() without preventing THP from splitting the
546 		 * page underneath us may return surprising results.
547 		 */
548 		if (PageTransHuge(page)) {
549 			if (!locked)
550 				goto next_pageblock;
551 			low_pfn += (1 << compound_order(page)) - 1;
552 			continue;
553 		}
554 
555 		/* Check if it is ok to still hold the lock */
556 		locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
557 								locked, cc);
558 		if (!locked || fatal_signal_pending(current))
559 			break;
560 
561 		/* Recheck PageLRU and PageTransHuge under lock */
562 		if (!PageLRU(page))
563 			continue;
564 		if (PageTransHuge(page)) {
565 			low_pfn += (1 << compound_order(page)) - 1;
566 			continue;
567 		}
568 
569 		if (!cc->sync)
570 			mode |= ISOLATE_ASYNC_MIGRATE;
571 
572 		if (unevictable)
573 			mode |= ISOLATE_UNEVICTABLE;
574 
575 		lruvec = mem_cgroup_page_lruvec(page, zone);
576 
577 		/* Try isolate the page */
578 		if (__isolate_lru_page(page, mode) != 0)
579 			continue;
580 
581 		VM_BUG_ON(PageTransCompound(page));
582 
583 		/* Successfully isolated */
584 		cc->finished_update_migrate = true;
585 		del_page_from_lru_list(page, lruvec, page_lru(page));
586 		list_add(&page->lru, migratelist);
587 		cc->nr_migratepages++;
588 		nr_isolated++;
589 
590 check_compact_cluster:
591 		/* Avoid isolating too much */
592 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
593 			++low_pfn;
594 			break;
595 		}
596 
597 		continue;
598 
599 next_pageblock:
600 		low_pfn += pageblock_nr_pages;
601 		low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
602 		last_pageblock_nr = pageblock_nr;
603 	}
604 
605 	acct_isolated(zone, locked, cc);
606 
607 	if (locked)
608 		spin_unlock_irqrestore(&zone->lru_lock, flags);
609 
610 	/* Update the pageblock-skip if the whole pageblock was scanned */
611 	if (low_pfn == end_pfn)
612 		update_pageblock_skip(cc, valid_page, nr_isolated, true);
613 
614 	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
615 
616 	count_vm_events(COMPACTMIGRATE_SCANNED, nr_scanned);
617 	if (nr_isolated)
618 		count_vm_events(COMPACTISOLATED, nr_isolated);
619 
620 	return low_pfn;
621 }
622 
623 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
624 #ifdef CONFIG_COMPACTION
625 /*
626  * Based on information in the current compact_control, find blocks
627  * suitable for isolating free pages from and then isolate them.
628  */
629 static void isolate_freepages(struct zone *zone,
630 				struct compact_control *cc)
631 {
632 	struct page *page;
633 	unsigned long high_pfn, low_pfn, pfn, zone_end_pfn, end_pfn;
634 	int nr_freepages = cc->nr_freepages;
635 	struct list_head *freelist = &cc->freepages;
636 
637 	/*
638 	 * Initialise the free scanner. The starting point is where we last
639 	 * scanned from (or the end of the zone if starting). The low point
640 	 * is the end of the pageblock the migration scanner is using.
641 	 */
642 	pfn = cc->free_pfn;
643 	low_pfn = cc->migrate_pfn + pageblock_nr_pages;
644 
645 	/*
646 	 * Take care that if the migration scanner is at the end of the zone
647 	 * that the free scanner does not accidentally move to the next zone
648 	 * in the next isolation cycle.
649 	 */
650 	high_pfn = min(low_pfn, pfn);
651 
652 	zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
653 
654 	/*
655 	 * Isolate free pages until enough are available to migrate the
656 	 * pages on cc->migratepages. We stop searching if the migrate
657 	 * and free page scanners meet or enough free pages are isolated.
658 	 */
659 	for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
660 					pfn -= pageblock_nr_pages) {
661 		unsigned long isolated;
662 
663 		if (!pfn_valid(pfn))
664 			continue;
665 
666 		/*
667 		 * Check for overlapping nodes/zones. It's possible on some
668 		 * configurations to have a setup like
669 		 * node0 node1 node0
670 		 * i.e. it's possible that all pages within a zones range of
671 		 * pages do not belong to a single zone.
672 		 */
673 		page = pfn_to_page(pfn);
674 		if (page_zone(page) != zone)
675 			continue;
676 
677 		/* Check the block is suitable for migration */
678 		if (!suitable_migration_target(page))
679 			continue;
680 
681 		/* If isolation recently failed, do not retry */
682 		if (!isolation_suitable(cc, page))
683 			continue;
684 
685 		/* Found a block suitable for isolating free pages from */
686 		isolated = 0;
687 
688 		/*
689 		 * As pfn may not start aligned, pfn+pageblock_nr_page
690 		 * may cross a MAX_ORDER_NR_PAGES boundary and miss
691 		 * a pfn_valid check. Ensure isolate_freepages_block()
692 		 * only scans within a pageblock
693 		 */
694 		end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
695 		end_pfn = min(end_pfn, zone_end_pfn);
696 		isolated = isolate_freepages_block(cc, pfn, end_pfn,
697 						   freelist, false);
698 		nr_freepages += isolated;
699 
700 		/*
701 		 * Record the highest PFN we isolated pages from. When next
702 		 * looking for free pages, the search will restart here as
703 		 * page migration may have returned some pages to the allocator
704 		 */
705 		if (isolated) {
706 			cc->finished_update_free = true;
707 			high_pfn = max(high_pfn, pfn);
708 		}
709 	}
710 
711 	/* split_free_page does not map the pages */
712 	map_pages(freelist);
713 
714 	cc->free_pfn = high_pfn;
715 	cc->nr_freepages = nr_freepages;
716 }
717 
718 /*
719  * This is a migrate-callback that "allocates" freepages by taking pages
720  * from the isolated freelists in the block we are migrating to.
721  */
722 static struct page *compaction_alloc(struct page *migratepage,
723 					unsigned long data,
724 					int **result)
725 {
726 	struct compact_control *cc = (struct compact_control *)data;
727 	struct page *freepage;
728 
729 	/* Isolate free pages if necessary */
730 	if (list_empty(&cc->freepages)) {
731 		isolate_freepages(cc->zone, cc);
732 
733 		if (list_empty(&cc->freepages))
734 			return NULL;
735 	}
736 
737 	freepage = list_entry(cc->freepages.next, struct page, lru);
738 	list_del(&freepage->lru);
739 	cc->nr_freepages--;
740 
741 	return freepage;
742 }
743 
744 /*
745  * We cannot control nr_migratepages and nr_freepages fully when migration is
746  * running as migrate_pages() has no knowledge of compact_control. When
747  * migration is complete, we count the number of pages on the lists by hand.
748  */
749 static void update_nr_listpages(struct compact_control *cc)
750 {
751 	int nr_migratepages = 0;
752 	int nr_freepages = 0;
753 	struct page *page;
754 
755 	list_for_each_entry(page, &cc->migratepages, lru)
756 		nr_migratepages++;
757 	list_for_each_entry(page, &cc->freepages, lru)
758 		nr_freepages++;
759 
760 	cc->nr_migratepages = nr_migratepages;
761 	cc->nr_freepages = nr_freepages;
762 }
763 
764 /* possible outcome of isolate_migratepages */
765 typedef enum {
766 	ISOLATE_ABORT,		/* Abort compaction now */
767 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
768 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
769 } isolate_migrate_t;
770 
771 /*
772  * Isolate all pages that can be migrated from the block pointed to by
773  * the migrate scanner within compact_control.
774  */
775 static isolate_migrate_t isolate_migratepages(struct zone *zone,
776 					struct compact_control *cc)
777 {
778 	unsigned long low_pfn, end_pfn;
779 
780 	/* Do not scan outside zone boundaries */
781 	low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
782 
783 	/* Only scan within a pageblock boundary */
784 	end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
785 
786 	/* Do not cross the free scanner or scan within a memory hole */
787 	if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
788 		cc->migrate_pfn = end_pfn;
789 		return ISOLATE_NONE;
790 	}
791 
792 	/* Perform the isolation */
793 	low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false);
794 	if (!low_pfn || cc->contended)
795 		return ISOLATE_ABORT;
796 
797 	cc->migrate_pfn = low_pfn;
798 
799 	return ISOLATE_SUCCESS;
800 }
801 
802 static int compact_finished(struct zone *zone,
803 			    struct compact_control *cc)
804 {
805 	unsigned long watermark;
806 
807 	if (fatal_signal_pending(current))
808 		return COMPACT_PARTIAL;
809 
810 	/* Compaction run completes if the migrate and free scanner meet */
811 	if (cc->free_pfn <= cc->migrate_pfn) {
812 		/*
813 		 * Mark that the PG_migrate_skip information should be cleared
814 		 * by kswapd when it goes to sleep. kswapd does not set the
815 		 * flag itself as the decision to be clear should be directly
816 		 * based on an allocation request.
817 		 */
818 		if (!current_is_kswapd())
819 			zone->compact_blockskip_flush = true;
820 
821 		return COMPACT_COMPLETE;
822 	}
823 
824 	/*
825 	 * order == -1 is expected when compacting via
826 	 * /proc/sys/vm/compact_memory
827 	 */
828 	if (cc->order == -1)
829 		return COMPACT_CONTINUE;
830 
831 	/* Compaction run is not finished if the watermark is not met */
832 	watermark = low_wmark_pages(zone);
833 	watermark += (1 << cc->order);
834 
835 	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
836 		return COMPACT_CONTINUE;
837 
838 	/* Direct compactor: Is a suitable page free? */
839 	if (cc->page) {
840 		/* Was a suitable page captured? */
841 		if (*cc->page)
842 			return COMPACT_PARTIAL;
843 	} else {
844 		unsigned int order;
845 		for (order = cc->order; order < MAX_ORDER; order++) {
846 			struct free_area *area = &zone->free_area[cc->order];
847 			/* Job done if page is free of the right migratetype */
848 			if (!list_empty(&area->free_list[cc->migratetype]))
849 				return COMPACT_PARTIAL;
850 
851 			/* Job done if allocation would set block type */
852 			if (cc->order >= pageblock_order && area->nr_free)
853 				return COMPACT_PARTIAL;
854 		}
855 	}
856 
857 	return COMPACT_CONTINUE;
858 }
859 
860 /*
861  * compaction_suitable: Is this suitable to run compaction on this zone now?
862  * Returns
863  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
864  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
865  *   COMPACT_CONTINUE - If compaction should run now
866  */
867 unsigned long compaction_suitable(struct zone *zone, int order)
868 {
869 	int fragindex;
870 	unsigned long watermark;
871 
872 	/*
873 	 * order == -1 is expected when compacting via
874 	 * /proc/sys/vm/compact_memory
875 	 */
876 	if (order == -1)
877 		return COMPACT_CONTINUE;
878 
879 	/*
880 	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
881 	 * This is because during migration, copies of pages need to be
882 	 * allocated and for a short time, the footprint is higher
883 	 */
884 	watermark = low_wmark_pages(zone) + (2UL << order);
885 	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
886 		return COMPACT_SKIPPED;
887 
888 	/*
889 	 * fragmentation index determines if allocation failures are due to
890 	 * low memory or external fragmentation
891 	 *
892 	 * index of -1000 implies allocations might succeed depending on
893 	 * watermarks
894 	 * index towards 0 implies failure is due to lack of memory
895 	 * index towards 1000 implies failure is due to fragmentation
896 	 *
897 	 * Only compact if a failure would be due to fragmentation.
898 	 */
899 	fragindex = fragmentation_index(zone, order);
900 	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
901 		return COMPACT_SKIPPED;
902 
903 	if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
904 	    0, 0))
905 		return COMPACT_PARTIAL;
906 
907 	return COMPACT_CONTINUE;
908 }
909 
910 static void compact_capture_page(struct compact_control *cc)
911 {
912 	unsigned long flags;
913 	int mtype, mtype_low, mtype_high;
914 
915 	if (!cc->page || *cc->page)
916 		return;
917 
918 	/*
919 	 * For MIGRATE_MOVABLE allocations we capture a suitable page ASAP
920 	 * regardless of the migratetype of the freelist is is captured from.
921 	 * This is fine because the order for a high-order MIGRATE_MOVABLE
922 	 * allocation is typically at least a pageblock size and overall
923 	 * fragmentation is not impaired. Other allocation types must
924 	 * capture pages from their own migratelist because otherwise they
925 	 * could pollute other pageblocks like MIGRATE_MOVABLE with
926 	 * difficult to move pages and making fragmentation worse overall.
927 	 */
928 	if (cc->migratetype == MIGRATE_MOVABLE) {
929 		mtype_low = 0;
930 		mtype_high = MIGRATE_PCPTYPES;
931 	} else {
932 		mtype_low = cc->migratetype;
933 		mtype_high = cc->migratetype + 1;
934 	}
935 
936 	/* Speculatively examine the free lists without zone lock */
937 	for (mtype = mtype_low; mtype < mtype_high; mtype++) {
938 		int order;
939 		for (order = cc->order; order < MAX_ORDER; order++) {
940 			struct page *page;
941 			struct free_area *area;
942 			area = &(cc->zone->free_area[order]);
943 			if (list_empty(&area->free_list[mtype]))
944 				continue;
945 
946 			/* Take the lock and attempt capture of the page */
947 			if (!compact_trylock_irqsave(&cc->zone->lock, &flags, cc))
948 				return;
949 			if (!list_empty(&area->free_list[mtype])) {
950 				page = list_entry(area->free_list[mtype].next,
951 							struct page, lru);
952 				if (capture_free_page(page, cc->order, mtype)) {
953 					spin_unlock_irqrestore(&cc->zone->lock,
954 									flags);
955 					*cc->page = page;
956 					return;
957 				}
958 			}
959 			spin_unlock_irqrestore(&cc->zone->lock, flags);
960 		}
961 	}
962 }
963 
964 static int compact_zone(struct zone *zone, struct compact_control *cc)
965 {
966 	int ret;
967 	unsigned long start_pfn = zone->zone_start_pfn;
968 	unsigned long end_pfn = zone->zone_start_pfn + zone->spanned_pages;
969 
970 	ret = compaction_suitable(zone, cc->order);
971 	switch (ret) {
972 	case COMPACT_PARTIAL:
973 	case COMPACT_SKIPPED:
974 		/* Compaction is likely to fail */
975 		return ret;
976 	case COMPACT_CONTINUE:
977 		/* Fall through to compaction */
978 		;
979 	}
980 
981 	/*
982 	 * Setup to move all movable pages to the end of the zone. Used cached
983 	 * information on where the scanners should start but check that it
984 	 * is initialised by ensuring the values are within zone boundaries.
985 	 */
986 	cc->migrate_pfn = zone->compact_cached_migrate_pfn;
987 	cc->free_pfn = zone->compact_cached_free_pfn;
988 	if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
989 		cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
990 		zone->compact_cached_free_pfn = cc->free_pfn;
991 	}
992 	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
993 		cc->migrate_pfn = start_pfn;
994 		zone->compact_cached_migrate_pfn = cc->migrate_pfn;
995 	}
996 
997 	/*
998 	 * Clear pageblock skip if there were failures recently and compaction
999 	 * is about to be retried after being deferred. kswapd does not do
1000 	 * this reset as it'll reset the cached information when going to sleep.
1001 	 */
1002 	if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
1003 		__reset_isolation_suitable(zone);
1004 
1005 	migrate_prep_local();
1006 
1007 	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
1008 		unsigned long nr_migrate, nr_remaining;
1009 		int err;
1010 
1011 		switch (isolate_migratepages(zone, cc)) {
1012 		case ISOLATE_ABORT:
1013 			ret = COMPACT_PARTIAL;
1014 			putback_movable_pages(&cc->migratepages);
1015 			cc->nr_migratepages = 0;
1016 			goto out;
1017 		case ISOLATE_NONE:
1018 			continue;
1019 		case ISOLATE_SUCCESS:
1020 			;
1021 		}
1022 
1023 		nr_migrate = cc->nr_migratepages;
1024 		err = migrate_pages(&cc->migratepages, compaction_alloc,
1025 				(unsigned long)cc, false,
1026 				cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC,
1027 				MR_COMPACTION);
1028 		update_nr_listpages(cc);
1029 		nr_remaining = cc->nr_migratepages;
1030 
1031 		trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
1032 						nr_remaining);
1033 
1034 		/* Release isolated pages not migrated */
1035 		if (err) {
1036 			putback_movable_pages(&cc->migratepages);
1037 			cc->nr_migratepages = 0;
1038 			if (err == -ENOMEM) {
1039 				ret = COMPACT_PARTIAL;
1040 				goto out;
1041 			}
1042 		}
1043 
1044 		/* Capture a page now if it is a suitable size */
1045 		compact_capture_page(cc);
1046 	}
1047 
1048 out:
1049 	/* Release free pages and check accounting */
1050 	cc->nr_freepages -= release_freepages(&cc->freepages);
1051 	VM_BUG_ON(cc->nr_freepages != 0);
1052 
1053 	return ret;
1054 }
1055 
1056 static unsigned long compact_zone_order(struct zone *zone,
1057 				 int order, gfp_t gfp_mask,
1058 				 bool sync, bool *contended,
1059 				 struct page **page)
1060 {
1061 	unsigned long ret;
1062 	struct compact_control cc = {
1063 		.nr_freepages = 0,
1064 		.nr_migratepages = 0,
1065 		.order = order,
1066 		.migratetype = allocflags_to_migratetype(gfp_mask),
1067 		.zone = zone,
1068 		.sync = sync,
1069 		.page = page,
1070 	};
1071 	INIT_LIST_HEAD(&cc.freepages);
1072 	INIT_LIST_HEAD(&cc.migratepages);
1073 
1074 	ret = compact_zone(zone, &cc);
1075 
1076 	VM_BUG_ON(!list_empty(&cc.freepages));
1077 	VM_BUG_ON(!list_empty(&cc.migratepages));
1078 
1079 	*contended = cc.contended;
1080 	return ret;
1081 }
1082 
1083 int sysctl_extfrag_threshold = 500;
1084 
1085 /**
1086  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1087  * @zonelist: The zonelist used for the current allocation
1088  * @order: The order of the current allocation
1089  * @gfp_mask: The GFP mask of the current allocation
1090  * @nodemask: The allowed nodes to allocate from
1091  * @sync: Whether migration is synchronous or not
1092  * @contended: Return value that is true if compaction was aborted due to lock contention
1093  * @page: Optionally capture a free page of the requested order during compaction
1094  *
1095  * This is the main entry point for direct page compaction.
1096  */
1097 unsigned long try_to_compact_pages(struct zonelist *zonelist,
1098 			int order, gfp_t gfp_mask, nodemask_t *nodemask,
1099 			bool sync, bool *contended, struct page **page)
1100 {
1101 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1102 	int may_enter_fs = gfp_mask & __GFP_FS;
1103 	int may_perform_io = gfp_mask & __GFP_IO;
1104 	struct zoneref *z;
1105 	struct zone *zone;
1106 	int rc = COMPACT_SKIPPED;
1107 	int alloc_flags = 0;
1108 
1109 	/* Check if the GFP flags allow compaction */
1110 	if (!order || !may_enter_fs || !may_perform_io)
1111 		return rc;
1112 
1113 	count_vm_event(COMPACTSTALL);
1114 
1115 #ifdef CONFIG_CMA
1116 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
1117 		alloc_flags |= ALLOC_CMA;
1118 #endif
1119 	/* Compact each zone in the list */
1120 	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1121 								nodemask) {
1122 		int status;
1123 
1124 		status = compact_zone_order(zone, order, gfp_mask, sync,
1125 						contended, page);
1126 		rc = max(status, rc);
1127 
1128 		/* If a normal allocation would succeed, stop compacting */
1129 		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
1130 				      alloc_flags))
1131 			break;
1132 	}
1133 
1134 	return rc;
1135 }
1136 
1137 
1138 /* Compact all zones within a node */
1139 static int __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1140 {
1141 	int zoneid;
1142 	struct zone *zone;
1143 
1144 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1145 
1146 		zone = &pgdat->node_zones[zoneid];
1147 		if (!populated_zone(zone))
1148 			continue;
1149 
1150 		cc->nr_freepages = 0;
1151 		cc->nr_migratepages = 0;
1152 		cc->zone = zone;
1153 		INIT_LIST_HEAD(&cc->freepages);
1154 		INIT_LIST_HEAD(&cc->migratepages);
1155 
1156 		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1157 			compact_zone(zone, cc);
1158 
1159 		if (cc->order > 0) {
1160 			int ok = zone_watermark_ok(zone, cc->order,
1161 						low_wmark_pages(zone), 0, 0);
1162 			if (ok && cc->order >= zone->compact_order_failed)
1163 				zone->compact_order_failed = cc->order + 1;
1164 			/* Currently async compaction is never deferred. */
1165 			else if (!ok && cc->sync)
1166 				defer_compaction(zone, cc->order);
1167 		}
1168 
1169 		VM_BUG_ON(!list_empty(&cc->freepages));
1170 		VM_BUG_ON(!list_empty(&cc->migratepages));
1171 	}
1172 
1173 	return 0;
1174 }
1175 
1176 int compact_pgdat(pg_data_t *pgdat, int order)
1177 {
1178 	struct compact_control cc = {
1179 		.order = order,
1180 		.sync = false,
1181 		.page = NULL,
1182 	};
1183 
1184 	return __compact_pgdat(pgdat, &cc);
1185 }
1186 
1187 static int compact_node(int nid)
1188 {
1189 	struct compact_control cc = {
1190 		.order = -1,
1191 		.sync = true,
1192 		.page = NULL,
1193 	};
1194 
1195 	return __compact_pgdat(NODE_DATA(nid), &cc);
1196 }
1197 
1198 /* Compact all nodes in the system */
1199 static int compact_nodes(void)
1200 {
1201 	int nid;
1202 
1203 	/* Flush pending updates to the LRU lists */
1204 	lru_add_drain_all();
1205 
1206 	for_each_online_node(nid)
1207 		compact_node(nid);
1208 
1209 	return COMPACT_COMPLETE;
1210 }
1211 
1212 /* The written value is actually unused, all memory is compacted */
1213 int sysctl_compact_memory;
1214 
1215 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1216 int sysctl_compaction_handler(struct ctl_table *table, int write,
1217 			void __user *buffer, size_t *length, loff_t *ppos)
1218 {
1219 	if (write)
1220 		return compact_nodes();
1221 
1222 	return 0;
1223 }
1224 
1225 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1226 			void __user *buffer, size_t *length, loff_t *ppos)
1227 {
1228 	proc_dointvec_minmax(table, write, buffer, length, ppos);
1229 
1230 	return 0;
1231 }
1232 
1233 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1234 ssize_t sysfs_compact_node(struct device *dev,
1235 			struct device_attribute *attr,
1236 			const char *buf, size_t count)
1237 {
1238 	int nid = dev->id;
1239 
1240 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1241 		/* Flush pending updates to the LRU lists */
1242 		lru_add_drain_all();
1243 
1244 		compact_node(nid);
1245 	}
1246 
1247 	return count;
1248 }
1249 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1250 
1251 int compaction_register_node(struct node *node)
1252 {
1253 	return device_create_file(&node->dev, &dev_attr_compact);
1254 }
1255 
1256 void compaction_unregister_node(struct node *node)
1257 {
1258 	return device_remove_file(&node->dev, &dev_attr_compact);
1259 }
1260 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1261 
1262 #endif /* CONFIG_COMPACTION */
1263