1 /* 2 * linux/mm/compaction.c 3 * 4 * Memory compaction for the reduction of external fragmentation. Note that 5 * this heavily depends upon page migration to do all the real heavy 6 * lifting 7 * 8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 9 */ 10 #include <linux/swap.h> 11 #include <linux/migrate.h> 12 #include <linux/compaction.h> 13 #include <linux/mm_inline.h> 14 #include <linux/backing-dev.h> 15 #include <linux/sysctl.h> 16 #include <linux/sysfs.h> 17 #include <linux/balloon_compaction.h> 18 #include "internal.h" 19 20 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 21 22 #define CREATE_TRACE_POINTS 23 #include <trace/events/compaction.h> 24 25 static unsigned long release_freepages(struct list_head *freelist) 26 { 27 struct page *page, *next; 28 unsigned long count = 0; 29 30 list_for_each_entry_safe(page, next, freelist, lru) { 31 list_del(&page->lru); 32 __free_page(page); 33 count++; 34 } 35 36 return count; 37 } 38 39 static void map_pages(struct list_head *list) 40 { 41 struct page *page; 42 43 list_for_each_entry(page, list, lru) { 44 arch_alloc_page(page, 0); 45 kernel_map_pages(page, 1, 1); 46 } 47 } 48 49 static inline bool migrate_async_suitable(int migratetype) 50 { 51 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE; 52 } 53 54 #ifdef CONFIG_COMPACTION 55 /* Returns true if the pageblock should be scanned for pages to isolate. */ 56 static inline bool isolation_suitable(struct compact_control *cc, 57 struct page *page) 58 { 59 if (cc->ignore_skip_hint) 60 return true; 61 62 return !get_pageblock_skip(page); 63 } 64 65 /* 66 * This function is called to clear all cached information on pageblocks that 67 * should be skipped for page isolation when the migrate and free page scanner 68 * meet. 69 */ 70 static void __reset_isolation_suitable(struct zone *zone) 71 { 72 unsigned long start_pfn = zone->zone_start_pfn; 73 unsigned long end_pfn = zone->zone_start_pfn + zone->spanned_pages; 74 unsigned long pfn; 75 76 zone->compact_cached_migrate_pfn = start_pfn; 77 zone->compact_cached_free_pfn = end_pfn; 78 zone->compact_blockskip_flush = false; 79 80 /* Walk the zone and mark every pageblock as suitable for isolation */ 81 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 82 struct page *page; 83 84 cond_resched(); 85 86 if (!pfn_valid(pfn)) 87 continue; 88 89 page = pfn_to_page(pfn); 90 if (zone != page_zone(page)) 91 continue; 92 93 clear_pageblock_skip(page); 94 } 95 } 96 97 void reset_isolation_suitable(pg_data_t *pgdat) 98 { 99 int zoneid; 100 101 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 102 struct zone *zone = &pgdat->node_zones[zoneid]; 103 if (!populated_zone(zone)) 104 continue; 105 106 /* Only flush if a full compaction finished recently */ 107 if (zone->compact_blockskip_flush) 108 __reset_isolation_suitable(zone); 109 } 110 } 111 112 /* 113 * If no pages were isolated then mark this pageblock to be skipped in the 114 * future. The information is later cleared by __reset_isolation_suitable(). 115 */ 116 static void update_pageblock_skip(struct compact_control *cc, 117 struct page *page, unsigned long nr_isolated, 118 bool migrate_scanner) 119 { 120 struct zone *zone = cc->zone; 121 if (!page) 122 return; 123 124 if (!nr_isolated) { 125 unsigned long pfn = page_to_pfn(page); 126 set_pageblock_skip(page); 127 128 /* Update where compaction should restart */ 129 if (migrate_scanner) { 130 if (!cc->finished_update_migrate && 131 pfn > zone->compact_cached_migrate_pfn) 132 zone->compact_cached_migrate_pfn = pfn; 133 } else { 134 if (!cc->finished_update_free && 135 pfn < zone->compact_cached_free_pfn) 136 zone->compact_cached_free_pfn = pfn; 137 } 138 } 139 } 140 #else 141 static inline bool isolation_suitable(struct compact_control *cc, 142 struct page *page) 143 { 144 return true; 145 } 146 147 static void update_pageblock_skip(struct compact_control *cc, 148 struct page *page, unsigned long nr_isolated, 149 bool migrate_scanner) 150 { 151 } 152 #endif /* CONFIG_COMPACTION */ 153 154 static inline bool should_release_lock(spinlock_t *lock) 155 { 156 return need_resched() || spin_is_contended(lock); 157 } 158 159 /* 160 * Compaction requires the taking of some coarse locks that are potentially 161 * very heavily contended. Check if the process needs to be scheduled or 162 * if the lock is contended. For async compaction, back out in the event 163 * if contention is severe. For sync compaction, schedule. 164 * 165 * Returns true if the lock is held. 166 * Returns false if the lock is released and compaction should abort 167 */ 168 static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags, 169 bool locked, struct compact_control *cc) 170 { 171 if (should_release_lock(lock)) { 172 if (locked) { 173 spin_unlock_irqrestore(lock, *flags); 174 locked = false; 175 } 176 177 /* async aborts if taking too long or contended */ 178 if (!cc->sync) { 179 cc->contended = true; 180 return false; 181 } 182 183 cond_resched(); 184 } 185 186 if (!locked) 187 spin_lock_irqsave(lock, *flags); 188 return true; 189 } 190 191 static inline bool compact_trylock_irqsave(spinlock_t *lock, 192 unsigned long *flags, struct compact_control *cc) 193 { 194 return compact_checklock_irqsave(lock, flags, false, cc); 195 } 196 197 /* Returns true if the page is within a block suitable for migration to */ 198 static bool suitable_migration_target(struct page *page) 199 { 200 int migratetype = get_pageblock_migratetype(page); 201 202 /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */ 203 if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE) 204 return false; 205 206 /* If the page is a large free page, then allow migration */ 207 if (PageBuddy(page) && page_order(page) >= pageblock_order) 208 return true; 209 210 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 211 if (migrate_async_suitable(migratetype)) 212 return true; 213 214 /* Otherwise skip the block */ 215 return false; 216 } 217 218 /* 219 * Isolate free pages onto a private freelist. Caller must hold zone->lock. 220 * If @strict is true, will abort returning 0 on any invalid PFNs or non-free 221 * pages inside of the pageblock (even though it may still end up isolating 222 * some pages). 223 */ 224 static unsigned long isolate_freepages_block(struct compact_control *cc, 225 unsigned long blockpfn, 226 unsigned long end_pfn, 227 struct list_head *freelist, 228 bool strict) 229 { 230 int nr_scanned = 0, total_isolated = 0; 231 struct page *cursor, *valid_page = NULL; 232 unsigned long nr_strict_required = end_pfn - blockpfn; 233 unsigned long flags; 234 bool locked = false; 235 236 cursor = pfn_to_page(blockpfn); 237 238 /* Isolate free pages. */ 239 for (; blockpfn < end_pfn; blockpfn++, cursor++) { 240 int isolated, i; 241 struct page *page = cursor; 242 243 nr_scanned++; 244 if (!pfn_valid_within(blockpfn)) 245 continue; 246 if (!valid_page) 247 valid_page = page; 248 if (!PageBuddy(page)) 249 continue; 250 251 /* 252 * The zone lock must be held to isolate freepages. 253 * Unfortunately this is a very coarse lock and can be 254 * heavily contended if there are parallel allocations 255 * or parallel compactions. For async compaction do not 256 * spin on the lock and we acquire the lock as late as 257 * possible. 258 */ 259 locked = compact_checklock_irqsave(&cc->zone->lock, &flags, 260 locked, cc); 261 if (!locked) 262 break; 263 264 /* Recheck this is a suitable migration target under lock */ 265 if (!strict && !suitable_migration_target(page)) 266 break; 267 268 /* Recheck this is a buddy page under lock */ 269 if (!PageBuddy(page)) 270 continue; 271 272 /* Found a free page, break it into order-0 pages */ 273 isolated = split_free_page(page); 274 if (!isolated && strict) 275 break; 276 total_isolated += isolated; 277 for (i = 0; i < isolated; i++) { 278 list_add(&page->lru, freelist); 279 page++; 280 } 281 282 /* If a page was split, advance to the end of it */ 283 if (isolated) { 284 blockpfn += isolated - 1; 285 cursor += isolated - 1; 286 } 287 } 288 289 trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated); 290 291 /* 292 * If strict isolation is requested by CMA then check that all the 293 * pages requested were isolated. If there were any failures, 0 is 294 * returned and CMA will fail. 295 */ 296 if (strict && nr_strict_required > total_isolated) 297 total_isolated = 0; 298 299 if (locked) 300 spin_unlock_irqrestore(&cc->zone->lock, flags); 301 302 /* Update the pageblock-skip if the whole pageblock was scanned */ 303 if (blockpfn == end_pfn) 304 update_pageblock_skip(cc, valid_page, total_isolated, false); 305 306 count_vm_events(COMPACTFREE_SCANNED, nr_scanned); 307 if (total_isolated) 308 count_vm_events(COMPACTISOLATED, total_isolated); 309 310 return total_isolated; 311 } 312 313 /** 314 * isolate_freepages_range() - isolate free pages. 315 * @start_pfn: The first PFN to start isolating. 316 * @end_pfn: The one-past-last PFN. 317 * 318 * Non-free pages, invalid PFNs, or zone boundaries within the 319 * [start_pfn, end_pfn) range are considered errors, cause function to 320 * undo its actions and return zero. 321 * 322 * Otherwise, function returns one-past-the-last PFN of isolated page 323 * (which may be greater then end_pfn if end fell in a middle of 324 * a free page). 325 */ 326 unsigned long 327 isolate_freepages_range(struct compact_control *cc, 328 unsigned long start_pfn, unsigned long end_pfn) 329 { 330 unsigned long isolated, pfn, block_end_pfn; 331 LIST_HEAD(freelist); 332 333 for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) { 334 if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn))) 335 break; 336 337 /* 338 * On subsequent iterations ALIGN() is actually not needed, 339 * but we keep it that we not to complicate the code. 340 */ 341 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages); 342 block_end_pfn = min(block_end_pfn, end_pfn); 343 344 isolated = isolate_freepages_block(cc, pfn, block_end_pfn, 345 &freelist, true); 346 347 /* 348 * In strict mode, isolate_freepages_block() returns 0 if 349 * there are any holes in the block (ie. invalid PFNs or 350 * non-free pages). 351 */ 352 if (!isolated) 353 break; 354 355 /* 356 * If we managed to isolate pages, it is always (1 << n) * 357 * pageblock_nr_pages for some non-negative n. (Max order 358 * page may span two pageblocks). 359 */ 360 } 361 362 /* split_free_page does not map the pages */ 363 map_pages(&freelist); 364 365 if (pfn < end_pfn) { 366 /* Loop terminated early, cleanup. */ 367 release_freepages(&freelist); 368 return 0; 369 } 370 371 /* We don't use freelists for anything. */ 372 return pfn; 373 } 374 375 /* Update the number of anon and file isolated pages in the zone */ 376 static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc) 377 { 378 struct page *page; 379 unsigned int count[2] = { 0, }; 380 381 list_for_each_entry(page, &cc->migratepages, lru) 382 count[!!page_is_file_cache(page)]++; 383 384 /* If locked we can use the interrupt unsafe versions */ 385 if (locked) { 386 __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]); 387 __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]); 388 } else { 389 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]); 390 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]); 391 } 392 } 393 394 /* Similar to reclaim, but different enough that they don't share logic */ 395 static bool too_many_isolated(struct zone *zone) 396 { 397 unsigned long active, inactive, isolated; 398 399 inactive = zone_page_state(zone, NR_INACTIVE_FILE) + 400 zone_page_state(zone, NR_INACTIVE_ANON); 401 active = zone_page_state(zone, NR_ACTIVE_FILE) + 402 zone_page_state(zone, NR_ACTIVE_ANON); 403 isolated = zone_page_state(zone, NR_ISOLATED_FILE) + 404 zone_page_state(zone, NR_ISOLATED_ANON); 405 406 return isolated > (inactive + active) / 2; 407 } 408 409 /** 410 * isolate_migratepages_range() - isolate all migrate-able pages in range. 411 * @zone: Zone pages are in. 412 * @cc: Compaction control structure. 413 * @low_pfn: The first PFN of the range. 414 * @end_pfn: The one-past-the-last PFN of the range. 415 * @unevictable: true if it allows to isolate unevictable pages 416 * 417 * Isolate all pages that can be migrated from the range specified by 418 * [low_pfn, end_pfn). Returns zero if there is a fatal signal 419 * pending), otherwise PFN of the first page that was not scanned 420 * (which may be both less, equal to or more then end_pfn). 421 * 422 * Assumes that cc->migratepages is empty and cc->nr_migratepages is 423 * zero. 424 * 425 * Apart from cc->migratepages and cc->nr_migratetypes this function 426 * does not modify any cc's fields, in particular it does not modify 427 * (or read for that matter) cc->migrate_pfn. 428 */ 429 unsigned long 430 isolate_migratepages_range(struct zone *zone, struct compact_control *cc, 431 unsigned long low_pfn, unsigned long end_pfn, bool unevictable) 432 { 433 unsigned long last_pageblock_nr = 0, pageblock_nr; 434 unsigned long nr_scanned = 0, nr_isolated = 0; 435 struct list_head *migratelist = &cc->migratepages; 436 isolate_mode_t mode = 0; 437 struct lruvec *lruvec; 438 unsigned long flags; 439 bool locked = false; 440 struct page *page = NULL, *valid_page = NULL; 441 442 /* 443 * Ensure that there are not too many pages isolated from the LRU 444 * list by either parallel reclaimers or compaction. If there are, 445 * delay for some time until fewer pages are isolated 446 */ 447 while (unlikely(too_many_isolated(zone))) { 448 /* async migration should just abort */ 449 if (!cc->sync) 450 return 0; 451 452 congestion_wait(BLK_RW_ASYNC, HZ/10); 453 454 if (fatal_signal_pending(current)) 455 return 0; 456 } 457 458 /* Time to isolate some pages for migration */ 459 cond_resched(); 460 for (; low_pfn < end_pfn; low_pfn++) { 461 /* give a chance to irqs before checking need_resched() */ 462 if (locked && !((low_pfn+1) % SWAP_CLUSTER_MAX)) { 463 if (should_release_lock(&zone->lru_lock)) { 464 spin_unlock_irqrestore(&zone->lru_lock, flags); 465 locked = false; 466 } 467 } 468 469 /* 470 * migrate_pfn does not necessarily start aligned to a 471 * pageblock. Ensure that pfn_valid is called when moving 472 * into a new MAX_ORDER_NR_PAGES range in case of large 473 * memory holes within the zone 474 */ 475 if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) { 476 if (!pfn_valid(low_pfn)) { 477 low_pfn += MAX_ORDER_NR_PAGES - 1; 478 continue; 479 } 480 } 481 482 if (!pfn_valid_within(low_pfn)) 483 continue; 484 nr_scanned++; 485 486 /* 487 * Get the page and ensure the page is within the same zone. 488 * See the comment in isolate_freepages about overlapping 489 * nodes. It is deliberate that the new zone lock is not taken 490 * as memory compaction should not move pages between nodes. 491 */ 492 page = pfn_to_page(low_pfn); 493 if (page_zone(page) != zone) 494 continue; 495 496 if (!valid_page) 497 valid_page = page; 498 499 /* If isolation recently failed, do not retry */ 500 pageblock_nr = low_pfn >> pageblock_order; 501 if (!isolation_suitable(cc, page)) 502 goto next_pageblock; 503 504 /* Skip if free */ 505 if (PageBuddy(page)) 506 continue; 507 508 /* 509 * For async migration, also only scan in MOVABLE blocks. Async 510 * migration is optimistic to see if the minimum amount of work 511 * satisfies the allocation 512 */ 513 if (!cc->sync && last_pageblock_nr != pageblock_nr && 514 !migrate_async_suitable(get_pageblock_migratetype(page))) { 515 cc->finished_update_migrate = true; 516 goto next_pageblock; 517 } 518 519 /* 520 * Check may be lockless but that's ok as we recheck later. 521 * It's possible to migrate LRU pages and balloon pages 522 * Skip any other type of page 523 */ 524 if (!PageLRU(page)) { 525 if (unlikely(balloon_page_movable(page))) { 526 if (locked && balloon_page_isolate(page)) { 527 /* Successfully isolated */ 528 cc->finished_update_migrate = true; 529 list_add(&page->lru, migratelist); 530 cc->nr_migratepages++; 531 nr_isolated++; 532 goto check_compact_cluster; 533 } 534 } 535 continue; 536 } 537 538 /* 539 * PageLRU is set. lru_lock normally excludes isolation 540 * splitting and collapsing (collapsing has already happened 541 * if PageLRU is set) but the lock is not necessarily taken 542 * here and it is wasteful to take it just to check transhuge. 543 * Check TransHuge without lock and skip the whole pageblock if 544 * it's either a transhuge or hugetlbfs page, as calling 545 * compound_order() without preventing THP from splitting the 546 * page underneath us may return surprising results. 547 */ 548 if (PageTransHuge(page)) { 549 if (!locked) 550 goto next_pageblock; 551 low_pfn += (1 << compound_order(page)) - 1; 552 continue; 553 } 554 555 /* Check if it is ok to still hold the lock */ 556 locked = compact_checklock_irqsave(&zone->lru_lock, &flags, 557 locked, cc); 558 if (!locked || fatal_signal_pending(current)) 559 break; 560 561 /* Recheck PageLRU and PageTransHuge under lock */ 562 if (!PageLRU(page)) 563 continue; 564 if (PageTransHuge(page)) { 565 low_pfn += (1 << compound_order(page)) - 1; 566 continue; 567 } 568 569 if (!cc->sync) 570 mode |= ISOLATE_ASYNC_MIGRATE; 571 572 if (unevictable) 573 mode |= ISOLATE_UNEVICTABLE; 574 575 lruvec = mem_cgroup_page_lruvec(page, zone); 576 577 /* Try isolate the page */ 578 if (__isolate_lru_page(page, mode) != 0) 579 continue; 580 581 VM_BUG_ON(PageTransCompound(page)); 582 583 /* Successfully isolated */ 584 cc->finished_update_migrate = true; 585 del_page_from_lru_list(page, lruvec, page_lru(page)); 586 list_add(&page->lru, migratelist); 587 cc->nr_migratepages++; 588 nr_isolated++; 589 590 check_compact_cluster: 591 /* Avoid isolating too much */ 592 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) { 593 ++low_pfn; 594 break; 595 } 596 597 continue; 598 599 next_pageblock: 600 low_pfn += pageblock_nr_pages; 601 low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1; 602 last_pageblock_nr = pageblock_nr; 603 } 604 605 acct_isolated(zone, locked, cc); 606 607 if (locked) 608 spin_unlock_irqrestore(&zone->lru_lock, flags); 609 610 /* Update the pageblock-skip if the whole pageblock was scanned */ 611 if (low_pfn == end_pfn) 612 update_pageblock_skip(cc, valid_page, nr_isolated, true); 613 614 trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated); 615 616 count_vm_events(COMPACTMIGRATE_SCANNED, nr_scanned); 617 if (nr_isolated) 618 count_vm_events(COMPACTISOLATED, nr_isolated); 619 620 return low_pfn; 621 } 622 623 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 624 #ifdef CONFIG_COMPACTION 625 /* 626 * Based on information in the current compact_control, find blocks 627 * suitable for isolating free pages from and then isolate them. 628 */ 629 static void isolate_freepages(struct zone *zone, 630 struct compact_control *cc) 631 { 632 struct page *page; 633 unsigned long high_pfn, low_pfn, pfn, zone_end_pfn, end_pfn; 634 int nr_freepages = cc->nr_freepages; 635 struct list_head *freelist = &cc->freepages; 636 637 /* 638 * Initialise the free scanner. The starting point is where we last 639 * scanned from (or the end of the zone if starting). The low point 640 * is the end of the pageblock the migration scanner is using. 641 */ 642 pfn = cc->free_pfn; 643 low_pfn = cc->migrate_pfn + pageblock_nr_pages; 644 645 /* 646 * Take care that if the migration scanner is at the end of the zone 647 * that the free scanner does not accidentally move to the next zone 648 * in the next isolation cycle. 649 */ 650 high_pfn = min(low_pfn, pfn); 651 652 zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages; 653 654 /* 655 * Isolate free pages until enough are available to migrate the 656 * pages on cc->migratepages. We stop searching if the migrate 657 * and free page scanners meet or enough free pages are isolated. 658 */ 659 for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages; 660 pfn -= pageblock_nr_pages) { 661 unsigned long isolated; 662 663 if (!pfn_valid(pfn)) 664 continue; 665 666 /* 667 * Check for overlapping nodes/zones. It's possible on some 668 * configurations to have a setup like 669 * node0 node1 node0 670 * i.e. it's possible that all pages within a zones range of 671 * pages do not belong to a single zone. 672 */ 673 page = pfn_to_page(pfn); 674 if (page_zone(page) != zone) 675 continue; 676 677 /* Check the block is suitable for migration */ 678 if (!suitable_migration_target(page)) 679 continue; 680 681 /* If isolation recently failed, do not retry */ 682 if (!isolation_suitable(cc, page)) 683 continue; 684 685 /* Found a block suitable for isolating free pages from */ 686 isolated = 0; 687 688 /* 689 * As pfn may not start aligned, pfn+pageblock_nr_page 690 * may cross a MAX_ORDER_NR_PAGES boundary and miss 691 * a pfn_valid check. Ensure isolate_freepages_block() 692 * only scans within a pageblock 693 */ 694 end_pfn = ALIGN(pfn + 1, pageblock_nr_pages); 695 end_pfn = min(end_pfn, zone_end_pfn); 696 isolated = isolate_freepages_block(cc, pfn, end_pfn, 697 freelist, false); 698 nr_freepages += isolated; 699 700 /* 701 * Record the highest PFN we isolated pages from. When next 702 * looking for free pages, the search will restart here as 703 * page migration may have returned some pages to the allocator 704 */ 705 if (isolated) { 706 cc->finished_update_free = true; 707 high_pfn = max(high_pfn, pfn); 708 } 709 } 710 711 /* split_free_page does not map the pages */ 712 map_pages(freelist); 713 714 cc->free_pfn = high_pfn; 715 cc->nr_freepages = nr_freepages; 716 } 717 718 /* 719 * This is a migrate-callback that "allocates" freepages by taking pages 720 * from the isolated freelists in the block we are migrating to. 721 */ 722 static struct page *compaction_alloc(struct page *migratepage, 723 unsigned long data, 724 int **result) 725 { 726 struct compact_control *cc = (struct compact_control *)data; 727 struct page *freepage; 728 729 /* Isolate free pages if necessary */ 730 if (list_empty(&cc->freepages)) { 731 isolate_freepages(cc->zone, cc); 732 733 if (list_empty(&cc->freepages)) 734 return NULL; 735 } 736 737 freepage = list_entry(cc->freepages.next, struct page, lru); 738 list_del(&freepage->lru); 739 cc->nr_freepages--; 740 741 return freepage; 742 } 743 744 /* 745 * We cannot control nr_migratepages and nr_freepages fully when migration is 746 * running as migrate_pages() has no knowledge of compact_control. When 747 * migration is complete, we count the number of pages on the lists by hand. 748 */ 749 static void update_nr_listpages(struct compact_control *cc) 750 { 751 int nr_migratepages = 0; 752 int nr_freepages = 0; 753 struct page *page; 754 755 list_for_each_entry(page, &cc->migratepages, lru) 756 nr_migratepages++; 757 list_for_each_entry(page, &cc->freepages, lru) 758 nr_freepages++; 759 760 cc->nr_migratepages = nr_migratepages; 761 cc->nr_freepages = nr_freepages; 762 } 763 764 /* possible outcome of isolate_migratepages */ 765 typedef enum { 766 ISOLATE_ABORT, /* Abort compaction now */ 767 ISOLATE_NONE, /* No pages isolated, continue scanning */ 768 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 769 } isolate_migrate_t; 770 771 /* 772 * Isolate all pages that can be migrated from the block pointed to by 773 * the migrate scanner within compact_control. 774 */ 775 static isolate_migrate_t isolate_migratepages(struct zone *zone, 776 struct compact_control *cc) 777 { 778 unsigned long low_pfn, end_pfn; 779 780 /* Do not scan outside zone boundaries */ 781 low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn); 782 783 /* Only scan within a pageblock boundary */ 784 end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages); 785 786 /* Do not cross the free scanner or scan within a memory hole */ 787 if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) { 788 cc->migrate_pfn = end_pfn; 789 return ISOLATE_NONE; 790 } 791 792 /* Perform the isolation */ 793 low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false); 794 if (!low_pfn || cc->contended) 795 return ISOLATE_ABORT; 796 797 cc->migrate_pfn = low_pfn; 798 799 return ISOLATE_SUCCESS; 800 } 801 802 static int compact_finished(struct zone *zone, 803 struct compact_control *cc) 804 { 805 unsigned long watermark; 806 807 if (fatal_signal_pending(current)) 808 return COMPACT_PARTIAL; 809 810 /* Compaction run completes if the migrate and free scanner meet */ 811 if (cc->free_pfn <= cc->migrate_pfn) { 812 /* 813 * Mark that the PG_migrate_skip information should be cleared 814 * by kswapd when it goes to sleep. kswapd does not set the 815 * flag itself as the decision to be clear should be directly 816 * based on an allocation request. 817 */ 818 if (!current_is_kswapd()) 819 zone->compact_blockskip_flush = true; 820 821 return COMPACT_COMPLETE; 822 } 823 824 /* 825 * order == -1 is expected when compacting via 826 * /proc/sys/vm/compact_memory 827 */ 828 if (cc->order == -1) 829 return COMPACT_CONTINUE; 830 831 /* Compaction run is not finished if the watermark is not met */ 832 watermark = low_wmark_pages(zone); 833 watermark += (1 << cc->order); 834 835 if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0)) 836 return COMPACT_CONTINUE; 837 838 /* Direct compactor: Is a suitable page free? */ 839 if (cc->page) { 840 /* Was a suitable page captured? */ 841 if (*cc->page) 842 return COMPACT_PARTIAL; 843 } else { 844 unsigned int order; 845 for (order = cc->order; order < MAX_ORDER; order++) { 846 struct free_area *area = &zone->free_area[cc->order]; 847 /* Job done if page is free of the right migratetype */ 848 if (!list_empty(&area->free_list[cc->migratetype])) 849 return COMPACT_PARTIAL; 850 851 /* Job done if allocation would set block type */ 852 if (cc->order >= pageblock_order && area->nr_free) 853 return COMPACT_PARTIAL; 854 } 855 } 856 857 return COMPACT_CONTINUE; 858 } 859 860 /* 861 * compaction_suitable: Is this suitable to run compaction on this zone now? 862 * Returns 863 * COMPACT_SKIPPED - If there are too few free pages for compaction 864 * COMPACT_PARTIAL - If the allocation would succeed without compaction 865 * COMPACT_CONTINUE - If compaction should run now 866 */ 867 unsigned long compaction_suitable(struct zone *zone, int order) 868 { 869 int fragindex; 870 unsigned long watermark; 871 872 /* 873 * order == -1 is expected when compacting via 874 * /proc/sys/vm/compact_memory 875 */ 876 if (order == -1) 877 return COMPACT_CONTINUE; 878 879 /* 880 * Watermarks for order-0 must be met for compaction. Note the 2UL. 881 * This is because during migration, copies of pages need to be 882 * allocated and for a short time, the footprint is higher 883 */ 884 watermark = low_wmark_pages(zone) + (2UL << order); 885 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 886 return COMPACT_SKIPPED; 887 888 /* 889 * fragmentation index determines if allocation failures are due to 890 * low memory or external fragmentation 891 * 892 * index of -1000 implies allocations might succeed depending on 893 * watermarks 894 * index towards 0 implies failure is due to lack of memory 895 * index towards 1000 implies failure is due to fragmentation 896 * 897 * Only compact if a failure would be due to fragmentation. 898 */ 899 fragindex = fragmentation_index(zone, order); 900 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 901 return COMPACT_SKIPPED; 902 903 if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark, 904 0, 0)) 905 return COMPACT_PARTIAL; 906 907 return COMPACT_CONTINUE; 908 } 909 910 static void compact_capture_page(struct compact_control *cc) 911 { 912 unsigned long flags; 913 int mtype, mtype_low, mtype_high; 914 915 if (!cc->page || *cc->page) 916 return; 917 918 /* 919 * For MIGRATE_MOVABLE allocations we capture a suitable page ASAP 920 * regardless of the migratetype of the freelist is is captured from. 921 * This is fine because the order for a high-order MIGRATE_MOVABLE 922 * allocation is typically at least a pageblock size and overall 923 * fragmentation is not impaired. Other allocation types must 924 * capture pages from their own migratelist because otherwise they 925 * could pollute other pageblocks like MIGRATE_MOVABLE with 926 * difficult to move pages and making fragmentation worse overall. 927 */ 928 if (cc->migratetype == MIGRATE_MOVABLE) { 929 mtype_low = 0; 930 mtype_high = MIGRATE_PCPTYPES; 931 } else { 932 mtype_low = cc->migratetype; 933 mtype_high = cc->migratetype + 1; 934 } 935 936 /* Speculatively examine the free lists without zone lock */ 937 for (mtype = mtype_low; mtype < mtype_high; mtype++) { 938 int order; 939 for (order = cc->order; order < MAX_ORDER; order++) { 940 struct page *page; 941 struct free_area *area; 942 area = &(cc->zone->free_area[order]); 943 if (list_empty(&area->free_list[mtype])) 944 continue; 945 946 /* Take the lock and attempt capture of the page */ 947 if (!compact_trylock_irqsave(&cc->zone->lock, &flags, cc)) 948 return; 949 if (!list_empty(&area->free_list[mtype])) { 950 page = list_entry(area->free_list[mtype].next, 951 struct page, lru); 952 if (capture_free_page(page, cc->order, mtype)) { 953 spin_unlock_irqrestore(&cc->zone->lock, 954 flags); 955 *cc->page = page; 956 return; 957 } 958 } 959 spin_unlock_irqrestore(&cc->zone->lock, flags); 960 } 961 } 962 } 963 964 static int compact_zone(struct zone *zone, struct compact_control *cc) 965 { 966 int ret; 967 unsigned long start_pfn = zone->zone_start_pfn; 968 unsigned long end_pfn = zone->zone_start_pfn + zone->spanned_pages; 969 970 ret = compaction_suitable(zone, cc->order); 971 switch (ret) { 972 case COMPACT_PARTIAL: 973 case COMPACT_SKIPPED: 974 /* Compaction is likely to fail */ 975 return ret; 976 case COMPACT_CONTINUE: 977 /* Fall through to compaction */ 978 ; 979 } 980 981 /* 982 * Setup to move all movable pages to the end of the zone. Used cached 983 * information on where the scanners should start but check that it 984 * is initialised by ensuring the values are within zone boundaries. 985 */ 986 cc->migrate_pfn = zone->compact_cached_migrate_pfn; 987 cc->free_pfn = zone->compact_cached_free_pfn; 988 if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) { 989 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1); 990 zone->compact_cached_free_pfn = cc->free_pfn; 991 } 992 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) { 993 cc->migrate_pfn = start_pfn; 994 zone->compact_cached_migrate_pfn = cc->migrate_pfn; 995 } 996 997 /* 998 * Clear pageblock skip if there were failures recently and compaction 999 * is about to be retried after being deferred. kswapd does not do 1000 * this reset as it'll reset the cached information when going to sleep. 1001 */ 1002 if (compaction_restarting(zone, cc->order) && !current_is_kswapd()) 1003 __reset_isolation_suitable(zone); 1004 1005 migrate_prep_local(); 1006 1007 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) { 1008 unsigned long nr_migrate, nr_remaining; 1009 int err; 1010 1011 switch (isolate_migratepages(zone, cc)) { 1012 case ISOLATE_ABORT: 1013 ret = COMPACT_PARTIAL; 1014 putback_movable_pages(&cc->migratepages); 1015 cc->nr_migratepages = 0; 1016 goto out; 1017 case ISOLATE_NONE: 1018 continue; 1019 case ISOLATE_SUCCESS: 1020 ; 1021 } 1022 1023 nr_migrate = cc->nr_migratepages; 1024 err = migrate_pages(&cc->migratepages, compaction_alloc, 1025 (unsigned long)cc, false, 1026 cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC, 1027 MR_COMPACTION); 1028 update_nr_listpages(cc); 1029 nr_remaining = cc->nr_migratepages; 1030 1031 trace_mm_compaction_migratepages(nr_migrate - nr_remaining, 1032 nr_remaining); 1033 1034 /* Release isolated pages not migrated */ 1035 if (err) { 1036 putback_movable_pages(&cc->migratepages); 1037 cc->nr_migratepages = 0; 1038 if (err == -ENOMEM) { 1039 ret = COMPACT_PARTIAL; 1040 goto out; 1041 } 1042 } 1043 1044 /* Capture a page now if it is a suitable size */ 1045 compact_capture_page(cc); 1046 } 1047 1048 out: 1049 /* Release free pages and check accounting */ 1050 cc->nr_freepages -= release_freepages(&cc->freepages); 1051 VM_BUG_ON(cc->nr_freepages != 0); 1052 1053 return ret; 1054 } 1055 1056 static unsigned long compact_zone_order(struct zone *zone, 1057 int order, gfp_t gfp_mask, 1058 bool sync, bool *contended, 1059 struct page **page) 1060 { 1061 unsigned long ret; 1062 struct compact_control cc = { 1063 .nr_freepages = 0, 1064 .nr_migratepages = 0, 1065 .order = order, 1066 .migratetype = allocflags_to_migratetype(gfp_mask), 1067 .zone = zone, 1068 .sync = sync, 1069 .page = page, 1070 }; 1071 INIT_LIST_HEAD(&cc.freepages); 1072 INIT_LIST_HEAD(&cc.migratepages); 1073 1074 ret = compact_zone(zone, &cc); 1075 1076 VM_BUG_ON(!list_empty(&cc.freepages)); 1077 VM_BUG_ON(!list_empty(&cc.migratepages)); 1078 1079 *contended = cc.contended; 1080 return ret; 1081 } 1082 1083 int sysctl_extfrag_threshold = 500; 1084 1085 /** 1086 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 1087 * @zonelist: The zonelist used for the current allocation 1088 * @order: The order of the current allocation 1089 * @gfp_mask: The GFP mask of the current allocation 1090 * @nodemask: The allowed nodes to allocate from 1091 * @sync: Whether migration is synchronous or not 1092 * @contended: Return value that is true if compaction was aborted due to lock contention 1093 * @page: Optionally capture a free page of the requested order during compaction 1094 * 1095 * This is the main entry point for direct page compaction. 1096 */ 1097 unsigned long try_to_compact_pages(struct zonelist *zonelist, 1098 int order, gfp_t gfp_mask, nodemask_t *nodemask, 1099 bool sync, bool *contended, struct page **page) 1100 { 1101 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 1102 int may_enter_fs = gfp_mask & __GFP_FS; 1103 int may_perform_io = gfp_mask & __GFP_IO; 1104 struct zoneref *z; 1105 struct zone *zone; 1106 int rc = COMPACT_SKIPPED; 1107 int alloc_flags = 0; 1108 1109 /* Check if the GFP flags allow compaction */ 1110 if (!order || !may_enter_fs || !may_perform_io) 1111 return rc; 1112 1113 count_vm_event(COMPACTSTALL); 1114 1115 #ifdef CONFIG_CMA 1116 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 1117 alloc_flags |= ALLOC_CMA; 1118 #endif 1119 /* Compact each zone in the list */ 1120 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx, 1121 nodemask) { 1122 int status; 1123 1124 status = compact_zone_order(zone, order, gfp_mask, sync, 1125 contended, page); 1126 rc = max(status, rc); 1127 1128 /* If a normal allocation would succeed, stop compacting */ 1129 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 1130 alloc_flags)) 1131 break; 1132 } 1133 1134 return rc; 1135 } 1136 1137 1138 /* Compact all zones within a node */ 1139 static int __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc) 1140 { 1141 int zoneid; 1142 struct zone *zone; 1143 1144 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 1145 1146 zone = &pgdat->node_zones[zoneid]; 1147 if (!populated_zone(zone)) 1148 continue; 1149 1150 cc->nr_freepages = 0; 1151 cc->nr_migratepages = 0; 1152 cc->zone = zone; 1153 INIT_LIST_HEAD(&cc->freepages); 1154 INIT_LIST_HEAD(&cc->migratepages); 1155 1156 if (cc->order == -1 || !compaction_deferred(zone, cc->order)) 1157 compact_zone(zone, cc); 1158 1159 if (cc->order > 0) { 1160 int ok = zone_watermark_ok(zone, cc->order, 1161 low_wmark_pages(zone), 0, 0); 1162 if (ok && cc->order >= zone->compact_order_failed) 1163 zone->compact_order_failed = cc->order + 1; 1164 /* Currently async compaction is never deferred. */ 1165 else if (!ok && cc->sync) 1166 defer_compaction(zone, cc->order); 1167 } 1168 1169 VM_BUG_ON(!list_empty(&cc->freepages)); 1170 VM_BUG_ON(!list_empty(&cc->migratepages)); 1171 } 1172 1173 return 0; 1174 } 1175 1176 int compact_pgdat(pg_data_t *pgdat, int order) 1177 { 1178 struct compact_control cc = { 1179 .order = order, 1180 .sync = false, 1181 .page = NULL, 1182 }; 1183 1184 return __compact_pgdat(pgdat, &cc); 1185 } 1186 1187 static int compact_node(int nid) 1188 { 1189 struct compact_control cc = { 1190 .order = -1, 1191 .sync = true, 1192 .page = NULL, 1193 }; 1194 1195 return __compact_pgdat(NODE_DATA(nid), &cc); 1196 } 1197 1198 /* Compact all nodes in the system */ 1199 static int compact_nodes(void) 1200 { 1201 int nid; 1202 1203 /* Flush pending updates to the LRU lists */ 1204 lru_add_drain_all(); 1205 1206 for_each_online_node(nid) 1207 compact_node(nid); 1208 1209 return COMPACT_COMPLETE; 1210 } 1211 1212 /* The written value is actually unused, all memory is compacted */ 1213 int sysctl_compact_memory; 1214 1215 /* This is the entry point for compacting all nodes via /proc/sys/vm */ 1216 int sysctl_compaction_handler(struct ctl_table *table, int write, 1217 void __user *buffer, size_t *length, loff_t *ppos) 1218 { 1219 if (write) 1220 return compact_nodes(); 1221 1222 return 0; 1223 } 1224 1225 int sysctl_extfrag_handler(struct ctl_table *table, int write, 1226 void __user *buffer, size_t *length, loff_t *ppos) 1227 { 1228 proc_dointvec_minmax(table, write, buffer, length, ppos); 1229 1230 return 0; 1231 } 1232 1233 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 1234 ssize_t sysfs_compact_node(struct device *dev, 1235 struct device_attribute *attr, 1236 const char *buf, size_t count) 1237 { 1238 int nid = dev->id; 1239 1240 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 1241 /* Flush pending updates to the LRU lists */ 1242 lru_add_drain_all(); 1243 1244 compact_node(nid); 1245 } 1246 1247 return count; 1248 } 1249 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node); 1250 1251 int compaction_register_node(struct node *node) 1252 { 1253 return device_create_file(&node->dev, &dev_attr_compact); 1254 } 1255 1256 void compaction_unregister_node(struct node *node) 1257 { 1258 return device_remove_file(&node->dev, &dev_attr_compact); 1259 } 1260 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 1261 1262 #endif /* CONFIG_COMPACTION */ 1263