xref: /linux/mm/compaction.c (revision aec499c75cf8e0b599be4d559e6922b613085f8f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27 
28 #ifdef CONFIG_COMPACTION
29 static inline void count_compact_event(enum vm_event_item item)
30 {
31 	count_vm_event(item);
32 }
33 
34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36 	count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42 
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47 
48 #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)
52 
53 /*
54  * Fragmentation score check interval for proactive compaction purposes.
55  */
56 static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
57 
58 /*
59  * Page order with-respect-to which proactive compaction
60  * calculates external fragmentation, which is used as
61  * the "fragmentation score" of a node/zone.
62  */
63 #if defined CONFIG_TRANSPARENT_HUGEPAGE
64 #define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
65 #elif defined CONFIG_HUGETLBFS
66 #define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
67 #else
68 #define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
69 #endif
70 
71 static unsigned long release_freepages(struct list_head *freelist)
72 {
73 	struct page *page, *next;
74 	unsigned long high_pfn = 0;
75 
76 	list_for_each_entry_safe(page, next, freelist, lru) {
77 		unsigned long pfn = page_to_pfn(page);
78 		list_del(&page->lru);
79 		__free_page(page);
80 		if (pfn > high_pfn)
81 			high_pfn = pfn;
82 	}
83 
84 	return high_pfn;
85 }
86 
87 static void split_map_pages(struct list_head *list)
88 {
89 	unsigned int i, order, nr_pages;
90 	struct page *page, *next;
91 	LIST_HEAD(tmp_list);
92 
93 	list_for_each_entry_safe(page, next, list, lru) {
94 		list_del(&page->lru);
95 
96 		order = page_private(page);
97 		nr_pages = 1 << order;
98 
99 		post_alloc_hook(page, order, __GFP_MOVABLE);
100 		if (order)
101 			split_page(page, order);
102 
103 		for (i = 0; i < nr_pages; i++) {
104 			list_add(&page->lru, &tmp_list);
105 			page++;
106 		}
107 	}
108 
109 	list_splice(&tmp_list, list);
110 }
111 
112 #ifdef CONFIG_COMPACTION
113 
114 int PageMovable(struct page *page)
115 {
116 	struct address_space *mapping;
117 
118 	VM_BUG_ON_PAGE(!PageLocked(page), page);
119 	if (!__PageMovable(page))
120 		return 0;
121 
122 	mapping = page_mapping(page);
123 	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
124 		return 1;
125 
126 	return 0;
127 }
128 EXPORT_SYMBOL(PageMovable);
129 
130 void __SetPageMovable(struct page *page, struct address_space *mapping)
131 {
132 	VM_BUG_ON_PAGE(!PageLocked(page), page);
133 	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
134 	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
135 }
136 EXPORT_SYMBOL(__SetPageMovable);
137 
138 void __ClearPageMovable(struct page *page)
139 {
140 	VM_BUG_ON_PAGE(!PageMovable(page), page);
141 	/*
142 	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
143 	 * flag so that VM can catch up released page by driver after isolation.
144 	 * With it, VM migration doesn't try to put it back.
145 	 */
146 	page->mapping = (void *)((unsigned long)page->mapping &
147 				PAGE_MAPPING_MOVABLE);
148 }
149 EXPORT_SYMBOL(__ClearPageMovable);
150 
151 /* Do not skip compaction more than 64 times */
152 #define COMPACT_MAX_DEFER_SHIFT 6
153 
154 /*
155  * Compaction is deferred when compaction fails to result in a page
156  * allocation success. 1 << compact_defer_shift, compactions are skipped up
157  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
158  */
159 static void defer_compaction(struct zone *zone, int order)
160 {
161 	zone->compact_considered = 0;
162 	zone->compact_defer_shift++;
163 
164 	if (order < zone->compact_order_failed)
165 		zone->compact_order_failed = order;
166 
167 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
168 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
169 
170 	trace_mm_compaction_defer_compaction(zone, order);
171 }
172 
173 /* Returns true if compaction should be skipped this time */
174 static bool compaction_deferred(struct zone *zone, int order)
175 {
176 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
177 
178 	if (order < zone->compact_order_failed)
179 		return false;
180 
181 	/* Avoid possible overflow */
182 	if (++zone->compact_considered >= defer_limit) {
183 		zone->compact_considered = defer_limit;
184 		return false;
185 	}
186 
187 	trace_mm_compaction_deferred(zone, order);
188 
189 	return true;
190 }
191 
192 /*
193  * Update defer tracking counters after successful compaction of given order,
194  * which means an allocation either succeeded (alloc_success == true) or is
195  * expected to succeed.
196  */
197 void compaction_defer_reset(struct zone *zone, int order,
198 		bool alloc_success)
199 {
200 	if (alloc_success) {
201 		zone->compact_considered = 0;
202 		zone->compact_defer_shift = 0;
203 	}
204 	if (order >= zone->compact_order_failed)
205 		zone->compact_order_failed = order + 1;
206 
207 	trace_mm_compaction_defer_reset(zone, order);
208 }
209 
210 /* Returns true if restarting compaction after many failures */
211 static bool compaction_restarting(struct zone *zone, int order)
212 {
213 	if (order < zone->compact_order_failed)
214 		return false;
215 
216 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
217 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
218 }
219 
220 /* Returns true if the pageblock should be scanned for pages to isolate. */
221 static inline bool isolation_suitable(struct compact_control *cc,
222 					struct page *page)
223 {
224 	if (cc->ignore_skip_hint)
225 		return true;
226 
227 	return !get_pageblock_skip(page);
228 }
229 
230 static void reset_cached_positions(struct zone *zone)
231 {
232 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
233 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
234 	zone->compact_cached_free_pfn =
235 				pageblock_start_pfn(zone_end_pfn(zone) - 1);
236 }
237 
238 /*
239  * Compound pages of >= pageblock_order should consistently be skipped until
240  * released. It is always pointless to compact pages of such order (if they are
241  * migratable), and the pageblocks they occupy cannot contain any free pages.
242  */
243 static bool pageblock_skip_persistent(struct page *page)
244 {
245 	if (!PageCompound(page))
246 		return false;
247 
248 	page = compound_head(page);
249 
250 	if (compound_order(page) >= pageblock_order)
251 		return true;
252 
253 	return false;
254 }
255 
256 static bool
257 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
258 							bool check_target)
259 {
260 	struct page *page = pfn_to_online_page(pfn);
261 	struct page *block_page;
262 	struct page *end_page;
263 	unsigned long block_pfn;
264 
265 	if (!page)
266 		return false;
267 	if (zone != page_zone(page))
268 		return false;
269 	if (pageblock_skip_persistent(page))
270 		return false;
271 
272 	/*
273 	 * If skip is already cleared do no further checking once the
274 	 * restart points have been set.
275 	 */
276 	if (check_source && check_target && !get_pageblock_skip(page))
277 		return true;
278 
279 	/*
280 	 * If clearing skip for the target scanner, do not select a
281 	 * non-movable pageblock as the starting point.
282 	 */
283 	if (!check_source && check_target &&
284 	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
285 		return false;
286 
287 	/* Ensure the start of the pageblock or zone is online and valid */
288 	block_pfn = pageblock_start_pfn(pfn);
289 	block_pfn = max(block_pfn, zone->zone_start_pfn);
290 	block_page = pfn_to_online_page(block_pfn);
291 	if (block_page) {
292 		page = block_page;
293 		pfn = block_pfn;
294 	}
295 
296 	/* Ensure the end of the pageblock or zone is online and valid */
297 	block_pfn = pageblock_end_pfn(pfn) - 1;
298 	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
299 	end_page = pfn_to_online_page(block_pfn);
300 	if (!end_page)
301 		return false;
302 
303 	/*
304 	 * Only clear the hint if a sample indicates there is either a
305 	 * free page or an LRU page in the block. One or other condition
306 	 * is necessary for the block to be a migration source/target.
307 	 */
308 	do {
309 		if (check_source && PageLRU(page)) {
310 			clear_pageblock_skip(page);
311 			return true;
312 		}
313 
314 		if (check_target && PageBuddy(page)) {
315 			clear_pageblock_skip(page);
316 			return true;
317 		}
318 
319 		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
320 		pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
321 	} while (page <= end_page);
322 
323 	return false;
324 }
325 
326 /*
327  * This function is called to clear all cached information on pageblocks that
328  * should be skipped for page isolation when the migrate and free page scanner
329  * meet.
330  */
331 static void __reset_isolation_suitable(struct zone *zone)
332 {
333 	unsigned long migrate_pfn = zone->zone_start_pfn;
334 	unsigned long free_pfn = zone_end_pfn(zone) - 1;
335 	unsigned long reset_migrate = free_pfn;
336 	unsigned long reset_free = migrate_pfn;
337 	bool source_set = false;
338 	bool free_set = false;
339 
340 	if (!zone->compact_blockskip_flush)
341 		return;
342 
343 	zone->compact_blockskip_flush = false;
344 
345 	/*
346 	 * Walk the zone and update pageblock skip information. Source looks
347 	 * for PageLRU while target looks for PageBuddy. When the scanner
348 	 * is found, both PageBuddy and PageLRU are checked as the pageblock
349 	 * is suitable as both source and target.
350 	 */
351 	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
352 					free_pfn -= pageblock_nr_pages) {
353 		cond_resched();
354 
355 		/* Update the migrate PFN */
356 		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
357 		    migrate_pfn < reset_migrate) {
358 			source_set = true;
359 			reset_migrate = migrate_pfn;
360 			zone->compact_init_migrate_pfn = reset_migrate;
361 			zone->compact_cached_migrate_pfn[0] = reset_migrate;
362 			zone->compact_cached_migrate_pfn[1] = reset_migrate;
363 		}
364 
365 		/* Update the free PFN */
366 		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
367 		    free_pfn > reset_free) {
368 			free_set = true;
369 			reset_free = free_pfn;
370 			zone->compact_init_free_pfn = reset_free;
371 			zone->compact_cached_free_pfn = reset_free;
372 		}
373 	}
374 
375 	/* Leave no distance if no suitable block was reset */
376 	if (reset_migrate >= reset_free) {
377 		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
378 		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
379 		zone->compact_cached_free_pfn = free_pfn;
380 	}
381 }
382 
383 void reset_isolation_suitable(pg_data_t *pgdat)
384 {
385 	int zoneid;
386 
387 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
388 		struct zone *zone = &pgdat->node_zones[zoneid];
389 		if (!populated_zone(zone))
390 			continue;
391 
392 		/* Only flush if a full compaction finished recently */
393 		if (zone->compact_blockskip_flush)
394 			__reset_isolation_suitable(zone);
395 	}
396 }
397 
398 /*
399  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
400  * locks are not required for read/writers. Returns true if it was already set.
401  */
402 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
403 							unsigned long pfn)
404 {
405 	bool skip;
406 
407 	/* Do no update if skip hint is being ignored */
408 	if (cc->ignore_skip_hint)
409 		return false;
410 
411 	if (!IS_ALIGNED(pfn, pageblock_nr_pages))
412 		return false;
413 
414 	skip = get_pageblock_skip(page);
415 	if (!skip && !cc->no_set_skip_hint)
416 		set_pageblock_skip(page);
417 
418 	return skip;
419 }
420 
421 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
422 {
423 	struct zone *zone = cc->zone;
424 
425 	pfn = pageblock_end_pfn(pfn);
426 
427 	/* Set for isolation rather than compaction */
428 	if (cc->no_set_skip_hint)
429 		return;
430 
431 	if (pfn > zone->compact_cached_migrate_pfn[0])
432 		zone->compact_cached_migrate_pfn[0] = pfn;
433 	if (cc->mode != MIGRATE_ASYNC &&
434 	    pfn > zone->compact_cached_migrate_pfn[1])
435 		zone->compact_cached_migrate_pfn[1] = pfn;
436 }
437 
438 /*
439  * If no pages were isolated then mark this pageblock to be skipped in the
440  * future. The information is later cleared by __reset_isolation_suitable().
441  */
442 static void update_pageblock_skip(struct compact_control *cc,
443 			struct page *page, unsigned long pfn)
444 {
445 	struct zone *zone = cc->zone;
446 
447 	if (cc->no_set_skip_hint)
448 		return;
449 
450 	if (!page)
451 		return;
452 
453 	set_pageblock_skip(page);
454 
455 	/* Update where async and sync compaction should restart */
456 	if (pfn < zone->compact_cached_free_pfn)
457 		zone->compact_cached_free_pfn = pfn;
458 }
459 #else
460 static inline bool isolation_suitable(struct compact_control *cc,
461 					struct page *page)
462 {
463 	return true;
464 }
465 
466 static inline bool pageblock_skip_persistent(struct page *page)
467 {
468 	return false;
469 }
470 
471 static inline void update_pageblock_skip(struct compact_control *cc,
472 			struct page *page, unsigned long pfn)
473 {
474 }
475 
476 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
477 {
478 }
479 
480 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
481 							unsigned long pfn)
482 {
483 	return false;
484 }
485 #endif /* CONFIG_COMPACTION */
486 
487 /*
488  * Compaction requires the taking of some coarse locks that are potentially
489  * very heavily contended. For async compaction, trylock and record if the
490  * lock is contended. The lock will still be acquired but compaction will
491  * abort when the current block is finished regardless of success rate.
492  * Sync compaction acquires the lock.
493  *
494  * Always returns true which makes it easier to track lock state in callers.
495  */
496 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
497 						struct compact_control *cc)
498 	__acquires(lock)
499 {
500 	/* Track if the lock is contended in async mode */
501 	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
502 		if (spin_trylock_irqsave(lock, *flags))
503 			return true;
504 
505 		cc->contended = true;
506 	}
507 
508 	spin_lock_irqsave(lock, *flags);
509 	return true;
510 }
511 
512 /*
513  * Compaction requires the taking of some coarse locks that are potentially
514  * very heavily contended. The lock should be periodically unlocked to avoid
515  * having disabled IRQs for a long time, even when there is nobody waiting on
516  * the lock. It might also be that allowing the IRQs will result in
517  * need_resched() becoming true. If scheduling is needed, async compaction
518  * aborts. Sync compaction schedules.
519  * Either compaction type will also abort if a fatal signal is pending.
520  * In either case if the lock was locked, it is dropped and not regained.
521  *
522  * Returns true if compaction should abort due to fatal signal pending, or
523  *		async compaction due to need_resched()
524  * Returns false when compaction can continue (sync compaction might have
525  *		scheduled)
526  */
527 static bool compact_unlock_should_abort(spinlock_t *lock,
528 		unsigned long flags, bool *locked, struct compact_control *cc)
529 {
530 	if (*locked) {
531 		spin_unlock_irqrestore(lock, flags);
532 		*locked = false;
533 	}
534 
535 	if (fatal_signal_pending(current)) {
536 		cc->contended = true;
537 		return true;
538 	}
539 
540 	cond_resched();
541 
542 	return false;
543 }
544 
545 /*
546  * Isolate free pages onto a private freelist. If @strict is true, will abort
547  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
548  * (even though it may still end up isolating some pages).
549  */
550 static unsigned long isolate_freepages_block(struct compact_control *cc,
551 				unsigned long *start_pfn,
552 				unsigned long end_pfn,
553 				struct list_head *freelist,
554 				unsigned int stride,
555 				bool strict)
556 {
557 	int nr_scanned = 0, total_isolated = 0;
558 	struct page *cursor;
559 	unsigned long flags = 0;
560 	bool locked = false;
561 	unsigned long blockpfn = *start_pfn;
562 	unsigned int order;
563 
564 	/* Strict mode is for isolation, speed is secondary */
565 	if (strict)
566 		stride = 1;
567 
568 	cursor = pfn_to_page(blockpfn);
569 
570 	/* Isolate free pages. */
571 	for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
572 		int isolated;
573 		struct page *page = cursor;
574 
575 		/*
576 		 * Periodically drop the lock (if held) regardless of its
577 		 * contention, to give chance to IRQs. Abort if fatal signal
578 		 * pending or async compaction detects need_resched()
579 		 */
580 		if (!(blockpfn % SWAP_CLUSTER_MAX)
581 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
582 								&locked, cc))
583 			break;
584 
585 		nr_scanned++;
586 
587 		/*
588 		 * For compound pages such as THP and hugetlbfs, we can save
589 		 * potentially a lot of iterations if we skip them at once.
590 		 * The check is racy, but we can consider only valid values
591 		 * and the only danger is skipping too much.
592 		 */
593 		if (PageCompound(page)) {
594 			const unsigned int order = compound_order(page);
595 
596 			if (likely(order < MAX_ORDER)) {
597 				blockpfn += (1UL << order) - 1;
598 				cursor += (1UL << order) - 1;
599 			}
600 			goto isolate_fail;
601 		}
602 
603 		if (!PageBuddy(page))
604 			goto isolate_fail;
605 
606 		/*
607 		 * If we already hold the lock, we can skip some rechecking.
608 		 * Note that if we hold the lock now, checked_pageblock was
609 		 * already set in some previous iteration (or strict is true),
610 		 * so it is correct to skip the suitable migration target
611 		 * recheck as well.
612 		 */
613 		if (!locked) {
614 			locked = compact_lock_irqsave(&cc->zone->lock,
615 								&flags, cc);
616 
617 			/* Recheck this is a buddy page under lock */
618 			if (!PageBuddy(page))
619 				goto isolate_fail;
620 		}
621 
622 		/* Found a free page, will break it into order-0 pages */
623 		order = buddy_order(page);
624 		isolated = __isolate_free_page(page, order);
625 		if (!isolated)
626 			break;
627 		set_page_private(page, order);
628 
629 		total_isolated += isolated;
630 		cc->nr_freepages += isolated;
631 		list_add_tail(&page->lru, freelist);
632 
633 		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
634 			blockpfn += isolated;
635 			break;
636 		}
637 		/* Advance to the end of split page */
638 		blockpfn += isolated - 1;
639 		cursor += isolated - 1;
640 		continue;
641 
642 isolate_fail:
643 		if (strict)
644 			break;
645 		else
646 			continue;
647 
648 	}
649 
650 	if (locked)
651 		spin_unlock_irqrestore(&cc->zone->lock, flags);
652 
653 	/*
654 	 * There is a tiny chance that we have read bogus compound_order(),
655 	 * so be careful to not go outside of the pageblock.
656 	 */
657 	if (unlikely(blockpfn > end_pfn))
658 		blockpfn = end_pfn;
659 
660 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
661 					nr_scanned, total_isolated);
662 
663 	/* Record how far we have got within the block */
664 	*start_pfn = blockpfn;
665 
666 	/*
667 	 * If strict isolation is requested by CMA then check that all the
668 	 * pages requested were isolated. If there were any failures, 0 is
669 	 * returned and CMA will fail.
670 	 */
671 	if (strict && blockpfn < end_pfn)
672 		total_isolated = 0;
673 
674 	cc->total_free_scanned += nr_scanned;
675 	if (total_isolated)
676 		count_compact_events(COMPACTISOLATED, total_isolated);
677 	return total_isolated;
678 }
679 
680 /**
681  * isolate_freepages_range() - isolate free pages.
682  * @cc:        Compaction control structure.
683  * @start_pfn: The first PFN to start isolating.
684  * @end_pfn:   The one-past-last PFN.
685  *
686  * Non-free pages, invalid PFNs, or zone boundaries within the
687  * [start_pfn, end_pfn) range are considered errors, cause function to
688  * undo its actions and return zero.
689  *
690  * Otherwise, function returns one-past-the-last PFN of isolated page
691  * (which may be greater then end_pfn if end fell in a middle of
692  * a free page).
693  */
694 unsigned long
695 isolate_freepages_range(struct compact_control *cc,
696 			unsigned long start_pfn, unsigned long end_pfn)
697 {
698 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
699 	LIST_HEAD(freelist);
700 
701 	pfn = start_pfn;
702 	block_start_pfn = pageblock_start_pfn(pfn);
703 	if (block_start_pfn < cc->zone->zone_start_pfn)
704 		block_start_pfn = cc->zone->zone_start_pfn;
705 	block_end_pfn = pageblock_end_pfn(pfn);
706 
707 	for (; pfn < end_pfn; pfn += isolated,
708 				block_start_pfn = block_end_pfn,
709 				block_end_pfn += pageblock_nr_pages) {
710 		/* Protect pfn from changing by isolate_freepages_block */
711 		unsigned long isolate_start_pfn = pfn;
712 
713 		block_end_pfn = min(block_end_pfn, end_pfn);
714 
715 		/*
716 		 * pfn could pass the block_end_pfn if isolated freepage
717 		 * is more than pageblock order. In this case, we adjust
718 		 * scanning range to right one.
719 		 */
720 		if (pfn >= block_end_pfn) {
721 			block_start_pfn = pageblock_start_pfn(pfn);
722 			block_end_pfn = pageblock_end_pfn(pfn);
723 			block_end_pfn = min(block_end_pfn, end_pfn);
724 		}
725 
726 		if (!pageblock_pfn_to_page(block_start_pfn,
727 					block_end_pfn, cc->zone))
728 			break;
729 
730 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
731 					block_end_pfn, &freelist, 0, true);
732 
733 		/*
734 		 * In strict mode, isolate_freepages_block() returns 0 if
735 		 * there are any holes in the block (ie. invalid PFNs or
736 		 * non-free pages).
737 		 */
738 		if (!isolated)
739 			break;
740 
741 		/*
742 		 * If we managed to isolate pages, it is always (1 << n) *
743 		 * pageblock_nr_pages for some non-negative n.  (Max order
744 		 * page may span two pageblocks).
745 		 */
746 	}
747 
748 	/* __isolate_free_page() does not map the pages */
749 	split_map_pages(&freelist);
750 
751 	if (pfn < end_pfn) {
752 		/* Loop terminated early, cleanup. */
753 		release_freepages(&freelist);
754 		return 0;
755 	}
756 
757 	/* We don't use freelists for anything. */
758 	return pfn;
759 }
760 
761 /* Similar to reclaim, but different enough that they don't share logic */
762 static bool too_many_isolated(pg_data_t *pgdat)
763 {
764 	bool too_many;
765 
766 	unsigned long active, inactive, isolated;
767 
768 	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
769 			node_page_state(pgdat, NR_INACTIVE_ANON);
770 	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
771 			node_page_state(pgdat, NR_ACTIVE_ANON);
772 	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
773 			node_page_state(pgdat, NR_ISOLATED_ANON);
774 
775 	too_many = isolated > (inactive + active) / 2;
776 	if (!too_many)
777 		wake_throttle_isolated(pgdat);
778 
779 	return too_many;
780 }
781 
782 /**
783  * isolate_migratepages_block() - isolate all migrate-able pages within
784  *				  a single pageblock
785  * @cc:		Compaction control structure.
786  * @low_pfn:	The first PFN to isolate
787  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
788  * @isolate_mode: Isolation mode to be used.
789  *
790  * Isolate all pages that can be migrated from the range specified by
791  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
792  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
793  * -ENOMEM in case we could not allocate a page, or 0.
794  * cc->migrate_pfn will contain the next pfn to scan.
795  *
796  * The pages are isolated on cc->migratepages list (not required to be empty),
797  * and cc->nr_migratepages is updated accordingly.
798  */
799 static int
800 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
801 			unsigned long end_pfn, isolate_mode_t isolate_mode)
802 {
803 	pg_data_t *pgdat = cc->zone->zone_pgdat;
804 	unsigned long nr_scanned = 0, nr_isolated = 0;
805 	struct lruvec *lruvec;
806 	unsigned long flags = 0;
807 	struct lruvec *locked = NULL;
808 	struct page *page = NULL, *valid_page = NULL;
809 	unsigned long start_pfn = low_pfn;
810 	bool skip_on_failure = false;
811 	unsigned long next_skip_pfn = 0;
812 	bool skip_updated = false;
813 	int ret = 0;
814 
815 	cc->migrate_pfn = low_pfn;
816 
817 	/*
818 	 * Ensure that there are not too many pages isolated from the LRU
819 	 * list by either parallel reclaimers or compaction. If there are,
820 	 * delay for some time until fewer pages are isolated
821 	 */
822 	while (unlikely(too_many_isolated(pgdat))) {
823 		/* stop isolation if there are still pages not migrated */
824 		if (cc->nr_migratepages)
825 			return -EAGAIN;
826 
827 		/* async migration should just abort */
828 		if (cc->mode == MIGRATE_ASYNC)
829 			return -EAGAIN;
830 
831 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
832 
833 		if (fatal_signal_pending(current))
834 			return -EINTR;
835 	}
836 
837 	cond_resched();
838 
839 	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
840 		skip_on_failure = true;
841 		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
842 	}
843 
844 	/* Time to isolate some pages for migration */
845 	for (; low_pfn < end_pfn; low_pfn++) {
846 
847 		if (skip_on_failure && low_pfn >= next_skip_pfn) {
848 			/*
849 			 * We have isolated all migration candidates in the
850 			 * previous order-aligned block, and did not skip it due
851 			 * to failure. We should migrate the pages now and
852 			 * hopefully succeed compaction.
853 			 */
854 			if (nr_isolated)
855 				break;
856 
857 			/*
858 			 * We failed to isolate in the previous order-aligned
859 			 * block. Set the new boundary to the end of the
860 			 * current block. Note we can't simply increase
861 			 * next_skip_pfn by 1 << order, as low_pfn might have
862 			 * been incremented by a higher number due to skipping
863 			 * a compound or a high-order buddy page in the
864 			 * previous loop iteration.
865 			 */
866 			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
867 		}
868 
869 		/*
870 		 * Periodically drop the lock (if held) regardless of its
871 		 * contention, to give chance to IRQs. Abort completely if
872 		 * a fatal signal is pending.
873 		 */
874 		if (!(low_pfn % SWAP_CLUSTER_MAX)) {
875 			if (locked) {
876 				unlock_page_lruvec_irqrestore(locked, flags);
877 				locked = NULL;
878 			}
879 
880 			if (fatal_signal_pending(current)) {
881 				cc->contended = true;
882 				ret = -EINTR;
883 
884 				goto fatal_pending;
885 			}
886 
887 			cond_resched();
888 		}
889 
890 		nr_scanned++;
891 
892 		page = pfn_to_page(low_pfn);
893 
894 		/*
895 		 * Check if the pageblock has already been marked skipped.
896 		 * Only the aligned PFN is checked as the caller isolates
897 		 * COMPACT_CLUSTER_MAX at a time so the second call must
898 		 * not falsely conclude that the block should be skipped.
899 		 */
900 		if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
901 			if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
902 				low_pfn = end_pfn;
903 				page = NULL;
904 				goto isolate_abort;
905 			}
906 			valid_page = page;
907 		}
908 
909 		if (PageHuge(page) && cc->alloc_contig) {
910 			ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
911 
912 			/*
913 			 * Fail isolation in case isolate_or_dissolve_huge_page()
914 			 * reports an error. In case of -ENOMEM, abort right away.
915 			 */
916 			if (ret < 0) {
917 				 /* Do not report -EBUSY down the chain */
918 				if (ret == -EBUSY)
919 					ret = 0;
920 				low_pfn += (1UL << compound_order(page)) - 1;
921 				goto isolate_fail;
922 			}
923 
924 			if (PageHuge(page)) {
925 				/*
926 				 * Hugepage was successfully isolated and placed
927 				 * on the cc->migratepages list.
928 				 */
929 				low_pfn += compound_nr(page) - 1;
930 				goto isolate_success_no_list;
931 			}
932 
933 			/*
934 			 * Ok, the hugepage was dissolved. Now these pages are
935 			 * Buddy and cannot be re-allocated because they are
936 			 * isolated. Fall-through as the check below handles
937 			 * Buddy pages.
938 			 */
939 		}
940 
941 		/*
942 		 * Skip if free. We read page order here without zone lock
943 		 * which is generally unsafe, but the race window is small and
944 		 * the worst thing that can happen is that we skip some
945 		 * potential isolation targets.
946 		 */
947 		if (PageBuddy(page)) {
948 			unsigned long freepage_order = buddy_order_unsafe(page);
949 
950 			/*
951 			 * Without lock, we cannot be sure that what we got is
952 			 * a valid page order. Consider only values in the
953 			 * valid order range to prevent low_pfn overflow.
954 			 */
955 			if (freepage_order > 0 && freepage_order < MAX_ORDER)
956 				low_pfn += (1UL << freepage_order) - 1;
957 			continue;
958 		}
959 
960 		/*
961 		 * Regardless of being on LRU, compound pages such as THP and
962 		 * hugetlbfs are not to be compacted unless we are attempting
963 		 * an allocation much larger than the huge page size (eg CMA).
964 		 * We can potentially save a lot of iterations if we skip them
965 		 * at once. The check is racy, but we can consider only valid
966 		 * values and the only danger is skipping too much.
967 		 */
968 		if (PageCompound(page) && !cc->alloc_contig) {
969 			const unsigned int order = compound_order(page);
970 
971 			if (likely(order < MAX_ORDER))
972 				low_pfn += (1UL << order) - 1;
973 			goto isolate_fail;
974 		}
975 
976 		/*
977 		 * Check may be lockless but that's ok as we recheck later.
978 		 * It's possible to migrate LRU and non-lru movable pages.
979 		 * Skip any other type of page
980 		 */
981 		if (!PageLRU(page)) {
982 			/*
983 			 * __PageMovable can return false positive so we need
984 			 * to verify it under page_lock.
985 			 */
986 			if (unlikely(__PageMovable(page)) &&
987 					!PageIsolated(page)) {
988 				if (locked) {
989 					unlock_page_lruvec_irqrestore(locked, flags);
990 					locked = NULL;
991 				}
992 
993 				if (!isolate_movable_page(page, isolate_mode))
994 					goto isolate_success;
995 			}
996 
997 			goto isolate_fail;
998 		}
999 
1000 		/*
1001 		 * Migration will fail if an anonymous page is pinned in memory,
1002 		 * so avoid taking lru_lock and isolating it unnecessarily in an
1003 		 * admittedly racy check.
1004 		 */
1005 		if (!page_mapping(page) &&
1006 		    page_count(page) > page_mapcount(page))
1007 			goto isolate_fail;
1008 
1009 		/*
1010 		 * Only allow to migrate anonymous pages in GFP_NOFS context
1011 		 * because those do not depend on fs locks.
1012 		 */
1013 		if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
1014 			goto isolate_fail;
1015 
1016 		/*
1017 		 * Be careful not to clear PageLRU until after we're
1018 		 * sure the page is not being freed elsewhere -- the
1019 		 * page release code relies on it.
1020 		 */
1021 		if (unlikely(!get_page_unless_zero(page)))
1022 			goto isolate_fail;
1023 
1024 		if (!__isolate_lru_page_prepare(page, isolate_mode))
1025 			goto isolate_fail_put;
1026 
1027 		/* Try isolate the page */
1028 		if (!TestClearPageLRU(page))
1029 			goto isolate_fail_put;
1030 
1031 		lruvec = folio_lruvec(page_folio(page));
1032 
1033 		/* If we already hold the lock, we can skip some rechecking */
1034 		if (lruvec != locked) {
1035 			if (locked)
1036 				unlock_page_lruvec_irqrestore(locked, flags);
1037 
1038 			compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1039 			locked = lruvec;
1040 
1041 			lruvec_memcg_debug(lruvec, page_folio(page));
1042 
1043 			/* Try get exclusive access under lock */
1044 			if (!skip_updated) {
1045 				skip_updated = true;
1046 				if (test_and_set_skip(cc, page, low_pfn))
1047 					goto isolate_abort;
1048 			}
1049 
1050 			/*
1051 			 * Page become compound since the non-locked check,
1052 			 * and it's on LRU. It can only be a THP so the order
1053 			 * is safe to read and it's 0 for tail pages.
1054 			 */
1055 			if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1056 				low_pfn += compound_nr(page) - 1;
1057 				SetPageLRU(page);
1058 				goto isolate_fail_put;
1059 			}
1060 		}
1061 
1062 		/* The whole page is taken off the LRU; skip the tail pages. */
1063 		if (PageCompound(page))
1064 			low_pfn += compound_nr(page) - 1;
1065 
1066 		/* Successfully isolated */
1067 		del_page_from_lru_list(page, lruvec);
1068 		mod_node_page_state(page_pgdat(page),
1069 				NR_ISOLATED_ANON + page_is_file_lru(page),
1070 				thp_nr_pages(page));
1071 
1072 isolate_success:
1073 		list_add(&page->lru, &cc->migratepages);
1074 isolate_success_no_list:
1075 		cc->nr_migratepages += compound_nr(page);
1076 		nr_isolated += compound_nr(page);
1077 
1078 		/*
1079 		 * Avoid isolating too much unless this block is being
1080 		 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1081 		 * or a lock is contended. For contention, isolate quickly to
1082 		 * potentially remove one source of contention.
1083 		 */
1084 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1085 		    !cc->rescan && !cc->contended) {
1086 			++low_pfn;
1087 			break;
1088 		}
1089 
1090 		continue;
1091 
1092 isolate_fail_put:
1093 		/* Avoid potential deadlock in freeing page under lru_lock */
1094 		if (locked) {
1095 			unlock_page_lruvec_irqrestore(locked, flags);
1096 			locked = NULL;
1097 		}
1098 		put_page(page);
1099 
1100 isolate_fail:
1101 		if (!skip_on_failure && ret != -ENOMEM)
1102 			continue;
1103 
1104 		/*
1105 		 * We have isolated some pages, but then failed. Release them
1106 		 * instead of migrating, as we cannot form the cc->order buddy
1107 		 * page anyway.
1108 		 */
1109 		if (nr_isolated) {
1110 			if (locked) {
1111 				unlock_page_lruvec_irqrestore(locked, flags);
1112 				locked = NULL;
1113 			}
1114 			putback_movable_pages(&cc->migratepages);
1115 			cc->nr_migratepages = 0;
1116 			nr_isolated = 0;
1117 		}
1118 
1119 		if (low_pfn < next_skip_pfn) {
1120 			low_pfn = next_skip_pfn - 1;
1121 			/*
1122 			 * The check near the loop beginning would have updated
1123 			 * next_skip_pfn too, but this is a bit simpler.
1124 			 */
1125 			next_skip_pfn += 1UL << cc->order;
1126 		}
1127 
1128 		if (ret == -ENOMEM)
1129 			break;
1130 	}
1131 
1132 	/*
1133 	 * The PageBuddy() check could have potentially brought us outside
1134 	 * the range to be scanned.
1135 	 */
1136 	if (unlikely(low_pfn > end_pfn))
1137 		low_pfn = end_pfn;
1138 
1139 	page = NULL;
1140 
1141 isolate_abort:
1142 	if (locked)
1143 		unlock_page_lruvec_irqrestore(locked, flags);
1144 	if (page) {
1145 		SetPageLRU(page);
1146 		put_page(page);
1147 	}
1148 
1149 	/*
1150 	 * Updated the cached scanner pfn once the pageblock has been scanned
1151 	 * Pages will either be migrated in which case there is no point
1152 	 * scanning in the near future or migration failed in which case the
1153 	 * failure reason may persist. The block is marked for skipping if
1154 	 * there were no pages isolated in the block or if the block is
1155 	 * rescanned twice in a row.
1156 	 */
1157 	if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1158 		if (valid_page && !skip_updated)
1159 			set_pageblock_skip(valid_page);
1160 		update_cached_migrate(cc, low_pfn);
1161 	}
1162 
1163 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1164 						nr_scanned, nr_isolated);
1165 
1166 fatal_pending:
1167 	cc->total_migrate_scanned += nr_scanned;
1168 	if (nr_isolated)
1169 		count_compact_events(COMPACTISOLATED, nr_isolated);
1170 
1171 	cc->migrate_pfn = low_pfn;
1172 
1173 	return ret;
1174 }
1175 
1176 /**
1177  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1178  * @cc:        Compaction control structure.
1179  * @start_pfn: The first PFN to start isolating.
1180  * @end_pfn:   The one-past-last PFN.
1181  *
1182  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1183  * in case we could not allocate a page, or 0.
1184  */
1185 int
1186 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1187 							unsigned long end_pfn)
1188 {
1189 	unsigned long pfn, block_start_pfn, block_end_pfn;
1190 	int ret = 0;
1191 
1192 	/* Scan block by block. First and last block may be incomplete */
1193 	pfn = start_pfn;
1194 	block_start_pfn = pageblock_start_pfn(pfn);
1195 	if (block_start_pfn < cc->zone->zone_start_pfn)
1196 		block_start_pfn = cc->zone->zone_start_pfn;
1197 	block_end_pfn = pageblock_end_pfn(pfn);
1198 
1199 	for (; pfn < end_pfn; pfn = block_end_pfn,
1200 				block_start_pfn = block_end_pfn,
1201 				block_end_pfn += pageblock_nr_pages) {
1202 
1203 		block_end_pfn = min(block_end_pfn, end_pfn);
1204 
1205 		if (!pageblock_pfn_to_page(block_start_pfn,
1206 					block_end_pfn, cc->zone))
1207 			continue;
1208 
1209 		ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1210 						 ISOLATE_UNEVICTABLE);
1211 
1212 		if (ret)
1213 			break;
1214 
1215 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1216 			break;
1217 	}
1218 
1219 	return ret;
1220 }
1221 
1222 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1223 #ifdef CONFIG_COMPACTION
1224 
1225 static bool suitable_migration_source(struct compact_control *cc,
1226 							struct page *page)
1227 {
1228 	int block_mt;
1229 
1230 	if (pageblock_skip_persistent(page))
1231 		return false;
1232 
1233 	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1234 		return true;
1235 
1236 	block_mt = get_pageblock_migratetype(page);
1237 
1238 	if (cc->migratetype == MIGRATE_MOVABLE)
1239 		return is_migrate_movable(block_mt);
1240 	else
1241 		return block_mt == cc->migratetype;
1242 }
1243 
1244 /* Returns true if the page is within a block suitable for migration to */
1245 static bool suitable_migration_target(struct compact_control *cc,
1246 							struct page *page)
1247 {
1248 	/* If the page is a large free page, then disallow migration */
1249 	if (PageBuddy(page)) {
1250 		/*
1251 		 * We are checking page_order without zone->lock taken. But
1252 		 * the only small danger is that we skip a potentially suitable
1253 		 * pageblock, so it's not worth to check order for valid range.
1254 		 */
1255 		if (buddy_order_unsafe(page) >= pageblock_order)
1256 			return false;
1257 	}
1258 
1259 	if (cc->ignore_block_suitable)
1260 		return true;
1261 
1262 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1263 	if (is_migrate_movable(get_pageblock_migratetype(page)))
1264 		return true;
1265 
1266 	/* Otherwise skip the block */
1267 	return false;
1268 }
1269 
1270 static inline unsigned int
1271 freelist_scan_limit(struct compact_control *cc)
1272 {
1273 	unsigned short shift = BITS_PER_LONG - 1;
1274 
1275 	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1276 }
1277 
1278 /*
1279  * Test whether the free scanner has reached the same or lower pageblock than
1280  * the migration scanner, and compaction should thus terminate.
1281  */
1282 static inline bool compact_scanners_met(struct compact_control *cc)
1283 {
1284 	return (cc->free_pfn >> pageblock_order)
1285 		<= (cc->migrate_pfn >> pageblock_order);
1286 }
1287 
1288 /*
1289  * Used when scanning for a suitable migration target which scans freelists
1290  * in reverse. Reorders the list such as the unscanned pages are scanned
1291  * first on the next iteration of the free scanner
1292  */
1293 static void
1294 move_freelist_head(struct list_head *freelist, struct page *freepage)
1295 {
1296 	LIST_HEAD(sublist);
1297 
1298 	if (!list_is_last(freelist, &freepage->lru)) {
1299 		list_cut_before(&sublist, freelist, &freepage->lru);
1300 		list_splice_tail(&sublist, freelist);
1301 	}
1302 }
1303 
1304 /*
1305  * Similar to move_freelist_head except used by the migration scanner
1306  * when scanning forward. It's possible for these list operations to
1307  * move against each other if they search the free list exactly in
1308  * lockstep.
1309  */
1310 static void
1311 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1312 {
1313 	LIST_HEAD(sublist);
1314 
1315 	if (!list_is_first(freelist, &freepage->lru)) {
1316 		list_cut_position(&sublist, freelist, &freepage->lru);
1317 		list_splice_tail(&sublist, freelist);
1318 	}
1319 }
1320 
1321 static void
1322 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1323 {
1324 	unsigned long start_pfn, end_pfn;
1325 	struct page *page;
1326 
1327 	/* Do not search around if there are enough pages already */
1328 	if (cc->nr_freepages >= cc->nr_migratepages)
1329 		return;
1330 
1331 	/* Minimise scanning during async compaction */
1332 	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1333 		return;
1334 
1335 	/* Pageblock boundaries */
1336 	start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1337 	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1338 
1339 	page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1340 	if (!page)
1341 		return;
1342 
1343 	/* Scan before */
1344 	if (start_pfn != pfn) {
1345 		isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1346 		if (cc->nr_freepages >= cc->nr_migratepages)
1347 			return;
1348 	}
1349 
1350 	/* Scan after */
1351 	start_pfn = pfn + nr_isolated;
1352 	if (start_pfn < end_pfn)
1353 		isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1354 
1355 	/* Skip this pageblock in the future as it's full or nearly full */
1356 	if (cc->nr_freepages < cc->nr_migratepages)
1357 		set_pageblock_skip(page);
1358 }
1359 
1360 /* Search orders in round-robin fashion */
1361 static int next_search_order(struct compact_control *cc, int order)
1362 {
1363 	order--;
1364 	if (order < 0)
1365 		order = cc->order - 1;
1366 
1367 	/* Search wrapped around? */
1368 	if (order == cc->search_order) {
1369 		cc->search_order--;
1370 		if (cc->search_order < 0)
1371 			cc->search_order = cc->order - 1;
1372 		return -1;
1373 	}
1374 
1375 	return order;
1376 }
1377 
1378 static unsigned long
1379 fast_isolate_freepages(struct compact_control *cc)
1380 {
1381 	unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1382 	unsigned int nr_scanned = 0;
1383 	unsigned long low_pfn, min_pfn, highest = 0;
1384 	unsigned long nr_isolated = 0;
1385 	unsigned long distance;
1386 	struct page *page = NULL;
1387 	bool scan_start = false;
1388 	int order;
1389 
1390 	/* Full compaction passes in a negative order */
1391 	if (cc->order <= 0)
1392 		return cc->free_pfn;
1393 
1394 	/*
1395 	 * If starting the scan, use a deeper search and use the highest
1396 	 * PFN found if a suitable one is not found.
1397 	 */
1398 	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1399 		limit = pageblock_nr_pages >> 1;
1400 		scan_start = true;
1401 	}
1402 
1403 	/*
1404 	 * Preferred point is in the top quarter of the scan space but take
1405 	 * a pfn from the top half if the search is problematic.
1406 	 */
1407 	distance = (cc->free_pfn - cc->migrate_pfn);
1408 	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1409 	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1410 
1411 	if (WARN_ON_ONCE(min_pfn > low_pfn))
1412 		low_pfn = min_pfn;
1413 
1414 	/*
1415 	 * Search starts from the last successful isolation order or the next
1416 	 * order to search after a previous failure
1417 	 */
1418 	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1419 
1420 	for (order = cc->search_order;
1421 	     !page && order >= 0;
1422 	     order = next_search_order(cc, order)) {
1423 		struct free_area *area = &cc->zone->free_area[order];
1424 		struct list_head *freelist;
1425 		struct page *freepage;
1426 		unsigned long flags;
1427 		unsigned int order_scanned = 0;
1428 		unsigned long high_pfn = 0;
1429 
1430 		if (!area->nr_free)
1431 			continue;
1432 
1433 		spin_lock_irqsave(&cc->zone->lock, flags);
1434 		freelist = &area->free_list[MIGRATE_MOVABLE];
1435 		list_for_each_entry_reverse(freepage, freelist, lru) {
1436 			unsigned long pfn;
1437 
1438 			order_scanned++;
1439 			nr_scanned++;
1440 			pfn = page_to_pfn(freepage);
1441 
1442 			if (pfn >= highest)
1443 				highest = max(pageblock_start_pfn(pfn),
1444 					      cc->zone->zone_start_pfn);
1445 
1446 			if (pfn >= low_pfn) {
1447 				cc->fast_search_fail = 0;
1448 				cc->search_order = order;
1449 				page = freepage;
1450 				break;
1451 			}
1452 
1453 			if (pfn >= min_pfn && pfn > high_pfn) {
1454 				high_pfn = pfn;
1455 
1456 				/* Shorten the scan if a candidate is found */
1457 				limit >>= 1;
1458 			}
1459 
1460 			if (order_scanned >= limit)
1461 				break;
1462 		}
1463 
1464 		/* Use a minimum pfn if a preferred one was not found */
1465 		if (!page && high_pfn) {
1466 			page = pfn_to_page(high_pfn);
1467 
1468 			/* Update freepage for the list reorder below */
1469 			freepage = page;
1470 		}
1471 
1472 		/* Reorder to so a future search skips recent pages */
1473 		move_freelist_head(freelist, freepage);
1474 
1475 		/* Isolate the page if available */
1476 		if (page) {
1477 			if (__isolate_free_page(page, order)) {
1478 				set_page_private(page, order);
1479 				nr_isolated = 1 << order;
1480 				cc->nr_freepages += nr_isolated;
1481 				list_add_tail(&page->lru, &cc->freepages);
1482 				count_compact_events(COMPACTISOLATED, nr_isolated);
1483 			} else {
1484 				/* If isolation fails, abort the search */
1485 				order = cc->search_order + 1;
1486 				page = NULL;
1487 			}
1488 		}
1489 
1490 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1491 
1492 		/*
1493 		 * Smaller scan on next order so the total scan is related
1494 		 * to freelist_scan_limit.
1495 		 */
1496 		if (order_scanned >= limit)
1497 			limit = max(1U, limit >> 1);
1498 	}
1499 
1500 	if (!page) {
1501 		cc->fast_search_fail++;
1502 		if (scan_start) {
1503 			/*
1504 			 * Use the highest PFN found above min. If one was
1505 			 * not found, be pessimistic for direct compaction
1506 			 * and use the min mark.
1507 			 */
1508 			if (highest) {
1509 				page = pfn_to_page(highest);
1510 				cc->free_pfn = highest;
1511 			} else {
1512 				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1513 					page = pageblock_pfn_to_page(min_pfn,
1514 						min(pageblock_end_pfn(min_pfn),
1515 						    zone_end_pfn(cc->zone)),
1516 						cc->zone);
1517 					cc->free_pfn = min_pfn;
1518 				}
1519 			}
1520 		}
1521 	}
1522 
1523 	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1524 		highest -= pageblock_nr_pages;
1525 		cc->zone->compact_cached_free_pfn = highest;
1526 	}
1527 
1528 	cc->total_free_scanned += nr_scanned;
1529 	if (!page)
1530 		return cc->free_pfn;
1531 
1532 	low_pfn = page_to_pfn(page);
1533 	fast_isolate_around(cc, low_pfn, nr_isolated);
1534 	return low_pfn;
1535 }
1536 
1537 /*
1538  * Based on information in the current compact_control, find blocks
1539  * suitable for isolating free pages from and then isolate them.
1540  */
1541 static void isolate_freepages(struct compact_control *cc)
1542 {
1543 	struct zone *zone = cc->zone;
1544 	struct page *page;
1545 	unsigned long block_start_pfn;	/* start of current pageblock */
1546 	unsigned long isolate_start_pfn; /* exact pfn we start at */
1547 	unsigned long block_end_pfn;	/* end of current pageblock */
1548 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1549 	struct list_head *freelist = &cc->freepages;
1550 	unsigned int stride;
1551 
1552 	/* Try a small search of the free lists for a candidate */
1553 	isolate_start_pfn = fast_isolate_freepages(cc);
1554 	if (cc->nr_freepages)
1555 		goto splitmap;
1556 
1557 	/*
1558 	 * Initialise the free scanner. The starting point is where we last
1559 	 * successfully isolated from, zone-cached value, or the end of the
1560 	 * zone when isolating for the first time. For looping we also need
1561 	 * this pfn aligned down to the pageblock boundary, because we do
1562 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1563 	 * For ending point, take care when isolating in last pageblock of a
1564 	 * zone which ends in the middle of a pageblock.
1565 	 * The low boundary is the end of the pageblock the migration scanner
1566 	 * is using.
1567 	 */
1568 	isolate_start_pfn = cc->free_pfn;
1569 	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1570 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1571 						zone_end_pfn(zone));
1572 	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1573 	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1574 
1575 	/*
1576 	 * Isolate free pages until enough are available to migrate the
1577 	 * pages on cc->migratepages. We stop searching if the migrate
1578 	 * and free page scanners meet or enough free pages are isolated.
1579 	 */
1580 	for (; block_start_pfn >= low_pfn;
1581 				block_end_pfn = block_start_pfn,
1582 				block_start_pfn -= pageblock_nr_pages,
1583 				isolate_start_pfn = block_start_pfn) {
1584 		unsigned long nr_isolated;
1585 
1586 		/*
1587 		 * This can iterate a massively long zone without finding any
1588 		 * suitable migration targets, so periodically check resched.
1589 		 */
1590 		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1591 			cond_resched();
1592 
1593 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1594 									zone);
1595 		if (!page)
1596 			continue;
1597 
1598 		/* Check the block is suitable for migration */
1599 		if (!suitable_migration_target(cc, page))
1600 			continue;
1601 
1602 		/* If isolation recently failed, do not retry */
1603 		if (!isolation_suitable(cc, page))
1604 			continue;
1605 
1606 		/* Found a block suitable for isolating free pages from. */
1607 		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1608 					block_end_pfn, freelist, stride, false);
1609 
1610 		/* Update the skip hint if the full pageblock was scanned */
1611 		if (isolate_start_pfn == block_end_pfn)
1612 			update_pageblock_skip(cc, page, block_start_pfn);
1613 
1614 		/* Are enough freepages isolated? */
1615 		if (cc->nr_freepages >= cc->nr_migratepages) {
1616 			if (isolate_start_pfn >= block_end_pfn) {
1617 				/*
1618 				 * Restart at previous pageblock if more
1619 				 * freepages can be isolated next time.
1620 				 */
1621 				isolate_start_pfn =
1622 					block_start_pfn - pageblock_nr_pages;
1623 			}
1624 			break;
1625 		} else if (isolate_start_pfn < block_end_pfn) {
1626 			/*
1627 			 * If isolation failed early, do not continue
1628 			 * needlessly.
1629 			 */
1630 			break;
1631 		}
1632 
1633 		/* Adjust stride depending on isolation */
1634 		if (nr_isolated) {
1635 			stride = 1;
1636 			continue;
1637 		}
1638 		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1639 	}
1640 
1641 	/*
1642 	 * Record where the free scanner will restart next time. Either we
1643 	 * broke from the loop and set isolate_start_pfn based on the last
1644 	 * call to isolate_freepages_block(), or we met the migration scanner
1645 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1646 	 */
1647 	cc->free_pfn = isolate_start_pfn;
1648 
1649 splitmap:
1650 	/* __isolate_free_page() does not map the pages */
1651 	split_map_pages(freelist);
1652 }
1653 
1654 /*
1655  * This is a migrate-callback that "allocates" freepages by taking pages
1656  * from the isolated freelists in the block we are migrating to.
1657  */
1658 static struct page *compaction_alloc(struct page *migratepage,
1659 					unsigned long data)
1660 {
1661 	struct compact_control *cc = (struct compact_control *)data;
1662 	struct page *freepage;
1663 
1664 	if (list_empty(&cc->freepages)) {
1665 		isolate_freepages(cc);
1666 
1667 		if (list_empty(&cc->freepages))
1668 			return NULL;
1669 	}
1670 
1671 	freepage = list_entry(cc->freepages.next, struct page, lru);
1672 	list_del(&freepage->lru);
1673 	cc->nr_freepages--;
1674 
1675 	return freepage;
1676 }
1677 
1678 /*
1679  * This is a migrate-callback that "frees" freepages back to the isolated
1680  * freelist.  All pages on the freelist are from the same zone, so there is no
1681  * special handling needed for NUMA.
1682  */
1683 static void compaction_free(struct page *page, unsigned long data)
1684 {
1685 	struct compact_control *cc = (struct compact_control *)data;
1686 
1687 	list_add(&page->lru, &cc->freepages);
1688 	cc->nr_freepages++;
1689 }
1690 
1691 /* possible outcome of isolate_migratepages */
1692 typedef enum {
1693 	ISOLATE_ABORT,		/* Abort compaction now */
1694 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1695 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1696 } isolate_migrate_t;
1697 
1698 /*
1699  * Allow userspace to control policy on scanning the unevictable LRU for
1700  * compactable pages.
1701  */
1702 #ifdef CONFIG_PREEMPT_RT
1703 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1704 #else
1705 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1706 #endif
1707 
1708 static inline void
1709 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1710 {
1711 	if (cc->fast_start_pfn == ULONG_MAX)
1712 		return;
1713 
1714 	if (!cc->fast_start_pfn)
1715 		cc->fast_start_pfn = pfn;
1716 
1717 	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1718 }
1719 
1720 static inline unsigned long
1721 reinit_migrate_pfn(struct compact_control *cc)
1722 {
1723 	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1724 		return cc->migrate_pfn;
1725 
1726 	cc->migrate_pfn = cc->fast_start_pfn;
1727 	cc->fast_start_pfn = ULONG_MAX;
1728 
1729 	return cc->migrate_pfn;
1730 }
1731 
1732 /*
1733  * Briefly search the free lists for a migration source that already has
1734  * some free pages to reduce the number of pages that need migration
1735  * before a pageblock is free.
1736  */
1737 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1738 {
1739 	unsigned int limit = freelist_scan_limit(cc);
1740 	unsigned int nr_scanned = 0;
1741 	unsigned long distance;
1742 	unsigned long pfn = cc->migrate_pfn;
1743 	unsigned long high_pfn;
1744 	int order;
1745 	bool found_block = false;
1746 
1747 	/* Skip hints are relied on to avoid repeats on the fast search */
1748 	if (cc->ignore_skip_hint)
1749 		return pfn;
1750 
1751 	/*
1752 	 * If the migrate_pfn is not at the start of a zone or the start
1753 	 * of a pageblock then assume this is a continuation of a previous
1754 	 * scan restarted due to COMPACT_CLUSTER_MAX.
1755 	 */
1756 	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1757 		return pfn;
1758 
1759 	/*
1760 	 * For smaller orders, just linearly scan as the number of pages
1761 	 * to migrate should be relatively small and does not necessarily
1762 	 * justify freeing up a large block for a small allocation.
1763 	 */
1764 	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1765 		return pfn;
1766 
1767 	/*
1768 	 * Only allow kcompactd and direct requests for movable pages to
1769 	 * quickly clear out a MOVABLE pageblock for allocation. This
1770 	 * reduces the risk that a large movable pageblock is freed for
1771 	 * an unmovable/reclaimable small allocation.
1772 	 */
1773 	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1774 		return pfn;
1775 
1776 	/*
1777 	 * When starting the migration scanner, pick any pageblock within the
1778 	 * first half of the search space. Otherwise try and pick a pageblock
1779 	 * within the first eighth to reduce the chances that a migration
1780 	 * target later becomes a source.
1781 	 */
1782 	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1783 	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1784 		distance >>= 2;
1785 	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1786 
1787 	for (order = cc->order - 1;
1788 	     order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1789 	     order--) {
1790 		struct free_area *area = &cc->zone->free_area[order];
1791 		struct list_head *freelist;
1792 		unsigned long flags;
1793 		struct page *freepage;
1794 
1795 		if (!area->nr_free)
1796 			continue;
1797 
1798 		spin_lock_irqsave(&cc->zone->lock, flags);
1799 		freelist = &area->free_list[MIGRATE_MOVABLE];
1800 		list_for_each_entry(freepage, freelist, lru) {
1801 			unsigned long free_pfn;
1802 
1803 			if (nr_scanned++ >= limit) {
1804 				move_freelist_tail(freelist, freepage);
1805 				break;
1806 			}
1807 
1808 			free_pfn = page_to_pfn(freepage);
1809 			if (free_pfn < high_pfn) {
1810 				/*
1811 				 * Avoid if skipped recently. Ideally it would
1812 				 * move to the tail but even safe iteration of
1813 				 * the list assumes an entry is deleted, not
1814 				 * reordered.
1815 				 */
1816 				if (get_pageblock_skip(freepage))
1817 					continue;
1818 
1819 				/* Reorder to so a future search skips recent pages */
1820 				move_freelist_tail(freelist, freepage);
1821 
1822 				update_fast_start_pfn(cc, free_pfn);
1823 				pfn = pageblock_start_pfn(free_pfn);
1824 				cc->fast_search_fail = 0;
1825 				found_block = true;
1826 				set_pageblock_skip(freepage);
1827 				break;
1828 			}
1829 		}
1830 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1831 	}
1832 
1833 	cc->total_migrate_scanned += nr_scanned;
1834 
1835 	/*
1836 	 * If fast scanning failed then use a cached entry for a page block
1837 	 * that had free pages as the basis for starting a linear scan.
1838 	 */
1839 	if (!found_block) {
1840 		cc->fast_search_fail++;
1841 		pfn = reinit_migrate_pfn(cc);
1842 	}
1843 	return pfn;
1844 }
1845 
1846 /*
1847  * Isolate all pages that can be migrated from the first suitable block,
1848  * starting at the block pointed to by the migrate scanner pfn within
1849  * compact_control.
1850  */
1851 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1852 {
1853 	unsigned long block_start_pfn;
1854 	unsigned long block_end_pfn;
1855 	unsigned long low_pfn;
1856 	struct page *page;
1857 	const isolate_mode_t isolate_mode =
1858 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1859 		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1860 	bool fast_find_block;
1861 
1862 	/*
1863 	 * Start at where we last stopped, or beginning of the zone as
1864 	 * initialized by compact_zone(). The first failure will use
1865 	 * the lowest PFN as the starting point for linear scanning.
1866 	 */
1867 	low_pfn = fast_find_migrateblock(cc);
1868 	block_start_pfn = pageblock_start_pfn(low_pfn);
1869 	if (block_start_pfn < cc->zone->zone_start_pfn)
1870 		block_start_pfn = cc->zone->zone_start_pfn;
1871 
1872 	/*
1873 	 * fast_find_migrateblock marks a pageblock skipped so to avoid
1874 	 * the isolation_suitable check below, check whether the fast
1875 	 * search was successful.
1876 	 */
1877 	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1878 
1879 	/* Only scan within a pageblock boundary */
1880 	block_end_pfn = pageblock_end_pfn(low_pfn);
1881 
1882 	/*
1883 	 * Iterate over whole pageblocks until we find the first suitable.
1884 	 * Do not cross the free scanner.
1885 	 */
1886 	for (; block_end_pfn <= cc->free_pfn;
1887 			fast_find_block = false,
1888 			cc->migrate_pfn = low_pfn = block_end_pfn,
1889 			block_start_pfn = block_end_pfn,
1890 			block_end_pfn += pageblock_nr_pages) {
1891 
1892 		/*
1893 		 * This can potentially iterate a massively long zone with
1894 		 * many pageblocks unsuitable, so periodically check if we
1895 		 * need to schedule.
1896 		 */
1897 		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1898 			cond_resched();
1899 
1900 		page = pageblock_pfn_to_page(block_start_pfn,
1901 						block_end_pfn, cc->zone);
1902 		if (!page)
1903 			continue;
1904 
1905 		/*
1906 		 * If isolation recently failed, do not retry. Only check the
1907 		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1908 		 * to be visited multiple times. Assume skip was checked
1909 		 * before making it "skip" so other compaction instances do
1910 		 * not scan the same block.
1911 		 */
1912 		if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1913 		    !fast_find_block && !isolation_suitable(cc, page))
1914 			continue;
1915 
1916 		/*
1917 		 * For async compaction, also only scan in MOVABLE blocks
1918 		 * without huge pages. Async compaction is optimistic to see
1919 		 * if the minimum amount of work satisfies the allocation.
1920 		 * The cached PFN is updated as it's possible that all
1921 		 * remaining blocks between source and target are unsuitable
1922 		 * and the compaction scanners fail to meet.
1923 		 */
1924 		if (!suitable_migration_source(cc, page)) {
1925 			update_cached_migrate(cc, block_end_pfn);
1926 			continue;
1927 		}
1928 
1929 		/* Perform the isolation */
1930 		if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1931 						isolate_mode))
1932 			return ISOLATE_ABORT;
1933 
1934 		/*
1935 		 * Either we isolated something and proceed with migration. Or
1936 		 * we failed and compact_zone should decide if we should
1937 		 * continue or not.
1938 		 */
1939 		break;
1940 	}
1941 
1942 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1943 }
1944 
1945 /*
1946  * order == -1 is expected when compacting via
1947  * /proc/sys/vm/compact_memory
1948  */
1949 static inline bool is_via_compact_memory(int order)
1950 {
1951 	return order == -1;
1952 }
1953 
1954 static bool kswapd_is_running(pg_data_t *pgdat)
1955 {
1956 	return pgdat->kswapd && task_is_running(pgdat->kswapd);
1957 }
1958 
1959 /*
1960  * A zone's fragmentation score is the external fragmentation wrt to the
1961  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1962  */
1963 static unsigned int fragmentation_score_zone(struct zone *zone)
1964 {
1965 	return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1966 }
1967 
1968 /*
1969  * A weighted zone's fragmentation score is the external fragmentation
1970  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
1971  * returns a value in the range [0, 100].
1972  *
1973  * The scaling factor ensures that proactive compaction focuses on larger
1974  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
1975  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
1976  * and thus never exceeds the high threshold for proactive compaction.
1977  */
1978 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
1979 {
1980 	unsigned long score;
1981 
1982 	score = zone->present_pages * fragmentation_score_zone(zone);
1983 	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
1984 }
1985 
1986 /*
1987  * The per-node proactive (background) compaction process is started by its
1988  * corresponding kcompactd thread when the node's fragmentation score
1989  * exceeds the high threshold. The compaction process remains active till
1990  * the node's score falls below the low threshold, or one of the back-off
1991  * conditions is met.
1992  */
1993 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
1994 {
1995 	unsigned int score = 0;
1996 	int zoneid;
1997 
1998 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1999 		struct zone *zone;
2000 
2001 		zone = &pgdat->node_zones[zoneid];
2002 		score += fragmentation_score_zone_weighted(zone);
2003 	}
2004 
2005 	return score;
2006 }
2007 
2008 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2009 {
2010 	unsigned int wmark_low;
2011 
2012 	/*
2013 	 * Cap the low watermark to avoid excessive compaction
2014 	 * activity in case a user sets the proactiveness tunable
2015 	 * close to 100 (maximum).
2016 	 */
2017 	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2018 	return low ? wmark_low : min(wmark_low + 10, 100U);
2019 }
2020 
2021 static bool should_proactive_compact_node(pg_data_t *pgdat)
2022 {
2023 	int wmark_high;
2024 
2025 	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2026 		return false;
2027 
2028 	wmark_high = fragmentation_score_wmark(pgdat, false);
2029 	return fragmentation_score_node(pgdat) > wmark_high;
2030 }
2031 
2032 static enum compact_result __compact_finished(struct compact_control *cc)
2033 {
2034 	unsigned int order;
2035 	const int migratetype = cc->migratetype;
2036 	int ret;
2037 
2038 	/* Compaction run completes if the migrate and free scanner meet */
2039 	if (compact_scanners_met(cc)) {
2040 		/* Let the next compaction start anew. */
2041 		reset_cached_positions(cc->zone);
2042 
2043 		/*
2044 		 * Mark that the PG_migrate_skip information should be cleared
2045 		 * by kswapd when it goes to sleep. kcompactd does not set the
2046 		 * flag itself as the decision to be clear should be directly
2047 		 * based on an allocation request.
2048 		 */
2049 		if (cc->direct_compaction)
2050 			cc->zone->compact_blockskip_flush = true;
2051 
2052 		if (cc->whole_zone)
2053 			return COMPACT_COMPLETE;
2054 		else
2055 			return COMPACT_PARTIAL_SKIPPED;
2056 	}
2057 
2058 	if (cc->proactive_compaction) {
2059 		int score, wmark_low;
2060 		pg_data_t *pgdat;
2061 
2062 		pgdat = cc->zone->zone_pgdat;
2063 		if (kswapd_is_running(pgdat))
2064 			return COMPACT_PARTIAL_SKIPPED;
2065 
2066 		score = fragmentation_score_zone(cc->zone);
2067 		wmark_low = fragmentation_score_wmark(pgdat, true);
2068 
2069 		if (score > wmark_low)
2070 			ret = COMPACT_CONTINUE;
2071 		else
2072 			ret = COMPACT_SUCCESS;
2073 
2074 		goto out;
2075 	}
2076 
2077 	if (is_via_compact_memory(cc->order))
2078 		return COMPACT_CONTINUE;
2079 
2080 	/*
2081 	 * Always finish scanning a pageblock to reduce the possibility of
2082 	 * fallbacks in the future. This is particularly important when
2083 	 * migration source is unmovable/reclaimable but it's not worth
2084 	 * special casing.
2085 	 */
2086 	if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2087 		return COMPACT_CONTINUE;
2088 
2089 	/* Direct compactor: Is a suitable page free? */
2090 	ret = COMPACT_NO_SUITABLE_PAGE;
2091 	for (order = cc->order; order < MAX_ORDER; order++) {
2092 		struct free_area *area = &cc->zone->free_area[order];
2093 		bool can_steal;
2094 
2095 		/* Job done if page is free of the right migratetype */
2096 		if (!free_area_empty(area, migratetype))
2097 			return COMPACT_SUCCESS;
2098 
2099 #ifdef CONFIG_CMA
2100 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2101 		if (migratetype == MIGRATE_MOVABLE &&
2102 			!free_area_empty(area, MIGRATE_CMA))
2103 			return COMPACT_SUCCESS;
2104 #endif
2105 		/*
2106 		 * Job done if allocation would steal freepages from
2107 		 * other migratetype buddy lists.
2108 		 */
2109 		if (find_suitable_fallback(area, order, migratetype,
2110 						true, &can_steal) != -1) {
2111 
2112 			/* movable pages are OK in any pageblock */
2113 			if (migratetype == MIGRATE_MOVABLE)
2114 				return COMPACT_SUCCESS;
2115 
2116 			/*
2117 			 * We are stealing for a non-movable allocation. Make
2118 			 * sure we finish compacting the current pageblock
2119 			 * first so it is as free as possible and we won't
2120 			 * have to steal another one soon. This only applies
2121 			 * to sync compaction, as async compaction operates
2122 			 * on pageblocks of the same migratetype.
2123 			 */
2124 			if (cc->mode == MIGRATE_ASYNC ||
2125 					IS_ALIGNED(cc->migrate_pfn,
2126 							pageblock_nr_pages)) {
2127 				return COMPACT_SUCCESS;
2128 			}
2129 
2130 			ret = COMPACT_CONTINUE;
2131 			break;
2132 		}
2133 	}
2134 
2135 out:
2136 	if (cc->contended || fatal_signal_pending(current))
2137 		ret = COMPACT_CONTENDED;
2138 
2139 	return ret;
2140 }
2141 
2142 static enum compact_result compact_finished(struct compact_control *cc)
2143 {
2144 	int ret;
2145 
2146 	ret = __compact_finished(cc);
2147 	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2148 	if (ret == COMPACT_NO_SUITABLE_PAGE)
2149 		ret = COMPACT_CONTINUE;
2150 
2151 	return ret;
2152 }
2153 
2154 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2155 					unsigned int alloc_flags,
2156 					int highest_zoneidx,
2157 					unsigned long wmark_target)
2158 {
2159 	unsigned long watermark;
2160 
2161 	if (is_via_compact_memory(order))
2162 		return COMPACT_CONTINUE;
2163 
2164 	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2165 	/*
2166 	 * If watermarks for high-order allocation are already met, there
2167 	 * should be no need for compaction at all.
2168 	 */
2169 	if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2170 								alloc_flags))
2171 		return COMPACT_SUCCESS;
2172 
2173 	/*
2174 	 * Watermarks for order-0 must be met for compaction to be able to
2175 	 * isolate free pages for migration targets. This means that the
2176 	 * watermark and alloc_flags have to match, or be more pessimistic than
2177 	 * the check in __isolate_free_page(). We don't use the direct
2178 	 * compactor's alloc_flags, as they are not relevant for freepage
2179 	 * isolation. We however do use the direct compactor's highest_zoneidx
2180 	 * to skip over zones where lowmem reserves would prevent allocation
2181 	 * even if compaction succeeds.
2182 	 * For costly orders, we require low watermark instead of min for
2183 	 * compaction to proceed to increase its chances.
2184 	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2185 	 * suitable migration targets
2186 	 */
2187 	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2188 				low_wmark_pages(zone) : min_wmark_pages(zone);
2189 	watermark += compact_gap(order);
2190 	if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2191 						ALLOC_CMA, wmark_target))
2192 		return COMPACT_SKIPPED;
2193 
2194 	return COMPACT_CONTINUE;
2195 }
2196 
2197 /*
2198  * compaction_suitable: Is this suitable to run compaction on this zone now?
2199  * Returns
2200  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2201  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2202  *   COMPACT_CONTINUE - If compaction should run now
2203  */
2204 enum compact_result compaction_suitable(struct zone *zone, int order,
2205 					unsigned int alloc_flags,
2206 					int highest_zoneidx)
2207 {
2208 	enum compact_result ret;
2209 	int fragindex;
2210 
2211 	ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2212 				    zone_page_state(zone, NR_FREE_PAGES));
2213 	/*
2214 	 * fragmentation index determines if allocation failures are due to
2215 	 * low memory or external fragmentation
2216 	 *
2217 	 * index of -1000 would imply allocations might succeed depending on
2218 	 * watermarks, but we already failed the high-order watermark check
2219 	 * index towards 0 implies failure is due to lack of memory
2220 	 * index towards 1000 implies failure is due to fragmentation
2221 	 *
2222 	 * Only compact if a failure would be due to fragmentation. Also
2223 	 * ignore fragindex for non-costly orders where the alternative to
2224 	 * a successful reclaim/compaction is OOM. Fragindex and the
2225 	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2226 	 * excessive compaction for costly orders, but it should not be at the
2227 	 * expense of system stability.
2228 	 */
2229 	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2230 		fragindex = fragmentation_index(zone, order);
2231 		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2232 			ret = COMPACT_NOT_SUITABLE_ZONE;
2233 	}
2234 
2235 	trace_mm_compaction_suitable(zone, order, ret);
2236 	if (ret == COMPACT_NOT_SUITABLE_ZONE)
2237 		ret = COMPACT_SKIPPED;
2238 
2239 	return ret;
2240 }
2241 
2242 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2243 		int alloc_flags)
2244 {
2245 	struct zone *zone;
2246 	struct zoneref *z;
2247 
2248 	/*
2249 	 * Make sure at least one zone would pass __compaction_suitable if we continue
2250 	 * retrying the reclaim.
2251 	 */
2252 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2253 				ac->highest_zoneidx, ac->nodemask) {
2254 		unsigned long available;
2255 		enum compact_result compact_result;
2256 
2257 		/*
2258 		 * Do not consider all the reclaimable memory because we do not
2259 		 * want to trash just for a single high order allocation which
2260 		 * is even not guaranteed to appear even if __compaction_suitable
2261 		 * is happy about the watermark check.
2262 		 */
2263 		available = zone_reclaimable_pages(zone) / order;
2264 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2265 		compact_result = __compaction_suitable(zone, order, alloc_flags,
2266 				ac->highest_zoneidx, available);
2267 		if (compact_result != COMPACT_SKIPPED)
2268 			return true;
2269 	}
2270 
2271 	return false;
2272 }
2273 
2274 static enum compact_result
2275 compact_zone(struct compact_control *cc, struct capture_control *capc)
2276 {
2277 	enum compact_result ret;
2278 	unsigned long start_pfn = cc->zone->zone_start_pfn;
2279 	unsigned long end_pfn = zone_end_pfn(cc->zone);
2280 	unsigned long last_migrated_pfn;
2281 	const bool sync = cc->mode != MIGRATE_ASYNC;
2282 	bool update_cached;
2283 	unsigned int nr_succeeded = 0;
2284 
2285 	/*
2286 	 * These counters track activities during zone compaction.  Initialize
2287 	 * them before compacting a new zone.
2288 	 */
2289 	cc->total_migrate_scanned = 0;
2290 	cc->total_free_scanned = 0;
2291 	cc->nr_migratepages = 0;
2292 	cc->nr_freepages = 0;
2293 	INIT_LIST_HEAD(&cc->freepages);
2294 	INIT_LIST_HEAD(&cc->migratepages);
2295 
2296 	cc->migratetype = gfp_migratetype(cc->gfp_mask);
2297 	ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2298 							cc->highest_zoneidx);
2299 	/* Compaction is likely to fail */
2300 	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2301 		return ret;
2302 
2303 	/* huh, compaction_suitable is returning something unexpected */
2304 	VM_BUG_ON(ret != COMPACT_CONTINUE);
2305 
2306 	/*
2307 	 * Clear pageblock skip if there were failures recently and compaction
2308 	 * is about to be retried after being deferred.
2309 	 */
2310 	if (compaction_restarting(cc->zone, cc->order))
2311 		__reset_isolation_suitable(cc->zone);
2312 
2313 	/*
2314 	 * Setup to move all movable pages to the end of the zone. Used cached
2315 	 * information on where the scanners should start (unless we explicitly
2316 	 * want to compact the whole zone), but check that it is initialised
2317 	 * by ensuring the values are within zone boundaries.
2318 	 */
2319 	cc->fast_start_pfn = 0;
2320 	if (cc->whole_zone) {
2321 		cc->migrate_pfn = start_pfn;
2322 		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2323 	} else {
2324 		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2325 		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2326 		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2327 			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2328 			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2329 		}
2330 		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2331 			cc->migrate_pfn = start_pfn;
2332 			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2333 			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2334 		}
2335 
2336 		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2337 			cc->whole_zone = true;
2338 	}
2339 
2340 	last_migrated_pfn = 0;
2341 
2342 	/*
2343 	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2344 	 * the basis that some migrations will fail in ASYNC mode. However,
2345 	 * if the cached PFNs match and pageblocks are skipped due to having
2346 	 * no isolation candidates, then the sync state does not matter.
2347 	 * Until a pageblock with isolation candidates is found, keep the
2348 	 * cached PFNs in sync to avoid revisiting the same blocks.
2349 	 */
2350 	update_cached = !sync &&
2351 		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2352 
2353 	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2354 				cc->free_pfn, end_pfn, sync);
2355 
2356 	/* lru_add_drain_all could be expensive with involving other CPUs */
2357 	lru_add_drain();
2358 
2359 	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2360 		int err;
2361 		unsigned long iteration_start_pfn = cc->migrate_pfn;
2362 
2363 		/*
2364 		 * Avoid multiple rescans which can happen if a page cannot be
2365 		 * isolated (dirty/writeback in async mode) or if the migrated
2366 		 * pages are being allocated before the pageblock is cleared.
2367 		 * The first rescan will capture the entire pageblock for
2368 		 * migration. If it fails, it'll be marked skip and scanning
2369 		 * will proceed as normal.
2370 		 */
2371 		cc->rescan = false;
2372 		if (pageblock_start_pfn(last_migrated_pfn) ==
2373 		    pageblock_start_pfn(iteration_start_pfn)) {
2374 			cc->rescan = true;
2375 		}
2376 
2377 		switch (isolate_migratepages(cc)) {
2378 		case ISOLATE_ABORT:
2379 			ret = COMPACT_CONTENDED;
2380 			putback_movable_pages(&cc->migratepages);
2381 			cc->nr_migratepages = 0;
2382 			goto out;
2383 		case ISOLATE_NONE:
2384 			if (update_cached) {
2385 				cc->zone->compact_cached_migrate_pfn[1] =
2386 					cc->zone->compact_cached_migrate_pfn[0];
2387 			}
2388 
2389 			/*
2390 			 * We haven't isolated and migrated anything, but
2391 			 * there might still be unflushed migrations from
2392 			 * previous cc->order aligned block.
2393 			 */
2394 			goto check_drain;
2395 		case ISOLATE_SUCCESS:
2396 			update_cached = false;
2397 			last_migrated_pfn = iteration_start_pfn;
2398 		}
2399 
2400 		err = migrate_pages(&cc->migratepages, compaction_alloc,
2401 				compaction_free, (unsigned long)cc, cc->mode,
2402 				MR_COMPACTION, &nr_succeeded);
2403 
2404 		trace_mm_compaction_migratepages(cc->nr_migratepages,
2405 						 nr_succeeded);
2406 
2407 		/* All pages were either migrated or will be released */
2408 		cc->nr_migratepages = 0;
2409 		if (err) {
2410 			putback_movable_pages(&cc->migratepages);
2411 			/*
2412 			 * migrate_pages() may return -ENOMEM when scanners meet
2413 			 * and we want compact_finished() to detect it
2414 			 */
2415 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2416 				ret = COMPACT_CONTENDED;
2417 				goto out;
2418 			}
2419 			/*
2420 			 * We failed to migrate at least one page in the current
2421 			 * order-aligned block, so skip the rest of it.
2422 			 */
2423 			if (cc->direct_compaction &&
2424 						(cc->mode == MIGRATE_ASYNC)) {
2425 				cc->migrate_pfn = block_end_pfn(
2426 						cc->migrate_pfn - 1, cc->order);
2427 				/* Draining pcplists is useless in this case */
2428 				last_migrated_pfn = 0;
2429 			}
2430 		}
2431 
2432 check_drain:
2433 		/*
2434 		 * Has the migration scanner moved away from the previous
2435 		 * cc->order aligned block where we migrated from? If yes,
2436 		 * flush the pages that were freed, so that they can merge and
2437 		 * compact_finished() can detect immediately if allocation
2438 		 * would succeed.
2439 		 */
2440 		if (cc->order > 0 && last_migrated_pfn) {
2441 			unsigned long current_block_start =
2442 				block_start_pfn(cc->migrate_pfn, cc->order);
2443 
2444 			if (last_migrated_pfn < current_block_start) {
2445 				lru_add_drain_cpu_zone(cc->zone);
2446 				/* No more flushing until we migrate again */
2447 				last_migrated_pfn = 0;
2448 			}
2449 		}
2450 
2451 		/* Stop if a page has been captured */
2452 		if (capc && capc->page) {
2453 			ret = COMPACT_SUCCESS;
2454 			break;
2455 		}
2456 	}
2457 
2458 out:
2459 	/*
2460 	 * Release free pages and update where the free scanner should restart,
2461 	 * so we don't leave any returned pages behind in the next attempt.
2462 	 */
2463 	if (cc->nr_freepages > 0) {
2464 		unsigned long free_pfn = release_freepages(&cc->freepages);
2465 
2466 		cc->nr_freepages = 0;
2467 		VM_BUG_ON(free_pfn == 0);
2468 		/* The cached pfn is always the first in a pageblock */
2469 		free_pfn = pageblock_start_pfn(free_pfn);
2470 		/*
2471 		 * Only go back, not forward. The cached pfn might have been
2472 		 * already reset to zone end in compact_finished()
2473 		 */
2474 		if (free_pfn > cc->zone->compact_cached_free_pfn)
2475 			cc->zone->compact_cached_free_pfn = free_pfn;
2476 	}
2477 
2478 	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2479 	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2480 
2481 	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2482 				cc->free_pfn, end_pfn, sync, ret);
2483 
2484 	return ret;
2485 }
2486 
2487 static enum compact_result compact_zone_order(struct zone *zone, int order,
2488 		gfp_t gfp_mask, enum compact_priority prio,
2489 		unsigned int alloc_flags, int highest_zoneidx,
2490 		struct page **capture)
2491 {
2492 	enum compact_result ret;
2493 	struct compact_control cc = {
2494 		.order = order,
2495 		.search_order = order,
2496 		.gfp_mask = gfp_mask,
2497 		.zone = zone,
2498 		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2499 					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2500 		.alloc_flags = alloc_flags,
2501 		.highest_zoneidx = highest_zoneidx,
2502 		.direct_compaction = true,
2503 		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2504 		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2505 		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2506 	};
2507 	struct capture_control capc = {
2508 		.cc = &cc,
2509 		.page = NULL,
2510 	};
2511 
2512 	/*
2513 	 * Make sure the structs are really initialized before we expose the
2514 	 * capture control, in case we are interrupted and the interrupt handler
2515 	 * frees a page.
2516 	 */
2517 	barrier();
2518 	WRITE_ONCE(current->capture_control, &capc);
2519 
2520 	ret = compact_zone(&cc, &capc);
2521 
2522 	VM_BUG_ON(!list_empty(&cc.freepages));
2523 	VM_BUG_ON(!list_empty(&cc.migratepages));
2524 
2525 	/*
2526 	 * Make sure we hide capture control first before we read the captured
2527 	 * page pointer, otherwise an interrupt could free and capture a page
2528 	 * and we would leak it.
2529 	 */
2530 	WRITE_ONCE(current->capture_control, NULL);
2531 	*capture = READ_ONCE(capc.page);
2532 	/*
2533 	 * Technically, it is also possible that compaction is skipped but
2534 	 * the page is still captured out of luck(IRQ came and freed the page).
2535 	 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2536 	 * the COMPACT[STALL|FAIL] when compaction is skipped.
2537 	 */
2538 	if (*capture)
2539 		ret = COMPACT_SUCCESS;
2540 
2541 	return ret;
2542 }
2543 
2544 int sysctl_extfrag_threshold = 500;
2545 
2546 /**
2547  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2548  * @gfp_mask: The GFP mask of the current allocation
2549  * @order: The order of the current allocation
2550  * @alloc_flags: The allocation flags of the current allocation
2551  * @ac: The context of current allocation
2552  * @prio: Determines how hard direct compaction should try to succeed
2553  * @capture: Pointer to free page created by compaction will be stored here
2554  *
2555  * This is the main entry point for direct page compaction.
2556  */
2557 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2558 		unsigned int alloc_flags, const struct alloc_context *ac,
2559 		enum compact_priority prio, struct page **capture)
2560 {
2561 	int may_perform_io = gfp_mask & __GFP_IO;
2562 	struct zoneref *z;
2563 	struct zone *zone;
2564 	enum compact_result rc = COMPACT_SKIPPED;
2565 
2566 	/*
2567 	 * Check if the GFP flags allow compaction - GFP_NOIO is really
2568 	 * tricky context because the migration might require IO
2569 	 */
2570 	if (!may_perform_io)
2571 		return COMPACT_SKIPPED;
2572 
2573 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2574 
2575 	/* Compact each zone in the list */
2576 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2577 					ac->highest_zoneidx, ac->nodemask) {
2578 		enum compact_result status;
2579 
2580 		if (prio > MIN_COMPACT_PRIORITY
2581 					&& compaction_deferred(zone, order)) {
2582 			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2583 			continue;
2584 		}
2585 
2586 		status = compact_zone_order(zone, order, gfp_mask, prio,
2587 				alloc_flags, ac->highest_zoneidx, capture);
2588 		rc = max(status, rc);
2589 
2590 		/* The allocation should succeed, stop compacting */
2591 		if (status == COMPACT_SUCCESS) {
2592 			/*
2593 			 * We think the allocation will succeed in this zone,
2594 			 * but it is not certain, hence the false. The caller
2595 			 * will repeat this with true if allocation indeed
2596 			 * succeeds in this zone.
2597 			 */
2598 			compaction_defer_reset(zone, order, false);
2599 
2600 			break;
2601 		}
2602 
2603 		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2604 					status == COMPACT_PARTIAL_SKIPPED))
2605 			/*
2606 			 * We think that allocation won't succeed in this zone
2607 			 * so we defer compaction there. If it ends up
2608 			 * succeeding after all, it will be reset.
2609 			 */
2610 			defer_compaction(zone, order);
2611 
2612 		/*
2613 		 * We might have stopped compacting due to need_resched() in
2614 		 * async compaction, or due to a fatal signal detected. In that
2615 		 * case do not try further zones
2616 		 */
2617 		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2618 					|| fatal_signal_pending(current))
2619 			break;
2620 	}
2621 
2622 	return rc;
2623 }
2624 
2625 /*
2626  * Compact all zones within a node till each zone's fragmentation score
2627  * reaches within proactive compaction thresholds (as determined by the
2628  * proactiveness tunable).
2629  *
2630  * It is possible that the function returns before reaching score targets
2631  * due to various back-off conditions, such as, contention on per-node or
2632  * per-zone locks.
2633  */
2634 static void proactive_compact_node(pg_data_t *pgdat)
2635 {
2636 	int zoneid;
2637 	struct zone *zone;
2638 	struct compact_control cc = {
2639 		.order = -1,
2640 		.mode = MIGRATE_SYNC_LIGHT,
2641 		.ignore_skip_hint = true,
2642 		.whole_zone = true,
2643 		.gfp_mask = GFP_KERNEL,
2644 		.proactive_compaction = true,
2645 	};
2646 
2647 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2648 		zone = &pgdat->node_zones[zoneid];
2649 		if (!populated_zone(zone))
2650 			continue;
2651 
2652 		cc.zone = zone;
2653 
2654 		compact_zone(&cc, NULL);
2655 
2656 		VM_BUG_ON(!list_empty(&cc.freepages));
2657 		VM_BUG_ON(!list_empty(&cc.migratepages));
2658 	}
2659 }
2660 
2661 /* Compact all zones within a node */
2662 static void compact_node(int nid)
2663 {
2664 	pg_data_t *pgdat = NODE_DATA(nid);
2665 	int zoneid;
2666 	struct zone *zone;
2667 	struct compact_control cc = {
2668 		.order = -1,
2669 		.mode = MIGRATE_SYNC,
2670 		.ignore_skip_hint = true,
2671 		.whole_zone = true,
2672 		.gfp_mask = GFP_KERNEL,
2673 	};
2674 
2675 
2676 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2677 
2678 		zone = &pgdat->node_zones[zoneid];
2679 		if (!populated_zone(zone))
2680 			continue;
2681 
2682 		cc.zone = zone;
2683 
2684 		compact_zone(&cc, NULL);
2685 
2686 		VM_BUG_ON(!list_empty(&cc.freepages));
2687 		VM_BUG_ON(!list_empty(&cc.migratepages));
2688 	}
2689 }
2690 
2691 /* Compact all nodes in the system */
2692 static void compact_nodes(void)
2693 {
2694 	int nid;
2695 
2696 	/* Flush pending updates to the LRU lists */
2697 	lru_add_drain_all();
2698 
2699 	for_each_online_node(nid)
2700 		compact_node(nid);
2701 }
2702 
2703 /*
2704  * Tunable for proactive compaction. It determines how
2705  * aggressively the kernel should compact memory in the
2706  * background. It takes values in the range [0, 100].
2707  */
2708 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2709 
2710 int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2711 		void *buffer, size_t *length, loff_t *ppos)
2712 {
2713 	int rc, nid;
2714 
2715 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2716 	if (rc)
2717 		return rc;
2718 
2719 	if (write && sysctl_compaction_proactiveness) {
2720 		for_each_online_node(nid) {
2721 			pg_data_t *pgdat = NODE_DATA(nid);
2722 
2723 			if (pgdat->proactive_compact_trigger)
2724 				continue;
2725 
2726 			pgdat->proactive_compact_trigger = true;
2727 			wake_up_interruptible(&pgdat->kcompactd_wait);
2728 		}
2729 	}
2730 
2731 	return 0;
2732 }
2733 
2734 /*
2735  * This is the entry point for compacting all nodes via
2736  * /proc/sys/vm/compact_memory
2737  */
2738 int sysctl_compaction_handler(struct ctl_table *table, int write,
2739 			void *buffer, size_t *length, loff_t *ppos)
2740 {
2741 	if (write)
2742 		compact_nodes();
2743 
2744 	return 0;
2745 }
2746 
2747 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2748 static ssize_t compact_store(struct device *dev,
2749 			     struct device_attribute *attr,
2750 			     const char *buf, size_t count)
2751 {
2752 	int nid = dev->id;
2753 
2754 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2755 		/* Flush pending updates to the LRU lists */
2756 		lru_add_drain_all();
2757 
2758 		compact_node(nid);
2759 	}
2760 
2761 	return count;
2762 }
2763 static DEVICE_ATTR_WO(compact);
2764 
2765 int compaction_register_node(struct node *node)
2766 {
2767 	return device_create_file(&node->dev, &dev_attr_compact);
2768 }
2769 
2770 void compaction_unregister_node(struct node *node)
2771 {
2772 	return device_remove_file(&node->dev, &dev_attr_compact);
2773 }
2774 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2775 
2776 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2777 {
2778 	return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2779 		pgdat->proactive_compact_trigger;
2780 }
2781 
2782 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2783 {
2784 	int zoneid;
2785 	struct zone *zone;
2786 	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2787 
2788 	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2789 		zone = &pgdat->node_zones[zoneid];
2790 
2791 		if (!populated_zone(zone))
2792 			continue;
2793 
2794 		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2795 					highest_zoneidx) == COMPACT_CONTINUE)
2796 			return true;
2797 	}
2798 
2799 	return false;
2800 }
2801 
2802 static void kcompactd_do_work(pg_data_t *pgdat)
2803 {
2804 	/*
2805 	 * With no special task, compact all zones so that a page of requested
2806 	 * order is allocatable.
2807 	 */
2808 	int zoneid;
2809 	struct zone *zone;
2810 	struct compact_control cc = {
2811 		.order = pgdat->kcompactd_max_order,
2812 		.search_order = pgdat->kcompactd_max_order,
2813 		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2814 		.mode = MIGRATE_SYNC_LIGHT,
2815 		.ignore_skip_hint = false,
2816 		.gfp_mask = GFP_KERNEL,
2817 	};
2818 	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2819 							cc.highest_zoneidx);
2820 	count_compact_event(KCOMPACTD_WAKE);
2821 
2822 	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2823 		int status;
2824 
2825 		zone = &pgdat->node_zones[zoneid];
2826 		if (!populated_zone(zone))
2827 			continue;
2828 
2829 		if (compaction_deferred(zone, cc.order))
2830 			continue;
2831 
2832 		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2833 							COMPACT_CONTINUE)
2834 			continue;
2835 
2836 		if (kthread_should_stop())
2837 			return;
2838 
2839 		cc.zone = zone;
2840 		status = compact_zone(&cc, NULL);
2841 
2842 		if (status == COMPACT_SUCCESS) {
2843 			compaction_defer_reset(zone, cc.order, false);
2844 		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2845 			/*
2846 			 * Buddy pages may become stranded on pcps that could
2847 			 * otherwise coalesce on the zone's free area for
2848 			 * order >= cc.order.  This is ratelimited by the
2849 			 * upcoming deferral.
2850 			 */
2851 			drain_all_pages(zone);
2852 
2853 			/*
2854 			 * We use sync migration mode here, so we defer like
2855 			 * sync direct compaction does.
2856 			 */
2857 			defer_compaction(zone, cc.order);
2858 		}
2859 
2860 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2861 				     cc.total_migrate_scanned);
2862 		count_compact_events(KCOMPACTD_FREE_SCANNED,
2863 				     cc.total_free_scanned);
2864 
2865 		VM_BUG_ON(!list_empty(&cc.freepages));
2866 		VM_BUG_ON(!list_empty(&cc.migratepages));
2867 	}
2868 
2869 	/*
2870 	 * Regardless of success, we are done until woken up next. But remember
2871 	 * the requested order/highest_zoneidx in case it was higher/tighter
2872 	 * than our current ones
2873 	 */
2874 	if (pgdat->kcompactd_max_order <= cc.order)
2875 		pgdat->kcompactd_max_order = 0;
2876 	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2877 		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2878 }
2879 
2880 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2881 {
2882 	if (!order)
2883 		return;
2884 
2885 	if (pgdat->kcompactd_max_order < order)
2886 		pgdat->kcompactd_max_order = order;
2887 
2888 	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2889 		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2890 
2891 	/*
2892 	 * Pairs with implicit barrier in wait_event_freezable()
2893 	 * such that wakeups are not missed.
2894 	 */
2895 	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2896 		return;
2897 
2898 	if (!kcompactd_node_suitable(pgdat))
2899 		return;
2900 
2901 	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2902 							highest_zoneidx);
2903 	wake_up_interruptible(&pgdat->kcompactd_wait);
2904 }
2905 
2906 /*
2907  * The background compaction daemon, started as a kernel thread
2908  * from the init process.
2909  */
2910 static int kcompactd(void *p)
2911 {
2912 	pg_data_t *pgdat = (pg_data_t *)p;
2913 	struct task_struct *tsk = current;
2914 	long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2915 	long timeout = default_timeout;
2916 
2917 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2918 
2919 	if (!cpumask_empty(cpumask))
2920 		set_cpus_allowed_ptr(tsk, cpumask);
2921 
2922 	set_freezable();
2923 
2924 	pgdat->kcompactd_max_order = 0;
2925 	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2926 
2927 	while (!kthread_should_stop()) {
2928 		unsigned long pflags;
2929 
2930 		/*
2931 		 * Avoid the unnecessary wakeup for proactive compaction
2932 		 * when it is disabled.
2933 		 */
2934 		if (!sysctl_compaction_proactiveness)
2935 			timeout = MAX_SCHEDULE_TIMEOUT;
2936 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2937 		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2938 			kcompactd_work_requested(pgdat), timeout) &&
2939 			!pgdat->proactive_compact_trigger) {
2940 
2941 			psi_memstall_enter(&pflags);
2942 			kcompactd_do_work(pgdat);
2943 			psi_memstall_leave(&pflags);
2944 			/*
2945 			 * Reset the timeout value. The defer timeout from
2946 			 * proactive compaction is lost here but that is fine
2947 			 * as the condition of the zone changing substantionally
2948 			 * then carrying on with the previous defer interval is
2949 			 * not useful.
2950 			 */
2951 			timeout = default_timeout;
2952 			continue;
2953 		}
2954 
2955 		/*
2956 		 * Start the proactive work with default timeout. Based
2957 		 * on the fragmentation score, this timeout is updated.
2958 		 */
2959 		timeout = default_timeout;
2960 		if (should_proactive_compact_node(pgdat)) {
2961 			unsigned int prev_score, score;
2962 
2963 			prev_score = fragmentation_score_node(pgdat);
2964 			proactive_compact_node(pgdat);
2965 			score = fragmentation_score_node(pgdat);
2966 			/*
2967 			 * Defer proactive compaction if the fragmentation
2968 			 * score did not go down i.e. no progress made.
2969 			 */
2970 			if (unlikely(score >= prev_score))
2971 				timeout =
2972 				   default_timeout << COMPACT_MAX_DEFER_SHIFT;
2973 		}
2974 		if (unlikely(pgdat->proactive_compact_trigger))
2975 			pgdat->proactive_compact_trigger = false;
2976 	}
2977 
2978 	return 0;
2979 }
2980 
2981 /*
2982  * This kcompactd start function will be called by init and node-hot-add.
2983  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2984  */
2985 int kcompactd_run(int nid)
2986 {
2987 	pg_data_t *pgdat = NODE_DATA(nid);
2988 	int ret = 0;
2989 
2990 	if (pgdat->kcompactd)
2991 		return 0;
2992 
2993 	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2994 	if (IS_ERR(pgdat->kcompactd)) {
2995 		pr_err("Failed to start kcompactd on node %d\n", nid);
2996 		ret = PTR_ERR(pgdat->kcompactd);
2997 		pgdat->kcompactd = NULL;
2998 	}
2999 	return ret;
3000 }
3001 
3002 /*
3003  * Called by memory hotplug when all memory in a node is offlined. Caller must
3004  * hold mem_hotplug_begin/end().
3005  */
3006 void kcompactd_stop(int nid)
3007 {
3008 	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3009 
3010 	if (kcompactd) {
3011 		kthread_stop(kcompactd);
3012 		NODE_DATA(nid)->kcompactd = NULL;
3013 	}
3014 }
3015 
3016 /*
3017  * It's optimal to keep kcompactd on the same CPUs as their memory, but
3018  * not required for correctness. So if the last cpu in a node goes
3019  * away, we get changed to run anywhere: as the first one comes back,
3020  * restore their cpu bindings.
3021  */
3022 static int kcompactd_cpu_online(unsigned int cpu)
3023 {
3024 	int nid;
3025 
3026 	for_each_node_state(nid, N_MEMORY) {
3027 		pg_data_t *pgdat = NODE_DATA(nid);
3028 		const struct cpumask *mask;
3029 
3030 		mask = cpumask_of_node(pgdat->node_id);
3031 
3032 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3033 			/* One of our CPUs online: restore mask */
3034 			set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3035 	}
3036 	return 0;
3037 }
3038 
3039 static int __init kcompactd_init(void)
3040 {
3041 	int nid;
3042 	int ret;
3043 
3044 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3045 					"mm/compaction:online",
3046 					kcompactd_cpu_online, NULL);
3047 	if (ret < 0) {
3048 		pr_err("kcompactd: failed to register hotplug callbacks.\n");
3049 		return ret;
3050 	}
3051 
3052 	for_each_node_state(nid, N_MEMORY)
3053 		kcompactd_run(nid);
3054 	return 0;
3055 }
3056 subsys_initcall(kcompactd_init)
3057 
3058 #endif /* CONFIG_COMPACTION */
3059