1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/compaction.c 4 * 5 * Memory compaction for the reduction of external fragmentation. Note that 6 * this heavily depends upon page migration to do all the real heavy 7 * lifting 8 * 9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 10 */ 11 #include <linux/cpu.h> 12 #include <linux/swap.h> 13 #include <linux/migrate.h> 14 #include <linux/compaction.h> 15 #include <linux/mm_inline.h> 16 #include <linux/sched/signal.h> 17 #include <linux/backing-dev.h> 18 #include <linux/sysctl.h> 19 #include <linux/sysfs.h> 20 #include <linux/page-isolation.h> 21 #include <linux/kasan.h> 22 #include <linux/kthread.h> 23 #include <linux/freezer.h> 24 #include <linux/page_owner.h> 25 #include <linux/psi.h> 26 #include "internal.h" 27 28 #ifdef CONFIG_COMPACTION 29 static inline void count_compact_event(enum vm_event_item item) 30 { 31 count_vm_event(item); 32 } 33 34 static inline void count_compact_events(enum vm_event_item item, long delta) 35 { 36 count_vm_events(item, delta); 37 } 38 #else 39 #define count_compact_event(item) do { } while (0) 40 #define count_compact_events(item, delta) do { } while (0) 41 #endif 42 43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/compaction.h> 47 48 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order)) 49 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order)) 50 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order) 51 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order) 52 53 static unsigned long release_freepages(struct list_head *freelist) 54 { 55 struct page *page, *next; 56 unsigned long high_pfn = 0; 57 58 list_for_each_entry_safe(page, next, freelist, lru) { 59 unsigned long pfn = page_to_pfn(page); 60 list_del(&page->lru); 61 __free_page(page); 62 if (pfn > high_pfn) 63 high_pfn = pfn; 64 } 65 66 return high_pfn; 67 } 68 69 static void map_pages(struct list_head *list) 70 { 71 unsigned int i, order, nr_pages; 72 struct page *page, *next; 73 LIST_HEAD(tmp_list); 74 75 list_for_each_entry_safe(page, next, list, lru) { 76 list_del(&page->lru); 77 78 order = page_private(page); 79 nr_pages = 1 << order; 80 81 post_alloc_hook(page, order, __GFP_MOVABLE); 82 if (order) 83 split_page(page, order); 84 85 for (i = 0; i < nr_pages; i++) { 86 list_add(&page->lru, &tmp_list); 87 page++; 88 } 89 } 90 91 list_splice(&tmp_list, list); 92 } 93 94 #ifdef CONFIG_COMPACTION 95 96 int PageMovable(struct page *page) 97 { 98 struct address_space *mapping; 99 100 VM_BUG_ON_PAGE(!PageLocked(page), page); 101 if (!__PageMovable(page)) 102 return 0; 103 104 mapping = page_mapping(page); 105 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page) 106 return 1; 107 108 return 0; 109 } 110 EXPORT_SYMBOL(PageMovable); 111 112 void __SetPageMovable(struct page *page, struct address_space *mapping) 113 { 114 VM_BUG_ON_PAGE(!PageLocked(page), page); 115 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page); 116 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE); 117 } 118 EXPORT_SYMBOL(__SetPageMovable); 119 120 void __ClearPageMovable(struct page *page) 121 { 122 VM_BUG_ON_PAGE(!PageLocked(page), page); 123 VM_BUG_ON_PAGE(!PageMovable(page), page); 124 /* 125 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE 126 * flag so that VM can catch up released page by driver after isolation. 127 * With it, VM migration doesn't try to put it back. 128 */ 129 page->mapping = (void *)((unsigned long)page->mapping & 130 PAGE_MAPPING_MOVABLE); 131 } 132 EXPORT_SYMBOL(__ClearPageMovable); 133 134 /* Do not skip compaction more than 64 times */ 135 #define COMPACT_MAX_DEFER_SHIFT 6 136 137 /* 138 * Compaction is deferred when compaction fails to result in a page 139 * allocation success. 1 << compact_defer_limit compactions are skipped up 140 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 141 */ 142 void defer_compaction(struct zone *zone, int order) 143 { 144 zone->compact_considered = 0; 145 zone->compact_defer_shift++; 146 147 if (order < zone->compact_order_failed) 148 zone->compact_order_failed = order; 149 150 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 151 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 152 153 trace_mm_compaction_defer_compaction(zone, order); 154 } 155 156 /* Returns true if compaction should be skipped this time */ 157 bool compaction_deferred(struct zone *zone, int order) 158 { 159 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 160 161 if (order < zone->compact_order_failed) 162 return false; 163 164 /* Avoid possible overflow */ 165 if (++zone->compact_considered > defer_limit) 166 zone->compact_considered = defer_limit; 167 168 if (zone->compact_considered >= defer_limit) 169 return false; 170 171 trace_mm_compaction_deferred(zone, order); 172 173 return true; 174 } 175 176 /* 177 * Update defer tracking counters after successful compaction of given order, 178 * which means an allocation either succeeded (alloc_success == true) or is 179 * expected to succeed. 180 */ 181 void compaction_defer_reset(struct zone *zone, int order, 182 bool alloc_success) 183 { 184 if (alloc_success) { 185 zone->compact_considered = 0; 186 zone->compact_defer_shift = 0; 187 } 188 if (order >= zone->compact_order_failed) 189 zone->compact_order_failed = order + 1; 190 191 trace_mm_compaction_defer_reset(zone, order); 192 } 193 194 /* Returns true if restarting compaction after many failures */ 195 bool compaction_restarting(struct zone *zone, int order) 196 { 197 if (order < zone->compact_order_failed) 198 return false; 199 200 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 201 zone->compact_considered >= 1UL << zone->compact_defer_shift; 202 } 203 204 /* Returns true if the pageblock should be scanned for pages to isolate. */ 205 static inline bool isolation_suitable(struct compact_control *cc, 206 struct page *page) 207 { 208 if (cc->ignore_skip_hint) 209 return true; 210 211 return !get_pageblock_skip(page); 212 } 213 214 static void reset_cached_positions(struct zone *zone) 215 { 216 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 217 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 218 zone->compact_cached_free_pfn = 219 pageblock_start_pfn(zone_end_pfn(zone) - 1); 220 } 221 222 /* 223 * Compound pages of >= pageblock_order should consistenly be skipped until 224 * released. It is always pointless to compact pages of such order (if they are 225 * migratable), and the pageblocks they occupy cannot contain any free pages. 226 */ 227 static bool pageblock_skip_persistent(struct page *page) 228 { 229 if (!PageCompound(page)) 230 return false; 231 232 page = compound_head(page); 233 234 if (compound_order(page) >= pageblock_order) 235 return true; 236 237 return false; 238 } 239 240 /* 241 * This function is called to clear all cached information on pageblocks that 242 * should be skipped for page isolation when the migrate and free page scanner 243 * meet. 244 */ 245 static void __reset_isolation_suitable(struct zone *zone) 246 { 247 unsigned long start_pfn = zone->zone_start_pfn; 248 unsigned long end_pfn = zone_end_pfn(zone); 249 unsigned long pfn; 250 251 zone->compact_blockskip_flush = false; 252 253 /* Walk the zone and mark every pageblock as suitable for isolation */ 254 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 255 struct page *page; 256 257 cond_resched(); 258 259 page = pfn_to_online_page(pfn); 260 if (!page) 261 continue; 262 if (zone != page_zone(page)) 263 continue; 264 if (pageblock_skip_persistent(page)) 265 continue; 266 267 clear_pageblock_skip(page); 268 } 269 270 reset_cached_positions(zone); 271 } 272 273 void reset_isolation_suitable(pg_data_t *pgdat) 274 { 275 int zoneid; 276 277 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 278 struct zone *zone = &pgdat->node_zones[zoneid]; 279 if (!populated_zone(zone)) 280 continue; 281 282 /* Only flush if a full compaction finished recently */ 283 if (zone->compact_blockskip_flush) 284 __reset_isolation_suitable(zone); 285 } 286 } 287 288 /* 289 * If no pages were isolated then mark this pageblock to be skipped in the 290 * future. The information is later cleared by __reset_isolation_suitable(). 291 */ 292 static void update_pageblock_skip(struct compact_control *cc, 293 struct page *page, unsigned long nr_isolated, 294 bool migrate_scanner) 295 { 296 struct zone *zone = cc->zone; 297 unsigned long pfn; 298 299 if (cc->no_set_skip_hint) 300 return; 301 302 if (!page) 303 return; 304 305 if (nr_isolated) 306 return; 307 308 set_pageblock_skip(page); 309 310 pfn = page_to_pfn(page); 311 312 /* Update where async and sync compaction should restart */ 313 if (migrate_scanner) { 314 if (pfn > zone->compact_cached_migrate_pfn[0]) 315 zone->compact_cached_migrate_pfn[0] = pfn; 316 if (cc->mode != MIGRATE_ASYNC && 317 pfn > zone->compact_cached_migrate_pfn[1]) 318 zone->compact_cached_migrate_pfn[1] = pfn; 319 } else { 320 if (pfn < zone->compact_cached_free_pfn) 321 zone->compact_cached_free_pfn = pfn; 322 } 323 } 324 #else 325 static inline bool isolation_suitable(struct compact_control *cc, 326 struct page *page) 327 { 328 return true; 329 } 330 331 static inline bool pageblock_skip_persistent(struct page *page) 332 { 333 return false; 334 } 335 336 static inline void update_pageblock_skip(struct compact_control *cc, 337 struct page *page, unsigned long nr_isolated, 338 bool migrate_scanner) 339 { 340 } 341 #endif /* CONFIG_COMPACTION */ 342 343 /* 344 * Compaction requires the taking of some coarse locks that are potentially 345 * very heavily contended. For async compaction, back out if the lock cannot 346 * be taken immediately. For sync compaction, spin on the lock if needed. 347 * 348 * Returns true if the lock is held 349 * Returns false if the lock is not held and compaction should abort 350 */ 351 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags, 352 struct compact_control *cc) 353 { 354 if (cc->mode == MIGRATE_ASYNC) { 355 if (!spin_trylock_irqsave(lock, *flags)) { 356 cc->contended = true; 357 return false; 358 } 359 } else { 360 spin_lock_irqsave(lock, *flags); 361 } 362 363 return true; 364 } 365 366 /* 367 * Compaction requires the taking of some coarse locks that are potentially 368 * very heavily contended. The lock should be periodically unlocked to avoid 369 * having disabled IRQs for a long time, even when there is nobody waiting on 370 * the lock. It might also be that allowing the IRQs will result in 371 * need_resched() becoming true. If scheduling is needed, async compaction 372 * aborts. Sync compaction schedules. 373 * Either compaction type will also abort if a fatal signal is pending. 374 * In either case if the lock was locked, it is dropped and not regained. 375 * 376 * Returns true if compaction should abort due to fatal signal pending, or 377 * async compaction due to need_resched() 378 * Returns false when compaction can continue (sync compaction might have 379 * scheduled) 380 */ 381 static bool compact_unlock_should_abort(spinlock_t *lock, 382 unsigned long flags, bool *locked, struct compact_control *cc) 383 { 384 if (*locked) { 385 spin_unlock_irqrestore(lock, flags); 386 *locked = false; 387 } 388 389 if (fatal_signal_pending(current)) { 390 cc->contended = true; 391 return true; 392 } 393 394 if (need_resched()) { 395 if (cc->mode == MIGRATE_ASYNC) { 396 cc->contended = true; 397 return true; 398 } 399 cond_resched(); 400 } 401 402 return false; 403 } 404 405 /* 406 * Aside from avoiding lock contention, compaction also periodically checks 407 * need_resched() and either schedules in sync compaction or aborts async 408 * compaction. This is similar to what compact_unlock_should_abort() does, but 409 * is used where no lock is concerned. 410 * 411 * Returns false when no scheduling was needed, or sync compaction scheduled. 412 * Returns true when async compaction should abort. 413 */ 414 static inline bool compact_should_abort(struct compact_control *cc) 415 { 416 /* async compaction aborts if contended */ 417 if (need_resched()) { 418 if (cc->mode == MIGRATE_ASYNC) { 419 cc->contended = true; 420 return true; 421 } 422 423 cond_resched(); 424 } 425 426 return false; 427 } 428 429 /* 430 * Isolate free pages onto a private freelist. If @strict is true, will abort 431 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 432 * (even though it may still end up isolating some pages). 433 */ 434 static unsigned long isolate_freepages_block(struct compact_control *cc, 435 unsigned long *start_pfn, 436 unsigned long end_pfn, 437 struct list_head *freelist, 438 bool strict) 439 { 440 int nr_scanned = 0, total_isolated = 0; 441 struct page *cursor, *valid_page = NULL; 442 unsigned long flags = 0; 443 bool locked = false; 444 unsigned long blockpfn = *start_pfn; 445 unsigned int order; 446 447 cursor = pfn_to_page(blockpfn); 448 449 /* Isolate free pages. */ 450 for (; blockpfn < end_pfn; blockpfn++, cursor++) { 451 int isolated; 452 struct page *page = cursor; 453 454 /* 455 * Periodically drop the lock (if held) regardless of its 456 * contention, to give chance to IRQs. Abort if fatal signal 457 * pending or async compaction detects need_resched() 458 */ 459 if (!(blockpfn % SWAP_CLUSTER_MAX) 460 && compact_unlock_should_abort(&cc->zone->lock, flags, 461 &locked, cc)) 462 break; 463 464 nr_scanned++; 465 if (!pfn_valid_within(blockpfn)) 466 goto isolate_fail; 467 468 if (!valid_page) 469 valid_page = page; 470 471 /* 472 * For compound pages such as THP and hugetlbfs, we can save 473 * potentially a lot of iterations if we skip them at once. 474 * The check is racy, but we can consider only valid values 475 * and the only danger is skipping too much. 476 */ 477 if (PageCompound(page)) { 478 const unsigned int order = compound_order(page); 479 480 if (likely(order < MAX_ORDER)) { 481 blockpfn += (1UL << order) - 1; 482 cursor += (1UL << order) - 1; 483 } 484 goto isolate_fail; 485 } 486 487 if (!PageBuddy(page)) 488 goto isolate_fail; 489 490 /* 491 * If we already hold the lock, we can skip some rechecking. 492 * Note that if we hold the lock now, checked_pageblock was 493 * already set in some previous iteration (or strict is true), 494 * so it is correct to skip the suitable migration target 495 * recheck as well. 496 */ 497 if (!locked) { 498 /* 499 * The zone lock must be held to isolate freepages. 500 * Unfortunately this is a very coarse lock and can be 501 * heavily contended if there are parallel allocations 502 * or parallel compactions. For async compaction do not 503 * spin on the lock and we acquire the lock as late as 504 * possible. 505 */ 506 locked = compact_trylock_irqsave(&cc->zone->lock, 507 &flags, cc); 508 if (!locked) 509 break; 510 511 /* Recheck this is a buddy page under lock */ 512 if (!PageBuddy(page)) 513 goto isolate_fail; 514 } 515 516 /* Found a free page, will break it into order-0 pages */ 517 order = page_order(page); 518 isolated = __isolate_free_page(page, order); 519 if (!isolated) 520 break; 521 set_page_private(page, order); 522 523 total_isolated += isolated; 524 cc->nr_freepages += isolated; 525 list_add_tail(&page->lru, freelist); 526 527 if (!strict && cc->nr_migratepages <= cc->nr_freepages) { 528 blockpfn += isolated; 529 break; 530 } 531 /* Advance to the end of split page */ 532 blockpfn += isolated - 1; 533 cursor += isolated - 1; 534 continue; 535 536 isolate_fail: 537 if (strict) 538 break; 539 else 540 continue; 541 542 } 543 544 if (locked) 545 spin_unlock_irqrestore(&cc->zone->lock, flags); 546 547 /* 548 * There is a tiny chance that we have read bogus compound_order(), 549 * so be careful to not go outside of the pageblock. 550 */ 551 if (unlikely(blockpfn > end_pfn)) 552 blockpfn = end_pfn; 553 554 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 555 nr_scanned, total_isolated); 556 557 /* Record how far we have got within the block */ 558 *start_pfn = blockpfn; 559 560 /* 561 * If strict isolation is requested by CMA then check that all the 562 * pages requested were isolated. If there were any failures, 0 is 563 * returned and CMA will fail. 564 */ 565 if (strict && blockpfn < end_pfn) 566 total_isolated = 0; 567 568 /* Update the pageblock-skip if the whole pageblock was scanned */ 569 if (blockpfn == end_pfn) 570 update_pageblock_skip(cc, valid_page, total_isolated, false); 571 572 cc->total_free_scanned += nr_scanned; 573 if (total_isolated) 574 count_compact_events(COMPACTISOLATED, total_isolated); 575 return total_isolated; 576 } 577 578 /** 579 * isolate_freepages_range() - isolate free pages. 580 * @cc: Compaction control structure. 581 * @start_pfn: The first PFN to start isolating. 582 * @end_pfn: The one-past-last PFN. 583 * 584 * Non-free pages, invalid PFNs, or zone boundaries within the 585 * [start_pfn, end_pfn) range are considered errors, cause function to 586 * undo its actions and return zero. 587 * 588 * Otherwise, function returns one-past-the-last PFN of isolated page 589 * (which may be greater then end_pfn if end fell in a middle of 590 * a free page). 591 */ 592 unsigned long 593 isolate_freepages_range(struct compact_control *cc, 594 unsigned long start_pfn, unsigned long end_pfn) 595 { 596 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 597 LIST_HEAD(freelist); 598 599 pfn = start_pfn; 600 block_start_pfn = pageblock_start_pfn(pfn); 601 if (block_start_pfn < cc->zone->zone_start_pfn) 602 block_start_pfn = cc->zone->zone_start_pfn; 603 block_end_pfn = pageblock_end_pfn(pfn); 604 605 for (; pfn < end_pfn; pfn += isolated, 606 block_start_pfn = block_end_pfn, 607 block_end_pfn += pageblock_nr_pages) { 608 /* Protect pfn from changing by isolate_freepages_block */ 609 unsigned long isolate_start_pfn = pfn; 610 611 block_end_pfn = min(block_end_pfn, end_pfn); 612 613 /* 614 * pfn could pass the block_end_pfn if isolated freepage 615 * is more than pageblock order. In this case, we adjust 616 * scanning range to right one. 617 */ 618 if (pfn >= block_end_pfn) { 619 block_start_pfn = pageblock_start_pfn(pfn); 620 block_end_pfn = pageblock_end_pfn(pfn); 621 block_end_pfn = min(block_end_pfn, end_pfn); 622 } 623 624 if (!pageblock_pfn_to_page(block_start_pfn, 625 block_end_pfn, cc->zone)) 626 break; 627 628 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 629 block_end_pfn, &freelist, true); 630 631 /* 632 * In strict mode, isolate_freepages_block() returns 0 if 633 * there are any holes in the block (ie. invalid PFNs or 634 * non-free pages). 635 */ 636 if (!isolated) 637 break; 638 639 /* 640 * If we managed to isolate pages, it is always (1 << n) * 641 * pageblock_nr_pages for some non-negative n. (Max order 642 * page may span two pageblocks). 643 */ 644 } 645 646 /* __isolate_free_page() does not map the pages */ 647 map_pages(&freelist); 648 649 if (pfn < end_pfn) { 650 /* Loop terminated early, cleanup. */ 651 release_freepages(&freelist); 652 return 0; 653 } 654 655 /* We don't use freelists for anything. */ 656 return pfn; 657 } 658 659 /* Similar to reclaim, but different enough that they don't share logic */ 660 static bool too_many_isolated(struct zone *zone) 661 { 662 unsigned long active, inactive, isolated; 663 664 inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) + 665 node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON); 666 active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) + 667 node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON); 668 isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) + 669 node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON); 670 671 return isolated > (inactive + active) / 2; 672 } 673 674 /** 675 * isolate_migratepages_block() - isolate all migrate-able pages within 676 * a single pageblock 677 * @cc: Compaction control structure. 678 * @low_pfn: The first PFN to isolate 679 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 680 * @isolate_mode: Isolation mode to be used. 681 * 682 * Isolate all pages that can be migrated from the range specified by 683 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 684 * Returns zero if there is a fatal signal pending, otherwise PFN of the 685 * first page that was not scanned (which may be both less, equal to or more 686 * than end_pfn). 687 * 688 * The pages are isolated on cc->migratepages list (not required to be empty), 689 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field 690 * is neither read nor updated. 691 */ 692 static unsigned long 693 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 694 unsigned long end_pfn, isolate_mode_t isolate_mode) 695 { 696 struct zone *zone = cc->zone; 697 unsigned long nr_scanned = 0, nr_isolated = 0; 698 struct lruvec *lruvec; 699 unsigned long flags = 0; 700 bool locked = false; 701 struct page *page = NULL, *valid_page = NULL; 702 unsigned long start_pfn = low_pfn; 703 bool skip_on_failure = false; 704 unsigned long next_skip_pfn = 0; 705 706 /* 707 * Ensure that there are not too many pages isolated from the LRU 708 * list by either parallel reclaimers or compaction. If there are, 709 * delay for some time until fewer pages are isolated 710 */ 711 while (unlikely(too_many_isolated(zone))) { 712 /* async migration should just abort */ 713 if (cc->mode == MIGRATE_ASYNC) 714 return 0; 715 716 congestion_wait(BLK_RW_ASYNC, HZ/10); 717 718 if (fatal_signal_pending(current)) 719 return 0; 720 } 721 722 if (compact_should_abort(cc)) 723 return 0; 724 725 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { 726 skip_on_failure = true; 727 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 728 } 729 730 /* Time to isolate some pages for migration */ 731 for (; low_pfn < end_pfn; low_pfn++) { 732 733 if (skip_on_failure && low_pfn >= next_skip_pfn) { 734 /* 735 * We have isolated all migration candidates in the 736 * previous order-aligned block, and did not skip it due 737 * to failure. We should migrate the pages now and 738 * hopefully succeed compaction. 739 */ 740 if (nr_isolated) 741 break; 742 743 /* 744 * We failed to isolate in the previous order-aligned 745 * block. Set the new boundary to the end of the 746 * current block. Note we can't simply increase 747 * next_skip_pfn by 1 << order, as low_pfn might have 748 * been incremented by a higher number due to skipping 749 * a compound or a high-order buddy page in the 750 * previous loop iteration. 751 */ 752 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 753 } 754 755 /* 756 * Periodically drop the lock (if held) regardless of its 757 * contention, to give chance to IRQs. Abort async compaction 758 * if contended. 759 */ 760 if (!(low_pfn % SWAP_CLUSTER_MAX) 761 && compact_unlock_should_abort(zone_lru_lock(zone), flags, 762 &locked, cc)) 763 break; 764 765 if (!pfn_valid_within(low_pfn)) 766 goto isolate_fail; 767 nr_scanned++; 768 769 page = pfn_to_page(low_pfn); 770 771 if (!valid_page) 772 valid_page = page; 773 774 /* 775 * Skip if free. We read page order here without zone lock 776 * which is generally unsafe, but the race window is small and 777 * the worst thing that can happen is that we skip some 778 * potential isolation targets. 779 */ 780 if (PageBuddy(page)) { 781 unsigned long freepage_order = page_order_unsafe(page); 782 783 /* 784 * Without lock, we cannot be sure that what we got is 785 * a valid page order. Consider only values in the 786 * valid order range to prevent low_pfn overflow. 787 */ 788 if (freepage_order > 0 && freepage_order < MAX_ORDER) 789 low_pfn += (1UL << freepage_order) - 1; 790 continue; 791 } 792 793 /* 794 * Regardless of being on LRU, compound pages such as THP and 795 * hugetlbfs are not to be compacted. We can potentially save 796 * a lot of iterations if we skip them at once. The check is 797 * racy, but we can consider only valid values and the only 798 * danger is skipping too much. 799 */ 800 if (PageCompound(page)) { 801 const unsigned int order = compound_order(page); 802 803 if (likely(order < MAX_ORDER)) 804 low_pfn += (1UL << order) - 1; 805 goto isolate_fail; 806 } 807 808 /* 809 * Check may be lockless but that's ok as we recheck later. 810 * It's possible to migrate LRU and non-lru movable pages. 811 * Skip any other type of page 812 */ 813 if (!PageLRU(page)) { 814 /* 815 * __PageMovable can return false positive so we need 816 * to verify it under page_lock. 817 */ 818 if (unlikely(__PageMovable(page)) && 819 !PageIsolated(page)) { 820 if (locked) { 821 spin_unlock_irqrestore(zone_lru_lock(zone), 822 flags); 823 locked = false; 824 } 825 826 if (!isolate_movable_page(page, isolate_mode)) 827 goto isolate_success; 828 } 829 830 goto isolate_fail; 831 } 832 833 /* 834 * Migration will fail if an anonymous page is pinned in memory, 835 * so avoid taking lru_lock and isolating it unnecessarily in an 836 * admittedly racy check. 837 */ 838 if (!page_mapping(page) && 839 page_count(page) > page_mapcount(page)) 840 goto isolate_fail; 841 842 /* 843 * Only allow to migrate anonymous pages in GFP_NOFS context 844 * because those do not depend on fs locks. 845 */ 846 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page)) 847 goto isolate_fail; 848 849 /* If we already hold the lock, we can skip some rechecking */ 850 if (!locked) { 851 locked = compact_trylock_irqsave(zone_lru_lock(zone), 852 &flags, cc); 853 if (!locked) 854 break; 855 856 /* Recheck PageLRU and PageCompound under lock */ 857 if (!PageLRU(page)) 858 goto isolate_fail; 859 860 /* 861 * Page become compound since the non-locked check, 862 * and it's on LRU. It can only be a THP so the order 863 * is safe to read and it's 0 for tail pages. 864 */ 865 if (unlikely(PageCompound(page))) { 866 low_pfn += (1UL << compound_order(page)) - 1; 867 goto isolate_fail; 868 } 869 } 870 871 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 872 873 /* Try isolate the page */ 874 if (__isolate_lru_page(page, isolate_mode) != 0) 875 goto isolate_fail; 876 877 VM_BUG_ON_PAGE(PageCompound(page), page); 878 879 /* Successfully isolated */ 880 del_page_from_lru_list(page, lruvec, page_lru(page)); 881 inc_node_page_state(page, 882 NR_ISOLATED_ANON + page_is_file_cache(page)); 883 884 isolate_success: 885 list_add(&page->lru, &cc->migratepages); 886 cc->nr_migratepages++; 887 nr_isolated++; 888 889 /* 890 * Record where we could have freed pages by migration and not 891 * yet flushed them to buddy allocator. 892 * - this is the lowest page that was isolated and likely be 893 * then freed by migration. 894 */ 895 if (!cc->last_migrated_pfn) 896 cc->last_migrated_pfn = low_pfn; 897 898 /* Avoid isolating too much */ 899 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) { 900 ++low_pfn; 901 break; 902 } 903 904 continue; 905 isolate_fail: 906 if (!skip_on_failure) 907 continue; 908 909 /* 910 * We have isolated some pages, but then failed. Release them 911 * instead of migrating, as we cannot form the cc->order buddy 912 * page anyway. 913 */ 914 if (nr_isolated) { 915 if (locked) { 916 spin_unlock_irqrestore(zone_lru_lock(zone), flags); 917 locked = false; 918 } 919 putback_movable_pages(&cc->migratepages); 920 cc->nr_migratepages = 0; 921 cc->last_migrated_pfn = 0; 922 nr_isolated = 0; 923 } 924 925 if (low_pfn < next_skip_pfn) { 926 low_pfn = next_skip_pfn - 1; 927 /* 928 * The check near the loop beginning would have updated 929 * next_skip_pfn too, but this is a bit simpler. 930 */ 931 next_skip_pfn += 1UL << cc->order; 932 } 933 } 934 935 /* 936 * The PageBuddy() check could have potentially brought us outside 937 * the range to be scanned. 938 */ 939 if (unlikely(low_pfn > end_pfn)) 940 low_pfn = end_pfn; 941 942 if (locked) 943 spin_unlock_irqrestore(zone_lru_lock(zone), flags); 944 945 /* 946 * Update the pageblock-skip information and cached scanner pfn, 947 * if the whole pageblock was scanned without isolating any page. 948 */ 949 if (low_pfn == end_pfn) 950 update_pageblock_skip(cc, valid_page, nr_isolated, true); 951 952 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 953 nr_scanned, nr_isolated); 954 955 cc->total_migrate_scanned += nr_scanned; 956 if (nr_isolated) 957 count_compact_events(COMPACTISOLATED, nr_isolated); 958 959 return low_pfn; 960 } 961 962 /** 963 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 964 * @cc: Compaction control structure. 965 * @start_pfn: The first PFN to start isolating. 966 * @end_pfn: The one-past-last PFN. 967 * 968 * Returns zero if isolation fails fatally due to e.g. pending signal. 969 * Otherwise, function returns one-past-the-last PFN of isolated page 970 * (which may be greater than end_pfn if end fell in a middle of a THP page). 971 */ 972 unsigned long 973 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 974 unsigned long end_pfn) 975 { 976 unsigned long pfn, block_start_pfn, block_end_pfn; 977 978 /* Scan block by block. First and last block may be incomplete */ 979 pfn = start_pfn; 980 block_start_pfn = pageblock_start_pfn(pfn); 981 if (block_start_pfn < cc->zone->zone_start_pfn) 982 block_start_pfn = cc->zone->zone_start_pfn; 983 block_end_pfn = pageblock_end_pfn(pfn); 984 985 for (; pfn < end_pfn; pfn = block_end_pfn, 986 block_start_pfn = block_end_pfn, 987 block_end_pfn += pageblock_nr_pages) { 988 989 block_end_pfn = min(block_end_pfn, end_pfn); 990 991 if (!pageblock_pfn_to_page(block_start_pfn, 992 block_end_pfn, cc->zone)) 993 continue; 994 995 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn, 996 ISOLATE_UNEVICTABLE); 997 998 if (!pfn) 999 break; 1000 1001 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) 1002 break; 1003 } 1004 1005 return pfn; 1006 } 1007 1008 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 1009 #ifdef CONFIG_COMPACTION 1010 1011 static bool suitable_migration_source(struct compact_control *cc, 1012 struct page *page) 1013 { 1014 int block_mt; 1015 1016 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction) 1017 return true; 1018 1019 block_mt = get_pageblock_migratetype(page); 1020 1021 if (cc->migratetype == MIGRATE_MOVABLE) 1022 return is_migrate_movable(block_mt); 1023 else 1024 return block_mt == cc->migratetype; 1025 } 1026 1027 /* Returns true if the page is within a block suitable for migration to */ 1028 static bool suitable_migration_target(struct compact_control *cc, 1029 struct page *page) 1030 { 1031 /* If the page is a large free page, then disallow migration */ 1032 if (PageBuddy(page)) { 1033 /* 1034 * We are checking page_order without zone->lock taken. But 1035 * the only small danger is that we skip a potentially suitable 1036 * pageblock, so it's not worth to check order for valid range. 1037 */ 1038 if (page_order_unsafe(page) >= pageblock_order) 1039 return false; 1040 } 1041 1042 if (cc->ignore_block_suitable) 1043 return true; 1044 1045 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 1046 if (is_migrate_movable(get_pageblock_migratetype(page))) 1047 return true; 1048 1049 /* Otherwise skip the block */ 1050 return false; 1051 } 1052 1053 /* 1054 * Test whether the free scanner has reached the same or lower pageblock than 1055 * the migration scanner, and compaction should thus terminate. 1056 */ 1057 static inline bool compact_scanners_met(struct compact_control *cc) 1058 { 1059 return (cc->free_pfn >> pageblock_order) 1060 <= (cc->migrate_pfn >> pageblock_order); 1061 } 1062 1063 /* 1064 * Based on information in the current compact_control, find blocks 1065 * suitable for isolating free pages from and then isolate them. 1066 */ 1067 static void isolate_freepages(struct compact_control *cc) 1068 { 1069 struct zone *zone = cc->zone; 1070 struct page *page; 1071 unsigned long block_start_pfn; /* start of current pageblock */ 1072 unsigned long isolate_start_pfn; /* exact pfn we start at */ 1073 unsigned long block_end_pfn; /* end of current pageblock */ 1074 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 1075 struct list_head *freelist = &cc->freepages; 1076 1077 /* 1078 * Initialise the free scanner. The starting point is where we last 1079 * successfully isolated from, zone-cached value, or the end of the 1080 * zone when isolating for the first time. For looping we also need 1081 * this pfn aligned down to the pageblock boundary, because we do 1082 * block_start_pfn -= pageblock_nr_pages in the for loop. 1083 * For ending point, take care when isolating in last pageblock of a 1084 * a zone which ends in the middle of a pageblock. 1085 * The low boundary is the end of the pageblock the migration scanner 1086 * is using. 1087 */ 1088 isolate_start_pfn = cc->free_pfn; 1089 block_start_pfn = pageblock_start_pfn(cc->free_pfn); 1090 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 1091 zone_end_pfn(zone)); 1092 low_pfn = pageblock_end_pfn(cc->migrate_pfn); 1093 1094 /* 1095 * Isolate free pages until enough are available to migrate the 1096 * pages on cc->migratepages. We stop searching if the migrate 1097 * and free page scanners meet or enough free pages are isolated. 1098 */ 1099 for (; block_start_pfn >= low_pfn; 1100 block_end_pfn = block_start_pfn, 1101 block_start_pfn -= pageblock_nr_pages, 1102 isolate_start_pfn = block_start_pfn) { 1103 /* 1104 * This can iterate a massively long zone without finding any 1105 * suitable migration targets, so periodically check if we need 1106 * to schedule, or even abort async compaction. 1107 */ 1108 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)) 1109 && compact_should_abort(cc)) 1110 break; 1111 1112 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1113 zone); 1114 if (!page) 1115 continue; 1116 1117 /* Check the block is suitable for migration */ 1118 if (!suitable_migration_target(cc, page)) 1119 continue; 1120 1121 /* If isolation recently failed, do not retry */ 1122 if (!isolation_suitable(cc, page)) 1123 continue; 1124 1125 /* Found a block suitable for isolating free pages from. */ 1126 isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn, 1127 freelist, false); 1128 1129 /* 1130 * If we isolated enough freepages, or aborted due to lock 1131 * contention, terminate. 1132 */ 1133 if ((cc->nr_freepages >= cc->nr_migratepages) 1134 || cc->contended) { 1135 if (isolate_start_pfn >= block_end_pfn) { 1136 /* 1137 * Restart at previous pageblock if more 1138 * freepages can be isolated next time. 1139 */ 1140 isolate_start_pfn = 1141 block_start_pfn - pageblock_nr_pages; 1142 } 1143 break; 1144 } else if (isolate_start_pfn < block_end_pfn) { 1145 /* 1146 * If isolation failed early, do not continue 1147 * needlessly. 1148 */ 1149 break; 1150 } 1151 } 1152 1153 /* __isolate_free_page() does not map the pages */ 1154 map_pages(freelist); 1155 1156 /* 1157 * Record where the free scanner will restart next time. Either we 1158 * broke from the loop and set isolate_start_pfn based on the last 1159 * call to isolate_freepages_block(), or we met the migration scanner 1160 * and the loop terminated due to isolate_start_pfn < low_pfn 1161 */ 1162 cc->free_pfn = isolate_start_pfn; 1163 } 1164 1165 /* 1166 * This is a migrate-callback that "allocates" freepages by taking pages 1167 * from the isolated freelists in the block we are migrating to. 1168 */ 1169 static struct page *compaction_alloc(struct page *migratepage, 1170 unsigned long data) 1171 { 1172 struct compact_control *cc = (struct compact_control *)data; 1173 struct page *freepage; 1174 1175 /* 1176 * Isolate free pages if necessary, and if we are not aborting due to 1177 * contention. 1178 */ 1179 if (list_empty(&cc->freepages)) { 1180 if (!cc->contended) 1181 isolate_freepages(cc); 1182 1183 if (list_empty(&cc->freepages)) 1184 return NULL; 1185 } 1186 1187 freepage = list_entry(cc->freepages.next, struct page, lru); 1188 list_del(&freepage->lru); 1189 cc->nr_freepages--; 1190 1191 return freepage; 1192 } 1193 1194 /* 1195 * This is a migrate-callback that "frees" freepages back to the isolated 1196 * freelist. All pages on the freelist are from the same zone, so there is no 1197 * special handling needed for NUMA. 1198 */ 1199 static void compaction_free(struct page *page, unsigned long data) 1200 { 1201 struct compact_control *cc = (struct compact_control *)data; 1202 1203 list_add(&page->lru, &cc->freepages); 1204 cc->nr_freepages++; 1205 } 1206 1207 /* possible outcome of isolate_migratepages */ 1208 typedef enum { 1209 ISOLATE_ABORT, /* Abort compaction now */ 1210 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1211 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1212 } isolate_migrate_t; 1213 1214 /* 1215 * Allow userspace to control policy on scanning the unevictable LRU for 1216 * compactable pages. 1217 */ 1218 int sysctl_compact_unevictable_allowed __read_mostly = 1; 1219 1220 /* 1221 * Isolate all pages that can be migrated from the first suitable block, 1222 * starting at the block pointed to by the migrate scanner pfn within 1223 * compact_control. 1224 */ 1225 static isolate_migrate_t isolate_migratepages(struct zone *zone, 1226 struct compact_control *cc) 1227 { 1228 unsigned long block_start_pfn; 1229 unsigned long block_end_pfn; 1230 unsigned long low_pfn; 1231 struct page *page; 1232 const isolate_mode_t isolate_mode = 1233 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 1234 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0); 1235 1236 /* 1237 * Start at where we last stopped, or beginning of the zone as 1238 * initialized by compact_zone() 1239 */ 1240 low_pfn = cc->migrate_pfn; 1241 block_start_pfn = pageblock_start_pfn(low_pfn); 1242 if (block_start_pfn < zone->zone_start_pfn) 1243 block_start_pfn = zone->zone_start_pfn; 1244 1245 /* Only scan within a pageblock boundary */ 1246 block_end_pfn = pageblock_end_pfn(low_pfn); 1247 1248 /* 1249 * Iterate over whole pageblocks until we find the first suitable. 1250 * Do not cross the free scanner. 1251 */ 1252 for (; block_end_pfn <= cc->free_pfn; 1253 low_pfn = block_end_pfn, 1254 block_start_pfn = block_end_pfn, 1255 block_end_pfn += pageblock_nr_pages) { 1256 1257 /* 1258 * This can potentially iterate a massively long zone with 1259 * many pageblocks unsuitable, so periodically check if we 1260 * need to schedule, or even abort async compaction. 1261 */ 1262 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)) 1263 && compact_should_abort(cc)) 1264 break; 1265 1266 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1267 zone); 1268 if (!page) 1269 continue; 1270 1271 /* If isolation recently failed, do not retry */ 1272 if (!isolation_suitable(cc, page)) 1273 continue; 1274 1275 /* 1276 * For async compaction, also only scan in MOVABLE blocks. 1277 * Async compaction is optimistic to see if the minimum amount 1278 * of work satisfies the allocation. 1279 */ 1280 if (!suitable_migration_source(cc, page)) 1281 continue; 1282 1283 /* Perform the isolation */ 1284 low_pfn = isolate_migratepages_block(cc, low_pfn, 1285 block_end_pfn, isolate_mode); 1286 1287 if (!low_pfn || cc->contended) 1288 return ISOLATE_ABORT; 1289 1290 /* 1291 * Either we isolated something and proceed with migration. Or 1292 * we failed and compact_zone should decide if we should 1293 * continue or not. 1294 */ 1295 break; 1296 } 1297 1298 /* Record where migration scanner will be restarted. */ 1299 cc->migrate_pfn = low_pfn; 1300 1301 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 1302 } 1303 1304 /* 1305 * order == -1 is expected when compacting via 1306 * /proc/sys/vm/compact_memory 1307 */ 1308 static inline bool is_via_compact_memory(int order) 1309 { 1310 return order == -1; 1311 } 1312 1313 static enum compact_result __compact_finished(struct zone *zone, 1314 struct compact_control *cc) 1315 { 1316 unsigned int order; 1317 const int migratetype = cc->migratetype; 1318 1319 if (cc->contended || fatal_signal_pending(current)) 1320 return COMPACT_CONTENDED; 1321 1322 /* Compaction run completes if the migrate and free scanner meet */ 1323 if (compact_scanners_met(cc)) { 1324 /* Let the next compaction start anew. */ 1325 reset_cached_positions(zone); 1326 1327 /* 1328 * Mark that the PG_migrate_skip information should be cleared 1329 * by kswapd when it goes to sleep. kcompactd does not set the 1330 * flag itself as the decision to be clear should be directly 1331 * based on an allocation request. 1332 */ 1333 if (cc->direct_compaction) 1334 zone->compact_blockskip_flush = true; 1335 1336 if (cc->whole_zone) 1337 return COMPACT_COMPLETE; 1338 else 1339 return COMPACT_PARTIAL_SKIPPED; 1340 } 1341 1342 if (is_via_compact_memory(cc->order)) 1343 return COMPACT_CONTINUE; 1344 1345 if (cc->finishing_block) { 1346 /* 1347 * We have finished the pageblock, but better check again that 1348 * we really succeeded. 1349 */ 1350 if (IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages)) 1351 cc->finishing_block = false; 1352 else 1353 return COMPACT_CONTINUE; 1354 } 1355 1356 /* Direct compactor: Is a suitable page free? */ 1357 for (order = cc->order; order < MAX_ORDER; order++) { 1358 struct free_area *area = &zone->free_area[order]; 1359 bool can_steal; 1360 1361 /* Job done if page is free of the right migratetype */ 1362 if (!list_empty(&area->free_list[migratetype])) 1363 return COMPACT_SUCCESS; 1364 1365 #ifdef CONFIG_CMA 1366 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 1367 if (migratetype == MIGRATE_MOVABLE && 1368 !list_empty(&area->free_list[MIGRATE_CMA])) 1369 return COMPACT_SUCCESS; 1370 #endif 1371 /* 1372 * Job done if allocation would steal freepages from 1373 * other migratetype buddy lists. 1374 */ 1375 if (find_suitable_fallback(area, order, migratetype, 1376 true, &can_steal) != -1) { 1377 1378 /* movable pages are OK in any pageblock */ 1379 if (migratetype == MIGRATE_MOVABLE) 1380 return COMPACT_SUCCESS; 1381 1382 /* 1383 * We are stealing for a non-movable allocation. Make 1384 * sure we finish compacting the current pageblock 1385 * first so it is as free as possible and we won't 1386 * have to steal another one soon. This only applies 1387 * to sync compaction, as async compaction operates 1388 * on pageblocks of the same migratetype. 1389 */ 1390 if (cc->mode == MIGRATE_ASYNC || 1391 IS_ALIGNED(cc->migrate_pfn, 1392 pageblock_nr_pages)) { 1393 return COMPACT_SUCCESS; 1394 } 1395 1396 cc->finishing_block = true; 1397 return COMPACT_CONTINUE; 1398 } 1399 } 1400 1401 return COMPACT_NO_SUITABLE_PAGE; 1402 } 1403 1404 static enum compact_result compact_finished(struct zone *zone, 1405 struct compact_control *cc) 1406 { 1407 int ret; 1408 1409 ret = __compact_finished(zone, cc); 1410 trace_mm_compaction_finished(zone, cc->order, ret); 1411 if (ret == COMPACT_NO_SUITABLE_PAGE) 1412 ret = COMPACT_CONTINUE; 1413 1414 return ret; 1415 } 1416 1417 /* 1418 * compaction_suitable: Is this suitable to run compaction on this zone now? 1419 * Returns 1420 * COMPACT_SKIPPED - If there are too few free pages for compaction 1421 * COMPACT_SUCCESS - If the allocation would succeed without compaction 1422 * COMPACT_CONTINUE - If compaction should run now 1423 */ 1424 static enum compact_result __compaction_suitable(struct zone *zone, int order, 1425 unsigned int alloc_flags, 1426 int classzone_idx, 1427 unsigned long wmark_target) 1428 { 1429 unsigned long watermark; 1430 1431 if (is_via_compact_memory(order)) 1432 return COMPACT_CONTINUE; 1433 1434 watermark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1435 /* 1436 * If watermarks for high-order allocation are already met, there 1437 * should be no need for compaction at all. 1438 */ 1439 if (zone_watermark_ok(zone, order, watermark, classzone_idx, 1440 alloc_flags)) 1441 return COMPACT_SUCCESS; 1442 1443 /* 1444 * Watermarks for order-0 must be met for compaction to be able to 1445 * isolate free pages for migration targets. This means that the 1446 * watermark and alloc_flags have to match, or be more pessimistic than 1447 * the check in __isolate_free_page(). We don't use the direct 1448 * compactor's alloc_flags, as they are not relevant for freepage 1449 * isolation. We however do use the direct compactor's classzone_idx to 1450 * skip over zones where lowmem reserves would prevent allocation even 1451 * if compaction succeeds. 1452 * For costly orders, we require low watermark instead of min for 1453 * compaction to proceed to increase its chances. 1454 * ALLOC_CMA is used, as pages in CMA pageblocks are considered 1455 * suitable migration targets 1456 */ 1457 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ? 1458 low_wmark_pages(zone) : min_wmark_pages(zone); 1459 watermark += compact_gap(order); 1460 if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx, 1461 ALLOC_CMA, wmark_target)) 1462 return COMPACT_SKIPPED; 1463 1464 return COMPACT_CONTINUE; 1465 } 1466 1467 enum compact_result compaction_suitable(struct zone *zone, int order, 1468 unsigned int alloc_flags, 1469 int classzone_idx) 1470 { 1471 enum compact_result ret; 1472 int fragindex; 1473 1474 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx, 1475 zone_page_state(zone, NR_FREE_PAGES)); 1476 /* 1477 * fragmentation index determines if allocation failures are due to 1478 * low memory or external fragmentation 1479 * 1480 * index of -1000 would imply allocations might succeed depending on 1481 * watermarks, but we already failed the high-order watermark check 1482 * index towards 0 implies failure is due to lack of memory 1483 * index towards 1000 implies failure is due to fragmentation 1484 * 1485 * Only compact if a failure would be due to fragmentation. Also 1486 * ignore fragindex for non-costly orders where the alternative to 1487 * a successful reclaim/compaction is OOM. Fragindex and the 1488 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent 1489 * excessive compaction for costly orders, but it should not be at the 1490 * expense of system stability. 1491 */ 1492 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) { 1493 fragindex = fragmentation_index(zone, order); 1494 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 1495 ret = COMPACT_NOT_SUITABLE_ZONE; 1496 } 1497 1498 trace_mm_compaction_suitable(zone, order, ret); 1499 if (ret == COMPACT_NOT_SUITABLE_ZONE) 1500 ret = COMPACT_SKIPPED; 1501 1502 return ret; 1503 } 1504 1505 bool compaction_zonelist_suitable(struct alloc_context *ac, int order, 1506 int alloc_flags) 1507 { 1508 struct zone *zone; 1509 struct zoneref *z; 1510 1511 /* 1512 * Make sure at least one zone would pass __compaction_suitable if we continue 1513 * retrying the reclaim. 1514 */ 1515 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 1516 ac->nodemask) { 1517 unsigned long available; 1518 enum compact_result compact_result; 1519 1520 /* 1521 * Do not consider all the reclaimable memory because we do not 1522 * want to trash just for a single high order allocation which 1523 * is even not guaranteed to appear even if __compaction_suitable 1524 * is happy about the watermark check. 1525 */ 1526 available = zone_reclaimable_pages(zone) / order; 1527 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 1528 compact_result = __compaction_suitable(zone, order, alloc_flags, 1529 ac_classzone_idx(ac), available); 1530 if (compact_result != COMPACT_SKIPPED) 1531 return true; 1532 } 1533 1534 return false; 1535 } 1536 1537 static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc) 1538 { 1539 enum compact_result ret; 1540 unsigned long start_pfn = zone->zone_start_pfn; 1541 unsigned long end_pfn = zone_end_pfn(zone); 1542 const bool sync = cc->mode != MIGRATE_ASYNC; 1543 1544 cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask); 1545 ret = compaction_suitable(zone, cc->order, cc->alloc_flags, 1546 cc->classzone_idx); 1547 /* Compaction is likely to fail */ 1548 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED) 1549 return ret; 1550 1551 /* huh, compaction_suitable is returning something unexpected */ 1552 VM_BUG_ON(ret != COMPACT_CONTINUE); 1553 1554 /* 1555 * Clear pageblock skip if there were failures recently and compaction 1556 * is about to be retried after being deferred. 1557 */ 1558 if (compaction_restarting(zone, cc->order)) 1559 __reset_isolation_suitable(zone); 1560 1561 /* 1562 * Setup to move all movable pages to the end of the zone. Used cached 1563 * information on where the scanners should start (unless we explicitly 1564 * want to compact the whole zone), but check that it is initialised 1565 * by ensuring the values are within zone boundaries. 1566 */ 1567 if (cc->whole_zone) { 1568 cc->migrate_pfn = start_pfn; 1569 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 1570 } else { 1571 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync]; 1572 cc->free_pfn = zone->compact_cached_free_pfn; 1573 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 1574 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 1575 zone->compact_cached_free_pfn = cc->free_pfn; 1576 } 1577 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 1578 cc->migrate_pfn = start_pfn; 1579 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 1580 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 1581 } 1582 1583 if (cc->migrate_pfn == start_pfn) 1584 cc->whole_zone = true; 1585 } 1586 1587 cc->last_migrated_pfn = 0; 1588 1589 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, 1590 cc->free_pfn, end_pfn, sync); 1591 1592 migrate_prep_local(); 1593 1594 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) { 1595 int err; 1596 1597 switch (isolate_migratepages(zone, cc)) { 1598 case ISOLATE_ABORT: 1599 ret = COMPACT_CONTENDED; 1600 putback_movable_pages(&cc->migratepages); 1601 cc->nr_migratepages = 0; 1602 goto out; 1603 case ISOLATE_NONE: 1604 /* 1605 * We haven't isolated and migrated anything, but 1606 * there might still be unflushed migrations from 1607 * previous cc->order aligned block. 1608 */ 1609 goto check_drain; 1610 case ISOLATE_SUCCESS: 1611 ; 1612 } 1613 1614 err = migrate_pages(&cc->migratepages, compaction_alloc, 1615 compaction_free, (unsigned long)cc, cc->mode, 1616 MR_COMPACTION); 1617 1618 trace_mm_compaction_migratepages(cc->nr_migratepages, err, 1619 &cc->migratepages); 1620 1621 /* All pages were either migrated or will be released */ 1622 cc->nr_migratepages = 0; 1623 if (err) { 1624 putback_movable_pages(&cc->migratepages); 1625 /* 1626 * migrate_pages() may return -ENOMEM when scanners meet 1627 * and we want compact_finished() to detect it 1628 */ 1629 if (err == -ENOMEM && !compact_scanners_met(cc)) { 1630 ret = COMPACT_CONTENDED; 1631 goto out; 1632 } 1633 /* 1634 * We failed to migrate at least one page in the current 1635 * order-aligned block, so skip the rest of it. 1636 */ 1637 if (cc->direct_compaction && 1638 (cc->mode == MIGRATE_ASYNC)) { 1639 cc->migrate_pfn = block_end_pfn( 1640 cc->migrate_pfn - 1, cc->order); 1641 /* Draining pcplists is useless in this case */ 1642 cc->last_migrated_pfn = 0; 1643 1644 } 1645 } 1646 1647 check_drain: 1648 /* 1649 * Has the migration scanner moved away from the previous 1650 * cc->order aligned block where we migrated from? If yes, 1651 * flush the pages that were freed, so that they can merge and 1652 * compact_finished() can detect immediately if allocation 1653 * would succeed. 1654 */ 1655 if (cc->order > 0 && cc->last_migrated_pfn) { 1656 int cpu; 1657 unsigned long current_block_start = 1658 block_start_pfn(cc->migrate_pfn, cc->order); 1659 1660 if (cc->last_migrated_pfn < current_block_start) { 1661 cpu = get_cpu(); 1662 lru_add_drain_cpu(cpu); 1663 drain_local_pages(zone); 1664 put_cpu(); 1665 /* No more flushing until we migrate again */ 1666 cc->last_migrated_pfn = 0; 1667 } 1668 } 1669 1670 } 1671 1672 out: 1673 /* 1674 * Release free pages and update where the free scanner should restart, 1675 * so we don't leave any returned pages behind in the next attempt. 1676 */ 1677 if (cc->nr_freepages > 0) { 1678 unsigned long free_pfn = release_freepages(&cc->freepages); 1679 1680 cc->nr_freepages = 0; 1681 VM_BUG_ON(free_pfn == 0); 1682 /* The cached pfn is always the first in a pageblock */ 1683 free_pfn = pageblock_start_pfn(free_pfn); 1684 /* 1685 * Only go back, not forward. The cached pfn might have been 1686 * already reset to zone end in compact_finished() 1687 */ 1688 if (free_pfn > zone->compact_cached_free_pfn) 1689 zone->compact_cached_free_pfn = free_pfn; 1690 } 1691 1692 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned); 1693 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned); 1694 1695 trace_mm_compaction_end(start_pfn, cc->migrate_pfn, 1696 cc->free_pfn, end_pfn, sync, ret); 1697 1698 return ret; 1699 } 1700 1701 static enum compact_result compact_zone_order(struct zone *zone, int order, 1702 gfp_t gfp_mask, enum compact_priority prio, 1703 unsigned int alloc_flags, int classzone_idx) 1704 { 1705 enum compact_result ret; 1706 struct compact_control cc = { 1707 .nr_freepages = 0, 1708 .nr_migratepages = 0, 1709 .total_migrate_scanned = 0, 1710 .total_free_scanned = 0, 1711 .order = order, 1712 .gfp_mask = gfp_mask, 1713 .zone = zone, 1714 .mode = (prio == COMPACT_PRIO_ASYNC) ? 1715 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT, 1716 .alloc_flags = alloc_flags, 1717 .classzone_idx = classzone_idx, 1718 .direct_compaction = true, 1719 .whole_zone = (prio == MIN_COMPACT_PRIORITY), 1720 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY), 1721 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY) 1722 }; 1723 INIT_LIST_HEAD(&cc.freepages); 1724 INIT_LIST_HEAD(&cc.migratepages); 1725 1726 ret = compact_zone(zone, &cc); 1727 1728 VM_BUG_ON(!list_empty(&cc.freepages)); 1729 VM_BUG_ON(!list_empty(&cc.migratepages)); 1730 1731 return ret; 1732 } 1733 1734 int sysctl_extfrag_threshold = 500; 1735 1736 /** 1737 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 1738 * @gfp_mask: The GFP mask of the current allocation 1739 * @order: The order of the current allocation 1740 * @alloc_flags: The allocation flags of the current allocation 1741 * @ac: The context of current allocation 1742 * @prio: Determines how hard direct compaction should try to succeed 1743 * 1744 * This is the main entry point for direct page compaction. 1745 */ 1746 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 1747 unsigned int alloc_flags, const struct alloc_context *ac, 1748 enum compact_priority prio) 1749 { 1750 int may_perform_io = gfp_mask & __GFP_IO; 1751 struct zoneref *z; 1752 struct zone *zone; 1753 enum compact_result rc = COMPACT_SKIPPED; 1754 1755 /* 1756 * Check if the GFP flags allow compaction - GFP_NOIO is really 1757 * tricky context because the migration might require IO 1758 */ 1759 if (!may_perform_io) 1760 return COMPACT_SKIPPED; 1761 1762 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio); 1763 1764 /* Compact each zone in the list */ 1765 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 1766 ac->nodemask) { 1767 enum compact_result status; 1768 1769 if (prio > MIN_COMPACT_PRIORITY 1770 && compaction_deferred(zone, order)) { 1771 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); 1772 continue; 1773 } 1774 1775 status = compact_zone_order(zone, order, gfp_mask, prio, 1776 alloc_flags, ac_classzone_idx(ac)); 1777 rc = max(status, rc); 1778 1779 /* The allocation should succeed, stop compacting */ 1780 if (status == COMPACT_SUCCESS) { 1781 /* 1782 * We think the allocation will succeed in this zone, 1783 * but it is not certain, hence the false. The caller 1784 * will repeat this with true if allocation indeed 1785 * succeeds in this zone. 1786 */ 1787 compaction_defer_reset(zone, order, false); 1788 1789 break; 1790 } 1791 1792 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE || 1793 status == COMPACT_PARTIAL_SKIPPED)) 1794 /* 1795 * We think that allocation won't succeed in this zone 1796 * so we defer compaction there. If it ends up 1797 * succeeding after all, it will be reset. 1798 */ 1799 defer_compaction(zone, order); 1800 1801 /* 1802 * We might have stopped compacting due to need_resched() in 1803 * async compaction, or due to a fatal signal detected. In that 1804 * case do not try further zones 1805 */ 1806 if ((prio == COMPACT_PRIO_ASYNC && need_resched()) 1807 || fatal_signal_pending(current)) 1808 break; 1809 } 1810 1811 return rc; 1812 } 1813 1814 1815 /* Compact all zones within a node */ 1816 static void compact_node(int nid) 1817 { 1818 pg_data_t *pgdat = NODE_DATA(nid); 1819 int zoneid; 1820 struct zone *zone; 1821 struct compact_control cc = { 1822 .order = -1, 1823 .total_migrate_scanned = 0, 1824 .total_free_scanned = 0, 1825 .mode = MIGRATE_SYNC, 1826 .ignore_skip_hint = true, 1827 .whole_zone = true, 1828 .gfp_mask = GFP_KERNEL, 1829 }; 1830 1831 1832 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 1833 1834 zone = &pgdat->node_zones[zoneid]; 1835 if (!populated_zone(zone)) 1836 continue; 1837 1838 cc.nr_freepages = 0; 1839 cc.nr_migratepages = 0; 1840 cc.zone = zone; 1841 INIT_LIST_HEAD(&cc.freepages); 1842 INIT_LIST_HEAD(&cc.migratepages); 1843 1844 compact_zone(zone, &cc); 1845 1846 VM_BUG_ON(!list_empty(&cc.freepages)); 1847 VM_BUG_ON(!list_empty(&cc.migratepages)); 1848 } 1849 } 1850 1851 /* Compact all nodes in the system */ 1852 static void compact_nodes(void) 1853 { 1854 int nid; 1855 1856 /* Flush pending updates to the LRU lists */ 1857 lru_add_drain_all(); 1858 1859 for_each_online_node(nid) 1860 compact_node(nid); 1861 } 1862 1863 /* The written value is actually unused, all memory is compacted */ 1864 int sysctl_compact_memory; 1865 1866 /* 1867 * This is the entry point for compacting all nodes via 1868 * /proc/sys/vm/compact_memory 1869 */ 1870 int sysctl_compaction_handler(struct ctl_table *table, int write, 1871 void __user *buffer, size_t *length, loff_t *ppos) 1872 { 1873 if (write) 1874 compact_nodes(); 1875 1876 return 0; 1877 } 1878 1879 int sysctl_extfrag_handler(struct ctl_table *table, int write, 1880 void __user *buffer, size_t *length, loff_t *ppos) 1881 { 1882 proc_dointvec_minmax(table, write, buffer, length, ppos); 1883 1884 return 0; 1885 } 1886 1887 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 1888 static ssize_t sysfs_compact_node(struct device *dev, 1889 struct device_attribute *attr, 1890 const char *buf, size_t count) 1891 { 1892 int nid = dev->id; 1893 1894 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 1895 /* Flush pending updates to the LRU lists */ 1896 lru_add_drain_all(); 1897 1898 compact_node(nid); 1899 } 1900 1901 return count; 1902 } 1903 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node); 1904 1905 int compaction_register_node(struct node *node) 1906 { 1907 return device_create_file(&node->dev, &dev_attr_compact); 1908 } 1909 1910 void compaction_unregister_node(struct node *node) 1911 { 1912 return device_remove_file(&node->dev, &dev_attr_compact); 1913 } 1914 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 1915 1916 static inline bool kcompactd_work_requested(pg_data_t *pgdat) 1917 { 1918 return pgdat->kcompactd_max_order > 0 || kthread_should_stop(); 1919 } 1920 1921 static bool kcompactd_node_suitable(pg_data_t *pgdat) 1922 { 1923 int zoneid; 1924 struct zone *zone; 1925 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx; 1926 1927 for (zoneid = 0; zoneid <= classzone_idx; zoneid++) { 1928 zone = &pgdat->node_zones[zoneid]; 1929 1930 if (!populated_zone(zone)) 1931 continue; 1932 1933 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0, 1934 classzone_idx) == COMPACT_CONTINUE) 1935 return true; 1936 } 1937 1938 return false; 1939 } 1940 1941 static void kcompactd_do_work(pg_data_t *pgdat) 1942 { 1943 /* 1944 * With no special task, compact all zones so that a page of requested 1945 * order is allocatable. 1946 */ 1947 int zoneid; 1948 struct zone *zone; 1949 struct compact_control cc = { 1950 .order = pgdat->kcompactd_max_order, 1951 .total_migrate_scanned = 0, 1952 .total_free_scanned = 0, 1953 .classzone_idx = pgdat->kcompactd_classzone_idx, 1954 .mode = MIGRATE_SYNC_LIGHT, 1955 .ignore_skip_hint = false, 1956 .gfp_mask = GFP_KERNEL, 1957 }; 1958 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 1959 cc.classzone_idx); 1960 count_compact_event(KCOMPACTD_WAKE); 1961 1962 for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) { 1963 int status; 1964 1965 zone = &pgdat->node_zones[zoneid]; 1966 if (!populated_zone(zone)) 1967 continue; 1968 1969 if (compaction_deferred(zone, cc.order)) 1970 continue; 1971 1972 if (compaction_suitable(zone, cc.order, 0, zoneid) != 1973 COMPACT_CONTINUE) 1974 continue; 1975 1976 cc.nr_freepages = 0; 1977 cc.nr_migratepages = 0; 1978 cc.total_migrate_scanned = 0; 1979 cc.total_free_scanned = 0; 1980 cc.zone = zone; 1981 INIT_LIST_HEAD(&cc.freepages); 1982 INIT_LIST_HEAD(&cc.migratepages); 1983 1984 if (kthread_should_stop()) 1985 return; 1986 status = compact_zone(zone, &cc); 1987 1988 if (status == COMPACT_SUCCESS) { 1989 compaction_defer_reset(zone, cc.order, false); 1990 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { 1991 /* 1992 * Buddy pages may become stranded on pcps that could 1993 * otherwise coalesce on the zone's free area for 1994 * order >= cc.order. This is ratelimited by the 1995 * upcoming deferral. 1996 */ 1997 drain_all_pages(zone); 1998 1999 /* 2000 * We use sync migration mode here, so we defer like 2001 * sync direct compaction does. 2002 */ 2003 defer_compaction(zone, cc.order); 2004 } 2005 2006 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 2007 cc.total_migrate_scanned); 2008 count_compact_events(KCOMPACTD_FREE_SCANNED, 2009 cc.total_free_scanned); 2010 2011 VM_BUG_ON(!list_empty(&cc.freepages)); 2012 VM_BUG_ON(!list_empty(&cc.migratepages)); 2013 } 2014 2015 /* 2016 * Regardless of success, we are done until woken up next. But remember 2017 * the requested order/classzone_idx in case it was higher/tighter than 2018 * our current ones 2019 */ 2020 if (pgdat->kcompactd_max_order <= cc.order) 2021 pgdat->kcompactd_max_order = 0; 2022 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx) 2023 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1; 2024 } 2025 2026 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx) 2027 { 2028 if (!order) 2029 return; 2030 2031 if (pgdat->kcompactd_max_order < order) 2032 pgdat->kcompactd_max_order = order; 2033 2034 if (pgdat->kcompactd_classzone_idx > classzone_idx) 2035 pgdat->kcompactd_classzone_idx = classzone_idx; 2036 2037 /* 2038 * Pairs with implicit barrier in wait_event_freezable() 2039 * such that wakeups are not missed. 2040 */ 2041 if (!wq_has_sleeper(&pgdat->kcompactd_wait)) 2042 return; 2043 2044 if (!kcompactd_node_suitable(pgdat)) 2045 return; 2046 2047 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 2048 classzone_idx); 2049 wake_up_interruptible(&pgdat->kcompactd_wait); 2050 } 2051 2052 /* 2053 * The background compaction daemon, started as a kernel thread 2054 * from the init process. 2055 */ 2056 static int kcompactd(void *p) 2057 { 2058 pg_data_t *pgdat = (pg_data_t*)p; 2059 struct task_struct *tsk = current; 2060 2061 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2062 2063 if (!cpumask_empty(cpumask)) 2064 set_cpus_allowed_ptr(tsk, cpumask); 2065 2066 set_freezable(); 2067 2068 pgdat->kcompactd_max_order = 0; 2069 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1; 2070 2071 while (!kthread_should_stop()) { 2072 unsigned long pflags; 2073 2074 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 2075 wait_event_freezable(pgdat->kcompactd_wait, 2076 kcompactd_work_requested(pgdat)); 2077 2078 psi_memstall_enter(&pflags); 2079 kcompactd_do_work(pgdat); 2080 psi_memstall_leave(&pflags); 2081 } 2082 2083 return 0; 2084 } 2085 2086 /* 2087 * This kcompactd start function will be called by init and node-hot-add. 2088 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 2089 */ 2090 int kcompactd_run(int nid) 2091 { 2092 pg_data_t *pgdat = NODE_DATA(nid); 2093 int ret = 0; 2094 2095 if (pgdat->kcompactd) 2096 return 0; 2097 2098 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); 2099 if (IS_ERR(pgdat->kcompactd)) { 2100 pr_err("Failed to start kcompactd on node %d\n", nid); 2101 ret = PTR_ERR(pgdat->kcompactd); 2102 pgdat->kcompactd = NULL; 2103 } 2104 return ret; 2105 } 2106 2107 /* 2108 * Called by memory hotplug when all memory in a node is offlined. Caller must 2109 * hold mem_hotplug_begin/end(). 2110 */ 2111 void kcompactd_stop(int nid) 2112 { 2113 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 2114 2115 if (kcompactd) { 2116 kthread_stop(kcompactd); 2117 NODE_DATA(nid)->kcompactd = NULL; 2118 } 2119 } 2120 2121 /* 2122 * It's optimal to keep kcompactd on the same CPUs as their memory, but 2123 * not required for correctness. So if the last cpu in a node goes 2124 * away, we get changed to run anywhere: as the first one comes back, 2125 * restore their cpu bindings. 2126 */ 2127 static int kcompactd_cpu_online(unsigned int cpu) 2128 { 2129 int nid; 2130 2131 for_each_node_state(nid, N_MEMORY) { 2132 pg_data_t *pgdat = NODE_DATA(nid); 2133 const struct cpumask *mask; 2134 2135 mask = cpumask_of_node(pgdat->node_id); 2136 2137 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 2138 /* One of our CPUs online: restore mask */ 2139 set_cpus_allowed_ptr(pgdat->kcompactd, mask); 2140 } 2141 return 0; 2142 } 2143 2144 static int __init kcompactd_init(void) 2145 { 2146 int nid; 2147 int ret; 2148 2149 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 2150 "mm/compaction:online", 2151 kcompactd_cpu_online, NULL); 2152 if (ret < 0) { 2153 pr_err("kcompactd: failed to register hotplug callbacks.\n"); 2154 return ret; 2155 } 2156 2157 for_each_node_state(nid, N_MEMORY) 2158 kcompactd_run(nid); 2159 return 0; 2160 } 2161 subsys_initcall(kcompactd_init) 2162 2163 #endif /* CONFIG_COMPACTION */ 2164