xref: /linux/mm/compaction.c (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include <linux/kasan.h>
20 #include "internal.h"
21 
22 #ifdef CONFIG_COMPACTION
23 static inline void count_compact_event(enum vm_event_item item)
24 {
25 	count_vm_event(item);
26 }
27 
28 static inline void count_compact_events(enum vm_event_item item, long delta)
29 {
30 	count_vm_events(item, delta);
31 }
32 #else
33 #define count_compact_event(item) do { } while (0)
34 #define count_compact_events(item, delta) do { } while (0)
35 #endif
36 
37 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/compaction.h>
41 
42 static unsigned long release_freepages(struct list_head *freelist)
43 {
44 	struct page *page, *next;
45 	unsigned long high_pfn = 0;
46 
47 	list_for_each_entry_safe(page, next, freelist, lru) {
48 		unsigned long pfn = page_to_pfn(page);
49 		list_del(&page->lru);
50 		__free_page(page);
51 		if (pfn > high_pfn)
52 			high_pfn = pfn;
53 	}
54 
55 	return high_pfn;
56 }
57 
58 static void map_pages(struct list_head *list)
59 {
60 	struct page *page;
61 
62 	list_for_each_entry(page, list, lru) {
63 		arch_alloc_page(page, 0);
64 		kernel_map_pages(page, 1, 1);
65 		kasan_alloc_pages(page, 0);
66 	}
67 }
68 
69 static inline bool migrate_async_suitable(int migratetype)
70 {
71 	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
72 }
73 
74 /*
75  * Check that the whole (or subset of) a pageblock given by the interval of
76  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
77  * with the migration of free compaction scanner. The scanners then need to
78  * use only pfn_valid_within() check for arches that allow holes within
79  * pageblocks.
80  *
81  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
82  *
83  * It's possible on some configurations to have a setup like node0 node1 node0
84  * i.e. it's possible that all pages within a zones range of pages do not
85  * belong to a single zone. We assume that a border between node0 and node1
86  * can occur within a single pageblock, but not a node0 node1 node0
87  * interleaving within a single pageblock. It is therefore sufficient to check
88  * the first and last page of a pageblock and avoid checking each individual
89  * page in a pageblock.
90  */
91 static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
92 				unsigned long end_pfn, struct zone *zone)
93 {
94 	struct page *start_page;
95 	struct page *end_page;
96 
97 	/* end_pfn is one past the range we are checking */
98 	end_pfn--;
99 
100 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
101 		return NULL;
102 
103 	start_page = pfn_to_page(start_pfn);
104 
105 	if (page_zone(start_page) != zone)
106 		return NULL;
107 
108 	end_page = pfn_to_page(end_pfn);
109 
110 	/* This gives a shorter code than deriving page_zone(end_page) */
111 	if (page_zone_id(start_page) != page_zone_id(end_page))
112 		return NULL;
113 
114 	return start_page;
115 }
116 
117 #ifdef CONFIG_COMPACTION
118 
119 /* Do not skip compaction more than 64 times */
120 #define COMPACT_MAX_DEFER_SHIFT 6
121 
122 /*
123  * Compaction is deferred when compaction fails to result in a page
124  * allocation success. 1 << compact_defer_limit compactions are skipped up
125  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
126  */
127 void defer_compaction(struct zone *zone, int order)
128 {
129 	zone->compact_considered = 0;
130 	zone->compact_defer_shift++;
131 
132 	if (order < zone->compact_order_failed)
133 		zone->compact_order_failed = order;
134 
135 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
136 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
137 
138 	trace_mm_compaction_defer_compaction(zone, order);
139 }
140 
141 /* Returns true if compaction should be skipped this time */
142 bool compaction_deferred(struct zone *zone, int order)
143 {
144 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
145 
146 	if (order < zone->compact_order_failed)
147 		return false;
148 
149 	/* Avoid possible overflow */
150 	if (++zone->compact_considered > defer_limit)
151 		zone->compact_considered = defer_limit;
152 
153 	if (zone->compact_considered >= defer_limit)
154 		return false;
155 
156 	trace_mm_compaction_deferred(zone, order);
157 
158 	return true;
159 }
160 
161 /*
162  * Update defer tracking counters after successful compaction of given order,
163  * which means an allocation either succeeded (alloc_success == true) or is
164  * expected to succeed.
165  */
166 void compaction_defer_reset(struct zone *zone, int order,
167 		bool alloc_success)
168 {
169 	if (alloc_success) {
170 		zone->compact_considered = 0;
171 		zone->compact_defer_shift = 0;
172 	}
173 	if (order >= zone->compact_order_failed)
174 		zone->compact_order_failed = order + 1;
175 
176 	trace_mm_compaction_defer_reset(zone, order);
177 }
178 
179 /* Returns true if restarting compaction after many failures */
180 bool compaction_restarting(struct zone *zone, int order)
181 {
182 	if (order < zone->compact_order_failed)
183 		return false;
184 
185 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
186 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
187 }
188 
189 /* Returns true if the pageblock should be scanned for pages to isolate. */
190 static inline bool isolation_suitable(struct compact_control *cc,
191 					struct page *page)
192 {
193 	if (cc->ignore_skip_hint)
194 		return true;
195 
196 	return !get_pageblock_skip(page);
197 }
198 
199 static void reset_cached_positions(struct zone *zone)
200 {
201 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
202 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
203 	zone->compact_cached_free_pfn = zone_end_pfn(zone);
204 }
205 
206 /*
207  * This function is called to clear all cached information on pageblocks that
208  * should be skipped for page isolation when the migrate and free page scanner
209  * meet.
210  */
211 static void __reset_isolation_suitable(struct zone *zone)
212 {
213 	unsigned long start_pfn = zone->zone_start_pfn;
214 	unsigned long end_pfn = zone_end_pfn(zone);
215 	unsigned long pfn;
216 
217 	zone->compact_blockskip_flush = false;
218 
219 	/* Walk the zone and mark every pageblock as suitable for isolation */
220 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
221 		struct page *page;
222 
223 		cond_resched();
224 
225 		if (!pfn_valid(pfn))
226 			continue;
227 
228 		page = pfn_to_page(pfn);
229 		if (zone != page_zone(page))
230 			continue;
231 
232 		clear_pageblock_skip(page);
233 	}
234 
235 	reset_cached_positions(zone);
236 }
237 
238 void reset_isolation_suitable(pg_data_t *pgdat)
239 {
240 	int zoneid;
241 
242 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
243 		struct zone *zone = &pgdat->node_zones[zoneid];
244 		if (!populated_zone(zone))
245 			continue;
246 
247 		/* Only flush if a full compaction finished recently */
248 		if (zone->compact_blockskip_flush)
249 			__reset_isolation_suitable(zone);
250 	}
251 }
252 
253 /*
254  * If no pages were isolated then mark this pageblock to be skipped in the
255  * future. The information is later cleared by __reset_isolation_suitable().
256  */
257 static void update_pageblock_skip(struct compact_control *cc,
258 			struct page *page, unsigned long nr_isolated,
259 			bool migrate_scanner)
260 {
261 	struct zone *zone = cc->zone;
262 	unsigned long pfn;
263 
264 	if (cc->ignore_skip_hint)
265 		return;
266 
267 	if (!page)
268 		return;
269 
270 	if (nr_isolated)
271 		return;
272 
273 	set_pageblock_skip(page);
274 
275 	pfn = page_to_pfn(page);
276 
277 	/* Update where async and sync compaction should restart */
278 	if (migrate_scanner) {
279 		if (pfn > zone->compact_cached_migrate_pfn[0])
280 			zone->compact_cached_migrate_pfn[0] = pfn;
281 		if (cc->mode != MIGRATE_ASYNC &&
282 		    pfn > zone->compact_cached_migrate_pfn[1])
283 			zone->compact_cached_migrate_pfn[1] = pfn;
284 	} else {
285 		if (pfn < zone->compact_cached_free_pfn)
286 			zone->compact_cached_free_pfn = pfn;
287 	}
288 }
289 #else
290 static inline bool isolation_suitable(struct compact_control *cc,
291 					struct page *page)
292 {
293 	return true;
294 }
295 
296 static void update_pageblock_skip(struct compact_control *cc,
297 			struct page *page, unsigned long nr_isolated,
298 			bool migrate_scanner)
299 {
300 }
301 #endif /* CONFIG_COMPACTION */
302 
303 /*
304  * Compaction requires the taking of some coarse locks that are potentially
305  * very heavily contended. For async compaction, back out if the lock cannot
306  * be taken immediately. For sync compaction, spin on the lock if needed.
307  *
308  * Returns true if the lock is held
309  * Returns false if the lock is not held and compaction should abort
310  */
311 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
312 						struct compact_control *cc)
313 {
314 	if (cc->mode == MIGRATE_ASYNC) {
315 		if (!spin_trylock_irqsave(lock, *flags)) {
316 			cc->contended = COMPACT_CONTENDED_LOCK;
317 			return false;
318 		}
319 	} else {
320 		spin_lock_irqsave(lock, *flags);
321 	}
322 
323 	return true;
324 }
325 
326 /*
327  * Compaction requires the taking of some coarse locks that are potentially
328  * very heavily contended. The lock should be periodically unlocked to avoid
329  * having disabled IRQs for a long time, even when there is nobody waiting on
330  * the lock. It might also be that allowing the IRQs will result in
331  * need_resched() becoming true. If scheduling is needed, async compaction
332  * aborts. Sync compaction schedules.
333  * Either compaction type will also abort if a fatal signal is pending.
334  * In either case if the lock was locked, it is dropped and not regained.
335  *
336  * Returns true if compaction should abort due to fatal signal pending, or
337  *		async compaction due to need_resched()
338  * Returns false when compaction can continue (sync compaction might have
339  *		scheduled)
340  */
341 static bool compact_unlock_should_abort(spinlock_t *lock,
342 		unsigned long flags, bool *locked, struct compact_control *cc)
343 {
344 	if (*locked) {
345 		spin_unlock_irqrestore(lock, flags);
346 		*locked = false;
347 	}
348 
349 	if (fatal_signal_pending(current)) {
350 		cc->contended = COMPACT_CONTENDED_SCHED;
351 		return true;
352 	}
353 
354 	if (need_resched()) {
355 		if (cc->mode == MIGRATE_ASYNC) {
356 			cc->contended = COMPACT_CONTENDED_SCHED;
357 			return true;
358 		}
359 		cond_resched();
360 	}
361 
362 	return false;
363 }
364 
365 /*
366  * Aside from avoiding lock contention, compaction also periodically checks
367  * need_resched() and either schedules in sync compaction or aborts async
368  * compaction. This is similar to what compact_unlock_should_abort() does, but
369  * is used where no lock is concerned.
370  *
371  * Returns false when no scheduling was needed, or sync compaction scheduled.
372  * Returns true when async compaction should abort.
373  */
374 static inline bool compact_should_abort(struct compact_control *cc)
375 {
376 	/* async compaction aborts if contended */
377 	if (need_resched()) {
378 		if (cc->mode == MIGRATE_ASYNC) {
379 			cc->contended = COMPACT_CONTENDED_SCHED;
380 			return true;
381 		}
382 
383 		cond_resched();
384 	}
385 
386 	return false;
387 }
388 
389 /*
390  * Isolate free pages onto a private freelist. If @strict is true, will abort
391  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
392  * (even though it may still end up isolating some pages).
393  */
394 static unsigned long isolate_freepages_block(struct compact_control *cc,
395 				unsigned long *start_pfn,
396 				unsigned long end_pfn,
397 				struct list_head *freelist,
398 				bool strict)
399 {
400 	int nr_scanned = 0, total_isolated = 0;
401 	struct page *cursor, *valid_page = NULL;
402 	unsigned long flags = 0;
403 	bool locked = false;
404 	unsigned long blockpfn = *start_pfn;
405 
406 	cursor = pfn_to_page(blockpfn);
407 
408 	/* Isolate free pages. */
409 	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
410 		int isolated, i;
411 		struct page *page = cursor;
412 
413 		/*
414 		 * Periodically drop the lock (if held) regardless of its
415 		 * contention, to give chance to IRQs. Abort if fatal signal
416 		 * pending or async compaction detects need_resched()
417 		 */
418 		if (!(blockpfn % SWAP_CLUSTER_MAX)
419 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
420 								&locked, cc))
421 			break;
422 
423 		nr_scanned++;
424 		if (!pfn_valid_within(blockpfn))
425 			goto isolate_fail;
426 
427 		if (!valid_page)
428 			valid_page = page;
429 
430 		/*
431 		 * For compound pages such as THP and hugetlbfs, we can save
432 		 * potentially a lot of iterations if we skip them at once.
433 		 * The check is racy, but we can consider only valid values
434 		 * and the only danger is skipping too much.
435 		 */
436 		if (PageCompound(page)) {
437 			unsigned int comp_order = compound_order(page);
438 
439 			if (likely(comp_order < MAX_ORDER)) {
440 				blockpfn += (1UL << comp_order) - 1;
441 				cursor += (1UL << comp_order) - 1;
442 			}
443 
444 			goto isolate_fail;
445 		}
446 
447 		if (!PageBuddy(page))
448 			goto isolate_fail;
449 
450 		/*
451 		 * If we already hold the lock, we can skip some rechecking.
452 		 * Note that if we hold the lock now, checked_pageblock was
453 		 * already set in some previous iteration (or strict is true),
454 		 * so it is correct to skip the suitable migration target
455 		 * recheck as well.
456 		 */
457 		if (!locked) {
458 			/*
459 			 * The zone lock must be held to isolate freepages.
460 			 * Unfortunately this is a very coarse lock and can be
461 			 * heavily contended if there are parallel allocations
462 			 * or parallel compactions. For async compaction do not
463 			 * spin on the lock and we acquire the lock as late as
464 			 * possible.
465 			 */
466 			locked = compact_trylock_irqsave(&cc->zone->lock,
467 								&flags, cc);
468 			if (!locked)
469 				break;
470 
471 			/* Recheck this is a buddy page under lock */
472 			if (!PageBuddy(page))
473 				goto isolate_fail;
474 		}
475 
476 		/* Found a free page, break it into order-0 pages */
477 		isolated = split_free_page(page);
478 		total_isolated += isolated;
479 		for (i = 0; i < isolated; i++) {
480 			list_add(&page->lru, freelist);
481 			page++;
482 		}
483 
484 		/* If a page was split, advance to the end of it */
485 		if (isolated) {
486 			cc->nr_freepages += isolated;
487 			if (!strict &&
488 				cc->nr_migratepages <= cc->nr_freepages) {
489 				blockpfn += isolated;
490 				break;
491 			}
492 
493 			blockpfn += isolated - 1;
494 			cursor += isolated - 1;
495 			continue;
496 		}
497 
498 isolate_fail:
499 		if (strict)
500 			break;
501 		else
502 			continue;
503 
504 	}
505 
506 	/*
507 	 * There is a tiny chance that we have read bogus compound_order(),
508 	 * so be careful to not go outside of the pageblock.
509 	 */
510 	if (unlikely(blockpfn > end_pfn))
511 		blockpfn = end_pfn;
512 
513 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
514 					nr_scanned, total_isolated);
515 
516 	/* Record how far we have got within the block */
517 	*start_pfn = blockpfn;
518 
519 	/*
520 	 * If strict isolation is requested by CMA then check that all the
521 	 * pages requested were isolated. If there were any failures, 0 is
522 	 * returned and CMA will fail.
523 	 */
524 	if (strict && blockpfn < end_pfn)
525 		total_isolated = 0;
526 
527 	if (locked)
528 		spin_unlock_irqrestore(&cc->zone->lock, flags);
529 
530 	/* Update the pageblock-skip if the whole pageblock was scanned */
531 	if (blockpfn == end_pfn)
532 		update_pageblock_skip(cc, valid_page, total_isolated, false);
533 
534 	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
535 	if (total_isolated)
536 		count_compact_events(COMPACTISOLATED, total_isolated);
537 	return total_isolated;
538 }
539 
540 /**
541  * isolate_freepages_range() - isolate free pages.
542  * @start_pfn: The first PFN to start isolating.
543  * @end_pfn:   The one-past-last PFN.
544  *
545  * Non-free pages, invalid PFNs, or zone boundaries within the
546  * [start_pfn, end_pfn) range are considered errors, cause function to
547  * undo its actions and return zero.
548  *
549  * Otherwise, function returns one-past-the-last PFN of isolated page
550  * (which may be greater then end_pfn if end fell in a middle of
551  * a free page).
552  */
553 unsigned long
554 isolate_freepages_range(struct compact_control *cc,
555 			unsigned long start_pfn, unsigned long end_pfn)
556 {
557 	unsigned long isolated, pfn, block_end_pfn;
558 	LIST_HEAD(freelist);
559 
560 	pfn = start_pfn;
561 	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
562 
563 	for (; pfn < end_pfn; pfn += isolated,
564 				block_end_pfn += pageblock_nr_pages) {
565 		/* Protect pfn from changing by isolate_freepages_block */
566 		unsigned long isolate_start_pfn = pfn;
567 
568 		block_end_pfn = min(block_end_pfn, end_pfn);
569 
570 		/*
571 		 * pfn could pass the block_end_pfn if isolated freepage
572 		 * is more than pageblock order. In this case, we adjust
573 		 * scanning range to right one.
574 		 */
575 		if (pfn >= block_end_pfn) {
576 			block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
577 			block_end_pfn = min(block_end_pfn, end_pfn);
578 		}
579 
580 		if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
581 			break;
582 
583 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
584 						block_end_pfn, &freelist, true);
585 
586 		/*
587 		 * In strict mode, isolate_freepages_block() returns 0 if
588 		 * there are any holes in the block (ie. invalid PFNs or
589 		 * non-free pages).
590 		 */
591 		if (!isolated)
592 			break;
593 
594 		/*
595 		 * If we managed to isolate pages, it is always (1 << n) *
596 		 * pageblock_nr_pages for some non-negative n.  (Max order
597 		 * page may span two pageblocks).
598 		 */
599 	}
600 
601 	/* split_free_page does not map the pages */
602 	map_pages(&freelist);
603 
604 	if (pfn < end_pfn) {
605 		/* Loop terminated early, cleanup. */
606 		release_freepages(&freelist);
607 		return 0;
608 	}
609 
610 	/* We don't use freelists for anything. */
611 	return pfn;
612 }
613 
614 /* Update the number of anon and file isolated pages in the zone */
615 static void acct_isolated(struct zone *zone, struct compact_control *cc)
616 {
617 	struct page *page;
618 	unsigned int count[2] = { 0, };
619 
620 	if (list_empty(&cc->migratepages))
621 		return;
622 
623 	list_for_each_entry(page, &cc->migratepages, lru)
624 		count[!!page_is_file_cache(page)]++;
625 
626 	mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
627 	mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
628 }
629 
630 /* Similar to reclaim, but different enough that they don't share logic */
631 static bool too_many_isolated(struct zone *zone)
632 {
633 	unsigned long active, inactive, isolated;
634 
635 	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
636 					zone_page_state(zone, NR_INACTIVE_ANON);
637 	active = zone_page_state(zone, NR_ACTIVE_FILE) +
638 					zone_page_state(zone, NR_ACTIVE_ANON);
639 	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
640 					zone_page_state(zone, NR_ISOLATED_ANON);
641 
642 	return isolated > (inactive + active) / 2;
643 }
644 
645 /**
646  * isolate_migratepages_block() - isolate all migrate-able pages within
647  *				  a single pageblock
648  * @cc:		Compaction control structure.
649  * @low_pfn:	The first PFN to isolate
650  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
651  * @isolate_mode: Isolation mode to be used.
652  *
653  * Isolate all pages that can be migrated from the range specified by
654  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
655  * Returns zero if there is a fatal signal pending, otherwise PFN of the
656  * first page that was not scanned (which may be both less, equal to or more
657  * than end_pfn).
658  *
659  * The pages are isolated on cc->migratepages list (not required to be empty),
660  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
661  * is neither read nor updated.
662  */
663 static unsigned long
664 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
665 			unsigned long end_pfn, isolate_mode_t isolate_mode)
666 {
667 	struct zone *zone = cc->zone;
668 	unsigned long nr_scanned = 0, nr_isolated = 0;
669 	struct list_head *migratelist = &cc->migratepages;
670 	struct lruvec *lruvec;
671 	unsigned long flags = 0;
672 	bool locked = false;
673 	struct page *page = NULL, *valid_page = NULL;
674 	unsigned long start_pfn = low_pfn;
675 
676 	/*
677 	 * Ensure that there are not too many pages isolated from the LRU
678 	 * list by either parallel reclaimers or compaction. If there are,
679 	 * delay for some time until fewer pages are isolated
680 	 */
681 	while (unlikely(too_many_isolated(zone))) {
682 		/* async migration should just abort */
683 		if (cc->mode == MIGRATE_ASYNC)
684 			return 0;
685 
686 		congestion_wait(BLK_RW_ASYNC, HZ/10);
687 
688 		if (fatal_signal_pending(current))
689 			return 0;
690 	}
691 
692 	if (compact_should_abort(cc))
693 		return 0;
694 
695 	/* Time to isolate some pages for migration */
696 	for (; low_pfn < end_pfn; low_pfn++) {
697 		bool is_lru;
698 
699 		/*
700 		 * Periodically drop the lock (if held) regardless of its
701 		 * contention, to give chance to IRQs. Abort async compaction
702 		 * if contended.
703 		 */
704 		if (!(low_pfn % SWAP_CLUSTER_MAX)
705 		    && compact_unlock_should_abort(&zone->lru_lock, flags,
706 								&locked, cc))
707 			break;
708 
709 		if (!pfn_valid_within(low_pfn))
710 			continue;
711 		nr_scanned++;
712 
713 		page = pfn_to_page(low_pfn);
714 
715 		if (!valid_page)
716 			valid_page = page;
717 
718 		/*
719 		 * Skip if free. We read page order here without zone lock
720 		 * which is generally unsafe, but the race window is small and
721 		 * the worst thing that can happen is that we skip some
722 		 * potential isolation targets.
723 		 */
724 		if (PageBuddy(page)) {
725 			unsigned long freepage_order = page_order_unsafe(page);
726 
727 			/*
728 			 * Without lock, we cannot be sure that what we got is
729 			 * a valid page order. Consider only values in the
730 			 * valid order range to prevent low_pfn overflow.
731 			 */
732 			if (freepage_order > 0 && freepage_order < MAX_ORDER)
733 				low_pfn += (1UL << freepage_order) - 1;
734 			continue;
735 		}
736 
737 		/*
738 		 * Check may be lockless but that's ok as we recheck later.
739 		 * It's possible to migrate LRU pages and balloon pages
740 		 * Skip any other type of page
741 		 */
742 		is_lru = PageLRU(page);
743 		if (!is_lru) {
744 			if (unlikely(balloon_page_movable(page))) {
745 				if (balloon_page_isolate(page)) {
746 					/* Successfully isolated */
747 					goto isolate_success;
748 				}
749 			}
750 		}
751 
752 		/*
753 		 * Regardless of being on LRU, compound pages such as THP and
754 		 * hugetlbfs are not to be compacted. We can potentially save
755 		 * a lot of iterations if we skip them at once. The check is
756 		 * racy, but we can consider only valid values and the only
757 		 * danger is skipping too much.
758 		 */
759 		if (PageCompound(page)) {
760 			unsigned int comp_order = compound_order(page);
761 
762 			if (likely(comp_order < MAX_ORDER))
763 				low_pfn += (1UL << comp_order) - 1;
764 
765 			continue;
766 		}
767 
768 		if (!is_lru)
769 			continue;
770 
771 		/*
772 		 * Migration will fail if an anonymous page is pinned in memory,
773 		 * so avoid taking lru_lock and isolating it unnecessarily in an
774 		 * admittedly racy check.
775 		 */
776 		if (!page_mapping(page) &&
777 		    page_count(page) > page_mapcount(page))
778 			continue;
779 
780 		/* If we already hold the lock, we can skip some rechecking */
781 		if (!locked) {
782 			locked = compact_trylock_irqsave(&zone->lru_lock,
783 								&flags, cc);
784 			if (!locked)
785 				break;
786 
787 			/* Recheck PageLRU and PageCompound under lock */
788 			if (!PageLRU(page))
789 				continue;
790 
791 			/*
792 			 * Page become compound since the non-locked check,
793 			 * and it's on LRU. It can only be a THP so the order
794 			 * is safe to read and it's 0 for tail pages.
795 			 */
796 			if (unlikely(PageCompound(page))) {
797 				low_pfn += (1UL << compound_order(page)) - 1;
798 				continue;
799 			}
800 		}
801 
802 		lruvec = mem_cgroup_page_lruvec(page, zone);
803 
804 		/* Try isolate the page */
805 		if (__isolate_lru_page(page, isolate_mode) != 0)
806 			continue;
807 
808 		VM_BUG_ON_PAGE(PageCompound(page), page);
809 
810 		/* Successfully isolated */
811 		del_page_from_lru_list(page, lruvec, page_lru(page));
812 
813 isolate_success:
814 		list_add(&page->lru, migratelist);
815 		cc->nr_migratepages++;
816 		nr_isolated++;
817 
818 		/* Avoid isolating too much */
819 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
820 			++low_pfn;
821 			break;
822 		}
823 	}
824 
825 	/*
826 	 * The PageBuddy() check could have potentially brought us outside
827 	 * the range to be scanned.
828 	 */
829 	if (unlikely(low_pfn > end_pfn))
830 		low_pfn = end_pfn;
831 
832 	if (locked)
833 		spin_unlock_irqrestore(&zone->lru_lock, flags);
834 
835 	/*
836 	 * Update the pageblock-skip information and cached scanner pfn,
837 	 * if the whole pageblock was scanned without isolating any page.
838 	 */
839 	if (low_pfn == end_pfn)
840 		update_pageblock_skip(cc, valid_page, nr_isolated, true);
841 
842 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
843 						nr_scanned, nr_isolated);
844 
845 	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
846 	if (nr_isolated)
847 		count_compact_events(COMPACTISOLATED, nr_isolated);
848 
849 	return low_pfn;
850 }
851 
852 /**
853  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
854  * @cc:        Compaction control structure.
855  * @start_pfn: The first PFN to start isolating.
856  * @end_pfn:   The one-past-last PFN.
857  *
858  * Returns zero if isolation fails fatally due to e.g. pending signal.
859  * Otherwise, function returns one-past-the-last PFN of isolated page
860  * (which may be greater than end_pfn if end fell in a middle of a THP page).
861  */
862 unsigned long
863 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
864 							unsigned long end_pfn)
865 {
866 	unsigned long pfn, block_end_pfn;
867 
868 	/* Scan block by block. First and last block may be incomplete */
869 	pfn = start_pfn;
870 	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
871 
872 	for (; pfn < end_pfn; pfn = block_end_pfn,
873 				block_end_pfn += pageblock_nr_pages) {
874 
875 		block_end_pfn = min(block_end_pfn, end_pfn);
876 
877 		if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
878 			continue;
879 
880 		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
881 							ISOLATE_UNEVICTABLE);
882 
883 		/*
884 		 * In case of fatal failure, release everything that might
885 		 * have been isolated in the previous iteration, and signal
886 		 * the failure back to caller.
887 		 */
888 		if (!pfn) {
889 			putback_movable_pages(&cc->migratepages);
890 			cc->nr_migratepages = 0;
891 			break;
892 		}
893 
894 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
895 			break;
896 	}
897 	acct_isolated(cc->zone, cc);
898 
899 	return pfn;
900 }
901 
902 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
903 #ifdef CONFIG_COMPACTION
904 
905 /* Returns true if the page is within a block suitable for migration to */
906 static bool suitable_migration_target(struct page *page)
907 {
908 	/* If the page is a large free page, then disallow migration */
909 	if (PageBuddy(page)) {
910 		/*
911 		 * We are checking page_order without zone->lock taken. But
912 		 * the only small danger is that we skip a potentially suitable
913 		 * pageblock, so it's not worth to check order for valid range.
914 		 */
915 		if (page_order_unsafe(page) >= pageblock_order)
916 			return false;
917 	}
918 
919 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
920 	if (migrate_async_suitable(get_pageblock_migratetype(page)))
921 		return true;
922 
923 	/* Otherwise skip the block */
924 	return false;
925 }
926 
927 /*
928  * Test whether the free scanner has reached the same or lower pageblock than
929  * the migration scanner, and compaction should thus terminate.
930  */
931 static inline bool compact_scanners_met(struct compact_control *cc)
932 {
933 	return (cc->free_pfn >> pageblock_order)
934 		<= (cc->migrate_pfn >> pageblock_order);
935 }
936 
937 /*
938  * Based on information in the current compact_control, find blocks
939  * suitable for isolating free pages from and then isolate them.
940  */
941 static void isolate_freepages(struct compact_control *cc)
942 {
943 	struct zone *zone = cc->zone;
944 	struct page *page;
945 	unsigned long block_start_pfn;	/* start of current pageblock */
946 	unsigned long isolate_start_pfn; /* exact pfn we start at */
947 	unsigned long block_end_pfn;	/* end of current pageblock */
948 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
949 	struct list_head *freelist = &cc->freepages;
950 
951 	/*
952 	 * Initialise the free scanner. The starting point is where we last
953 	 * successfully isolated from, zone-cached value, or the end of the
954 	 * zone when isolating for the first time. For looping we also need
955 	 * this pfn aligned down to the pageblock boundary, because we do
956 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
957 	 * For ending point, take care when isolating in last pageblock of a
958 	 * a zone which ends in the middle of a pageblock.
959 	 * The low boundary is the end of the pageblock the migration scanner
960 	 * is using.
961 	 */
962 	isolate_start_pfn = cc->free_pfn;
963 	block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
964 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
965 						zone_end_pfn(zone));
966 	low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
967 
968 	/*
969 	 * Isolate free pages until enough are available to migrate the
970 	 * pages on cc->migratepages. We stop searching if the migrate
971 	 * and free page scanners meet or enough free pages are isolated.
972 	 */
973 	for (; block_start_pfn >= low_pfn;
974 				block_end_pfn = block_start_pfn,
975 				block_start_pfn -= pageblock_nr_pages,
976 				isolate_start_pfn = block_start_pfn) {
977 
978 		/*
979 		 * This can iterate a massively long zone without finding any
980 		 * suitable migration targets, so periodically check if we need
981 		 * to schedule, or even abort async compaction.
982 		 */
983 		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
984 						&& compact_should_abort(cc))
985 			break;
986 
987 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
988 									zone);
989 		if (!page)
990 			continue;
991 
992 		/* Check the block is suitable for migration */
993 		if (!suitable_migration_target(page))
994 			continue;
995 
996 		/* If isolation recently failed, do not retry */
997 		if (!isolation_suitable(cc, page))
998 			continue;
999 
1000 		/* Found a block suitable for isolating free pages from. */
1001 		isolate_freepages_block(cc, &isolate_start_pfn,
1002 					block_end_pfn, freelist, false);
1003 
1004 		/*
1005 		 * If we isolated enough freepages, or aborted due to async
1006 		 * compaction being contended, terminate the loop.
1007 		 * Remember where the free scanner should restart next time,
1008 		 * which is where isolate_freepages_block() left off.
1009 		 * But if it scanned the whole pageblock, isolate_start_pfn
1010 		 * now points at block_end_pfn, which is the start of the next
1011 		 * pageblock.
1012 		 * In that case we will however want to restart at the start
1013 		 * of the previous pageblock.
1014 		 */
1015 		if ((cc->nr_freepages >= cc->nr_migratepages)
1016 							|| cc->contended) {
1017 			if (isolate_start_pfn >= block_end_pfn)
1018 				isolate_start_pfn =
1019 					block_start_pfn - pageblock_nr_pages;
1020 			break;
1021 		} else {
1022 			/*
1023 			 * isolate_freepages_block() should not terminate
1024 			 * prematurely unless contended, or isolated enough
1025 			 */
1026 			VM_BUG_ON(isolate_start_pfn < block_end_pfn);
1027 		}
1028 	}
1029 
1030 	/* split_free_page does not map the pages */
1031 	map_pages(freelist);
1032 
1033 	/*
1034 	 * Record where the free scanner will restart next time. Either we
1035 	 * broke from the loop and set isolate_start_pfn based on the last
1036 	 * call to isolate_freepages_block(), or we met the migration scanner
1037 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1038 	 */
1039 	cc->free_pfn = isolate_start_pfn;
1040 }
1041 
1042 /*
1043  * This is a migrate-callback that "allocates" freepages by taking pages
1044  * from the isolated freelists in the block we are migrating to.
1045  */
1046 static struct page *compaction_alloc(struct page *migratepage,
1047 					unsigned long data,
1048 					int **result)
1049 {
1050 	struct compact_control *cc = (struct compact_control *)data;
1051 	struct page *freepage;
1052 
1053 	/*
1054 	 * Isolate free pages if necessary, and if we are not aborting due to
1055 	 * contention.
1056 	 */
1057 	if (list_empty(&cc->freepages)) {
1058 		if (!cc->contended)
1059 			isolate_freepages(cc);
1060 
1061 		if (list_empty(&cc->freepages))
1062 			return NULL;
1063 	}
1064 
1065 	freepage = list_entry(cc->freepages.next, struct page, lru);
1066 	list_del(&freepage->lru);
1067 	cc->nr_freepages--;
1068 
1069 	return freepage;
1070 }
1071 
1072 /*
1073  * This is a migrate-callback that "frees" freepages back to the isolated
1074  * freelist.  All pages on the freelist are from the same zone, so there is no
1075  * special handling needed for NUMA.
1076  */
1077 static void compaction_free(struct page *page, unsigned long data)
1078 {
1079 	struct compact_control *cc = (struct compact_control *)data;
1080 
1081 	list_add(&page->lru, &cc->freepages);
1082 	cc->nr_freepages++;
1083 }
1084 
1085 /* possible outcome of isolate_migratepages */
1086 typedef enum {
1087 	ISOLATE_ABORT,		/* Abort compaction now */
1088 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1089 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1090 } isolate_migrate_t;
1091 
1092 /*
1093  * Allow userspace to control policy on scanning the unevictable LRU for
1094  * compactable pages.
1095  */
1096 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1097 
1098 /*
1099  * Isolate all pages that can be migrated from the first suitable block,
1100  * starting at the block pointed to by the migrate scanner pfn within
1101  * compact_control.
1102  */
1103 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1104 					struct compact_control *cc)
1105 {
1106 	unsigned long low_pfn, end_pfn;
1107 	unsigned long isolate_start_pfn;
1108 	struct page *page;
1109 	const isolate_mode_t isolate_mode =
1110 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1111 		(cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1112 
1113 	/*
1114 	 * Start at where we last stopped, or beginning of the zone as
1115 	 * initialized by compact_zone()
1116 	 */
1117 	low_pfn = cc->migrate_pfn;
1118 
1119 	/* Only scan within a pageblock boundary */
1120 	end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
1121 
1122 	/*
1123 	 * Iterate over whole pageblocks until we find the first suitable.
1124 	 * Do not cross the free scanner.
1125 	 */
1126 	for (; end_pfn <= cc->free_pfn;
1127 			low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
1128 
1129 		/*
1130 		 * This can potentially iterate a massively long zone with
1131 		 * many pageblocks unsuitable, so periodically check if we
1132 		 * need to schedule, or even abort async compaction.
1133 		 */
1134 		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1135 						&& compact_should_abort(cc))
1136 			break;
1137 
1138 		page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
1139 		if (!page)
1140 			continue;
1141 
1142 		/* If isolation recently failed, do not retry */
1143 		if (!isolation_suitable(cc, page))
1144 			continue;
1145 
1146 		/*
1147 		 * For async compaction, also only scan in MOVABLE blocks.
1148 		 * Async compaction is optimistic to see if the minimum amount
1149 		 * of work satisfies the allocation.
1150 		 */
1151 		if (cc->mode == MIGRATE_ASYNC &&
1152 		    !migrate_async_suitable(get_pageblock_migratetype(page)))
1153 			continue;
1154 
1155 		/* Perform the isolation */
1156 		isolate_start_pfn = low_pfn;
1157 		low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
1158 								isolate_mode);
1159 
1160 		if (!low_pfn || cc->contended) {
1161 			acct_isolated(zone, cc);
1162 			return ISOLATE_ABORT;
1163 		}
1164 
1165 		/*
1166 		 * Record where we could have freed pages by migration and not
1167 		 * yet flushed them to buddy allocator.
1168 		 * - this is the lowest page that could have been isolated and
1169 		 * then freed by migration.
1170 		 */
1171 		if (cc->nr_migratepages && !cc->last_migrated_pfn)
1172 			cc->last_migrated_pfn = isolate_start_pfn;
1173 
1174 		/*
1175 		 * Either we isolated something and proceed with migration. Or
1176 		 * we failed and compact_zone should decide if we should
1177 		 * continue or not.
1178 		 */
1179 		break;
1180 	}
1181 
1182 	acct_isolated(zone, cc);
1183 	/* Record where migration scanner will be restarted. */
1184 	cc->migrate_pfn = low_pfn;
1185 
1186 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1187 }
1188 
1189 /*
1190  * order == -1 is expected when compacting via
1191  * /proc/sys/vm/compact_memory
1192  */
1193 static inline bool is_via_compact_memory(int order)
1194 {
1195 	return order == -1;
1196 }
1197 
1198 static int __compact_finished(struct zone *zone, struct compact_control *cc,
1199 			    const int migratetype)
1200 {
1201 	unsigned int order;
1202 	unsigned long watermark;
1203 
1204 	if (cc->contended || fatal_signal_pending(current))
1205 		return COMPACT_CONTENDED;
1206 
1207 	/* Compaction run completes if the migrate and free scanner meet */
1208 	if (compact_scanners_met(cc)) {
1209 		/* Let the next compaction start anew. */
1210 		reset_cached_positions(zone);
1211 
1212 		/*
1213 		 * Mark that the PG_migrate_skip information should be cleared
1214 		 * by kswapd when it goes to sleep. kswapd does not set the
1215 		 * flag itself as the decision to be clear should be directly
1216 		 * based on an allocation request.
1217 		 */
1218 		if (!current_is_kswapd())
1219 			zone->compact_blockskip_flush = true;
1220 
1221 		return COMPACT_COMPLETE;
1222 	}
1223 
1224 	if (is_via_compact_memory(cc->order))
1225 		return COMPACT_CONTINUE;
1226 
1227 	/* Compaction run is not finished if the watermark is not met */
1228 	watermark = low_wmark_pages(zone);
1229 
1230 	if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1231 							cc->alloc_flags))
1232 		return COMPACT_CONTINUE;
1233 
1234 	/* Direct compactor: Is a suitable page free? */
1235 	for (order = cc->order; order < MAX_ORDER; order++) {
1236 		struct free_area *area = &zone->free_area[order];
1237 		bool can_steal;
1238 
1239 		/* Job done if page is free of the right migratetype */
1240 		if (!list_empty(&area->free_list[migratetype]))
1241 			return COMPACT_PARTIAL;
1242 
1243 #ifdef CONFIG_CMA
1244 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1245 		if (migratetype == MIGRATE_MOVABLE &&
1246 			!list_empty(&area->free_list[MIGRATE_CMA]))
1247 			return COMPACT_PARTIAL;
1248 #endif
1249 		/*
1250 		 * Job done if allocation would steal freepages from
1251 		 * other migratetype buddy lists.
1252 		 */
1253 		if (find_suitable_fallback(area, order, migratetype,
1254 						true, &can_steal) != -1)
1255 			return COMPACT_PARTIAL;
1256 	}
1257 
1258 	return COMPACT_NO_SUITABLE_PAGE;
1259 }
1260 
1261 static int compact_finished(struct zone *zone, struct compact_control *cc,
1262 			    const int migratetype)
1263 {
1264 	int ret;
1265 
1266 	ret = __compact_finished(zone, cc, migratetype);
1267 	trace_mm_compaction_finished(zone, cc->order, ret);
1268 	if (ret == COMPACT_NO_SUITABLE_PAGE)
1269 		ret = COMPACT_CONTINUE;
1270 
1271 	return ret;
1272 }
1273 
1274 /*
1275  * compaction_suitable: Is this suitable to run compaction on this zone now?
1276  * Returns
1277  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1278  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
1279  *   COMPACT_CONTINUE - If compaction should run now
1280  */
1281 static unsigned long __compaction_suitable(struct zone *zone, int order,
1282 					int alloc_flags, int classzone_idx)
1283 {
1284 	int fragindex;
1285 	unsigned long watermark;
1286 
1287 	if (is_via_compact_memory(order))
1288 		return COMPACT_CONTINUE;
1289 
1290 	watermark = low_wmark_pages(zone);
1291 	/*
1292 	 * If watermarks for high-order allocation are already met, there
1293 	 * should be no need for compaction at all.
1294 	 */
1295 	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1296 								alloc_flags))
1297 		return COMPACT_PARTIAL;
1298 
1299 	/*
1300 	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
1301 	 * This is because during migration, copies of pages need to be
1302 	 * allocated and for a short time, the footprint is higher
1303 	 */
1304 	watermark += (2UL << order);
1305 	if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1306 		return COMPACT_SKIPPED;
1307 
1308 	/*
1309 	 * fragmentation index determines if allocation failures are due to
1310 	 * low memory or external fragmentation
1311 	 *
1312 	 * index of -1000 would imply allocations might succeed depending on
1313 	 * watermarks, but we already failed the high-order watermark check
1314 	 * index towards 0 implies failure is due to lack of memory
1315 	 * index towards 1000 implies failure is due to fragmentation
1316 	 *
1317 	 * Only compact if a failure would be due to fragmentation.
1318 	 */
1319 	fragindex = fragmentation_index(zone, order);
1320 	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1321 		return COMPACT_NOT_SUITABLE_ZONE;
1322 
1323 	return COMPACT_CONTINUE;
1324 }
1325 
1326 unsigned long compaction_suitable(struct zone *zone, int order,
1327 					int alloc_flags, int classzone_idx)
1328 {
1329 	unsigned long ret;
1330 
1331 	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
1332 	trace_mm_compaction_suitable(zone, order, ret);
1333 	if (ret == COMPACT_NOT_SUITABLE_ZONE)
1334 		ret = COMPACT_SKIPPED;
1335 
1336 	return ret;
1337 }
1338 
1339 static int compact_zone(struct zone *zone, struct compact_control *cc)
1340 {
1341 	int ret;
1342 	unsigned long start_pfn = zone->zone_start_pfn;
1343 	unsigned long end_pfn = zone_end_pfn(zone);
1344 	const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1345 	const bool sync = cc->mode != MIGRATE_ASYNC;
1346 
1347 	ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1348 							cc->classzone_idx);
1349 	switch (ret) {
1350 	case COMPACT_PARTIAL:
1351 	case COMPACT_SKIPPED:
1352 		/* Compaction is likely to fail */
1353 		return ret;
1354 	case COMPACT_CONTINUE:
1355 		/* Fall through to compaction */
1356 		;
1357 	}
1358 
1359 	/*
1360 	 * Clear pageblock skip if there were failures recently and compaction
1361 	 * is about to be retried after being deferred. kswapd does not do
1362 	 * this reset as it'll reset the cached information when going to sleep.
1363 	 */
1364 	if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
1365 		__reset_isolation_suitable(zone);
1366 
1367 	/*
1368 	 * Setup to move all movable pages to the end of the zone. Used cached
1369 	 * information on where the scanners should start but check that it
1370 	 * is initialised by ensuring the values are within zone boundaries.
1371 	 */
1372 	cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1373 	cc->free_pfn = zone->compact_cached_free_pfn;
1374 	if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
1375 		cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
1376 		zone->compact_cached_free_pfn = cc->free_pfn;
1377 	}
1378 	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1379 		cc->migrate_pfn = start_pfn;
1380 		zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1381 		zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1382 	}
1383 	cc->last_migrated_pfn = 0;
1384 
1385 	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1386 				cc->free_pfn, end_pfn, sync);
1387 
1388 	migrate_prep_local();
1389 
1390 	while ((ret = compact_finished(zone, cc, migratetype)) ==
1391 						COMPACT_CONTINUE) {
1392 		int err;
1393 
1394 		switch (isolate_migratepages(zone, cc)) {
1395 		case ISOLATE_ABORT:
1396 			ret = COMPACT_CONTENDED;
1397 			putback_movable_pages(&cc->migratepages);
1398 			cc->nr_migratepages = 0;
1399 			goto out;
1400 		case ISOLATE_NONE:
1401 			/*
1402 			 * We haven't isolated and migrated anything, but
1403 			 * there might still be unflushed migrations from
1404 			 * previous cc->order aligned block.
1405 			 */
1406 			goto check_drain;
1407 		case ISOLATE_SUCCESS:
1408 			;
1409 		}
1410 
1411 		err = migrate_pages(&cc->migratepages, compaction_alloc,
1412 				compaction_free, (unsigned long)cc, cc->mode,
1413 				MR_COMPACTION);
1414 
1415 		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1416 							&cc->migratepages);
1417 
1418 		/* All pages were either migrated or will be released */
1419 		cc->nr_migratepages = 0;
1420 		if (err) {
1421 			putback_movable_pages(&cc->migratepages);
1422 			/*
1423 			 * migrate_pages() may return -ENOMEM when scanners meet
1424 			 * and we want compact_finished() to detect it
1425 			 */
1426 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
1427 				ret = COMPACT_CONTENDED;
1428 				goto out;
1429 			}
1430 		}
1431 
1432 check_drain:
1433 		/*
1434 		 * Has the migration scanner moved away from the previous
1435 		 * cc->order aligned block where we migrated from? If yes,
1436 		 * flush the pages that were freed, so that they can merge and
1437 		 * compact_finished() can detect immediately if allocation
1438 		 * would succeed.
1439 		 */
1440 		if (cc->order > 0 && cc->last_migrated_pfn) {
1441 			int cpu;
1442 			unsigned long current_block_start =
1443 				cc->migrate_pfn & ~((1UL << cc->order) - 1);
1444 
1445 			if (cc->last_migrated_pfn < current_block_start) {
1446 				cpu = get_cpu();
1447 				lru_add_drain_cpu(cpu);
1448 				drain_local_pages(zone);
1449 				put_cpu();
1450 				/* No more flushing until we migrate again */
1451 				cc->last_migrated_pfn = 0;
1452 			}
1453 		}
1454 
1455 	}
1456 
1457 out:
1458 	/*
1459 	 * Release free pages and update where the free scanner should restart,
1460 	 * so we don't leave any returned pages behind in the next attempt.
1461 	 */
1462 	if (cc->nr_freepages > 0) {
1463 		unsigned long free_pfn = release_freepages(&cc->freepages);
1464 
1465 		cc->nr_freepages = 0;
1466 		VM_BUG_ON(free_pfn == 0);
1467 		/* The cached pfn is always the first in a pageblock */
1468 		free_pfn &= ~(pageblock_nr_pages-1);
1469 		/*
1470 		 * Only go back, not forward. The cached pfn might have been
1471 		 * already reset to zone end in compact_finished()
1472 		 */
1473 		if (free_pfn > zone->compact_cached_free_pfn)
1474 			zone->compact_cached_free_pfn = free_pfn;
1475 	}
1476 
1477 	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1478 				cc->free_pfn, end_pfn, sync, ret);
1479 
1480 	if (ret == COMPACT_CONTENDED)
1481 		ret = COMPACT_PARTIAL;
1482 
1483 	return ret;
1484 }
1485 
1486 static unsigned long compact_zone_order(struct zone *zone, int order,
1487 		gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1488 		int alloc_flags, int classzone_idx)
1489 {
1490 	unsigned long ret;
1491 	struct compact_control cc = {
1492 		.nr_freepages = 0,
1493 		.nr_migratepages = 0,
1494 		.order = order,
1495 		.gfp_mask = gfp_mask,
1496 		.zone = zone,
1497 		.mode = mode,
1498 		.alloc_flags = alloc_flags,
1499 		.classzone_idx = classzone_idx,
1500 	};
1501 	INIT_LIST_HEAD(&cc.freepages);
1502 	INIT_LIST_HEAD(&cc.migratepages);
1503 
1504 	ret = compact_zone(zone, &cc);
1505 
1506 	VM_BUG_ON(!list_empty(&cc.freepages));
1507 	VM_BUG_ON(!list_empty(&cc.migratepages));
1508 
1509 	*contended = cc.contended;
1510 	return ret;
1511 }
1512 
1513 int sysctl_extfrag_threshold = 500;
1514 
1515 /**
1516  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1517  * @gfp_mask: The GFP mask of the current allocation
1518  * @order: The order of the current allocation
1519  * @alloc_flags: The allocation flags of the current allocation
1520  * @ac: The context of current allocation
1521  * @mode: The migration mode for async, sync light, or sync migration
1522  * @contended: Return value that determines if compaction was aborted due to
1523  *	       need_resched() or lock contention
1524  *
1525  * This is the main entry point for direct page compaction.
1526  */
1527 unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1528 			int alloc_flags, const struct alloc_context *ac,
1529 			enum migrate_mode mode, int *contended)
1530 {
1531 	int may_enter_fs = gfp_mask & __GFP_FS;
1532 	int may_perform_io = gfp_mask & __GFP_IO;
1533 	struct zoneref *z;
1534 	struct zone *zone;
1535 	int rc = COMPACT_DEFERRED;
1536 	int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1537 
1538 	*contended = COMPACT_CONTENDED_NONE;
1539 
1540 	/* Check if the GFP flags allow compaction */
1541 	if (!order || !may_enter_fs || !may_perform_io)
1542 		return COMPACT_SKIPPED;
1543 
1544 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1545 
1546 	/* Compact each zone in the list */
1547 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1548 								ac->nodemask) {
1549 		int status;
1550 		int zone_contended;
1551 
1552 		if (compaction_deferred(zone, order))
1553 			continue;
1554 
1555 		status = compact_zone_order(zone, order, gfp_mask, mode,
1556 				&zone_contended, alloc_flags,
1557 				ac->classzone_idx);
1558 		rc = max(status, rc);
1559 		/*
1560 		 * It takes at least one zone that wasn't lock contended
1561 		 * to clear all_zones_contended.
1562 		 */
1563 		all_zones_contended &= zone_contended;
1564 
1565 		/* If a normal allocation would succeed, stop compacting */
1566 		if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1567 					ac->classzone_idx, alloc_flags)) {
1568 			/*
1569 			 * We think the allocation will succeed in this zone,
1570 			 * but it is not certain, hence the false. The caller
1571 			 * will repeat this with true if allocation indeed
1572 			 * succeeds in this zone.
1573 			 */
1574 			compaction_defer_reset(zone, order, false);
1575 			/*
1576 			 * It is possible that async compaction aborted due to
1577 			 * need_resched() and the watermarks were ok thanks to
1578 			 * somebody else freeing memory. The allocation can
1579 			 * however still fail so we better signal the
1580 			 * need_resched() contention anyway (this will not
1581 			 * prevent the allocation attempt).
1582 			 */
1583 			if (zone_contended == COMPACT_CONTENDED_SCHED)
1584 				*contended = COMPACT_CONTENDED_SCHED;
1585 
1586 			goto break_loop;
1587 		}
1588 
1589 		if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
1590 			/*
1591 			 * We think that allocation won't succeed in this zone
1592 			 * so we defer compaction there. If it ends up
1593 			 * succeeding after all, it will be reset.
1594 			 */
1595 			defer_compaction(zone, order);
1596 		}
1597 
1598 		/*
1599 		 * We might have stopped compacting due to need_resched() in
1600 		 * async compaction, or due to a fatal signal detected. In that
1601 		 * case do not try further zones and signal need_resched()
1602 		 * contention.
1603 		 */
1604 		if ((zone_contended == COMPACT_CONTENDED_SCHED)
1605 					|| fatal_signal_pending(current)) {
1606 			*contended = COMPACT_CONTENDED_SCHED;
1607 			goto break_loop;
1608 		}
1609 
1610 		continue;
1611 break_loop:
1612 		/*
1613 		 * We might not have tried all the zones, so  be conservative
1614 		 * and assume they are not all lock contended.
1615 		 */
1616 		all_zones_contended = 0;
1617 		break;
1618 	}
1619 
1620 	/*
1621 	 * If at least one zone wasn't deferred or skipped, we report if all
1622 	 * zones that were tried were lock contended.
1623 	 */
1624 	if (rc > COMPACT_SKIPPED && all_zones_contended)
1625 		*contended = COMPACT_CONTENDED_LOCK;
1626 
1627 	return rc;
1628 }
1629 
1630 
1631 /* Compact all zones within a node */
1632 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1633 {
1634 	int zoneid;
1635 	struct zone *zone;
1636 
1637 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1638 
1639 		zone = &pgdat->node_zones[zoneid];
1640 		if (!populated_zone(zone))
1641 			continue;
1642 
1643 		cc->nr_freepages = 0;
1644 		cc->nr_migratepages = 0;
1645 		cc->zone = zone;
1646 		INIT_LIST_HEAD(&cc->freepages);
1647 		INIT_LIST_HEAD(&cc->migratepages);
1648 
1649 		/*
1650 		 * When called via /proc/sys/vm/compact_memory
1651 		 * this makes sure we compact the whole zone regardless of
1652 		 * cached scanner positions.
1653 		 */
1654 		if (is_via_compact_memory(cc->order))
1655 			__reset_isolation_suitable(zone);
1656 
1657 		if (is_via_compact_memory(cc->order) ||
1658 				!compaction_deferred(zone, cc->order))
1659 			compact_zone(zone, cc);
1660 
1661 		VM_BUG_ON(!list_empty(&cc->freepages));
1662 		VM_BUG_ON(!list_empty(&cc->migratepages));
1663 
1664 		if (is_via_compact_memory(cc->order))
1665 			continue;
1666 
1667 		if (zone_watermark_ok(zone, cc->order,
1668 				low_wmark_pages(zone), 0, 0))
1669 			compaction_defer_reset(zone, cc->order, false);
1670 	}
1671 }
1672 
1673 void compact_pgdat(pg_data_t *pgdat, int order)
1674 {
1675 	struct compact_control cc = {
1676 		.order = order,
1677 		.mode = MIGRATE_ASYNC,
1678 	};
1679 
1680 	if (!order)
1681 		return;
1682 
1683 	__compact_pgdat(pgdat, &cc);
1684 }
1685 
1686 static void compact_node(int nid)
1687 {
1688 	struct compact_control cc = {
1689 		.order = -1,
1690 		.mode = MIGRATE_SYNC,
1691 		.ignore_skip_hint = true,
1692 	};
1693 
1694 	__compact_pgdat(NODE_DATA(nid), &cc);
1695 }
1696 
1697 /* Compact all nodes in the system */
1698 static void compact_nodes(void)
1699 {
1700 	int nid;
1701 
1702 	/* Flush pending updates to the LRU lists */
1703 	lru_add_drain_all();
1704 
1705 	for_each_online_node(nid)
1706 		compact_node(nid);
1707 }
1708 
1709 /* The written value is actually unused, all memory is compacted */
1710 int sysctl_compact_memory;
1711 
1712 /*
1713  * This is the entry point for compacting all nodes via
1714  * /proc/sys/vm/compact_memory
1715  */
1716 int sysctl_compaction_handler(struct ctl_table *table, int write,
1717 			void __user *buffer, size_t *length, loff_t *ppos)
1718 {
1719 	if (write)
1720 		compact_nodes();
1721 
1722 	return 0;
1723 }
1724 
1725 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1726 			void __user *buffer, size_t *length, loff_t *ppos)
1727 {
1728 	proc_dointvec_minmax(table, write, buffer, length, ppos);
1729 
1730 	return 0;
1731 }
1732 
1733 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1734 static ssize_t sysfs_compact_node(struct device *dev,
1735 			struct device_attribute *attr,
1736 			const char *buf, size_t count)
1737 {
1738 	int nid = dev->id;
1739 
1740 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1741 		/* Flush pending updates to the LRU lists */
1742 		lru_add_drain_all();
1743 
1744 		compact_node(nid);
1745 	}
1746 
1747 	return count;
1748 }
1749 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1750 
1751 int compaction_register_node(struct node *node)
1752 {
1753 	return device_create_file(&node->dev, &dev_attr_compact);
1754 }
1755 
1756 void compaction_unregister_node(struct node *node)
1757 {
1758 	return device_remove_file(&node->dev, &dev_attr_compact);
1759 }
1760 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1761 
1762 #endif /* CONFIG_COMPACTION */
1763