xref: /linux/mm/compaction.c (revision a06835227280436c1aae021a3f43d3abfcba3835)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27 
28 #ifdef CONFIG_COMPACTION
29 /*
30  * Fragmentation score check interval for proactive compaction purposes.
31  */
32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC	(500)
33 
34 static inline void count_compact_event(enum vm_event_item item)
35 {
36 	count_vm_event(item);
37 }
38 
39 static inline void count_compact_events(enum vm_event_item item, long delta)
40 {
41 	count_vm_events(item, delta);
42 }
43 #else
44 #define count_compact_event(item) do { } while (0)
45 #define count_compact_events(item, delta) do { } while (0)
46 #endif
47 
48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52 
53 #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
54 #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
55 
56 /*
57  * Page order with-respect-to which proactive compaction
58  * calculates external fragmentation, which is used as
59  * the "fragmentation score" of a node/zone.
60  */
61 #if defined CONFIG_TRANSPARENT_HUGEPAGE
62 #define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
63 #elif defined CONFIG_HUGETLBFS
64 #define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
65 #else
66 #define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
67 #endif
68 
69 static unsigned long release_freepages(struct list_head *freelist)
70 {
71 	struct page *page, *next;
72 	unsigned long high_pfn = 0;
73 
74 	list_for_each_entry_safe(page, next, freelist, lru) {
75 		unsigned long pfn = page_to_pfn(page);
76 		list_del(&page->lru);
77 		__free_page(page);
78 		if (pfn > high_pfn)
79 			high_pfn = pfn;
80 	}
81 
82 	return high_pfn;
83 }
84 
85 static void split_map_pages(struct list_head *list)
86 {
87 	unsigned int i, order, nr_pages;
88 	struct page *page, *next;
89 	LIST_HEAD(tmp_list);
90 
91 	list_for_each_entry_safe(page, next, list, lru) {
92 		list_del(&page->lru);
93 
94 		order = page_private(page);
95 		nr_pages = 1 << order;
96 
97 		post_alloc_hook(page, order, __GFP_MOVABLE);
98 		if (order)
99 			split_page(page, order);
100 
101 		for (i = 0; i < nr_pages; i++) {
102 			list_add(&page->lru, &tmp_list);
103 			page++;
104 		}
105 	}
106 
107 	list_splice(&tmp_list, list);
108 }
109 
110 #ifdef CONFIG_COMPACTION
111 bool PageMovable(struct page *page)
112 {
113 	const struct movable_operations *mops;
114 
115 	VM_BUG_ON_PAGE(!PageLocked(page), page);
116 	if (!__PageMovable(page))
117 		return false;
118 
119 	mops = page_movable_ops(page);
120 	if (mops)
121 		return true;
122 
123 	return false;
124 }
125 
126 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
127 {
128 	VM_BUG_ON_PAGE(!PageLocked(page), page);
129 	VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
130 	page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
131 }
132 EXPORT_SYMBOL(__SetPageMovable);
133 
134 void __ClearPageMovable(struct page *page)
135 {
136 	VM_BUG_ON_PAGE(!PageMovable(page), page);
137 	/*
138 	 * This page still has the type of a movable page, but it's
139 	 * actually not movable any more.
140 	 */
141 	page->mapping = (void *)PAGE_MAPPING_MOVABLE;
142 }
143 EXPORT_SYMBOL(__ClearPageMovable);
144 
145 /* Do not skip compaction more than 64 times */
146 #define COMPACT_MAX_DEFER_SHIFT 6
147 
148 /*
149  * Compaction is deferred when compaction fails to result in a page
150  * allocation success. 1 << compact_defer_shift, compactions are skipped up
151  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
152  */
153 static void defer_compaction(struct zone *zone, int order)
154 {
155 	zone->compact_considered = 0;
156 	zone->compact_defer_shift++;
157 
158 	if (order < zone->compact_order_failed)
159 		zone->compact_order_failed = order;
160 
161 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
162 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
163 
164 	trace_mm_compaction_defer_compaction(zone, order);
165 }
166 
167 /* Returns true if compaction should be skipped this time */
168 static bool compaction_deferred(struct zone *zone, int order)
169 {
170 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
171 
172 	if (order < zone->compact_order_failed)
173 		return false;
174 
175 	/* Avoid possible overflow */
176 	if (++zone->compact_considered >= defer_limit) {
177 		zone->compact_considered = defer_limit;
178 		return false;
179 	}
180 
181 	trace_mm_compaction_deferred(zone, order);
182 
183 	return true;
184 }
185 
186 /*
187  * Update defer tracking counters after successful compaction of given order,
188  * which means an allocation either succeeded (alloc_success == true) or is
189  * expected to succeed.
190  */
191 void compaction_defer_reset(struct zone *zone, int order,
192 		bool alloc_success)
193 {
194 	if (alloc_success) {
195 		zone->compact_considered = 0;
196 		zone->compact_defer_shift = 0;
197 	}
198 	if (order >= zone->compact_order_failed)
199 		zone->compact_order_failed = order + 1;
200 
201 	trace_mm_compaction_defer_reset(zone, order);
202 }
203 
204 /* Returns true if restarting compaction after many failures */
205 static bool compaction_restarting(struct zone *zone, int order)
206 {
207 	if (order < zone->compact_order_failed)
208 		return false;
209 
210 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
211 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
212 }
213 
214 /* Returns true if the pageblock should be scanned for pages to isolate. */
215 static inline bool isolation_suitable(struct compact_control *cc,
216 					struct page *page)
217 {
218 	if (cc->ignore_skip_hint)
219 		return true;
220 
221 	return !get_pageblock_skip(page);
222 }
223 
224 static void reset_cached_positions(struct zone *zone)
225 {
226 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
227 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
228 	zone->compact_cached_free_pfn =
229 				pageblock_start_pfn(zone_end_pfn(zone) - 1);
230 }
231 
232 #ifdef CONFIG_SPARSEMEM
233 /*
234  * If the PFN falls into an offline section, return the start PFN of the
235  * next online section. If the PFN falls into an online section or if
236  * there is no next online section, return 0.
237  */
238 static unsigned long skip_offline_sections(unsigned long start_pfn)
239 {
240 	unsigned long start_nr = pfn_to_section_nr(start_pfn);
241 
242 	if (online_section_nr(start_nr))
243 		return 0;
244 
245 	while (++start_nr <= __highest_present_section_nr) {
246 		if (online_section_nr(start_nr))
247 			return section_nr_to_pfn(start_nr);
248 	}
249 
250 	return 0;
251 }
252 
253 /*
254  * If the PFN falls into an offline section, return the end PFN of the
255  * next online section in reverse. If the PFN falls into an online section
256  * or if there is no next online section in reverse, return 0.
257  */
258 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
259 {
260 	unsigned long start_nr = pfn_to_section_nr(start_pfn);
261 
262 	if (!start_nr || online_section_nr(start_nr))
263 		return 0;
264 
265 	while (start_nr-- > 0) {
266 		if (online_section_nr(start_nr))
267 			return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION;
268 	}
269 
270 	return 0;
271 }
272 #else
273 static unsigned long skip_offline_sections(unsigned long start_pfn)
274 {
275 	return 0;
276 }
277 
278 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
279 {
280 	return 0;
281 }
282 #endif
283 
284 /*
285  * Compound pages of >= pageblock_order should consistently be skipped until
286  * released. It is always pointless to compact pages of such order (if they are
287  * migratable), and the pageblocks they occupy cannot contain any free pages.
288  */
289 static bool pageblock_skip_persistent(struct page *page)
290 {
291 	if (!PageCompound(page))
292 		return false;
293 
294 	page = compound_head(page);
295 
296 	if (compound_order(page) >= pageblock_order)
297 		return true;
298 
299 	return false;
300 }
301 
302 static bool
303 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
304 							bool check_target)
305 {
306 	struct page *page = pfn_to_online_page(pfn);
307 	struct page *block_page;
308 	struct page *end_page;
309 	unsigned long block_pfn;
310 
311 	if (!page)
312 		return false;
313 	if (zone != page_zone(page))
314 		return false;
315 	if (pageblock_skip_persistent(page))
316 		return false;
317 
318 	/*
319 	 * If skip is already cleared do no further checking once the
320 	 * restart points have been set.
321 	 */
322 	if (check_source && check_target && !get_pageblock_skip(page))
323 		return true;
324 
325 	/*
326 	 * If clearing skip for the target scanner, do not select a
327 	 * non-movable pageblock as the starting point.
328 	 */
329 	if (!check_source && check_target &&
330 	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
331 		return false;
332 
333 	/* Ensure the start of the pageblock or zone is online and valid */
334 	block_pfn = pageblock_start_pfn(pfn);
335 	block_pfn = max(block_pfn, zone->zone_start_pfn);
336 	block_page = pfn_to_online_page(block_pfn);
337 	if (block_page) {
338 		page = block_page;
339 		pfn = block_pfn;
340 	}
341 
342 	/* Ensure the end of the pageblock or zone is online and valid */
343 	block_pfn = pageblock_end_pfn(pfn) - 1;
344 	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
345 	end_page = pfn_to_online_page(block_pfn);
346 	if (!end_page)
347 		return false;
348 
349 	/*
350 	 * Only clear the hint if a sample indicates there is either a
351 	 * free page or an LRU page in the block. One or other condition
352 	 * is necessary for the block to be a migration source/target.
353 	 */
354 	do {
355 		if (check_source && PageLRU(page)) {
356 			clear_pageblock_skip(page);
357 			return true;
358 		}
359 
360 		if (check_target && PageBuddy(page)) {
361 			clear_pageblock_skip(page);
362 			return true;
363 		}
364 
365 		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
366 	} while (page <= end_page);
367 
368 	return false;
369 }
370 
371 /*
372  * This function is called to clear all cached information on pageblocks that
373  * should be skipped for page isolation when the migrate and free page scanner
374  * meet.
375  */
376 static void __reset_isolation_suitable(struct zone *zone)
377 {
378 	unsigned long migrate_pfn = zone->zone_start_pfn;
379 	unsigned long free_pfn = zone_end_pfn(zone) - 1;
380 	unsigned long reset_migrate = free_pfn;
381 	unsigned long reset_free = migrate_pfn;
382 	bool source_set = false;
383 	bool free_set = false;
384 
385 	if (!zone->compact_blockskip_flush)
386 		return;
387 
388 	zone->compact_blockskip_flush = false;
389 
390 	/*
391 	 * Walk the zone and update pageblock skip information. Source looks
392 	 * for PageLRU while target looks for PageBuddy. When the scanner
393 	 * is found, both PageBuddy and PageLRU are checked as the pageblock
394 	 * is suitable as both source and target.
395 	 */
396 	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
397 					free_pfn -= pageblock_nr_pages) {
398 		cond_resched();
399 
400 		/* Update the migrate PFN */
401 		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
402 		    migrate_pfn < reset_migrate) {
403 			source_set = true;
404 			reset_migrate = migrate_pfn;
405 			zone->compact_init_migrate_pfn = reset_migrate;
406 			zone->compact_cached_migrate_pfn[0] = reset_migrate;
407 			zone->compact_cached_migrate_pfn[1] = reset_migrate;
408 		}
409 
410 		/* Update the free PFN */
411 		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
412 		    free_pfn > reset_free) {
413 			free_set = true;
414 			reset_free = free_pfn;
415 			zone->compact_init_free_pfn = reset_free;
416 			zone->compact_cached_free_pfn = reset_free;
417 		}
418 	}
419 
420 	/* Leave no distance if no suitable block was reset */
421 	if (reset_migrate >= reset_free) {
422 		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
423 		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
424 		zone->compact_cached_free_pfn = free_pfn;
425 	}
426 }
427 
428 void reset_isolation_suitable(pg_data_t *pgdat)
429 {
430 	int zoneid;
431 
432 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
433 		struct zone *zone = &pgdat->node_zones[zoneid];
434 		if (!populated_zone(zone))
435 			continue;
436 
437 		/* Only flush if a full compaction finished recently */
438 		if (zone->compact_blockskip_flush)
439 			__reset_isolation_suitable(zone);
440 	}
441 }
442 
443 /*
444  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
445  * locks are not required for read/writers. Returns true if it was already set.
446  */
447 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
448 {
449 	bool skip;
450 
451 	/* Do not update if skip hint is being ignored */
452 	if (cc->ignore_skip_hint)
453 		return false;
454 
455 	skip = get_pageblock_skip(page);
456 	if (!skip && !cc->no_set_skip_hint)
457 		set_pageblock_skip(page);
458 
459 	return skip;
460 }
461 
462 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
463 {
464 	struct zone *zone = cc->zone;
465 
466 	/* Set for isolation rather than compaction */
467 	if (cc->no_set_skip_hint)
468 		return;
469 
470 	pfn = pageblock_end_pfn(pfn);
471 
472 	/* Update where async and sync compaction should restart */
473 	if (pfn > zone->compact_cached_migrate_pfn[0])
474 		zone->compact_cached_migrate_pfn[0] = pfn;
475 	if (cc->mode != MIGRATE_ASYNC &&
476 	    pfn > zone->compact_cached_migrate_pfn[1])
477 		zone->compact_cached_migrate_pfn[1] = pfn;
478 }
479 
480 /*
481  * If no pages were isolated then mark this pageblock to be skipped in the
482  * future. The information is later cleared by __reset_isolation_suitable().
483  */
484 static void update_pageblock_skip(struct compact_control *cc,
485 			struct page *page, unsigned long pfn)
486 {
487 	struct zone *zone = cc->zone;
488 
489 	if (cc->no_set_skip_hint)
490 		return;
491 
492 	set_pageblock_skip(page);
493 
494 	if (pfn < zone->compact_cached_free_pfn)
495 		zone->compact_cached_free_pfn = pfn;
496 }
497 #else
498 static inline bool isolation_suitable(struct compact_control *cc,
499 					struct page *page)
500 {
501 	return true;
502 }
503 
504 static inline bool pageblock_skip_persistent(struct page *page)
505 {
506 	return false;
507 }
508 
509 static inline void update_pageblock_skip(struct compact_control *cc,
510 			struct page *page, unsigned long pfn)
511 {
512 }
513 
514 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
515 {
516 }
517 
518 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
519 {
520 	return false;
521 }
522 #endif /* CONFIG_COMPACTION */
523 
524 /*
525  * Compaction requires the taking of some coarse locks that are potentially
526  * very heavily contended. For async compaction, trylock and record if the
527  * lock is contended. The lock will still be acquired but compaction will
528  * abort when the current block is finished regardless of success rate.
529  * Sync compaction acquires the lock.
530  *
531  * Always returns true which makes it easier to track lock state in callers.
532  */
533 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
534 						struct compact_control *cc)
535 	__acquires(lock)
536 {
537 	/* Track if the lock is contended in async mode */
538 	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
539 		if (spin_trylock_irqsave(lock, *flags))
540 			return true;
541 
542 		cc->contended = true;
543 	}
544 
545 	spin_lock_irqsave(lock, *flags);
546 	return true;
547 }
548 
549 /*
550  * Compaction requires the taking of some coarse locks that are potentially
551  * very heavily contended. The lock should be periodically unlocked to avoid
552  * having disabled IRQs for a long time, even when there is nobody waiting on
553  * the lock. It might also be that allowing the IRQs will result in
554  * need_resched() becoming true. If scheduling is needed, compaction schedules.
555  * Either compaction type will also abort if a fatal signal is pending.
556  * In either case if the lock was locked, it is dropped and not regained.
557  *
558  * Returns true if compaction should abort due to fatal signal pending.
559  * Returns false when compaction can continue.
560  */
561 static bool compact_unlock_should_abort(spinlock_t *lock,
562 		unsigned long flags, bool *locked, struct compact_control *cc)
563 {
564 	if (*locked) {
565 		spin_unlock_irqrestore(lock, flags);
566 		*locked = false;
567 	}
568 
569 	if (fatal_signal_pending(current)) {
570 		cc->contended = true;
571 		return true;
572 	}
573 
574 	cond_resched();
575 
576 	return false;
577 }
578 
579 /*
580  * Isolate free pages onto a private freelist. If @strict is true, will abort
581  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
582  * (even though it may still end up isolating some pages).
583  */
584 static unsigned long isolate_freepages_block(struct compact_control *cc,
585 				unsigned long *start_pfn,
586 				unsigned long end_pfn,
587 				struct list_head *freelist,
588 				unsigned int stride,
589 				bool strict)
590 {
591 	int nr_scanned = 0, total_isolated = 0;
592 	struct page *page;
593 	unsigned long flags = 0;
594 	bool locked = false;
595 	unsigned long blockpfn = *start_pfn;
596 	unsigned int order;
597 
598 	/* Strict mode is for isolation, speed is secondary */
599 	if (strict)
600 		stride = 1;
601 
602 	page = pfn_to_page(blockpfn);
603 
604 	/* Isolate free pages. */
605 	for (; blockpfn < end_pfn; blockpfn += stride, page += stride) {
606 		int isolated;
607 
608 		/*
609 		 * Periodically drop the lock (if held) regardless of its
610 		 * contention, to give chance to IRQs. Abort if fatal signal
611 		 * pending.
612 		 */
613 		if (!(blockpfn % COMPACT_CLUSTER_MAX)
614 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
615 								&locked, cc))
616 			break;
617 
618 		nr_scanned++;
619 
620 		/*
621 		 * For compound pages such as THP and hugetlbfs, we can save
622 		 * potentially a lot of iterations if we skip them at once.
623 		 * The check is racy, but we can consider only valid values
624 		 * and the only danger is skipping too much.
625 		 */
626 		if (PageCompound(page)) {
627 			const unsigned int order = compound_order(page);
628 
629 			if (likely(order <= MAX_ORDER)) {
630 				blockpfn += (1UL << order) - 1;
631 				page += (1UL << order) - 1;
632 				nr_scanned += (1UL << order) - 1;
633 			}
634 			goto isolate_fail;
635 		}
636 
637 		if (!PageBuddy(page))
638 			goto isolate_fail;
639 
640 		/* If we already hold the lock, we can skip some rechecking. */
641 		if (!locked) {
642 			locked = compact_lock_irqsave(&cc->zone->lock,
643 								&flags, cc);
644 
645 			/* Recheck this is a buddy page under lock */
646 			if (!PageBuddy(page))
647 				goto isolate_fail;
648 		}
649 
650 		/* Found a free page, will break it into order-0 pages */
651 		order = buddy_order(page);
652 		isolated = __isolate_free_page(page, order);
653 		if (!isolated)
654 			break;
655 		set_page_private(page, order);
656 
657 		nr_scanned += isolated - 1;
658 		total_isolated += isolated;
659 		cc->nr_freepages += isolated;
660 		list_add_tail(&page->lru, freelist);
661 
662 		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
663 			blockpfn += isolated;
664 			break;
665 		}
666 		/* Advance to the end of split page */
667 		blockpfn += isolated - 1;
668 		page += isolated - 1;
669 		continue;
670 
671 isolate_fail:
672 		if (strict)
673 			break;
674 
675 	}
676 
677 	if (locked)
678 		spin_unlock_irqrestore(&cc->zone->lock, flags);
679 
680 	/*
681 	 * There is a tiny chance that we have read bogus compound_order(),
682 	 * so be careful to not go outside of the pageblock.
683 	 */
684 	if (unlikely(blockpfn > end_pfn))
685 		blockpfn = end_pfn;
686 
687 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
688 					nr_scanned, total_isolated);
689 
690 	/* Record how far we have got within the block */
691 	*start_pfn = blockpfn;
692 
693 	/*
694 	 * If strict isolation is requested by CMA then check that all the
695 	 * pages requested were isolated. If there were any failures, 0 is
696 	 * returned and CMA will fail.
697 	 */
698 	if (strict && blockpfn < end_pfn)
699 		total_isolated = 0;
700 
701 	cc->total_free_scanned += nr_scanned;
702 	if (total_isolated)
703 		count_compact_events(COMPACTISOLATED, total_isolated);
704 	return total_isolated;
705 }
706 
707 /**
708  * isolate_freepages_range() - isolate free pages.
709  * @cc:        Compaction control structure.
710  * @start_pfn: The first PFN to start isolating.
711  * @end_pfn:   The one-past-last PFN.
712  *
713  * Non-free pages, invalid PFNs, or zone boundaries within the
714  * [start_pfn, end_pfn) range are considered errors, cause function to
715  * undo its actions and return zero.
716  *
717  * Otherwise, function returns one-past-the-last PFN of isolated page
718  * (which may be greater then end_pfn if end fell in a middle of
719  * a free page).
720  */
721 unsigned long
722 isolate_freepages_range(struct compact_control *cc,
723 			unsigned long start_pfn, unsigned long end_pfn)
724 {
725 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
726 	LIST_HEAD(freelist);
727 
728 	pfn = start_pfn;
729 	block_start_pfn = pageblock_start_pfn(pfn);
730 	if (block_start_pfn < cc->zone->zone_start_pfn)
731 		block_start_pfn = cc->zone->zone_start_pfn;
732 	block_end_pfn = pageblock_end_pfn(pfn);
733 
734 	for (; pfn < end_pfn; pfn += isolated,
735 				block_start_pfn = block_end_pfn,
736 				block_end_pfn += pageblock_nr_pages) {
737 		/* Protect pfn from changing by isolate_freepages_block */
738 		unsigned long isolate_start_pfn = pfn;
739 
740 		/*
741 		 * pfn could pass the block_end_pfn if isolated freepage
742 		 * is more than pageblock order. In this case, we adjust
743 		 * scanning range to right one.
744 		 */
745 		if (pfn >= block_end_pfn) {
746 			block_start_pfn = pageblock_start_pfn(pfn);
747 			block_end_pfn = pageblock_end_pfn(pfn);
748 		}
749 
750 		block_end_pfn = min(block_end_pfn, end_pfn);
751 
752 		if (!pageblock_pfn_to_page(block_start_pfn,
753 					block_end_pfn, cc->zone))
754 			break;
755 
756 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
757 					block_end_pfn, &freelist, 0, true);
758 
759 		/*
760 		 * In strict mode, isolate_freepages_block() returns 0 if
761 		 * there are any holes in the block (ie. invalid PFNs or
762 		 * non-free pages).
763 		 */
764 		if (!isolated)
765 			break;
766 
767 		/*
768 		 * If we managed to isolate pages, it is always (1 << n) *
769 		 * pageblock_nr_pages for some non-negative n.  (Max order
770 		 * page may span two pageblocks).
771 		 */
772 	}
773 
774 	/* __isolate_free_page() does not map the pages */
775 	split_map_pages(&freelist);
776 
777 	if (pfn < end_pfn) {
778 		/* Loop terminated early, cleanup. */
779 		release_freepages(&freelist);
780 		return 0;
781 	}
782 
783 	/* We don't use freelists for anything. */
784 	return pfn;
785 }
786 
787 /* Similar to reclaim, but different enough that they don't share logic */
788 static bool too_many_isolated(struct compact_control *cc)
789 {
790 	pg_data_t *pgdat = cc->zone->zone_pgdat;
791 	bool too_many;
792 
793 	unsigned long active, inactive, isolated;
794 
795 	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
796 			node_page_state(pgdat, NR_INACTIVE_ANON);
797 	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
798 			node_page_state(pgdat, NR_ACTIVE_ANON);
799 	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
800 			node_page_state(pgdat, NR_ISOLATED_ANON);
801 
802 	/*
803 	 * Allow GFP_NOFS to isolate past the limit set for regular
804 	 * compaction runs. This prevents an ABBA deadlock when other
805 	 * compactors have already isolated to the limit, but are
806 	 * blocked on filesystem locks held by the GFP_NOFS thread.
807 	 */
808 	if (cc->gfp_mask & __GFP_FS) {
809 		inactive >>= 3;
810 		active >>= 3;
811 	}
812 
813 	too_many = isolated > (inactive + active) / 2;
814 	if (!too_many)
815 		wake_throttle_isolated(pgdat);
816 
817 	return too_many;
818 }
819 
820 /**
821  * isolate_migratepages_block() - isolate all migrate-able pages within
822  *				  a single pageblock
823  * @cc:		Compaction control structure.
824  * @low_pfn:	The first PFN to isolate
825  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
826  * @mode:	Isolation mode to be used.
827  *
828  * Isolate all pages that can be migrated from the range specified by
829  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
830  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
831  * -ENOMEM in case we could not allocate a page, or 0.
832  * cc->migrate_pfn will contain the next pfn to scan.
833  *
834  * The pages are isolated on cc->migratepages list (not required to be empty),
835  * and cc->nr_migratepages is updated accordingly.
836  */
837 static int
838 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
839 			unsigned long end_pfn, isolate_mode_t mode)
840 {
841 	pg_data_t *pgdat = cc->zone->zone_pgdat;
842 	unsigned long nr_scanned = 0, nr_isolated = 0;
843 	struct lruvec *lruvec;
844 	unsigned long flags = 0;
845 	struct lruvec *locked = NULL;
846 	struct folio *folio = NULL;
847 	struct page *page = NULL, *valid_page = NULL;
848 	struct address_space *mapping;
849 	unsigned long start_pfn = low_pfn;
850 	bool skip_on_failure = false;
851 	unsigned long next_skip_pfn = 0;
852 	bool skip_updated = false;
853 	int ret = 0;
854 
855 	cc->migrate_pfn = low_pfn;
856 
857 	/*
858 	 * Ensure that there are not too many pages isolated from the LRU
859 	 * list by either parallel reclaimers or compaction. If there are,
860 	 * delay for some time until fewer pages are isolated
861 	 */
862 	while (unlikely(too_many_isolated(cc))) {
863 		/* stop isolation if there are still pages not migrated */
864 		if (cc->nr_migratepages)
865 			return -EAGAIN;
866 
867 		/* async migration should just abort */
868 		if (cc->mode == MIGRATE_ASYNC)
869 			return -EAGAIN;
870 
871 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
872 
873 		if (fatal_signal_pending(current))
874 			return -EINTR;
875 	}
876 
877 	cond_resched();
878 
879 	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
880 		skip_on_failure = true;
881 		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
882 	}
883 
884 	/* Time to isolate some pages for migration */
885 	for (; low_pfn < end_pfn; low_pfn++) {
886 
887 		if (skip_on_failure && low_pfn >= next_skip_pfn) {
888 			/*
889 			 * We have isolated all migration candidates in the
890 			 * previous order-aligned block, and did not skip it due
891 			 * to failure. We should migrate the pages now and
892 			 * hopefully succeed compaction.
893 			 */
894 			if (nr_isolated)
895 				break;
896 
897 			/*
898 			 * We failed to isolate in the previous order-aligned
899 			 * block. Set the new boundary to the end of the
900 			 * current block. Note we can't simply increase
901 			 * next_skip_pfn by 1 << order, as low_pfn might have
902 			 * been incremented by a higher number due to skipping
903 			 * a compound or a high-order buddy page in the
904 			 * previous loop iteration.
905 			 */
906 			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
907 		}
908 
909 		/*
910 		 * Periodically drop the lock (if held) regardless of its
911 		 * contention, to give chance to IRQs. Abort completely if
912 		 * a fatal signal is pending.
913 		 */
914 		if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
915 			if (locked) {
916 				unlock_page_lruvec_irqrestore(locked, flags);
917 				locked = NULL;
918 			}
919 
920 			if (fatal_signal_pending(current)) {
921 				cc->contended = true;
922 				ret = -EINTR;
923 
924 				goto fatal_pending;
925 			}
926 
927 			cond_resched();
928 		}
929 
930 		nr_scanned++;
931 
932 		page = pfn_to_page(low_pfn);
933 
934 		/*
935 		 * Check if the pageblock has already been marked skipped.
936 		 * Only the first PFN is checked as the caller isolates
937 		 * COMPACT_CLUSTER_MAX at a time so the second call must
938 		 * not falsely conclude that the block should be skipped.
939 		 */
940 		if (!valid_page && (pageblock_aligned(low_pfn) ||
941 				    low_pfn == cc->zone->zone_start_pfn)) {
942 			if (!isolation_suitable(cc, page)) {
943 				low_pfn = end_pfn;
944 				folio = NULL;
945 				goto isolate_abort;
946 			}
947 			valid_page = page;
948 		}
949 
950 		if (PageHuge(page) && cc->alloc_contig) {
951 			if (locked) {
952 				unlock_page_lruvec_irqrestore(locked, flags);
953 				locked = NULL;
954 			}
955 
956 			ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
957 
958 			/*
959 			 * Fail isolation in case isolate_or_dissolve_huge_page()
960 			 * reports an error. In case of -ENOMEM, abort right away.
961 			 */
962 			if (ret < 0) {
963 				 /* Do not report -EBUSY down the chain */
964 				if (ret == -EBUSY)
965 					ret = 0;
966 				low_pfn += compound_nr(page) - 1;
967 				nr_scanned += compound_nr(page) - 1;
968 				goto isolate_fail;
969 			}
970 
971 			if (PageHuge(page)) {
972 				/*
973 				 * Hugepage was successfully isolated and placed
974 				 * on the cc->migratepages list.
975 				 */
976 				folio = page_folio(page);
977 				low_pfn += folio_nr_pages(folio) - 1;
978 				goto isolate_success_no_list;
979 			}
980 
981 			/*
982 			 * Ok, the hugepage was dissolved. Now these pages are
983 			 * Buddy and cannot be re-allocated because they are
984 			 * isolated. Fall-through as the check below handles
985 			 * Buddy pages.
986 			 */
987 		}
988 
989 		/*
990 		 * Skip if free. We read page order here without zone lock
991 		 * which is generally unsafe, but the race window is small and
992 		 * the worst thing that can happen is that we skip some
993 		 * potential isolation targets.
994 		 */
995 		if (PageBuddy(page)) {
996 			unsigned long freepage_order = buddy_order_unsafe(page);
997 
998 			/*
999 			 * Without lock, we cannot be sure that what we got is
1000 			 * a valid page order. Consider only values in the
1001 			 * valid order range to prevent low_pfn overflow.
1002 			 */
1003 			if (freepage_order > 0 && freepage_order <= MAX_ORDER) {
1004 				low_pfn += (1UL << freepage_order) - 1;
1005 				nr_scanned += (1UL << freepage_order) - 1;
1006 			}
1007 			continue;
1008 		}
1009 
1010 		/*
1011 		 * Regardless of being on LRU, compound pages such as THP and
1012 		 * hugetlbfs are not to be compacted unless we are attempting
1013 		 * an allocation much larger than the huge page size (eg CMA).
1014 		 * We can potentially save a lot of iterations if we skip them
1015 		 * at once. The check is racy, but we can consider only valid
1016 		 * values and the only danger is skipping too much.
1017 		 */
1018 		if (PageCompound(page) && !cc->alloc_contig) {
1019 			const unsigned int order = compound_order(page);
1020 
1021 			if (likely(order <= MAX_ORDER)) {
1022 				low_pfn += (1UL << order) - 1;
1023 				nr_scanned += (1UL << order) - 1;
1024 			}
1025 			goto isolate_fail;
1026 		}
1027 
1028 		/*
1029 		 * Check may be lockless but that's ok as we recheck later.
1030 		 * It's possible to migrate LRU and non-lru movable pages.
1031 		 * Skip any other type of page
1032 		 */
1033 		if (!PageLRU(page)) {
1034 			/*
1035 			 * __PageMovable can return false positive so we need
1036 			 * to verify it under page_lock.
1037 			 */
1038 			if (unlikely(__PageMovable(page)) &&
1039 					!PageIsolated(page)) {
1040 				if (locked) {
1041 					unlock_page_lruvec_irqrestore(locked, flags);
1042 					locked = NULL;
1043 				}
1044 
1045 				if (isolate_movable_page(page, mode)) {
1046 					folio = page_folio(page);
1047 					goto isolate_success;
1048 				}
1049 			}
1050 
1051 			goto isolate_fail;
1052 		}
1053 
1054 		/*
1055 		 * Be careful not to clear PageLRU until after we're
1056 		 * sure the page is not being freed elsewhere -- the
1057 		 * page release code relies on it.
1058 		 */
1059 		folio = folio_get_nontail_page(page);
1060 		if (unlikely(!folio))
1061 			goto isolate_fail;
1062 
1063 		/*
1064 		 * Migration will fail if an anonymous page is pinned in memory,
1065 		 * so avoid taking lru_lock and isolating it unnecessarily in an
1066 		 * admittedly racy check.
1067 		 */
1068 		mapping = folio_mapping(folio);
1069 		if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio))
1070 			goto isolate_fail_put;
1071 
1072 		/*
1073 		 * Only allow to migrate anonymous pages in GFP_NOFS context
1074 		 * because those do not depend on fs locks.
1075 		 */
1076 		if (!(cc->gfp_mask & __GFP_FS) && mapping)
1077 			goto isolate_fail_put;
1078 
1079 		/* Only take pages on LRU: a check now makes later tests safe */
1080 		if (!folio_test_lru(folio))
1081 			goto isolate_fail_put;
1082 
1083 		/* Compaction might skip unevictable pages but CMA takes them */
1084 		if (!(mode & ISOLATE_UNEVICTABLE) && folio_test_unevictable(folio))
1085 			goto isolate_fail_put;
1086 
1087 		/*
1088 		 * To minimise LRU disruption, the caller can indicate with
1089 		 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1090 		 * it will be able to migrate without blocking - clean pages
1091 		 * for the most part.  PageWriteback would require blocking.
1092 		 */
1093 		if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio))
1094 			goto isolate_fail_put;
1095 
1096 		if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_dirty(folio)) {
1097 			bool migrate_dirty;
1098 
1099 			/*
1100 			 * Only folios without mappings or that have
1101 			 * a ->migrate_folio callback are possible to
1102 			 * migrate without blocking.  However, we may
1103 			 * be racing with truncation, which can free
1104 			 * the mapping.  Truncation holds the folio lock
1105 			 * until after the folio is removed from the page
1106 			 * cache so holding it ourselves is sufficient.
1107 			 */
1108 			if (!folio_trylock(folio))
1109 				goto isolate_fail_put;
1110 
1111 			mapping = folio_mapping(folio);
1112 			migrate_dirty = !mapping ||
1113 					mapping->a_ops->migrate_folio;
1114 			folio_unlock(folio);
1115 			if (!migrate_dirty)
1116 				goto isolate_fail_put;
1117 		}
1118 
1119 		/* Try isolate the folio */
1120 		if (!folio_test_clear_lru(folio))
1121 			goto isolate_fail_put;
1122 
1123 		lruvec = folio_lruvec(folio);
1124 
1125 		/* If we already hold the lock, we can skip some rechecking */
1126 		if (lruvec != locked) {
1127 			if (locked)
1128 				unlock_page_lruvec_irqrestore(locked, flags);
1129 
1130 			compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1131 			locked = lruvec;
1132 
1133 			lruvec_memcg_debug(lruvec, folio);
1134 
1135 			/*
1136 			 * Try get exclusive access under lock. If marked for
1137 			 * skip, the scan is aborted unless the current context
1138 			 * is a rescan to reach the end of the pageblock.
1139 			 */
1140 			if (!skip_updated && valid_page) {
1141 				skip_updated = true;
1142 				if (test_and_set_skip(cc, valid_page) &&
1143 				    !cc->finish_pageblock) {
1144 					low_pfn = end_pfn;
1145 					goto isolate_abort;
1146 				}
1147 			}
1148 
1149 			/*
1150 			 * folio become large since the non-locked check,
1151 			 * and it's on LRU.
1152 			 */
1153 			if (unlikely(folio_test_large(folio) && !cc->alloc_contig)) {
1154 				low_pfn += folio_nr_pages(folio) - 1;
1155 				nr_scanned += folio_nr_pages(folio) - 1;
1156 				folio_set_lru(folio);
1157 				goto isolate_fail_put;
1158 			}
1159 		}
1160 
1161 		/* The folio is taken off the LRU */
1162 		if (folio_test_large(folio))
1163 			low_pfn += folio_nr_pages(folio) - 1;
1164 
1165 		/* Successfully isolated */
1166 		lruvec_del_folio(lruvec, folio);
1167 		node_stat_mod_folio(folio,
1168 				NR_ISOLATED_ANON + folio_is_file_lru(folio),
1169 				folio_nr_pages(folio));
1170 
1171 isolate_success:
1172 		list_add(&folio->lru, &cc->migratepages);
1173 isolate_success_no_list:
1174 		cc->nr_migratepages += folio_nr_pages(folio);
1175 		nr_isolated += folio_nr_pages(folio);
1176 		nr_scanned += folio_nr_pages(folio) - 1;
1177 
1178 		/*
1179 		 * Avoid isolating too much unless this block is being
1180 		 * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1181 		 * or a lock is contended. For contention, isolate quickly to
1182 		 * potentially remove one source of contention.
1183 		 */
1184 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1185 		    !cc->finish_pageblock && !cc->contended) {
1186 			++low_pfn;
1187 			break;
1188 		}
1189 
1190 		continue;
1191 
1192 isolate_fail_put:
1193 		/* Avoid potential deadlock in freeing page under lru_lock */
1194 		if (locked) {
1195 			unlock_page_lruvec_irqrestore(locked, flags);
1196 			locked = NULL;
1197 		}
1198 		folio_put(folio);
1199 
1200 isolate_fail:
1201 		if (!skip_on_failure && ret != -ENOMEM)
1202 			continue;
1203 
1204 		/*
1205 		 * We have isolated some pages, but then failed. Release them
1206 		 * instead of migrating, as we cannot form the cc->order buddy
1207 		 * page anyway.
1208 		 */
1209 		if (nr_isolated) {
1210 			if (locked) {
1211 				unlock_page_lruvec_irqrestore(locked, flags);
1212 				locked = NULL;
1213 			}
1214 			putback_movable_pages(&cc->migratepages);
1215 			cc->nr_migratepages = 0;
1216 			nr_isolated = 0;
1217 		}
1218 
1219 		if (low_pfn < next_skip_pfn) {
1220 			low_pfn = next_skip_pfn - 1;
1221 			/*
1222 			 * The check near the loop beginning would have updated
1223 			 * next_skip_pfn too, but this is a bit simpler.
1224 			 */
1225 			next_skip_pfn += 1UL << cc->order;
1226 		}
1227 
1228 		if (ret == -ENOMEM)
1229 			break;
1230 	}
1231 
1232 	/*
1233 	 * The PageBuddy() check could have potentially brought us outside
1234 	 * the range to be scanned.
1235 	 */
1236 	if (unlikely(low_pfn > end_pfn))
1237 		low_pfn = end_pfn;
1238 
1239 	folio = NULL;
1240 
1241 isolate_abort:
1242 	if (locked)
1243 		unlock_page_lruvec_irqrestore(locked, flags);
1244 	if (folio) {
1245 		folio_set_lru(folio);
1246 		folio_put(folio);
1247 	}
1248 
1249 	/*
1250 	 * Update the cached scanner pfn once the pageblock has been scanned.
1251 	 * Pages will either be migrated in which case there is no point
1252 	 * scanning in the near future or migration failed in which case the
1253 	 * failure reason may persist. The block is marked for skipping if
1254 	 * there were no pages isolated in the block or if the block is
1255 	 * rescanned twice in a row.
1256 	 */
1257 	if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1258 		if (!cc->no_set_skip_hint && valid_page && !skip_updated)
1259 			set_pageblock_skip(valid_page);
1260 		update_cached_migrate(cc, low_pfn);
1261 	}
1262 
1263 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1264 						nr_scanned, nr_isolated);
1265 
1266 fatal_pending:
1267 	cc->total_migrate_scanned += nr_scanned;
1268 	if (nr_isolated)
1269 		count_compact_events(COMPACTISOLATED, nr_isolated);
1270 
1271 	cc->migrate_pfn = low_pfn;
1272 
1273 	return ret;
1274 }
1275 
1276 /**
1277  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1278  * @cc:        Compaction control structure.
1279  * @start_pfn: The first PFN to start isolating.
1280  * @end_pfn:   The one-past-last PFN.
1281  *
1282  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1283  * in case we could not allocate a page, or 0.
1284  */
1285 int
1286 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1287 							unsigned long end_pfn)
1288 {
1289 	unsigned long pfn, block_start_pfn, block_end_pfn;
1290 	int ret = 0;
1291 
1292 	/* Scan block by block. First and last block may be incomplete */
1293 	pfn = start_pfn;
1294 	block_start_pfn = pageblock_start_pfn(pfn);
1295 	if (block_start_pfn < cc->zone->zone_start_pfn)
1296 		block_start_pfn = cc->zone->zone_start_pfn;
1297 	block_end_pfn = pageblock_end_pfn(pfn);
1298 
1299 	for (; pfn < end_pfn; pfn = block_end_pfn,
1300 				block_start_pfn = block_end_pfn,
1301 				block_end_pfn += pageblock_nr_pages) {
1302 
1303 		block_end_pfn = min(block_end_pfn, end_pfn);
1304 
1305 		if (!pageblock_pfn_to_page(block_start_pfn,
1306 					block_end_pfn, cc->zone))
1307 			continue;
1308 
1309 		ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1310 						 ISOLATE_UNEVICTABLE);
1311 
1312 		if (ret)
1313 			break;
1314 
1315 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1316 			break;
1317 	}
1318 
1319 	return ret;
1320 }
1321 
1322 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1323 #ifdef CONFIG_COMPACTION
1324 
1325 static bool suitable_migration_source(struct compact_control *cc,
1326 							struct page *page)
1327 {
1328 	int block_mt;
1329 
1330 	if (pageblock_skip_persistent(page))
1331 		return false;
1332 
1333 	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1334 		return true;
1335 
1336 	block_mt = get_pageblock_migratetype(page);
1337 
1338 	if (cc->migratetype == MIGRATE_MOVABLE)
1339 		return is_migrate_movable(block_mt);
1340 	else
1341 		return block_mt == cc->migratetype;
1342 }
1343 
1344 /* Returns true if the page is within a block suitable for migration to */
1345 static bool suitable_migration_target(struct compact_control *cc,
1346 							struct page *page)
1347 {
1348 	/* If the page is a large free page, then disallow migration */
1349 	if (PageBuddy(page)) {
1350 		/*
1351 		 * We are checking page_order without zone->lock taken. But
1352 		 * the only small danger is that we skip a potentially suitable
1353 		 * pageblock, so it's not worth to check order for valid range.
1354 		 */
1355 		if (buddy_order_unsafe(page) >= pageblock_order)
1356 			return false;
1357 	}
1358 
1359 	if (cc->ignore_block_suitable)
1360 		return true;
1361 
1362 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1363 	if (is_migrate_movable(get_pageblock_migratetype(page)))
1364 		return true;
1365 
1366 	/* Otherwise skip the block */
1367 	return false;
1368 }
1369 
1370 static inline unsigned int
1371 freelist_scan_limit(struct compact_control *cc)
1372 {
1373 	unsigned short shift = BITS_PER_LONG - 1;
1374 
1375 	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1376 }
1377 
1378 /*
1379  * Test whether the free scanner has reached the same or lower pageblock than
1380  * the migration scanner, and compaction should thus terminate.
1381  */
1382 static inline bool compact_scanners_met(struct compact_control *cc)
1383 {
1384 	return (cc->free_pfn >> pageblock_order)
1385 		<= (cc->migrate_pfn >> pageblock_order);
1386 }
1387 
1388 /*
1389  * Used when scanning for a suitable migration target which scans freelists
1390  * in reverse. Reorders the list such as the unscanned pages are scanned
1391  * first on the next iteration of the free scanner
1392  */
1393 static void
1394 move_freelist_head(struct list_head *freelist, struct page *freepage)
1395 {
1396 	LIST_HEAD(sublist);
1397 
1398 	if (!list_is_last(freelist, &freepage->lru)) {
1399 		list_cut_before(&sublist, freelist, &freepage->lru);
1400 		list_splice_tail(&sublist, freelist);
1401 	}
1402 }
1403 
1404 /*
1405  * Similar to move_freelist_head except used by the migration scanner
1406  * when scanning forward. It's possible for these list operations to
1407  * move against each other if they search the free list exactly in
1408  * lockstep.
1409  */
1410 static void
1411 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1412 {
1413 	LIST_HEAD(sublist);
1414 
1415 	if (!list_is_first(freelist, &freepage->lru)) {
1416 		list_cut_position(&sublist, freelist, &freepage->lru);
1417 		list_splice_tail(&sublist, freelist);
1418 	}
1419 }
1420 
1421 static void
1422 fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1423 {
1424 	unsigned long start_pfn, end_pfn;
1425 	struct page *page;
1426 
1427 	/* Do not search around if there are enough pages already */
1428 	if (cc->nr_freepages >= cc->nr_migratepages)
1429 		return;
1430 
1431 	/* Minimise scanning during async compaction */
1432 	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1433 		return;
1434 
1435 	/* Pageblock boundaries */
1436 	start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1437 	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1438 
1439 	page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1440 	if (!page)
1441 		return;
1442 
1443 	isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1444 
1445 	/* Skip this pageblock in the future as it's full or nearly full */
1446 	if (start_pfn == end_pfn && !cc->no_set_skip_hint)
1447 		set_pageblock_skip(page);
1448 }
1449 
1450 /* Search orders in round-robin fashion */
1451 static int next_search_order(struct compact_control *cc, int order)
1452 {
1453 	order--;
1454 	if (order < 0)
1455 		order = cc->order - 1;
1456 
1457 	/* Search wrapped around? */
1458 	if (order == cc->search_order) {
1459 		cc->search_order--;
1460 		if (cc->search_order < 0)
1461 			cc->search_order = cc->order - 1;
1462 		return -1;
1463 	}
1464 
1465 	return order;
1466 }
1467 
1468 static void fast_isolate_freepages(struct compact_control *cc)
1469 {
1470 	unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1471 	unsigned int nr_scanned = 0, total_isolated = 0;
1472 	unsigned long low_pfn, min_pfn, highest = 0;
1473 	unsigned long nr_isolated = 0;
1474 	unsigned long distance;
1475 	struct page *page = NULL;
1476 	bool scan_start = false;
1477 	int order;
1478 
1479 	/* Full compaction passes in a negative order */
1480 	if (cc->order <= 0)
1481 		return;
1482 
1483 	/*
1484 	 * If starting the scan, use a deeper search and use the highest
1485 	 * PFN found if a suitable one is not found.
1486 	 */
1487 	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1488 		limit = pageblock_nr_pages >> 1;
1489 		scan_start = true;
1490 	}
1491 
1492 	/*
1493 	 * Preferred point is in the top quarter of the scan space but take
1494 	 * a pfn from the top half if the search is problematic.
1495 	 */
1496 	distance = (cc->free_pfn - cc->migrate_pfn);
1497 	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1498 	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1499 
1500 	if (WARN_ON_ONCE(min_pfn > low_pfn))
1501 		low_pfn = min_pfn;
1502 
1503 	/*
1504 	 * Search starts from the last successful isolation order or the next
1505 	 * order to search after a previous failure
1506 	 */
1507 	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1508 
1509 	for (order = cc->search_order;
1510 	     !page && order >= 0;
1511 	     order = next_search_order(cc, order)) {
1512 		struct free_area *area = &cc->zone->free_area[order];
1513 		struct list_head *freelist;
1514 		struct page *freepage;
1515 		unsigned long flags;
1516 		unsigned int order_scanned = 0;
1517 		unsigned long high_pfn = 0;
1518 
1519 		if (!area->nr_free)
1520 			continue;
1521 
1522 		spin_lock_irqsave(&cc->zone->lock, flags);
1523 		freelist = &area->free_list[MIGRATE_MOVABLE];
1524 		list_for_each_entry_reverse(freepage, freelist, buddy_list) {
1525 			unsigned long pfn;
1526 
1527 			order_scanned++;
1528 			nr_scanned++;
1529 			pfn = page_to_pfn(freepage);
1530 
1531 			if (pfn >= highest)
1532 				highest = max(pageblock_start_pfn(pfn),
1533 					      cc->zone->zone_start_pfn);
1534 
1535 			if (pfn >= low_pfn) {
1536 				cc->fast_search_fail = 0;
1537 				cc->search_order = order;
1538 				page = freepage;
1539 				break;
1540 			}
1541 
1542 			if (pfn >= min_pfn && pfn > high_pfn) {
1543 				high_pfn = pfn;
1544 
1545 				/* Shorten the scan if a candidate is found */
1546 				limit >>= 1;
1547 			}
1548 
1549 			if (order_scanned >= limit)
1550 				break;
1551 		}
1552 
1553 		/* Use a maximum candidate pfn if a preferred one was not found */
1554 		if (!page && high_pfn) {
1555 			page = pfn_to_page(high_pfn);
1556 
1557 			/* Update freepage for the list reorder below */
1558 			freepage = page;
1559 		}
1560 
1561 		/* Reorder to so a future search skips recent pages */
1562 		move_freelist_head(freelist, freepage);
1563 
1564 		/* Isolate the page if available */
1565 		if (page) {
1566 			if (__isolate_free_page(page, order)) {
1567 				set_page_private(page, order);
1568 				nr_isolated = 1 << order;
1569 				nr_scanned += nr_isolated - 1;
1570 				total_isolated += nr_isolated;
1571 				cc->nr_freepages += nr_isolated;
1572 				list_add_tail(&page->lru, &cc->freepages);
1573 				count_compact_events(COMPACTISOLATED, nr_isolated);
1574 			} else {
1575 				/* If isolation fails, abort the search */
1576 				order = cc->search_order + 1;
1577 				page = NULL;
1578 			}
1579 		}
1580 
1581 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1582 
1583 		/* Skip fast search if enough freepages isolated */
1584 		if (cc->nr_freepages >= cc->nr_migratepages)
1585 			break;
1586 
1587 		/*
1588 		 * Smaller scan on next order so the total scan is related
1589 		 * to freelist_scan_limit.
1590 		 */
1591 		if (order_scanned >= limit)
1592 			limit = max(1U, limit >> 1);
1593 	}
1594 
1595 	trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn,
1596 						   nr_scanned, total_isolated);
1597 
1598 	if (!page) {
1599 		cc->fast_search_fail++;
1600 		if (scan_start) {
1601 			/*
1602 			 * Use the highest PFN found above min. If one was
1603 			 * not found, be pessimistic for direct compaction
1604 			 * and use the min mark.
1605 			 */
1606 			if (highest >= min_pfn) {
1607 				page = pfn_to_page(highest);
1608 				cc->free_pfn = highest;
1609 			} else {
1610 				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1611 					page = pageblock_pfn_to_page(min_pfn,
1612 						min(pageblock_end_pfn(min_pfn),
1613 						    zone_end_pfn(cc->zone)),
1614 						cc->zone);
1615 					cc->free_pfn = min_pfn;
1616 				}
1617 			}
1618 		}
1619 	}
1620 
1621 	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1622 		highest -= pageblock_nr_pages;
1623 		cc->zone->compact_cached_free_pfn = highest;
1624 	}
1625 
1626 	cc->total_free_scanned += nr_scanned;
1627 	if (!page)
1628 		return;
1629 
1630 	low_pfn = page_to_pfn(page);
1631 	fast_isolate_around(cc, low_pfn);
1632 }
1633 
1634 /*
1635  * Based on information in the current compact_control, find blocks
1636  * suitable for isolating free pages from and then isolate them.
1637  */
1638 static void isolate_freepages(struct compact_control *cc)
1639 {
1640 	struct zone *zone = cc->zone;
1641 	struct page *page;
1642 	unsigned long block_start_pfn;	/* start of current pageblock */
1643 	unsigned long isolate_start_pfn; /* exact pfn we start at */
1644 	unsigned long block_end_pfn;	/* end of current pageblock */
1645 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1646 	struct list_head *freelist = &cc->freepages;
1647 	unsigned int stride;
1648 
1649 	/* Try a small search of the free lists for a candidate */
1650 	fast_isolate_freepages(cc);
1651 	if (cc->nr_freepages)
1652 		goto splitmap;
1653 
1654 	/*
1655 	 * Initialise the free scanner. The starting point is where we last
1656 	 * successfully isolated from, zone-cached value, or the end of the
1657 	 * zone when isolating for the first time. For looping we also need
1658 	 * this pfn aligned down to the pageblock boundary, because we do
1659 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1660 	 * For ending point, take care when isolating in last pageblock of a
1661 	 * zone which ends in the middle of a pageblock.
1662 	 * The low boundary is the end of the pageblock the migration scanner
1663 	 * is using.
1664 	 */
1665 	isolate_start_pfn = cc->free_pfn;
1666 	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1667 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1668 						zone_end_pfn(zone));
1669 	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1670 	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1671 
1672 	/*
1673 	 * Isolate free pages until enough are available to migrate the
1674 	 * pages on cc->migratepages. We stop searching if the migrate
1675 	 * and free page scanners meet or enough free pages are isolated.
1676 	 */
1677 	for (; block_start_pfn >= low_pfn;
1678 				block_end_pfn = block_start_pfn,
1679 				block_start_pfn -= pageblock_nr_pages,
1680 				isolate_start_pfn = block_start_pfn) {
1681 		unsigned long nr_isolated;
1682 
1683 		/*
1684 		 * This can iterate a massively long zone without finding any
1685 		 * suitable migration targets, so periodically check resched.
1686 		 */
1687 		if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1688 			cond_resched();
1689 
1690 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1691 									zone);
1692 		if (!page) {
1693 			unsigned long next_pfn;
1694 
1695 			next_pfn = skip_offline_sections_reverse(block_start_pfn);
1696 			if (next_pfn)
1697 				block_start_pfn = max(next_pfn, low_pfn);
1698 
1699 			continue;
1700 		}
1701 
1702 		/* Check the block is suitable for migration */
1703 		if (!suitable_migration_target(cc, page))
1704 			continue;
1705 
1706 		/* If isolation recently failed, do not retry */
1707 		if (!isolation_suitable(cc, page))
1708 			continue;
1709 
1710 		/* Found a block suitable for isolating free pages from. */
1711 		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1712 					block_end_pfn, freelist, stride, false);
1713 
1714 		/* Update the skip hint if the full pageblock was scanned */
1715 		if (isolate_start_pfn == block_end_pfn)
1716 			update_pageblock_skip(cc, page, block_start_pfn -
1717 					      pageblock_nr_pages);
1718 
1719 		/* Are enough freepages isolated? */
1720 		if (cc->nr_freepages >= cc->nr_migratepages) {
1721 			if (isolate_start_pfn >= block_end_pfn) {
1722 				/*
1723 				 * Restart at previous pageblock if more
1724 				 * freepages can be isolated next time.
1725 				 */
1726 				isolate_start_pfn =
1727 					block_start_pfn - pageblock_nr_pages;
1728 			}
1729 			break;
1730 		} else if (isolate_start_pfn < block_end_pfn) {
1731 			/*
1732 			 * If isolation failed early, do not continue
1733 			 * needlessly.
1734 			 */
1735 			break;
1736 		}
1737 
1738 		/* Adjust stride depending on isolation */
1739 		if (nr_isolated) {
1740 			stride = 1;
1741 			continue;
1742 		}
1743 		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1744 	}
1745 
1746 	/*
1747 	 * Record where the free scanner will restart next time. Either we
1748 	 * broke from the loop and set isolate_start_pfn based on the last
1749 	 * call to isolate_freepages_block(), or we met the migration scanner
1750 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1751 	 */
1752 	cc->free_pfn = isolate_start_pfn;
1753 
1754 splitmap:
1755 	/* __isolate_free_page() does not map the pages */
1756 	split_map_pages(freelist);
1757 }
1758 
1759 /*
1760  * This is a migrate-callback that "allocates" freepages by taking pages
1761  * from the isolated freelists in the block we are migrating to.
1762  */
1763 static struct folio *compaction_alloc(struct folio *src, unsigned long data)
1764 {
1765 	struct compact_control *cc = (struct compact_control *)data;
1766 	struct folio *dst;
1767 
1768 	if (list_empty(&cc->freepages)) {
1769 		isolate_freepages(cc);
1770 
1771 		if (list_empty(&cc->freepages))
1772 			return NULL;
1773 	}
1774 
1775 	dst = list_entry(cc->freepages.next, struct folio, lru);
1776 	list_del(&dst->lru);
1777 	cc->nr_freepages--;
1778 
1779 	return dst;
1780 }
1781 
1782 /*
1783  * This is a migrate-callback that "frees" freepages back to the isolated
1784  * freelist.  All pages on the freelist are from the same zone, so there is no
1785  * special handling needed for NUMA.
1786  */
1787 static void compaction_free(struct folio *dst, unsigned long data)
1788 {
1789 	struct compact_control *cc = (struct compact_control *)data;
1790 
1791 	list_add(&dst->lru, &cc->freepages);
1792 	cc->nr_freepages++;
1793 }
1794 
1795 /* possible outcome of isolate_migratepages */
1796 typedef enum {
1797 	ISOLATE_ABORT,		/* Abort compaction now */
1798 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1799 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1800 } isolate_migrate_t;
1801 
1802 /*
1803  * Allow userspace to control policy on scanning the unevictable LRU for
1804  * compactable pages.
1805  */
1806 static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1807 /*
1808  * Tunable for proactive compaction. It determines how
1809  * aggressively the kernel should compact memory in the
1810  * background. It takes values in the range [0, 100].
1811  */
1812 static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1813 static int sysctl_extfrag_threshold = 500;
1814 static int __read_mostly sysctl_compact_memory;
1815 
1816 static inline void
1817 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1818 {
1819 	if (cc->fast_start_pfn == ULONG_MAX)
1820 		return;
1821 
1822 	if (!cc->fast_start_pfn)
1823 		cc->fast_start_pfn = pfn;
1824 
1825 	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1826 }
1827 
1828 static inline unsigned long
1829 reinit_migrate_pfn(struct compact_control *cc)
1830 {
1831 	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1832 		return cc->migrate_pfn;
1833 
1834 	cc->migrate_pfn = cc->fast_start_pfn;
1835 	cc->fast_start_pfn = ULONG_MAX;
1836 
1837 	return cc->migrate_pfn;
1838 }
1839 
1840 /*
1841  * Briefly search the free lists for a migration source that already has
1842  * some free pages to reduce the number of pages that need migration
1843  * before a pageblock is free.
1844  */
1845 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1846 {
1847 	unsigned int limit = freelist_scan_limit(cc);
1848 	unsigned int nr_scanned = 0;
1849 	unsigned long distance;
1850 	unsigned long pfn = cc->migrate_pfn;
1851 	unsigned long high_pfn;
1852 	int order;
1853 	bool found_block = false;
1854 
1855 	/* Skip hints are relied on to avoid repeats on the fast search */
1856 	if (cc->ignore_skip_hint)
1857 		return pfn;
1858 
1859 	/*
1860 	 * If the pageblock should be finished then do not select a different
1861 	 * pageblock.
1862 	 */
1863 	if (cc->finish_pageblock)
1864 		return pfn;
1865 
1866 	/*
1867 	 * If the migrate_pfn is not at the start of a zone or the start
1868 	 * of a pageblock then assume this is a continuation of a previous
1869 	 * scan restarted due to COMPACT_CLUSTER_MAX.
1870 	 */
1871 	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1872 		return pfn;
1873 
1874 	/*
1875 	 * For smaller orders, just linearly scan as the number of pages
1876 	 * to migrate should be relatively small and does not necessarily
1877 	 * justify freeing up a large block for a small allocation.
1878 	 */
1879 	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1880 		return pfn;
1881 
1882 	/*
1883 	 * Only allow kcompactd and direct requests for movable pages to
1884 	 * quickly clear out a MOVABLE pageblock for allocation. This
1885 	 * reduces the risk that a large movable pageblock is freed for
1886 	 * an unmovable/reclaimable small allocation.
1887 	 */
1888 	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1889 		return pfn;
1890 
1891 	/*
1892 	 * When starting the migration scanner, pick any pageblock within the
1893 	 * first half of the search space. Otherwise try and pick a pageblock
1894 	 * within the first eighth to reduce the chances that a migration
1895 	 * target later becomes a source.
1896 	 */
1897 	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1898 	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1899 		distance >>= 2;
1900 	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1901 
1902 	for (order = cc->order - 1;
1903 	     order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1904 	     order--) {
1905 		struct free_area *area = &cc->zone->free_area[order];
1906 		struct list_head *freelist;
1907 		unsigned long flags;
1908 		struct page *freepage;
1909 
1910 		if (!area->nr_free)
1911 			continue;
1912 
1913 		spin_lock_irqsave(&cc->zone->lock, flags);
1914 		freelist = &area->free_list[MIGRATE_MOVABLE];
1915 		list_for_each_entry(freepage, freelist, buddy_list) {
1916 			unsigned long free_pfn;
1917 
1918 			if (nr_scanned++ >= limit) {
1919 				move_freelist_tail(freelist, freepage);
1920 				break;
1921 			}
1922 
1923 			free_pfn = page_to_pfn(freepage);
1924 			if (free_pfn < high_pfn) {
1925 				/*
1926 				 * Avoid if skipped recently. Ideally it would
1927 				 * move to the tail but even safe iteration of
1928 				 * the list assumes an entry is deleted, not
1929 				 * reordered.
1930 				 */
1931 				if (get_pageblock_skip(freepage))
1932 					continue;
1933 
1934 				/* Reorder to so a future search skips recent pages */
1935 				move_freelist_tail(freelist, freepage);
1936 
1937 				update_fast_start_pfn(cc, free_pfn);
1938 				pfn = pageblock_start_pfn(free_pfn);
1939 				if (pfn < cc->zone->zone_start_pfn)
1940 					pfn = cc->zone->zone_start_pfn;
1941 				cc->fast_search_fail = 0;
1942 				found_block = true;
1943 				break;
1944 			}
1945 		}
1946 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1947 	}
1948 
1949 	cc->total_migrate_scanned += nr_scanned;
1950 
1951 	/*
1952 	 * If fast scanning failed then use a cached entry for a page block
1953 	 * that had free pages as the basis for starting a linear scan.
1954 	 */
1955 	if (!found_block) {
1956 		cc->fast_search_fail++;
1957 		pfn = reinit_migrate_pfn(cc);
1958 	}
1959 	return pfn;
1960 }
1961 
1962 /*
1963  * Isolate all pages that can be migrated from the first suitable block,
1964  * starting at the block pointed to by the migrate scanner pfn within
1965  * compact_control.
1966  */
1967 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1968 {
1969 	unsigned long block_start_pfn;
1970 	unsigned long block_end_pfn;
1971 	unsigned long low_pfn;
1972 	struct page *page;
1973 	const isolate_mode_t isolate_mode =
1974 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1975 		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1976 	bool fast_find_block;
1977 
1978 	/*
1979 	 * Start at where we last stopped, or beginning of the zone as
1980 	 * initialized by compact_zone(). The first failure will use
1981 	 * the lowest PFN as the starting point for linear scanning.
1982 	 */
1983 	low_pfn = fast_find_migrateblock(cc);
1984 	block_start_pfn = pageblock_start_pfn(low_pfn);
1985 	if (block_start_pfn < cc->zone->zone_start_pfn)
1986 		block_start_pfn = cc->zone->zone_start_pfn;
1987 
1988 	/*
1989 	 * fast_find_migrateblock() has already ensured the pageblock is not
1990 	 * set with a skipped flag, so to avoid the isolation_suitable check
1991 	 * below again, check whether the fast search was successful.
1992 	 */
1993 	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1994 
1995 	/* Only scan within a pageblock boundary */
1996 	block_end_pfn = pageblock_end_pfn(low_pfn);
1997 
1998 	/*
1999 	 * Iterate over whole pageblocks until we find the first suitable.
2000 	 * Do not cross the free scanner.
2001 	 */
2002 	for (; block_end_pfn <= cc->free_pfn;
2003 			fast_find_block = false,
2004 			cc->migrate_pfn = low_pfn = block_end_pfn,
2005 			block_start_pfn = block_end_pfn,
2006 			block_end_pfn += pageblock_nr_pages) {
2007 
2008 		/*
2009 		 * This can potentially iterate a massively long zone with
2010 		 * many pageblocks unsuitable, so periodically check if we
2011 		 * need to schedule.
2012 		 */
2013 		if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
2014 			cond_resched();
2015 
2016 		page = pageblock_pfn_to_page(block_start_pfn,
2017 						block_end_pfn, cc->zone);
2018 		if (!page) {
2019 			unsigned long next_pfn;
2020 
2021 			next_pfn = skip_offline_sections(block_start_pfn);
2022 			if (next_pfn)
2023 				block_end_pfn = min(next_pfn, cc->free_pfn);
2024 			continue;
2025 		}
2026 
2027 		/*
2028 		 * If isolation recently failed, do not retry. Only check the
2029 		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
2030 		 * to be visited multiple times. Assume skip was checked
2031 		 * before making it "skip" so other compaction instances do
2032 		 * not scan the same block.
2033 		 */
2034 		if ((pageblock_aligned(low_pfn) ||
2035 		     low_pfn == cc->zone->zone_start_pfn) &&
2036 		    !fast_find_block && !isolation_suitable(cc, page))
2037 			continue;
2038 
2039 		/*
2040 		 * For async direct compaction, only scan the pageblocks of the
2041 		 * same migratetype without huge pages. Async direct compaction
2042 		 * is optimistic to see if the minimum amount of work satisfies
2043 		 * the allocation. The cached PFN is updated as it's possible
2044 		 * that all remaining blocks between source and target are
2045 		 * unsuitable and the compaction scanners fail to meet.
2046 		 */
2047 		if (!suitable_migration_source(cc, page)) {
2048 			update_cached_migrate(cc, block_end_pfn);
2049 			continue;
2050 		}
2051 
2052 		/* Perform the isolation */
2053 		if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
2054 						isolate_mode))
2055 			return ISOLATE_ABORT;
2056 
2057 		/*
2058 		 * Either we isolated something and proceed with migration. Or
2059 		 * we failed and compact_zone should decide if we should
2060 		 * continue or not.
2061 		 */
2062 		break;
2063 	}
2064 
2065 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
2066 }
2067 
2068 /*
2069  * order == -1 is expected when compacting via
2070  * /proc/sys/vm/compact_memory
2071  */
2072 static inline bool is_via_compact_memory(int order)
2073 {
2074 	return order == -1;
2075 }
2076 
2077 /*
2078  * Determine whether kswapd is (or recently was!) running on this node.
2079  *
2080  * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
2081  * zero it.
2082  */
2083 static bool kswapd_is_running(pg_data_t *pgdat)
2084 {
2085 	bool running;
2086 
2087 	pgdat_kswapd_lock(pgdat);
2088 	running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2089 	pgdat_kswapd_unlock(pgdat);
2090 
2091 	return running;
2092 }
2093 
2094 /*
2095  * A zone's fragmentation score is the external fragmentation wrt to the
2096  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2097  */
2098 static unsigned int fragmentation_score_zone(struct zone *zone)
2099 {
2100 	return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2101 }
2102 
2103 /*
2104  * A weighted zone's fragmentation score is the external fragmentation
2105  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2106  * returns a value in the range [0, 100].
2107  *
2108  * The scaling factor ensures that proactive compaction focuses on larger
2109  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2110  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2111  * and thus never exceeds the high threshold for proactive compaction.
2112  */
2113 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2114 {
2115 	unsigned long score;
2116 
2117 	score = zone->present_pages * fragmentation_score_zone(zone);
2118 	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2119 }
2120 
2121 /*
2122  * The per-node proactive (background) compaction process is started by its
2123  * corresponding kcompactd thread when the node's fragmentation score
2124  * exceeds the high threshold. The compaction process remains active till
2125  * the node's score falls below the low threshold, or one of the back-off
2126  * conditions is met.
2127  */
2128 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2129 {
2130 	unsigned int score = 0;
2131 	int zoneid;
2132 
2133 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2134 		struct zone *zone;
2135 
2136 		zone = &pgdat->node_zones[zoneid];
2137 		if (!populated_zone(zone))
2138 			continue;
2139 		score += fragmentation_score_zone_weighted(zone);
2140 	}
2141 
2142 	return score;
2143 }
2144 
2145 static unsigned int fragmentation_score_wmark(bool low)
2146 {
2147 	unsigned int wmark_low;
2148 
2149 	/*
2150 	 * Cap the low watermark to avoid excessive compaction
2151 	 * activity in case a user sets the proactiveness tunable
2152 	 * close to 100 (maximum).
2153 	 */
2154 	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2155 	return low ? wmark_low : min(wmark_low + 10, 100U);
2156 }
2157 
2158 static bool should_proactive_compact_node(pg_data_t *pgdat)
2159 {
2160 	int wmark_high;
2161 
2162 	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2163 		return false;
2164 
2165 	wmark_high = fragmentation_score_wmark(false);
2166 	return fragmentation_score_node(pgdat) > wmark_high;
2167 }
2168 
2169 static enum compact_result __compact_finished(struct compact_control *cc)
2170 {
2171 	unsigned int order;
2172 	const int migratetype = cc->migratetype;
2173 	int ret;
2174 
2175 	/* Compaction run completes if the migrate and free scanner meet */
2176 	if (compact_scanners_met(cc)) {
2177 		/* Let the next compaction start anew. */
2178 		reset_cached_positions(cc->zone);
2179 
2180 		/*
2181 		 * Mark that the PG_migrate_skip information should be cleared
2182 		 * by kswapd when it goes to sleep. kcompactd does not set the
2183 		 * flag itself as the decision to be clear should be directly
2184 		 * based on an allocation request.
2185 		 */
2186 		if (cc->direct_compaction)
2187 			cc->zone->compact_blockskip_flush = true;
2188 
2189 		if (cc->whole_zone)
2190 			return COMPACT_COMPLETE;
2191 		else
2192 			return COMPACT_PARTIAL_SKIPPED;
2193 	}
2194 
2195 	if (cc->proactive_compaction) {
2196 		int score, wmark_low;
2197 		pg_data_t *pgdat;
2198 
2199 		pgdat = cc->zone->zone_pgdat;
2200 		if (kswapd_is_running(pgdat))
2201 			return COMPACT_PARTIAL_SKIPPED;
2202 
2203 		score = fragmentation_score_zone(cc->zone);
2204 		wmark_low = fragmentation_score_wmark(true);
2205 
2206 		if (score > wmark_low)
2207 			ret = COMPACT_CONTINUE;
2208 		else
2209 			ret = COMPACT_SUCCESS;
2210 
2211 		goto out;
2212 	}
2213 
2214 	if (is_via_compact_memory(cc->order))
2215 		return COMPACT_CONTINUE;
2216 
2217 	/*
2218 	 * Always finish scanning a pageblock to reduce the possibility of
2219 	 * fallbacks in the future. This is particularly important when
2220 	 * migration source is unmovable/reclaimable but it's not worth
2221 	 * special casing.
2222 	 */
2223 	if (!pageblock_aligned(cc->migrate_pfn))
2224 		return COMPACT_CONTINUE;
2225 
2226 	/* Direct compactor: Is a suitable page free? */
2227 	ret = COMPACT_NO_SUITABLE_PAGE;
2228 	for (order = cc->order; order <= MAX_ORDER; order++) {
2229 		struct free_area *area = &cc->zone->free_area[order];
2230 		bool can_steal;
2231 
2232 		/* Job done if page is free of the right migratetype */
2233 		if (!free_area_empty(area, migratetype))
2234 			return COMPACT_SUCCESS;
2235 
2236 #ifdef CONFIG_CMA
2237 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2238 		if (migratetype == MIGRATE_MOVABLE &&
2239 			!free_area_empty(area, MIGRATE_CMA))
2240 			return COMPACT_SUCCESS;
2241 #endif
2242 		/*
2243 		 * Job done if allocation would steal freepages from
2244 		 * other migratetype buddy lists.
2245 		 */
2246 		if (find_suitable_fallback(area, order, migratetype,
2247 						true, &can_steal) != -1)
2248 			/*
2249 			 * Movable pages are OK in any pageblock. If we are
2250 			 * stealing for a non-movable allocation, make sure
2251 			 * we finish compacting the current pageblock first
2252 			 * (which is assured by the above migrate_pfn align
2253 			 * check) so it is as free as possible and we won't
2254 			 * have to steal another one soon.
2255 			 */
2256 			return COMPACT_SUCCESS;
2257 	}
2258 
2259 out:
2260 	if (cc->contended || fatal_signal_pending(current))
2261 		ret = COMPACT_CONTENDED;
2262 
2263 	return ret;
2264 }
2265 
2266 static enum compact_result compact_finished(struct compact_control *cc)
2267 {
2268 	int ret;
2269 
2270 	ret = __compact_finished(cc);
2271 	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2272 	if (ret == COMPACT_NO_SUITABLE_PAGE)
2273 		ret = COMPACT_CONTINUE;
2274 
2275 	return ret;
2276 }
2277 
2278 static bool __compaction_suitable(struct zone *zone, int order,
2279 				  int highest_zoneidx,
2280 				  unsigned long wmark_target)
2281 {
2282 	unsigned long watermark;
2283 	/*
2284 	 * Watermarks for order-0 must be met for compaction to be able to
2285 	 * isolate free pages for migration targets. This means that the
2286 	 * watermark and alloc_flags have to match, or be more pessimistic than
2287 	 * the check in __isolate_free_page(). We don't use the direct
2288 	 * compactor's alloc_flags, as they are not relevant for freepage
2289 	 * isolation. We however do use the direct compactor's highest_zoneidx
2290 	 * to skip over zones where lowmem reserves would prevent allocation
2291 	 * even if compaction succeeds.
2292 	 * For costly orders, we require low watermark instead of min for
2293 	 * compaction to proceed to increase its chances.
2294 	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2295 	 * suitable migration targets
2296 	 */
2297 	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2298 				low_wmark_pages(zone) : min_wmark_pages(zone);
2299 	watermark += compact_gap(order);
2300 	return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2301 				   ALLOC_CMA, wmark_target);
2302 }
2303 
2304 /*
2305  * compaction_suitable: Is this suitable to run compaction on this zone now?
2306  */
2307 bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx)
2308 {
2309 	enum compact_result compact_result;
2310 	bool suitable;
2311 
2312 	suitable = __compaction_suitable(zone, order, highest_zoneidx,
2313 					 zone_page_state(zone, NR_FREE_PAGES));
2314 	/*
2315 	 * fragmentation index determines if allocation failures are due to
2316 	 * low memory or external fragmentation
2317 	 *
2318 	 * index of -1000 would imply allocations might succeed depending on
2319 	 * watermarks, but we already failed the high-order watermark check
2320 	 * index towards 0 implies failure is due to lack of memory
2321 	 * index towards 1000 implies failure is due to fragmentation
2322 	 *
2323 	 * Only compact if a failure would be due to fragmentation. Also
2324 	 * ignore fragindex for non-costly orders where the alternative to
2325 	 * a successful reclaim/compaction is OOM. Fragindex and the
2326 	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2327 	 * excessive compaction for costly orders, but it should not be at the
2328 	 * expense of system stability.
2329 	 */
2330 	if (suitable) {
2331 		compact_result = COMPACT_CONTINUE;
2332 		if (order > PAGE_ALLOC_COSTLY_ORDER) {
2333 			int fragindex = fragmentation_index(zone, order);
2334 
2335 			if (fragindex >= 0 &&
2336 			    fragindex <= sysctl_extfrag_threshold) {
2337 				suitable = false;
2338 				compact_result = COMPACT_NOT_SUITABLE_ZONE;
2339 			}
2340 		}
2341 	} else {
2342 		compact_result = COMPACT_SKIPPED;
2343 	}
2344 
2345 	trace_mm_compaction_suitable(zone, order, compact_result);
2346 
2347 	return suitable;
2348 }
2349 
2350 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2351 		int alloc_flags)
2352 {
2353 	struct zone *zone;
2354 	struct zoneref *z;
2355 
2356 	/*
2357 	 * Make sure at least one zone would pass __compaction_suitable if we continue
2358 	 * retrying the reclaim.
2359 	 */
2360 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2361 				ac->highest_zoneidx, ac->nodemask) {
2362 		unsigned long available;
2363 
2364 		/*
2365 		 * Do not consider all the reclaimable memory because we do not
2366 		 * want to trash just for a single high order allocation which
2367 		 * is even not guaranteed to appear even if __compaction_suitable
2368 		 * is happy about the watermark check.
2369 		 */
2370 		available = zone_reclaimable_pages(zone) / order;
2371 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2372 		if (__compaction_suitable(zone, order, ac->highest_zoneidx,
2373 					  available))
2374 			return true;
2375 	}
2376 
2377 	return false;
2378 }
2379 
2380 static enum compact_result
2381 compact_zone(struct compact_control *cc, struct capture_control *capc)
2382 {
2383 	enum compact_result ret;
2384 	unsigned long start_pfn = cc->zone->zone_start_pfn;
2385 	unsigned long end_pfn = zone_end_pfn(cc->zone);
2386 	unsigned long last_migrated_pfn;
2387 	const bool sync = cc->mode != MIGRATE_ASYNC;
2388 	bool update_cached;
2389 	unsigned int nr_succeeded = 0;
2390 
2391 	/*
2392 	 * These counters track activities during zone compaction.  Initialize
2393 	 * them before compacting a new zone.
2394 	 */
2395 	cc->total_migrate_scanned = 0;
2396 	cc->total_free_scanned = 0;
2397 	cc->nr_migratepages = 0;
2398 	cc->nr_freepages = 0;
2399 	INIT_LIST_HEAD(&cc->freepages);
2400 	INIT_LIST_HEAD(&cc->migratepages);
2401 
2402 	cc->migratetype = gfp_migratetype(cc->gfp_mask);
2403 
2404 	if (!is_via_compact_memory(cc->order)) {
2405 		unsigned long watermark;
2406 
2407 		/* Allocation can already succeed, nothing to do */
2408 		watermark = wmark_pages(cc->zone,
2409 					cc->alloc_flags & ALLOC_WMARK_MASK);
2410 		if (zone_watermark_ok(cc->zone, cc->order, watermark,
2411 				      cc->highest_zoneidx, cc->alloc_flags))
2412 			return COMPACT_SUCCESS;
2413 
2414 		/* Compaction is likely to fail */
2415 		if (!compaction_suitable(cc->zone, cc->order,
2416 					 cc->highest_zoneidx))
2417 			return COMPACT_SKIPPED;
2418 	}
2419 
2420 	/*
2421 	 * Clear pageblock skip if there were failures recently and compaction
2422 	 * is about to be retried after being deferred.
2423 	 */
2424 	if (compaction_restarting(cc->zone, cc->order))
2425 		__reset_isolation_suitable(cc->zone);
2426 
2427 	/*
2428 	 * Setup to move all movable pages to the end of the zone. Used cached
2429 	 * information on where the scanners should start (unless we explicitly
2430 	 * want to compact the whole zone), but check that it is initialised
2431 	 * by ensuring the values are within zone boundaries.
2432 	 */
2433 	cc->fast_start_pfn = 0;
2434 	if (cc->whole_zone) {
2435 		cc->migrate_pfn = start_pfn;
2436 		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2437 	} else {
2438 		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2439 		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2440 		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2441 			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2442 			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2443 		}
2444 		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2445 			cc->migrate_pfn = start_pfn;
2446 			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2447 			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2448 		}
2449 
2450 		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2451 			cc->whole_zone = true;
2452 	}
2453 
2454 	last_migrated_pfn = 0;
2455 
2456 	/*
2457 	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2458 	 * the basis that some migrations will fail in ASYNC mode. However,
2459 	 * if the cached PFNs match and pageblocks are skipped due to having
2460 	 * no isolation candidates, then the sync state does not matter.
2461 	 * Until a pageblock with isolation candidates is found, keep the
2462 	 * cached PFNs in sync to avoid revisiting the same blocks.
2463 	 */
2464 	update_cached = !sync &&
2465 		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2466 
2467 	trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2468 
2469 	/* lru_add_drain_all could be expensive with involving other CPUs */
2470 	lru_add_drain();
2471 
2472 	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2473 		int err;
2474 		unsigned long iteration_start_pfn = cc->migrate_pfn;
2475 
2476 		/*
2477 		 * Avoid multiple rescans of the same pageblock which can
2478 		 * happen if a page cannot be isolated (dirty/writeback in
2479 		 * async mode) or if the migrated pages are being allocated
2480 		 * before the pageblock is cleared.  The first rescan will
2481 		 * capture the entire pageblock for migration. If it fails,
2482 		 * it'll be marked skip and scanning will proceed as normal.
2483 		 */
2484 		cc->finish_pageblock = false;
2485 		if (pageblock_start_pfn(last_migrated_pfn) ==
2486 		    pageblock_start_pfn(iteration_start_pfn)) {
2487 			cc->finish_pageblock = true;
2488 		}
2489 
2490 rescan:
2491 		switch (isolate_migratepages(cc)) {
2492 		case ISOLATE_ABORT:
2493 			ret = COMPACT_CONTENDED;
2494 			putback_movable_pages(&cc->migratepages);
2495 			cc->nr_migratepages = 0;
2496 			goto out;
2497 		case ISOLATE_NONE:
2498 			if (update_cached) {
2499 				cc->zone->compact_cached_migrate_pfn[1] =
2500 					cc->zone->compact_cached_migrate_pfn[0];
2501 			}
2502 
2503 			/*
2504 			 * We haven't isolated and migrated anything, but
2505 			 * there might still be unflushed migrations from
2506 			 * previous cc->order aligned block.
2507 			 */
2508 			goto check_drain;
2509 		case ISOLATE_SUCCESS:
2510 			update_cached = false;
2511 			last_migrated_pfn = max(cc->zone->zone_start_pfn,
2512 				pageblock_start_pfn(cc->migrate_pfn - 1));
2513 		}
2514 
2515 		err = migrate_pages(&cc->migratepages, compaction_alloc,
2516 				compaction_free, (unsigned long)cc, cc->mode,
2517 				MR_COMPACTION, &nr_succeeded);
2518 
2519 		trace_mm_compaction_migratepages(cc, nr_succeeded);
2520 
2521 		/* All pages were either migrated or will be released */
2522 		cc->nr_migratepages = 0;
2523 		if (err) {
2524 			putback_movable_pages(&cc->migratepages);
2525 			/*
2526 			 * migrate_pages() may return -ENOMEM when scanners meet
2527 			 * and we want compact_finished() to detect it
2528 			 */
2529 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2530 				ret = COMPACT_CONTENDED;
2531 				goto out;
2532 			}
2533 			/*
2534 			 * If an ASYNC or SYNC_LIGHT fails to migrate a page
2535 			 * within the pageblock_order-aligned block and
2536 			 * fast_find_migrateblock may be used then scan the
2537 			 * remainder of the pageblock. This will mark the
2538 			 * pageblock "skip" to avoid rescanning in the near
2539 			 * future. This will isolate more pages than necessary
2540 			 * for the request but avoid loops due to
2541 			 * fast_find_migrateblock revisiting blocks that were
2542 			 * recently partially scanned.
2543 			 */
2544 			if (!pageblock_aligned(cc->migrate_pfn) &&
2545 			    !cc->ignore_skip_hint && !cc->finish_pageblock &&
2546 			    (cc->mode < MIGRATE_SYNC)) {
2547 				cc->finish_pageblock = true;
2548 
2549 				/*
2550 				 * Draining pcplists does not help THP if
2551 				 * any page failed to migrate. Even after
2552 				 * drain, the pageblock will not be free.
2553 				 */
2554 				if (cc->order == COMPACTION_HPAGE_ORDER)
2555 					last_migrated_pfn = 0;
2556 
2557 				goto rescan;
2558 			}
2559 		}
2560 
2561 		/* Stop if a page has been captured */
2562 		if (capc && capc->page) {
2563 			ret = COMPACT_SUCCESS;
2564 			break;
2565 		}
2566 
2567 check_drain:
2568 		/*
2569 		 * Has the migration scanner moved away from the previous
2570 		 * cc->order aligned block where we migrated from? If yes,
2571 		 * flush the pages that were freed, so that they can merge and
2572 		 * compact_finished() can detect immediately if allocation
2573 		 * would succeed.
2574 		 */
2575 		if (cc->order > 0 && last_migrated_pfn) {
2576 			unsigned long current_block_start =
2577 				block_start_pfn(cc->migrate_pfn, cc->order);
2578 
2579 			if (last_migrated_pfn < current_block_start) {
2580 				lru_add_drain_cpu_zone(cc->zone);
2581 				/* No more flushing until we migrate again */
2582 				last_migrated_pfn = 0;
2583 			}
2584 		}
2585 	}
2586 
2587 out:
2588 	/*
2589 	 * Release free pages and update where the free scanner should restart,
2590 	 * so we don't leave any returned pages behind in the next attempt.
2591 	 */
2592 	if (cc->nr_freepages > 0) {
2593 		unsigned long free_pfn = release_freepages(&cc->freepages);
2594 
2595 		cc->nr_freepages = 0;
2596 		VM_BUG_ON(free_pfn == 0);
2597 		/* The cached pfn is always the first in a pageblock */
2598 		free_pfn = pageblock_start_pfn(free_pfn);
2599 		/*
2600 		 * Only go back, not forward. The cached pfn might have been
2601 		 * already reset to zone end in compact_finished()
2602 		 */
2603 		if (free_pfn > cc->zone->compact_cached_free_pfn)
2604 			cc->zone->compact_cached_free_pfn = free_pfn;
2605 	}
2606 
2607 	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2608 	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2609 
2610 	trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2611 
2612 	VM_BUG_ON(!list_empty(&cc->freepages));
2613 	VM_BUG_ON(!list_empty(&cc->migratepages));
2614 
2615 	return ret;
2616 }
2617 
2618 static enum compact_result compact_zone_order(struct zone *zone, int order,
2619 		gfp_t gfp_mask, enum compact_priority prio,
2620 		unsigned int alloc_flags, int highest_zoneidx,
2621 		struct page **capture)
2622 {
2623 	enum compact_result ret;
2624 	struct compact_control cc = {
2625 		.order = order,
2626 		.search_order = order,
2627 		.gfp_mask = gfp_mask,
2628 		.zone = zone,
2629 		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2630 					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2631 		.alloc_flags = alloc_flags,
2632 		.highest_zoneidx = highest_zoneidx,
2633 		.direct_compaction = true,
2634 		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2635 		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2636 		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2637 	};
2638 	struct capture_control capc = {
2639 		.cc = &cc,
2640 		.page = NULL,
2641 	};
2642 
2643 	/*
2644 	 * Make sure the structs are really initialized before we expose the
2645 	 * capture control, in case we are interrupted and the interrupt handler
2646 	 * frees a page.
2647 	 */
2648 	barrier();
2649 	WRITE_ONCE(current->capture_control, &capc);
2650 
2651 	ret = compact_zone(&cc, &capc);
2652 
2653 	/*
2654 	 * Make sure we hide capture control first before we read the captured
2655 	 * page pointer, otherwise an interrupt could free and capture a page
2656 	 * and we would leak it.
2657 	 */
2658 	WRITE_ONCE(current->capture_control, NULL);
2659 	*capture = READ_ONCE(capc.page);
2660 	/*
2661 	 * Technically, it is also possible that compaction is skipped but
2662 	 * the page is still captured out of luck(IRQ came and freed the page).
2663 	 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2664 	 * the COMPACT[STALL|FAIL] when compaction is skipped.
2665 	 */
2666 	if (*capture)
2667 		ret = COMPACT_SUCCESS;
2668 
2669 	return ret;
2670 }
2671 
2672 /**
2673  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2674  * @gfp_mask: The GFP mask of the current allocation
2675  * @order: The order of the current allocation
2676  * @alloc_flags: The allocation flags of the current allocation
2677  * @ac: The context of current allocation
2678  * @prio: Determines how hard direct compaction should try to succeed
2679  * @capture: Pointer to free page created by compaction will be stored here
2680  *
2681  * This is the main entry point for direct page compaction.
2682  */
2683 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2684 		unsigned int alloc_flags, const struct alloc_context *ac,
2685 		enum compact_priority prio, struct page **capture)
2686 {
2687 	int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
2688 	struct zoneref *z;
2689 	struct zone *zone;
2690 	enum compact_result rc = COMPACT_SKIPPED;
2691 
2692 	/*
2693 	 * Check if the GFP flags allow compaction - GFP_NOIO is really
2694 	 * tricky context because the migration might require IO
2695 	 */
2696 	if (!may_perform_io)
2697 		return COMPACT_SKIPPED;
2698 
2699 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2700 
2701 	/* Compact each zone in the list */
2702 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2703 					ac->highest_zoneidx, ac->nodemask) {
2704 		enum compact_result status;
2705 
2706 		if (prio > MIN_COMPACT_PRIORITY
2707 					&& compaction_deferred(zone, order)) {
2708 			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2709 			continue;
2710 		}
2711 
2712 		status = compact_zone_order(zone, order, gfp_mask, prio,
2713 				alloc_flags, ac->highest_zoneidx, capture);
2714 		rc = max(status, rc);
2715 
2716 		/* The allocation should succeed, stop compacting */
2717 		if (status == COMPACT_SUCCESS) {
2718 			/*
2719 			 * We think the allocation will succeed in this zone,
2720 			 * but it is not certain, hence the false. The caller
2721 			 * will repeat this with true if allocation indeed
2722 			 * succeeds in this zone.
2723 			 */
2724 			compaction_defer_reset(zone, order, false);
2725 
2726 			break;
2727 		}
2728 
2729 		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2730 					status == COMPACT_PARTIAL_SKIPPED))
2731 			/*
2732 			 * We think that allocation won't succeed in this zone
2733 			 * so we defer compaction there. If it ends up
2734 			 * succeeding after all, it will be reset.
2735 			 */
2736 			defer_compaction(zone, order);
2737 
2738 		/*
2739 		 * We might have stopped compacting due to need_resched() in
2740 		 * async compaction, or due to a fatal signal detected. In that
2741 		 * case do not try further zones
2742 		 */
2743 		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2744 					|| fatal_signal_pending(current))
2745 			break;
2746 	}
2747 
2748 	return rc;
2749 }
2750 
2751 /*
2752  * Compact all zones within a node till each zone's fragmentation score
2753  * reaches within proactive compaction thresholds (as determined by the
2754  * proactiveness tunable).
2755  *
2756  * It is possible that the function returns before reaching score targets
2757  * due to various back-off conditions, such as, contention on per-node or
2758  * per-zone locks.
2759  */
2760 static void proactive_compact_node(pg_data_t *pgdat)
2761 {
2762 	int zoneid;
2763 	struct zone *zone;
2764 	struct compact_control cc = {
2765 		.order = -1,
2766 		.mode = MIGRATE_SYNC_LIGHT,
2767 		.ignore_skip_hint = true,
2768 		.whole_zone = true,
2769 		.gfp_mask = GFP_KERNEL,
2770 		.proactive_compaction = true,
2771 	};
2772 
2773 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2774 		zone = &pgdat->node_zones[zoneid];
2775 		if (!populated_zone(zone))
2776 			continue;
2777 
2778 		cc.zone = zone;
2779 
2780 		compact_zone(&cc, NULL);
2781 
2782 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2783 				     cc.total_migrate_scanned);
2784 		count_compact_events(KCOMPACTD_FREE_SCANNED,
2785 				     cc.total_free_scanned);
2786 	}
2787 }
2788 
2789 /* Compact all zones within a node */
2790 static void compact_node(int nid)
2791 {
2792 	pg_data_t *pgdat = NODE_DATA(nid);
2793 	int zoneid;
2794 	struct zone *zone;
2795 	struct compact_control cc = {
2796 		.order = -1,
2797 		.mode = MIGRATE_SYNC,
2798 		.ignore_skip_hint = true,
2799 		.whole_zone = true,
2800 		.gfp_mask = GFP_KERNEL,
2801 	};
2802 
2803 
2804 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2805 
2806 		zone = &pgdat->node_zones[zoneid];
2807 		if (!populated_zone(zone))
2808 			continue;
2809 
2810 		cc.zone = zone;
2811 
2812 		compact_zone(&cc, NULL);
2813 	}
2814 }
2815 
2816 /* Compact all nodes in the system */
2817 static void compact_nodes(void)
2818 {
2819 	int nid;
2820 
2821 	/* Flush pending updates to the LRU lists */
2822 	lru_add_drain_all();
2823 
2824 	for_each_online_node(nid)
2825 		compact_node(nid);
2826 }
2827 
2828 static int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2829 		void *buffer, size_t *length, loff_t *ppos)
2830 {
2831 	int rc, nid;
2832 
2833 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2834 	if (rc)
2835 		return rc;
2836 
2837 	if (write && sysctl_compaction_proactiveness) {
2838 		for_each_online_node(nid) {
2839 			pg_data_t *pgdat = NODE_DATA(nid);
2840 
2841 			if (pgdat->proactive_compact_trigger)
2842 				continue;
2843 
2844 			pgdat->proactive_compact_trigger = true;
2845 			trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2846 							     pgdat->nr_zones - 1);
2847 			wake_up_interruptible(&pgdat->kcompactd_wait);
2848 		}
2849 	}
2850 
2851 	return 0;
2852 }
2853 
2854 /*
2855  * This is the entry point for compacting all nodes via
2856  * /proc/sys/vm/compact_memory
2857  */
2858 static int sysctl_compaction_handler(struct ctl_table *table, int write,
2859 			void *buffer, size_t *length, loff_t *ppos)
2860 {
2861 	int ret;
2862 
2863 	ret = proc_dointvec(table, write, buffer, length, ppos);
2864 	if (ret)
2865 		return ret;
2866 
2867 	if (sysctl_compact_memory != 1)
2868 		return -EINVAL;
2869 
2870 	if (write)
2871 		compact_nodes();
2872 
2873 	return 0;
2874 }
2875 
2876 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2877 static ssize_t compact_store(struct device *dev,
2878 			     struct device_attribute *attr,
2879 			     const char *buf, size_t count)
2880 {
2881 	int nid = dev->id;
2882 
2883 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2884 		/* Flush pending updates to the LRU lists */
2885 		lru_add_drain_all();
2886 
2887 		compact_node(nid);
2888 	}
2889 
2890 	return count;
2891 }
2892 static DEVICE_ATTR_WO(compact);
2893 
2894 int compaction_register_node(struct node *node)
2895 {
2896 	return device_create_file(&node->dev, &dev_attr_compact);
2897 }
2898 
2899 void compaction_unregister_node(struct node *node)
2900 {
2901 	device_remove_file(&node->dev, &dev_attr_compact);
2902 }
2903 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2904 
2905 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2906 {
2907 	return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2908 		pgdat->proactive_compact_trigger;
2909 }
2910 
2911 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2912 {
2913 	int zoneid;
2914 	struct zone *zone;
2915 	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2916 
2917 	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2918 		zone = &pgdat->node_zones[zoneid];
2919 
2920 		if (!populated_zone(zone))
2921 			continue;
2922 
2923 		/* Allocation can already succeed, check other zones */
2924 		if (zone_watermark_ok(zone, pgdat->kcompactd_max_order,
2925 				      min_wmark_pages(zone),
2926 				      highest_zoneidx, 0))
2927 			continue;
2928 
2929 		if (compaction_suitable(zone, pgdat->kcompactd_max_order,
2930 					highest_zoneidx))
2931 			return true;
2932 	}
2933 
2934 	return false;
2935 }
2936 
2937 static void kcompactd_do_work(pg_data_t *pgdat)
2938 {
2939 	/*
2940 	 * With no special task, compact all zones so that a page of requested
2941 	 * order is allocatable.
2942 	 */
2943 	int zoneid;
2944 	struct zone *zone;
2945 	struct compact_control cc = {
2946 		.order = pgdat->kcompactd_max_order,
2947 		.search_order = pgdat->kcompactd_max_order,
2948 		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2949 		.mode = MIGRATE_SYNC_LIGHT,
2950 		.ignore_skip_hint = false,
2951 		.gfp_mask = GFP_KERNEL,
2952 	};
2953 	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2954 							cc.highest_zoneidx);
2955 	count_compact_event(KCOMPACTD_WAKE);
2956 
2957 	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2958 		int status;
2959 
2960 		zone = &pgdat->node_zones[zoneid];
2961 		if (!populated_zone(zone))
2962 			continue;
2963 
2964 		if (compaction_deferred(zone, cc.order))
2965 			continue;
2966 
2967 		/* Allocation can already succeed, nothing to do */
2968 		if (zone_watermark_ok(zone, cc.order,
2969 				      min_wmark_pages(zone), zoneid, 0))
2970 			continue;
2971 
2972 		if (!compaction_suitable(zone, cc.order, zoneid))
2973 			continue;
2974 
2975 		if (kthread_should_stop())
2976 			return;
2977 
2978 		cc.zone = zone;
2979 		status = compact_zone(&cc, NULL);
2980 
2981 		if (status == COMPACT_SUCCESS) {
2982 			compaction_defer_reset(zone, cc.order, false);
2983 		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2984 			/*
2985 			 * Buddy pages may become stranded on pcps that could
2986 			 * otherwise coalesce on the zone's free area for
2987 			 * order >= cc.order.  This is ratelimited by the
2988 			 * upcoming deferral.
2989 			 */
2990 			drain_all_pages(zone);
2991 
2992 			/*
2993 			 * We use sync migration mode here, so we defer like
2994 			 * sync direct compaction does.
2995 			 */
2996 			defer_compaction(zone, cc.order);
2997 		}
2998 
2999 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
3000 				     cc.total_migrate_scanned);
3001 		count_compact_events(KCOMPACTD_FREE_SCANNED,
3002 				     cc.total_free_scanned);
3003 	}
3004 
3005 	/*
3006 	 * Regardless of success, we are done until woken up next. But remember
3007 	 * the requested order/highest_zoneidx in case it was higher/tighter
3008 	 * than our current ones
3009 	 */
3010 	if (pgdat->kcompactd_max_order <= cc.order)
3011 		pgdat->kcompactd_max_order = 0;
3012 	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
3013 		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3014 }
3015 
3016 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
3017 {
3018 	if (!order)
3019 		return;
3020 
3021 	if (pgdat->kcompactd_max_order < order)
3022 		pgdat->kcompactd_max_order = order;
3023 
3024 	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
3025 		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
3026 
3027 	/*
3028 	 * Pairs with implicit barrier in wait_event_freezable()
3029 	 * such that wakeups are not missed.
3030 	 */
3031 	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
3032 		return;
3033 
3034 	if (!kcompactd_node_suitable(pgdat))
3035 		return;
3036 
3037 	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
3038 							highest_zoneidx);
3039 	wake_up_interruptible(&pgdat->kcompactd_wait);
3040 }
3041 
3042 /*
3043  * The background compaction daemon, started as a kernel thread
3044  * from the init process.
3045  */
3046 static int kcompactd(void *p)
3047 {
3048 	pg_data_t *pgdat = (pg_data_t *)p;
3049 	struct task_struct *tsk = current;
3050 	long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
3051 	long timeout = default_timeout;
3052 
3053 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3054 
3055 	if (!cpumask_empty(cpumask))
3056 		set_cpus_allowed_ptr(tsk, cpumask);
3057 
3058 	set_freezable();
3059 
3060 	pgdat->kcompactd_max_order = 0;
3061 	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3062 
3063 	while (!kthread_should_stop()) {
3064 		unsigned long pflags;
3065 
3066 		/*
3067 		 * Avoid the unnecessary wakeup for proactive compaction
3068 		 * when it is disabled.
3069 		 */
3070 		if (!sysctl_compaction_proactiveness)
3071 			timeout = MAX_SCHEDULE_TIMEOUT;
3072 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
3073 		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
3074 			kcompactd_work_requested(pgdat), timeout) &&
3075 			!pgdat->proactive_compact_trigger) {
3076 
3077 			psi_memstall_enter(&pflags);
3078 			kcompactd_do_work(pgdat);
3079 			psi_memstall_leave(&pflags);
3080 			/*
3081 			 * Reset the timeout value. The defer timeout from
3082 			 * proactive compaction is lost here but that is fine
3083 			 * as the condition of the zone changing substantionally
3084 			 * then carrying on with the previous defer interval is
3085 			 * not useful.
3086 			 */
3087 			timeout = default_timeout;
3088 			continue;
3089 		}
3090 
3091 		/*
3092 		 * Start the proactive work with default timeout. Based
3093 		 * on the fragmentation score, this timeout is updated.
3094 		 */
3095 		timeout = default_timeout;
3096 		if (should_proactive_compact_node(pgdat)) {
3097 			unsigned int prev_score, score;
3098 
3099 			prev_score = fragmentation_score_node(pgdat);
3100 			proactive_compact_node(pgdat);
3101 			score = fragmentation_score_node(pgdat);
3102 			/*
3103 			 * Defer proactive compaction if the fragmentation
3104 			 * score did not go down i.e. no progress made.
3105 			 */
3106 			if (unlikely(score >= prev_score))
3107 				timeout =
3108 				   default_timeout << COMPACT_MAX_DEFER_SHIFT;
3109 		}
3110 		if (unlikely(pgdat->proactive_compact_trigger))
3111 			pgdat->proactive_compact_trigger = false;
3112 	}
3113 
3114 	return 0;
3115 }
3116 
3117 /*
3118  * This kcompactd start function will be called by init and node-hot-add.
3119  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3120  */
3121 void __meminit kcompactd_run(int nid)
3122 {
3123 	pg_data_t *pgdat = NODE_DATA(nid);
3124 
3125 	if (pgdat->kcompactd)
3126 		return;
3127 
3128 	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3129 	if (IS_ERR(pgdat->kcompactd)) {
3130 		pr_err("Failed to start kcompactd on node %d\n", nid);
3131 		pgdat->kcompactd = NULL;
3132 	}
3133 }
3134 
3135 /*
3136  * Called by memory hotplug when all memory in a node is offlined. Caller must
3137  * be holding mem_hotplug_begin/done().
3138  */
3139 void __meminit kcompactd_stop(int nid)
3140 {
3141 	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3142 
3143 	if (kcompactd) {
3144 		kthread_stop(kcompactd);
3145 		NODE_DATA(nid)->kcompactd = NULL;
3146 	}
3147 }
3148 
3149 /*
3150  * It's optimal to keep kcompactd on the same CPUs as their memory, but
3151  * not required for correctness. So if the last cpu in a node goes
3152  * away, we get changed to run anywhere: as the first one comes back,
3153  * restore their cpu bindings.
3154  */
3155 static int kcompactd_cpu_online(unsigned int cpu)
3156 {
3157 	int nid;
3158 
3159 	for_each_node_state(nid, N_MEMORY) {
3160 		pg_data_t *pgdat = NODE_DATA(nid);
3161 		const struct cpumask *mask;
3162 
3163 		mask = cpumask_of_node(pgdat->node_id);
3164 
3165 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3166 			/* One of our CPUs online: restore mask */
3167 			if (pgdat->kcompactd)
3168 				set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3169 	}
3170 	return 0;
3171 }
3172 
3173 static int proc_dointvec_minmax_warn_RT_change(struct ctl_table *table,
3174 		int write, void *buffer, size_t *lenp, loff_t *ppos)
3175 {
3176 	int ret, old;
3177 
3178 	if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3179 		return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3180 
3181 	old = *(int *)table->data;
3182 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3183 	if (ret)
3184 		return ret;
3185 	if (old != *(int *)table->data)
3186 		pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3187 			     table->procname, current->comm,
3188 			     task_pid_nr(current));
3189 	return ret;
3190 }
3191 
3192 static struct ctl_table vm_compaction[] = {
3193 	{
3194 		.procname	= "compact_memory",
3195 		.data		= &sysctl_compact_memory,
3196 		.maxlen		= sizeof(int),
3197 		.mode		= 0200,
3198 		.proc_handler	= sysctl_compaction_handler,
3199 	},
3200 	{
3201 		.procname	= "compaction_proactiveness",
3202 		.data		= &sysctl_compaction_proactiveness,
3203 		.maxlen		= sizeof(sysctl_compaction_proactiveness),
3204 		.mode		= 0644,
3205 		.proc_handler	= compaction_proactiveness_sysctl_handler,
3206 		.extra1		= SYSCTL_ZERO,
3207 		.extra2		= SYSCTL_ONE_HUNDRED,
3208 	},
3209 	{
3210 		.procname	= "extfrag_threshold",
3211 		.data		= &sysctl_extfrag_threshold,
3212 		.maxlen		= sizeof(int),
3213 		.mode		= 0644,
3214 		.proc_handler	= proc_dointvec_minmax,
3215 		.extra1		= SYSCTL_ZERO,
3216 		.extra2		= SYSCTL_ONE_THOUSAND,
3217 	},
3218 	{
3219 		.procname	= "compact_unevictable_allowed",
3220 		.data		= &sysctl_compact_unevictable_allowed,
3221 		.maxlen		= sizeof(int),
3222 		.mode		= 0644,
3223 		.proc_handler	= proc_dointvec_minmax_warn_RT_change,
3224 		.extra1		= SYSCTL_ZERO,
3225 		.extra2		= SYSCTL_ONE,
3226 	},
3227 	{ }
3228 };
3229 
3230 static int __init kcompactd_init(void)
3231 {
3232 	int nid;
3233 	int ret;
3234 
3235 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3236 					"mm/compaction:online",
3237 					kcompactd_cpu_online, NULL);
3238 	if (ret < 0) {
3239 		pr_err("kcompactd: failed to register hotplug callbacks.\n");
3240 		return ret;
3241 	}
3242 
3243 	for_each_node_state(nid, N_MEMORY)
3244 		kcompactd_run(nid);
3245 	register_sysctl_init("vm", vm_compaction);
3246 	return 0;
3247 }
3248 subsys_initcall(kcompactd_init)
3249 
3250 #endif /* CONFIG_COMPACTION */
3251