1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/compaction.c 4 * 5 * Memory compaction for the reduction of external fragmentation. Note that 6 * this heavily depends upon page migration to do all the real heavy 7 * lifting 8 * 9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 10 */ 11 #include <linux/cpu.h> 12 #include <linux/swap.h> 13 #include <linux/migrate.h> 14 #include <linux/compaction.h> 15 #include <linux/mm_inline.h> 16 #include <linux/sched/signal.h> 17 #include <linux/backing-dev.h> 18 #include <linux/sysctl.h> 19 #include <linux/sysfs.h> 20 #include <linux/page-isolation.h> 21 #include <linux/kasan.h> 22 #include <linux/kthread.h> 23 #include <linux/freezer.h> 24 #include <linux/page_owner.h> 25 #include <linux/psi.h> 26 #include "internal.h" 27 28 #ifdef CONFIG_COMPACTION 29 /* 30 * Fragmentation score check interval for proactive compaction purposes. 31 */ 32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500) 33 34 static inline void count_compact_event(enum vm_event_item item) 35 { 36 count_vm_event(item); 37 } 38 39 static inline void count_compact_events(enum vm_event_item item, long delta) 40 { 41 count_vm_events(item, delta); 42 } 43 #else 44 #define count_compact_event(item) do { } while (0) 45 #define count_compact_events(item, delta) do { } while (0) 46 #endif 47 48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 49 50 #define CREATE_TRACE_POINTS 51 #include <trace/events/compaction.h> 52 53 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order)) 54 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order)) 55 56 /* 57 * Page order with-respect-to which proactive compaction 58 * calculates external fragmentation, which is used as 59 * the "fragmentation score" of a node/zone. 60 */ 61 #if defined CONFIG_TRANSPARENT_HUGEPAGE 62 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER 63 #elif defined CONFIG_HUGETLBFS 64 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER 65 #else 66 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT) 67 #endif 68 69 static unsigned long release_freepages(struct list_head *freelist) 70 { 71 struct page *page, *next; 72 unsigned long high_pfn = 0; 73 74 list_for_each_entry_safe(page, next, freelist, lru) { 75 unsigned long pfn = page_to_pfn(page); 76 list_del(&page->lru); 77 __free_page(page); 78 if (pfn > high_pfn) 79 high_pfn = pfn; 80 } 81 82 return high_pfn; 83 } 84 85 static void split_map_pages(struct list_head *list) 86 { 87 unsigned int i, order, nr_pages; 88 struct page *page, *next; 89 LIST_HEAD(tmp_list); 90 91 list_for_each_entry_safe(page, next, list, lru) { 92 list_del(&page->lru); 93 94 order = page_private(page); 95 nr_pages = 1 << order; 96 97 post_alloc_hook(page, order, __GFP_MOVABLE); 98 if (order) 99 split_page(page, order); 100 101 for (i = 0; i < nr_pages; i++) { 102 list_add(&page->lru, &tmp_list); 103 page++; 104 } 105 } 106 107 list_splice(&tmp_list, list); 108 } 109 110 #ifdef CONFIG_COMPACTION 111 bool PageMovable(struct page *page) 112 { 113 const struct movable_operations *mops; 114 115 VM_BUG_ON_PAGE(!PageLocked(page), page); 116 if (!__PageMovable(page)) 117 return false; 118 119 mops = page_movable_ops(page); 120 if (mops) 121 return true; 122 123 return false; 124 } 125 126 void __SetPageMovable(struct page *page, const struct movable_operations *mops) 127 { 128 VM_BUG_ON_PAGE(!PageLocked(page), page); 129 VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page); 130 page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE); 131 } 132 EXPORT_SYMBOL(__SetPageMovable); 133 134 void __ClearPageMovable(struct page *page) 135 { 136 VM_BUG_ON_PAGE(!PageMovable(page), page); 137 /* 138 * This page still has the type of a movable page, but it's 139 * actually not movable any more. 140 */ 141 page->mapping = (void *)PAGE_MAPPING_MOVABLE; 142 } 143 EXPORT_SYMBOL(__ClearPageMovable); 144 145 /* Do not skip compaction more than 64 times */ 146 #define COMPACT_MAX_DEFER_SHIFT 6 147 148 /* 149 * Compaction is deferred when compaction fails to result in a page 150 * allocation success. 1 << compact_defer_shift, compactions are skipped up 151 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 152 */ 153 static void defer_compaction(struct zone *zone, int order) 154 { 155 zone->compact_considered = 0; 156 zone->compact_defer_shift++; 157 158 if (order < zone->compact_order_failed) 159 zone->compact_order_failed = order; 160 161 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 162 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 163 164 trace_mm_compaction_defer_compaction(zone, order); 165 } 166 167 /* Returns true if compaction should be skipped this time */ 168 static bool compaction_deferred(struct zone *zone, int order) 169 { 170 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 171 172 if (order < zone->compact_order_failed) 173 return false; 174 175 /* Avoid possible overflow */ 176 if (++zone->compact_considered >= defer_limit) { 177 zone->compact_considered = defer_limit; 178 return false; 179 } 180 181 trace_mm_compaction_deferred(zone, order); 182 183 return true; 184 } 185 186 /* 187 * Update defer tracking counters after successful compaction of given order, 188 * which means an allocation either succeeded (alloc_success == true) or is 189 * expected to succeed. 190 */ 191 void compaction_defer_reset(struct zone *zone, int order, 192 bool alloc_success) 193 { 194 if (alloc_success) { 195 zone->compact_considered = 0; 196 zone->compact_defer_shift = 0; 197 } 198 if (order >= zone->compact_order_failed) 199 zone->compact_order_failed = order + 1; 200 201 trace_mm_compaction_defer_reset(zone, order); 202 } 203 204 /* Returns true if restarting compaction after many failures */ 205 static bool compaction_restarting(struct zone *zone, int order) 206 { 207 if (order < zone->compact_order_failed) 208 return false; 209 210 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 211 zone->compact_considered >= 1UL << zone->compact_defer_shift; 212 } 213 214 /* Returns true if the pageblock should be scanned for pages to isolate. */ 215 static inline bool isolation_suitable(struct compact_control *cc, 216 struct page *page) 217 { 218 if (cc->ignore_skip_hint) 219 return true; 220 221 return !get_pageblock_skip(page); 222 } 223 224 static void reset_cached_positions(struct zone *zone) 225 { 226 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 227 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 228 zone->compact_cached_free_pfn = 229 pageblock_start_pfn(zone_end_pfn(zone) - 1); 230 } 231 232 #ifdef CONFIG_SPARSEMEM 233 /* 234 * If the PFN falls into an offline section, return the start PFN of the 235 * next online section. If the PFN falls into an online section or if 236 * there is no next online section, return 0. 237 */ 238 static unsigned long skip_offline_sections(unsigned long start_pfn) 239 { 240 unsigned long start_nr = pfn_to_section_nr(start_pfn); 241 242 if (online_section_nr(start_nr)) 243 return 0; 244 245 while (++start_nr <= __highest_present_section_nr) { 246 if (online_section_nr(start_nr)) 247 return section_nr_to_pfn(start_nr); 248 } 249 250 return 0; 251 } 252 253 /* 254 * If the PFN falls into an offline section, return the end PFN of the 255 * next online section in reverse. If the PFN falls into an online section 256 * or if there is no next online section in reverse, return 0. 257 */ 258 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn) 259 { 260 unsigned long start_nr = pfn_to_section_nr(start_pfn); 261 262 if (!start_nr || online_section_nr(start_nr)) 263 return 0; 264 265 while (start_nr-- > 0) { 266 if (online_section_nr(start_nr)) 267 return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION; 268 } 269 270 return 0; 271 } 272 #else 273 static unsigned long skip_offline_sections(unsigned long start_pfn) 274 { 275 return 0; 276 } 277 278 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn) 279 { 280 return 0; 281 } 282 #endif 283 284 /* 285 * Compound pages of >= pageblock_order should consistently be skipped until 286 * released. It is always pointless to compact pages of such order (if they are 287 * migratable), and the pageblocks they occupy cannot contain any free pages. 288 */ 289 static bool pageblock_skip_persistent(struct page *page) 290 { 291 if (!PageCompound(page)) 292 return false; 293 294 page = compound_head(page); 295 296 if (compound_order(page) >= pageblock_order) 297 return true; 298 299 return false; 300 } 301 302 static bool 303 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source, 304 bool check_target) 305 { 306 struct page *page = pfn_to_online_page(pfn); 307 struct page *block_page; 308 struct page *end_page; 309 unsigned long block_pfn; 310 311 if (!page) 312 return false; 313 if (zone != page_zone(page)) 314 return false; 315 if (pageblock_skip_persistent(page)) 316 return false; 317 318 /* 319 * If skip is already cleared do no further checking once the 320 * restart points have been set. 321 */ 322 if (check_source && check_target && !get_pageblock_skip(page)) 323 return true; 324 325 /* 326 * If clearing skip for the target scanner, do not select a 327 * non-movable pageblock as the starting point. 328 */ 329 if (!check_source && check_target && 330 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 331 return false; 332 333 /* Ensure the start of the pageblock or zone is online and valid */ 334 block_pfn = pageblock_start_pfn(pfn); 335 block_pfn = max(block_pfn, zone->zone_start_pfn); 336 block_page = pfn_to_online_page(block_pfn); 337 if (block_page) { 338 page = block_page; 339 pfn = block_pfn; 340 } 341 342 /* Ensure the end of the pageblock or zone is online and valid */ 343 block_pfn = pageblock_end_pfn(pfn) - 1; 344 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1); 345 end_page = pfn_to_online_page(block_pfn); 346 if (!end_page) 347 return false; 348 349 /* 350 * Only clear the hint if a sample indicates there is either a 351 * free page or an LRU page in the block. One or other condition 352 * is necessary for the block to be a migration source/target. 353 */ 354 do { 355 if (check_source && PageLRU(page)) { 356 clear_pageblock_skip(page); 357 return true; 358 } 359 360 if (check_target && PageBuddy(page)) { 361 clear_pageblock_skip(page); 362 return true; 363 } 364 365 page += (1 << PAGE_ALLOC_COSTLY_ORDER); 366 } while (page <= end_page); 367 368 return false; 369 } 370 371 /* 372 * This function is called to clear all cached information on pageblocks that 373 * should be skipped for page isolation when the migrate and free page scanner 374 * meet. 375 */ 376 static void __reset_isolation_suitable(struct zone *zone) 377 { 378 unsigned long migrate_pfn = zone->zone_start_pfn; 379 unsigned long free_pfn = zone_end_pfn(zone) - 1; 380 unsigned long reset_migrate = free_pfn; 381 unsigned long reset_free = migrate_pfn; 382 bool source_set = false; 383 bool free_set = false; 384 385 if (!zone->compact_blockskip_flush) 386 return; 387 388 zone->compact_blockskip_flush = false; 389 390 /* 391 * Walk the zone and update pageblock skip information. Source looks 392 * for PageLRU while target looks for PageBuddy. When the scanner 393 * is found, both PageBuddy and PageLRU are checked as the pageblock 394 * is suitable as both source and target. 395 */ 396 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages, 397 free_pfn -= pageblock_nr_pages) { 398 cond_resched(); 399 400 /* Update the migrate PFN */ 401 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) && 402 migrate_pfn < reset_migrate) { 403 source_set = true; 404 reset_migrate = migrate_pfn; 405 zone->compact_init_migrate_pfn = reset_migrate; 406 zone->compact_cached_migrate_pfn[0] = reset_migrate; 407 zone->compact_cached_migrate_pfn[1] = reset_migrate; 408 } 409 410 /* Update the free PFN */ 411 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) && 412 free_pfn > reset_free) { 413 free_set = true; 414 reset_free = free_pfn; 415 zone->compact_init_free_pfn = reset_free; 416 zone->compact_cached_free_pfn = reset_free; 417 } 418 } 419 420 /* Leave no distance if no suitable block was reset */ 421 if (reset_migrate >= reset_free) { 422 zone->compact_cached_migrate_pfn[0] = migrate_pfn; 423 zone->compact_cached_migrate_pfn[1] = migrate_pfn; 424 zone->compact_cached_free_pfn = free_pfn; 425 } 426 } 427 428 void reset_isolation_suitable(pg_data_t *pgdat) 429 { 430 int zoneid; 431 432 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 433 struct zone *zone = &pgdat->node_zones[zoneid]; 434 if (!populated_zone(zone)) 435 continue; 436 437 /* Only flush if a full compaction finished recently */ 438 if (zone->compact_blockskip_flush) 439 __reset_isolation_suitable(zone); 440 } 441 } 442 443 /* 444 * Sets the pageblock skip bit if it was clear. Note that this is a hint as 445 * locks are not required for read/writers. Returns true if it was already set. 446 */ 447 static bool test_and_set_skip(struct compact_control *cc, struct page *page) 448 { 449 bool skip; 450 451 /* Do not update if skip hint is being ignored */ 452 if (cc->ignore_skip_hint) 453 return false; 454 455 skip = get_pageblock_skip(page); 456 if (!skip && !cc->no_set_skip_hint) 457 set_pageblock_skip(page); 458 459 return skip; 460 } 461 462 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 463 { 464 struct zone *zone = cc->zone; 465 466 /* Set for isolation rather than compaction */ 467 if (cc->no_set_skip_hint) 468 return; 469 470 pfn = pageblock_end_pfn(pfn); 471 472 /* Update where async and sync compaction should restart */ 473 if (pfn > zone->compact_cached_migrate_pfn[0]) 474 zone->compact_cached_migrate_pfn[0] = pfn; 475 if (cc->mode != MIGRATE_ASYNC && 476 pfn > zone->compact_cached_migrate_pfn[1]) 477 zone->compact_cached_migrate_pfn[1] = pfn; 478 } 479 480 /* 481 * If no pages were isolated then mark this pageblock to be skipped in the 482 * future. The information is later cleared by __reset_isolation_suitable(). 483 */ 484 static void update_pageblock_skip(struct compact_control *cc, 485 struct page *page, unsigned long pfn) 486 { 487 struct zone *zone = cc->zone; 488 489 if (cc->no_set_skip_hint) 490 return; 491 492 set_pageblock_skip(page); 493 494 if (pfn < zone->compact_cached_free_pfn) 495 zone->compact_cached_free_pfn = pfn; 496 } 497 #else 498 static inline bool isolation_suitable(struct compact_control *cc, 499 struct page *page) 500 { 501 return true; 502 } 503 504 static inline bool pageblock_skip_persistent(struct page *page) 505 { 506 return false; 507 } 508 509 static inline void update_pageblock_skip(struct compact_control *cc, 510 struct page *page, unsigned long pfn) 511 { 512 } 513 514 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 515 { 516 } 517 518 static bool test_and_set_skip(struct compact_control *cc, struct page *page) 519 { 520 return false; 521 } 522 #endif /* CONFIG_COMPACTION */ 523 524 /* 525 * Compaction requires the taking of some coarse locks that are potentially 526 * very heavily contended. For async compaction, trylock and record if the 527 * lock is contended. The lock will still be acquired but compaction will 528 * abort when the current block is finished regardless of success rate. 529 * Sync compaction acquires the lock. 530 * 531 * Always returns true which makes it easier to track lock state in callers. 532 */ 533 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags, 534 struct compact_control *cc) 535 __acquires(lock) 536 { 537 /* Track if the lock is contended in async mode */ 538 if (cc->mode == MIGRATE_ASYNC && !cc->contended) { 539 if (spin_trylock_irqsave(lock, *flags)) 540 return true; 541 542 cc->contended = true; 543 } 544 545 spin_lock_irqsave(lock, *flags); 546 return true; 547 } 548 549 /* 550 * Compaction requires the taking of some coarse locks that are potentially 551 * very heavily contended. The lock should be periodically unlocked to avoid 552 * having disabled IRQs for a long time, even when there is nobody waiting on 553 * the lock. It might also be that allowing the IRQs will result in 554 * need_resched() becoming true. If scheduling is needed, compaction schedules. 555 * Either compaction type will also abort if a fatal signal is pending. 556 * In either case if the lock was locked, it is dropped and not regained. 557 * 558 * Returns true if compaction should abort due to fatal signal pending. 559 * Returns false when compaction can continue. 560 */ 561 static bool compact_unlock_should_abort(spinlock_t *lock, 562 unsigned long flags, bool *locked, struct compact_control *cc) 563 { 564 if (*locked) { 565 spin_unlock_irqrestore(lock, flags); 566 *locked = false; 567 } 568 569 if (fatal_signal_pending(current)) { 570 cc->contended = true; 571 return true; 572 } 573 574 cond_resched(); 575 576 return false; 577 } 578 579 /* 580 * Isolate free pages onto a private freelist. If @strict is true, will abort 581 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 582 * (even though it may still end up isolating some pages). 583 */ 584 static unsigned long isolate_freepages_block(struct compact_control *cc, 585 unsigned long *start_pfn, 586 unsigned long end_pfn, 587 struct list_head *freelist, 588 unsigned int stride, 589 bool strict) 590 { 591 int nr_scanned = 0, total_isolated = 0; 592 struct page *page; 593 unsigned long flags = 0; 594 bool locked = false; 595 unsigned long blockpfn = *start_pfn; 596 unsigned int order; 597 598 /* Strict mode is for isolation, speed is secondary */ 599 if (strict) 600 stride = 1; 601 602 page = pfn_to_page(blockpfn); 603 604 /* Isolate free pages. */ 605 for (; blockpfn < end_pfn; blockpfn += stride, page += stride) { 606 int isolated; 607 608 /* 609 * Periodically drop the lock (if held) regardless of its 610 * contention, to give chance to IRQs. Abort if fatal signal 611 * pending. 612 */ 613 if (!(blockpfn % COMPACT_CLUSTER_MAX) 614 && compact_unlock_should_abort(&cc->zone->lock, flags, 615 &locked, cc)) 616 break; 617 618 nr_scanned++; 619 620 /* 621 * For compound pages such as THP and hugetlbfs, we can save 622 * potentially a lot of iterations if we skip them at once. 623 * The check is racy, but we can consider only valid values 624 * and the only danger is skipping too much. 625 */ 626 if (PageCompound(page)) { 627 const unsigned int order = compound_order(page); 628 629 if (likely(order <= MAX_ORDER)) { 630 blockpfn += (1UL << order) - 1; 631 page += (1UL << order) - 1; 632 nr_scanned += (1UL << order) - 1; 633 } 634 goto isolate_fail; 635 } 636 637 if (!PageBuddy(page)) 638 goto isolate_fail; 639 640 /* If we already hold the lock, we can skip some rechecking. */ 641 if (!locked) { 642 locked = compact_lock_irqsave(&cc->zone->lock, 643 &flags, cc); 644 645 /* Recheck this is a buddy page under lock */ 646 if (!PageBuddy(page)) 647 goto isolate_fail; 648 } 649 650 /* Found a free page, will break it into order-0 pages */ 651 order = buddy_order(page); 652 isolated = __isolate_free_page(page, order); 653 if (!isolated) 654 break; 655 set_page_private(page, order); 656 657 nr_scanned += isolated - 1; 658 total_isolated += isolated; 659 cc->nr_freepages += isolated; 660 list_add_tail(&page->lru, freelist); 661 662 if (!strict && cc->nr_migratepages <= cc->nr_freepages) { 663 blockpfn += isolated; 664 break; 665 } 666 /* Advance to the end of split page */ 667 blockpfn += isolated - 1; 668 page += isolated - 1; 669 continue; 670 671 isolate_fail: 672 if (strict) 673 break; 674 675 } 676 677 if (locked) 678 spin_unlock_irqrestore(&cc->zone->lock, flags); 679 680 /* 681 * There is a tiny chance that we have read bogus compound_order(), 682 * so be careful to not go outside of the pageblock. 683 */ 684 if (unlikely(blockpfn > end_pfn)) 685 blockpfn = end_pfn; 686 687 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 688 nr_scanned, total_isolated); 689 690 /* Record how far we have got within the block */ 691 *start_pfn = blockpfn; 692 693 /* 694 * If strict isolation is requested by CMA then check that all the 695 * pages requested were isolated. If there were any failures, 0 is 696 * returned and CMA will fail. 697 */ 698 if (strict && blockpfn < end_pfn) 699 total_isolated = 0; 700 701 cc->total_free_scanned += nr_scanned; 702 if (total_isolated) 703 count_compact_events(COMPACTISOLATED, total_isolated); 704 return total_isolated; 705 } 706 707 /** 708 * isolate_freepages_range() - isolate free pages. 709 * @cc: Compaction control structure. 710 * @start_pfn: The first PFN to start isolating. 711 * @end_pfn: The one-past-last PFN. 712 * 713 * Non-free pages, invalid PFNs, or zone boundaries within the 714 * [start_pfn, end_pfn) range are considered errors, cause function to 715 * undo its actions and return zero. 716 * 717 * Otherwise, function returns one-past-the-last PFN of isolated page 718 * (which may be greater then end_pfn if end fell in a middle of 719 * a free page). 720 */ 721 unsigned long 722 isolate_freepages_range(struct compact_control *cc, 723 unsigned long start_pfn, unsigned long end_pfn) 724 { 725 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 726 LIST_HEAD(freelist); 727 728 pfn = start_pfn; 729 block_start_pfn = pageblock_start_pfn(pfn); 730 if (block_start_pfn < cc->zone->zone_start_pfn) 731 block_start_pfn = cc->zone->zone_start_pfn; 732 block_end_pfn = pageblock_end_pfn(pfn); 733 734 for (; pfn < end_pfn; pfn += isolated, 735 block_start_pfn = block_end_pfn, 736 block_end_pfn += pageblock_nr_pages) { 737 /* Protect pfn from changing by isolate_freepages_block */ 738 unsigned long isolate_start_pfn = pfn; 739 740 /* 741 * pfn could pass the block_end_pfn if isolated freepage 742 * is more than pageblock order. In this case, we adjust 743 * scanning range to right one. 744 */ 745 if (pfn >= block_end_pfn) { 746 block_start_pfn = pageblock_start_pfn(pfn); 747 block_end_pfn = pageblock_end_pfn(pfn); 748 } 749 750 block_end_pfn = min(block_end_pfn, end_pfn); 751 752 if (!pageblock_pfn_to_page(block_start_pfn, 753 block_end_pfn, cc->zone)) 754 break; 755 756 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 757 block_end_pfn, &freelist, 0, true); 758 759 /* 760 * In strict mode, isolate_freepages_block() returns 0 if 761 * there are any holes in the block (ie. invalid PFNs or 762 * non-free pages). 763 */ 764 if (!isolated) 765 break; 766 767 /* 768 * If we managed to isolate pages, it is always (1 << n) * 769 * pageblock_nr_pages for some non-negative n. (Max order 770 * page may span two pageblocks). 771 */ 772 } 773 774 /* __isolate_free_page() does not map the pages */ 775 split_map_pages(&freelist); 776 777 if (pfn < end_pfn) { 778 /* Loop terminated early, cleanup. */ 779 release_freepages(&freelist); 780 return 0; 781 } 782 783 /* We don't use freelists for anything. */ 784 return pfn; 785 } 786 787 /* Similar to reclaim, but different enough that they don't share logic */ 788 static bool too_many_isolated(struct compact_control *cc) 789 { 790 pg_data_t *pgdat = cc->zone->zone_pgdat; 791 bool too_many; 792 793 unsigned long active, inactive, isolated; 794 795 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) + 796 node_page_state(pgdat, NR_INACTIVE_ANON); 797 active = node_page_state(pgdat, NR_ACTIVE_FILE) + 798 node_page_state(pgdat, NR_ACTIVE_ANON); 799 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) + 800 node_page_state(pgdat, NR_ISOLATED_ANON); 801 802 /* 803 * Allow GFP_NOFS to isolate past the limit set for regular 804 * compaction runs. This prevents an ABBA deadlock when other 805 * compactors have already isolated to the limit, but are 806 * blocked on filesystem locks held by the GFP_NOFS thread. 807 */ 808 if (cc->gfp_mask & __GFP_FS) { 809 inactive >>= 3; 810 active >>= 3; 811 } 812 813 too_many = isolated > (inactive + active) / 2; 814 if (!too_many) 815 wake_throttle_isolated(pgdat); 816 817 return too_many; 818 } 819 820 /** 821 * isolate_migratepages_block() - isolate all migrate-able pages within 822 * a single pageblock 823 * @cc: Compaction control structure. 824 * @low_pfn: The first PFN to isolate 825 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 826 * @mode: Isolation mode to be used. 827 * 828 * Isolate all pages that can be migrated from the range specified by 829 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 830 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion, 831 * -ENOMEM in case we could not allocate a page, or 0. 832 * cc->migrate_pfn will contain the next pfn to scan. 833 * 834 * The pages are isolated on cc->migratepages list (not required to be empty), 835 * and cc->nr_migratepages is updated accordingly. 836 */ 837 static int 838 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 839 unsigned long end_pfn, isolate_mode_t mode) 840 { 841 pg_data_t *pgdat = cc->zone->zone_pgdat; 842 unsigned long nr_scanned = 0, nr_isolated = 0; 843 struct lruvec *lruvec; 844 unsigned long flags = 0; 845 struct lruvec *locked = NULL; 846 struct folio *folio = NULL; 847 struct page *page = NULL, *valid_page = NULL; 848 struct address_space *mapping; 849 unsigned long start_pfn = low_pfn; 850 bool skip_on_failure = false; 851 unsigned long next_skip_pfn = 0; 852 bool skip_updated = false; 853 int ret = 0; 854 855 cc->migrate_pfn = low_pfn; 856 857 /* 858 * Ensure that there are not too many pages isolated from the LRU 859 * list by either parallel reclaimers or compaction. If there are, 860 * delay for some time until fewer pages are isolated 861 */ 862 while (unlikely(too_many_isolated(cc))) { 863 /* stop isolation if there are still pages not migrated */ 864 if (cc->nr_migratepages) 865 return -EAGAIN; 866 867 /* async migration should just abort */ 868 if (cc->mode == MIGRATE_ASYNC) 869 return -EAGAIN; 870 871 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 872 873 if (fatal_signal_pending(current)) 874 return -EINTR; 875 } 876 877 cond_resched(); 878 879 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { 880 skip_on_failure = true; 881 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 882 } 883 884 /* Time to isolate some pages for migration */ 885 for (; low_pfn < end_pfn; low_pfn++) { 886 887 if (skip_on_failure && low_pfn >= next_skip_pfn) { 888 /* 889 * We have isolated all migration candidates in the 890 * previous order-aligned block, and did not skip it due 891 * to failure. We should migrate the pages now and 892 * hopefully succeed compaction. 893 */ 894 if (nr_isolated) 895 break; 896 897 /* 898 * We failed to isolate in the previous order-aligned 899 * block. Set the new boundary to the end of the 900 * current block. Note we can't simply increase 901 * next_skip_pfn by 1 << order, as low_pfn might have 902 * been incremented by a higher number due to skipping 903 * a compound or a high-order buddy page in the 904 * previous loop iteration. 905 */ 906 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 907 } 908 909 /* 910 * Periodically drop the lock (if held) regardless of its 911 * contention, to give chance to IRQs. Abort completely if 912 * a fatal signal is pending. 913 */ 914 if (!(low_pfn % COMPACT_CLUSTER_MAX)) { 915 if (locked) { 916 unlock_page_lruvec_irqrestore(locked, flags); 917 locked = NULL; 918 } 919 920 if (fatal_signal_pending(current)) { 921 cc->contended = true; 922 ret = -EINTR; 923 924 goto fatal_pending; 925 } 926 927 cond_resched(); 928 } 929 930 nr_scanned++; 931 932 page = pfn_to_page(low_pfn); 933 934 /* 935 * Check if the pageblock has already been marked skipped. 936 * Only the aligned PFN is checked as the caller isolates 937 * COMPACT_CLUSTER_MAX at a time so the second call must 938 * not falsely conclude that the block should be skipped. 939 */ 940 if (!valid_page && pageblock_aligned(low_pfn)) { 941 if (!isolation_suitable(cc, page)) { 942 low_pfn = end_pfn; 943 folio = NULL; 944 goto isolate_abort; 945 } 946 valid_page = page; 947 } 948 949 if (PageHuge(page) && cc->alloc_contig) { 950 if (locked) { 951 unlock_page_lruvec_irqrestore(locked, flags); 952 locked = NULL; 953 } 954 955 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages); 956 957 /* 958 * Fail isolation in case isolate_or_dissolve_huge_page() 959 * reports an error. In case of -ENOMEM, abort right away. 960 */ 961 if (ret < 0) { 962 /* Do not report -EBUSY down the chain */ 963 if (ret == -EBUSY) 964 ret = 0; 965 low_pfn += compound_nr(page) - 1; 966 nr_scanned += compound_nr(page) - 1; 967 goto isolate_fail; 968 } 969 970 if (PageHuge(page)) { 971 /* 972 * Hugepage was successfully isolated and placed 973 * on the cc->migratepages list. 974 */ 975 folio = page_folio(page); 976 low_pfn += folio_nr_pages(folio) - 1; 977 goto isolate_success_no_list; 978 } 979 980 /* 981 * Ok, the hugepage was dissolved. Now these pages are 982 * Buddy and cannot be re-allocated because they are 983 * isolated. Fall-through as the check below handles 984 * Buddy pages. 985 */ 986 } 987 988 /* 989 * Skip if free. We read page order here without zone lock 990 * which is generally unsafe, but the race window is small and 991 * the worst thing that can happen is that we skip some 992 * potential isolation targets. 993 */ 994 if (PageBuddy(page)) { 995 unsigned long freepage_order = buddy_order_unsafe(page); 996 997 /* 998 * Without lock, we cannot be sure that what we got is 999 * a valid page order. Consider only values in the 1000 * valid order range to prevent low_pfn overflow. 1001 */ 1002 if (freepage_order > 0 && freepage_order <= MAX_ORDER) { 1003 low_pfn += (1UL << freepage_order) - 1; 1004 nr_scanned += (1UL << freepage_order) - 1; 1005 } 1006 continue; 1007 } 1008 1009 /* 1010 * Regardless of being on LRU, compound pages such as THP and 1011 * hugetlbfs are not to be compacted unless we are attempting 1012 * an allocation much larger than the huge page size (eg CMA). 1013 * We can potentially save a lot of iterations if we skip them 1014 * at once. The check is racy, but we can consider only valid 1015 * values and the only danger is skipping too much. 1016 */ 1017 if (PageCompound(page) && !cc->alloc_contig) { 1018 const unsigned int order = compound_order(page); 1019 1020 if (likely(order <= MAX_ORDER)) { 1021 low_pfn += (1UL << order) - 1; 1022 nr_scanned += (1UL << order) - 1; 1023 } 1024 goto isolate_fail; 1025 } 1026 1027 /* 1028 * Check may be lockless but that's ok as we recheck later. 1029 * It's possible to migrate LRU and non-lru movable pages. 1030 * Skip any other type of page 1031 */ 1032 if (!PageLRU(page)) { 1033 /* 1034 * __PageMovable can return false positive so we need 1035 * to verify it under page_lock. 1036 */ 1037 if (unlikely(__PageMovable(page)) && 1038 !PageIsolated(page)) { 1039 if (locked) { 1040 unlock_page_lruvec_irqrestore(locked, flags); 1041 locked = NULL; 1042 } 1043 1044 if (isolate_movable_page(page, mode)) { 1045 folio = page_folio(page); 1046 goto isolate_success; 1047 } 1048 } 1049 1050 goto isolate_fail; 1051 } 1052 1053 /* 1054 * Be careful not to clear PageLRU until after we're 1055 * sure the page is not being freed elsewhere -- the 1056 * page release code relies on it. 1057 */ 1058 folio = folio_get_nontail_page(page); 1059 if (unlikely(!folio)) 1060 goto isolate_fail; 1061 1062 /* 1063 * Migration will fail if an anonymous page is pinned in memory, 1064 * so avoid taking lru_lock and isolating it unnecessarily in an 1065 * admittedly racy check. 1066 */ 1067 mapping = folio_mapping(folio); 1068 if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio)) 1069 goto isolate_fail_put; 1070 1071 /* 1072 * Only allow to migrate anonymous pages in GFP_NOFS context 1073 * because those do not depend on fs locks. 1074 */ 1075 if (!(cc->gfp_mask & __GFP_FS) && mapping) 1076 goto isolate_fail_put; 1077 1078 /* Only take pages on LRU: a check now makes later tests safe */ 1079 if (!folio_test_lru(folio)) 1080 goto isolate_fail_put; 1081 1082 /* Compaction might skip unevictable pages but CMA takes them */ 1083 if (!(mode & ISOLATE_UNEVICTABLE) && folio_test_unevictable(folio)) 1084 goto isolate_fail_put; 1085 1086 /* 1087 * To minimise LRU disruption, the caller can indicate with 1088 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages 1089 * it will be able to migrate without blocking - clean pages 1090 * for the most part. PageWriteback would require blocking. 1091 */ 1092 if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio)) 1093 goto isolate_fail_put; 1094 1095 if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_dirty(folio)) { 1096 bool migrate_dirty; 1097 1098 /* 1099 * Only folios without mappings or that have 1100 * a ->migrate_folio callback are possible to 1101 * migrate without blocking. However, we may 1102 * be racing with truncation, which can free 1103 * the mapping. Truncation holds the folio lock 1104 * until after the folio is removed from the page 1105 * cache so holding it ourselves is sufficient. 1106 */ 1107 if (!folio_trylock(folio)) 1108 goto isolate_fail_put; 1109 1110 mapping = folio_mapping(folio); 1111 migrate_dirty = !mapping || 1112 mapping->a_ops->migrate_folio; 1113 folio_unlock(folio); 1114 if (!migrate_dirty) 1115 goto isolate_fail_put; 1116 } 1117 1118 /* Try isolate the folio */ 1119 if (!folio_test_clear_lru(folio)) 1120 goto isolate_fail_put; 1121 1122 lruvec = folio_lruvec(folio); 1123 1124 /* If we already hold the lock, we can skip some rechecking */ 1125 if (lruvec != locked) { 1126 if (locked) 1127 unlock_page_lruvec_irqrestore(locked, flags); 1128 1129 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc); 1130 locked = lruvec; 1131 1132 lruvec_memcg_debug(lruvec, folio); 1133 1134 /* 1135 * Try get exclusive access under lock. If marked for 1136 * skip, the scan is aborted unless the current context 1137 * is a rescan to reach the end of the pageblock. 1138 */ 1139 if (!skip_updated && valid_page) { 1140 skip_updated = true; 1141 if (test_and_set_skip(cc, valid_page) && 1142 !cc->finish_pageblock) { 1143 low_pfn = end_pfn; 1144 goto isolate_abort; 1145 } 1146 } 1147 1148 /* 1149 * folio become large since the non-locked check, 1150 * and it's on LRU. 1151 */ 1152 if (unlikely(folio_test_large(folio) && !cc->alloc_contig)) { 1153 low_pfn += folio_nr_pages(folio) - 1; 1154 nr_scanned += folio_nr_pages(folio) - 1; 1155 folio_set_lru(folio); 1156 goto isolate_fail_put; 1157 } 1158 } 1159 1160 /* The folio is taken off the LRU */ 1161 if (folio_test_large(folio)) 1162 low_pfn += folio_nr_pages(folio) - 1; 1163 1164 /* Successfully isolated */ 1165 lruvec_del_folio(lruvec, folio); 1166 node_stat_mod_folio(folio, 1167 NR_ISOLATED_ANON + folio_is_file_lru(folio), 1168 folio_nr_pages(folio)); 1169 1170 isolate_success: 1171 list_add(&folio->lru, &cc->migratepages); 1172 isolate_success_no_list: 1173 cc->nr_migratepages += folio_nr_pages(folio); 1174 nr_isolated += folio_nr_pages(folio); 1175 nr_scanned += folio_nr_pages(folio) - 1; 1176 1177 /* 1178 * Avoid isolating too much unless this block is being 1179 * fully scanned (e.g. dirty/writeback pages, parallel allocation) 1180 * or a lock is contended. For contention, isolate quickly to 1181 * potentially remove one source of contention. 1182 */ 1183 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX && 1184 !cc->finish_pageblock && !cc->contended) { 1185 ++low_pfn; 1186 break; 1187 } 1188 1189 continue; 1190 1191 isolate_fail_put: 1192 /* Avoid potential deadlock in freeing page under lru_lock */ 1193 if (locked) { 1194 unlock_page_lruvec_irqrestore(locked, flags); 1195 locked = NULL; 1196 } 1197 folio_put(folio); 1198 1199 isolate_fail: 1200 if (!skip_on_failure && ret != -ENOMEM) 1201 continue; 1202 1203 /* 1204 * We have isolated some pages, but then failed. Release them 1205 * instead of migrating, as we cannot form the cc->order buddy 1206 * page anyway. 1207 */ 1208 if (nr_isolated) { 1209 if (locked) { 1210 unlock_page_lruvec_irqrestore(locked, flags); 1211 locked = NULL; 1212 } 1213 putback_movable_pages(&cc->migratepages); 1214 cc->nr_migratepages = 0; 1215 nr_isolated = 0; 1216 } 1217 1218 if (low_pfn < next_skip_pfn) { 1219 low_pfn = next_skip_pfn - 1; 1220 /* 1221 * The check near the loop beginning would have updated 1222 * next_skip_pfn too, but this is a bit simpler. 1223 */ 1224 next_skip_pfn += 1UL << cc->order; 1225 } 1226 1227 if (ret == -ENOMEM) 1228 break; 1229 } 1230 1231 /* 1232 * The PageBuddy() check could have potentially brought us outside 1233 * the range to be scanned. 1234 */ 1235 if (unlikely(low_pfn > end_pfn)) 1236 low_pfn = end_pfn; 1237 1238 folio = NULL; 1239 1240 isolate_abort: 1241 if (locked) 1242 unlock_page_lruvec_irqrestore(locked, flags); 1243 if (folio) { 1244 folio_set_lru(folio); 1245 folio_put(folio); 1246 } 1247 1248 /* 1249 * Update the cached scanner pfn once the pageblock has been scanned. 1250 * Pages will either be migrated in which case there is no point 1251 * scanning in the near future or migration failed in which case the 1252 * failure reason may persist. The block is marked for skipping if 1253 * there were no pages isolated in the block or if the block is 1254 * rescanned twice in a row. 1255 */ 1256 if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) { 1257 if (!cc->no_set_skip_hint && valid_page && !skip_updated) 1258 set_pageblock_skip(valid_page); 1259 update_cached_migrate(cc, low_pfn); 1260 } 1261 1262 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 1263 nr_scanned, nr_isolated); 1264 1265 fatal_pending: 1266 cc->total_migrate_scanned += nr_scanned; 1267 if (nr_isolated) 1268 count_compact_events(COMPACTISOLATED, nr_isolated); 1269 1270 cc->migrate_pfn = low_pfn; 1271 1272 return ret; 1273 } 1274 1275 /** 1276 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 1277 * @cc: Compaction control structure. 1278 * @start_pfn: The first PFN to start isolating. 1279 * @end_pfn: The one-past-last PFN. 1280 * 1281 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM 1282 * in case we could not allocate a page, or 0. 1283 */ 1284 int 1285 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 1286 unsigned long end_pfn) 1287 { 1288 unsigned long pfn, block_start_pfn, block_end_pfn; 1289 int ret = 0; 1290 1291 /* Scan block by block. First and last block may be incomplete */ 1292 pfn = start_pfn; 1293 block_start_pfn = pageblock_start_pfn(pfn); 1294 if (block_start_pfn < cc->zone->zone_start_pfn) 1295 block_start_pfn = cc->zone->zone_start_pfn; 1296 block_end_pfn = pageblock_end_pfn(pfn); 1297 1298 for (; pfn < end_pfn; pfn = block_end_pfn, 1299 block_start_pfn = block_end_pfn, 1300 block_end_pfn += pageblock_nr_pages) { 1301 1302 block_end_pfn = min(block_end_pfn, end_pfn); 1303 1304 if (!pageblock_pfn_to_page(block_start_pfn, 1305 block_end_pfn, cc->zone)) 1306 continue; 1307 1308 ret = isolate_migratepages_block(cc, pfn, block_end_pfn, 1309 ISOLATE_UNEVICTABLE); 1310 1311 if (ret) 1312 break; 1313 1314 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX) 1315 break; 1316 } 1317 1318 return ret; 1319 } 1320 1321 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 1322 #ifdef CONFIG_COMPACTION 1323 1324 static bool suitable_migration_source(struct compact_control *cc, 1325 struct page *page) 1326 { 1327 int block_mt; 1328 1329 if (pageblock_skip_persistent(page)) 1330 return false; 1331 1332 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction) 1333 return true; 1334 1335 block_mt = get_pageblock_migratetype(page); 1336 1337 if (cc->migratetype == MIGRATE_MOVABLE) 1338 return is_migrate_movable(block_mt); 1339 else 1340 return block_mt == cc->migratetype; 1341 } 1342 1343 /* Returns true if the page is within a block suitable for migration to */ 1344 static bool suitable_migration_target(struct compact_control *cc, 1345 struct page *page) 1346 { 1347 /* If the page is a large free page, then disallow migration */ 1348 if (PageBuddy(page)) { 1349 /* 1350 * We are checking page_order without zone->lock taken. But 1351 * the only small danger is that we skip a potentially suitable 1352 * pageblock, so it's not worth to check order for valid range. 1353 */ 1354 if (buddy_order_unsafe(page) >= pageblock_order) 1355 return false; 1356 } 1357 1358 if (cc->ignore_block_suitable) 1359 return true; 1360 1361 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 1362 if (is_migrate_movable(get_pageblock_migratetype(page))) 1363 return true; 1364 1365 /* Otherwise skip the block */ 1366 return false; 1367 } 1368 1369 static inline unsigned int 1370 freelist_scan_limit(struct compact_control *cc) 1371 { 1372 unsigned short shift = BITS_PER_LONG - 1; 1373 1374 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1; 1375 } 1376 1377 /* 1378 * Test whether the free scanner has reached the same or lower pageblock than 1379 * the migration scanner, and compaction should thus terminate. 1380 */ 1381 static inline bool compact_scanners_met(struct compact_control *cc) 1382 { 1383 return (cc->free_pfn >> pageblock_order) 1384 <= (cc->migrate_pfn >> pageblock_order); 1385 } 1386 1387 /* 1388 * Used when scanning for a suitable migration target which scans freelists 1389 * in reverse. Reorders the list such as the unscanned pages are scanned 1390 * first on the next iteration of the free scanner 1391 */ 1392 static void 1393 move_freelist_head(struct list_head *freelist, struct page *freepage) 1394 { 1395 LIST_HEAD(sublist); 1396 1397 if (!list_is_last(freelist, &freepage->lru)) { 1398 list_cut_before(&sublist, freelist, &freepage->lru); 1399 list_splice_tail(&sublist, freelist); 1400 } 1401 } 1402 1403 /* 1404 * Similar to move_freelist_head except used by the migration scanner 1405 * when scanning forward. It's possible for these list operations to 1406 * move against each other if they search the free list exactly in 1407 * lockstep. 1408 */ 1409 static void 1410 move_freelist_tail(struct list_head *freelist, struct page *freepage) 1411 { 1412 LIST_HEAD(sublist); 1413 1414 if (!list_is_first(freelist, &freepage->lru)) { 1415 list_cut_position(&sublist, freelist, &freepage->lru); 1416 list_splice_tail(&sublist, freelist); 1417 } 1418 } 1419 1420 static void 1421 fast_isolate_around(struct compact_control *cc, unsigned long pfn) 1422 { 1423 unsigned long start_pfn, end_pfn; 1424 struct page *page; 1425 1426 /* Do not search around if there are enough pages already */ 1427 if (cc->nr_freepages >= cc->nr_migratepages) 1428 return; 1429 1430 /* Minimise scanning during async compaction */ 1431 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC) 1432 return; 1433 1434 /* Pageblock boundaries */ 1435 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn); 1436 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)); 1437 1438 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone); 1439 if (!page) 1440 return; 1441 1442 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false); 1443 1444 /* Skip this pageblock in the future as it's full or nearly full */ 1445 if (start_pfn == end_pfn && !cc->no_set_skip_hint) 1446 set_pageblock_skip(page); 1447 } 1448 1449 /* Search orders in round-robin fashion */ 1450 static int next_search_order(struct compact_control *cc, int order) 1451 { 1452 order--; 1453 if (order < 0) 1454 order = cc->order - 1; 1455 1456 /* Search wrapped around? */ 1457 if (order == cc->search_order) { 1458 cc->search_order--; 1459 if (cc->search_order < 0) 1460 cc->search_order = cc->order - 1; 1461 return -1; 1462 } 1463 1464 return order; 1465 } 1466 1467 static void fast_isolate_freepages(struct compact_control *cc) 1468 { 1469 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1); 1470 unsigned int nr_scanned = 0, total_isolated = 0; 1471 unsigned long low_pfn, min_pfn, highest = 0; 1472 unsigned long nr_isolated = 0; 1473 unsigned long distance; 1474 struct page *page = NULL; 1475 bool scan_start = false; 1476 int order; 1477 1478 /* Full compaction passes in a negative order */ 1479 if (cc->order <= 0) 1480 return; 1481 1482 /* 1483 * If starting the scan, use a deeper search and use the highest 1484 * PFN found if a suitable one is not found. 1485 */ 1486 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) { 1487 limit = pageblock_nr_pages >> 1; 1488 scan_start = true; 1489 } 1490 1491 /* 1492 * Preferred point is in the top quarter of the scan space but take 1493 * a pfn from the top half if the search is problematic. 1494 */ 1495 distance = (cc->free_pfn - cc->migrate_pfn); 1496 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2)); 1497 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1)); 1498 1499 if (WARN_ON_ONCE(min_pfn > low_pfn)) 1500 low_pfn = min_pfn; 1501 1502 /* 1503 * Search starts from the last successful isolation order or the next 1504 * order to search after a previous failure 1505 */ 1506 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order); 1507 1508 for (order = cc->search_order; 1509 !page && order >= 0; 1510 order = next_search_order(cc, order)) { 1511 struct free_area *area = &cc->zone->free_area[order]; 1512 struct list_head *freelist; 1513 struct page *freepage; 1514 unsigned long flags; 1515 unsigned int order_scanned = 0; 1516 unsigned long high_pfn = 0; 1517 1518 if (!area->nr_free) 1519 continue; 1520 1521 spin_lock_irqsave(&cc->zone->lock, flags); 1522 freelist = &area->free_list[MIGRATE_MOVABLE]; 1523 list_for_each_entry_reverse(freepage, freelist, buddy_list) { 1524 unsigned long pfn; 1525 1526 order_scanned++; 1527 nr_scanned++; 1528 pfn = page_to_pfn(freepage); 1529 1530 if (pfn >= highest) 1531 highest = max(pageblock_start_pfn(pfn), 1532 cc->zone->zone_start_pfn); 1533 1534 if (pfn >= low_pfn) { 1535 cc->fast_search_fail = 0; 1536 cc->search_order = order; 1537 page = freepage; 1538 break; 1539 } 1540 1541 if (pfn >= min_pfn && pfn > high_pfn) { 1542 high_pfn = pfn; 1543 1544 /* Shorten the scan if a candidate is found */ 1545 limit >>= 1; 1546 } 1547 1548 if (order_scanned >= limit) 1549 break; 1550 } 1551 1552 /* Use a maximum candidate pfn if a preferred one was not found */ 1553 if (!page && high_pfn) { 1554 page = pfn_to_page(high_pfn); 1555 1556 /* Update freepage for the list reorder below */ 1557 freepage = page; 1558 } 1559 1560 /* Reorder to so a future search skips recent pages */ 1561 move_freelist_head(freelist, freepage); 1562 1563 /* Isolate the page if available */ 1564 if (page) { 1565 if (__isolate_free_page(page, order)) { 1566 set_page_private(page, order); 1567 nr_isolated = 1 << order; 1568 nr_scanned += nr_isolated - 1; 1569 total_isolated += nr_isolated; 1570 cc->nr_freepages += nr_isolated; 1571 list_add_tail(&page->lru, &cc->freepages); 1572 count_compact_events(COMPACTISOLATED, nr_isolated); 1573 } else { 1574 /* If isolation fails, abort the search */ 1575 order = cc->search_order + 1; 1576 page = NULL; 1577 } 1578 } 1579 1580 spin_unlock_irqrestore(&cc->zone->lock, flags); 1581 1582 /* Skip fast search if enough freepages isolated */ 1583 if (cc->nr_freepages >= cc->nr_migratepages) 1584 break; 1585 1586 /* 1587 * Smaller scan on next order so the total scan is related 1588 * to freelist_scan_limit. 1589 */ 1590 if (order_scanned >= limit) 1591 limit = max(1U, limit >> 1); 1592 } 1593 1594 trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn, 1595 nr_scanned, total_isolated); 1596 1597 if (!page) { 1598 cc->fast_search_fail++; 1599 if (scan_start) { 1600 /* 1601 * Use the highest PFN found above min. If one was 1602 * not found, be pessimistic for direct compaction 1603 * and use the min mark. 1604 */ 1605 if (highest >= min_pfn) { 1606 page = pfn_to_page(highest); 1607 cc->free_pfn = highest; 1608 } else { 1609 if (cc->direct_compaction && pfn_valid(min_pfn)) { 1610 page = pageblock_pfn_to_page(min_pfn, 1611 min(pageblock_end_pfn(min_pfn), 1612 zone_end_pfn(cc->zone)), 1613 cc->zone); 1614 cc->free_pfn = min_pfn; 1615 } 1616 } 1617 } 1618 } 1619 1620 if (highest && highest >= cc->zone->compact_cached_free_pfn) { 1621 highest -= pageblock_nr_pages; 1622 cc->zone->compact_cached_free_pfn = highest; 1623 } 1624 1625 cc->total_free_scanned += nr_scanned; 1626 if (!page) 1627 return; 1628 1629 low_pfn = page_to_pfn(page); 1630 fast_isolate_around(cc, low_pfn); 1631 } 1632 1633 /* 1634 * Based on information in the current compact_control, find blocks 1635 * suitable for isolating free pages from and then isolate them. 1636 */ 1637 static void isolate_freepages(struct compact_control *cc) 1638 { 1639 struct zone *zone = cc->zone; 1640 struct page *page; 1641 unsigned long block_start_pfn; /* start of current pageblock */ 1642 unsigned long isolate_start_pfn; /* exact pfn we start at */ 1643 unsigned long block_end_pfn; /* end of current pageblock */ 1644 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 1645 struct list_head *freelist = &cc->freepages; 1646 unsigned int stride; 1647 1648 /* Try a small search of the free lists for a candidate */ 1649 fast_isolate_freepages(cc); 1650 if (cc->nr_freepages) 1651 goto splitmap; 1652 1653 /* 1654 * Initialise the free scanner. The starting point is where we last 1655 * successfully isolated from, zone-cached value, or the end of the 1656 * zone when isolating for the first time. For looping we also need 1657 * this pfn aligned down to the pageblock boundary, because we do 1658 * block_start_pfn -= pageblock_nr_pages in the for loop. 1659 * For ending point, take care when isolating in last pageblock of a 1660 * zone which ends in the middle of a pageblock. 1661 * The low boundary is the end of the pageblock the migration scanner 1662 * is using. 1663 */ 1664 isolate_start_pfn = cc->free_pfn; 1665 block_start_pfn = pageblock_start_pfn(isolate_start_pfn); 1666 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 1667 zone_end_pfn(zone)); 1668 low_pfn = pageblock_end_pfn(cc->migrate_pfn); 1669 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1; 1670 1671 /* 1672 * Isolate free pages until enough are available to migrate the 1673 * pages on cc->migratepages. We stop searching if the migrate 1674 * and free page scanners meet or enough free pages are isolated. 1675 */ 1676 for (; block_start_pfn >= low_pfn; 1677 block_end_pfn = block_start_pfn, 1678 block_start_pfn -= pageblock_nr_pages, 1679 isolate_start_pfn = block_start_pfn) { 1680 unsigned long nr_isolated; 1681 1682 /* 1683 * This can iterate a massively long zone without finding any 1684 * suitable migration targets, so periodically check resched. 1685 */ 1686 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages))) 1687 cond_resched(); 1688 1689 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1690 zone); 1691 if (!page) { 1692 unsigned long next_pfn; 1693 1694 next_pfn = skip_offline_sections_reverse(block_start_pfn); 1695 if (next_pfn) 1696 block_start_pfn = max(next_pfn, low_pfn); 1697 1698 continue; 1699 } 1700 1701 /* Check the block is suitable for migration */ 1702 if (!suitable_migration_target(cc, page)) 1703 continue; 1704 1705 /* If isolation recently failed, do not retry */ 1706 if (!isolation_suitable(cc, page)) 1707 continue; 1708 1709 /* Found a block suitable for isolating free pages from. */ 1710 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn, 1711 block_end_pfn, freelist, stride, false); 1712 1713 /* Update the skip hint if the full pageblock was scanned */ 1714 if (isolate_start_pfn == block_end_pfn) 1715 update_pageblock_skip(cc, page, block_start_pfn - 1716 pageblock_nr_pages); 1717 1718 /* Are enough freepages isolated? */ 1719 if (cc->nr_freepages >= cc->nr_migratepages) { 1720 if (isolate_start_pfn >= block_end_pfn) { 1721 /* 1722 * Restart at previous pageblock if more 1723 * freepages can be isolated next time. 1724 */ 1725 isolate_start_pfn = 1726 block_start_pfn - pageblock_nr_pages; 1727 } 1728 break; 1729 } else if (isolate_start_pfn < block_end_pfn) { 1730 /* 1731 * If isolation failed early, do not continue 1732 * needlessly. 1733 */ 1734 break; 1735 } 1736 1737 /* Adjust stride depending on isolation */ 1738 if (nr_isolated) { 1739 stride = 1; 1740 continue; 1741 } 1742 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1); 1743 } 1744 1745 /* 1746 * Record where the free scanner will restart next time. Either we 1747 * broke from the loop and set isolate_start_pfn based on the last 1748 * call to isolate_freepages_block(), or we met the migration scanner 1749 * and the loop terminated due to isolate_start_pfn < low_pfn 1750 */ 1751 cc->free_pfn = isolate_start_pfn; 1752 1753 splitmap: 1754 /* __isolate_free_page() does not map the pages */ 1755 split_map_pages(freelist); 1756 } 1757 1758 /* 1759 * This is a migrate-callback that "allocates" freepages by taking pages 1760 * from the isolated freelists in the block we are migrating to. 1761 */ 1762 static struct folio *compaction_alloc(struct folio *src, unsigned long data) 1763 { 1764 struct compact_control *cc = (struct compact_control *)data; 1765 struct folio *dst; 1766 1767 if (list_empty(&cc->freepages)) { 1768 isolate_freepages(cc); 1769 1770 if (list_empty(&cc->freepages)) 1771 return NULL; 1772 } 1773 1774 dst = list_entry(cc->freepages.next, struct folio, lru); 1775 list_del(&dst->lru); 1776 cc->nr_freepages--; 1777 1778 return dst; 1779 } 1780 1781 /* 1782 * This is a migrate-callback that "frees" freepages back to the isolated 1783 * freelist. All pages on the freelist are from the same zone, so there is no 1784 * special handling needed for NUMA. 1785 */ 1786 static void compaction_free(struct folio *dst, unsigned long data) 1787 { 1788 struct compact_control *cc = (struct compact_control *)data; 1789 1790 list_add(&dst->lru, &cc->freepages); 1791 cc->nr_freepages++; 1792 } 1793 1794 /* possible outcome of isolate_migratepages */ 1795 typedef enum { 1796 ISOLATE_ABORT, /* Abort compaction now */ 1797 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1798 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1799 } isolate_migrate_t; 1800 1801 /* 1802 * Allow userspace to control policy on scanning the unevictable LRU for 1803 * compactable pages. 1804 */ 1805 static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT; 1806 /* 1807 * Tunable for proactive compaction. It determines how 1808 * aggressively the kernel should compact memory in the 1809 * background. It takes values in the range [0, 100]. 1810 */ 1811 static unsigned int __read_mostly sysctl_compaction_proactiveness = 20; 1812 static int sysctl_extfrag_threshold = 500; 1813 static int __read_mostly sysctl_compact_memory; 1814 1815 static inline void 1816 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn) 1817 { 1818 if (cc->fast_start_pfn == ULONG_MAX) 1819 return; 1820 1821 if (!cc->fast_start_pfn) 1822 cc->fast_start_pfn = pfn; 1823 1824 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn); 1825 } 1826 1827 static inline unsigned long 1828 reinit_migrate_pfn(struct compact_control *cc) 1829 { 1830 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX) 1831 return cc->migrate_pfn; 1832 1833 cc->migrate_pfn = cc->fast_start_pfn; 1834 cc->fast_start_pfn = ULONG_MAX; 1835 1836 return cc->migrate_pfn; 1837 } 1838 1839 /* 1840 * Briefly search the free lists for a migration source that already has 1841 * some free pages to reduce the number of pages that need migration 1842 * before a pageblock is free. 1843 */ 1844 static unsigned long fast_find_migrateblock(struct compact_control *cc) 1845 { 1846 unsigned int limit = freelist_scan_limit(cc); 1847 unsigned int nr_scanned = 0; 1848 unsigned long distance; 1849 unsigned long pfn = cc->migrate_pfn; 1850 unsigned long high_pfn; 1851 int order; 1852 bool found_block = false; 1853 1854 /* Skip hints are relied on to avoid repeats on the fast search */ 1855 if (cc->ignore_skip_hint) 1856 return pfn; 1857 1858 /* 1859 * If the pageblock should be finished then do not select a different 1860 * pageblock. 1861 */ 1862 if (cc->finish_pageblock) 1863 return pfn; 1864 1865 /* 1866 * If the migrate_pfn is not at the start of a zone or the start 1867 * of a pageblock then assume this is a continuation of a previous 1868 * scan restarted due to COMPACT_CLUSTER_MAX. 1869 */ 1870 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn)) 1871 return pfn; 1872 1873 /* 1874 * For smaller orders, just linearly scan as the number of pages 1875 * to migrate should be relatively small and does not necessarily 1876 * justify freeing up a large block for a small allocation. 1877 */ 1878 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER) 1879 return pfn; 1880 1881 /* 1882 * Only allow kcompactd and direct requests for movable pages to 1883 * quickly clear out a MOVABLE pageblock for allocation. This 1884 * reduces the risk that a large movable pageblock is freed for 1885 * an unmovable/reclaimable small allocation. 1886 */ 1887 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE) 1888 return pfn; 1889 1890 /* 1891 * When starting the migration scanner, pick any pageblock within the 1892 * first half of the search space. Otherwise try and pick a pageblock 1893 * within the first eighth to reduce the chances that a migration 1894 * target later becomes a source. 1895 */ 1896 distance = (cc->free_pfn - cc->migrate_pfn) >> 1; 1897 if (cc->migrate_pfn != cc->zone->zone_start_pfn) 1898 distance >>= 2; 1899 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance); 1900 1901 for (order = cc->order - 1; 1902 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit; 1903 order--) { 1904 struct free_area *area = &cc->zone->free_area[order]; 1905 struct list_head *freelist; 1906 unsigned long flags; 1907 struct page *freepage; 1908 1909 if (!area->nr_free) 1910 continue; 1911 1912 spin_lock_irqsave(&cc->zone->lock, flags); 1913 freelist = &area->free_list[MIGRATE_MOVABLE]; 1914 list_for_each_entry(freepage, freelist, buddy_list) { 1915 unsigned long free_pfn; 1916 1917 if (nr_scanned++ >= limit) { 1918 move_freelist_tail(freelist, freepage); 1919 break; 1920 } 1921 1922 free_pfn = page_to_pfn(freepage); 1923 if (free_pfn < high_pfn) { 1924 /* 1925 * Avoid if skipped recently. Ideally it would 1926 * move to the tail but even safe iteration of 1927 * the list assumes an entry is deleted, not 1928 * reordered. 1929 */ 1930 if (get_pageblock_skip(freepage)) 1931 continue; 1932 1933 /* Reorder to so a future search skips recent pages */ 1934 move_freelist_tail(freelist, freepage); 1935 1936 update_fast_start_pfn(cc, free_pfn); 1937 pfn = pageblock_start_pfn(free_pfn); 1938 if (pfn < cc->zone->zone_start_pfn) 1939 pfn = cc->zone->zone_start_pfn; 1940 cc->fast_search_fail = 0; 1941 found_block = true; 1942 break; 1943 } 1944 } 1945 spin_unlock_irqrestore(&cc->zone->lock, flags); 1946 } 1947 1948 cc->total_migrate_scanned += nr_scanned; 1949 1950 /* 1951 * If fast scanning failed then use a cached entry for a page block 1952 * that had free pages as the basis for starting a linear scan. 1953 */ 1954 if (!found_block) { 1955 cc->fast_search_fail++; 1956 pfn = reinit_migrate_pfn(cc); 1957 } 1958 return pfn; 1959 } 1960 1961 /* 1962 * Isolate all pages that can be migrated from the first suitable block, 1963 * starting at the block pointed to by the migrate scanner pfn within 1964 * compact_control. 1965 */ 1966 static isolate_migrate_t isolate_migratepages(struct compact_control *cc) 1967 { 1968 unsigned long block_start_pfn; 1969 unsigned long block_end_pfn; 1970 unsigned long low_pfn; 1971 struct page *page; 1972 const isolate_mode_t isolate_mode = 1973 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 1974 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0); 1975 bool fast_find_block; 1976 1977 /* 1978 * Start at where we last stopped, or beginning of the zone as 1979 * initialized by compact_zone(). The first failure will use 1980 * the lowest PFN as the starting point for linear scanning. 1981 */ 1982 low_pfn = fast_find_migrateblock(cc); 1983 block_start_pfn = pageblock_start_pfn(low_pfn); 1984 if (block_start_pfn < cc->zone->zone_start_pfn) 1985 block_start_pfn = cc->zone->zone_start_pfn; 1986 1987 /* 1988 * fast_find_migrateblock() has already ensured the pageblock is not 1989 * set with a skipped flag, so to avoid the isolation_suitable check 1990 * below again, check whether the fast search was successful. 1991 */ 1992 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail; 1993 1994 /* Only scan within a pageblock boundary */ 1995 block_end_pfn = pageblock_end_pfn(low_pfn); 1996 1997 /* 1998 * Iterate over whole pageblocks until we find the first suitable. 1999 * Do not cross the free scanner. 2000 */ 2001 for (; block_end_pfn <= cc->free_pfn; 2002 fast_find_block = false, 2003 cc->migrate_pfn = low_pfn = block_end_pfn, 2004 block_start_pfn = block_end_pfn, 2005 block_end_pfn += pageblock_nr_pages) { 2006 2007 /* 2008 * This can potentially iterate a massively long zone with 2009 * many pageblocks unsuitable, so periodically check if we 2010 * need to schedule. 2011 */ 2012 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages))) 2013 cond_resched(); 2014 2015 page = pageblock_pfn_to_page(block_start_pfn, 2016 block_end_pfn, cc->zone); 2017 if (!page) { 2018 unsigned long next_pfn; 2019 2020 next_pfn = skip_offline_sections(block_start_pfn); 2021 if (next_pfn) 2022 block_end_pfn = min(next_pfn, cc->free_pfn); 2023 continue; 2024 } 2025 2026 /* 2027 * If isolation recently failed, do not retry. Only check the 2028 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock 2029 * to be visited multiple times. Assume skip was checked 2030 * before making it "skip" so other compaction instances do 2031 * not scan the same block. 2032 */ 2033 if (pageblock_aligned(low_pfn) && 2034 !fast_find_block && !isolation_suitable(cc, page)) 2035 continue; 2036 2037 /* 2038 * For async direct compaction, only scan the pageblocks of the 2039 * same migratetype without huge pages. Async direct compaction 2040 * is optimistic to see if the minimum amount of work satisfies 2041 * the allocation. The cached PFN is updated as it's possible 2042 * that all remaining blocks between source and target are 2043 * unsuitable and the compaction scanners fail to meet. 2044 */ 2045 if (!suitable_migration_source(cc, page)) { 2046 update_cached_migrate(cc, block_end_pfn); 2047 continue; 2048 } 2049 2050 /* Perform the isolation */ 2051 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn, 2052 isolate_mode)) 2053 return ISOLATE_ABORT; 2054 2055 /* 2056 * Either we isolated something and proceed with migration. Or 2057 * we failed and compact_zone should decide if we should 2058 * continue or not. 2059 */ 2060 break; 2061 } 2062 2063 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 2064 } 2065 2066 /* 2067 * order == -1 is expected when compacting via 2068 * /proc/sys/vm/compact_memory 2069 */ 2070 static inline bool is_via_compact_memory(int order) 2071 { 2072 return order == -1; 2073 } 2074 2075 /* 2076 * Determine whether kswapd is (or recently was!) running on this node. 2077 * 2078 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't 2079 * zero it. 2080 */ 2081 static bool kswapd_is_running(pg_data_t *pgdat) 2082 { 2083 bool running; 2084 2085 pgdat_kswapd_lock(pgdat); 2086 running = pgdat->kswapd && task_is_running(pgdat->kswapd); 2087 pgdat_kswapd_unlock(pgdat); 2088 2089 return running; 2090 } 2091 2092 /* 2093 * A zone's fragmentation score is the external fragmentation wrt to the 2094 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100]. 2095 */ 2096 static unsigned int fragmentation_score_zone(struct zone *zone) 2097 { 2098 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER); 2099 } 2100 2101 /* 2102 * A weighted zone's fragmentation score is the external fragmentation 2103 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It 2104 * returns a value in the range [0, 100]. 2105 * 2106 * The scaling factor ensures that proactive compaction focuses on larger 2107 * zones like ZONE_NORMAL, rather than smaller, specialized zones like 2108 * ZONE_DMA32. For smaller zones, the score value remains close to zero, 2109 * and thus never exceeds the high threshold for proactive compaction. 2110 */ 2111 static unsigned int fragmentation_score_zone_weighted(struct zone *zone) 2112 { 2113 unsigned long score; 2114 2115 score = zone->present_pages * fragmentation_score_zone(zone); 2116 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1); 2117 } 2118 2119 /* 2120 * The per-node proactive (background) compaction process is started by its 2121 * corresponding kcompactd thread when the node's fragmentation score 2122 * exceeds the high threshold. The compaction process remains active till 2123 * the node's score falls below the low threshold, or one of the back-off 2124 * conditions is met. 2125 */ 2126 static unsigned int fragmentation_score_node(pg_data_t *pgdat) 2127 { 2128 unsigned int score = 0; 2129 int zoneid; 2130 2131 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2132 struct zone *zone; 2133 2134 zone = &pgdat->node_zones[zoneid]; 2135 if (!populated_zone(zone)) 2136 continue; 2137 score += fragmentation_score_zone_weighted(zone); 2138 } 2139 2140 return score; 2141 } 2142 2143 static unsigned int fragmentation_score_wmark(bool low) 2144 { 2145 unsigned int wmark_low; 2146 2147 /* 2148 * Cap the low watermark to avoid excessive compaction 2149 * activity in case a user sets the proactiveness tunable 2150 * close to 100 (maximum). 2151 */ 2152 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U); 2153 return low ? wmark_low : min(wmark_low + 10, 100U); 2154 } 2155 2156 static bool should_proactive_compact_node(pg_data_t *pgdat) 2157 { 2158 int wmark_high; 2159 2160 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat)) 2161 return false; 2162 2163 wmark_high = fragmentation_score_wmark(false); 2164 return fragmentation_score_node(pgdat) > wmark_high; 2165 } 2166 2167 static enum compact_result __compact_finished(struct compact_control *cc) 2168 { 2169 unsigned int order; 2170 const int migratetype = cc->migratetype; 2171 int ret; 2172 2173 /* Compaction run completes if the migrate and free scanner meet */ 2174 if (compact_scanners_met(cc)) { 2175 /* Let the next compaction start anew. */ 2176 reset_cached_positions(cc->zone); 2177 2178 /* 2179 * Mark that the PG_migrate_skip information should be cleared 2180 * by kswapd when it goes to sleep. kcompactd does not set the 2181 * flag itself as the decision to be clear should be directly 2182 * based on an allocation request. 2183 */ 2184 if (cc->direct_compaction) 2185 cc->zone->compact_blockskip_flush = true; 2186 2187 if (cc->whole_zone) 2188 return COMPACT_COMPLETE; 2189 else 2190 return COMPACT_PARTIAL_SKIPPED; 2191 } 2192 2193 if (cc->proactive_compaction) { 2194 int score, wmark_low; 2195 pg_data_t *pgdat; 2196 2197 pgdat = cc->zone->zone_pgdat; 2198 if (kswapd_is_running(pgdat)) 2199 return COMPACT_PARTIAL_SKIPPED; 2200 2201 score = fragmentation_score_zone(cc->zone); 2202 wmark_low = fragmentation_score_wmark(true); 2203 2204 if (score > wmark_low) 2205 ret = COMPACT_CONTINUE; 2206 else 2207 ret = COMPACT_SUCCESS; 2208 2209 goto out; 2210 } 2211 2212 if (is_via_compact_memory(cc->order)) 2213 return COMPACT_CONTINUE; 2214 2215 /* 2216 * Always finish scanning a pageblock to reduce the possibility of 2217 * fallbacks in the future. This is particularly important when 2218 * migration source is unmovable/reclaimable but it's not worth 2219 * special casing. 2220 */ 2221 if (!pageblock_aligned(cc->migrate_pfn)) 2222 return COMPACT_CONTINUE; 2223 2224 /* Direct compactor: Is a suitable page free? */ 2225 ret = COMPACT_NO_SUITABLE_PAGE; 2226 for (order = cc->order; order <= MAX_ORDER; order++) { 2227 struct free_area *area = &cc->zone->free_area[order]; 2228 bool can_steal; 2229 2230 /* Job done if page is free of the right migratetype */ 2231 if (!free_area_empty(area, migratetype)) 2232 return COMPACT_SUCCESS; 2233 2234 #ifdef CONFIG_CMA 2235 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 2236 if (migratetype == MIGRATE_MOVABLE && 2237 !free_area_empty(area, MIGRATE_CMA)) 2238 return COMPACT_SUCCESS; 2239 #endif 2240 /* 2241 * Job done if allocation would steal freepages from 2242 * other migratetype buddy lists. 2243 */ 2244 if (find_suitable_fallback(area, order, migratetype, 2245 true, &can_steal) != -1) 2246 /* 2247 * Movable pages are OK in any pageblock. If we are 2248 * stealing for a non-movable allocation, make sure 2249 * we finish compacting the current pageblock first 2250 * (which is assured by the above migrate_pfn align 2251 * check) so it is as free as possible and we won't 2252 * have to steal another one soon. 2253 */ 2254 return COMPACT_SUCCESS; 2255 } 2256 2257 out: 2258 if (cc->contended || fatal_signal_pending(current)) 2259 ret = COMPACT_CONTENDED; 2260 2261 return ret; 2262 } 2263 2264 static enum compact_result compact_finished(struct compact_control *cc) 2265 { 2266 int ret; 2267 2268 ret = __compact_finished(cc); 2269 trace_mm_compaction_finished(cc->zone, cc->order, ret); 2270 if (ret == COMPACT_NO_SUITABLE_PAGE) 2271 ret = COMPACT_CONTINUE; 2272 2273 return ret; 2274 } 2275 2276 static bool __compaction_suitable(struct zone *zone, int order, 2277 int highest_zoneidx, 2278 unsigned long wmark_target) 2279 { 2280 unsigned long watermark; 2281 /* 2282 * Watermarks for order-0 must be met for compaction to be able to 2283 * isolate free pages for migration targets. This means that the 2284 * watermark and alloc_flags have to match, or be more pessimistic than 2285 * the check in __isolate_free_page(). We don't use the direct 2286 * compactor's alloc_flags, as they are not relevant for freepage 2287 * isolation. We however do use the direct compactor's highest_zoneidx 2288 * to skip over zones where lowmem reserves would prevent allocation 2289 * even if compaction succeeds. 2290 * For costly orders, we require low watermark instead of min for 2291 * compaction to proceed to increase its chances. 2292 * ALLOC_CMA is used, as pages in CMA pageblocks are considered 2293 * suitable migration targets 2294 */ 2295 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ? 2296 low_wmark_pages(zone) : min_wmark_pages(zone); 2297 watermark += compact_gap(order); 2298 return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx, 2299 ALLOC_CMA, wmark_target); 2300 } 2301 2302 /* 2303 * compaction_suitable: Is this suitable to run compaction on this zone now? 2304 */ 2305 bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx) 2306 { 2307 enum compact_result compact_result; 2308 bool suitable; 2309 2310 suitable = __compaction_suitable(zone, order, highest_zoneidx, 2311 zone_page_state(zone, NR_FREE_PAGES)); 2312 /* 2313 * fragmentation index determines if allocation failures are due to 2314 * low memory or external fragmentation 2315 * 2316 * index of -1000 would imply allocations might succeed depending on 2317 * watermarks, but we already failed the high-order watermark check 2318 * index towards 0 implies failure is due to lack of memory 2319 * index towards 1000 implies failure is due to fragmentation 2320 * 2321 * Only compact if a failure would be due to fragmentation. Also 2322 * ignore fragindex for non-costly orders where the alternative to 2323 * a successful reclaim/compaction is OOM. Fragindex and the 2324 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent 2325 * excessive compaction for costly orders, but it should not be at the 2326 * expense of system stability. 2327 */ 2328 if (suitable) { 2329 compact_result = COMPACT_CONTINUE; 2330 if (order > PAGE_ALLOC_COSTLY_ORDER) { 2331 int fragindex = fragmentation_index(zone, order); 2332 2333 if (fragindex >= 0 && 2334 fragindex <= sysctl_extfrag_threshold) { 2335 suitable = false; 2336 compact_result = COMPACT_NOT_SUITABLE_ZONE; 2337 } 2338 } 2339 } else { 2340 compact_result = COMPACT_SKIPPED; 2341 } 2342 2343 trace_mm_compaction_suitable(zone, order, compact_result); 2344 2345 return suitable; 2346 } 2347 2348 bool compaction_zonelist_suitable(struct alloc_context *ac, int order, 2349 int alloc_flags) 2350 { 2351 struct zone *zone; 2352 struct zoneref *z; 2353 2354 /* 2355 * Make sure at least one zone would pass __compaction_suitable if we continue 2356 * retrying the reclaim. 2357 */ 2358 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2359 ac->highest_zoneidx, ac->nodemask) { 2360 unsigned long available; 2361 2362 /* 2363 * Do not consider all the reclaimable memory because we do not 2364 * want to trash just for a single high order allocation which 2365 * is even not guaranteed to appear even if __compaction_suitable 2366 * is happy about the watermark check. 2367 */ 2368 available = zone_reclaimable_pages(zone) / order; 2369 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 2370 if (__compaction_suitable(zone, order, ac->highest_zoneidx, 2371 available)) 2372 return true; 2373 } 2374 2375 return false; 2376 } 2377 2378 static enum compact_result 2379 compact_zone(struct compact_control *cc, struct capture_control *capc) 2380 { 2381 enum compact_result ret; 2382 unsigned long start_pfn = cc->zone->zone_start_pfn; 2383 unsigned long end_pfn = zone_end_pfn(cc->zone); 2384 unsigned long last_migrated_pfn; 2385 const bool sync = cc->mode != MIGRATE_ASYNC; 2386 bool update_cached; 2387 unsigned int nr_succeeded = 0; 2388 2389 /* 2390 * These counters track activities during zone compaction. Initialize 2391 * them before compacting a new zone. 2392 */ 2393 cc->total_migrate_scanned = 0; 2394 cc->total_free_scanned = 0; 2395 cc->nr_migratepages = 0; 2396 cc->nr_freepages = 0; 2397 INIT_LIST_HEAD(&cc->freepages); 2398 INIT_LIST_HEAD(&cc->migratepages); 2399 2400 cc->migratetype = gfp_migratetype(cc->gfp_mask); 2401 2402 if (!is_via_compact_memory(cc->order)) { 2403 unsigned long watermark; 2404 2405 /* Allocation can already succeed, nothing to do */ 2406 watermark = wmark_pages(cc->zone, 2407 cc->alloc_flags & ALLOC_WMARK_MASK); 2408 if (zone_watermark_ok(cc->zone, cc->order, watermark, 2409 cc->highest_zoneidx, cc->alloc_flags)) 2410 return COMPACT_SUCCESS; 2411 2412 /* Compaction is likely to fail */ 2413 if (!compaction_suitable(cc->zone, cc->order, 2414 cc->highest_zoneidx)) 2415 return COMPACT_SKIPPED; 2416 } 2417 2418 /* 2419 * Clear pageblock skip if there were failures recently and compaction 2420 * is about to be retried after being deferred. 2421 */ 2422 if (compaction_restarting(cc->zone, cc->order)) 2423 __reset_isolation_suitable(cc->zone); 2424 2425 /* 2426 * Setup to move all movable pages to the end of the zone. Used cached 2427 * information on where the scanners should start (unless we explicitly 2428 * want to compact the whole zone), but check that it is initialised 2429 * by ensuring the values are within zone boundaries. 2430 */ 2431 cc->fast_start_pfn = 0; 2432 if (cc->whole_zone) { 2433 cc->migrate_pfn = start_pfn; 2434 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2435 } else { 2436 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync]; 2437 cc->free_pfn = cc->zone->compact_cached_free_pfn; 2438 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 2439 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2440 cc->zone->compact_cached_free_pfn = cc->free_pfn; 2441 } 2442 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 2443 cc->migrate_pfn = start_pfn; 2444 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 2445 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 2446 } 2447 2448 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn) 2449 cc->whole_zone = true; 2450 } 2451 2452 last_migrated_pfn = 0; 2453 2454 /* 2455 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on 2456 * the basis that some migrations will fail in ASYNC mode. However, 2457 * if the cached PFNs match and pageblocks are skipped due to having 2458 * no isolation candidates, then the sync state does not matter. 2459 * Until a pageblock with isolation candidates is found, keep the 2460 * cached PFNs in sync to avoid revisiting the same blocks. 2461 */ 2462 update_cached = !sync && 2463 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1]; 2464 2465 trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync); 2466 2467 /* lru_add_drain_all could be expensive with involving other CPUs */ 2468 lru_add_drain(); 2469 2470 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) { 2471 int err; 2472 unsigned long iteration_start_pfn = cc->migrate_pfn; 2473 2474 /* 2475 * Avoid multiple rescans of the same pageblock which can 2476 * happen if a page cannot be isolated (dirty/writeback in 2477 * async mode) or if the migrated pages are being allocated 2478 * before the pageblock is cleared. The first rescan will 2479 * capture the entire pageblock for migration. If it fails, 2480 * it'll be marked skip and scanning will proceed as normal. 2481 */ 2482 cc->finish_pageblock = false; 2483 if (pageblock_start_pfn(last_migrated_pfn) == 2484 pageblock_start_pfn(iteration_start_pfn)) { 2485 cc->finish_pageblock = true; 2486 } 2487 2488 rescan: 2489 switch (isolate_migratepages(cc)) { 2490 case ISOLATE_ABORT: 2491 ret = COMPACT_CONTENDED; 2492 putback_movable_pages(&cc->migratepages); 2493 cc->nr_migratepages = 0; 2494 goto out; 2495 case ISOLATE_NONE: 2496 if (update_cached) { 2497 cc->zone->compact_cached_migrate_pfn[1] = 2498 cc->zone->compact_cached_migrate_pfn[0]; 2499 } 2500 2501 /* 2502 * We haven't isolated and migrated anything, but 2503 * there might still be unflushed migrations from 2504 * previous cc->order aligned block. 2505 */ 2506 goto check_drain; 2507 case ISOLATE_SUCCESS: 2508 update_cached = false; 2509 last_migrated_pfn = max(cc->zone->zone_start_pfn, 2510 pageblock_start_pfn(cc->migrate_pfn - 1)); 2511 } 2512 2513 err = migrate_pages(&cc->migratepages, compaction_alloc, 2514 compaction_free, (unsigned long)cc, cc->mode, 2515 MR_COMPACTION, &nr_succeeded); 2516 2517 trace_mm_compaction_migratepages(cc, nr_succeeded); 2518 2519 /* All pages were either migrated or will be released */ 2520 cc->nr_migratepages = 0; 2521 if (err) { 2522 putback_movable_pages(&cc->migratepages); 2523 /* 2524 * migrate_pages() may return -ENOMEM when scanners meet 2525 * and we want compact_finished() to detect it 2526 */ 2527 if (err == -ENOMEM && !compact_scanners_met(cc)) { 2528 ret = COMPACT_CONTENDED; 2529 goto out; 2530 } 2531 /* 2532 * If an ASYNC or SYNC_LIGHT fails to migrate a page 2533 * within the pageblock_order-aligned block and 2534 * fast_find_migrateblock may be used then scan the 2535 * remainder of the pageblock. This will mark the 2536 * pageblock "skip" to avoid rescanning in the near 2537 * future. This will isolate more pages than necessary 2538 * for the request but avoid loops due to 2539 * fast_find_migrateblock revisiting blocks that were 2540 * recently partially scanned. 2541 */ 2542 if (!pageblock_aligned(cc->migrate_pfn) && 2543 !cc->ignore_skip_hint && !cc->finish_pageblock && 2544 (cc->mode < MIGRATE_SYNC)) { 2545 cc->finish_pageblock = true; 2546 2547 /* 2548 * Draining pcplists does not help THP if 2549 * any page failed to migrate. Even after 2550 * drain, the pageblock will not be free. 2551 */ 2552 if (cc->order == COMPACTION_HPAGE_ORDER) 2553 last_migrated_pfn = 0; 2554 2555 goto rescan; 2556 } 2557 } 2558 2559 /* Stop if a page has been captured */ 2560 if (capc && capc->page) { 2561 ret = COMPACT_SUCCESS; 2562 break; 2563 } 2564 2565 check_drain: 2566 /* 2567 * Has the migration scanner moved away from the previous 2568 * cc->order aligned block where we migrated from? If yes, 2569 * flush the pages that were freed, so that they can merge and 2570 * compact_finished() can detect immediately if allocation 2571 * would succeed. 2572 */ 2573 if (cc->order > 0 && last_migrated_pfn) { 2574 unsigned long current_block_start = 2575 block_start_pfn(cc->migrate_pfn, cc->order); 2576 2577 if (last_migrated_pfn < current_block_start) { 2578 lru_add_drain_cpu_zone(cc->zone); 2579 /* No more flushing until we migrate again */ 2580 last_migrated_pfn = 0; 2581 } 2582 } 2583 } 2584 2585 out: 2586 /* 2587 * Release free pages and update where the free scanner should restart, 2588 * so we don't leave any returned pages behind in the next attempt. 2589 */ 2590 if (cc->nr_freepages > 0) { 2591 unsigned long free_pfn = release_freepages(&cc->freepages); 2592 2593 cc->nr_freepages = 0; 2594 VM_BUG_ON(free_pfn == 0); 2595 /* The cached pfn is always the first in a pageblock */ 2596 free_pfn = pageblock_start_pfn(free_pfn); 2597 /* 2598 * Only go back, not forward. The cached pfn might have been 2599 * already reset to zone end in compact_finished() 2600 */ 2601 if (free_pfn > cc->zone->compact_cached_free_pfn) 2602 cc->zone->compact_cached_free_pfn = free_pfn; 2603 } 2604 2605 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned); 2606 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned); 2607 2608 trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret); 2609 2610 VM_BUG_ON(!list_empty(&cc->freepages)); 2611 VM_BUG_ON(!list_empty(&cc->migratepages)); 2612 2613 return ret; 2614 } 2615 2616 static enum compact_result compact_zone_order(struct zone *zone, int order, 2617 gfp_t gfp_mask, enum compact_priority prio, 2618 unsigned int alloc_flags, int highest_zoneidx, 2619 struct page **capture) 2620 { 2621 enum compact_result ret; 2622 struct compact_control cc = { 2623 .order = order, 2624 .search_order = order, 2625 .gfp_mask = gfp_mask, 2626 .zone = zone, 2627 .mode = (prio == COMPACT_PRIO_ASYNC) ? 2628 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT, 2629 .alloc_flags = alloc_flags, 2630 .highest_zoneidx = highest_zoneidx, 2631 .direct_compaction = true, 2632 .whole_zone = (prio == MIN_COMPACT_PRIORITY), 2633 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY), 2634 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY) 2635 }; 2636 struct capture_control capc = { 2637 .cc = &cc, 2638 .page = NULL, 2639 }; 2640 2641 /* 2642 * Make sure the structs are really initialized before we expose the 2643 * capture control, in case we are interrupted and the interrupt handler 2644 * frees a page. 2645 */ 2646 barrier(); 2647 WRITE_ONCE(current->capture_control, &capc); 2648 2649 ret = compact_zone(&cc, &capc); 2650 2651 /* 2652 * Make sure we hide capture control first before we read the captured 2653 * page pointer, otherwise an interrupt could free and capture a page 2654 * and we would leak it. 2655 */ 2656 WRITE_ONCE(current->capture_control, NULL); 2657 *capture = READ_ONCE(capc.page); 2658 /* 2659 * Technically, it is also possible that compaction is skipped but 2660 * the page is still captured out of luck(IRQ came and freed the page). 2661 * Returning COMPACT_SUCCESS in such cases helps in properly accounting 2662 * the COMPACT[STALL|FAIL] when compaction is skipped. 2663 */ 2664 if (*capture) 2665 ret = COMPACT_SUCCESS; 2666 2667 return ret; 2668 } 2669 2670 /** 2671 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 2672 * @gfp_mask: The GFP mask of the current allocation 2673 * @order: The order of the current allocation 2674 * @alloc_flags: The allocation flags of the current allocation 2675 * @ac: The context of current allocation 2676 * @prio: Determines how hard direct compaction should try to succeed 2677 * @capture: Pointer to free page created by compaction will be stored here 2678 * 2679 * This is the main entry point for direct page compaction. 2680 */ 2681 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 2682 unsigned int alloc_flags, const struct alloc_context *ac, 2683 enum compact_priority prio, struct page **capture) 2684 { 2685 int may_perform_io = (__force int)(gfp_mask & __GFP_IO); 2686 struct zoneref *z; 2687 struct zone *zone; 2688 enum compact_result rc = COMPACT_SKIPPED; 2689 2690 /* 2691 * Check if the GFP flags allow compaction - GFP_NOIO is really 2692 * tricky context because the migration might require IO 2693 */ 2694 if (!may_perform_io) 2695 return COMPACT_SKIPPED; 2696 2697 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio); 2698 2699 /* Compact each zone in the list */ 2700 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2701 ac->highest_zoneidx, ac->nodemask) { 2702 enum compact_result status; 2703 2704 if (prio > MIN_COMPACT_PRIORITY 2705 && compaction_deferred(zone, order)) { 2706 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); 2707 continue; 2708 } 2709 2710 status = compact_zone_order(zone, order, gfp_mask, prio, 2711 alloc_flags, ac->highest_zoneidx, capture); 2712 rc = max(status, rc); 2713 2714 /* The allocation should succeed, stop compacting */ 2715 if (status == COMPACT_SUCCESS) { 2716 /* 2717 * We think the allocation will succeed in this zone, 2718 * but it is not certain, hence the false. The caller 2719 * will repeat this with true if allocation indeed 2720 * succeeds in this zone. 2721 */ 2722 compaction_defer_reset(zone, order, false); 2723 2724 break; 2725 } 2726 2727 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE || 2728 status == COMPACT_PARTIAL_SKIPPED)) 2729 /* 2730 * We think that allocation won't succeed in this zone 2731 * so we defer compaction there. If it ends up 2732 * succeeding after all, it will be reset. 2733 */ 2734 defer_compaction(zone, order); 2735 2736 /* 2737 * We might have stopped compacting due to need_resched() in 2738 * async compaction, or due to a fatal signal detected. In that 2739 * case do not try further zones 2740 */ 2741 if ((prio == COMPACT_PRIO_ASYNC && need_resched()) 2742 || fatal_signal_pending(current)) 2743 break; 2744 } 2745 2746 return rc; 2747 } 2748 2749 /* 2750 * Compact all zones within a node till each zone's fragmentation score 2751 * reaches within proactive compaction thresholds (as determined by the 2752 * proactiveness tunable). 2753 * 2754 * It is possible that the function returns before reaching score targets 2755 * due to various back-off conditions, such as, contention on per-node or 2756 * per-zone locks. 2757 */ 2758 static void proactive_compact_node(pg_data_t *pgdat) 2759 { 2760 int zoneid; 2761 struct zone *zone; 2762 struct compact_control cc = { 2763 .order = -1, 2764 .mode = MIGRATE_SYNC_LIGHT, 2765 .ignore_skip_hint = true, 2766 .whole_zone = true, 2767 .gfp_mask = GFP_KERNEL, 2768 .proactive_compaction = true, 2769 }; 2770 2771 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2772 zone = &pgdat->node_zones[zoneid]; 2773 if (!populated_zone(zone)) 2774 continue; 2775 2776 cc.zone = zone; 2777 2778 compact_zone(&cc, NULL); 2779 2780 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 2781 cc.total_migrate_scanned); 2782 count_compact_events(KCOMPACTD_FREE_SCANNED, 2783 cc.total_free_scanned); 2784 } 2785 } 2786 2787 /* Compact all zones within a node */ 2788 static void compact_node(int nid) 2789 { 2790 pg_data_t *pgdat = NODE_DATA(nid); 2791 int zoneid; 2792 struct zone *zone; 2793 struct compact_control cc = { 2794 .order = -1, 2795 .mode = MIGRATE_SYNC, 2796 .ignore_skip_hint = true, 2797 .whole_zone = true, 2798 .gfp_mask = GFP_KERNEL, 2799 }; 2800 2801 2802 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2803 2804 zone = &pgdat->node_zones[zoneid]; 2805 if (!populated_zone(zone)) 2806 continue; 2807 2808 cc.zone = zone; 2809 2810 compact_zone(&cc, NULL); 2811 } 2812 } 2813 2814 /* Compact all nodes in the system */ 2815 static void compact_nodes(void) 2816 { 2817 int nid; 2818 2819 /* Flush pending updates to the LRU lists */ 2820 lru_add_drain_all(); 2821 2822 for_each_online_node(nid) 2823 compact_node(nid); 2824 } 2825 2826 static int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write, 2827 void *buffer, size_t *length, loff_t *ppos) 2828 { 2829 int rc, nid; 2830 2831 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 2832 if (rc) 2833 return rc; 2834 2835 if (write && sysctl_compaction_proactiveness) { 2836 for_each_online_node(nid) { 2837 pg_data_t *pgdat = NODE_DATA(nid); 2838 2839 if (pgdat->proactive_compact_trigger) 2840 continue; 2841 2842 pgdat->proactive_compact_trigger = true; 2843 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1, 2844 pgdat->nr_zones - 1); 2845 wake_up_interruptible(&pgdat->kcompactd_wait); 2846 } 2847 } 2848 2849 return 0; 2850 } 2851 2852 /* 2853 * This is the entry point for compacting all nodes via 2854 * /proc/sys/vm/compact_memory 2855 */ 2856 static int sysctl_compaction_handler(struct ctl_table *table, int write, 2857 void *buffer, size_t *length, loff_t *ppos) 2858 { 2859 int ret; 2860 2861 ret = proc_dointvec(table, write, buffer, length, ppos); 2862 if (ret) 2863 return ret; 2864 2865 if (sysctl_compact_memory != 1) 2866 return -EINVAL; 2867 2868 if (write) 2869 compact_nodes(); 2870 2871 return 0; 2872 } 2873 2874 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 2875 static ssize_t compact_store(struct device *dev, 2876 struct device_attribute *attr, 2877 const char *buf, size_t count) 2878 { 2879 int nid = dev->id; 2880 2881 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 2882 /* Flush pending updates to the LRU lists */ 2883 lru_add_drain_all(); 2884 2885 compact_node(nid); 2886 } 2887 2888 return count; 2889 } 2890 static DEVICE_ATTR_WO(compact); 2891 2892 int compaction_register_node(struct node *node) 2893 { 2894 return device_create_file(&node->dev, &dev_attr_compact); 2895 } 2896 2897 void compaction_unregister_node(struct node *node) 2898 { 2899 device_remove_file(&node->dev, &dev_attr_compact); 2900 } 2901 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 2902 2903 static inline bool kcompactd_work_requested(pg_data_t *pgdat) 2904 { 2905 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() || 2906 pgdat->proactive_compact_trigger; 2907 } 2908 2909 static bool kcompactd_node_suitable(pg_data_t *pgdat) 2910 { 2911 int zoneid; 2912 struct zone *zone; 2913 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx; 2914 2915 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) { 2916 zone = &pgdat->node_zones[zoneid]; 2917 2918 if (!populated_zone(zone)) 2919 continue; 2920 2921 /* Allocation can already succeed, check other zones */ 2922 if (zone_watermark_ok(zone, pgdat->kcompactd_max_order, 2923 min_wmark_pages(zone), 2924 highest_zoneidx, 0)) 2925 continue; 2926 2927 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 2928 highest_zoneidx)) 2929 return true; 2930 } 2931 2932 return false; 2933 } 2934 2935 static void kcompactd_do_work(pg_data_t *pgdat) 2936 { 2937 /* 2938 * With no special task, compact all zones so that a page of requested 2939 * order is allocatable. 2940 */ 2941 int zoneid; 2942 struct zone *zone; 2943 struct compact_control cc = { 2944 .order = pgdat->kcompactd_max_order, 2945 .search_order = pgdat->kcompactd_max_order, 2946 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx, 2947 .mode = MIGRATE_SYNC_LIGHT, 2948 .ignore_skip_hint = false, 2949 .gfp_mask = GFP_KERNEL, 2950 }; 2951 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 2952 cc.highest_zoneidx); 2953 count_compact_event(KCOMPACTD_WAKE); 2954 2955 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) { 2956 int status; 2957 2958 zone = &pgdat->node_zones[zoneid]; 2959 if (!populated_zone(zone)) 2960 continue; 2961 2962 if (compaction_deferred(zone, cc.order)) 2963 continue; 2964 2965 /* Allocation can already succeed, nothing to do */ 2966 if (zone_watermark_ok(zone, cc.order, 2967 min_wmark_pages(zone), zoneid, 0)) 2968 continue; 2969 2970 if (!compaction_suitable(zone, cc.order, zoneid)) 2971 continue; 2972 2973 if (kthread_should_stop()) 2974 return; 2975 2976 cc.zone = zone; 2977 status = compact_zone(&cc, NULL); 2978 2979 if (status == COMPACT_SUCCESS) { 2980 compaction_defer_reset(zone, cc.order, false); 2981 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { 2982 /* 2983 * Buddy pages may become stranded on pcps that could 2984 * otherwise coalesce on the zone's free area for 2985 * order >= cc.order. This is ratelimited by the 2986 * upcoming deferral. 2987 */ 2988 drain_all_pages(zone); 2989 2990 /* 2991 * We use sync migration mode here, so we defer like 2992 * sync direct compaction does. 2993 */ 2994 defer_compaction(zone, cc.order); 2995 } 2996 2997 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 2998 cc.total_migrate_scanned); 2999 count_compact_events(KCOMPACTD_FREE_SCANNED, 3000 cc.total_free_scanned); 3001 } 3002 3003 /* 3004 * Regardless of success, we are done until woken up next. But remember 3005 * the requested order/highest_zoneidx in case it was higher/tighter 3006 * than our current ones 3007 */ 3008 if (pgdat->kcompactd_max_order <= cc.order) 3009 pgdat->kcompactd_max_order = 0; 3010 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx) 3011 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 3012 } 3013 3014 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx) 3015 { 3016 if (!order) 3017 return; 3018 3019 if (pgdat->kcompactd_max_order < order) 3020 pgdat->kcompactd_max_order = order; 3021 3022 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx) 3023 pgdat->kcompactd_highest_zoneidx = highest_zoneidx; 3024 3025 /* 3026 * Pairs with implicit barrier in wait_event_freezable() 3027 * such that wakeups are not missed. 3028 */ 3029 if (!wq_has_sleeper(&pgdat->kcompactd_wait)) 3030 return; 3031 3032 if (!kcompactd_node_suitable(pgdat)) 3033 return; 3034 3035 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 3036 highest_zoneidx); 3037 wake_up_interruptible(&pgdat->kcompactd_wait); 3038 } 3039 3040 /* 3041 * The background compaction daemon, started as a kernel thread 3042 * from the init process. 3043 */ 3044 static int kcompactd(void *p) 3045 { 3046 pg_data_t *pgdat = (pg_data_t *)p; 3047 struct task_struct *tsk = current; 3048 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC); 3049 long timeout = default_timeout; 3050 3051 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3052 3053 if (!cpumask_empty(cpumask)) 3054 set_cpus_allowed_ptr(tsk, cpumask); 3055 3056 set_freezable(); 3057 3058 pgdat->kcompactd_max_order = 0; 3059 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 3060 3061 while (!kthread_should_stop()) { 3062 unsigned long pflags; 3063 3064 /* 3065 * Avoid the unnecessary wakeup for proactive compaction 3066 * when it is disabled. 3067 */ 3068 if (!sysctl_compaction_proactiveness) 3069 timeout = MAX_SCHEDULE_TIMEOUT; 3070 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 3071 if (wait_event_freezable_timeout(pgdat->kcompactd_wait, 3072 kcompactd_work_requested(pgdat), timeout) && 3073 !pgdat->proactive_compact_trigger) { 3074 3075 psi_memstall_enter(&pflags); 3076 kcompactd_do_work(pgdat); 3077 psi_memstall_leave(&pflags); 3078 /* 3079 * Reset the timeout value. The defer timeout from 3080 * proactive compaction is lost here but that is fine 3081 * as the condition of the zone changing substantionally 3082 * then carrying on with the previous defer interval is 3083 * not useful. 3084 */ 3085 timeout = default_timeout; 3086 continue; 3087 } 3088 3089 /* 3090 * Start the proactive work with default timeout. Based 3091 * on the fragmentation score, this timeout is updated. 3092 */ 3093 timeout = default_timeout; 3094 if (should_proactive_compact_node(pgdat)) { 3095 unsigned int prev_score, score; 3096 3097 prev_score = fragmentation_score_node(pgdat); 3098 proactive_compact_node(pgdat); 3099 score = fragmentation_score_node(pgdat); 3100 /* 3101 * Defer proactive compaction if the fragmentation 3102 * score did not go down i.e. no progress made. 3103 */ 3104 if (unlikely(score >= prev_score)) 3105 timeout = 3106 default_timeout << COMPACT_MAX_DEFER_SHIFT; 3107 } 3108 if (unlikely(pgdat->proactive_compact_trigger)) 3109 pgdat->proactive_compact_trigger = false; 3110 } 3111 3112 return 0; 3113 } 3114 3115 /* 3116 * This kcompactd start function will be called by init and node-hot-add. 3117 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 3118 */ 3119 void __meminit kcompactd_run(int nid) 3120 { 3121 pg_data_t *pgdat = NODE_DATA(nid); 3122 3123 if (pgdat->kcompactd) 3124 return; 3125 3126 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); 3127 if (IS_ERR(pgdat->kcompactd)) { 3128 pr_err("Failed to start kcompactd on node %d\n", nid); 3129 pgdat->kcompactd = NULL; 3130 } 3131 } 3132 3133 /* 3134 * Called by memory hotplug when all memory in a node is offlined. Caller must 3135 * be holding mem_hotplug_begin/done(). 3136 */ 3137 void __meminit kcompactd_stop(int nid) 3138 { 3139 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 3140 3141 if (kcompactd) { 3142 kthread_stop(kcompactd); 3143 NODE_DATA(nid)->kcompactd = NULL; 3144 } 3145 } 3146 3147 /* 3148 * It's optimal to keep kcompactd on the same CPUs as their memory, but 3149 * not required for correctness. So if the last cpu in a node goes 3150 * away, we get changed to run anywhere: as the first one comes back, 3151 * restore their cpu bindings. 3152 */ 3153 static int kcompactd_cpu_online(unsigned int cpu) 3154 { 3155 int nid; 3156 3157 for_each_node_state(nid, N_MEMORY) { 3158 pg_data_t *pgdat = NODE_DATA(nid); 3159 const struct cpumask *mask; 3160 3161 mask = cpumask_of_node(pgdat->node_id); 3162 3163 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3164 /* One of our CPUs online: restore mask */ 3165 if (pgdat->kcompactd) 3166 set_cpus_allowed_ptr(pgdat->kcompactd, mask); 3167 } 3168 return 0; 3169 } 3170 3171 static int proc_dointvec_minmax_warn_RT_change(struct ctl_table *table, 3172 int write, void *buffer, size_t *lenp, loff_t *ppos) 3173 { 3174 int ret, old; 3175 3176 if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write) 3177 return proc_dointvec_minmax(table, write, buffer, lenp, ppos); 3178 3179 old = *(int *)table->data; 3180 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 3181 if (ret) 3182 return ret; 3183 if (old != *(int *)table->data) 3184 pr_warn_once("sysctl attribute %s changed by %s[%d]\n", 3185 table->procname, current->comm, 3186 task_pid_nr(current)); 3187 return ret; 3188 } 3189 3190 static struct ctl_table vm_compaction[] = { 3191 { 3192 .procname = "compact_memory", 3193 .data = &sysctl_compact_memory, 3194 .maxlen = sizeof(int), 3195 .mode = 0200, 3196 .proc_handler = sysctl_compaction_handler, 3197 }, 3198 { 3199 .procname = "compaction_proactiveness", 3200 .data = &sysctl_compaction_proactiveness, 3201 .maxlen = sizeof(sysctl_compaction_proactiveness), 3202 .mode = 0644, 3203 .proc_handler = compaction_proactiveness_sysctl_handler, 3204 .extra1 = SYSCTL_ZERO, 3205 .extra2 = SYSCTL_ONE_HUNDRED, 3206 }, 3207 { 3208 .procname = "extfrag_threshold", 3209 .data = &sysctl_extfrag_threshold, 3210 .maxlen = sizeof(int), 3211 .mode = 0644, 3212 .proc_handler = proc_dointvec_minmax, 3213 .extra1 = SYSCTL_ZERO, 3214 .extra2 = SYSCTL_ONE_THOUSAND, 3215 }, 3216 { 3217 .procname = "compact_unevictable_allowed", 3218 .data = &sysctl_compact_unevictable_allowed, 3219 .maxlen = sizeof(int), 3220 .mode = 0644, 3221 .proc_handler = proc_dointvec_minmax_warn_RT_change, 3222 .extra1 = SYSCTL_ZERO, 3223 .extra2 = SYSCTL_ONE, 3224 }, 3225 { } 3226 }; 3227 3228 static int __init kcompactd_init(void) 3229 { 3230 int nid; 3231 int ret; 3232 3233 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 3234 "mm/compaction:online", 3235 kcompactd_cpu_online, NULL); 3236 if (ret < 0) { 3237 pr_err("kcompactd: failed to register hotplug callbacks.\n"); 3238 return ret; 3239 } 3240 3241 for_each_node_state(nid, N_MEMORY) 3242 kcompactd_run(nid); 3243 register_sysctl_init("vm", vm_compaction); 3244 return 0; 3245 } 3246 subsys_initcall(kcompactd_init) 3247 3248 #endif /* CONFIG_COMPACTION */ 3249