xref: /linux/mm/compaction.c (revision 99f34659e78b9b781a3248e0b080b4dfca4957e2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27 
28 #ifdef CONFIG_COMPACTION
29 /*
30  * Fragmentation score check interval for proactive compaction purposes.
31  */
32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC	(500)
33 
34 static inline void count_compact_event(enum vm_event_item item)
35 {
36 	count_vm_event(item);
37 }
38 
39 static inline void count_compact_events(enum vm_event_item item, long delta)
40 {
41 	count_vm_events(item, delta);
42 }
43 #else
44 #define count_compact_event(item) do { } while (0)
45 #define count_compact_events(item, delta) do { } while (0)
46 #endif
47 
48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52 
53 #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
54 #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
55 
56 /*
57  * Page order with-respect-to which proactive compaction
58  * calculates external fragmentation, which is used as
59  * the "fragmentation score" of a node/zone.
60  */
61 #if defined CONFIG_TRANSPARENT_HUGEPAGE
62 #define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
63 #elif defined CONFIG_HUGETLBFS
64 #define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
65 #else
66 #define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
67 #endif
68 
69 static unsigned long release_freepages(struct list_head *freelist)
70 {
71 	struct page *page, *next;
72 	unsigned long high_pfn = 0;
73 
74 	list_for_each_entry_safe(page, next, freelist, lru) {
75 		unsigned long pfn = page_to_pfn(page);
76 		list_del(&page->lru);
77 		__free_page(page);
78 		if (pfn > high_pfn)
79 			high_pfn = pfn;
80 	}
81 
82 	return high_pfn;
83 }
84 
85 static void split_map_pages(struct list_head *list)
86 {
87 	unsigned int i, order, nr_pages;
88 	struct page *page, *next;
89 	LIST_HEAD(tmp_list);
90 
91 	list_for_each_entry_safe(page, next, list, lru) {
92 		list_del(&page->lru);
93 
94 		order = page_private(page);
95 		nr_pages = 1 << order;
96 
97 		post_alloc_hook(page, order, __GFP_MOVABLE);
98 		if (order)
99 			split_page(page, order);
100 
101 		for (i = 0; i < nr_pages; i++) {
102 			list_add(&page->lru, &tmp_list);
103 			page++;
104 		}
105 	}
106 
107 	list_splice(&tmp_list, list);
108 }
109 
110 #ifdef CONFIG_COMPACTION
111 bool PageMovable(struct page *page)
112 {
113 	const struct movable_operations *mops;
114 
115 	VM_BUG_ON_PAGE(!PageLocked(page), page);
116 	if (!__PageMovable(page))
117 		return false;
118 
119 	mops = page_movable_ops(page);
120 	if (mops)
121 		return true;
122 
123 	return false;
124 }
125 
126 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
127 {
128 	VM_BUG_ON_PAGE(!PageLocked(page), page);
129 	VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
130 	page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
131 }
132 EXPORT_SYMBOL(__SetPageMovable);
133 
134 void __ClearPageMovable(struct page *page)
135 {
136 	VM_BUG_ON_PAGE(!PageMovable(page), page);
137 	/*
138 	 * This page still has the type of a movable page, but it's
139 	 * actually not movable any more.
140 	 */
141 	page->mapping = (void *)PAGE_MAPPING_MOVABLE;
142 }
143 EXPORT_SYMBOL(__ClearPageMovable);
144 
145 /* Do not skip compaction more than 64 times */
146 #define COMPACT_MAX_DEFER_SHIFT 6
147 
148 /*
149  * Compaction is deferred when compaction fails to result in a page
150  * allocation success. 1 << compact_defer_shift, compactions are skipped up
151  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
152  */
153 static void defer_compaction(struct zone *zone, int order)
154 {
155 	zone->compact_considered = 0;
156 	zone->compact_defer_shift++;
157 
158 	if (order < zone->compact_order_failed)
159 		zone->compact_order_failed = order;
160 
161 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
162 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
163 
164 	trace_mm_compaction_defer_compaction(zone, order);
165 }
166 
167 /* Returns true if compaction should be skipped this time */
168 static bool compaction_deferred(struct zone *zone, int order)
169 {
170 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
171 
172 	if (order < zone->compact_order_failed)
173 		return false;
174 
175 	/* Avoid possible overflow */
176 	if (++zone->compact_considered >= defer_limit) {
177 		zone->compact_considered = defer_limit;
178 		return false;
179 	}
180 
181 	trace_mm_compaction_deferred(zone, order);
182 
183 	return true;
184 }
185 
186 /*
187  * Update defer tracking counters after successful compaction of given order,
188  * which means an allocation either succeeded (alloc_success == true) or is
189  * expected to succeed.
190  */
191 void compaction_defer_reset(struct zone *zone, int order,
192 		bool alloc_success)
193 {
194 	if (alloc_success) {
195 		zone->compact_considered = 0;
196 		zone->compact_defer_shift = 0;
197 	}
198 	if (order >= zone->compact_order_failed)
199 		zone->compact_order_failed = order + 1;
200 
201 	trace_mm_compaction_defer_reset(zone, order);
202 }
203 
204 /* Returns true if restarting compaction after many failures */
205 static bool compaction_restarting(struct zone *zone, int order)
206 {
207 	if (order < zone->compact_order_failed)
208 		return false;
209 
210 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
211 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
212 }
213 
214 /* Returns true if the pageblock should be scanned for pages to isolate. */
215 static inline bool isolation_suitable(struct compact_control *cc,
216 					struct page *page)
217 {
218 	if (cc->ignore_skip_hint)
219 		return true;
220 
221 	return !get_pageblock_skip(page);
222 }
223 
224 static void reset_cached_positions(struct zone *zone)
225 {
226 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
227 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
228 	zone->compact_cached_free_pfn =
229 				pageblock_start_pfn(zone_end_pfn(zone) - 1);
230 }
231 
232 #ifdef CONFIG_SPARSEMEM
233 /*
234  * If the PFN falls into an offline section, return the start PFN of the
235  * next online section. If the PFN falls into an online section or if
236  * there is no next online section, return 0.
237  */
238 static unsigned long skip_offline_sections(unsigned long start_pfn)
239 {
240 	unsigned long start_nr = pfn_to_section_nr(start_pfn);
241 
242 	if (online_section_nr(start_nr))
243 		return 0;
244 
245 	while (++start_nr <= __highest_present_section_nr) {
246 		if (online_section_nr(start_nr))
247 			return section_nr_to_pfn(start_nr);
248 	}
249 
250 	return 0;
251 }
252 
253 /*
254  * If the PFN falls into an offline section, return the end PFN of the
255  * next online section in reverse. If the PFN falls into an online section
256  * or if there is no next online section in reverse, return 0.
257  */
258 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
259 {
260 	unsigned long start_nr = pfn_to_section_nr(start_pfn);
261 
262 	if (!start_nr || online_section_nr(start_nr))
263 		return 0;
264 
265 	while (start_nr-- > 0) {
266 		if (online_section_nr(start_nr))
267 			return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION;
268 	}
269 
270 	return 0;
271 }
272 #else
273 static unsigned long skip_offline_sections(unsigned long start_pfn)
274 {
275 	return 0;
276 }
277 
278 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
279 {
280 	return 0;
281 }
282 #endif
283 
284 /*
285  * Compound pages of >= pageblock_order should consistently be skipped until
286  * released. It is always pointless to compact pages of such order (if they are
287  * migratable), and the pageblocks they occupy cannot contain any free pages.
288  */
289 static bool pageblock_skip_persistent(struct page *page)
290 {
291 	if (!PageCompound(page))
292 		return false;
293 
294 	page = compound_head(page);
295 
296 	if (compound_order(page) >= pageblock_order)
297 		return true;
298 
299 	return false;
300 }
301 
302 static bool
303 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
304 							bool check_target)
305 {
306 	struct page *page = pfn_to_online_page(pfn);
307 	struct page *block_page;
308 	struct page *end_page;
309 	unsigned long block_pfn;
310 
311 	if (!page)
312 		return false;
313 	if (zone != page_zone(page))
314 		return false;
315 	if (pageblock_skip_persistent(page))
316 		return false;
317 
318 	/*
319 	 * If skip is already cleared do no further checking once the
320 	 * restart points have been set.
321 	 */
322 	if (check_source && check_target && !get_pageblock_skip(page))
323 		return true;
324 
325 	/*
326 	 * If clearing skip for the target scanner, do not select a
327 	 * non-movable pageblock as the starting point.
328 	 */
329 	if (!check_source && check_target &&
330 	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
331 		return false;
332 
333 	/* Ensure the start of the pageblock or zone is online and valid */
334 	block_pfn = pageblock_start_pfn(pfn);
335 	block_pfn = max(block_pfn, zone->zone_start_pfn);
336 	block_page = pfn_to_online_page(block_pfn);
337 	if (block_page) {
338 		page = block_page;
339 		pfn = block_pfn;
340 	}
341 
342 	/* Ensure the end of the pageblock or zone is online and valid */
343 	block_pfn = pageblock_end_pfn(pfn) - 1;
344 	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
345 	end_page = pfn_to_online_page(block_pfn);
346 	if (!end_page)
347 		return false;
348 
349 	/*
350 	 * Only clear the hint if a sample indicates there is either a
351 	 * free page or an LRU page in the block. One or other condition
352 	 * is necessary for the block to be a migration source/target.
353 	 */
354 	do {
355 		if (check_source && PageLRU(page)) {
356 			clear_pageblock_skip(page);
357 			return true;
358 		}
359 
360 		if (check_target && PageBuddy(page)) {
361 			clear_pageblock_skip(page);
362 			return true;
363 		}
364 
365 		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
366 	} while (page <= end_page);
367 
368 	return false;
369 }
370 
371 /*
372  * This function is called to clear all cached information on pageblocks that
373  * should be skipped for page isolation when the migrate and free page scanner
374  * meet.
375  */
376 static void __reset_isolation_suitable(struct zone *zone)
377 {
378 	unsigned long migrate_pfn = zone->zone_start_pfn;
379 	unsigned long free_pfn = zone_end_pfn(zone) - 1;
380 	unsigned long reset_migrate = free_pfn;
381 	unsigned long reset_free = migrate_pfn;
382 	bool source_set = false;
383 	bool free_set = false;
384 
385 	if (!zone->compact_blockskip_flush)
386 		return;
387 
388 	zone->compact_blockskip_flush = false;
389 
390 	/*
391 	 * Walk the zone and update pageblock skip information. Source looks
392 	 * for PageLRU while target looks for PageBuddy. When the scanner
393 	 * is found, both PageBuddy and PageLRU are checked as the pageblock
394 	 * is suitable as both source and target.
395 	 */
396 	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
397 					free_pfn -= pageblock_nr_pages) {
398 		cond_resched();
399 
400 		/* Update the migrate PFN */
401 		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
402 		    migrate_pfn < reset_migrate) {
403 			source_set = true;
404 			reset_migrate = migrate_pfn;
405 			zone->compact_init_migrate_pfn = reset_migrate;
406 			zone->compact_cached_migrate_pfn[0] = reset_migrate;
407 			zone->compact_cached_migrate_pfn[1] = reset_migrate;
408 		}
409 
410 		/* Update the free PFN */
411 		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
412 		    free_pfn > reset_free) {
413 			free_set = true;
414 			reset_free = free_pfn;
415 			zone->compact_init_free_pfn = reset_free;
416 			zone->compact_cached_free_pfn = reset_free;
417 		}
418 	}
419 
420 	/* Leave no distance if no suitable block was reset */
421 	if (reset_migrate >= reset_free) {
422 		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
423 		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
424 		zone->compact_cached_free_pfn = free_pfn;
425 	}
426 }
427 
428 void reset_isolation_suitable(pg_data_t *pgdat)
429 {
430 	int zoneid;
431 
432 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
433 		struct zone *zone = &pgdat->node_zones[zoneid];
434 		if (!populated_zone(zone))
435 			continue;
436 
437 		/* Only flush if a full compaction finished recently */
438 		if (zone->compact_blockskip_flush)
439 			__reset_isolation_suitable(zone);
440 	}
441 }
442 
443 /*
444  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
445  * locks are not required for read/writers. Returns true if it was already set.
446  */
447 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
448 {
449 	bool skip;
450 
451 	/* Do not update if skip hint is being ignored */
452 	if (cc->ignore_skip_hint)
453 		return false;
454 
455 	skip = get_pageblock_skip(page);
456 	if (!skip && !cc->no_set_skip_hint)
457 		set_pageblock_skip(page);
458 
459 	return skip;
460 }
461 
462 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
463 {
464 	struct zone *zone = cc->zone;
465 
466 	/* Set for isolation rather than compaction */
467 	if (cc->no_set_skip_hint)
468 		return;
469 
470 	pfn = pageblock_end_pfn(pfn);
471 
472 	/* Update where async and sync compaction should restart */
473 	if (pfn > zone->compact_cached_migrate_pfn[0])
474 		zone->compact_cached_migrate_pfn[0] = pfn;
475 	if (cc->mode != MIGRATE_ASYNC &&
476 	    pfn > zone->compact_cached_migrate_pfn[1])
477 		zone->compact_cached_migrate_pfn[1] = pfn;
478 }
479 
480 /*
481  * If no pages were isolated then mark this pageblock to be skipped in the
482  * future. The information is later cleared by __reset_isolation_suitable().
483  */
484 static void update_pageblock_skip(struct compact_control *cc,
485 			struct page *page, unsigned long pfn)
486 {
487 	struct zone *zone = cc->zone;
488 
489 	if (cc->no_set_skip_hint)
490 		return;
491 
492 	set_pageblock_skip(page);
493 
494 	if (pfn < zone->compact_cached_free_pfn)
495 		zone->compact_cached_free_pfn = pfn;
496 }
497 #else
498 static inline bool isolation_suitable(struct compact_control *cc,
499 					struct page *page)
500 {
501 	return true;
502 }
503 
504 static inline bool pageblock_skip_persistent(struct page *page)
505 {
506 	return false;
507 }
508 
509 static inline void update_pageblock_skip(struct compact_control *cc,
510 			struct page *page, unsigned long pfn)
511 {
512 }
513 
514 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
515 {
516 }
517 
518 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
519 {
520 	return false;
521 }
522 #endif /* CONFIG_COMPACTION */
523 
524 /*
525  * Compaction requires the taking of some coarse locks that are potentially
526  * very heavily contended. For async compaction, trylock and record if the
527  * lock is contended. The lock will still be acquired but compaction will
528  * abort when the current block is finished regardless of success rate.
529  * Sync compaction acquires the lock.
530  *
531  * Always returns true which makes it easier to track lock state in callers.
532  */
533 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
534 						struct compact_control *cc)
535 	__acquires(lock)
536 {
537 	/* Track if the lock is contended in async mode */
538 	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
539 		if (spin_trylock_irqsave(lock, *flags))
540 			return true;
541 
542 		cc->contended = true;
543 	}
544 
545 	spin_lock_irqsave(lock, *flags);
546 	return true;
547 }
548 
549 /*
550  * Compaction requires the taking of some coarse locks that are potentially
551  * very heavily contended. The lock should be periodically unlocked to avoid
552  * having disabled IRQs for a long time, even when there is nobody waiting on
553  * the lock. It might also be that allowing the IRQs will result in
554  * need_resched() becoming true. If scheduling is needed, compaction schedules.
555  * Either compaction type will also abort if a fatal signal is pending.
556  * In either case if the lock was locked, it is dropped and not regained.
557  *
558  * Returns true if compaction should abort due to fatal signal pending.
559  * Returns false when compaction can continue.
560  */
561 static bool compact_unlock_should_abort(spinlock_t *lock,
562 		unsigned long flags, bool *locked, struct compact_control *cc)
563 {
564 	if (*locked) {
565 		spin_unlock_irqrestore(lock, flags);
566 		*locked = false;
567 	}
568 
569 	if (fatal_signal_pending(current)) {
570 		cc->contended = true;
571 		return true;
572 	}
573 
574 	cond_resched();
575 
576 	return false;
577 }
578 
579 /*
580  * Isolate free pages onto a private freelist. If @strict is true, will abort
581  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
582  * (even though it may still end up isolating some pages).
583  */
584 static unsigned long isolate_freepages_block(struct compact_control *cc,
585 				unsigned long *start_pfn,
586 				unsigned long end_pfn,
587 				struct list_head *freelist,
588 				unsigned int stride,
589 				bool strict)
590 {
591 	int nr_scanned = 0, total_isolated = 0;
592 	struct page *page;
593 	unsigned long flags = 0;
594 	bool locked = false;
595 	unsigned long blockpfn = *start_pfn;
596 	unsigned int order;
597 
598 	/* Strict mode is for isolation, speed is secondary */
599 	if (strict)
600 		stride = 1;
601 
602 	page = pfn_to_page(blockpfn);
603 
604 	/* Isolate free pages. */
605 	for (; blockpfn < end_pfn; blockpfn += stride, page += stride) {
606 		int isolated;
607 
608 		/*
609 		 * Periodically drop the lock (if held) regardless of its
610 		 * contention, to give chance to IRQs. Abort if fatal signal
611 		 * pending.
612 		 */
613 		if (!(blockpfn % COMPACT_CLUSTER_MAX)
614 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
615 								&locked, cc))
616 			break;
617 
618 		nr_scanned++;
619 
620 		/*
621 		 * For compound pages such as THP and hugetlbfs, we can save
622 		 * potentially a lot of iterations if we skip them at once.
623 		 * The check is racy, but we can consider only valid values
624 		 * and the only danger is skipping too much.
625 		 */
626 		if (PageCompound(page)) {
627 			const unsigned int order = compound_order(page);
628 
629 			if (likely(order <= MAX_ORDER)) {
630 				blockpfn += (1UL << order) - 1;
631 				page += (1UL << order) - 1;
632 				nr_scanned += (1UL << order) - 1;
633 			}
634 			goto isolate_fail;
635 		}
636 
637 		if (!PageBuddy(page))
638 			goto isolate_fail;
639 
640 		/* If we already hold the lock, we can skip some rechecking. */
641 		if (!locked) {
642 			locked = compact_lock_irqsave(&cc->zone->lock,
643 								&flags, cc);
644 
645 			/* Recheck this is a buddy page under lock */
646 			if (!PageBuddy(page))
647 				goto isolate_fail;
648 		}
649 
650 		/* Found a free page, will break it into order-0 pages */
651 		order = buddy_order(page);
652 		isolated = __isolate_free_page(page, order);
653 		if (!isolated)
654 			break;
655 		set_page_private(page, order);
656 
657 		nr_scanned += isolated - 1;
658 		total_isolated += isolated;
659 		cc->nr_freepages += isolated;
660 		list_add_tail(&page->lru, freelist);
661 
662 		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
663 			blockpfn += isolated;
664 			break;
665 		}
666 		/* Advance to the end of split page */
667 		blockpfn += isolated - 1;
668 		page += isolated - 1;
669 		continue;
670 
671 isolate_fail:
672 		if (strict)
673 			break;
674 
675 	}
676 
677 	if (locked)
678 		spin_unlock_irqrestore(&cc->zone->lock, flags);
679 
680 	/*
681 	 * There is a tiny chance that we have read bogus compound_order(),
682 	 * so be careful to not go outside of the pageblock.
683 	 */
684 	if (unlikely(blockpfn > end_pfn))
685 		blockpfn = end_pfn;
686 
687 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
688 					nr_scanned, total_isolated);
689 
690 	/* Record how far we have got within the block */
691 	*start_pfn = blockpfn;
692 
693 	/*
694 	 * If strict isolation is requested by CMA then check that all the
695 	 * pages requested were isolated. If there were any failures, 0 is
696 	 * returned and CMA will fail.
697 	 */
698 	if (strict && blockpfn < end_pfn)
699 		total_isolated = 0;
700 
701 	cc->total_free_scanned += nr_scanned;
702 	if (total_isolated)
703 		count_compact_events(COMPACTISOLATED, total_isolated);
704 	return total_isolated;
705 }
706 
707 /**
708  * isolate_freepages_range() - isolate free pages.
709  * @cc:        Compaction control structure.
710  * @start_pfn: The first PFN to start isolating.
711  * @end_pfn:   The one-past-last PFN.
712  *
713  * Non-free pages, invalid PFNs, or zone boundaries within the
714  * [start_pfn, end_pfn) range are considered errors, cause function to
715  * undo its actions and return zero.
716  *
717  * Otherwise, function returns one-past-the-last PFN of isolated page
718  * (which may be greater then end_pfn if end fell in a middle of
719  * a free page).
720  */
721 unsigned long
722 isolate_freepages_range(struct compact_control *cc,
723 			unsigned long start_pfn, unsigned long end_pfn)
724 {
725 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
726 	LIST_HEAD(freelist);
727 
728 	pfn = start_pfn;
729 	block_start_pfn = pageblock_start_pfn(pfn);
730 	if (block_start_pfn < cc->zone->zone_start_pfn)
731 		block_start_pfn = cc->zone->zone_start_pfn;
732 	block_end_pfn = pageblock_end_pfn(pfn);
733 
734 	for (; pfn < end_pfn; pfn += isolated,
735 				block_start_pfn = block_end_pfn,
736 				block_end_pfn += pageblock_nr_pages) {
737 		/* Protect pfn from changing by isolate_freepages_block */
738 		unsigned long isolate_start_pfn = pfn;
739 
740 		/*
741 		 * pfn could pass the block_end_pfn if isolated freepage
742 		 * is more than pageblock order. In this case, we adjust
743 		 * scanning range to right one.
744 		 */
745 		if (pfn >= block_end_pfn) {
746 			block_start_pfn = pageblock_start_pfn(pfn);
747 			block_end_pfn = pageblock_end_pfn(pfn);
748 		}
749 
750 		block_end_pfn = min(block_end_pfn, end_pfn);
751 
752 		if (!pageblock_pfn_to_page(block_start_pfn,
753 					block_end_pfn, cc->zone))
754 			break;
755 
756 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
757 					block_end_pfn, &freelist, 0, true);
758 
759 		/*
760 		 * In strict mode, isolate_freepages_block() returns 0 if
761 		 * there are any holes in the block (ie. invalid PFNs or
762 		 * non-free pages).
763 		 */
764 		if (!isolated)
765 			break;
766 
767 		/*
768 		 * If we managed to isolate pages, it is always (1 << n) *
769 		 * pageblock_nr_pages for some non-negative n.  (Max order
770 		 * page may span two pageblocks).
771 		 */
772 	}
773 
774 	/* __isolate_free_page() does not map the pages */
775 	split_map_pages(&freelist);
776 
777 	if (pfn < end_pfn) {
778 		/* Loop terminated early, cleanup. */
779 		release_freepages(&freelist);
780 		return 0;
781 	}
782 
783 	/* We don't use freelists for anything. */
784 	return pfn;
785 }
786 
787 /* Similar to reclaim, but different enough that they don't share logic */
788 static bool too_many_isolated(struct compact_control *cc)
789 {
790 	pg_data_t *pgdat = cc->zone->zone_pgdat;
791 	bool too_many;
792 
793 	unsigned long active, inactive, isolated;
794 
795 	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
796 			node_page_state(pgdat, NR_INACTIVE_ANON);
797 	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
798 			node_page_state(pgdat, NR_ACTIVE_ANON);
799 	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
800 			node_page_state(pgdat, NR_ISOLATED_ANON);
801 
802 	/*
803 	 * Allow GFP_NOFS to isolate past the limit set for regular
804 	 * compaction runs. This prevents an ABBA deadlock when other
805 	 * compactors have already isolated to the limit, but are
806 	 * blocked on filesystem locks held by the GFP_NOFS thread.
807 	 */
808 	if (cc->gfp_mask & __GFP_FS) {
809 		inactive >>= 3;
810 		active >>= 3;
811 	}
812 
813 	too_many = isolated > (inactive + active) / 2;
814 	if (!too_many)
815 		wake_throttle_isolated(pgdat);
816 
817 	return too_many;
818 }
819 
820 /**
821  * isolate_migratepages_block() - isolate all migrate-able pages within
822  *				  a single pageblock
823  * @cc:		Compaction control structure.
824  * @low_pfn:	The first PFN to isolate
825  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
826  * @mode:	Isolation mode to be used.
827  *
828  * Isolate all pages that can be migrated from the range specified by
829  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
830  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
831  * -ENOMEM in case we could not allocate a page, or 0.
832  * cc->migrate_pfn will contain the next pfn to scan.
833  *
834  * The pages are isolated on cc->migratepages list (not required to be empty),
835  * and cc->nr_migratepages is updated accordingly.
836  */
837 static int
838 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
839 			unsigned long end_pfn, isolate_mode_t mode)
840 {
841 	pg_data_t *pgdat = cc->zone->zone_pgdat;
842 	unsigned long nr_scanned = 0, nr_isolated = 0;
843 	struct lruvec *lruvec;
844 	unsigned long flags = 0;
845 	struct lruvec *locked = NULL;
846 	struct folio *folio = NULL;
847 	struct page *page = NULL, *valid_page = NULL;
848 	struct address_space *mapping;
849 	unsigned long start_pfn = low_pfn;
850 	bool skip_on_failure = false;
851 	unsigned long next_skip_pfn = 0;
852 	bool skip_updated = false;
853 	int ret = 0;
854 
855 	cc->migrate_pfn = low_pfn;
856 
857 	/*
858 	 * Ensure that there are not too many pages isolated from the LRU
859 	 * list by either parallel reclaimers or compaction. If there are,
860 	 * delay for some time until fewer pages are isolated
861 	 */
862 	while (unlikely(too_many_isolated(cc))) {
863 		/* stop isolation if there are still pages not migrated */
864 		if (cc->nr_migratepages)
865 			return -EAGAIN;
866 
867 		/* async migration should just abort */
868 		if (cc->mode == MIGRATE_ASYNC)
869 			return -EAGAIN;
870 
871 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
872 
873 		if (fatal_signal_pending(current))
874 			return -EINTR;
875 	}
876 
877 	cond_resched();
878 
879 	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
880 		skip_on_failure = true;
881 		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
882 	}
883 
884 	/* Time to isolate some pages for migration */
885 	for (; low_pfn < end_pfn; low_pfn++) {
886 
887 		if (skip_on_failure && low_pfn >= next_skip_pfn) {
888 			/*
889 			 * We have isolated all migration candidates in the
890 			 * previous order-aligned block, and did not skip it due
891 			 * to failure. We should migrate the pages now and
892 			 * hopefully succeed compaction.
893 			 */
894 			if (nr_isolated)
895 				break;
896 
897 			/*
898 			 * We failed to isolate in the previous order-aligned
899 			 * block. Set the new boundary to the end of the
900 			 * current block. Note we can't simply increase
901 			 * next_skip_pfn by 1 << order, as low_pfn might have
902 			 * been incremented by a higher number due to skipping
903 			 * a compound or a high-order buddy page in the
904 			 * previous loop iteration.
905 			 */
906 			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
907 		}
908 
909 		/*
910 		 * Periodically drop the lock (if held) regardless of its
911 		 * contention, to give chance to IRQs. Abort completely if
912 		 * a fatal signal is pending.
913 		 */
914 		if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
915 			if (locked) {
916 				unlock_page_lruvec_irqrestore(locked, flags);
917 				locked = NULL;
918 			}
919 
920 			if (fatal_signal_pending(current)) {
921 				cc->contended = true;
922 				ret = -EINTR;
923 
924 				goto fatal_pending;
925 			}
926 
927 			cond_resched();
928 		}
929 
930 		nr_scanned++;
931 
932 		page = pfn_to_page(low_pfn);
933 
934 		/*
935 		 * Check if the pageblock has already been marked skipped.
936 		 * Only the aligned PFN is checked as the caller isolates
937 		 * COMPACT_CLUSTER_MAX at a time so the second call must
938 		 * not falsely conclude that the block should be skipped.
939 		 */
940 		if (!valid_page && pageblock_aligned(low_pfn)) {
941 			if (!isolation_suitable(cc, page)) {
942 				low_pfn = end_pfn;
943 				folio = NULL;
944 				goto isolate_abort;
945 			}
946 			valid_page = page;
947 		}
948 
949 		if (PageHuge(page) && cc->alloc_contig) {
950 			if (locked) {
951 				unlock_page_lruvec_irqrestore(locked, flags);
952 				locked = NULL;
953 			}
954 
955 			ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
956 
957 			/*
958 			 * Fail isolation in case isolate_or_dissolve_huge_page()
959 			 * reports an error. In case of -ENOMEM, abort right away.
960 			 */
961 			if (ret < 0) {
962 				 /* Do not report -EBUSY down the chain */
963 				if (ret == -EBUSY)
964 					ret = 0;
965 				low_pfn += compound_nr(page) - 1;
966 				nr_scanned += compound_nr(page) - 1;
967 				goto isolate_fail;
968 			}
969 
970 			if (PageHuge(page)) {
971 				/*
972 				 * Hugepage was successfully isolated and placed
973 				 * on the cc->migratepages list.
974 				 */
975 				folio = page_folio(page);
976 				low_pfn += folio_nr_pages(folio) - 1;
977 				goto isolate_success_no_list;
978 			}
979 
980 			/*
981 			 * Ok, the hugepage was dissolved. Now these pages are
982 			 * Buddy and cannot be re-allocated because they are
983 			 * isolated. Fall-through as the check below handles
984 			 * Buddy pages.
985 			 */
986 		}
987 
988 		/*
989 		 * Skip if free. We read page order here without zone lock
990 		 * which is generally unsafe, but the race window is small and
991 		 * the worst thing that can happen is that we skip some
992 		 * potential isolation targets.
993 		 */
994 		if (PageBuddy(page)) {
995 			unsigned long freepage_order = buddy_order_unsafe(page);
996 
997 			/*
998 			 * Without lock, we cannot be sure that what we got is
999 			 * a valid page order. Consider only values in the
1000 			 * valid order range to prevent low_pfn overflow.
1001 			 */
1002 			if (freepage_order > 0 && freepage_order <= MAX_ORDER) {
1003 				low_pfn += (1UL << freepage_order) - 1;
1004 				nr_scanned += (1UL << freepage_order) - 1;
1005 			}
1006 			continue;
1007 		}
1008 
1009 		/*
1010 		 * Regardless of being on LRU, compound pages such as THP and
1011 		 * hugetlbfs are not to be compacted unless we are attempting
1012 		 * an allocation much larger than the huge page size (eg CMA).
1013 		 * We can potentially save a lot of iterations if we skip them
1014 		 * at once. The check is racy, but we can consider only valid
1015 		 * values and the only danger is skipping too much.
1016 		 */
1017 		if (PageCompound(page) && !cc->alloc_contig) {
1018 			const unsigned int order = compound_order(page);
1019 
1020 			if (likely(order <= MAX_ORDER)) {
1021 				low_pfn += (1UL << order) - 1;
1022 				nr_scanned += (1UL << order) - 1;
1023 			}
1024 			goto isolate_fail;
1025 		}
1026 
1027 		/*
1028 		 * Check may be lockless but that's ok as we recheck later.
1029 		 * It's possible to migrate LRU and non-lru movable pages.
1030 		 * Skip any other type of page
1031 		 */
1032 		if (!PageLRU(page)) {
1033 			/*
1034 			 * __PageMovable can return false positive so we need
1035 			 * to verify it under page_lock.
1036 			 */
1037 			if (unlikely(__PageMovable(page)) &&
1038 					!PageIsolated(page)) {
1039 				if (locked) {
1040 					unlock_page_lruvec_irqrestore(locked, flags);
1041 					locked = NULL;
1042 				}
1043 
1044 				if (isolate_movable_page(page, mode)) {
1045 					folio = page_folio(page);
1046 					goto isolate_success;
1047 				}
1048 			}
1049 
1050 			goto isolate_fail;
1051 		}
1052 
1053 		/*
1054 		 * Be careful not to clear PageLRU until after we're
1055 		 * sure the page is not being freed elsewhere -- the
1056 		 * page release code relies on it.
1057 		 */
1058 		folio = folio_get_nontail_page(page);
1059 		if (unlikely(!folio))
1060 			goto isolate_fail;
1061 
1062 		/*
1063 		 * Migration will fail if an anonymous page is pinned in memory,
1064 		 * so avoid taking lru_lock and isolating it unnecessarily in an
1065 		 * admittedly racy check.
1066 		 */
1067 		mapping = folio_mapping(folio);
1068 		if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio))
1069 			goto isolate_fail_put;
1070 
1071 		/*
1072 		 * Only allow to migrate anonymous pages in GFP_NOFS context
1073 		 * because those do not depend on fs locks.
1074 		 */
1075 		if (!(cc->gfp_mask & __GFP_FS) && mapping)
1076 			goto isolate_fail_put;
1077 
1078 		/* Only take pages on LRU: a check now makes later tests safe */
1079 		if (!folio_test_lru(folio))
1080 			goto isolate_fail_put;
1081 
1082 		/* Compaction might skip unevictable pages but CMA takes them */
1083 		if (!(mode & ISOLATE_UNEVICTABLE) && folio_test_unevictable(folio))
1084 			goto isolate_fail_put;
1085 
1086 		/*
1087 		 * To minimise LRU disruption, the caller can indicate with
1088 		 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1089 		 * it will be able to migrate without blocking - clean pages
1090 		 * for the most part.  PageWriteback would require blocking.
1091 		 */
1092 		if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio))
1093 			goto isolate_fail_put;
1094 
1095 		if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_dirty(folio)) {
1096 			bool migrate_dirty;
1097 
1098 			/*
1099 			 * Only folios without mappings or that have
1100 			 * a ->migrate_folio callback are possible to
1101 			 * migrate without blocking.  However, we may
1102 			 * be racing with truncation, which can free
1103 			 * the mapping.  Truncation holds the folio lock
1104 			 * until after the folio is removed from the page
1105 			 * cache so holding it ourselves is sufficient.
1106 			 */
1107 			if (!folio_trylock(folio))
1108 				goto isolate_fail_put;
1109 
1110 			mapping = folio_mapping(folio);
1111 			migrate_dirty = !mapping ||
1112 					mapping->a_ops->migrate_folio;
1113 			folio_unlock(folio);
1114 			if (!migrate_dirty)
1115 				goto isolate_fail_put;
1116 		}
1117 
1118 		/* Try isolate the folio */
1119 		if (!folio_test_clear_lru(folio))
1120 			goto isolate_fail_put;
1121 
1122 		lruvec = folio_lruvec(folio);
1123 
1124 		/* If we already hold the lock, we can skip some rechecking */
1125 		if (lruvec != locked) {
1126 			if (locked)
1127 				unlock_page_lruvec_irqrestore(locked, flags);
1128 
1129 			compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1130 			locked = lruvec;
1131 
1132 			lruvec_memcg_debug(lruvec, folio);
1133 
1134 			/*
1135 			 * Try get exclusive access under lock. If marked for
1136 			 * skip, the scan is aborted unless the current context
1137 			 * is a rescan to reach the end of the pageblock.
1138 			 */
1139 			if (!skip_updated && valid_page) {
1140 				skip_updated = true;
1141 				if (test_and_set_skip(cc, valid_page) &&
1142 				    !cc->finish_pageblock) {
1143 					low_pfn = end_pfn;
1144 					goto isolate_abort;
1145 				}
1146 			}
1147 
1148 			/*
1149 			 * folio become large since the non-locked check,
1150 			 * and it's on LRU.
1151 			 */
1152 			if (unlikely(folio_test_large(folio) && !cc->alloc_contig)) {
1153 				low_pfn += folio_nr_pages(folio) - 1;
1154 				nr_scanned += folio_nr_pages(folio) - 1;
1155 				folio_set_lru(folio);
1156 				goto isolate_fail_put;
1157 			}
1158 		}
1159 
1160 		/* The folio is taken off the LRU */
1161 		if (folio_test_large(folio))
1162 			low_pfn += folio_nr_pages(folio) - 1;
1163 
1164 		/* Successfully isolated */
1165 		lruvec_del_folio(lruvec, folio);
1166 		node_stat_mod_folio(folio,
1167 				NR_ISOLATED_ANON + folio_is_file_lru(folio),
1168 				folio_nr_pages(folio));
1169 
1170 isolate_success:
1171 		list_add(&folio->lru, &cc->migratepages);
1172 isolate_success_no_list:
1173 		cc->nr_migratepages += folio_nr_pages(folio);
1174 		nr_isolated += folio_nr_pages(folio);
1175 		nr_scanned += folio_nr_pages(folio) - 1;
1176 
1177 		/*
1178 		 * Avoid isolating too much unless this block is being
1179 		 * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1180 		 * or a lock is contended. For contention, isolate quickly to
1181 		 * potentially remove one source of contention.
1182 		 */
1183 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1184 		    !cc->finish_pageblock && !cc->contended) {
1185 			++low_pfn;
1186 			break;
1187 		}
1188 
1189 		continue;
1190 
1191 isolate_fail_put:
1192 		/* Avoid potential deadlock in freeing page under lru_lock */
1193 		if (locked) {
1194 			unlock_page_lruvec_irqrestore(locked, flags);
1195 			locked = NULL;
1196 		}
1197 		folio_put(folio);
1198 
1199 isolate_fail:
1200 		if (!skip_on_failure && ret != -ENOMEM)
1201 			continue;
1202 
1203 		/*
1204 		 * We have isolated some pages, but then failed. Release them
1205 		 * instead of migrating, as we cannot form the cc->order buddy
1206 		 * page anyway.
1207 		 */
1208 		if (nr_isolated) {
1209 			if (locked) {
1210 				unlock_page_lruvec_irqrestore(locked, flags);
1211 				locked = NULL;
1212 			}
1213 			putback_movable_pages(&cc->migratepages);
1214 			cc->nr_migratepages = 0;
1215 			nr_isolated = 0;
1216 		}
1217 
1218 		if (low_pfn < next_skip_pfn) {
1219 			low_pfn = next_skip_pfn - 1;
1220 			/*
1221 			 * The check near the loop beginning would have updated
1222 			 * next_skip_pfn too, but this is a bit simpler.
1223 			 */
1224 			next_skip_pfn += 1UL << cc->order;
1225 		}
1226 
1227 		if (ret == -ENOMEM)
1228 			break;
1229 	}
1230 
1231 	/*
1232 	 * The PageBuddy() check could have potentially brought us outside
1233 	 * the range to be scanned.
1234 	 */
1235 	if (unlikely(low_pfn > end_pfn))
1236 		low_pfn = end_pfn;
1237 
1238 	folio = NULL;
1239 
1240 isolate_abort:
1241 	if (locked)
1242 		unlock_page_lruvec_irqrestore(locked, flags);
1243 	if (folio) {
1244 		folio_set_lru(folio);
1245 		folio_put(folio);
1246 	}
1247 
1248 	/*
1249 	 * Update the cached scanner pfn once the pageblock has been scanned.
1250 	 * Pages will either be migrated in which case there is no point
1251 	 * scanning in the near future or migration failed in which case the
1252 	 * failure reason may persist. The block is marked for skipping if
1253 	 * there were no pages isolated in the block or if the block is
1254 	 * rescanned twice in a row.
1255 	 */
1256 	if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1257 		if (!cc->no_set_skip_hint && valid_page && !skip_updated)
1258 			set_pageblock_skip(valid_page);
1259 		update_cached_migrate(cc, low_pfn);
1260 	}
1261 
1262 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1263 						nr_scanned, nr_isolated);
1264 
1265 fatal_pending:
1266 	cc->total_migrate_scanned += nr_scanned;
1267 	if (nr_isolated)
1268 		count_compact_events(COMPACTISOLATED, nr_isolated);
1269 
1270 	cc->migrate_pfn = low_pfn;
1271 
1272 	return ret;
1273 }
1274 
1275 /**
1276  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1277  * @cc:        Compaction control structure.
1278  * @start_pfn: The first PFN to start isolating.
1279  * @end_pfn:   The one-past-last PFN.
1280  *
1281  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1282  * in case we could not allocate a page, or 0.
1283  */
1284 int
1285 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1286 							unsigned long end_pfn)
1287 {
1288 	unsigned long pfn, block_start_pfn, block_end_pfn;
1289 	int ret = 0;
1290 
1291 	/* Scan block by block. First and last block may be incomplete */
1292 	pfn = start_pfn;
1293 	block_start_pfn = pageblock_start_pfn(pfn);
1294 	if (block_start_pfn < cc->zone->zone_start_pfn)
1295 		block_start_pfn = cc->zone->zone_start_pfn;
1296 	block_end_pfn = pageblock_end_pfn(pfn);
1297 
1298 	for (; pfn < end_pfn; pfn = block_end_pfn,
1299 				block_start_pfn = block_end_pfn,
1300 				block_end_pfn += pageblock_nr_pages) {
1301 
1302 		block_end_pfn = min(block_end_pfn, end_pfn);
1303 
1304 		if (!pageblock_pfn_to_page(block_start_pfn,
1305 					block_end_pfn, cc->zone))
1306 			continue;
1307 
1308 		ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1309 						 ISOLATE_UNEVICTABLE);
1310 
1311 		if (ret)
1312 			break;
1313 
1314 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1315 			break;
1316 	}
1317 
1318 	return ret;
1319 }
1320 
1321 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1322 #ifdef CONFIG_COMPACTION
1323 
1324 static bool suitable_migration_source(struct compact_control *cc,
1325 							struct page *page)
1326 {
1327 	int block_mt;
1328 
1329 	if (pageblock_skip_persistent(page))
1330 		return false;
1331 
1332 	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1333 		return true;
1334 
1335 	block_mt = get_pageblock_migratetype(page);
1336 
1337 	if (cc->migratetype == MIGRATE_MOVABLE)
1338 		return is_migrate_movable(block_mt);
1339 	else
1340 		return block_mt == cc->migratetype;
1341 }
1342 
1343 /* Returns true if the page is within a block suitable for migration to */
1344 static bool suitable_migration_target(struct compact_control *cc,
1345 							struct page *page)
1346 {
1347 	/* If the page is a large free page, then disallow migration */
1348 	if (PageBuddy(page)) {
1349 		/*
1350 		 * We are checking page_order without zone->lock taken. But
1351 		 * the only small danger is that we skip a potentially suitable
1352 		 * pageblock, so it's not worth to check order for valid range.
1353 		 */
1354 		if (buddy_order_unsafe(page) >= pageblock_order)
1355 			return false;
1356 	}
1357 
1358 	if (cc->ignore_block_suitable)
1359 		return true;
1360 
1361 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1362 	if (is_migrate_movable(get_pageblock_migratetype(page)))
1363 		return true;
1364 
1365 	/* Otherwise skip the block */
1366 	return false;
1367 }
1368 
1369 static inline unsigned int
1370 freelist_scan_limit(struct compact_control *cc)
1371 {
1372 	unsigned short shift = BITS_PER_LONG - 1;
1373 
1374 	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1375 }
1376 
1377 /*
1378  * Test whether the free scanner has reached the same or lower pageblock than
1379  * the migration scanner, and compaction should thus terminate.
1380  */
1381 static inline bool compact_scanners_met(struct compact_control *cc)
1382 {
1383 	return (cc->free_pfn >> pageblock_order)
1384 		<= (cc->migrate_pfn >> pageblock_order);
1385 }
1386 
1387 /*
1388  * Used when scanning for a suitable migration target which scans freelists
1389  * in reverse. Reorders the list such as the unscanned pages are scanned
1390  * first on the next iteration of the free scanner
1391  */
1392 static void
1393 move_freelist_head(struct list_head *freelist, struct page *freepage)
1394 {
1395 	LIST_HEAD(sublist);
1396 
1397 	if (!list_is_last(freelist, &freepage->lru)) {
1398 		list_cut_before(&sublist, freelist, &freepage->lru);
1399 		list_splice_tail(&sublist, freelist);
1400 	}
1401 }
1402 
1403 /*
1404  * Similar to move_freelist_head except used by the migration scanner
1405  * when scanning forward. It's possible for these list operations to
1406  * move against each other if they search the free list exactly in
1407  * lockstep.
1408  */
1409 static void
1410 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1411 {
1412 	LIST_HEAD(sublist);
1413 
1414 	if (!list_is_first(freelist, &freepage->lru)) {
1415 		list_cut_position(&sublist, freelist, &freepage->lru);
1416 		list_splice_tail(&sublist, freelist);
1417 	}
1418 }
1419 
1420 static void
1421 fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1422 {
1423 	unsigned long start_pfn, end_pfn;
1424 	struct page *page;
1425 
1426 	/* Do not search around if there are enough pages already */
1427 	if (cc->nr_freepages >= cc->nr_migratepages)
1428 		return;
1429 
1430 	/* Minimise scanning during async compaction */
1431 	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1432 		return;
1433 
1434 	/* Pageblock boundaries */
1435 	start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1436 	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1437 
1438 	page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1439 	if (!page)
1440 		return;
1441 
1442 	isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1443 
1444 	/* Skip this pageblock in the future as it's full or nearly full */
1445 	if (start_pfn == end_pfn && !cc->no_set_skip_hint)
1446 		set_pageblock_skip(page);
1447 }
1448 
1449 /* Search orders in round-robin fashion */
1450 static int next_search_order(struct compact_control *cc, int order)
1451 {
1452 	order--;
1453 	if (order < 0)
1454 		order = cc->order - 1;
1455 
1456 	/* Search wrapped around? */
1457 	if (order == cc->search_order) {
1458 		cc->search_order--;
1459 		if (cc->search_order < 0)
1460 			cc->search_order = cc->order - 1;
1461 		return -1;
1462 	}
1463 
1464 	return order;
1465 }
1466 
1467 static void fast_isolate_freepages(struct compact_control *cc)
1468 {
1469 	unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1470 	unsigned int nr_scanned = 0, total_isolated = 0;
1471 	unsigned long low_pfn, min_pfn, highest = 0;
1472 	unsigned long nr_isolated = 0;
1473 	unsigned long distance;
1474 	struct page *page = NULL;
1475 	bool scan_start = false;
1476 	int order;
1477 
1478 	/* Full compaction passes in a negative order */
1479 	if (cc->order <= 0)
1480 		return;
1481 
1482 	/*
1483 	 * If starting the scan, use a deeper search and use the highest
1484 	 * PFN found if a suitable one is not found.
1485 	 */
1486 	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1487 		limit = pageblock_nr_pages >> 1;
1488 		scan_start = true;
1489 	}
1490 
1491 	/*
1492 	 * Preferred point is in the top quarter of the scan space but take
1493 	 * a pfn from the top half if the search is problematic.
1494 	 */
1495 	distance = (cc->free_pfn - cc->migrate_pfn);
1496 	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1497 	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1498 
1499 	if (WARN_ON_ONCE(min_pfn > low_pfn))
1500 		low_pfn = min_pfn;
1501 
1502 	/*
1503 	 * Search starts from the last successful isolation order or the next
1504 	 * order to search after a previous failure
1505 	 */
1506 	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1507 
1508 	for (order = cc->search_order;
1509 	     !page && order >= 0;
1510 	     order = next_search_order(cc, order)) {
1511 		struct free_area *area = &cc->zone->free_area[order];
1512 		struct list_head *freelist;
1513 		struct page *freepage;
1514 		unsigned long flags;
1515 		unsigned int order_scanned = 0;
1516 		unsigned long high_pfn = 0;
1517 
1518 		if (!area->nr_free)
1519 			continue;
1520 
1521 		spin_lock_irqsave(&cc->zone->lock, flags);
1522 		freelist = &area->free_list[MIGRATE_MOVABLE];
1523 		list_for_each_entry_reverse(freepage, freelist, buddy_list) {
1524 			unsigned long pfn;
1525 
1526 			order_scanned++;
1527 			nr_scanned++;
1528 			pfn = page_to_pfn(freepage);
1529 
1530 			if (pfn >= highest)
1531 				highest = max(pageblock_start_pfn(pfn),
1532 					      cc->zone->zone_start_pfn);
1533 
1534 			if (pfn >= low_pfn) {
1535 				cc->fast_search_fail = 0;
1536 				cc->search_order = order;
1537 				page = freepage;
1538 				break;
1539 			}
1540 
1541 			if (pfn >= min_pfn && pfn > high_pfn) {
1542 				high_pfn = pfn;
1543 
1544 				/* Shorten the scan if a candidate is found */
1545 				limit >>= 1;
1546 			}
1547 
1548 			if (order_scanned >= limit)
1549 				break;
1550 		}
1551 
1552 		/* Use a maximum candidate pfn if a preferred one was not found */
1553 		if (!page && high_pfn) {
1554 			page = pfn_to_page(high_pfn);
1555 
1556 			/* Update freepage for the list reorder below */
1557 			freepage = page;
1558 		}
1559 
1560 		/* Reorder to so a future search skips recent pages */
1561 		move_freelist_head(freelist, freepage);
1562 
1563 		/* Isolate the page if available */
1564 		if (page) {
1565 			if (__isolate_free_page(page, order)) {
1566 				set_page_private(page, order);
1567 				nr_isolated = 1 << order;
1568 				nr_scanned += nr_isolated - 1;
1569 				total_isolated += nr_isolated;
1570 				cc->nr_freepages += nr_isolated;
1571 				list_add_tail(&page->lru, &cc->freepages);
1572 				count_compact_events(COMPACTISOLATED, nr_isolated);
1573 			} else {
1574 				/* If isolation fails, abort the search */
1575 				order = cc->search_order + 1;
1576 				page = NULL;
1577 			}
1578 		}
1579 
1580 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1581 
1582 		/* Skip fast search if enough freepages isolated */
1583 		if (cc->nr_freepages >= cc->nr_migratepages)
1584 			break;
1585 
1586 		/*
1587 		 * Smaller scan on next order so the total scan is related
1588 		 * to freelist_scan_limit.
1589 		 */
1590 		if (order_scanned >= limit)
1591 			limit = max(1U, limit >> 1);
1592 	}
1593 
1594 	trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn,
1595 						   nr_scanned, total_isolated);
1596 
1597 	if (!page) {
1598 		cc->fast_search_fail++;
1599 		if (scan_start) {
1600 			/*
1601 			 * Use the highest PFN found above min. If one was
1602 			 * not found, be pessimistic for direct compaction
1603 			 * and use the min mark.
1604 			 */
1605 			if (highest >= min_pfn) {
1606 				page = pfn_to_page(highest);
1607 				cc->free_pfn = highest;
1608 			} else {
1609 				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1610 					page = pageblock_pfn_to_page(min_pfn,
1611 						min(pageblock_end_pfn(min_pfn),
1612 						    zone_end_pfn(cc->zone)),
1613 						cc->zone);
1614 					cc->free_pfn = min_pfn;
1615 				}
1616 			}
1617 		}
1618 	}
1619 
1620 	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1621 		highest -= pageblock_nr_pages;
1622 		cc->zone->compact_cached_free_pfn = highest;
1623 	}
1624 
1625 	cc->total_free_scanned += nr_scanned;
1626 	if (!page)
1627 		return;
1628 
1629 	low_pfn = page_to_pfn(page);
1630 	fast_isolate_around(cc, low_pfn);
1631 }
1632 
1633 /*
1634  * Based on information in the current compact_control, find blocks
1635  * suitable for isolating free pages from and then isolate them.
1636  */
1637 static void isolate_freepages(struct compact_control *cc)
1638 {
1639 	struct zone *zone = cc->zone;
1640 	struct page *page;
1641 	unsigned long block_start_pfn;	/* start of current pageblock */
1642 	unsigned long isolate_start_pfn; /* exact pfn we start at */
1643 	unsigned long block_end_pfn;	/* end of current pageblock */
1644 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1645 	struct list_head *freelist = &cc->freepages;
1646 	unsigned int stride;
1647 
1648 	/* Try a small search of the free lists for a candidate */
1649 	fast_isolate_freepages(cc);
1650 	if (cc->nr_freepages)
1651 		goto splitmap;
1652 
1653 	/*
1654 	 * Initialise the free scanner. The starting point is where we last
1655 	 * successfully isolated from, zone-cached value, or the end of the
1656 	 * zone when isolating for the first time. For looping we also need
1657 	 * this pfn aligned down to the pageblock boundary, because we do
1658 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1659 	 * For ending point, take care when isolating in last pageblock of a
1660 	 * zone which ends in the middle of a pageblock.
1661 	 * The low boundary is the end of the pageblock the migration scanner
1662 	 * is using.
1663 	 */
1664 	isolate_start_pfn = cc->free_pfn;
1665 	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1666 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1667 						zone_end_pfn(zone));
1668 	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1669 	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1670 
1671 	/*
1672 	 * Isolate free pages until enough are available to migrate the
1673 	 * pages on cc->migratepages. We stop searching if the migrate
1674 	 * and free page scanners meet or enough free pages are isolated.
1675 	 */
1676 	for (; block_start_pfn >= low_pfn;
1677 				block_end_pfn = block_start_pfn,
1678 				block_start_pfn -= pageblock_nr_pages,
1679 				isolate_start_pfn = block_start_pfn) {
1680 		unsigned long nr_isolated;
1681 
1682 		/*
1683 		 * This can iterate a massively long zone without finding any
1684 		 * suitable migration targets, so periodically check resched.
1685 		 */
1686 		if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1687 			cond_resched();
1688 
1689 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1690 									zone);
1691 		if (!page) {
1692 			unsigned long next_pfn;
1693 
1694 			next_pfn = skip_offline_sections_reverse(block_start_pfn);
1695 			if (next_pfn)
1696 				block_start_pfn = max(next_pfn, low_pfn);
1697 
1698 			continue;
1699 		}
1700 
1701 		/* Check the block is suitable for migration */
1702 		if (!suitable_migration_target(cc, page))
1703 			continue;
1704 
1705 		/* If isolation recently failed, do not retry */
1706 		if (!isolation_suitable(cc, page))
1707 			continue;
1708 
1709 		/* Found a block suitable for isolating free pages from. */
1710 		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1711 					block_end_pfn, freelist, stride, false);
1712 
1713 		/* Update the skip hint if the full pageblock was scanned */
1714 		if (isolate_start_pfn == block_end_pfn)
1715 			update_pageblock_skip(cc, page, block_start_pfn -
1716 					      pageblock_nr_pages);
1717 
1718 		/* Are enough freepages isolated? */
1719 		if (cc->nr_freepages >= cc->nr_migratepages) {
1720 			if (isolate_start_pfn >= block_end_pfn) {
1721 				/*
1722 				 * Restart at previous pageblock if more
1723 				 * freepages can be isolated next time.
1724 				 */
1725 				isolate_start_pfn =
1726 					block_start_pfn - pageblock_nr_pages;
1727 			}
1728 			break;
1729 		} else if (isolate_start_pfn < block_end_pfn) {
1730 			/*
1731 			 * If isolation failed early, do not continue
1732 			 * needlessly.
1733 			 */
1734 			break;
1735 		}
1736 
1737 		/* Adjust stride depending on isolation */
1738 		if (nr_isolated) {
1739 			stride = 1;
1740 			continue;
1741 		}
1742 		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1743 	}
1744 
1745 	/*
1746 	 * Record where the free scanner will restart next time. Either we
1747 	 * broke from the loop and set isolate_start_pfn based on the last
1748 	 * call to isolate_freepages_block(), or we met the migration scanner
1749 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1750 	 */
1751 	cc->free_pfn = isolate_start_pfn;
1752 
1753 splitmap:
1754 	/* __isolate_free_page() does not map the pages */
1755 	split_map_pages(freelist);
1756 }
1757 
1758 /*
1759  * This is a migrate-callback that "allocates" freepages by taking pages
1760  * from the isolated freelists in the block we are migrating to.
1761  */
1762 static struct folio *compaction_alloc(struct folio *src, unsigned long data)
1763 {
1764 	struct compact_control *cc = (struct compact_control *)data;
1765 	struct folio *dst;
1766 
1767 	if (list_empty(&cc->freepages)) {
1768 		isolate_freepages(cc);
1769 
1770 		if (list_empty(&cc->freepages))
1771 			return NULL;
1772 	}
1773 
1774 	dst = list_entry(cc->freepages.next, struct folio, lru);
1775 	list_del(&dst->lru);
1776 	cc->nr_freepages--;
1777 
1778 	return dst;
1779 }
1780 
1781 /*
1782  * This is a migrate-callback that "frees" freepages back to the isolated
1783  * freelist.  All pages on the freelist are from the same zone, so there is no
1784  * special handling needed for NUMA.
1785  */
1786 static void compaction_free(struct folio *dst, unsigned long data)
1787 {
1788 	struct compact_control *cc = (struct compact_control *)data;
1789 
1790 	list_add(&dst->lru, &cc->freepages);
1791 	cc->nr_freepages++;
1792 }
1793 
1794 /* possible outcome of isolate_migratepages */
1795 typedef enum {
1796 	ISOLATE_ABORT,		/* Abort compaction now */
1797 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1798 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1799 } isolate_migrate_t;
1800 
1801 /*
1802  * Allow userspace to control policy on scanning the unevictable LRU for
1803  * compactable pages.
1804  */
1805 static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1806 /*
1807  * Tunable for proactive compaction. It determines how
1808  * aggressively the kernel should compact memory in the
1809  * background. It takes values in the range [0, 100].
1810  */
1811 static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1812 static int sysctl_extfrag_threshold = 500;
1813 static int __read_mostly sysctl_compact_memory;
1814 
1815 static inline void
1816 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1817 {
1818 	if (cc->fast_start_pfn == ULONG_MAX)
1819 		return;
1820 
1821 	if (!cc->fast_start_pfn)
1822 		cc->fast_start_pfn = pfn;
1823 
1824 	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1825 }
1826 
1827 static inline unsigned long
1828 reinit_migrate_pfn(struct compact_control *cc)
1829 {
1830 	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1831 		return cc->migrate_pfn;
1832 
1833 	cc->migrate_pfn = cc->fast_start_pfn;
1834 	cc->fast_start_pfn = ULONG_MAX;
1835 
1836 	return cc->migrate_pfn;
1837 }
1838 
1839 /*
1840  * Briefly search the free lists for a migration source that already has
1841  * some free pages to reduce the number of pages that need migration
1842  * before a pageblock is free.
1843  */
1844 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1845 {
1846 	unsigned int limit = freelist_scan_limit(cc);
1847 	unsigned int nr_scanned = 0;
1848 	unsigned long distance;
1849 	unsigned long pfn = cc->migrate_pfn;
1850 	unsigned long high_pfn;
1851 	int order;
1852 	bool found_block = false;
1853 
1854 	/* Skip hints are relied on to avoid repeats on the fast search */
1855 	if (cc->ignore_skip_hint)
1856 		return pfn;
1857 
1858 	/*
1859 	 * If the pageblock should be finished then do not select a different
1860 	 * pageblock.
1861 	 */
1862 	if (cc->finish_pageblock)
1863 		return pfn;
1864 
1865 	/*
1866 	 * If the migrate_pfn is not at the start of a zone or the start
1867 	 * of a pageblock then assume this is a continuation of a previous
1868 	 * scan restarted due to COMPACT_CLUSTER_MAX.
1869 	 */
1870 	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1871 		return pfn;
1872 
1873 	/*
1874 	 * For smaller orders, just linearly scan as the number of pages
1875 	 * to migrate should be relatively small and does not necessarily
1876 	 * justify freeing up a large block for a small allocation.
1877 	 */
1878 	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1879 		return pfn;
1880 
1881 	/*
1882 	 * Only allow kcompactd and direct requests for movable pages to
1883 	 * quickly clear out a MOVABLE pageblock for allocation. This
1884 	 * reduces the risk that a large movable pageblock is freed for
1885 	 * an unmovable/reclaimable small allocation.
1886 	 */
1887 	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1888 		return pfn;
1889 
1890 	/*
1891 	 * When starting the migration scanner, pick any pageblock within the
1892 	 * first half of the search space. Otherwise try and pick a pageblock
1893 	 * within the first eighth to reduce the chances that a migration
1894 	 * target later becomes a source.
1895 	 */
1896 	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1897 	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1898 		distance >>= 2;
1899 	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1900 
1901 	for (order = cc->order - 1;
1902 	     order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1903 	     order--) {
1904 		struct free_area *area = &cc->zone->free_area[order];
1905 		struct list_head *freelist;
1906 		unsigned long flags;
1907 		struct page *freepage;
1908 
1909 		if (!area->nr_free)
1910 			continue;
1911 
1912 		spin_lock_irqsave(&cc->zone->lock, flags);
1913 		freelist = &area->free_list[MIGRATE_MOVABLE];
1914 		list_for_each_entry(freepage, freelist, buddy_list) {
1915 			unsigned long free_pfn;
1916 
1917 			if (nr_scanned++ >= limit) {
1918 				move_freelist_tail(freelist, freepage);
1919 				break;
1920 			}
1921 
1922 			free_pfn = page_to_pfn(freepage);
1923 			if (free_pfn < high_pfn) {
1924 				/*
1925 				 * Avoid if skipped recently. Ideally it would
1926 				 * move to the tail but even safe iteration of
1927 				 * the list assumes an entry is deleted, not
1928 				 * reordered.
1929 				 */
1930 				if (get_pageblock_skip(freepage))
1931 					continue;
1932 
1933 				/* Reorder to so a future search skips recent pages */
1934 				move_freelist_tail(freelist, freepage);
1935 
1936 				update_fast_start_pfn(cc, free_pfn);
1937 				pfn = pageblock_start_pfn(free_pfn);
1938 				if (pfn < cc->zone->zone_start_pfn)
1939 					pfn = cc->zone->zone_start_pfn;
1940 				cc->fast_search_fail = 0;
1941 				found_block = true;
1942 				break;
1943 			}
1944 		}
1945 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1946 	}
1947 
1948 	cc->total_migrate_scanned += nr_scanned;
1949 
1950 	/*
1951 	 * If fast scanning failed then use a cached entry for a page block
1952 	 * that had free pages as the basis for starting a linear scan.
1953 	 */
1954 	if (!found_block) {
1955 		cc->fast_search_fail++;
1956 		pfn = reinit_migrate_pfn(cc);
1957 	}
1958 	return pfn;
1959 }
1960 
1961 /*
1962  * Isolate all pages that can be migrated from the first suitable block,
1963  * starting at the block pointed to by the migrate scanner pfn within
1964  * compact_control.
1965  */
1966 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1967 {
1968 	unsigned long block_start_pfn;
1969 	unsigned long block_end_pfn;
1970 	unsigned long low_pfn;
1971 	struct page *page;
1972 	const isolate_mode_t isolate_mode =
1973 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1974 		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1975 	bool fast_find_block;
1976 
1977 	/*
1978 	 * Start at where we last stopped, or beginning of the zone as
1979 	 * initialized by compact_zone(). The first failure will use
1980 	 * the lowest PFN as the starting point for linear scanning.
1981 	 */
1982 	low_pfn = fast_find_migrateblock(cc);
1983 	block_start_pfn = pageblock_start_pfn(low_pfn);
1984 	if (block_start_pfn < cc->zone->zone_start_pfn)
1985 		block_start_pfn = cc->zone->zone_start_pfn;
1986 
1987 	/*
1988 	 * fast_find_migrateblock() has already ensured the pageblock is not
1989 	 * set with a skipped flag, so to avoid the isolation_suitable check
1990 	 * below again, check whether the fast search was successful.
1991 	 */
1992 	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1993 
1994 	/* Only scan within a pageblock boundary */
1995 	block_end_pfn = pageblock_end_pfn(low_pfn);
1996 
1997 	/*
1998 	 * Iterate over whole pageblocks until we find the first suitable.
1999 	 * Do not cross the free scanner.
2000 	 */
2001 	for (; block_end_pfn <= cc->free_pfn;
2002 			fast_find_block = false,
2003 			cc->migrate_pfn = low_pfn = block_end_pfn,
2004 			block_start_pfn = block_end_pfn,
2005 			block_end_pfn += pageblock_nr_pages) {
2006 
2007 		/*
2008 		 * This can potentially iterate a massively long zone with
2009 		 * many pageblocks unsuitable, so periodically check if we
2010 		 * need to schedule.
2011 		 */
2012 		if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
2013 			cond_resched();
2014 
2015 		page = pageblock_pfn_to_page(block_start_pfn,
2016 						block_end_pfn, cc->zone);
2017 		if (!page) {
2018 			unsigned long next_pfn;
2019 
2020 			next_pfn = skip_offline_sections(block_start_pfn);
2021 			if (next_pfn)
2022 				block_end_pfn = min(next_pfn, cc->free_pfn);
2023 			continue;
2024 		}
2025 
2026 		/*
2027 		 * If isolation recently failed, do not retry. Only check the
2028 		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
2029 		 * to be visited multiple times. Assume skip was checked
2030 		 * before making it "skip" so other compaction instances do
2031 		 * not scan the same block.
2032 		 */
2033 		if (pageblock_aligned(low_pfn) &&
2034 		    !fast_find_block && !isolation_suitable(cc, page))
2035 			continue;
2036 
2037 		/*
2038 		 * For async direct compaction, only scan the pageblocks of the
2039 		 * same migratetype without huge pages. Async direct compaction
2040 		 * is optimistic to see if the minimum amount of work satisfies
2041 		 * the allocation. The cached PFN is updated as it's possible
2042 		 * that all remaining blocks between source and target are
2043 		 * unsuitable and the compaction scanners fail to meet.
2044 		 */
2045 		if (!suitable_migration_source(cc, page)) {
2046 			update_cached_migrate(cc, block_end_pfn);
2047 			continue;
2048 		}
2049 
2050 		/* Perform the isolation */
2051 		if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
2052 						isolate_mode))
2053 			return ISOLATE_ABORT;
2054 
2055 		/*
2056 		 * Either we isolated something and proceed with migration. Or
2057 		 * we failed and compact_zone should decide if we should
2058 		 * continue or not.
2059 		 */
2060 		break;
2061 	}
2062 
2063 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
2064 }
2065 
2066 /*
2067  * order == -1 is expected when compacting via
2068  * /proc/sys/vm/compact_memory
2069  */
2070 static inline bool is_via_compact_memory(int order)
2071 {
2072 	return order == -1;
2073 }
2074 
2075 /*
2076  * Determine whether kswapd is (or recently was!) running on this node.
2077  *
2078  * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
2079  * zero it.
2080  */
2081 static bool kswapd_is_running(pg_data_t *pgdat)
2082 {
2083 	bool running;
2084 
2085 	pgdat_kswapd_lock(pgdat);
2086 	running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2087 	pgdat_kswapd_unlock(pgdat);
2088 
2089 	return running;
2090 }
2091 
2092 /*
2093  * A zone's fragmentation score is the external fragmentation wrt to the
2094  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2095  */
2096 static unsigned int fragmentation_score_zone(struct zone *zone)
2097 {
2098 	return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2099 }
2100 
2101 /*
2102  * A weighted zone's fragmentation score is the external fragmentation
2103  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2104  * returns a value in the range [0, 100].
2105  *
2106  * The scaling factor ensures that proactive compaction focuses on larger
2107  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2108  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2109  * and thus never exceeds the high threshold for proactive compaction.
2110  */
2111 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2112 {
2113 	unsigned long score;
2114 
2115 	score = zone->present_pages * fragmentation_score_zone(zone);
2116 	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2117 }
2118 
2119 /*
2120  * The per-node proactive (background) compaction process is started by its
2121  * corresponding kcompactd thread when the node's fragmentation score
2122  * exceeds the high threshold. The compaction process remains active till
2123  * the node's score falls below the low threshold, or one of the back-off
2124  * conditions is met.
2125  */
2126 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2127 {
2128 	unsigned int score = 0;
2129 	int zoneid;
2130 
2131 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2132 		struct zone *zone;
2133 
2134 		zone = &pgdat->node_zones[zoneid];
2135 		if (!populated_zone(zone))
2136 			continue;
2137 		score += fragmentation_score_zone_weighted(zone);
2138 	}
2139 
2140 	return score;
2141 }
2142 
2143 static unsigned int fragmentation_score_wmark(bool low)
2144 {
2145 	unsigned int wmark_low;
2146 
2147 	/*
2148 	 * Cap the low watermark to avoid excessive compaction
2149 	 * activity in case a user sets the proactiveness tunable
2150 	 * close to 100 (maximum).
2151 	 */
2152 	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2153 	return low ? wmark_low : min(wmark_low + 10, 100U);
2154 }
2155 
2156 static bool should_proactive_compact_node(pg_data_t *pgdat)
2157 {
2158 	int wmark_high;
2159 
2160 	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2161 		return false;
2162 
2163 	wmark_high = fragmentation_score_wmark(false);
2164 	return fragmentation_score_node(pgdat) > wmark_high;
2165 }
2166 
2167 static enum compact_result __compact_finished(struct compact_control *cc)
2168 {
2169 	unsigned int order;
2170 	const int migratetype = cc->migratetype;
2171 	int ret;
2172 
2173 	/* Compaction run completes if the migrate and free scanner meet */
2174 	if (compact_scanners_met(cc)) {
2175 		/* Let the next compaction start anew. */
2176 		reset_cached_positions(cc->zone);
2177 
2178 		/*
2179 		 * Mark that the PG_migrate_skip information should be cleared
2180 		 * by kswapd when it goes to sleep. kcompactd does not set the
2181 		 * flag itself as the decision to be clear should be directly
2182 		 * based on an allocation request.
2183 		 */
2184 		if (cc->direct_compaction)
2185 			cc->zone->compact_blockskip_flush = true;
2186 
2187 		if (cc->whole_zone)
2188 			return COMPACT_COMPLETE;
2189 		else
2190 			return COMPACT_PARTIAL_SKIPPED;
2191 	}
2192 
2193 	if (cc->proactive_compaction) {
2194 		int score, wmark_low;
2195 		pg_data_t *pgdat;
2196 
2197 		pgdat = cc->zone->zone_pgdat;
2198 		if (kswapd_is_running(pgdat))
2199 			return COMPACT_PARTIAL_SKIPPED;
2200 
2201 		score = fragmentation_score_zone(cc->zone);
2202 		wmark_low = fragmentation_score_wmark(true);
2203 
2204 		if (score > wmark_low)
2205 			ret = COMPACT_CONTINUE;
2206 		else
2207 			ret = COMPACT_SUCCESS;
2208 
2209 		goto out;
2210 	}
2211 
2212 	if (is_via_compact_memory(cc->order))
2213 		return COMPACT_CONTINUE;
2214 
2215 	/*
2216 	 * Always finish scanning a pageblock to reduce the possibility of
2217 	 * fallbacks in the future. This is particularly important when
2218 	 * migration source is unmovable/reclaimable but it's not worth
2219 	 * special casing.
2220 	 */
2221 	if (!pageblock_aligned(cc->migrate_pfn))
2222 		return COMPACT_CONTINUE;
2223 
2224 	/* Direct compactor: Is a suitable page free? */
2225 	ret = COMPACT_NO_SUITABLE_PAGE;
2226 	for (order = cc->order; order <= MAX_ORDER; order++) {
2227 		struct free_area *area = &cc->zone->free_area[order];
2228 		bool can_steal;
2229 
2230 		/* Job done if page is free of the right migratetype */
2231 		if (!free_area_empty(area, migratetype))
2232 			return COMPACT_SUCCESS;
2233 
2234 #ifdef CONFIG_CMA
2235 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2236 		if (migratetype == MIGRATE_MOVABLE &&
2237 			!free_area_empty(area, MIGRATE_CMA))
2238 			return COMPACT_SUCCESS;
2239 #endif
2240 		/*
2241 		 * Job done if allocation would steal freepages from
2242 		 * other migratetype buddy lists.
2243 		 */
2244 		if (find_suitable_fallback(area, order, migratetype,
2245 						true, &can_steal) != -1)
2246 			/*
2247 			 * Movable pages are OK in any pageblock. If we are
2248 			 * stealing for a non-movable allocation, make sure
2249 			 * we finish compacting the current pageblock first
2250 			 * (which is assured by the above migrate_pfn align
2251 			 * check) so it is as free as possible and we won't
2252 			 * have to steal another one soon.
2253 			 */
2254 			return COMPACT_SUCCESS;
2255 	}
2256 
2257 out:
2258 	if (cc->contended || fatal_signal_pending(current))
2259 		ret = COMPACT_CONTENDED;
2260 
2261 	return ret;
2262 }
2263 
2264 static enum compact_result compact_finished(struct compact_control *cc)
2265 {
2266 	int ret;
2267 
2268 	ret = __compact_finished(cc);
2269 	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2270 	if (ret == COMPACT_NO_SUITABLE_PAGE)
2271 		ret = COMPACT_CONTINUE;
2272 
2273 	return ret;
2274 }
2275 
2276 static bool __compaction_suitable(struct zone *zone, int order,
2277 				  int highest_zoneidx,
2278 				  unsigned long wmark_target)
2279 {
2280 	unsigned long watermark;
2281 	/*
2282 	 * Watermarks for order-0 must be met for compaction to be able to
2283 	 * isolate free pages for migration targets. This means that the
2284 	 * watermark and alloc_flags have to match, or be more pessimistic than
2285 	 * the check in __isolate_free_page(). We don't use the direct
2286 	 * compactor's alloc_flags, as they are not relevant for freepage
2287 	 * isolation. We however do use the direct compactor's highest_zoneidx
2288 	 * to skip over zones where lowmem reserves would prevent allocation
2289 	 * even if compaction succeeds.
2290 	 * For costly orders, we require low watermark instead of min for
2291 	 * compaction to proceed to increase its chances.
2292 	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2293 	 * suitable migration targets
2294 	 */
2295 	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2296 				low_wmark_pages(zone) : min_wmark_pages(zone);
2297 	watermark += compact_gap(order);
2298 	return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2299 				   ALLOC_CMA, wmark_target);
2300 }
2301 
2302 /*
2303  * compaction_suitable: Is this suitable to run compaction on this zone now?
2304  */
2305 bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx)
2306 {
2307 	enum compact_result compact_result;
2308 	bool suitable;
2309 
2310 	suitable = __compaction_suitable(zone, order, highest_zoneidx,
2311 					 zone_page_state(zone, NR_FREE_PAGES));
2312 	/*
2313 	 * fragmentation index determines if allocation failures are due to
2314 	 * low memory or external fragmentation
2315 	 *
2316 	 * index of -1000 would imply allocations might succeed depending on
2317 	 * watermarks, but we already failed the high-order watermark check
2318 	 * index towards 0 implies failure is due to lack of memory
2319 	 * index towards 1000 implies failure is due to fragmentation
2320 	 *
2321 	 * Only compact if a failure would be due to fragmentation. Also
2322 	 * ignore fragindex for non-costly orders where the alternative to
2323 	 * a successful reclaim/compaction is OOM. Fragindex and the
2324 	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2325 	 * excessive compaction for costly orders, but it should not be at the
2326 	 * expense of system stability.
2327 	 */
2328 	if (suitable) {
2329 		compact_result = COMPACT_CONTINUE;
2330 		if (order > PAGE_ALLOC_COSTLY_ORDER) {
2331 			int fragindex = fragmentation_index(zone, order);
2332 
2333 			if (fragindex >= 0 &&
2334 			    fragindex <= sysctl_extfrag_threshold) {
2335 				suitable = false;
2336 				compact_result = COMPACT_NOT_SUITABLE_ZONE;
2337 			}
2338 		}
2339 	} else {
2340 		compact_result = COMPACT_SKIPPED;
2341 	}
2342 
2343 	trace_mm_compaction_suitable(zone, order, compact_result);
2344 
2345 	return suitable;
2346 }
2347 
2348 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2349 		int alloc_flags)
2350 {
2351 	struct zone *zone;
2352 	struct zoneref *z;
2353 
2354 	/*
2355 	 * Make sure at least one zone would pass __compaction_suitable if we continue
2356 	 * retrying the reclaim.
2357 	 */
2358 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2359 				ac->highest_zoneidx, ac->nodemask) {
2360 		unsigned long available;
2361 
2362 		/*
2363 		 * Do not consider all the reclaimable memory because we do not
2364 		 * want to trash just for a single high order allocation which
2365 		 * is even not guaranteed to appear even if __compaction_suitable
2366 		 * is happy about the watermark check.
2367 		 */
2368 		available = zone_reclaimable_pages(zone) / order;
2369 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2370 		if (__compaction_suitable(zone, order, ac->highest_zoneidx,
2371 					  available))
2372 			return true;
2373 	}
2374 
2375 	return false;
2376 }
2377 
2378 static enum compact_result
2379 compact_zone(struct compact_control *cc, struct capture_control *capc)
2380 {
2381 	enum compact_result ret;
2382 	unsigned long start_pfn = cc->zone->zone_start_pfn;
2383 	unsigned long end_pfn = zone_end_pfn(cc->zone);
2384 	unsigned long last_migrated_pfn;
2385 	const bool sync = cc->mode != MIGRATE_ASYNC;
2386 	bool update_cached;
2387 	unsigned int nr_succeeded = 0;
2388 
2389 	/*
2390 	 * These counters track activities during zone compaction.  Initialize
2391 	 * them before compacting a new zone.
2392 	 */
2393 	cc->total_migrate_scanned = 0;
2394 	cc->total_free_scanned = 0;
2395 	cc->nr_migratepages = 0;
2396 	cc->nr_freepages = 0;
2397 	INIT_LIST_HEAD(&cc->freepages);
2398 	INIT_LIST_HEAD(&cc->migratepages);
2399 
2400 	cc->migratetype = gfp_migratetype(cc->gfp_mask);
2401 
2402 	if (!is_via_compact_memory(cc->order)) {
2403 		unsigned long watermark;
2404 
2405 		/* Allocation can already succeed, nothing to do */
2406 		watermark = wmark_pages(cc->zone,
2407 					cc->alloc_flags & ALLOC_WMARK_MASK);
2408 		if (zone_watermark_ok(cc->zone, cc->order, watermark,
2409 				      cc->highest_zoneidx, cc->alloc_flags))
2410 			return COMPACT_SUCCESS;
2411 
2412 		/* Compaction is likely to fail */
2413 		if (!compaction_suitable(cc->zone, cc->order,
2414 					 cc->highest_zoneidx))
2415 			return COMPACT_SKIPPED;
2416 	}
2417 
2418 	/*
2419 	 * Clear pageblock skip if there were failures recently and compaction
2420 	 * is about to be retried after being deferred.
2421 	 */
2422 	if (compaction_restarting(cc->zone, cc->order))
2423 		__reset_isolation_suitable(cc->zone);
2424 
2425 	/*
2426 	 * Setup to move all movable pages to the end of the zone. Used cached
2427 	 * information on where the scanners should start (unless we explicitly
2428 	 * want to compact the whole zone), but check that it is initialised
2429 	 * by ensuring the values are within zone boundaries.
2430 	 */
2431 	cc->fast_start_pfn = 0;
2432 	if (cc->whole_zone) {
2433 		cc->migrate_pfn = start_pfn;
2434 		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2435 	} else {
2436 		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2437 		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2438 		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2439 			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2440 			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2441 		}
2442 		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2443 			cc->migrate_pfn = start_pfn;
2444 			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2445 			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2446 		}
2447 
2448 		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2449 			cc->whole_zone = true;
2450 	}
2451 
2452 	last_migrated_pfn = 0;
2453 
2454 	/*
2455 	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2456 	 * the basis that some migrations will fail in ASYNC mode. However,
2457 	 * if the cached PFNs match and pageblocks are skipped due to having
2458 	 * no isolation candidates, then the sync state does not matter.
2459 	 * Until a pageblock with isolation candidates is found, keep the
2460 	 * cached PFNs in sync to avoid revisiting the same blocks.
2461 	 */
2462 	update_cached = !sync &&
2463 		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2464 
2465 	trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2466 
2467 	/* lru_add_drain_all could be expensive with involving other CPUs */
2468 	lru_add_drain();
2469 
2470 	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2471 		int err;
2472 		unsigned long iteration_start_pfn = cc->migrate_pfn;
2473 
2474 		/*
2475 		 * Avoid multiple rescans of the same pageblock which can
2476 		 * happen if a page cannot be isolated (dirty/writeback in
2477 		 * async mode) or if the migrated pages are being allocated
2478 		 * before the pageblock is cleared.  The first rescan will
2479 		 * capture the entire pageblock for migration. If it fails,
2480 		 * it'll be marked skip and scanning will proceed as normal.
2481 		 */
2482 		cc->finish_pageblock = false;
2483 		if (pageblock_start_pfn(last_migrated_pfn) ==
2484 		    pageblock_start_pfn(iteration_start_pfn)) {
2485 			cc->finish_pageblock = true;
2486 		}
2487 
2488 rescan:
2489 		switch (isolate_migratepages(cc)) {
2490 		case ISOLATE_ABORT:
2491 			ret = COMPACT_CONTENDED;
2492 			putback_movable_pages(&cc->migratepages);
2493 			cc->nr_migratepages = 0;
2494 			goto out;
2495 		case ISOLATE_NONE:
2496 			if (update_cached) {
2497 				cc->zone->compact_cached_migrate_pfn[1] =
2498 					cc->zone->compact_cached_migrate_pfn[0];
2499 			}
2500 
2501 			/*
2502 			 * We haven't isolated and migrated anything, but
2503 			 * there might still be unflushed migrations from
2504 			 * previous cc->order aligned block.
2505 			 */
2506 			goto check_drain;
2507 		case ISOLATE_SUCCESS:
2508 			update_cached = false;
2509 			last_migrated_pfn = max(cc->zone->zone_start_pfn,
2510 				pageblock_start_pfn(cc->migrate_pfn - 1));
2511 		}
2512 
2513 		err = migrate_pages(&cc->migratepages, compaction_alloc,
2514 				compaction_free, (unsigned long)cc, cc->mode,
2515 				MR_COMPACTION, &nr_succeeded);
2516 
2517 		trace_mm_compaction_migratepages(cc, nr_succeeded);
2518 
2519 		/* All pages were either migrated or will be released */
2520 		cc->nr_migratepages = 0;
2521 		if (err) {
2522 			putback_movable_pages(&cc->migratepages);
2523 			/*
2524 			 * migrate_pages() may return -ENOMEM when scanners meet
2525 			 * and we want compact_finished() to detect it
2526 			 */
2527 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2528 				ret = COMPACT_CONTENDED;
2529 				goto out;
2530 			}
2531 			/*
2532 			 * If an ASYNC or SYNC_LIGHT fails to migrate a page
2533 			 * within the pageblock_order-aligned block and
2534 			 * fast_find_migrateblock may be used then scan the
2535 			 * remainder of the pageblock. This will mark the
2536 			 * pageblock "skip" to avoid rescanning in the near
2537 			 * future. This will isolate more pages than necessary
2538 			 * for the request but avoid loops due to
2539 			 * fast_find_migrateblock revisiting blocks that were
2540 			 * recently partially scanned.
2541 			 */
2542 			if (!pageblock_aligned(cc->migrate_pfn) &&
2543 			    !cc->ignore_skip_hint && !cc->finish_pageblock &&
2544 			    (cc->mode < MIGRATE_SYNC)) {
2545 				cc->finish_pageblock = true;
2546 
2547 				/*
2548 				 * Draining pcplists does not help THP if
2549 				 * any page failed to migrate. Even after
2550 				 * drain, the pageblock will not be free.
2551 				 */
2552 				if (cc->order == COMPACTION_HPAGE_ORDER)
2553 					last_migrated_pfn = 0;
2554 
2555 				goto rescan;
2556 			}
2557 		}
2558 
2559 		/* Stop if a page has been captured */
2560 		if (capc && capc->page) {
2561 			ret = COMPACT_SUCCESS;
2562 			break;
2563 		}
2564 
2565 check_drain:
2566 		/*
2567 		 * Has the migration scanner moved away from the previous
2568 		 * cc->order aligned block where we migrated from? If yes,
2569 		 * flush the pages that were freed, so that they can merge and
2570 		 * compact_finished() can detect immediately if allocation
2571 		 * would succeed.
2572 		 */
2573 		if (cc->order > 0 && last_migrated_pfn) {
2574 			unsigned long current_block_start =
2575 				block_start_pfn(cc->migrate_pfn, cc->order);
2576 
2577 			if (last_migrated_pfn < current_block_start) {
2578 				lru_add_drain_cpu_zone(cc->zone);
2579 				/* No more flushing until we migrate again */
2580 				last_migrated_pfn = 0;
2581 			}
2582 		}
2583 	}
2584 
2585 out:
2586 	/*
2587 	 * Release free pages and update where the free scanner should restart,
2588 	 * so we don't leave any returned pages behind in the next attempt.
2589 	 */
2590 	if (cc->nr_freepages > 0) {
2591 		unsigned long free_pfn = release_freepages(&cc->freepages);
2592 
2593 		cc->nr_freepages = 0;
2594 		VM_BUG_ON(free_pfn == 0);
2595 		/* The cached pfn is always the first in a pageblock */
2596 		free_pfn = pageblock_start_pfn(free_pfn);
2597 		/*
2598 		 * Only go back, not forward. The cached pfn might have been
2599 		 * already reset to zone end in compact_finished()
2600 		 */
2601 		if (free_pfn > cc->zone->compact_cached_free_pfn)
2602 			cc->zone->compact_cached_free_pfn = free_pfn;
2603 	}
2604 
2605 	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2606 	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2607 
2608 	trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2609 
2610 	VM_BUG_ON(!list_empty(&cc->freepages));
2611 	VM_BUG_ON(!list_empty(&cc->migratepages));
2612 
2613 	return ret;
2614 }
2615 
2616 static enum compact_result compact_zone_order(struct zone *zone, int order,
2617 		gfp_t gfp_mask, enum compact_priority prio,
2618 		unsigned int alloc_flags, int highest_zoneidx,
2619 		struct page **capture)
2620 {
2621 	enum compact_result ret;
2622 	struct compact_control cc = {
2623 		.order = order,
2624 		.search_order = order,
2625 		.gfp_mask = gfp_mask,
2626 		.zone = zone,
2627 		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2628 					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2629 		.alloc_flags = alloc_flags,
2630 		.highest_zoneidx = highest_zoneidx,
2631 		.direct_compaction = true,
2632 		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2633 		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2634 		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2635 	};
2636 	struct capture_control capc = {
2637 		.cc = &cc,
2638 		.page = NULL,
2639 	};
2640 
2641 	/*
2642 	 * Make sure the structs are really initialized before we expose the
2643 	 * capture control, in case we are interrupted and the interrupt handler
2644 	 * frees a page.
2645 	 */
2646 	barrier();
2647 	WRITE_ONCE(current->capture_control, &capc);
2648 
2649 	ret = compact_zone(&cc, &capc);
2650 
2651 	/*
2652 	 * Make sure we hide capture control first before we read the captured
2653 	 * page pointer, otherwise an interrupt could free and capture a page
2654 	 * and we would leak it.
2655 	 */
2656 	WRITE_ONCE(current->capture_control, NULL);
2657 	*capture = READ_ONCE(capc.page);
2658 	/*
2659 	 * Technically, it is also possible that compaction is skipped but
2660 	 * the page is still captured out of luck(IRQ came and freed the page).
2661 	 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2662 	 * the COMPACT[STALL|FAIL] when compaction is skipped.
2663 	 */
2664 	if (*capture)
2665 		ret = COMPACT_SUCCESS;
2666 
2667 	return ret;
2668 }
2669 
2670 /**
2671  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2672  * @gfp_mask: The GFP mask of the current allocation
2673  * @order: The order of the current allocation
2674  * @alloc_flags: The allocation flags of the current allocation
2675  * @ac: The context of current allocation
2676  * @prio: Determines how hard direct compaction should try to succeed
2677  * @capture: Pointer to free page created by compaction will be stored here
2678  *
2679  * This is the main entry point for direct page compaction.
2680  */
2681 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2682 		unsigned int alloc_flags, const struct alloc_context *ac,
2683 		enum compact_priority prio, struct page **capture)
2684 {
2685 	int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
2686 	struct zoneref *z;
2687 	struct zone *zone;
2688 	enum compact_result rc = COMPACT_SKIPPED;
2689 
2690 	/*
2691 	 * Check if the GFP flags allow compaction - GFP_NOIO is really
2692 	 * tricky context because the migration might require IO
2693 	 */
2694 	if (!may_perform_io)
2695 		return COMPACT_SKIPPED;
2696 
2697 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2698 
2699 	/* Compact each zone in the list */
2700 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2701 					ac->highest_zoneidx, ac->nodemask) {
2702 		enum compact_result status;
2703 
2704 		if (prio > MIN_COMPACT_PRIORITY
2705 					&& compaction_deferred(zone, order)) {
2706 			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2707 			continue;
2708 		}
2709 
2710 		status = compact_zone_order(zone, order, gfp_mask, prio,
2711 				alloc_flags, ac->highest_zoneidx, capture);
2712 		rc = max(status, rc);
2713 
2714 		/* The allocation should succeed, stop compacting */
2715 		if (status == COMPACT_SUCCESS) {
2716 			/*
2717 			 * We think the allocation will succeed in this zone,
2718 			 * but it is not certain, hence the false. The caller
2719 			 * will repeat this with true if allocation indeed
2720 			 * succeeds in this zone.
2721 			 */
2722 			compaction_defer_reset(zone, order, false);
2723 
2724 			break;
2725 		}
2726 
2727 		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2728 					status == COMPACT_PARTIAL_SKIPPED))
2729 			/*
2730 			 * We think that allocation won't succeed in this zone
2731 			 * so we defer compaction there. If it ends up
2732 			 * succeeding after all, it will be reset.
2733 			 */
2734 			defer_compaction(zone, order);
2735 
2736 		/*
2737 		 * We might have stopped compacting due to need_resched() in
2738 		 * async compaction, or due to a fatal signal detected. In that
2739 		 * case do not try further zones
2740 		 */
2741 		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2742 					|| fatal_signal_pending(current))
2743 			break;
2744 	}
2745 
2746 	return rc;
2747 }
2748 
2749 /*
2750  * Compact all zones within a node till each zone's fragmentation score
2751  * reaches within proactive compaction thresholds (as determined by the
2752  * proactiveness tunable).
2753  *
2754  * It is possible that the function returns before reaching score targets
2755  * due to various back-off conditions, such as, contention on per-node or
2756  * per-zone locks.
2757  */
2758 static void proactive_compact_node(pg_data_t *pgdat)
2759 {
2760 	int zoneid;
2761 	struct zone *zone;
2762 	struct compact_control cc = {
2763 		.order = -1,
2764 		.mode = MIGRATE_SYNC_LIGHT,
2765 		.ignore_skip_hint = true,
2766 		.whole_zone = true,
2767 		.gfp_mask = GFP_KERNEL,
2768 		.proactive_compaction = true,
2769 	};
2770 
2771 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2772 		zone = &pgdat->node_zones[zoneid];
2773 		if (!populated_zone(zone))
2774 			continue;
2775 
2776 		cc.zone = zone;
2777 
2778 		compact_zone(&cc, NULL);
2779 
2780 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2781 				     cc.total_migrate_scanned);
2782 		count_compact_events(KCOMPACTD_FREE_SCANNED,
2783 				     cc.total_free_scanned);
2784 	}
2785 }
2786 
2787 /* Compact all zones within a node */
2788 static void compact_node(int nid)
2789 {
2790 	pg_data_t *pgdat = NODE_DATA(nid);
2791 	int zoneid;
2792 	struct zone *zone;
2793 	struct compact_control cc = {
2794 		.order = -1,
2795 		.mode = MIGRATE_SYNC,
2796 		.ignore_skip_hint = true,
2797 		.whole_zone = true,
2798 		.gfp_mask = GFP_KERNEL,
2799 	};
2800 
2801 
2802 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2803 
2804 		zone = &pgdat->node_zones[zoneid];
2805 		if (!populated_zone(zone))
2806 			continue;
2807 
2808 		cc.zone = zone;
2809 
2810 		compact_zone(&cc, NULL);
2811 	}
2812 }
2813 
2814 /* Compact all nodes in the system */
2815 static void compact_nodes(void)
2816 {
2817 	int nid;
2818 
2819 	/* Flush pending updates to the LRU lists */
2820 	lru_add_drain_all();
2821 
2822 	for_each_online_node(nid)
2823 		compact_node(nid);
2824 }
2825 
2826 static int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2827 		void *buffer, size_t *length, loff_t *ppos)
2828 {
2829 	int rc, nid;
2830 
2831 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2832 	if (rc)
2833 		return rc;
2834 
2835 	if (write && sysctl_compaction_proactiveness) {
2836 		for_each_online_node(nid) {
2837 			pg_data_t *pgdat = NODE_DATA(nid);
2838 
2839 			if (pgdat->proactive_compact_trigger)
2840 				continue;
2841 
2842 			pgdat->proactive_compact_trigger = true;
2843 			trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2844 							     pgdat->nr_zones - 1);
2845 			wake_up_interruptible(&pgdat->kcompactd_wait);
2846 		}
2847 	}
2848 
2849 	return 0;
2850 }
2851 
2852 /*
2853  * This is the entry point for compacting all nodes via
2854  * /proc/sys/vm/compact_memory
2855  */
2856 static int sysctl_compaction_handler(struct ctl_table *table, int write,
2857 			void *buffer, size_t *length, loff_t *ppos)
2858 {
2859 	int ret;
2860 
2861 	ret = proc_dointvec(table, write, buffer, length, ppos);
2862 	if (ret)
2863 		return ret;
2864 
2865 	if (sysctl_compact_memory != 1)
2866 		return -EINVAL;
2867 
2868 	if (write)
2869 		compact_nodes();
2870 
2871 	return 0;
2872 }
2873 
2874 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2875 static ssize_t compact_store(struct device *dev,
2876 			     struct device_attribute *attr,
2877 			     const char *buf, size_t count)
2878 {
2879 	int nid = dev->id;
2880 
2881 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2882 		/* Flush pending updates to the LRU lists */
2883 		lru_add_drain_all();
2884 
2885 		compact_node(nid);
2886 	}
2887 
2888 	return count;
2889 }
2890 static DEVICE_ATTR_WO(compact);
2891 
2892 int compaction_register_node(struct node *node)
2893 {
2894 	return device_create_file(&node->dev, &dev_attr_compact);
2895 }
2896 
2897 void compaction_unregister_node(struct node *node)
2898 {
2899 	device_remove_file(&node->dev, &dev_attr_compact);
2900 }
2901 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2902 
2903 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2904 {
2905 	return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2906 		pgdat->proactive_compact_trigger;
2907 }
2908 
2909 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2910 {
2911 	int zoneid;
2912 	struct zone *zone;
2913 	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2914 
2915 	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2916 		zone = &pgdat->node_zones[zoneid];
2917 
2918 		if (!populated_zone(zone))
2919 			continue;
2920 
2921 		/* Allocation can already succeed, check other zones */
2922 		if (zone_watermark_ok(zone, pgdat->kcompactd_max_order,
2923 				      min_wmark_pages(zone),
2924 				      highest_zoneidx, 0))
2925 			continue;
2926 
2927 		if (compaction_suitable(zone, pgdat->kcompactd_max_order,
2928 					highest_zoneidx))
2929 			return true;
2930 	}
2931 
2932 	return false;
2933 }
2934 
2935 static void kcompactd_do_work(pg_data_t *pgdat)
2936 {
2937 	/*
2938 	 * With no special task, compact all zones so that a page of requested
2939 	 * order is allocatable.
2940 	 */
2941 	int zoneid;
2942 	struct zone *zone;
2943 	struct compact_control cc = {
2944 		.order = pgdat->kcompactd_max_order,
2945 		.search_order = pgdat->kcompactd_max_order,
2946 		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2947 		.mode = MIGRATE_SYNC_LIGHT,
2948 		.ignore_skip_hint = false,
2949 		.gfp_mask = GFP_KERNEL,
2950 	};
2951 	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2952 							cc.highest_zoneidx);
2953 	count_compact_event(KCOMPACTD_WAKE);
2954 
2955 	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2956 		int status;
2957 
2958 		zone = &pgdat->node_zones[zoneid];
2959 		if (!populated_zone(zone))
2960 			continue;
2961 
2962 		if (compaction_deferred(zone, cc.order))
2963 			continue;
2964 
2965 		/* Allocation can already succeed, nothing to do */
2966 		if (zone_watermark_ok(zone, cc.order,
2967 				      min_wmark_pages(zone), zoneid, 0))
2968 			continue;
2969 
2970 		if (!compaction_suitable(zone, cc.order, zoneid))
2971 			continue;
2972 
2973 		if (kthread_should_stop())
2974 			return;
2975 
2976 		cc.zone = zone;
2977 		status = compact_zone(&cc, NULL);
2978 
2979 		if (status == COMPACT_SUCCESS) {
2980 			compaction_defer_reset(zone, cc.order, false);
2981 		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2982 			/*
2983 			 * Buddy pages may become stranded on pcps that could
2984 			 * otherwise coalesce on the zone's free area for
2985 			 * order >= cc.order.  This is ratelimited by the
2986 			 * upcoming deferral.
2987 			 */
2988 			drain_all_pages(zone);
2989 
2990 			/*
2991 			 * We use sync migration mode here, so we defer like
2992 			 * sync direct compaction does.
2993 			 */
2994 			defer_compaction(zone, cc.order);
2995 		}
2996 
2997 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2998 				     cc.total_migrate_scanned);
2999 		count_compact_events(KCOMPACTD_FREE_SCANNED,
3000 				     cc.total_free_scanned);
3001 	}
3002 
3003 	/*
3004 	 * Regardless of success, we are done until woken up next. But remember
3005 	 * the requested order/highest_zoneidx in case it was higher/tighter
3006 	 * than our current ones
3007 	 */
3008 	if (pgdat->kcompactd_max_order <= cc.order)
3009 		pgdat->kcompactd_max_order = 0;
3010 	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
3011 		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3012 }
3013 
3014 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
3015 {
3016 	if (!order)
3017 		return;
3018 
3019 	if (pgdat->kcompactd_max_order < order)
3020 		pgdat->kcompactd_max_order = order;
3021 
3022 	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
3023 		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
3024 
3025 	/*
3026 	 * Pairs with implicit barrier in wait_event_freezable()
3027 	 * such that wakeups are not missed.
3028 	 */
3029 	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
3030 		return;
3031 
3032 	if (!kcompactd_node_suitable(pgdat))
3033 		return;
3034 
3035 	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
3036 							highest_zoneidx);
3037 	wake_up_interruptible(&pgdat->kcompactd_wait);
3038 }
3039 
3040 /*
3041  * The background compaction daemon, started as a kernel thread
3042  * from the init process.
3043  */
3044 static int kcompactd(void *p)
3045 {
3046 	pg_data_t *pgdat = (pg_data_t *)p;
3047 	struct task_struct *tsk = current;
3048 	long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
3049 	long timeout = default_timeout;
3050 
3051 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3052 
3053 	if (!cpumask_empty(cpumask))
3054 		set_cpus_allowed_ptr(tsk, cpumask);
3055 
3056 	set_freezable();
3057 
3058 	pgdat->kcompactd_max_order = 0;
3059 	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3060 
3061 	while (!kthread_should_stop()) {
3062 		unsigned long pflags;
3063 
3064 		/*
3065 		 * Avoid the unnecessary wakeup for proactive compaction
3066 		 * when it is disabled.
3067 		 */
3068 		if (!sysctl_compaction_proactiveness)
3069 			timeout = MAX_SCHEDULE_TIMEOUT;
3070 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
3071 		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
3072 			kcompactd_work_requested(pgdat), timeout) &&
3073 			!pgdat->proactive_compact_trigger) {
3074 
3075 			psi_memstall_enter(&pflags);
3076 			kcompactd_do_work(pgdat);
3077 			psi_memstall_leave(&pflags);
3078 			/*
3079 			 * Reset the timeout value. The defer timeout from
3080 			 * proactive compaction is lost here but that is fine
3081 			 * as the condition of the zone changing substantionally
3082 			 * then carrying on with the previous defer interval is
3083 			 * not useful.
3084 			 */
3085 			timeout = default_timeout;
3086 			continue;
3087 		}
3088 
3089 		/*
3090 		 * Start the proactive work with default timeout. Based
3091 		 * on the fragmentation score, this timeout is updated.
3092 		 */
3093 		timeout = default_timeout;
3094 		if (should_proactive_compact_node(pgdat)) {
3095 			unsigned int prev_score, score;
3096 
3097 			prev_score = fragmentation_score_node(pgdat);
3098 			proactive_compact_node(pgdat);
3099 			score = fragmentation_score_node(pgdat);
3100 			/*
3101 			 * Defer proactive compaction if the fragmentation
3102 			 * score did not go down i.e. no progress made.
3103 			 */
3104 			if (unlikely(score >= prev_score))
3105 				timeout =
3106 				   default_timeout << COMPACT_MAX_DEFER_SHIFT;
3107 		}
3108 		if (unlikely(pgdat->proactive_compact_trigger))
3109 			pgdat->proactive_compact_trigger = false;
3110 	}
3111 
3112 	return 0;
3113 }
3114 
3115 /*
3116  * This kcompactd start function will be called by init and node-hot-add.
3117  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3118  */
3119 void __meminit kcompactd_run(int nid)
3120 {
3121 	pg_data_t *pgdat = NODE_DATA(nid);
3122 
3123 	if (pgdat->kcompactd)
3124 		return;
3125 
3126 	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3127 	if (IS_ERR(pgdat->kcompactd)) {
3128 		pr_err("Failed to start kcompactd on node %d\n", nid);
3129 		pgdat->kcompactd = NULL;
3130 	}
3131 }
3132 
3133 /*
3134  * Called by memory hotplug when all memory in a node is offlined. Caller must
3135  * be holding mem_hotplug_begin/done().
3136  */
3137 void __meminit kcompactd_stop(int nid)
3138 {
3139 	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3140 
3141 	if (kcompactd) {
3142 		kthread_stop(kcompactd);
3143 		NODE_DATA(nid)->kcompactd = NULL;
3144 	}
3145 }
3146 
3147 /*
3148  * It's optimal to keep kcompactd on the same CPUs as their memory, but
3149  * not required for correctness. So if the last cpu in a node goes
3150  * away, we get changed to run anywhere: as the first one comes back,
3151  * restore their cpu bindings.
3152  */
3153 static int kcompactd_cpu_online(unsigned int cpu)
3154 {
3155 	int nid;
3156 
3157 	for_each_node_state(nid, N_MEMORY) {
3158 		pg_data_t *pgdat = NODE_DATA(nid);
3159 		const struct cpumask *mask;
3160 
3161 		mask = cpumask_of_node(pgdat->node_id);
3162 
3163 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3164 			/* One of our CPUs online: restore mask */
3165 			if (pgdat->kcompactd)
3166 				set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3167 	}
3168 	return 0;
3169 }
3170 
3171 static int proc_dointvec_minmax_warn_RT_change(struct ctl_table *table,
3172 		int write, void *buffer, size_t *lenp, loff_t *ppos)
3173 {
3174 	int ret, old;
3175 
3176 	if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3177 		return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3178 
3179 	old = *(int *)table->data;
3180 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3181 	if (ret)
3182 		return ret;
3183 	if (old != *(int *)table->data)
3184 		pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3185 			     table->procname, current->comm,
3186 			     task_pid_nr(current));
3187 	return ret;
3188 }
3189 
3190 static struct ctl_table vm_compaction[] = {
3191 	{
3192 		.procname	= "compact_memory",
3193 		.data		= &sysctl_compact_memory,
3194 		.maxlen		= sizeof(int),
3195 		.mode		= 0200,
3196 		.proc_handler	= sysctl_compaction_handler,
3197 	},
3198 	{
3199 		.procname	= "compaction_proactiveness",
3200 		.data		= &sysctl_compaction_proactiveness,
3201 		.maxlen		= sizeof(sysctl_compaction_proactiveness),
3202 		.mode		= 0644,
3203 		.proc_handler	= compaction_proactiveness_sysctl_handler,
3204 		.extra1		= SYSCTL_ZERO,
3205 		.extra2		= SYSCTL_ONE_HUNDRED,
3206 	},
3207 	{
3208 		.procname	= "extfrag_threshold",
3209 		.data		= &sysctl_extfrag_threshold,
3210 		.maxlen		= sizeof(int),
3211 		.mode		= 0644,
3212 		.proc_handler	= proc_dointvec_minmax,
3213 		.extra1		= SYSCTL_ZERO,
3214 		.extra2		= SYSCTL_ONE_THOUSAND,
3215 	},
3216 	{
3217 		.procname	= "compact_unevictable_allowed",
3218 		.data		= &sysctl_compact_unevictable_allowed,
3219 		.maxlen		= sizeof(int),
3220 		.mode		= 0644,
3221 		.proc_handler	= proc_dointvec_minmax_warn_RT_change,
3222 		.extra1		= SYSCTL_ZERO,
3223 		.extra2		= SYSCTL_ONE,
3224 	},
3225 	{ }
3226 };
3227 
3228 static int __init kcompactd_init(void)
3229 {
3230 	int nid;
3231 	int ret;
3232 
3233 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3234 					"mm/compaction:online",
3235 					kcompactd_cpu_online, NULL);
3236 	if (ret < 0) {
3237 		pr_err("kcompactd: failed to register hotplug callbacks.\n");
3238 		return ret;
3239 	}
3240 
3241 	for_each_node_state(nid, N_MEMORY)
3242 		kcompactd_run(nid);
3243 	register_sysctl_init("vm", vm_compaction);
3244 	return 0;
3245 }
3246 subsys_initcall(kcompactd_init)
3247 
3248 #endif /* CONFIG_COMPACTION */
3249