1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/compaction.c 4 * 5 * Memory compaction for the reduction of external fragmentation. Note that 6 * this heavily depends upon page migration to do all the real heavy 7 * lifting 8 * 9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 10 */ 11 #include <linux/cpu.h> 12 #include <linux/swap.h> 13 #include <linux/migrate.h> 14 #include <linux/compaction.h> 15 #include <linux/mm_inline.h> 16 #include <linux/sched/signal.h> 17 #include <linux/backing-dev.h> 18 #include <linux/sysctl.h> 19 #include <linux/sysfs.h> 20 #include <linux/page-isolation.h> 21 #include <linux/kasan.h> 22 #include <linux/kthread.h> 23 #include <linux/freezer.h> 24 #include <linux/page_owner.h> 25 #include <linux/psi.h> 26 #include "internal.h" 27 28 #ifdef CONFIG_COMPACTION 29 static inline void count_compact_event(enum vm_event_item item) 30 { 31 count_vm_event(item); 32 } 33 34 static inline void count_compact_events(enum vm_event_item item, long delta) 35 { 36 count_vm_events(item, delta); 37 } 38 #else 39 #define count_compact_event(item) do { } while (0) 40 #define count_compact_events(item, delta) do { } while (0) 41 #endif 42 43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/compaction.h> 47 48 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order)) 49 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order)) 50 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order) 51 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order) 52 53 /* 54 * Fragmentation score check interval for proactive compaction purposes. 55 */ 56 static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500; 57 58 /* 59 * Page order with-respect-to which proactive compaction 60 * calculates external fragmentation, which is used as 61 * the "fragmentation score" of a node/zone. 62 */ 63 #if defined CONFIG_TRANSPARENT_HUGEPAGE 64 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER 65 #elif defined CONFIG_HUGETLBFS 66 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER 67 #else 68 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT) 69 #endif 70 71 static unsigned long release_freepages(struct list_head *freelist) 72 { 73 struct page *page, *next; 74 unsigned long high_pfn = 0; 75 76 list_for_each_entry_safe(page, next, freelist, lru) { 77 unsigned long pfn = page_to_pfn(page); 78 list_del(&page->lru); 79 __free_page(page); 80 if (pfn > high_pfn) 81 high_pfn = pfn; 82 } 83 84 return high_pfn; 85 } 86 87 static void split_map_pages(struct list_head *list) 88 { 89 unsigned int i, order, nr_pages; 90 struct page *page, *next; 91 LIST_HEAD(tmp_list); 92 93 list_for_each_entry_safe(page, next, list, lru) { 94 list_del(&page->lru); 95 96 order = page_private(page); 97 nr_pages = 1 << order; 98 99 post_alloc_hook(page, order, __GFP_MOVABLE); 100 if (order) 101 split_page(page, order); 102 103 for (i = 0; i < nr_pages; i++) { 104 list_add(&page->lru, &tmp_list); 105 page++; 106 } 107 } 108 109 list_splice(&tmp_list, list); 110 } 111 112 #ifdef CONFIG_COMPACTION 113 114 int PageMovable(struct page *page) 115 { 116 struct address_space *mapping; 117 118 VM_BUG_ON_PAGE(!PageLocked(page), page); 119 if (!__PageMovable(page)) 120 return 0; 121 122 mapping = page_mapping(page); 123 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page) 124 return 1; 125 126 return 0; 127 } 128 EXPORT_SYMBOL(PageMovable); 129 130 void __SetPageMovable(struct page *page, struct address_space *mapping) 131 { 132 VM_BUG_ON_PAGE(!PageLocked(page), page); 133 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page); 134 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE); 135 } 136 EXPORT_SYMBOL(__SetPageMovable); 137 138 void __ClearPageMovable(struct page *page) 139 { 140 VM_BUG_ON_PAGE(!PageMovable(page), page); 141 /* 142 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE 143 * flag so that VM can catch up released page by driver after isolation. 144 * With it, VM migration doesn't try to put it back. 145 */ 146 page->mapping = (void *)((unsigned long)page->mapping & 147 PAGE_MAPPING_MOVABLE); 148 } 149 EXPORT_SYMBOL(__ClearPageMovable); 150 151 /* Do not skip compaction more than 64 times */ 152 #define COMPACT_MAX_DEFER_SHIFT 6 153 154 /* 155 * Compaction is deferred when compaction fails to result in a page 156 * allocation success. 1 << compact_defer_shift, compactions are skipped up 157 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 158 */ 159 static void defer_compaction(struct zone *zone, int order) 160 { 161 zone->compact_considered = 0; 162 zone->compact_defer_shift++; 163 164 if (order < zone->compact_order_failed) 165 zone->compact_order_failed = order; 166 167 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 168 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 169 170 trace_mm_compaction_defer_compaction(zone, order); 171 } 172 173 /* Returns true if compaction should be skipped this time */ 174 static bool compaction_deferred(struct zone *zone, int order) 175 { 176 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 177 178 if (order < zone->compact_order_failed) 179 return false; 180 181 /* Avoid possible overflow */ 182 if (++zone->compact_considered >= defer_limit) { 183 zone->compact_considered = defer_limit; 184 return false; 185 } 186 187 trace_mm_compaction_deferred(zone, order); 188 189 return true; 190 } 191 192 /* 193 * Update defer tracking counters after successful compaction of given order, 194 * which means an allocation either succeeded (alloc_success == true) or is 195 * expected to succeed. 196 */ 197 void compaction_defer_reset(struct zone *zone, int order, 198 bool alloc_success) 199 { 200 if (alloc_success) { 201 zone->compact_considered = 0; 202 zone->compact_defer_shift = 0; 203 } 204 if (order >= zone->compact_order_failed) 205 zone->compact_order_failed = order + 1; 206 207 trace_mm_compaction_defer_reset(zone, order); 208 } 209 210 /* Returns true if restarting compaction after many failures */ 211 static bool compaction_restarting(struct zone *zone, int order) 212 { 213 if (order < zone->compact_order_failed) 214 return false; 215 216 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 217 zone->compact_considered >= 1UL << zone->compact_defer_shift; 218 } 219 220 /* Returns true if the pageblock should be scanned for pages to isolate. */ 221 static inline bool isolation_suitable(struct compact_control *cc, 222 struct page *page) 223 { 224 if (cc->ignore_skip_hint) 225 return true; 226 227 return !get_pageblock_skip(page); 228 } 229 230 static void reset_cached_positions(struct zone *zone) 231 { 232 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 233 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 234 zone->compact_cached_free_pfn = 235 pageblock_start_pfn(zone_end_pfn(zone) - 1); 236 } 237 238 /* 239 * Compound pages of >= pageblock_order should consistently be skipped until 240 * released. It is always pointless to compact pages of such order (if they are 241 * migratable), and the pageblocks they occupy cannot contain any free pages. 242 */ 243 static bool pageblock_skip_persistent(struct page *page) 244 { 245 if (!PageCompound(page)) 246 return false; 247 248 page = compound_head(page); 249 250 if (compound_order(page) >= pageblock_order) 251 return true; 252 253 return false; 254 } 255 256 static bool 257 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source, 258 bool check_target) 259 { 260 struct page *page = pfn_to_online_page(pfn); 261 struct page *block_page; 262 struct page *end_page; 263 unsigned long block_pfn; 264 265 if (!page) 266 return false; 267 if (zone != page_zone(page)) 268 return false; 269 if (pageblock_skip_persistent(page)) 270 return false; 271 272 /* 273 * If skip is already cleared do no further checking once the 274 * restart points have been set. 275 */ 276 if (check_source && check_target && !get_pageblock_skip(page)) 277 return true; 278 279 /* 280 * If clearing skip for the target scanner, do not select a 281 * non-movable pageblock as the starting point. 282 */ 283 if (!check_source && check_target && 284 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 285 return false; 286 287 /* Ensure the start of the pageblock or zone is online and valid */ 288 block_pfn = pageblock_start_pfn(pfn); 289 block_pfn = max(block_pfn, zone->zone_start_pfn); 290 block_page = pfn_to_online_page(block_pfn); 291 if (block_page) { 292 page = block_page; 293 pfn = block_pfn; 294 } 295 296 /* Ensure the end of the pageblock or zone is online and valid */ 297 block_pfn = pageblock_end_pfn(pfn) - 1; 298 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1); 299 end_page = pfn_to_online_page(block_pfn); 300 if (!end_page) 301 return false; 302 303 /* 304 * Only clear the hint if a sample indicates there is either a 305 * free page or an LRU page in the block. One or other condition 306 * is necessary for the block to be a migration source/target. 307 */ 308 do { 309 if (pfn_valid_within(pfn)) { 310 if (check_source && PageLRU(page)) { 311 clear_pageblock_skip(page); 312 return true; 313 } 314 315 if (check_target && PageBuddy(page)) { 316 clear_pageblock_skip(page); 317 return true; 318 } 319 } 320 321 page += (1 << PAGE_ALLOC_COSTLY_ORDER); 322 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER); 323 } while (page <= end_page); 324 325 return false; 326 } 327 328 /* 329 * This function is called to clear all cached information on pageblocks that 330 * should be skipped for page isolation when the migrate and free page scanner 331 * meet. 332 */ 333 static void __reset_isolation_suitable(struct zone *zone) 334 { 335 unsigned long migrate_pfn = zone->zone_start_pfn; 336 unsigned long free_pfn = zone_end_pfn(zone) - 1; 337 unsigned long reset_migrate = free_pfn; 338 unsigned long reset_free = migrate_pfn; 339 bool source_set = false; 340 bool free_set = false; 341 342 if (!zone->compact_blockskip_flush) 343 return; 344 345 zone->compact_blockskip_flush = false; 346 347 /* 348 * Walk the zone and update pageblock skip information. Source looks 349 * for PageLRU while target looks for PageBuddy. When the scanner 350 * is found, both PageBuddy and PageLRU are checked as the pageblock 351 * is suitable as both source and target. 352 */ 353 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages, 354 free_pfn -= pageblock_nr_pages) { 355 cond_resched(); 356 357 /* Update the migrate PFN */ 358 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) && 359 migrate_pfn < reset_migrate) { 360 source_set = true; 361 reset_migrate = migrate_pfn; 362 zone->compact_init_migrate_pfn = reset_migrate; 363 zone->compact_cached_migrate_pfn[0] = reset_migrate; 364 zone->compact_cached_migrate_pfn[1] = reset_migrate; 365 } 366 367 /* Update the free PFN */ 368 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) && 369 free_pfn > reset_free) { 370 free_set = true; 371 reset_free = free_pfn; 372 zone->compact_init_free_pfn = reset_free; 373 zone->compact_cached_free_pfn = reset_free; 374 } 375 } 376 377 /* Leave no distance if no suitable block was reset */ 378 if (reset_migrate >= reset_free) { 379 zone->compact_cached_migrate_pfn[0] = migrate_pfn; 380 zone->compact_cached_migrate_pfn[1] = migrate_pfn; 381 zone->compact_cached_free_pfn = free_pfn; 382 } 383 } 384 385 void reset_isolation_suitable(pg_data_t *pgdat) 386 { 387 int zoneid; 388 389 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 390 struct zone *zone = &pgdat->node_zones[zoneid]; 391 if (!populated_zone(zone)) 392 continue; 393 394 /* Only flush if a full compaction finished recently */ 395 if (zone->compact_blockskip_flush) 396 __reset_isolation_suitable(zone); 397 } 398 } 399 400 /* 401 * Sets the pageblock skip bit if it was clear. Note that this is a hint as 402 * locks are not required for read/writers. Returns true if it was already set. 403 */ 404 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 405 unsigned long pfn) 406 { 407 bool skip; 408 409 /* Do no update if skip hint is being ignored */ 410 if (cc->ignore_skip_hint) 411 return false; 412 413 if (!IS_ALIGNED(pfn, pageblock_nr_pages)) 414 return false; 415 416 skip = get_pageblock_skip(page); 417 if (!skip && !cc->no_set_skip_hint) 418 set_pageblock_skip(page); 419 420 return skip; 421 } 422 423 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 424 { 425 struct zone *zone = cc->zone; 426 427 pfn = pageblock_end_pfn(pfn); 428 429 /* Set for isolation rather than compaction */ 430 if (cc->no_set_skip_hint) 431 return; 432 433 if (pfn > zone->compact_cached_migrate_pfn[0]) 434 zone->compact_cached_migrate_pfn[0] = pfn; 435 if (cc->mode != MIGRATE_ASYNC && 436 pfn > zone->compact_cached_migrate_pfn[1]) 437 zone->compact_cached_migrate_pfn[1] = pfn; 438 } 439 440 /* 441 * If no pages were isolated then mark this pageblock to be skipped in the 442 * future. The information is later cleared by __reset_isolation_suitable(). 443 */ 444 static void update_pageblock_skip(struct compact_control *cc, 445 struct page *page, unsigned long pfn) 446 { 447 struct zone *zone = cc->zone; 448 449 if (cc->no_set_skip_hint) 450 return; 451 452 if (!page) 453 return; 454 455 set_pageblock_skip(page); 456 457 /* Update where async and sync compaction should restart */ 458 if (pfn < zone->compact_cached_free_pfn) 459 zone->compact_cached_free_pfn = pfn; 460 } 461 #else 462 static inline bool isolation_suitable(struct compact_control *cc, 463 struct page *page) 464 { 465 return true; 466 } 467 468 static inline bool pageblock_skip_persistent(struct page *page) 469 { 470 return false; 471 } 472 473 static inline void update_pageblock_skip(struct compact_control *cc, 474 struct page *page, unsigned long pfn) 475 { 476 } 477 478 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 479 { 480 } 481 482 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 483 unsigned long pfn) 484 { 485 return false; 486 } 487 #endif /* CONFIG_COMPACTION */ 488 489 /* 490 * Compaction requires the taking of some coarse locks that are potentially 491 * very heavily contended. For async compaction, trylock and record if the 492 * lock is contended. The lock will still be acquired but compaction will 493 * abort when the current block is finished regardless of success rate. 494 * Sync compaction acquires the lock. 495 * 496 * Always returns true which makes it easier to track lock state in callers. 497 */ 498 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags, 499 struct compact_control *cc) 500 __acquires(lock) 501 { 502 /* Track if the lock is contended in async mode */ 503 if (cc->mode == MIGRATE_ASYNC && !cc->contended) { 504 if (spin_trylock_irqsave(lock, *flags)) 505 return true; 506 507 cc->contended = true; 508 } 509 510 spin_lock_irqsave(lock, *flags); 511 return true; 512 } 513 514 /* 515 * Compaction requires the taking of some coarse locks that are potentially 516 * very heavily contended. The lock should be periodically unlocked to avoid 517 * having disabled IRQs for a long time, even when there is nobody waiting on 518 * the lock. It might also be that allowing the IRQs will result in 519 * need_resched() becoming true. If scheduling is needed, async compaction 520 * aborts. Sync compaction schedules. 521 * Either compaction type will also abort if a fatal signal is pending. 522 * In either case if the lock was locked, it is dropped and not regained. 523 * 524 * Returns true if compaction should abort due to fatal signal pending, or 525 * async compaction due to need_resched() 526 * Returns false when compaction can continue (sync compaction might have 527 * scheduled) 528 */ 529 static bool compact_unlock_should_abort(spinlock_t *lock, 530 unsigned long flags, bool *locked, struct compact_control *cc) 531 { 532 if (*locked) { 533 spin_unlock_irqrestore(lock, flags); 534 *locked = false; 535 } 536 537 if (fatal_signal_pending(current)) { 538 cc->contended = true; 539 return true; 540 } 541 542 cond_resched(); 543 544 return false; 545 } 546 547 /* 548 * Isolate free pages onto a private freelist. If @strict is true, will abort 549 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 550 * (even though it may still end up isolating some pages). 551 */ 552 static unsigned long isolate_freepages_block(struct compact_control *cc, 553 unsigned long *start_pfn, 554 unsigned long end_pfn, 555 struct list_head *freelist, 556 unsigned int stride, 557 bool strict) 558 { 559 int nr_scanned = 0, total_isolated = 0; 560 struct page *cursor; 561 unsigned long flags = 0; 562 bool locked = false; 563 unsigned long blockpfn = *start_pfn; 564 unsigned int order; 565 566 /* Strict mode is for isolation, speed is secondary */ 567 if (strict) 568 stride = 1; 569 570 cursor = pfn_to_page(blockpfn); 571 572 /* Isolate free pages. */ 573 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) { 574 int isolated; 575 struct page *page = cursor; 576 577 /* 578 * Periodically drop the lock (if held) regardless of its 579 * contention, to give chance to IRQs. Abort if fatal signal 580 * pending or async compaction detects need_resched() 581 */ 582 if (!(blockpfn % SWAP_CLUSTER_MAX) 583 && compact_unlock_should_abort(&cc->zone->lock, flags, 584 &locked, cc)) 585 break; 586 587 nr_scanned++; 588 if (!pfn_valid_within(blockpfn)) 589 goto isolate_fail; 590 591 /* 592 * For compound pages such as THP and hugetlbfs, we can save 593 * potentially a lot of iterations if we skip them at once. 594 * The check is racy, but we can consider only valid values 595 * and the only danger is skipping too much. 596 */ 597 if (PageCompound(page)) { 598 const unsigned int order = compound_order(page); 599 600 if (likely(order < MAX_ORDER)) { 601 blockpfn += (1UL << order) - 1; 602 cursor += (1UL << order) - 1; 603 } 604 goto isolate_fail; 605 } 606 607 if (!PageBuddy(page)) 608 goto isolate_fail; 609 610 /* 611 * If we already hold the lock, we can skip some rechecking. 612 * Note that if we hold the lock now, checked_pageblock was 613 * already set in some previous iteration (or strict is true), 614 * so it is correct to skip the suitable migration target 615 * recheck as well. 616 */ 617 if (!locked) { 618 locked = compact_lock_irqsave(&cc->zone->lock, 619 &flags, cc); 620 621 /* Recheck this is a buddy page under lock */ 622 if (!PageBuddy(page)) 623 goto isolate_fail; 624 } 625 626 /* Found a free page, will break it into order-0 pages */ 627 order = buddy_order(page); 628 isolated = __isolate_free_page(page, order); 629 if (!isolated) 630 break; 631 set_page_private(page, order); 632 633 total_isolated += isolated; 634 cc->nr_freepages += isolated; 635 list_add_tail(&page->lru, freelist); 636 637 if (!strict && cc->nr_migratepages <= cc->nr_freepages) { 638 blockpfn += isolated; 639 break; 640 } 641 /* Advance to the end of split page */ 642 blockpfn += isolated - 1; 643 cursor += isolated - 1; 644 continue; 645 646 isolate_fail: 647 if (strict) 648 break; 649 else 650 continue; 651 652 } 653 654 if (locked) 655 spin_unlock_irqrestore(&cc->zone->lock, flags); 656 657 /* 658 * There is a tiny chance that we have read bogus compound_order(), 659 * so be careful to not go outside of the pageblock. 660 */ 661 if (unlikely(blockpfn > end_pfn)) 662 blockpfn = end_pfn; 663 664 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 665 nr_scanned, total_isolated); 666 667 /* Record how far we have got within the block */ 668 *start_pfn = blockpfn; 669 670 /* 671 * If strict isolation is requested by CMA then check that all the 672 * pages requested were isolated. If there were any failures, 0 is 673 * returned and CMA will fail. 674 */ 675 if (strict && blockpfn < end_pfn) 676 total_isolated = 0; 677 678 cc->total_free_scanned += nr_scanned; 679 if (total_isolated) 680 count_compact_events(COMPACTISOLATED, total_isolated); 681 return total_isolated; 682 } 683 684 /** 685 * isolate_freepages_range() - isolate free pages. 686 * @cc: Compaction control structure. 687 * @start_pfn: The first PFN to start isolating. 688 * @end_pfn: The one-past-last PFN. 689 * 690 * Non-free pages, invalid PFNs, or zone boundaries within the 691 * [start_pfn, end_pfn) range are considered errors, cause function to 692 * undo its actions and return zero. 693 * 694 * Otherwise, function returns one-past-the-last PFN of isolated page 695 * (which may be greater then end_pfn if end fell in a middle of 696 * a free page). 697 */ 698 unsigned long 699 isolate_freepages_range(struct compact_control *cc, 700 unsigned long start_pfn, unsigned long end_pfn) 701 { 702 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 703 LIST_HEAD(freelist); 704 705 pfn = start_pfn; 706 block_start_pfn = pageblock_start_pfn(pfn); 707 if (block_start_pfn < cc->zone->zone_start_pfn) 708 block_start_pfn = cc->zone->zone_start_pfn; 709 block_end_pfn = pageblock_end_pfn(pfn); 710 711 for (; pfn < end_pfn; pfn += isolated, 712 block_start_pfn = block_end_pfn, 713 block_end_pfn += pageblock_nr_pages) { 714 /* Protect pfn from changing by isolate_freepages_block */ 715 unsigned long isolate_start_pfn = pfn; 716 717 block_end_pfn = min(block_end_pfn, end_pfn); 718 719 /* 720 * pfn could pass the block_end_pfn if isolated freepage 721 * is more than pageblock order. In this case, we adjust 722 * scanning range to right one. 723 */ 724 if (pfn >= block_end_pfn) { 725 block_start_pfn = pageblock_start_pfn(pfn); 726 block_end_pfn = pageblock_end_pfn(pfn); 727 block_end_pfn = min(block_end_pfn, end_pfn); 728 } 729 730 if (!pageblock_pfn_to_page(block_start_pfn, 731 block_end_pfn, cc->zone)) 732 break; 733 734 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 735 block_end_pfn, &freelist, 0, true); 736 737 /* 738 * In strict mode, isolate_freepages_block() returns 0 if 739 * there are any holes in the block (ie. invalid PFNs or 740 * non-free pages). 741 */ 742 if (!isolated) 743 break; 744 745 /* 746 * If we managed to isolate pages, it is always (1 << n) * 747 * pageblock_nr_pages for some non-negative n. (Max order 748 * page may span two pageblocks). 749 */ 750 } 751 752 /* __isolate_free_page() does not map the pages */ 753 split_map_pages(&freelist); 754 755 if (pfn < end_pfn) { 756 /* Loop terminated early, cleanup. */ 757 release_freepages(&freelist); 758 return 0; 759 } 760 761 /* We don't use freelists for anything. */ 762 return pfn; 763 } 764 765 /* Similar to reclaim, but different enough that they don't share logic */ 766 static bool too_many_isolated(pg_data_t *pgdat) 767 { 768 unsigned long active, inactive, isolated; 769 770 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) + 771 node_page_state(pgdat, NR_INACTIVE_ANON); 772 active = node_page_state(pgdat, NR_ACTIVE_FILE) + 773 node_page_state(pgdat, NR_ACTIVE_ANON); 774 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) + 775 node_page_state(pgdat, NR_ISOLATED_ANON); 776 777 return isolated > (inactive + active) / 2; 778 } 779 780 /** 781 * isolate_migratepages_block() - isolate all migrate-able pages within 782 * a single pageblock 783 * @cc: Compaction control structure. 784 * @low_pfn: The first PFN to isolate 785 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 786 * @isolate_mode: Isolation mode to be used. 787 * 788 * Isolate all pages that can be migrated from the range specified by 789 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 790 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion, 791 * -ENOMEM in case we could not allocate a page, or 0. 792 * cc->migrate_pfn will contain the next pfn to scan. 793 * 794 * The pages are isolated on cc->migratepages list (not required to be empty), 795 * and cc->nr_migratepages is updated accordingly. 796 */ 797 static int 798 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 799 unsigned long end_pfn, isolate_mode_t isolate_mode) 800 { 801 pg_data_t *pgdat = cc->zone->zone_pgdat; 802 unsigned long nr_scanned = 0, nr_isolated = 0; 803 struct lruvec *lruvec; 804 unsigned long flags = 0; 805 struct lruvec *locked = NULL; 806 struct page *page = NULL, *valid_page = NULL; 807 unsigned long start_pfn = low_pfn; 808 bool skip_on_failure = false; 809 unsigned long next_skip_pfn = 0; 810 bool skip_updated = false; 811 int ret = 0; 812 813 cc->migrate_pfn = low_pfn; 814 815 /* 816 * Ensure that there are not too many pages isolated from the LRU 817 * list by either parallel reclaimers or compaction. If there are, 818 * delay for some time until fewer pages are isolated 819 */ 820 while (unlikely(too_many_isolated(pgdat))) { 821 /* stop isolation if there are still pages not migrated */ 822 if (cc->nr_migratepages) 823 return -EAGAIN; 824 825 /* async migration should just abort */ 826 if (cc->mode == MIGRATE_ASYNC) 827 return -EAGAIN; 828 829 congestion_wait(BLK_RW_ASYNC, HZ/10); 830 831 if (fatal_signal_pending(current)) 832 return -EINTR; 833 } 834 835 cond_resched(); 836 837 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { 838 skip_on_failure = true; 839 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 840 } 841 842 /* Time to isolate some pages for migration */ 843 for (; low_pfn < end_pfn; low_pfn++) { 844 845 if (skip_on_failure && low_pfn >= next_skip_pfn) { 846 /* 847 * We have isolated all migration candidates in the 848 * previous order-aligned block, and did not skip it due 849 * to failure. We should migrate the pages now and 850 * hopefully succeed compaction. 851 */ 852 if (nr_isolated) 853 break; 854 855 /* 856 * We failed to isolate in the previous order-aligned 857 * block. Set the new boundary to the end of the 858 * current block. Note we can't simply increase 859 * next_skip_pfn by 1 << order, as low_pfn might have 860 * been incremented by a higher number due to skipping 861 * a compound or a high-order buddy page in the 862 * previous loop iteration. 863 */ 864 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 865 } 866 867 /* 868 * Periodically drop the lock (if held) regardless of its 869 * contention, to give chance to IRQs. Abort completely if 870 * a fatal signal is pending. 871 */ 872 if (!(low_pfn % SWAP_CLUSTER_MAX)) { 873 if (locked) { 874 unlock_page_lruvec_irqrestore(locked, flags); 875 locked = NULL; 876 } 877 878 if (fatal_signal_pending(current)) { 879 cc->contended = true; 880 ret = -EINTR; 881 882 goto fatal_pending; 883 } 884 885 cond_resched(); 886 } 887 888 if (!pfn_valid_within(low_pfn)) 889 goto isolate_fail; 890 nr_scanned++; 891 892 page = pfn_to_page(low_pfn); 893 894 /* 895 * Check if the pageblock has already been marked skipped. 896 * Only the aligned PFN is checked as the caller isolates 897 * COMPACT_CLUSTER_MAX at a time so the second call must 898 * not falsely conclude that the block should be skipped. 899 */ 900 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) { 901 if (!cc->ignore_skip_hint && get_pageblock_skip(page)) { 902 low_pfn = end_pfn; 903 page = NULL; 904 goto isolate_abort; 905 } 906 valid_page = page; 907 } 908 909 if (PageHuge(page) && cc->alloc_contig) { 910 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages); 911 912 /* 913 * Fail isolation in case isolate_or_dissolve_huge_page() 914 * reports an error. In case of -ENOMEM, abort right away. 915 */ 916 if (ret < 0) { 917 /* Do not report -EBUSY down the chain */ 918 if (ret == -EBUSY) 919 ret = 0; 920 low_pfn += (1UL << compound_order(page)) - 1; 921 goto isolate_fail; 922 } 923 924 if (PageHuge(page)) { 925 /* 926 * Hugepage was successfully isolated and placed 927 * on the cc->migratepages list. 928 */ 929 low_pfn += compound_nr(page) - 1; 930 goto isolate_success_no_list; 931 } 932 933 /* 934 * Ok, the hugepage was dissolved. Now these pages are 935 * Buddy and cannot be re-allocated because they are 936 * isolated. Fall-through as the check below handles 937 * Buddy pages. 938 */ 939 } 940 941 /* 942 * Skip if free. We read page order here without zone lock 943 * which is generally unsafe, but the race window is small and 944 * the worst thing that can happen is that we skip some 945 * potential isolation targets. 946 */ 947 if (PageBuddy(page)) { 948 unsigned long freepage_order = buddy_order_unsafe(page); 949 950 /* 951 * Without lock, we cannot be sure that what we got is 952 * a valid page order. Consider only values in the 953 * valid order range to prevent low_pfn overflow. 954 */ 955 if (freepage_order > 0 && freepage_order < MAX_ORDER) 956 low_pfn += (1UL << freepage_order) - 1; 957 continue; 958 } 959 960 /* 961 * Regardless of being on LRU, compound pages such as THP and 962 * hugetlbfs are not to be compacted unless we are attempting 963 * an allocation much larger than the huge page size (eg CMA). 964 * We can potentially save a lot of iterations if we skip them 965 * at once. The check is racy, but we can consider only valid 966 * values and the only danger is skipping too much. 967 */ 968 if (PageCompound(page) && !cc->alloc_contig) { 969 const unsigned int order = compound_order(page); 970 971 if (likely(order < MAX_ORDER)) 972 low_pfn += (1UL << order) - 1; 973 goto isolate_fail; 974 } 975 976 /* 977 * Check may be lockless but that's ok as we recheck later. 978 * It's possible to migrate LRU and non-lru movable pages. 979 * Skip any other type of page 980 */ 981 if (!PageLRU(page)) { 982 /* 983 * __PageMovable can return false positive so we need 984 * to verify it under page_lock. 985 */ 986 if (unlikely(__PageMovable(page)) && 987 !PageIsolated(page)) { 988 if (locked) { 989 unlock_page_lruvec_irqrestore(locked, flags); 990 locked = NULL; 991 } 992 993 if (!isolate_movable_page(page, isolate_mode)) 994 goto isolate_success; 995 } 996 997 goto isolate_fail; 998 } 999 1000 /* 1001 * Migration will fail if an anonymous page is pinned in memory, 1002 * so avoid taking lru_lock and isolating it unnecessarily in an 1003 * admittedly racy check. 1004 */ 1005 if (!page_mapping(page) && 1006 page_count(page) > page_mapcount(page)) 1007 goto isolate_fail; 1008 1009 /* 1010 * Only allow to migrate anonymous pages in GFP_NOFS context 1011 * because those do not depend on fs locks. 1012 */ 1013 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page)) 1014 goto isolate_fail; 1015 1016 /* 1017 * Be careful not to clear PageLRU until after we're 1018 * sure the page is not being freed elsewhere -- the 1019 * page release code relies on it. 1020 */ 1021 if (unlikely(!get_page_unless_zero(page))) 1022 goto isolate_fail; 1023 1024 if (!__isolate_lru_page_prepare(page, isolate_mode)) 1025 goto isolate_fail_put; 1026 1027 /* Try isolate the page */ 1028 if (!TestClearPageLRU(page)) 1029 goto isolate_fail_put; 1030 1031 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1032 1033 /* If we already hold the lock, we can skip some rechecking */ 1034 if (lruvec != locked) { 1035 if (locked) 1036 unlock_page_lruvec_irqrestore(locked, flags); 1037 1038 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc); 1039 locked = lruvec; 1040 1041 lruvec_memcg_debug(lruvec, page); 1042 1043 /* Try get exclusive access under lock */ 1044 if (!skip_updated) { 1045 skip_updated = true; 1046 if (test_and_set_skip(cc, page, low_pfn)) 1047 goto isolate_abort; 1048 } 1049 1050 /* 1051 * Page become compound since the non-locked check, 1052 * and it's on LRU. It can only be a THP so the order 1053 * is safe to read and it's 0 for tail pages. 1054 */ 1055 if (unlikely(PageCompound(page) && !cc->alloc_contig)) { 1056 low_pfn += compound_nr(page) - 1; 1057 SetPageLRU(page); 1058 goto isolate_fail_put; 1059 } 1060 } 1061 1062 /* The whole page is taken off the LRU; skip the tail pages. */ 1063 if (PageCompound(page)) 1064 low_pfn += compound_nr(page) - 1; 1065 1066 /* Successfully isolated */ 1067 del_page_from_lru_list(page, lruvec); 1068 mod_node_page_state(page_pgdat(page), 1069 NR_ISOLATED_ANON + page_is_file_lru(page), 1070 thp_nr_pages(page)); 1071 1072 isolate_success: 1073 list_add(&page->lru, &cc->migratepages); 1074 isolate_success_no_list: 1075 cc->nr_migratepages += compound_nr(page); 1076 nr_isolated += compound_nr(page); 1077 1078 /* 1079 * Avoid isolating too much unless this block is being 1080 * rescanned (e.g. dirty/writeback pages, parallel allocation) 1081 * or a lock is contended. For contention, isolate quickly to 1082 * potentially remove one source of contention. 1083 */ 1084 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX && 1085 !cc->rescan && !cc->contended) { 1086 ++low_pfn; 1087 break; 1088 } 1089 1090 continue; 1091 1092 isolate_fail_put: 1093 /* Avoid potential deadlock in freeing page under lru_lock */ 1094 if (locked) { 1095 unlock_page_lruvec_irqrestore(locked, flags); 1096 locked = NULL; 1097 } 1098 put_page(page); 1099 1100 isolate_fail: 1101 if (!skip_on_failure && ret != -ENOMEM) 1102 continue; 1103 1104 /* 1105 * We have isolated some pages, but then failed. Release them 1106 * instead of migrating, as we cannot form the cc->order buddy 1107 * page anyway. 1108 */ 1109 if (nr_isolated) { 1110 if (locked) { 1111 unlock_page_lruvec_irqrestore(locked, flags); 1112 locked = NULL; 1113 } 1114 putback_movable_pages(&cc->migratepages); 1115 cc->nr_migratepages = 0; 1116 nr_isolated = 0; 1117 } 1118 1119 if (low_pfn < next_skip_pfn) { 1120 low_pfn = next_skip_pfn - 1; 1121 /* 1122 * The check near the loop beginning would have updated 1123 * next_skip_pfn too, but this is a bit simpler. 1124 */ 1125 next_skip_pfn += 1UL << cc->order; 1126 } 1127 1128 if (ret == -ENOMEM) 1129 break; 1130 } 1131 1132 /* 1133 * The PageBuddy() check could have potentially brought us outside 1134 * the range to be scanned. 1135 */ 1136 if (unlikely(low_pfn > end_pfn)) 1137 low_pfn = end_pfn; 1138 1139 page = NULL; 1140 1141 isolate_abort: 1142 if (locked) 1143 unlock_page_lruvec_irqrestore(locked, flags); 1144 if (page) { 1145 SetPageLRU(page); 1146 put_page(page); 1147 } 1148 1149 /* 1150 * Updated the cached scanner pfn once the pageblock has been scanned 1151 * Pages will either be migrated in which case there is no point 1152 * scanning in the near future or migration failed in which case the 1153 * failure reason may persist. The block is marked for skipping if 1154 * there were no pages isolated in the block or if the block is 1155 * rescanned twice in a row. 1156 */ 1157 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) { 1158 if (valid_page && !skip_updated) 1159 set_pageblock_skip(valid_page); 1160 update_cached_migrate(cc, low_pfn); 1161 } 1162 1163 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 1164 nr_scanned, nr_isolated); 1165 1166 fatal_pending: 1167 cc->total_migrate_scanned += nr_scanned; 1168 if (nr_isolated) 1169 count_compact_events(COMPACTISOLATED, nr_isolated); 1170 1171 cc->migrate_pfn = low_pfn; 1172 1173 return ret; 1174 } 1175 1176 /** 1177 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 1178 * @cc: Compaction control structure. 1179 * @start_pfn: The first PFN to start isolating. 1180 * @end_pfn: The one-past-last PFN. 1181 * 1182 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM 1183 * in case we could not allocate a page, or 0. 1184 */ 1185 int 1186 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 1187 unsigned long end_pfn) 1188 { 1189 unsigned long pfn, block_start_pfn, block_end_pfn; 1190 int ret = 0; 1191 1192 /* Scan block by block. First and last block may be incomplete */ 1193 pfn = start_pfn; 1194 block_start_pfn = pageblock_start_pfn(pfn); 1195 if (block_start_pfn < cc->zone->zone_start_pfn) 1196 block_start_pfn = cc->zone->zone_start_pfn; 1197 block_end_pfn = pageblock_end_pfn(pfn); 1198 1199 for (; pfn < end_pfn; pfn = block_end_pfn, 1200 block_start_pfn = block_end_pfn, 1201 block_end_pfn += pageblock_nr_pages) { 1202 1203 block_end_pfn = min(block_end_pfn, end_pfn); 1204 1205 if (!pageblock_pfn_to_page(block_start_pfn, 1206 block_end_pfn, cc->zone)) 1207 continue; 1208 1209 ret = isolate_migratepages_block(cc, pfn, block_end_pfn, 1210 ISOLATE_UNEVICTABLE); 1211 1212 if (ret) 1213 break; 1214 1215 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX) 1216 break; 1217 } 1218 1219 return ret; 1220 } 1221 1222 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 1223 #ifdef CONFIG_COMPACTION 1224 1225 static bool suitable_migration_source(struct compact_control *cc, 1226 struct page *page) 1227 { 1228 int block_mt; 1229 1230 if (pageblock_skip_persistent(page)) 1231 return false; 1232 1233 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction) 1234 return true; 1235 1236 block_mt = get_pageblock_migratetype(page); 1237 1238 if (cc->migratetype == MIGRATE_MOVABLE) 1239 return is_migrate_movable(block_mt); 1240 else 1241 return block_mt == cc->migratetype; 1242 } 1243 1244 /* Returns true if the page is within a block suitable for migration to */ 1245 static bool suitable_migration_target(struct compact_control *cc, 1246 struct page *page) 1247 { 1248 /* If the page is a large free page, then disallow migration */ 1249 if (PageBuddy(page)) { 1250 /* 1251 * We are checking page_order without zone->lock taken. But 1252 * the only small danger is that we skip a potentially suitable 1253 * pageblock, so it's not worth to check order for valid range. 1254 */ 1255 if (buddy_order_unsafe(page) >= pageblock_order) 1256 return false; 1257 } 1258 1259 if (cc->ignore_block_suitable) 1260 return true; 1261 1262 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 1263 if (is_migrate_movable(get_pageblock_migratetype(page))) 1264 return true; 1265 1266 /* Otherwise skip the block */ 1267 return false; 1268 } 1269 1270 static inline unsigned int 1271 freelist_scan_limit(struct compact_control *cc) 1272 { 1273 unsigned short shift = BITS_PER_LONG - 1; 1274 1275 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1; 1276 } 1277 1278 /* 1279 * Test whether the free scanner has reached the same or lower pageblock than 1280 * the migration scanner, and compaction should thus terminate. 1281 */ 1282 static inline bool compact_scanners_met(struct compact_control *cc) 1283 { 1284 return (cc->free_pfn >> pageblock_order) 1285 <= (cc->migrate_pfn >> pageblock_order); 1286 } 1287 1288 /* 1289 * Used when scanning for a suitable migration target which scans freelists 1290 * in reverse. Reorders the list such as the unscanned pages are scanned 1291 * first on the next iteration of the free scanner 1292 */ 1293 static void 1294 move_freelist_head(struct list_head *freelist, struct page *freepage) 1295 { 1296 LIST_HEAD(sublist); 1297 1298 if (!list_is_last(freelist, &freepage->lru)) { 1299 list_cut_before(&sublist, freelist, &freepage->lru); 1300 if (!list_empty(&sublist)) 1301 list_splice_tail(&sublist, freelist); 1302 } 1303 } 1304 1305 /* 1306 * Similar to move_freelist_head except used by the migration scanner 1307 * when scanning forward. It's possible for these list operations to 1308 * move against each other if they search the free list exactly in 1309 * lockstep. 1310 */ 1311 static void 1312 move_freelist_tail(struct list_head *freelist, struct page *freepage) 1313 { 1314 LIST_HEAD(sublist); 1315 1316 if (!list_is_first(freelist, &freepage->lru)) { 1317 list_cut_position(&sublist, freelist, &freepage->lru); 1318 if (!list_empty(&sublist)) 1319 list_splice_tail(&sublist, freelist); 1320 } 1321 } 1322 1323 static void 1324 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated) 1325 { 1326 unsigned long start_pfn, end_pfn; 1327 struct page *page; 1328 1329 /* Do not search around if there are enough pages already */ 1330 if (cc->nr_freepages >= cc->nr_migratepages) 1331 return; 1332 1333 /* Minimise scanning during async compaction */ 1334 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC) 1335 return; 1336 1337 /* Pageblock boundaries */ 1338 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn); 1339 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)); 1340 1341 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone); 1342 if (!page) 1343 return; 1344 1345 /* Scan before */ 1346 if (start_pfn != pfn) { 1347 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false); 1348 if (cc->nr_freepages >= cc->nr_migratepages) 1349 return; 1350 } 1351 1352 /* Scan after */ 1353 start_pfn = pfn + nr_isolated; 1354 if (start_pfn < end_pfn) 1355 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false); 1356 1357 /* Skip this pageblock in the future as it's full or nearly full */ 1358 if (cc->nr_freepages < cc->nr_migratepages) 1359 set_pageblock_skip(page); 1360 } 1361 1362 /* Search orders in round-robin fashion */ 1363 static int next_search_order(struct compact_control *cc, int order) 1364 { 1365 order--; 1366 if (order < 0) 1367 order = cc->order - 1; 1368 1369 /* Search wrapped around? */ 1370 if (order == cc->search_order) { 1371 cc->search_order--; 1372 if (cc->search_order < 0) 1373 cc->search_order = cc->order - 1; 1374 return -1; 1375 } 1376 1377 return order; 1378 } 1379 1380 static unsigned long 1381 fast_isolate_freepages(struct compact_control *cc) 1382 { 1383 unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1); 1384 unsigned int nr_scanned = 0; 1385 unsigned long low_pfn, min_pfn, highest = 0; 1386 unsigned long nr_isolated = 0; 1387 unsigned long distance; 1388 struct page *page = NULL; 1389 bool scan_start = false; 1390 int order; 1391 1392 /* Full compaction passes in a negative order */ 1393 if (cc->order <= 0) 1394 return cc->free_pfn; 1395 1396 /* 1397 * If starting the scan, use a deeper search and use the highest 1398 * PFN found if a suitable one is not found. 1399 */ 1400 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) { 1401 limit = pageblock_nr_pages >> 1; 1402 scan_start = true; 1403 } 1404 1405 /* 1406 * Preferred point is in the top quarter of the scan space but take 1407 * a pfn from the top half if the search is problematic. 1408 */ 1409 distance = (cc->free_pfn - cc->migrate_pfn); 1410 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2)); 1411 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1)); 1412 1413 if (WARN_ON_ONCE(min_pfn > low_pfn)) 1414 low_pfn = min_pfn; 1415 1416 /* 1417 * Search starts from the last successful isolation order or the next 1418 * order to search after a previous failure 1419 */ 1420 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order); 1421 1422 for (order = cc->search_order; 1423 !page && order >= 0; 1424 order = next_search_order(cc, order)) { 1425 struct free_area *area = &cc->zone->free_area[order]; 1426 struct list_head *freelist; 1427 struct page *freepage; 1428 unsigned long flags; 1429 unsigned int order_scanned = 0; 1430 unsigned long high_pfn = 0; 1431 1432 if (!area->nr_free) 1433 continue; 1434 1435 spin_lock_irqsave(&cc->zone->lock, flags); 1436 freelist = &area->free_list[MIGRATE_MOVABLE]; 1437 list_for_each_entry_reverse(freepage, freelist, lru) { 1438 unsigned long pfn; 1439 1440 order_scanned++; 1441 nr_scanned++; 1442 pfn = page_to_pfn(freepage); 1443 1444 if (pfn >= highest) 1445 highest = max(pageblock_start_pfn(pfn), 1446 cc->zone->zone_start_pfn); 1447 1448 if (pfn >= low_pfn) { 1449 cc->fast_search_fail = 0; 1450 cc->search_order = order; 1451 page = freepage; 1452 break; 1453 } 1454 1455 if (pfn >= min_pfn && pfn > high_pfn) { 1456 high_pfn = pfn; 1457 1458 /* Shorten the scan if a candidate is found */ 1459 limit >>= 1; 1460 } 1461 1462 if (order_scanned >= limit) 1463 break; 1464 } 1465 1466 /* Use a minimum pfn if a preferred one was not found */ 1467 if (!page && high_pfn) { 1468 page = pfn_to_page(high_pfn); 1469 1470 /* Update freepage for the list reorder below */ 1471 freepage = page; 1472 } 1473 1474 /* Reorder to so a future search skips recent pages */ 1475 move_freelist_head(freelist, freepage); 1476 1477 /* Isolate the page if available */ 1478 if (page) { 1479 if (__isolate_free_page(page, order)) { 1480 set_page_private(page, order); 1481 nr_isolated = 1 << order; 1482 cc->nr_freepages += nr_isolated; 1483 list_add_tail(&page->lru, &cc->freepages); 1484 count_compact_events(COMPACTISOLATED, nr_isolated); 1485 } else { 1486 /* If isolation fails, abort the search */ 1487 order = cc->search_order + 1; 1488 page = NULL; 1489 } 1490 } 1491 1492 spin_unlock_irqrestore(&cc->zone->lock, flags); 1493 1494 /* 1495 * Smaller scan on next order so the total scan ig related 1496 * to freelist_scan_limit. 1497 */ 1498 if (order_scanned >= limit) 1499 limit = min(1U, limit >> 1); 1500 } 1501 1502 if (!page) { 1503 cc->fast_search_fail++; 1504 if (scan_start) { 1505 /* 1506 * Use the highest PFN found above min. If one was 1507 * not found, be pessimistic for direct compaction 1508 * and use the min mark. 1509 */ 1510 if (highest) { 1511 page = pfn_to_page(highest); 1512 cc->free_pfn = highest; 1513 } else { 1514 if (cc->direct_compaction && pfn_valid(min_pfn)) { 1515 page = pageblock_pfn_to_page(min_pfn, 1516 min(pageblock_end_pfn(min_pfn), 1517 zone_end_pfn(cc->zone)), 1518 cc->zone); 1519 cc->free_pfn = min_pfn; 1520 } 1521 } 1522 } 1523 } 1524 1525 if (highest && highest >= cc->zone->compact_cached_free_pfn) { 1526 highest -= pageblock_nr_pages; 1527 cc->zone->compact_cached_free_pfn = highest; 1528 } 1529 1530 cc->total_free_scanned += nr_scanned; 1531 if (!page) 1532 return cc->free_pfn; 1533 1534 low_pfn = page_to_pfn(page); 1535 fast_isolate_around(cc, low_pfn, nr_isolated); 1536 return low_pfn; 1537 } 1538 1539 /* 1540 * Based on information in the current compact_control, find blocks 1541 * suitable for isolating free pages from and then isolate them. 1542 */ 1543 static void isolate_freepages(struct compact_control *cc) 1544 { 1545 struct zone *zone = cc->zone; 1546 struct page *page; 1547 unsigned long block_start_pfn; /* start of current pageblock */ 1548 unsigned long isolate_start_pfn; /* exact pfn we start at */ 1549 unsigned long block_end_pfn; /* end of current pageblock */ 1550 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 1551 struct list_head *freelist = &cc->freepages; 1552 unsigned int stride; 1553 1554 /* Try a small search of the free lists for a candidate */ 1555 isolate_start_pfn = fast_isolate_freepages(cc); 1556 if (cc->nr_freepages) 1557 goto splitmap; 1558 1559 /* 1560 * Initialise the free scanner. The starting point is where we last 1561 * successfully isolated from, zone-cached value, or the end of the 1562 * zone when isolating for the first time. For looping we also need 1563 * this pfn aligned down to the pageblock boundary, because we do 1564 * block_start_pfn -= pageblock_nr_pages in the for loop. 1565 * For ending point, take care when isolating in last pageblock of a 1566 * zone which ends in the middle of a pageblock. 1567 * The low boundary is the end of the pageblock the migration scanner 1568 * is using. 1569 */ 1570 isolate_start_pfn = cc->free_pfn; 1571 block_start_pfn = pageblock_start_pfn(isolate_start_pfn); 1572 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 1573 zone_end_pfn(zone)); 1574 low_pfn = pageblock_end_pfn(cc->migrate_pfn); 1575 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1; 1576 1577 /* 1578 * Isolate free pages until enough are available to migrate the 1579 * pages on cc->migratepages. We stop searching if the migrate 1580 * and free page scanners meet or enough free pages are isolated. 1581 */ 1582 for (; block_start_pfn >= low_pfn; 1583 block_end_pfn = block_start_pfn, 1584 block_start_pfn -= pageblock_nr_pages, 1585 isolate_start_pfn = block_start_pfn) { 1586 unsigned long nr_isolated; 1587 1588 /* 1589 * This can iterate a massively long zone without finding any 1590 * suitable migration targets, so periodically check resched. 1591 */ 1592 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))) 1593 cond_resched(); 1594 1595 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1596 zone); 1597 if (!page) 1598 continue; 1599 1600 /* Check the block is suitable for migration */ 1601 if (!suitable_migration_target(cc, page)) 1602 continue; 1603 1604 /* If isolation recently failed, do not retry */ 1605 if (!isolation_suitable(cc, page)) 1606 continue; 1607 1608 /* Found a block suitable for isolating free pages from. */ 1609 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn, 1610 block_end_pfn, freelist, stride, false); 1611 1612 /* Update the skip hint if the full pageblock was scanned */ 1613 if (isolate_start_pfn == block_end_pfn) 1614 update_pageblock_skip(cc, page, block_start_pfn); 1615 1616 /* Are enough freepages isolated? */ 1617 if (cc->nr_freepages >= cc->nr_migratepages) { 1618 if (isolate_start_pfn >= block_end_pfn) { 1619 /* 1620 * Restart at previous pageblock if more 1621 * freepages can be isolated next time. 1622 */ 1623 isolate_start_pfn = 1624 block_start_pfn - pageblock_nr_pages; 1625 } 1626 break; 1627 } else if (isolate_start_pfn < block_end_pfn) { 1628 /* 1629 * If isolation failed early, do not continue 1630 * needlessly. 1631 */ 1632 break; 1633 } 1634 1635 /* Adjust stride depending on isolation */ 1636 if (nr_isolated) { 1637 stride = 1; 1638 continue; 1639 } 1640 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1); 1641 } 1642 1643 /* 1644 * Record where the free scanner will restart next time. Either we 1645 * broke from the loop and set isolate_start_pfn based on the last 1646 * call to isolate_freepages_block(), or we met the migration scanner 1647 * and the loop terminated due to isolate_start_pfn < low_pfn 1648 */ 1649 cc->free_pfn = isolate_start_pfn; 1650 1651 splitmap: 1652 /* __isolate_free_page() does not map the pages */ 1653 split_map_pages(freelist); 1654 } 1655 1656 /* 1657 * This is a migrate-callback that "allocates" freepages by taking pages 1658 * from the isolated freelists in the block we are migrating to. 1659 */ 1660 static struct page *compaction_alloc(struct page *migratepage, 1661 unsigned long data) 1662 { 1663 struct compact_control *cc = (struct compact_control *)data; 1664 struct page *freepage; 1665 1666 if (list_empty(&cc->freepages)) { 1667 isolate_freepages(cc); 1668 1669 if (list_empty(&cc->freepages)) 1670 return NULL; 1671 } 1672 1673 freepage = list_entry(cc->freepages.next, struct page, lru); 1674 list_del(&freepage->lru); 1675 cc->nr_freepages--; 1676 1677 return freepage; 1678 } 1679 1680 /* 1681 * This is a migrate-callback that "frees" freepages back to the isolated 1682 * freelist. All pages on the freelist are from the same zone, so there is no 1683 * special handling needed for NUMA. 1684 */ 1685 static void compaction_free(struct page *page, unsigned long data) 1686 { 1687 struct compact_control *cc = (struct compact_control *)data; 1688 1689 list_add(&page->lru, &cc->freepages); 1690 cc->nr_freepages++; 1691 } 1692 1693 /* possible outcome of isolate_migratepages */ 1694 typedef enum { 1695 ISOLATE_ABORT, /* Abort compaction now */ 1696 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1697 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1698 } isolate_migrate_t; 1699 1700 /* 1701 * Allow userspace to control policy on scanning the unevictable LRU for 1702 * compactable pages. 1703 */ 1704 #ifdef CONFIG_PREEMPT_RT 1705 int sysctl_compact_unevictable_allowed __read_mostly = 0; 1706 #else 1707 int sysctl_compact_unevictable_allowed __read_mostly = 1; 1708 #endif 1709 1710 static inline void 1711 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn) 1712 { 1713 if (cc->fast_start_pfn == ULONG_MAX) 1714 return; 1715 1716 if (!cc->fast_start_pfn) 1717 cc->fast_start_pfn = pfn; 1718 1719 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn); 1720 } 1721 1722 static inline unsigned long 1723 reinit_migrate_pfn(struct compact_control *cc) 1724 { 1725 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX) 1726 return cc->migrate_pfn; 1727 1728 cc->migrate_pfn = cc->fast_start_pfn; 1729 cc->fast_start_pfn = ULONG_MAX; 1730 1731 return cc->migrate_pfn; 1732 } 1733 1734 /* 1735 * Briefly search the free lists for a migration source that already has 1736 * some free pages to reduce the number of pages that need migration 1737 * before a pageblock is free. 1738 */ 1739 static unsigned long fast_find_migrateblock(struct compact_control *cc) 1740 { 1741 unsigned int limit = freelist_scan_limit(cc); 1742 unsigned int nr_scanned = 0; 1743 unsigned long distance; 1744 unsigned long pfn = cc->migrate_pfn; 1745 unsigned long high_pfn; 1746 int order; 1747 bool found_block = false; 1748 1749 /* Skip hints are relied on to avoid repeats on the fast search */ 1750 if (cc->ignore_skip_hint) 1751 return pfn; 1752 1753 /* 1754 * If the migrate_pfn is not at the start of a zone or the start 1755 * of a pageblock then assume this is a continuation of a previous 1756 * scan restarted due to COMPACT_CLUSTER_MAX. 1757 */ 1758 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn)) 1759 return pfn; 1760 1761 /* 1762 * For smaller orders, just linearly scan as the number of pages 1763 * to migrate should be relatively small and does not necessarily 1764 * justify freeing up a large block for a small allocation. 1765 */ 1766 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER) 1767 return pfn; 1768 1769 /* 1770 * Only allow kcompactd and direct requests for movable pages to 1771 * quickly clear out a MOVABLE pageblock for allocation. This 1772 * reduces the risk that a large movable pageblock is freed for 1773 * an unmovable/reclaimable small allocation. 1774 */ 1775 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE) 1776 return pfn; 1777 1778 /* 1779 * When starting the migration scanner, pick any pageblock within the 1780 * first half of the search space. Otherwise try and pick a pageblock 1781 * within the first eighth to reduce the chances that a migration 1782 * target later becomes a source. 1783 */ 1784 distance = (cc->free_pfn - cc->migrate_pfn) >> 1; 1785 if (cc->migrate_pfn != cc->zone->zone_start_pfn) 1786 distance >>= 2; 1787 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance); 1788 1789 for (order = cc->order - 1; 1790 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit; 1791 order--) { 1792 struct free_area *area = &cc->zone->free_area[order]; 1793 struct list_head *freelist; 1794 unsigned long flags; 1795 struct page *freepage; 1796 1797 if (!area->nr_free) 1798 continue; 1799 1800 spin_lock_irqsave(&cc->zone->lock, flags); 1801 freelist = &area->free_list[MIGRATE_MOVABLE]; 1802 list_for_each_entry(freepage, freelist, lru) { 1803 unsigned long free_pfn; 1804 1805 if (nr_scanned++ >= limit) { 1806 move_freelist_tail(freelist, freepage); 1807 break; 1808 } 1809 1810 free_pfn = page_to_pfn(freepage); 1811 if (free_pfn < high_pfn) { 1812 /* 1813 * Avoid if skipped recently. Ideally it would 1814 * move to the tail but even safe iteration of 1815 * the list assumes an entry is deleted, not 1816 * reordered. 1817 */ 1818 if (get_pageblock_skip(freepage)) 1819 continue; 1820 1821 /* Reorder to so a future search skips recent pages */ 1822 move_freelist_tail(freelist, freepage); 1823 1824 update_fast_start_pfn(cc, free_pfn); 1825 pfn = pageblock_start_pfn(free_pfn); 1826 cc->fast_search_fail = 0; 1827 found_block = true; 1828 set_pageblock_skip(freepage); 1829 break; 1830 } 1831 } 1832 spin_unlock_irqrestore(&cc->zone->lock, flags); 1833 } 1834 1835 cc->total_migrate_scanned += nr_scanned; 1836 1837 /* 1838 * If fast scanning failed then use a cached entry for a page block 1839 * that had free pages as the basis for starting a linear scan. 1840 */ 1841 if (!found_block) { 1842 cc->fast_search_fail++; 1843 pfn = reinit_migrate_pfn(cc); 1844 } 1845 return pfn; 1846 } 1847 1848 /* 1849 * Isolate all pages that can be migrated from the first suitable block, 1850 * starting at the block pointed to by the migrate scanner pfn within 1851 * compact_control. 1852 */ 1853 static isolate_migrate_t isolate_migratepages(struct compact_control *cc) 1854 { 1855 unsigned long block_start_pfn; 1856 unsigned long block_end_pfn; 1857 unsigned long low_pfn; 1858 struct page *page; 1859 const isolate_mode_t isolate_mode = 1860 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 1861 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0); 1862 bool fast_find_block; 1863 1864 /* 1865 * Start at where we last stopped, or beginning of the zone as 1866 * initialized by compact_zone(). The first failure will use 1867 * the lowest PFN as the starting point for linear scanning. 1868 */ 1869 low_pfn = fast_find_migrateblock(cc); 1870 block_start_pfn = pageblock_start_pfn(low_pfn); 1871 if (block_start_pfn < cc->zone->zone_start_pfn) 1872 block_start_pfn = cc->zone->zone_start_pfn; 1873 1874 /* 1875 * fast_find_migrateblock marks a pageblock skipped so to avoid 1876 * the isolation_suitable check below, check whether the fast 1877 * search was successful. 1878 */ 1879 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail; 1880 1881 /* Only scan within a pageblock boundary */ 1882 block_end_pfn = pageblock_end_pfn(low_pfn); 1883 1884 /* 1885 * Iterate over whole pageblocks until we find the first suitable. 1886 * Do not cross the free scanner. 1887 */ 1888 for (; block_end_pfn <= cc->free_pfn; 1889 fast_find_block = false, 1890 cc->migrate_pfn = low_pfn = block_end_pfn, 1891 block_start_pfn = block_end_pfn, 1892 block_end_pfn += pageblock_nr_pages) { 1893 1894 /* 1895 * This can potentially iterate a massively long zone with 1896 * many pageblocks unsuitable, so periodically check if we 1897 * need to schedule. 1898 */ 1899 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))) 1900 cond_resched(); 1901 1902 page = pageblock_pfn_to_page(block_start_pfn, 1903 block_end_pfn, cc->zone); 1904 if (!page) 1905 continue; 1906 1907 /* 1908 * If isolation recently failed, do not retry. Only check the 1909 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock 1910 * to be visited multiple times. Assume skip was checked 1911 * before making it "skip" so other compaction instances do 1912 * not scan the same block. 1913 */ 1914 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) && 1915 !fast_find_block && !isolation_suitable(cc, page)) 1916 continue; 1917 1918 /* 1919 * For async compaction, also only scan in MOVABLE blocks 1920 * without huge pages. Async compaction is optimistic to see 1921 * if the minimum amount of work satisfies the allocation. 1922 * The cached PFN is updated as it's possible that all 1923 * remaining blocks between source and target are unsuitable 1924 * and the compaction scanners fail to meet. 1925 */ 1926 if (!suitable_migration_source(cc, page)) { 1927 update_cached_migrate(cc, block_end_pfn); 1928 continue; 1929 } 1930 1931 /* Perform the isolation */ 1932 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn, 1933 isolate_mode)) 1934 return ISOLATE_ABORT; 1935 1936 /* 1937 * Either we isolated something and proceed with migration. Or 1938 * we failed and compact_zone should decide if we should 1939 * continue or not. 1940 */ 1941 break; 1942 } 1943 1944 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 1945 } 1946 1947 /* 1948 * order == -1 is expected when compacting via 1949 * /proc/sys/vm/compact_memory 1950 */ 1951 static inline bool is_via_compact_memory(int order) 1952 { 1953 return order == -1; 1954 } 1955 1956 static bool kswapd_is_running(pg_data_t *pgdat) 1957 { 1958 return pgdat->kswapd && (pgdat->kswapd->state == TASK_RUNNING); 1959 } 1960 1961 /* 1962 * A zone's fragmentation score is the external fragmentation wrt to the 1963 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100]. 1964 */ 1965 static unsigned int fragmentation_score_zone(struct zone *zone) 1966 { 1967 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER); 1968 } 1969 1970 /* 1971 * A weighted zone's fragmentation score is the external fragmentation 1972 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It 1973 * returns a value in the range [0, 100]. 1974 * 1975 * The scaling factor ensures that proactive compaction focuses on larger 1976 * zones like ZONE_NORMAL, rather than smaller, specialized zones like 1977 * ZONE_DMA32. For smaller zones, the score value remains close to zero, 1978 * and thus never exceeds the high threshold for proactive compaction. 1979 */ 1980 static unsigned int fragmentation_score_zone_weighted(struct zone *zone) 1981 { 1982 unsigned long score; 1983 1984 score = zone->present_pages * fragmentation_score_zone(zone); 1985 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1); 1986 } 1987 1988 /* 1989 * The per-node proactive (background) compaction process is started by its 1990 * corresponding kcompactd thread when the node's fragmentation score 1991 * exceeds the high threshold. The compaction process remains active till 1992 * the node's score falls below the low threshold, or one of the back-off 1993 * conditions is met. 1994 */ 1995 static unsigned int fragmentation_score_node(pg_data_t *pgdat) 1996 { 1997 unsigned int score = 0; 1998 int zoneid; 1999 2000 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2001 struct zone *zone; 2002 2003 zone = &pgdat->node_zones[zoneid]; 2004 score += fragmentation_score_zone_weighted(zone); 2005 } 2006 2007 return score; 2008 } 2009 2010 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low) 2011 { 2012 unsigned int wmark_low; 2013 2014 /* 2015 * Cap the low watermark to avoid excessive compaction 2016 * activity in case a user sets the proactiveness tunable 2017 * close to 100 (maximum). 2018 */ 2019 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U); 2020 return low ? wmark_low : min(wmark_low + 10, 100U); 2021 } 2022 2023 static bool should_proactive_compact_node(pg_data_t *pgdat) 2024 { 2025 int wmark_high; 2026 2027 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat)) 2028 return false; 2029 2030 wmark_high = fragmentation_score_wmark(pgdat, false); 2031 return fragmentation_score_node(pgdat) > wmark_high; 2032 } 2033 2034 static enum compact_result __compact_finished(struct compact_control *cc) 2035 { 2036 unsigned int order; 2037 const int migratetype = cc->migratetype; 2038 int ret; 2039 2040 /* Compaction run completes if the migrate and free scanner meet */ 2041 if (compact_scanners_met(cc)) { 2042 /* Let the next compaction start anew. */ 2043 reset_cached_positions(cc->zone); 2044 2045 /* 2046 * Mark that the PG_migrate_skip information should be cleared 2047 * by kswapd when it goes to sleep. kcompactd does not set the 2048 * flag itself as the decision to be clear should be directly 2049 * based on an allocation request. 2050 */ 2051 if (cc->direct_compaction) 2052 cc->zone->compact_blockskip_flush = true; 2053 2054 if (cc->whole_zone) 2055 return COMPACT_COMPLETE; 2056 else 2057 return COMPACT_PARTIAL_SKIPPED; 2058 } 2059 2060 if (cc->proactive_compaction) { 2061 int score, wmark_low; 2062 pg_data_t *pgdat; 2063 2064 pgdat = cc->zone->zone_pgdat; 2065 if (kswapd_is_running(pgdat)) 2066 return COMPACT_PARTIAL_SKIPPED; 2067 2068 score = fragmentation_score_zone(cc->zone); 2069 wmark_low = fragmentation_score_wmark(pgdat, true); 2070 2071 if (score > wmark_low) 2072 ret = COMPACT_CONTINUE; 2073 else 2074 ret = COMPACT_SUCCESS; 2075 2076 goto out; 2077 } 2078 2079 if (is_via_compact_memory(cc->order)) 2080 return COMPACT_CONTINUE; 2081 2082 /* 2083 * Always finish scanning a pageblock to reduce the possibility of 2084 * fallbacks in the future. This is particularly important when 2085 * migration source is unmovable/reclaimable but it's not worth 2086 * special casing. 2087 */ 2088 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages)) 2089 return COMPACT_CONTINUE; 2090 2091 /* Direct compactor: Is a suitable page free? */ 2092 ret = COMPACT_NO_SUITABLE_PAGE; 2093 for (order = cc->order; order < MAX_ORDER; order++) { 2094 struct free_area *area = &cc->zone->free_area[order]; 2095 bool can_steal; 2096 2097 /* Job done if page is free of the right migratetype */ 2098 if (!free_area_empty(area, migratetype)) 2099 return COMPACT_SUCCESS; 2100 2101 #ifdef CONFIG_CMA 2102 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 2103 if (migratetype == MIGRATE_MOVABLE && 2104 !free_area_empty(area, MIGRATE_CMA)) 2105 return COMPACT_SUCCESS; 2106 #endif 2107 /* 2108 * Job done if allocation would steal freepages from 2109 * other migratetype buddy lists. 2110 */ 2111 if (find_suitable_fallback(area, order, migratetype, 2112 true, &can_steal) != -1) { 2113 2114 /* movable pages are OK in any pageblock */ 2115 if (migratetype == MIGRATE_MOVABLE) 2116 return COMPACT_SUCCESS; 2117 2118 /* 2119 * We are stealing for a non-movable allocation. Make 2120 * sure we finish compacting the current pageblock 2121 * first so it is as free as possible and we won't 2122 * have to steal another one soon. This only applies 2123 * to sync compaction, as async compaction operates 2124 * on pageblocks of the same migratetype. 2125 */ 2126 if (cc->mode == MIGRATE_ASYNC || 2127 IS_ALIGNED(cc->migrate_pfn, 2128 pageblock_nr_pages)) { 2129 return COMPACT_SUCCESS; 2130 } 2131 2132 ret = COMPACT_CONTINUE; 2133 break; 2134 } 2135 } 2136 2137 out: 2138 if (cc->contended || fatal_signal_pending(current)) 2139 ret = COMPACT_CONTENDED; 2140 2141 return ret; 2142 } 2143 2144 static enum compact_result compact_finished(struct compact_control *cc) 2145 { 2146 int ret; 2147 2148 ret = __compact_finished(cc); 2149 trace_mm_compaction_finished(cc->zone, cc->order, ret); 2150 if (ret == COMPACT_NO_SUITABLE_PAGE) 2151 ret = COMPACT_CONTINUE; 2152 2153 return ret; 2154 } 2155 2156 static enum compact_result __compaction_suitable(struct zone *zone, int order, 2157 unsigned int alloc_flags, 2158 int highest_zoneidx, 2159 unsigned long wmark_target) 2160 { 2161 unsigned long watermark; 2162 2163 if (is_via_compact_memory(order)) 2164 return COMPACT_CONTINUE; 2165 2166 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 2167 /* 2168 * If watermarks for high-order allocation are already met, there 2169 * should be no need for compaction at all. 2170 */ 2171 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx, 2172 alloc_flags)) 2173 return COMPACT_SUCCESS; 2174 2175 /* 2176 * Watermarks for order-0 must be met for compaction to be able to 2177 * isolate free pages for migration targets. This means that the 2178 * watermark and alloc_flags have to match, or be more pessimistic than 2179 * the check in __isolate_free_page(). We don't use the direct 2180 * compactor's alloc_flags, as they are not relevant for freepage 2181 * isolation. We however do use the direct compactor's highest_zoneidx 2182 * to skip over zones where lowmem reserves would prevent allocation 2183 * even if compaction succeeds. 2184 * For costly orders, we require low watermark instead of min for 2185 * compaction to proceed to increase its chances. 2186 * ALLOC_CMA is used, as pages in CMA pageblocks are considered 2187 * suitable migration targets 2188 */ 2189 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ? 2190 low_wmark_pages(zone) : min_wmark_pages(zone); 2191 watermark += compact_gap(order); 2192 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx, 2193 ALLOC_CMA, wmark_target)) 2194 return COMPACT_SKIPPED; 2195 2196 return COMPACT_CONTINUE; 2197 } 2198 2199 /* 2200 * compaction_suitable: Is this suitable to run compaction on this zone now? 2201 * Returns 2202 * COMPACT_SKIPPED - If there are too few free pages for compaction 2203 * COMPACT_SUCCESS - If the allocation would succeed without compaction 2204 * COMPACT_CONTINUE - If compaction should run now 2205 */ 2206 enum compact_result compaction_suitable(struct zone *zone, int order, 2207 unsigned int alloc_flags, 2208 int highest_zoneidx) 2209 { 2210 enum compact_result ret; 2211 int fragindex; 2212 2213 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx, 2214 zone_page_state(zone, NR_FREE_PAGES)); 2215 /* 2216 * fragmentation index determines if allocation failures are due to 2217 * low memory or external fragmentation 2218 * 2219 * index of -1000 would imply allocations might succeed depending on 2220 * watermarks, but we already failed the high-order watermark check 2221 * index towards 0 implies failure is due to lack of memory 2222 * index towards 1000 implies failure is due to fragmentation 2223 * 2224 * Only compact if a failure would be due to fragmentation. Also 2225 * ignore fragindex for non-costly orders where the alternative to 2226 * a successful reclaim/compaction is OOM. Fragindex and the 2227 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent 2228 * excessive compaction for costly orders, but it should not be at the 2229 * expense of system stability. 2230 */ 2231 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) { 2232 fragindex = fragmentation_index(zone, order); 2233 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 2234 ret = COMPACT_NOT_SUITABLE_ZONE; 2235 } 2236 2237 trace_mm_compaction_suitable(zone, order, ret); 2238 if (ret == COMPACT_NOT_SUITABLE_ZONE) 2239 ret = COMPACT_SKIPPED; 2240 2241 return ret; 2242 } 2243 2244 bool compaction_zonelist_suitable(struct alloc_context *ac, int order, 2245 int alloc_flags) 2246 { 2247 struct zone *zone; 2248 struct zoneref *z; 2249 2250 /* 2251 * Make sure at least one zone would pass __compaction_suitable if we continue 2252 * retrying the reclaim. 2253 */ 2254 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2255 ac->highest_zoneidx, ac->nodemask) { 2256 unsigned long available; 2257 enum compact_result compact_result; 2258 2259 /* 2260 * Do not consider all the reclaimable memory because we do not 2261 * want to trash just for a single high order allocation which 2262 * is even not guaranteed to appear even if __compaction_suitable 2263 * is happy about the watermark check. 2264 */ 2265 available = zone_reclaimable_pages(zone) / order; 2266 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 2267 compact_result = __compaction_suitable(zone, order, alloc_flags, 2268 ac->highest_zoneidx, available); 2269 if (compact_result != COMPACT_SKIPPED) 2270 return true; 2271 } 2272 2273 return false; 2274 } 2275 2276 static enum compact_result 2277 compact_zone(struct compact_control *cc, struct capture_control *capc) 2278 { 2279 enum compact_result ret; 2280 unsigned long start_pfn = cc->zone->zone_start_pfn; 2281 unsigned long end_pfn = zone_end_pfn(cc->zone); 2282 unsigned long last_migrated_pfn; 2283 const bool sync = cc->mode != MIGRATE_ASYNC; 2284 bool update_cached; 2285 2286 /* 2287 * These counters track activities during zone compaction. Initialize 2288 * them before compacting a new zone. 2289 */ 2290 cc->total_migrate_scanned = 0; 2291 cc->total_free_scanned = 0; 2292 cc->nr_migratepages = 0; 2293 cc->nr_freepages = 0; 2294 INIT_LIST_HEAD(&cc->freepages); 2295 INIT_LIST_HEAD(&cc->migratepages); 2296 2297 cc->migratetype = gfp_migratetype(cc->gfp_mask); 2298 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags, 2299 cc->highest_zoneidx); 2300 /* Compaction is likely to fail */ 2301 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED) 2302 return ret; 2303 2304 /* huh, compaction_suitable is returning something unexpected */ 2305 VM_BUG_ON(ret != COMPACT_CONTINUE); 2306 2307 /* 2308 * Clear pageblock skip if there were failures recently and compaction 2309 * is about to be retried after being deferred. 2310 */ 2311 if (compaction_restarting(cc->zone, cc->order)) 2312 __reset_isolation_suitable(cc->zone); 2313 2314 /* 2315 * Setup to move all movable pages to the end of the zone. Used cached 2316 * information on where the scanners should start (unless we explicitly 2317 * want to compact the whole zone), but check that it is initialised 2318 * by ensuring the values are within zone boundaries. 2319 */ 2320 cc->fast_start_pfn = 0; 2321 if (cc->whole_zone) { 2322 cc->migrate_pfn = start_pfn; 2323 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2324 } else { 2325 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync]; 2326 cc->free_pfn = cc->zone->compact_cached_free_pfn; 2327 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 2328 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2329 cc->zone->compact_cached_free_pfn = cc->free_pfn; 2330 } 2331 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 2332 cc->migrate_pfn = start_pfn; 2333 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 2334 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 2335 } 2336 2337 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn) 2338 cc->whole_zone = true; 2339 } 2340 2341 last_migrated_pfn = 0; 2342 2343 /* 2344 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on 2345 * the basis that some migrations will fail in ASYNC mode. However, 2346 * if the cached PFNs match and pageblocks are skipped due to having 2347 * no isolation candidates, then the sync state does not matter. 2348 * Until a pageblock with isolation candidates is found, keep the 2349 * cached PFNs in sync to avoid revisiting the same blocks. 2350 */ 2351 update_cached = !sync && 2352 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1]; 2353 2354 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, 2355 cc->free_pfn, end_pfn, sync); 2356 2357 /* lru_add_drain_all could be expensive with involving other CPUs */ 2358 lru_add_drain(); 2359 2360 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) { 2361 int err; 2362 unsigned long iteration_start_pfn = cc->migrate_pfn; 2363 2364 /* 2365 * Avoid multiple rescans which can happen if a page cannot be 2366 * isolated (dirty/writeback in async mode) or if the migrated 2367 * pages are being allocated before the pageblock is cleared. 2368 * The first rescan will capture the entire pageblock for 2369 * migration. If it fails, it'll be marked skip and scanning 2370 * will proceed as normal. 2371 */ 2372 cc->rescan = false; 2373 if (pageblock_start_pfn(last_migrated_pfn) == 2374 pageblock_start_pfn(iteration_start_pfn)) { 2375 cc->rescan = true; 2376 } 2377 2378 switch (isolate_migratepages(cc)) { 2379 case ISOLATE_ABORT: 2380 ret = COMPACT_CONTENDED; 2381 putback_movable_pages(&cc->migratepages); 2382 cc->nr_migratepages = 0; 2383 goto out; 2384 case ISOLATE_NONE: 2385 if (update_cached) { 2386 cc->zone->compact_cached_migrate_pfn[1] = 2387 cc->zone->compact_cached_migrate_pfn[0]; 2388 } 2389 2390 /* 2391 * We haven't isolated and migrated anything, but 2392 * there might still be unflushed migrations from 2393 * previous cc->order aligned block. 2394 */ 2395 goto check_drain; 2396 case ISOLATE_SUCCESS: 2397 update_cached = false; 2398 last_migrated_pfn = iteration_start_pfn; 2399 } 2400 2401 err = migrate_pages(&cc->migratepages, compaction_alloc, 2402 compaction_free, (unsigned long)cc, cc->mode, 2403 MR_COMPACTION); 2404 2405 trace_mm_compaction_migratepages(cc->nr_migratepages, err, 2406 &cc->migratepages); 2407 2408 /* All pages were either migrated or will be released */ 2409 cc->nr_migratepages = 0; 2410 if (err) { 2411 putback_movable_pages(&cc->migratepages); 2412 /* 2413 * migrate_pages() may return -ENOMEM when scanners meet 2414 * and we want compact_finished() to detect it 2415 */ 2416 if (err == -ENOMEM && !compact_scanners_met(cc)) { 2417 ret = COMPACT_CONTENDED; 2418 goto out; 2419 } 2420 /* 2421 * We failed to migrate at least one page in the current 2422 * order-aligned block, so skip the rest of it. 2423 */ 2424 if (cc->direct_compaction && 2425 (cc->mode == MIGRATE_ASYNC)) { 2426 cc->migrate_pfn = block_end_pfn( 2427 cc->migrate_pfn - 1, cc->order); 2428 /* Draining pcplists is useless in this case */ 2429 last_migrated_pfn = 0; 2430 } 2431 } 2432 2433 check_drain: 2434 /* 2435 * Has the migration scanner moved away from the previous 2436 * cc->order aligned block where we migrated from? If yes, 2437 * flush the pages that were freed, so that they can merge and 2438 * compact_finished() can detect immediately if allocation 2439 * would succeed. 2440 */ 2441 if (cc->order > 0 && last_migrated_pfn) { 2442 unsigned long current_block_start = 2443 block_start_pfn(cc->migrate_pfn, cc->order); 2444 2445 if (last_migrated_pfn < current_block_start) { 2446 lru_add_drain_cpu_zone(cc->zone); 2447 /* No more flushing until we migrate again */ 2448 last_migrated_pfn = 0; 2449 } 2450 } 2451 2452 /* Stop if a page has been captured */ 2453 if (capc && capc->page) { 2454 ret = COMPACT_SUCCESS; 2455 break; 2456 } 2457 } 2458 2459 out: 2460 /* 2461 * Release free pages and update where the free scanner should restart, 2462 * so we don't leave any returned pages behind in the next attempt. 2463 */ 2464 if (cc->nr_freepages > 0) { 2465 unsigned long free_pfn = release_freepages(&cc->freepages); 2466 2467 cc->nr_freepages = 0; 2468 VM_BUG_ON(free_pfn == 0); 2469 /* The cached pfn is always the first in a pageblock */ 2470 free_pfn = pageblock_start_pfn(free_pfn); 2471 /* 2472 * Only go back, not forward. The cached pfn might have been 2473 * already reset to zone end in compact_finished() 2474 */ 2475 if (free_pfn > cc->zone->compact_cached_free_pfn) 2476 cc->zone->compact_cached_free_pfn = free_pfn; 2477 } 2478 2479 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned); 2480 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned); 2481 2482 trace_mm_compaction_end(start_pfn, cc->migrate_pfn, 2483 cc->free_pfn, end_pfn, sync, ret); 2484 2485 return ret; 2486 } 2487 2488 static enum compact_result compact_zone_order(struct zone *zone, int order, 2489 gfp_t gfp_mask, enum compact_priority prio, 2490 unsigned int alloc_flags, int highest_zoneidx, 2491 struct page **capture) 2492 { 2493 enum compact_result ret; 2494 struct compact_control cc = { 2495 .order = order, 2496 .search_order = order, 2497 .gfp_mask = gfp_mask, 2498 .zone = zone, 2499 .mode = (prio == COMPACT_PRIO_ASYNC) ? 2500 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT, 2501 .alloc_flags = alloc_flags, 2502 .highest_zoneidx = highest_zoneidx, 2503 .direct_compaction = true, 2504 .whole_zone = (prio == MIN_COMPACT_PRIORITY), 2505 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY), 2506 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY) 2507 }; 2508 struct capture_control capc = { 2509 .cc = &cc, 2510 .page = NULL, 2511 }; 2512 2513 /* 2514 * Make sure the structs are really initialized before we expose the 2515 * capture control, in case we are interrupted and the interrupt handler 2516 * frees a page. 2517 */ 2518 barrier(); 2519 WRITE_ONCE(current->capture_control, &capc); 2520 2521 ret = compact_zone(&cc, &capc); 2522 2523 VM_BUG_ON(!list_empty(&cc.freepages)); 2524 VM_BUG_ON(!list_empty(&cc.migratepages)); 2525 2526 /* 2527 * Make sure we hide capture control first before we read the captured 2528 * page pointer, otherwise an interrupt could free and capture a page 2529 * and we would leak it. 2530 */ 2531 WRITE_ONCE(current->capture_control, NULL); 2532 *capture = READ_ONCE(capc.page); 2533 /* 2534 * Technically, it is also possible that compaction is skipped but 2535 * the page is still captured out of luck(IRQ came and freed the page). 2536 * Returning COMPACT_SUCCESS in such cases helps in properly accounting 2537 * the COMPACT[STALL|FAIL] when compaction is skipped. 2538 */ 2539 if (*capture) 2540 ret = COMPACT_SUCCESS; 2541 2542 return ret; 2543 } 2544 2545 int sysctl_extfrag_threshold = 500; 2546 2547 /** 2548 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 2549 * @gfp_mask: The GFP mask of the current allocation 2550 * @order: The order of the current allocation 2551 * @alloc_flags: The allocation flags of the current allocation 2552 * @ac: The context of current allocation 2553 * @prio: Determines how hard direct compaction should try to succeed 2554 * @capture: Pointer to free page created by compaction will be stored here 2555 * 2556 * This is the main entry point for direct page compaction. 2557 */ 2558 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 2559 unsigned int alloc_flags, const struct alloc_context *ac, 2560 enum compact_priority prio, struct page **capture) 2561 { 2562 int may_perform_io = gfp_mask & __GFP_IO; 2563 struct zoneref *z; 2564 struct zone *zone; 2565 enum compact_result rc = COMPACT_SKIPPED; 2566 2567 /* 2568 * Check if the GFP flags allow compaction - GFP_NOIO is really 2569 * tricky context because the migration might require IO 2570 */ 2571 if (!may_perform_io) 2572 return COMPACT_SKIPPED; 2573 2574 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio); 2575 2576 /* Compact each zone in the list */ 2577 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2578 ac->highest_zoneidx, ac->nodemask) { 2579 enum compact_result status; 2580 2581 if (prio > MIN_COMPACT_PRIORITY 2582 && compaction_deferred(zone, order)) { 2583 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); 2584 continue; 2585 } 2586 2587 status = compact_zone_order(zone, order, gfp_mask, prio, 2588 alloc_flags, ac->highest_zoneidx, capture); 2589 rc = max(status, rc); 2590 2591 /* The allocation should succeed, stop compacting */ 2592 if (status == COMPACT_SUCCESS) { 2593 /* 2594 * We think the allocation will succeed in this zone, 2595 * but it is not certain, hence the false. The caller 2596 * will repeat this with true if allocation indeed 2597 * succeeds in this zone. 2598 */ 2599 compaction_defer_reset(zone, order, false); 2600 2601 break; 2602 } 2603 2604 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE || 2605 status == COMPACT_PARTIAL_SKIPPED)) 2606 /* 2607 * We think that allocation won't succeed in this zone 2608 * so we defer compaction there. If it ends up 2609 * succeeding after all, it will be reset. 2610 */ 2611 defer_compaction(zone, order); 2612 2613 /* 2614 * We might have stopped compacting due to need_resched() in 2615 * async compaction, or due to a fatal signal detected. In that 2616 * case do not try further zones 2617 */ 2618 if ((prio == COMPACT_PRIO_ASYNC && need_resched()) 2619 || fatal_signal_pending(current)) 2620 break; 2621 } 2622 2623 return rc; 2624 } 2625 2626 /* 2627 * Compact all zones within a node till each zone's fragmentation score 2628 * reaches within proactive compaction thresholds (as determined by the 2629 * proactiveness tunable). 2630 * 2631 * It is possible that the function returns before reaching score targets 2632 * due to various back-off conditions, such as, contention on per-node or 2633 * per-zone locks. 2634 */ 2635 static void proactive_compact_node(pg_data_t *pgdat) 2636 { 2637 int zoneid; 2638 struct zone *zone; 2639 struct compact_control cc = { 2640 .order = -1, 2641 .mode = MIGRATE_SYNC_LIGHT, 2642 .ignore_skip_hint = true, 2643 .whole_zone = true, 2644 .gfp_mask = GFP_KERNEL, 2645 .proactive_compaction = true, 2646 }; 2647 2648 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2649 zone = &pgdat->node_zones[zoneid]; 2650 if (!populated_zone(zone)) 2651 continue; 2652 2653 cc.zone = zone; 2654 2655 compact_zone(&cc, NULL); 2656 2657 VM_BUG_ON(!list_empty(&cc.freepages)); 2658 VM_BUG_ON(!list_empty(&cc.migratepages)); 2659 } 2660 } 2661 2662 /* Compact all zones within a node */ 2663 static void compact_node(int nid) 2664 { 2665 pg_data_t *pgdat = NODE_DATA(nid); 2666 int zoneid; 2667 struct zone *zone; 2668 struct compact_control cc = { 2669 .order = -1, 2670 .mode = MIGRATE_SYNC, 2671 .ignore_skip_hint = true, 2672 .whole_zone = true, 2673 .gfp_mask = GFP_KERNEL, 2674 }; 2675 2676 2677 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2678 2679 zone = &pgdat->node_zones[zoneid]; 2680 if (!populated_zone(zone)) 2681 continue; 2682 2683 cc.zone = zone; 2684 2685 compact_zone(&cc, NULL); 2686 2687 VM_BUG_ON(!list_empty(&cc.freepages)); 2688 VM_BUG_ON(!list_empty(&cc.migratepages)); 2689 } 2690 } 2691 2692 /* Compact all nodes in the system */ 2693 static void compact_nodes(void) 2694 { 2695 int nid; 2696 2697 /* Flush pending updates to the LRU lists */ 2698 lru_add_drain_all(); 2699 2700 for_each_online_node(nid) 2701 compact_node(nid); 2702 } 2703 2704 /* 2705 * Tunable for proactive compaction. It determines how 2706 * aggressively the kernel should compact memory in the 2707 * background. It takes values in the range [0, 100]. 2708 */ 2709 unsigned int __read_mostly sysctl_compaction_proactiveness = 20; 2710 2711 /* 2712 * This is the entry point for compacting all nodes via 2713 * /proc/sys/vm/compact_memory 2714 */ 2715 int sysctl_compaction_handler(struct ctl_table *table, int write, 2716 void *buffer, size_t *length, loff_t *ppos) 2717 { 2718 if (write) 2719 compact_nodes(); 2720 2721 return 0; 2722 } 2723 2724 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 2725 static ssize_t sysfs_compact_node(struct device *dev, 2726 struct device_attribute *attr, 2727 const char *buf, size_t count) 2728 { 2729 int nid = dev->id; 2730 2731 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 2732 /* Flush pending updates to the LRU lists */ 2733 lru_add_drain_all(); 2734 2735 compact_node(nid); 2736 } 2737 2738 return count; 2739 } 2740 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node); 2741 2742 int compaction_register_node(struct node *node) 2743 { 2744 return device_create_file(&node->dev, &dev_attr_compact); 2745 } 2746 2747 void compaction_unregister_node(struct node *node) 2748 { 2749 return device_remove_file(&node->dev, &dev_attr_compact); 2750 } 2751 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 2752 2753 static inline bool kcompactd_work_requested(pg_data_t *pgdat) 2754 { 2755 return pgdat->kcompactd_max_order > 0 || kthread_should_stop(); 2756 } 2757 2758 static bool kcompactd_node_suitable(pg_data_t *pgdat) 2759 { 2760 int zoneid; 2761 struct zone *zone; 2762 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx; 2763 2764 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) { 2765 zone = &pgdat->node_zones[zoneid]; 2766 2767 if (!populated_zone(zone)) 2768 continue; 2769 2770 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0, 2771 highest_zoneidx) == COMPACT_CONTINUE) 2772 return true; 2773 } 2774 2775 return false; 2776 } 2777 2778 static void kcompactd_do_work(pg_data_t *pgdat) 2779 { 2780 /* 2781 * With no special task, compact all zones so that a page of requested 2782 * order is allocatable. 2783 */ 2784 int zoneid; 2785 struct zone *zone; 2786 struct compact_control cc = { 2787 .order = pgdat->kcompactd_max_order, 2788 .search_order = pgdat->kcompactd_max_order, 2789 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx, 2790 .mode = MIGRATE_SYNC_LIGHT, 2791 .ignore_skip_hint = false, 2792 .gfp_mask = GFP_KERNEL, 2793 }; 2794 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 2795 cc.highest_zoneidx); 2796 count_compact_event(KCOMPACTD_WAKE); 2797 2798 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) { 2799 int status; 2800 2801 zone = &pgdat->node_zones[zoneid]; 2802 if (!populated_zone(zone)) 2803 continue; 2804 2805 if (compaction_deferred(zone, cc.order)) 2806 continue; 2807 2808 if (compaction_suitable(zone, cc.order, 0, zoneid) != 2809 COMPACT_CONTINUE) 2810 continue; 2811 2812 if (kthread_should_stop()) 2813 return; 2814 2815 cc.zone = zone; 2816 status = compact_zone(&cc, NULL); 2817 2818 if (status == COMPACT_SUCCESS) { 2819 compaction_defer_reset(zone, cc.order, false); 2820 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { 2821 /* 2822 * Buddy pages may become stranded on pcps that could 2823 * otherwise coalesce on the zone's free area for 2824 * order >= cc.order. This is ratelimited by the 2825 * upcoming deferral. 2826 */ 2827 drain_all_pages(zone); 2828 2829 /* 2830 * We use sync migration mode here, so we defer like 2831 * sync direct compaction does. 2832 */ 2833 defer_compaction(zone, cc.order); 2834 } 2835 2836 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 2837 cc.total_migrate_scanned); 2838 count_compact_events(KCOMPACTD_FREE_SCANNED, 2839 cc.total_free_scanned); 2840 2841 VM_BUG_ON(!list_empty(&cc.freepages)); 2842 VM_BUG_ON(!list_empty(&cc.migratepages)); 2843 } 2844 2845 /* 2846 * Regardless of success, we are done until woken up next. But remember 2847 * the requested order/highest_zoneidx in case it was higher/tighter 2848 * than our current ones 2849 */ 2850 if (pgdat->kcompactd_max_order <= cc.order) 2851 pgdat->kcompactd_max_order = 0; 2852 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx) 2853 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 2854 } 2855 2856 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx) 2857 { 2858 if (!order) 2859 return; 2860 2861 if (pgdat->kcompactd_max_order < order) 2862 pgdat->kcompactd_max_order = order; 2863 2864 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx) 2865 pgdat->kcompactd_highest_zoneidx = highest_zoneidx; 2866 2867 /* 2868 * Pairs with implicit barrier in wait_event_freezable() 2869 * such that wakeups are not missed. 2870 */ 2871 if (!wq_has_sleeper(&pgdat->kcompactd_wait)) 2872 return; 2873 2874 if (!kcompactd_node_suitable(pgdat)) 2875 return; 2876 2877 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 2878 highest_zoneidx); 2879 wake_up_interruptible(&pgdat->kcompactd_wait); 2880 } 2881 2882 /* 2883 * The background compaction daemon, started as a kernel thread 2884 * from the init process. 2885 */ 2886 static int kcompactd(void *p) 2887 { 2888 pg_data_t *pgdat = (pg_data_t *)p; 2889 struct task_struct *tsk = current; 2890 unsigned int proactive_defer = 0; 2891 2892 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2893 2894 if (!cpumask_empty(cpumask)) 2895 set_cpus_allowed_ptr(tsk, cpumask); 2896 2897 set_freezable(); 2898 2899 pgdat->kcompactd_max_order = 0; 2900 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 2901 2902 while (!kthread_should_stop()) { 2903 unsigned long pflags; 2904 2905 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 2906 if (wait_event_freezable_timeout(pgdat->kcompactd_wait, 2907 kcompactd_work_requested(pgdat), 2908 msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC))) { 2909 2910 psi_memstall_enter(&pflags); 2911 kcompactd_do_work(pgdat); 2912 psi_memstall_leave(&pflags); 2913 continue; 2914 } 2915 2916 /* kcompactd wait timeout */ 2917 if (should_proactive_compact_node(pgdat)) { 2918 unsigned int prev_score, score; 2919 2920 if (proactive_defer) { 2921 proactive_defer--; 2922 continue; 2923 } 2924 prev_score = fragmentation_score_node(pgdat); 2925 proactive_compact_node(pgdat); 2926 score = fragmentation_score_node(pgdat); 2927 /* 2928 * Defer proactive compaction if the fragmentation 2929 * score did not go down i.e. no progress made. 2930 */ 2931 proactive_defer = score < prev_score ? 2932 0 : 1 << COMPACT_MAX_DEFER_SHIFT; 2933 } 2934 } 2935 2936 return 0; 2937 } 2938 2939 /* 2940 * This kcompactd start function will be called by init and node-hot-add. 2941 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 2942 */ 2943 int kcompactd_run(int nid) 2944 { 2945 pg_data_t *pgdat = NODE_DATA(nid); 2946 int ret = 0; 2947 2948 if (pgdat->kcompactd) 2949 return 0; 2950 2951 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); 2952 if (IS_ERR(pgdat->kcompactd)) { 2953 pr_err("Failed to start kcompactd on node %d\n", nid); 2954 ret = PTR_ERR(pgdat->kcompactd); 2955 pgdat->kcompactd = NULL; 2956 } 2957 return ret; 2958 } 2959 2960 /* 2961 * Called by memory hotplug when all memory in a node is offlined. Caller must 2962 * hold mem_hotplug_begin/end(). 2963 */ 2964 void kcompactd_stop(int nid) 2965 { 2966 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 2967 2968 if (kcompactd) { 2969 kthread_stop(kcompactd); 2970 NODE_DATA(nid)->kcompactd = NULL; 2971 } 2972 } 2973 2974 /* 2975 * It's optimal to keep kcompactd on the same CPUs as their memory, but 2976 * not required for correctness. So if the last cpu in a node goes 2977 * away, we get changed to run anywhere: as the first one comes back, 2978 * restore their cpu bindings. 2979 */ 2980 static int kcompactd_cpu_online(unsigned int cpu) 2981 { 2982 int nid; 2983 2984 for_each_node_state(nid, N_MEMORY) { 2985 pg_data_t *pgdat = NODE_DATA(nid); 2986 const struct cpumask *mask; 2987 2988 mask = cpumask_of_node(pgdat->node_id); 2989 2990 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 2991 /* One of our CPUs online: restore mask */ 2992 set_cpus_allowed_ptr(pgdat->kcompactd, mask); 2993 } 2994 return 0; 2995 } 2996 2997 static int __init kcompactd_init(void) 2998 { 2999 int nid; 3000 int ret; 3001 3002 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 3003 "mm/compaction:online", 3004 kcompactd_cpu_online, NULL); 3005 if (ret < 0) { 3006 pr_err("kcompactd: failed to register hotplug callbacks.\n"); 3007 return ret; 3008 } 3009 3010 for_each_node_state(nid, N_MEMORY) 3011 kcompactd_run(nid); 3012 return 0; 3013 } 3014 subsys_initcall(kcompactd_init) 3015 3016 #endif /* CONFIG_COMPACTION */ 3017