xref: /linux/mm/compaction.c (revision 83439a0f1ce6a592f95e41338320b5f01b98a356)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27 
28 #ifdef CONFIG_COMPACTION
29 /*
30  * Fragmentation score check interval for proactive compaction purposes.
31  */
32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC	(500)
33 
34 static inline void count_compact_event(enum vm_event_item item)
35 {
36 	count_vm_event(item);
37 }
38 
39 static inline void count_compact_events(enum vm_event_item item, long delta)
40 {
41 	count_vm_events(item, delta);
42 }
43 #else
44 #define count_compact_event(item) do { } while (0)
45 #define count_compact_events(item, delta) do { } while (0)
46 #endif
47 
48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52 
53 #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
54 #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
55 #define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
56 #define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)
57 
58 /*
59  * Page order with-respect-to which proactive compaction
60  * calculates external fragmentation, which is used as
61  * the "fragmentation score" of a node/zone.
62  */
63 #if defined CONFIG_TRANSPARENT_HUGEPAGE
64 #define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
65 #elif defined CONFIG_HUGETLBFS
66 #define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
67 #else
68 #define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
69 #endif
70 
71 static unsigned long release_freepages(struct list_head *freelist)
72 {
73 	struct page *page, *next;
74 	unsigned long high_pfn = 0;
75 
76 	list_for_each_entry_safe(page, next, freelist, lru) {
77 		unsigned long pfn = page_to_pfn(page);
78 		list_del(&page->lru);
79 		__free_page(page);
80 		if (pfn > high_pfn)
81 			high_pfn = pfn;
82 	}
83 
84 	return high_pfn;
85 }
86 
87 static void split_map_pages(struct list_head *list)
88 {
89 	unsigned int i, order, nr_pages;
90 	struct page *page, *next;
91 	LIST_HEAD(tmp_list);
92 
93 	list_for_each_entry_safe(page, next, list, lru) {
94 		list_del(&page->lru);
95 
96 		order = page_private(page);
97 		nr_pages = 1 << order;
98 
99 		post_alloc_hook(page, order, __GFP_MOVABLE);
100 		if (order)
101 			split_page(page, order);
102 
103 		for (i = 0; i < nr_pages; i++) {
104 			list_add(&page->lru, &tmp_list);
105 			page++;
106 		}
107 	}
108 
109 	list_splice(&tmp_list, list);
110 }
111 
112 #ifdef CONFIG_COMPACTION
113 bool PageMovable(struct page *page)
114 {
115 	const struct movable_operations *mops;
116 
117 	VM_BUG_ON_PAGE(!PageLocked(page), page);
118 	if (!__PageMovable(page))
119 		return false;
120 
121 	mops = page_movable_ops(page);
122 	if (mops)
123 		return true;
124 
125 	return false;
126 }
127 EXPORT_SYMBOL(PageMovable);
128 
129 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
130 {
131 	VM_BUG_ON_PAGE(!PageLocked(page), page);
132 	VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
133 	page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
134 }
135 EXPORT_SYMBOL(__SetPageMovable);
136 
137 void __ClearPageMovable(struct page *page)
138 {
139 	VM_BUG_ON_PAGE(!PageMovable(page), page);
140 	/*
141 	 * This page still has the type of a movable page, but it's
142 	 * actually not movable any more.
143 	 */
144 	page->mapping = (void *)PAGE_MAPPING_MOVABLE;
145 }
146 EXPORT_SYMBOL(__ClearPageMovable);
147 
148 /* Do not skip compaction more than 64 times */
149 #define COMPACT_MAX_DEFER_SHIFT 6
150 
151 /*
152  * Compaction is deferred when compaction fails to result in a page
153  * allocation success. 1 << compact_defer_shift, compactions are skipped up
154  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
155  */
156 static void defer_compaction(struct zone *zone, int order)
157 {
158 	zone->compact_considered = 0;
159 	zone->compact_defer_shift++;
160 
161 	if (order < zone->compact_order_failed)
162 		zone->compact_order_failed = order;
163 
164 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
165 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
166 
167 	trace_mm_compaction_defer_compaction(zone, order);
168 }
169 
170 /* Returns true if compaction should be skipped this time */
171 static bool compaction_deferred(struct zone *zone, int order)
172 {
173 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
174 
175 	if (order < zone->compact_order_failed)
176 		return false;
177 
178 	/* Avoid possible overflow */
179 	if (++zone->compact_considered >= defer_limit) {
180 		zone->compact_considered = defer_limit;
181 		return false;
182 	}
183 
184 	trace_mm_compaction_deferred(zone, order);
185 
186 	return true;
187 }
188 
189 /*
190  * Update defer tracking counters after successful compaction of given order,
191  * which means an allocation either succeeded (alloc_success == true) or is
192  * expected to succeed.
193  */
194 void compaction_defer_reset(struct zone *zone, int order,
195 		bool alloc_success)
196 {
197 	if (alloc_success) {
198 		zone->compact_considered = 0;
199 		zone->compact_defer_shift = 0;
200 	}
201 	if (order >= zone->compact_order_failed)
202 		zone->compact_order_failed = order + 1;
203 
204 	trace_mm_compaction_defer_reset(zone, order);
205 }
206 
207 /* Returns true if restarting compaction after many failures */
208 static bool compaction_restarting(struct zone *zone, int order)
209 {
210 	if (order < zone->compact_order_failed)
211 		return false;
212 
213 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
214 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
215 }
216 
217 /* Returns true if the pageblock should be scanned for pages to isolate. */
218 static inline bool isolation_suitable(struct compact_control *cc,
219 					struct page *page)
220 {
221 	if (cc->ignore_skip_hint)
222 		return true;
223 
224 	return !get_pageblock_skip(page);
225 }
226 
227 static void reset_cached_positions(struct zone *zone)
228 {
229 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
230 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
231 	zone->compact_cached_free_pfn =
232 				pageblock_start_pfn(zone_end_pfn(zone) - 1);
233 }
234 
235 /*
236  * Compound pages of >= pageblock_order should consistently be skipped until
237  * released. It is always pointless to compact pages of such order (if they are
238  * migratable), and the pageblocks they occupy cannot contain any free pages.
239  */
240 static bool pageblock_skip_persistent(struct page *page)
241 {
242 	if (!PageCompound(page))
243 		return false;
244 
245 	page = compound_head(page);
246 
247 	if (compound_order(page) >= pageblock_order)
248 		return true;
249 
250 	return false;
251 }
252 
253 static bool
254 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
255 							bool check_target)
256 {
257 	struct page *page = pfn_to_online_page(pfn);
258 	struct page *block_page;
259 	struct page *end_page;
260 	unsigned long block_pfn;
261 
262 	if (!page)
263 		return false;
264 	if (zone != page_zone(page))
265 		return false;
266 	if (pageblock_skip_persistent(page))
267 		return false;
268 
269 	/*
270 	 * If skip is already cleared do no further checking once the
271 	 * restart points have been set.
272 	 */
273 	if (check_source && check_target && !get_pageblock_skip(page))
274 		return true;
275 
276 	/*
277 	 * If clearing skip for the target scanner, do not select a
278 	 * non-movable pageblock as the starting point.
279 	 */
280 	if (!check_source && check_target &&
281 	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
282 		return false;
283 
284 	/* Ensure the start of the pageblock or zone is online and valid */
285 	block_pfn = pageblock_start_pfn(pfn);
286 	block_pfn = max(block_pfn, zone->zone_start_pfn);
287 	block_page = pfn_to_online_page(block_pfn);
288 	if (block_page) {
289 		page = block_page;
290 		pfn = block_pfn;
291 	}
292 
293 	/* Ensure the end of the pageblock or zone is online and valid */
294 	block_pfn = pageblock_end_pfn(pfn) - 1;
295 	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
296 	end_page = pfn_to_online_page(block_pfn);
297 	if (!end_page)
298 		return false;
299 
300 	/*
301 	 * Only clear the hint if a sample indicates there is either a
302 	 * free page or an LRU page in the block. One or other condition
303 	 * is necessary for the block to be a migration source/target.
304 	 */
305 	do {
306 		if (check_source && PageLRU(page)) {
307 			clear_pageblock_skip(page);
308 			return true;
309 		}
310 
311 		if (check_target && PageBuddy(page)) {
312 			clear_pageblock_skip(page);
313 			return true;
314 		}
315 
316 		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
317 	} while (page <= end_page);
318 
319 	return false;
320 }
321 
322 /*
323  * This function is called to clear all cached information on pageblocks that
324  * should be skipped for page isolation when the migrate and free page scanner
325  * meet.
326  */
327 static void __reset_isolation_suitable(struct zone *zone)
328 {
329 	unsigned long migrate_pfn = zone->zone_start_pfn;
330 	unsigned long free_pfn = zone_end_pfn(zone) - 1;
331 	unsigned long reset_migrate = free_pfn;
332 	unsigned long reset_free = migrate_pfn;
333 	bool source_set = false;
334 	bool free_set = false;
335 
336 	if (!zone->compact_blockskip_flush)
337 		return;
338 
339 	zone->compact_blockskip_flush = false;
340 
341 	/*
342 	 * Walk the zone and update pageblock skip information. Source looks
343 	 * for PageLRU while target looks for PageBuddy. When the scanner
344 	 * is found, both PageBuddy and PageLRU are checked as the pageblock
345 	 * is suitable as both source and target.
346 	 */
347 	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
348 					free_pfn -= pageblock_nr_pages) {
349 		cond_resched();
350 
351 		/* Update the migrate PFN */
352 		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
353 		    migrate_pfn < reset_migrate) {
354 			source_set = true;
355 			reset_migrate = migrate_pfn;
356 			zone->compact_init_migrate_pfn = reset_migrate;
357 			zone->compact_cached_migrate_pfn[0] = reset_migrate;
358 			zone->compact_cached_migrate_pfn[1] = reset_migrate;
359 		}
360 
361 		/* Update the free PFN */
362 		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
363 		    free_pfn > reset_free) {
364 			free_set = true;
365 			reset_free = free_pfn;
366 			zone->compact_init_free_pfn = reset_free;
367 			zone->compact_cached_free_pfn = reset_free;
368 		}
369 	}
370 
371 	/* Leave no distance if no suitable block was reset */
372 	if (reset_migrate >= reset_free) {
373 		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
374 		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
375 		zone->compact_cached_free_pfn = free_pfn;
376 	}
377 }
378 
379 void reset_isolation_suitable(pg_data_t *pgdat)
380 {
381 	int zoneid;
382 
383 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
384 		struct zone *zone = &pgdat->node_zones[zoneid];
385 		if (!populated_zone(zone))
386 			continue;
387 
388 		/* Only flush if a full compaction finished recently */
389 		if (zone->compact_blockskip_flush)
390 			__reset_isolation_suitable(zone);
391 	}
392 }
393 
394 /*
395  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
396  * locks are not required for read/writers. Returns true if it was already set.
397  */
398 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
399 							unsigned long pfn)
400 {
401 	bool skip;
402 
403 	/* Do no update if skip hint is being ignored */
404 	if (cc->ignore_skip_hint)
405 		return false;
406 
407 	if (!IS_ALIGNED(pfn, pageblock_nr_pages))
408 		return false;
409 
410 	skip = get_pageblock_skip(page);
411 	if (!skip && !cc->no_set_skip_hint)
412 		set_pageblock_skip(page);
413 
414 	return skip;
415 }
416 
417 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
418 {
419 	struct zone *zone = cc->zone;
420 
421 	pfn = pageblock_end_pfn(pfn);
422 
423 	/* Set for isolation rather than compaction */
424 	if (cc->no_set_skip_hint)
425 		return;
426 
427 	if (pfn > zone->compact_cached_migrate_pfn[0])
428 		zone->compact_cached_migrate_pfn[0] = pfn;
429 	if (cc->mode != MIGRATE_ASYNC &&
430 	    pfn > zone->compact_cached_migrate_pfn[1])
431 		zone->compact_cached_migrate_pfn[1] = pfn;
432 }
433 
434 /*
435  * If no pages were isolated then mark this pageblock to be skipped in the
436  * future. The information is later cleared by __reset_isolation_suitable().
437  */
438 static void update_pageblock_skip(struct compact_control *cc,
439 			struct page *page, unsigned long pfn)
440 {
441 	struct zone *zone = cc->zone;
442 
443 	if (cc->no_set_skip_hint)
444 		return;
445 
446 	if (!page)
447 		return;
448 
449 	set_pageblock_skip(page);
450 
451 	/* Update where async and sync compaction should restart */
452 	if (pfn < zone->compact_cached_free_pfn)
453 		zone->compact_cached_free_pfn = pfn;
454 }
455 #else
456 static inline bool isolation_suitable(struct compact_control *cc,
457 					struct page *page)
458 {
459 	return true;
460 }
461 
462 static inline bool pageblock_skip_persistent(struct page *page)
463 {
464 	return false;
465 }
466 
467 static inline void update_pageblock_skip(struct compact_control *cc,
468 			struct page *page, unsigned long pfn)
469 {
470 }
471 
472 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
473 {
474 }
475 
476 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
477 							unsigned long pfn)
478 {
479 	return false;
480 }
481 #endif /* CONFIG_COMPACTION */
482 
483 /*
484  * Compaction requires the taking of some coarse locks that are potentially
485  * very heavily contended. For async compaction, trylock and record if the
486  * lock is contended. The lock will still be acquired but compaction will
487  * abort when the current block is finished regardless of success rate.
488  * Sync compaction acquires the lock.
489  *
490  * Always returns true which makes it easier to track lock state in callers.
491  */
492 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
493 						struct compact_control *cc)
494 	__acquires(lock)
495 {
496 	/* Track if the lock is contended in async mode */
497 	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
498 		if (spin_trylock_irqsave(lock, *flags))
499 			return true;
500 
501 		cc->contended = true;
502 	}
503 
504 	spin_lock_irqsave(lock, *flags);
505 	return true;
506 }
507 
508 /*
509  * Compaction requires the taking of some coarse locks that are potentially
510  * very heavily contended. The lock should be periodically unlocked to avoid
511  * having disabled IRQs for a long time, even when there is nobody waiting on
512  * the lock. It might also be that allowing the IRQs will result in
513  * need_resched() becoming true. If scheduling is needed, compaction schedules.
514  * Either compaction type will also abort if a fatal signal is pending.
515  * In either case if the lock was locked, it is dropped and not regained.
516  *
517  * Returns true if compaction should abort due to fatal signal pending.
518  * Returns false when compaction can continue.
519  */
520 static bool compact_unlock_should_abort(spinlock_t *lock,
521 		unsigned long flags, bool *locked, struct compact_control *cc)
522 {
523 	if (*locked) {
524 		spin_unlock_irqrestore(lock, flags);
525 		*locked = false;
526 	}
527 
528 	if (fatal_signal_pending(current)) {
529 		cc->contended = true;
530 		return true;
531 	}
532 
533 	cond_resched();
534 
535 	return false;
536 }
537 
538 /*
539  * Isolate free pages onto a private freelist. If @strict is true, will abort
540  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
541  * (even though it may still end up isolating some pages).
542  */
543 static unsigned long isolate_freepages_block(struct compact_control *cc,
544 				unsigned long *start_pfn,
545 				unsigned long end_pfn,
546 				struct list_head *freelist,
547 				unsigned int stride,
548 				bool strict)
549 {
550 	int nr_scanned = 0, total_isolated = 0;
551 	struct page *cursor;
552 	unsigned long flags = 0;
553 	bool locked = false;
554 	unsigned long blockpfn = *start_pfn;
555 	unsigned int order;
556 
557 	/* Strict mode is for isolation, speed is secondary */
558 	if (strict)
559 		stride = 1;
560 
561 	cursor = pfn_to_page(blockpfn);
562 
563 	/* Isolate free pages. */
564 	for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
565 		int isolated;
566 		struct page *page = cursor;
567 
568 		/*
569 		 * Periodically drop the lock (if held) regardless of its
570 		 * contention, to give chance to IRQs. Abort if fatal signal
571 		 * pending.
572 		 */
573 		if (!(blockpfn % COMPACT_CLUSTER_MAX)
574 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
575 								&locked, cc))
576 			break;
577 
578 		nr_scanned++;
579 
580 		/*
581 		 * For compound pages such as THP and hugetlbfs, we can save
582 		 * potentially a lot of iterations if we skip them at once.
583 		 * The check is racy, but we can consider only valid values
584 		 * and the only danger is skipping too much.
585 		 */
586 		if (PageCompound(page)) {
587 			const unsigned int order = compound_order(page);
588 
589 			if (likely(order < MAX_ORDER)) {
590 				blockpfn += (1UL << order) - 1;
591 				cursor += (1UL << order) - 1;
592 			}
593 			goto isolate_fail;
594 		}
595 
596 		if (!PageBuddy(page))
597 			goto isolate_fail;
598 
599 		/* If we already hold the lock, we can skip some rechecking. */
600 		if (!locked) {
601 			locked = compact_lock_irqsave(&cc->zone->lock,
602 								&flags, cc);
603 
604 			/* Recheck this is a buddy page under lock */
605 			if (!PageBuddy(page))
606 				goto isolate_fail;
607 		}
608 
609 		/* Found a free page, will break it into order-0 pages */
610 		order = buddy_order(page);
611 		isolated = __isolate_free_page(page, order);
612 		if (!isolated)
613 			break;
614 		set_page_private(page, order);
615 
616 		nr_scanned += isolated - 1;
617 		total_isolated += isolated;
618 		cc->nr_freepages += isolated;
619 		list_add_tail(&page->lru, freelist);
620 
621 		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
622 			blockpfn += isolated;
623 			break;
624 		}
625 		/* Advance to the end of split page */
626 		blockpfn += isolated - 1;
627 		cursor += isolated - 1;
628 		continue;
629 
630 isolate_fail:
631 		if (strict)
632 			break;
633 		else
634 			continue;
635 
636 	}
637 
638 	if (locked)
639 		spin_unlock_irqrestore(&cc->zone->lock, flags);
640 
641 	/*
642 	 * There is a tiny chance that we have read bogus compound_order(),
643 	 * so be careful to not go outside of the pageblock.
644 	 */
645 	if (unlikely(blockpfn > end_pfn))
646 		blockpfn = end_pfn;
647 
648 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
649 					nr_scanned, total_isolated);
650 
651 	/* Record how far we have got within the block */
652 	*start_pfn = blockpfn;
653 
654 	/*
655 	 * If strict isolation is requested by CMA then check that all the
656 	 * pages requested were isolated. If there were any failures, 0 is
657 	 * returned and CMA will fail.
658 	 */
659 	if (strict && blockpfn < end_pfn)
660 		total_isolated = 0;
661 
662 	cc->total_free_scanned += nr_scanned;
663 	if (total_isolated)
664 		count_compact_events(COMPACTISOLATED, total_isolated);
665 	return total_isolated;
666 }
667 
668 /**
669  * isolate_freepages_range() - isolate free pages.
670  * @cc:        Compaction control structure.
671  * @start_pfn: The first PFN to start isolating.
672  * @end_pfn:   The one-past-last PFN.
673  *
674  * Non-free pages, invalid PFNs, or zone boundaries within the
675  * [start_pfn, end_pfn) range are considered errors, cause function to
676  * undo its actions and return zero.
677  *
678  * Otherwise, function returns one-past-the-last PFN of isolated page
679  * (which may be greater then end_pfn if end fell in a middle of
680  * a free page).
681  */
682 unsigned long
683 isolate_freepages_range(struct compact_control *cc,
684 			unsigned long start_pfn, unsigned long end_pfn)
685 {
686 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
687 	LIST_HEAD(freelist);
688 
689 	pfn = start_pfn;
690 	block_start_pfn = pageblock_start_pfn(pfn);
691 	if (block_start_pfn < cc->zone->zone_start_pfn)
692 		block_start_pfn = cc->zone->zone_start_pfn;
693 	block_end_pfn = pageblock_end_pfn(pfn);
694 
695 	for (; pfn < end_pfn; pfn += isolated,
696 				block_start_pfn = block_end_pfn,
697 				block_end_pfn += pageblock_nr_pages) {
698 		/* Protect pfn from changing by isolate_freepages_block */
699 		unsigned long isolate_start_pfn = pfn;
700 
701 		block_end_pfn = min(block_end_pfn, end_pfn);
702 
703 		/*
704 		 * pfn could pass the block_end_pfn if isolated freepage
705 		 * is more than pageblock order. In this case, we adjust
706 		 * scanning range to right one.
707 		 */
708 		if (pfn >= block_end_pfn) {
709 			block_start_pfn = pageblock_start_pfn(pfn);
710 			block_end_pfn = pageblock_end_pfn(pfn);
711 			block_end_pfn = min(block_end_pfn, end_pfn);
712 		}
713 
714 		if (!pageblock_pfn_to_page(block_start_pfn,
715 					block_end_pfn, cc->zone))
716 			break;
717 
718 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
719 					block_end_pfn, &freelist, 0, true);
720 
721 		/*
722 		 * In strict mode, isolate_freepages_block() returns 0 if
723 		 * there are any holes in the block (ie. invalid PFNs or
724 		 * non-free pages).
725 		 */
726 		if (!isolated)
727 			break;
728 
729 		/*
730 		 * If we managed to isolate pages, it is always (1 << n) *
731 		 * pageblock_nr_pages for some non-negative n.  (Max order
732 		 * page may span two pageblocks).
733 		 */
734 	}
735 
736 	/* __isolate_free_page() does not map the pages */
737 	split_map_pages(&freelist);
738 
739 	if (pfn < end_pfn) {
740 		/* Loop terminated early, cleanup. */
741 		release_freepages(&freelist);
742 		return 0;
743 	}
744 
745 	/* We don't use freelists for anything. */
746 	return pfn;
747 }
748 
749 /* Similar to reclaim, but different enough that they don't share logic */
750 static bool too_many_isolated(pg_data_t *pgdat)
751 {
752 	bool too_many;
753 
754 	unsigned long active, inactive, isolated;
755 
756 	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
757 			node_page_state(pgdat, NR_INACTIVE_ANON);
758 	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
759 			node_page_state(pgdat, NR_ACTIVE_ANON);
760 	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
761 			node_page_state(pgdat, NR_ISOLATED_ANON);
762 
763 	too_many = isolated > (inactive + active) / 2;
764 	if (!too_many)
765 		wake_throttle_isolated(pgdat);
766 
767 	return too_many;
768 }
769 
770 /**
771  * isolate_migratepages_block() - isolate all migrate-able pages within
772  *				  a single pageblock
773  * @cc:		Compaction control structure.
774  * @low_pfn:	The first PFN to isolate
775  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
776  * @mode:	Isolation mode to be used.
777  *
778  * Isolate all pages that can be migrated from the range specified by
779  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
780  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
781  * -ENOMEM in case we could not allocate a page, or 0.
782  * cc->migrate_pfn will contain the next pfn to scan.
783  *
784  * The pages are isolated on cc->migratepages list (not required to be empty),
785  * and cc->nr_migratepages is updated accordingly.
786  */
787 static int
788 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
789 			unsigned long end_pfn, isolate_mode_t mode)
790 {
791 	pg_data_t *pgdat = cc->zone->zone_pgdat;
792 	unsigned long nr_scanned = 0, nr_isolated = 0;
793 	struct lruvec *lruvec;
794 	unsigned long flags = 0;
795 	struct lruvec *locked = NULL;
796 	struct page *page = NULL, *valid_page = NULL;
797 	struct address_space *mapping;
798 	unsigned long start_pfn = low_pfn;
799 	bool skip_on_failure = false;
800 	unsigned long next_skip_pfn = 0;
801 	bool skip_updated = false;
802 	int ret = 0;
803 
804 	cc->migrate_pfn = low_pfn;
805 
806 	/*
807 	 * Ensure that there are not too many pages isolated from the LRU
808 	 * list by either parallel reclaimers or compaction. If there are,
809 	 * delay for some time until fewer pages are isolated
810 	 */
811 	while (unlikely(too_many_isolated(pgdat))) {
812 		/* stop isolation if there are still pages not migrated */
813 		if (cc->nr_migratepages)
814 			return -EAGAIN;
815 
816 		/* async migration should just abort */
817 		if (cc->mode == MIGRATE_ASYNC)
818 			return -EAGAIN;
819 
820 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
821 
822 		if (fatal_signal_pending(current))
823 			return -EINTR;
824 	}
825 
826 	cond_resched();
827 
828 	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
829 		skip_on_failure = true;
830 		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
831 	}
832 
833 	/* Time to isolate some pages for migration */
834 	for (; low_pfn < end_pfn; low_pfn++) {
835 
836 		if (skip_on_failure && low_pfn >= next_skip_pfn) {
837 			/*
838 			 * We have isolated all migration candidates in the
839 			 * previous order-aligned block, and did not skip it due
840 			 * to failure. We should migrate the pages now and
841 			 * hopefully succeed compaction.
842 			 */
843 			if (nr_isolated)
844 				break;
845 
846 			/*
847 			 * We failed to isolate in the previous order-aligned
848 			 * block. Set the new boundary to the end of the
849 			 * current block. Note we can't simply increase
850 			 * next_skip_pfn by 1 << order, as low_pfn might have
851 			 * been incremented by a higher number due to skipping
852 			 * a compound or a high-order buddy page in the
853 			 * previous loop iteration.
854 			 */
855 			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
856 		}
857 
858 		/*
859 		 * Periodically drop the lock (if held) regardless of its
860 		 * contention, to give chance to IRQs. Abort completely if
861 		 * a fatal signal is pending.
862 		 */
863 		if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
864 			if (locked) {
865 				unlock_page_lruvec_irqrestore(locked, flags);
866 				locked = NULL;
867 			}
868 
869 			if (fatal_signal_pending(current)) {
870 				cc->contended = true;
871 				ret = -EINTR;
872 
873 				goto fatal_pending;
874 			}
875 
876 			cond_resched();
877 		}
878 
879 		nr_scanned++;
880 
881 		page = pfn_to_page(low_pfn);
882 
883 		/*
884 		 * Check if the pageblock has already been marked skipped.
885 		 * Only the aligned PFN is checked as the caller isolates
886 		 * COMPACT_CLUSTER_MAX at a time so the second call must
887 		 * not falsely conclude that the block should be skipped.
888 		 */
889 		if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
890 			if (!isolation_suitable(cc, page)) {
891 				low_pfn = end_pfn;
892 				page = NULL;
893 				goto isolate_abort;
894 			}
895 			valid_page = page;
896 		}
897 
898 		if (PageHuge(page) && cc->alloc_contig) {
899 			ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
900 
901 			/*
902 			 * Fail isolation in case isolate_or_dissolve_huge_page()
903 			 * reports an error. In case of -ENOMEM, abort right away.
904 			 */
905 			if (ret < 0) {
906 				 /* Do not report -EBUSY down the chain */
907 				if (ret == -EBUSY)
908 					ret = 0;
909 				low_pfn += compound_nr(page) - 1;
910 				goto isolate_fail;
911 			}
912 
913 			if (PageHuge(page)) {
914 				/*
915 				 * Hugepage was successfully isolated and placed
916 				 * on the cc->migratepages list.
917 				 */
918 				low_pfn += compound_nr(page) - 1;
919 				goto isolate_success_no_list;
920 			}
921 
922 			/*
923 			 * Ok, the hugepage was dissolved. Now these pages are
924 			 * Buddy and cannot be re-allocated because they are
925 			 * isolated. Fall-through as the check below handles
926 			 * Buddy pages.
927 			 */
928 		}
929 
930 		/*
931 		 * Skip if free. We read page order here without zone lock
932 		 * which is generally unsafe, but the race window is small and
933 		 * the worst thing that can happen is that we skip some
934 		 * potential isolation targets.
935 		 */
936 		if (PageBuddy(page)) {
937 			unsigned long freepage_order = buddy_order_unsafe(page);
938 
939 			/*
940 			 * Without lock, we cannot be sure that what we got is
941 			 * a valid page order. Consider only values in the
942 			 * valid order range to prevent low_pfn overflow.
943 			 */
944 			if (freepage_order > 0 && freepage_order < MAX_ORDER)
945 				low_pfn += (1UL << freepage_order) - 1;
946 			continue;
947 		}
948 
949 		/*
950 		 * Regardless of being on LRU, compound pages such as THP and
951 		 * hugetlbfs are not to be compacted unless we are attempting
952 		 * an allocation much larger than the huge page size (eg CMA).
953 		 * We can potentially save a lot of iterations if we skip them
954 		 * at once. The check is racy, but we can consider only valid
955 		 * values and the only danger is skipping too much.
956 		 */
957 		if (PageCompound(page) && !cc->alloc_contig) {
958 			const unsigned int order = compound_order(page);
959 
960 			if (likely(order < MAX_ORDER))
961 				low_pfn += (1UL << order) - 1;
962 			goto isolate_fail;
963 		}
964 
965 		/*
966 		 * Check may be lockless but that's ok as we recheck later.
967 		 * It's possible to migrate LRU and non-lru movable pages.
968 		 * Skip any other type of page
969 		 */
970 		if (!PageLRU(page)) {
971 			/*
972 			 * __PageMovable can return false positive so we need
973 			 * to verify it under page_lock.
974 			 */
975 			if (unlikely(__PageMovable(page)) &&
976 					!PageIsolated(page)) {
977 				if (locked) {
978 					unlock_page_lruvec_irqrestore(locked, flags);
979 					locked = NULL;
980 				}
981 
982 				if (!isolate_movable_page(page, mode))
983 					goto isolate_success;
984 			}
985 
986 			goto isolate_fail;
987 		}
988 
989 		/*
990 		 * Migration will fail if an anonymous page is pinned in memory,
991 		 * so avoid taking lru_lock and isolating it unnecessarily in an
992 		 * admittedly racy check.
993 		 */
994 		mapping = page_mapping(page);
995 		if (!mapping && page_count(page) > page_mapcount(page))
996 			goto isolate_fail;
997 
998 		/*
999 		 * Only allow to migrate anonymous pages in GFP_NOFS context
1000 		 * because those do not depend on fs locks.
1001 		 */
1002 		if (!(cc->gfp_mask & __GFP_FS) && mapping)
1003 			goto isolate_fail;
1004 
1005 		/*
1006 		 * Be careful not to clear PageLRU until after we're
1007 		 * sure the page is not being freed elsewhere -- the
1008 		 * page release code relies on it.
1009 		 */
1010 		if (unlikely(!get_page_unless_zero(page)))
1011 			goto isolate_fail;
1012 
1013 		/* Only take pages on LRU: a check now makes later tests safe */
1014 		if (!PageLRU(page))
1015 			goto isolate_fail_put;
1016 
1017 		/* Compaction might skip unevictable pages but CMA takes them */
1018 		if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page))
1019 			goto isolate_fail_put;
1020 
1021 		/*
1022 		 * To minimise LRU disruption, the caller can indicate with
1023 		 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1024 		 * it will be able to migrate without blocking - clean pages
1025 		 * for the most part.  PageWriteback would require blocking.
1026 		 */
1027 		if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page))
1028 			goto isolate_fail_put;
1029 
1030 		if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) {
1031 			bool migrate_dirty;
1032 
1033 			/*
1034 			 * Only pages without mappings or that have a
1035 			 * ->migrate_folio callback are possible to migrate
1036 			 * without blocking. However, we can be racing with
1037 			 * truncation so it's necessary to lock the page
1038 			 * to stabilise the mapping as truncation holds
1039 			 * the page lock until after the page is removed
1040 			 * from the page cache.
1041 			 */
1042 			if (!trylock_page(page))
1043 				goto isolate_fail_put;
1044 
1045 			mapping = page_mapping(page);
1046 			migrate_dirty = !mapping ||
1047 					mapping->a_ops->migrate_folio;
1048 			unlock_page(page);
1049 			if (!migrate_dirty)
1050 				goto isolate_fail_put;
1051 		}
1052 
1053 		/* Try isolate the page */
1054 		if (!TestClearPageLRU(page))
1055 			goto isolate_fail_put;
1056 
1057 		lruvec = folio_lruvec(page_folio(page));
1058 
1059 		/* If we already hold the lock, we can skip some rechecking */
1060 		if (lruvec != locked) {
1061 			if (locked)
1062 				unlock_page_lruvec_irqrestore(locked, flags);
1063 
1064 			compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1065 			locked = lruvec;
1066 
1067 			lruvec_memcg_debug(lruvec, page_folio(page));
1068 
1069 			/* Try get exclusive access under lock */
1070 			if (!skip_updated) {
1071 				skip_updated = true;
1072 				if (test_and_set_skip(cc, page, low_pfn))
1073 					goto isolate_abort;
1074 			}
1075 
1076 			/*
1077 			 * Page become compound since the non-locked check,
1078 			 * and it's on LRU. It can only be a THP so the order
1079 			 * is safe to read and it's 0 for tail pages.
1080 			 */
1081 			if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1082 				low_pfn += compound_nr(page) - 1;
1083 				SetPageLRU(page);
1084 				goto isolate_fail_put;
1085 			}
1086 		}
1087 
1088 		/* The whole page is taken off the LRU; skip the tail pages. */
1089 		if (PageCompound(page))
1090 			low_pfn += compound_nr(page) - 1;
1091 
1092 		/* Successfully isolated */
1093 		del_page_from_lru_list(page, lruvec);
1094 		mod_node_page_state(page_pgdat(page),
1095 				NR_ISOLATED_ANON + page_is_file_lru(page),
1096 				thp_nr_pages(page));
1097 
1098 isolate_success:
1099 		list_add(&page->lru, &cc->migratepages);
1100 isolate_success_no_list:
1101 		cc->nr_migratepages += compound_nr(page);
1102 		nr_isolated += compound_nr(page);
1103 		nr_scanned += compound_nr(page) - 1;
1104 
1105 		/*
1106 		 * Avoid isolating too much unless this block is being
1107 		 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1108 		 * or a lock is contended. For contention, isolate quickly to
1109 		 * potentially remove one source of contention.
1110 		 */
1111 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1112 		    !cc->rescan && !cc->contended) {
1113 			++low_pfn;
1114 			break;
1115 		}
1116 
1117 		continue;
1118 
1119 isolate_fail_put:
1120 		/* Avoid potential deadlock in freeing page under lru_lock */
1121 		if (locked) {
1122 			unlock_page_lruvec_irqrestore(locked, flags);
1123 			locked = NULL;
1124 		}
1125 		put_page(page);
1126 
1127 isolate_fail:
1128 		if (!skip_on_failure && ret != -ENOMEM)
1129 			continue;
1130 
1131 		/*
1132 		 * We have isolated some pages, but then failed. Release them
1133 		 * instead of migrating, as we cannot form the cc->order buddy
1134 		 * page anyway.
1135 		 */
1136 		if (nr_isolated) {
1137 			if (locked) {
1138 				unlock_page_lruvec_irqrestore(locked, flags);
1139 				locked = NULL;
1140 			}
1141 			putback_movable_pages(&cc->migratepages);
1142 			cc->nr_migratepages = 0;
1143 			nr_isolated = 0;
1144 		}
1145 
1146 		if (low_pfn < next_skip_pfn) {
1147 			low_pfn = next_skip_pfn - 1;
1148 			/*
1149 			 * The check near the loop beginning would have updated
1150 			 * next_skip_pfn too, but this is a bit simpler.
1151 			 */
1152 			next_skip_pfn += 1UL << cc->order;
1153 		}
1154 
1155 		if (ret == -ENOMEM)
1156 			break;
1157 	}
1158 
1159 	/*
1160 	 * The PageBuddy() check could have potentially brought us outside
1161 	 * the range to be scanned.
1162 	 */
1163 	if (unlikely(low_pfn > end_pfn))
1164 		low_pfn = end_pfn;
1165 
1166 	page = NULL;
1167 
1168 isolate_abort:
1169 	if (locked)
1170 		unlock_page_lruvec_irqrestore(locked, flags);
1171 	if (page) {
1172 		SetPageLRU(page);
1173 		put_page(page);
1174 	}
1175 
1176 	/*
1177 	 * Updated the cached scanner pfn once the pageblock has been scanned
1178 	 * Pages will either be migrated in which case there is no point
1179 	 * scanning in the near future or migration failed in which case the
1180 	 * failure reason may persist. The block is marked for skipping if
1181 	 * there were no pages isolated in the block or if the block is
1182 	 * rescanned twice in a row.
1183 	 */
1184 	if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1185 		if (valid_page && !skip_updated)
1186 			set_pageblock_skip(valid_page);
1187 		update_cached_migrate(cc, low_pfn);
1188 	}
1189 
1190 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1191 						nr_scanned, nr_isolated);
1192 
1193 fatal_pending:
1194 	cc->total_migrate_scanned += nr_scanned;
1195 	if (nr_isolated)
1196 		count_compact_events(COMPACTISOLATED, nr_isolated);
1197 
1198 	cc->migrate_pfn = low_pfn;
1199 
1200 	return ret;
1201 }
1202 
1203 /**
1204  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1205  * @cc:        Compaction control structure.
1206  * @start_pfn: The first PFN to start isolating.
1207  * @end_pfn:   The one-past-last PFN.
1208  *
1209  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1210  * in case we could not allocate a page, or 0.
1211  */
1212 int
1213 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1214 							unsigned long end_pfn)
1215 {
1216 	unsigned long pfn, block_start_pfn, block_end_pfn;
1217 	int ret = 0;
1218 
1219 	/* Scan block by block. First and last block may be incomplete */
1220 	pfn = start_pfn;
1221 	block_start_pfn = pageblock_start_pfn(pfn);
1222 	if (block_start_pfn < cc->zone->zone_start_pfn)
1223 		block_start_pfn = cc->zone->zone_start_pfn;
1224 	block_end_pfn = pageblock_end_pfn(pfn);
1225 
1226 	for (; pfn < end_pfn; pfn = block_end_pfn,
1227 				block_start_pfn = block_end_pfn,
1228 				block_end_pfn += pageblock_nr_pages) {
1229 
1230 		block_end_pfn = min(block_end_pfn, end_pfn);
1231 
1232 		if (!pageblock_pfn_to_page(block_start_pfn,
1233 					block_end_pfn, cc->zone))
1234 			continue;
1235 
1236 		ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1237 						 ISOLATE_UNEVICTABLE);
1238 
1239 		if (ret)
1240 			break;
1241 
1242 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1243 			break;
1244 	}
1245 
1246 	return ret;
1247 }
1248 
1249 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1250 #ifdef CONFIG_COMPACTION
1251 
1252 static bool suitable_migration_source(struct compact_control *cc,
1253 							struct page *page)
1254 {
1255 	int block_mt;
1256 
1257 	if (pageblock_skip_persistent(page))
1258 		return false;
1259 
1260 	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1261 		return true;
1262 
1263 	block_mt = get_pageblock_migratetype(page);
1264 
1265 	if (cc->migratetype == MIGRATE_MOVABLE)
1266 		return is_migrate_movable(block_mt);
1267 	else
1268 		return block_mt == cc->migratetype;
1269 }
1270 
1271 /* Returns true if the page is within a block suitable for migration to */
1272 static bool suitable_migration_target(struct compact_control *cc,
1273 							struct page *page)
1274 {
1275 	/* If the page is a large free page, then disallow migration */
1276 	if (PageBuddy(page)) {
1277 		/*
1278 		 * We are checking page_order without zone->lock taken. But
1279 		 * the only small danger is that we skip a potentially suitable
1280 		 * pageblock, so it's not worth to check order for valid range.
1281 		 */
1282 		if (buddy_order_unsafe(page) >= pageblock_order)
1283 			return false;
1284 	}
1285 
1286 	if (cc->ignore_block_suitable)
1287 		return true;
1288 
1289 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1290 	if (is_migrate_movable(get_pageblock_migratetype(page)))
1291 		return true;
1292 
1293 	/* Otherwise skip the block */
1294 	return false;
1295 }
1296 
1297 static inline unsigned int
1298 freelist_scan_limit(struct compact_control *cc)
1299 {
1300 	unsigned short shift = BITS_PER_LONG - 1;
1301 
1302 	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1303 }
1304 
1305 /*
1306  * Test whether the free scanner has reached the same or lower pageblock than
1307  * the migration scanner, and compaction should thus terminate.
1308  */
1309 static inline bool compact_scanners_met(struct compact_control *cc)
1310 {
1311 	return (cc->free_pfn >> pageblock_order)
1312 		<= (cc->migrate_pfn >> pageblock_order);
1313 }
1314 
1315 /*
1316  * Used when scanning for a suitable migration target which scans freelists
1317  * in reverse. Reorders the list such as the unscanned pages are scanned
1318  * first on the next iteration of the free scanner
1319  */
1320 static void
1321 move_freelist_head(struct list_head *freelist, struct page *freepage)
1322 {
1323 	LIST_HEAD(sublist);
1324 
1325 	if (!list_is_last(freelist, &freepage->lru)) {
1326 		list_cut_before(&sublist, freelist, &freepage->lru);
1327 		list_splice_tail(&sublist, freelist);
1328 	}
1329 }
1330 
1331 /*
1332  * Similar to move_freelist_head except used by the migration scanner
1333  * when scanning forward. It's possible for these list operations to
1334  * move against each other if they search the free list exactly in
1335  * lockstep.
1336  */
1337 static void
1338 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1339 {
1340 	LIST_HEAD(sublist);
1341 
1342 	if (!list_is_first(freelist, &freepage->lru)) {
1343 		list_cut_position(&sublist, freelist, &freepage->lru);
1344 		list_splice_tail(&sublist, freelist);
1345 	}
1346 }
1347 
1348 static void
1349 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1350 {
1351 	unsigned long start_pfn, end_pfn;
1352 	struct page *page;
1353 
1354 	/* Do not search around if there are enough pages already */
1355 	if (cc->nr_freepages >= cc->nr_migratepages)
1356 		return;
1357 
1358 	/* Minimise scanning during async compaction */
1359 	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1360 		return;
1361 
1362 	/* Pageblock boundaries */
1363 	start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1364 	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1365 
1366 	page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1367 	if (!page)
1368 		return;
1369 
1370 	/* Scan before */
1371 	if (start_pfn != pfn) {
1372 		isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1373 		if (cc->nr_freepages >= cc->nr_migratepages)
1374 			return;
1375 	}
1376 
1377 	/* Scan after */
1378 	start_pfn = pfn + nr_isolated;
1379 	if (start_pfn < end_pfn)
1380 		isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1381 
1382 	/* Skip this pageblock in the future as it's full or nearly full */
1383 	if (cc->nr_freepages < cc->nr_migratepages)
1384 		set_pageblock_skip(page);
1385 }
1386 
1387 /* Search orders in round-robin fashion */
1388 static int next_search_order(struct compact_control *cc, int order)
1389 {
1390 	order--;
1391 	if (order < 0)
1392 		order = cc->order - 1;
1393 
1394 	/* Search wrapped around? */
1395 	if (order == cc->search_order) {
1396 		cc->search_order--;
1397 		if (cc->search_order < 0)
1398 			cc->search_order = cc->order - 1;
1399 		return -1;
1400 	}
1401 
1402 	return order;
1403 }
1404 
1405 static unsigned long
1406 fast_isolate_freepages(struct compact_control *cc)
1407 {
1408 	unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1409 	unsigned int nr_scanned = 0;
1410 	unsigned long low_pfn, min_pfn, highest = 0;
1411 	unsigned long nr_isolated = 0;
1412 	unsigned long distance;
1413 	struct page *page = NULL;
1414 	bool scan_start = false;
1415 	int order;
1416 
1417 	/* Full compaction passes in a negative order */
1418 	if (cc->order <= 0)
1419 		return cc->free_pfn;
1420 
1421 	/*
1422 	 * If starting the scan, use a deeper search and use the highest
1423 	 * PFN found if a suitable one is not found.
1424 	 */
1425 	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1426 		limit = pageblock_nr_pages >> 1;
1427 		scan_start = true;
1428 	}
1429 
1430 	/*
1431 	 * Preferred point is in the top quarter of the scan space but take
1432 	 * a pfn from the top half if the search is problematic.
1433 	 */
1434 	distance = (cc->free_pfn - cc->migrate_pfn);
1435 	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1436 	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1437 
1438 	if (WARN_ON_ONCE(min_pfn > low_pfn))
1439 		low_pfn = min_pfn;
1440 
1441 	/*
1442 	 * Search starts from the last successful isolation order or the next
1443 	 * order to search after a previous failure
1444 	 */
1445 	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1446 
1447 	for (order = cc->search_order;
1448 	     !page && order >= 0;
1449 	     order = next_search_order(cc, order)) {
1450 		struct free_area *area = &cc->zone->free_area[order];
1451 		struct list_head *freelist;
1452 		struct page *freepage;
1453 		unsigned long flags;
1454 		unsigned int order_scanned = 0;
1455 		unsigned long high_pfn = 0;
1456 
1457 		if (!area->nr_free)
1458 			continue;
1459 
1460 		spin_lock_irqsave(&cc->zone->lock, flags);
1461 		freelist = &area->free_list[MIGRATE_MOVABLE];
1462 		list_for_each_entry_reverse(freepage, freelist, lru) {
1463 			unsigned long pfn;
1464 
1465 			order_scanned++;
1466 			nr_scanned++;
1467 			pfn = page_to_pfn(freepage);
1468 
1469 			if (pfn >= highest)
1470 				highest = max(pageblock_start_pfn(pfn),
1471 					      cc->zone->zone_start_pfn);
1472 
1473 			if (pfn >= low_pfn) {
1474 				cc->fast_search_fail = 0;
1475 				cc->search_order = order;
1476 				page = freepage;
1477 				break;
1478 			}
1479 
1480 			if (pfn >= min_pfn && pfn > high_pfn) {
1481 				high_pfn = pfn;
1482 
1483 				/* Shorten the scan if a candidate is found */
1484 				limit >>= 1;
1485 			}
1486 
1487 			if (order_scanned >= limit)
1488 				break;
1489 		}
1490 
1491 		/* Use a minimum pfn if a preferred one was not found */
1492 		if (!page && high_pfn) {
1493 			page = pfn_to_page(high_pfn);
1494 
1495 			/* Update freepage for the list reorder below */
1496 			freepage = page;
1497 		}
1498 
1499 		/* Reorder to so a future search skips recent pages */
1500 		move_freelist_head(freelist, freepage);
1501 
1502 		/* Isolate the page if available */
1503 		if (page) {
1504 			if (__isolate_free_page(page, order)) {
1505 				set_page_private(page, order);
1506 				nr_isolated = 1 << order;
1507 				nr_scanned += nr_isolated - 1;
1508 				cc->nr_freepages += nr_isolated;
1509 				list_add_tail(&page->lru, &cc->freepages);
1510 				count_compact_events(COMPACTISOLATED, nr_isolated);
1511 			} else {
1512 				/* If isolation fails, abort the search */
1513 				order = cc->search_order + 1;
1514 				page = NULL;
1515 			}
1516 		}
1517 
1518 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1519 
1520 		/*
1521 		 * Smaller scan on next order so the total scan is related
1522 		 * to freelist_scan_limit.
1523 		 */
1524 		if (order_scanned >= limit)
1525 			limit = max(1U, limit >> 1);
1526 	}
1527 
1528 	if (!page) {
1529 		cc->fast_search_fail++;
1530 		if (scan_start) {
1531 			/*
1532 			 * Use the highest PFN found above min. If one was
1533 			 * not found, be pessimistic for direct compaction
1534 			 * and use the min mark.
1535 			 */
1536 			if (highest >= min_pfn) {
1537 				page = pfn_to_page(highest);
1538 				cc->free_pfn = highest;
1539 			} else {
1540 				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1541 					page = pageblock_pfn_to_page(min_pfn,
1542 						min(pageblock_end_pfn(min_pfn),
1543 						    zone_end_pfn(cc->zone)),
1544 						cc->zone);
1545 					cc->free_pfn = min_pfn;
1546 				}
1547 			}
1548 		}
1549 	}
1550 
1551 	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1552 		highest -= pageblock_nr_pages;
1553 		cc->zone->compact_cached_free_pfn = highest;
1554 	}
1555 
1556 	cc->total_free_scanned += nr_scanned;
1557 	if (!page)
1558 		return cc->free_pfn;
1559 
1560 	low_pfn = page_to_pfn(page);
1561 	fast_isolate_around(cc, low_pfn, nr_isolated);
1562 	return low_pfn;
1563 }
1564 
1565 /*
1566  * Based on information in the current compact_control, find blocks
1567  * suitable for isolating free pages from and then isolate them.
1568  */
1569 static void isolate_freepages(struct compact_control *cc)
1570 {
1571 	struct zone *zone = cc->zone;
1572 	struct page *page;
1573 	unsigned long block_start_pfn;	/* start of current pageblock */
1574 	unsigned long isolate_start_pfn; /* exact pfn we start at */
1575 	unsigned long block_end_pfn;	/* end of current pageblock */
1576 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1577 	struct list_head *freelist = &cc->freepages;
1578 	unsigned int stride;
1579 
1580 	/* Try a small search of the free lists for a candidate */
1581 	fast_isolate_freepages(cc);
1582 	if (cc->nr_freepages)
1583 		goto splitmap;
1584 
1585 	/*
1586 	 * Initialise the free scanner. The starting point is where we last
1587 	 * successfully isolated from, zone-cached value, or the end of the
1588 	 * zone when isolating for the first time. For looping we also need
1589 	 * this pfn aligned down to the pageblock boundary, because we do
1590 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1591 	 * For ending point, take care when isolating in last pageblock of a
1592 	 * zone which ends in the middle of a pageblock.
1593 	 * The low boundary is the end of the pageblock the migration scanner
1594 	 * is using.
1595 	 */
1596 	isolate_start_pfn = cc->free_pfn;
1597 	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1598 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1599 						zone_end_pfn(zone));
1600 	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1601 	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1602 
1603 	/*
1604 	 * Isolate free pages until enough are available to migrate the
1605 	 * pages on cc->migratepages. We stop searching if the migrate
1606 	 * and free page scanners meet or enough free pages are isolated.
1607 	 */
1608 	for (; block_start_pfn >= low_pfn;
1609 				block_end_pfn = block_start_pfn,
1610 				block_start_pfn -= pageblock_nr_pages,
1611 				isolate_start_pfn = block_start_pfn) {
1612 		unsigned long nr_isolated;
1613 
1614 		/*
1615 		 * This can iterate a massively long zone without finding any
1616 		 * suitable migration targets, so periodically check resched.
1617 		 */
1618 		if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1619 			cond_resched();
1620 
1621 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1622 									zone);
1623 		if (!page)
1624 			continue;
1625 
1626 		/* Check the block is suitable for migration */
1627 		if (!suitable_migration_target(cc, page))
1628 			continue;
1629 
1630 		/* If isolation recently failed, do not retry */
1631 		if (!isolation_suitable(cc, page))
1632 			continue;
1633 
1634 		/* Found a block suitable for isolating free pages from. */
1635 		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1636 					block_end_pfn, freelist, stride, false);
1637 
1638 		/* Update the skip hint if the full pageblock was scanned */
1639 		if (isolate_start_pfn == block_end_pfn)
1640 			update_pageblock_skip(cc, page, block_start_pfn);
1641 
1642 		/* Are enough freepages isolated? */
1643 		if (cc->nr_freepages >= cc->nr_migratepages) {
1644 			if (isolate_start_pfn >= block_end_pfn) {
1645 				/*
1646 				 * Restart at previous pageblock if more
1647 				 * freepages can be isolated next time.
1648 				 */
1649 				isolate_start_pfn =
1650 					block_start_pfn - pageblock_nr_pages;
1651 			}
1652 			break;
1653 		} else if (isolate_start_pfn < block_end_pfn) {
1654 			/*
1655 			 * If isolation failed early, do not continue
1656 			 * needlessly.
1657 			 */
1658 			break;
1659 		}
1660 
1661 		/* Adjust stride depending on isolation */
1662 		if (nr_isolated) {
1663 			stride = 1;
1664 			continue;
1665 		}
1666 		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1667 	}
1668 
1669 	/*
1670 	 * Record where the free scanner will restart next time. Either we
1671 	 * broke from the loop and set isolate_start_pfn based on the last
1672 	 * call to isolate_freepages_block(), or we met the migration scanner
1673 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1674 	 */
1675 	cc->free_pfn = isolate_start_pfn;
1676 
1677 splitmap:
1678 	/* __isolate_free_page() does not map the pages */
1679 	split_map_pages(freelist);
1680 }
1681 
1682 /*
1683  * This is a migrate-callback that "allocates" freepages by taking pages
1684  * from the isolated freelists in the block we are migrating to.
1685  */
1686 static struct page *compaction_alloc(struct page *migratepage,
1687 					unsigned long data)
1688 {
1689 	struct compact_control *cc = (struct compact_control *)data;
1690 	struct page *freepage;
1691 
1692 	if (list_empty(&cc->freepages)) {
1693 		isolate_freepages(cc);
1694 
1695 		if (list_empty(&cc->freepages))
1696 			return NULL;
1697 	}
1698 
1699 	freepage = list_entry(cc->freepages.next, struct page, lru);
1700 	list_del(&freepage->lru);
1701 	cc->nr_freepages--;
1702 
1703 	return freepage;
1704 }
1705 
1706 /*
1707  * This is a migrate-callback that "frees" freepages back to the isolated
1708  * freelist.  All pages on the freelist are from the same zone, so there is no
1709  * special handling needed for NUMA.
1710  */
1711 static void compaction_free(struct page *page, unsigned long data)
1712 {
1713 	struct compact_control *cc = (struct compact_control *)data;
1714 
1715 	list_add(&page->lru, &cc->freepages);
1716 	cc->nr_freepages++;
1717 }
1718 
1719 /* possible outcome of isolate_migratepages */
1720 typedef enum {
1721 	ISOLATE_ABORT,		/* Abort compaction now */
1722 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1723 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1724 } isolate_migrate_t;
1725 
1726 /*
1727  * Allow userspace to control policy on scanning the unevictable LRU for
1728  * compactable pages.
1729  */
1730 int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1731 
1732 static inline void
1733 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1734 {
1735 	if (cc->fast_start_pfn == ULONG_MAX)
1736 		return;
1737 
1738 	if (!cc->fast_start_pfn)
1739 		cc->fast_start_pfn = pfn;
1740 
1741 	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1742 }
1743 
1744 static inline unsigned long
1745 reinit_migrate_pfn(struct compact_control *cc)
1746 {
1747 	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1748 		return cc->migrate_pfn;
1749 
1750 	cc->migrate_pfn = cc->fast_start_pfn;
1751 	cc->fast_start_pfn = ULONG_MAX;
1752 
1753 	return cc->migrate_pfn;
1754 }
1755 
1756 /*
1757  * Briefly search the free lists for a migration source that already has
1758  * some free pages to reduce the number of pages that need migration
1759  * before a pageblock is free.
1760  */
1761 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1762 {
1763 	unsigned int limit = freelist_scan_limit(cc);
1764 	unsigned int nr_scanned = 0;
1765 	unsigned long distance;
1766 	unsigned long pfn = cc->migrate_pfn;
1767 	unsigned long high_pfn;
1768 	int order;
1769 	bool found_block = false;
1770 
1771 	/* Skip hints are relied on to avoid repeats on the fast search */
1772 	if (cc->ignore_skip_hint)
1773 		return pfn;
1774 
1775 	/*
1776 	 * If the migrate_pfn is not at the start of a zone or the start
1777 	 * of a pageblock then assume this is a continuation of a previous
1778 	 * scan restarted due to COMPACT_CLUSTER_MAX.
1779 	 */
1780 	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1781 		return pfn;
1782 
1783 	/*
1784 	 * For smaller orders, just linearly scan as the number of pages
1785 	 * to migrate should be relatively small and does not necessarily
1786 	 * justify freeing up a large block for a small allocation.
1787 	 */
1788 	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1789 		return pfn;
1790 
1791 	/*
1792 	 * Only allow kcompactd and direct requests for movable pages to
1793 	 * quickly clear out a MOVABLE pageblock for allocation. This
1794 	 * reduces the risk that a large movable pageblock is freed for
1795 	 * an unmovable/reclaimable small allocation.
1796 	 */
1797 	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1798 		return pfn;
1799 
1800 	/*
1801 	 * When starting the migration scanner, pick any pageblock within the
1802 	 * first half of the search space. Otherwise try and pick a pageblock
1803 	 * within the first eighth to reduce the chances that a migration
1804 	 * target later becomes a source.
1805 	 */
1806 	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1807 	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1808 		distance >>= 2;
1809 	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1810 
1811 	for (order = cc->order - 1;
1812 	     order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1813 	     order--) {
1814 		struct free_area *area = &cc->zone->free_area[order];
1815 		struct list_head *freelist;
1816 		unsigned long flags;
1817 		struct page *freepage;
1818 
1819 		if (!area->nr_free)
1820 			continue;
1821 
1822 		spin_lock_irqsave(&cc->zone->lock, flags);
1823 		freelist = &area->free_list[MIGRATE_MOVABLE];
1824 		list_for_each_entry(freepage, freelist, lru) {
1825 			unsigned long free_pfn;
1826 
1827 			if (nr_scanned++ >= limit) {
1828 				move_freelist_tail(freelist, freepage);
1829 				break;
1830 			}
1831 
1832 			free_pfn = page_to_pfn(freepage);
1833 			if (free_pfn < high_pfn) {
1834 				/*
1835 				 * Avoid if skipped recently. Ideally it would
1836 				 * move to the tail but even safe iteration of
1837 				 * the list assumes an entry is deleted, not
1838 				 * reordered.
1839 				 */
1840 				if (get_pageblock_skip(freepage))
1841 					continue;
1842 
1843 				/* Reorder to so a future search skips recent pages */
1844 				move_freelist_tail(freelist, freepage);
1845 
1846 				update_fast_start_pfn(cc, free_pfn);
1847 				pfn = pageblock_start_pfn(free_pfn);
1848 				if (pfn < cc->zone->zone_start_pfn)
1849 					pfn = cc->zone->zone_start_pfn;
1850 				cc->fast_search_fail = 0;
1851 				found_block = true;
1852 				set_pageblock_skip(freepage);
1853 				break;
1854 			}
1855 		}
1856 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1857 	}
1858 
1859 	cc->total_migrate_scanned += nr_scanned;
1860 
1861 	/*
1862 	 * If fast scanning failed then use a cached entry for a page block
1863 	 * that had free pages as the basis for starting a linear scan.
1864 	 */
1865 	if (!found_block) {
1866 		cc->fast_search_fail++;
1867 		pfn = reinit_migrate_pfn(cc);
1868 	}
1869 	return pfn;
1870 }
1871 
1872 /*
1873  * Isolate all pages that can be migrated from the first suitable block,
1874  * starting at the block pointed to by the migrate scanner pfn within
1875  * compact_control.
1876  */
1877 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1878 {
1879 	unsigned long block_start_pfn;
1880 	unsigned long block_end_pfn;
1881 	unsigned long low_pfn;
1882 	struct page *page;
1883 	const isolate_mode_t isolate_mode =
1884 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1885 		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1886 	bool fast_find_block;
1887 
1888 	/*
1889 	 * Start at where we last stopped, or beginning of the zone as
1890 	 * initialized by compact_zone(). The first failure will use
1891 	 * the lowest PFN as the starting point for linear scanning.
1892 	 */
1893 	low_pfn = fast_find_migrateblock(cc);
1894 	block_start_pfn = pageblock_start_pfn(low_pfn);
1895 	if (block_start_pfn < cc->zone->zone_start_pfn)
1896 		block_start_pfn = cc->zone->zone_start_pfn;
1897 
1898 	/*
1899 	 * fast_find_migrateblock marks a pageblock skipped so to avoid
1900 	 * the isolation_suitable check below, check whether the fast
1901 	 * search was successful.
1902 	 */
1903 	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1904 
1905 	/* Only scan within a pageblock boundary */
1906 	block_end_pfn = pageblock_end_pfn(low_pfn);
1907 
1908 	/*
1909 	 * Iterate over whole pageblocks until we find the first suitable.
1910 	 * Do not cross the free scanner.
1911 	 */
1912 	for (; block_end_pfn <= cc->free_pfn;
1913 			fast_find_block = false,
1914 			cc->migrate_pfn = low_pfn = block_end_pfn,
1915 			block_start_pfn = block_end_pfn,
1916 			block_end_pfn += pageblock_nr_pages) {
1917 
1918 		/*
1919 		 * This can potentially iterate a massively long zone with
1920 		 * many pageblocks unsuitable, so periodically check if we
1921 		 * need to schedule.
1922 		 */
1923 		if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1924 			cond_resched();
1925 
1926 		page = pageblock_pfn_to_page(block_start_pfn,
1927 						block_end_pfn, cc->zone);
1928 		if (!page)
1929 			continue;
1930 
1931 		/*
1932 		 * If isolation recently failed, do not retry. Only check the
1933 		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1934 		 * to be visited multiple times. Assume skip was checked
1935 		 * before making it "skip" so other compaction instances do
1936 		 * not scan the same block.
1937 		 */
1938 		if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1939 		    !fast_find_block && !isolation_suitable(cc, page))
1940 			continue;
1941 
1942 		/*
1943 		 * For async direct compaction, only scan the pageblocks of the
1944 		 * same migratetype without huge pages. Async direct compaction
1945 		 * is optimistic to see if the minimum amount of work satisfies
1946 		 * the allocation. The cached PFN is updated as it's possible
1947 		 * that all remaining blocks between source and target are
1948 		 * unsuitable and the compaction scanners fail to meet.
1949 		 */
1950 		if (!suitable_migration_source(cc, page)) {
1951 			update_cached_migrate(cc, block_end_pfn);
1952 			continue;
1953 		}
1954 
1955 		/* Perform the isolation */
1956 		if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1957 						isolate_mode))
1958 			return ISOLATE_ABORT;
1959 
1960 		/*
1961 		 * Either we isolated something and proceed with migration. Or
1962 		 * we failed and compact_zone should decide if we should
1963 		 * continue or not.
1964 		 */
1965 		break;
1966 	}
1967 
1968 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1969 }
1970 
1971 /*
1972  * order == -1 is expected when compacting via
1973  * /proc/sys/vm/compact_memory
1974  */
1975 static inline bool is_via_compact_memory(int order)
1976 {
1977 	return order == -1;
1978 }
1979 
1980 static bool kswapd_is_running(pg_data_t *pgdat)
1981 {
1982 	return pgdat->kswapd && task_is_running(pgdat->kswapd);
1983 }
1984 
1985 /*
1986  * A zone's fragmentation score is the external fragmentation wrt to the
1987  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1988  */
1989 static unsigned int fragmentation_score_zone(struct zone *zone)
1990 {
1991 	return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1992 }
1993 
1994 /*
1995  * A weighted zone's fragmentation score is the external fragmentation
1996  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
1997  * returns a value in the range [0, 100].
1998  *
1999  * The scaling factor ensures that proactive compaction focuses on larger
2000  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2001  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2002  * and thus never exceeds the high threshold for proactive compaction.
2003  */
2004 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2005 {
2006 	unsigned long score;
2007 
2008 	score = zone->present_pages * fragmentation_score_zone(zone);
2009 	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2010 }
2011 
2012 /*
2013  * The per-node proactive (background) compaction process is started by its
2014  * corresponding kcompactd thread when the node's fragmentation score
2015  * exceeds the high threshold. The compaction process remains active till
2016  * the node's score falls below the low threshold, or one of the back-off
2017  * conditions is met.
2018  */
2019 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2020 {
2021 	unsigned int score = 0;
2022 	int zoneid;
2023 
2024 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2025 		struct zone *zone;
2026 
2027 		zone = &pgdat->node_zones[zoneid];
2028 		score += fragmentation_score_zone_weighted(zone);
2029 	}
2030 
2031 	return score;
2032 }
2033 
2034 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2035 {
2036 	unsigned int wmark_low;
2037 
2038 	/*
2039 	 * Cap the low watermark to avoid excessive compaction
2040 	 * activity in case a user sets the proactiveness tunable
2041 	 * close to 100 (maximum).
2042 	 */
2043 	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2044 	return low ? wmark_low : min(wmark_low + 10, 100U);
2045 }
2046 
2047 static bool should_proactive_compact_node(pg_data_t *pgdat)
2048 {
2049 	int wmark_high;
2050 
2051 	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2052 		return false;
2053 
2054 	wmark_high = fragmentation_score_wmark(pgdat, false);
2055 	return fragmentation_score_node(pgdat) > wmark_high;
2056 }
2057 
2058 static enum compact_result __compact_finished(struct compact_control *cc)
2059 {
2060 	unsigned int order;
2061 	const int migratetype = cc->migratetype;
2062 	int ret;
2063 
2064 	/* Compaction run completes if the migrate and free scanner meet */
2065 	if (compact_scanners_met(cc)) {
2066 		/* Let the next compaction start anew. */
2067 		reset_cached_positions(cc->zone);
2068 
2069 		/*
2070 		 * Mark that the PG_migrate_skip information should be cleared
2071 		 * by kswapd when it goes to sleep. kcompactd does not set the
2072 		 * flag itself as the decision to be clear should be directly
2073 		 * based on an allocation request.
2074 		 */
2075 		if (cc->direct_compaction)
2076 			cc->zone->compact_blockskip_flush = true;
2077 
2078 		if (cc->whole_zone)
2079 			return COMPACT_COMPLETE;
2080 		else
2081 			return COMPACT_PARTIAL_SKIPPED;
2082 	}
2083 
2084 	if (cc->proactive_compaction) {
2085 		int score, wmark_low;
2086 		pg_data_t *pgdat;
2087 
2088 		pgdat = cc->zone->zone_pgdat;
2089 		if (kswapd_is_running(pgdat))
2090 			return COMPACT_PARTIAL_SKIPPED;
2091 
2092 		score = fragmentation_score_zone(cc->zone);
2093 		wmark_low = fragmentation_score_wmark(pgdat, true);
2094 
2095 		if (score > wmark_low)
2096 			ret = COMPACT_CONTINUE;
2097 		else
2098 			ret = COMPACT_SUCCESS;
2099 
2100 		goto out;
2101 	}
2102 
2103 	if (is_via_compact_memory(cc->order))
2104 		return COMPACT_CONTINUE;
2105 
2106 	/*
2107 	 * Always finish scanning a pageblock to reduce the possibility of
2108 	 * fallbacks in the future. This is particularly important when
2109 	 * migration source is unmovable/reclaimable but it's not worth
2110 	 * special casing.
2111 	 */
2112 	if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2113 		return COMPACT_CONTINUE;
2114 
2115 	/* Direct compactor: Is a suitable page free? */
2116 	ret = COMPACT_NO_SUITABLE_PAGE;
2117 	for (order = cc->order; order < MAX_ORDER; order++) {
2118 		struct free_area *area = &cc->zone->free_area[order];
2119 		bool can_steal;
2120 
2121 		/* Job done if page is free of the right migratetype */
2122 		if (!free_area_empty(area, migratetype))
2123 			return COMPACT_SUCCESS;
2124 
2125 #ifdef CONFIG_CMA
2126 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2127 		if (migratetype == MIGRATE_MOVABLE &&
2128 			!free_area_empty(area, MIGRATE_CMA))
2129 			return COMPACT_SUCCESS;
2130 #endif
2131 		/*
2132 		 * Job done if allocation would steal freepages from
2133 		 * other migratetype buddy lists.
2134 		 */
2135 		if (find_suitable_fallback(area, order, migratetype,
2136 						true, &can_steal) != -1)
2137 			/*
2138 			 * Movable pages are OK in any pageblock. If we are
2139 			 * stealing for a non-movable allocation, make sure
2140 			 * we finish compacting the current pageblock first
2141 			 * (which is assured by the above migrate_pfn align
2142 			 * check) so it is as free as possible and we won't
2143 			 * have to steal another one soon.
2144 			 */
2145 			return COMPACT_SUCCESS;
2146 	}
2147 
2148 out:
2149 	if (cc->contended || fatal_signal_pending(current))
2150 		ret = COMPACT_CONTENDED;
2151 
2152 	return ret;
2153 }
2154 
2155 static enum compact_result compact_finished(struct compact_control *cc)
2156 {
2157 	int ret;
2158 
2159 	ret = __compact_finished(cc);
2160 	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2161 	if (ret == COMPACT_NO_SUITABLE_PAGE)
2162 		ret = COMPACT_CONTINUE;
2163 
2164 	return ret;
2165 }
2166 
2167 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2168 					unsigned int alloc_flags,
2169 					int highest_zoneidx,
2170 					unsigned long wmark_target)
2171 {
2172 	unsigned long watermark;
2173 
2174 	if (is_via_compact_memory(order))
2175 		return COMPACT_CONTINUE;
2176 
2177 	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2178 	/*
2179 	 * If watermarks for high-order allocation are already met, there
2180 	 * should be no need for compaction at all.
2181 	 */
2182 	if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2183 								alloc_flags))
2184 		return COMPACT_SUCCESS;
2185 
2186 	/*
2187 	 * Watermarks for order-0 must be met for compaction to be able to
2188 	 * isolate free pages for migration targets. This means that the
2189 	 * watermark and alloc_flags have to match, or be more pessimistic than
2190 	 * the check in __isolate_free_page(). We don't use the direct
2191 	 * compactor's alloc_flags, as they are not relevant for freepage
2192 	 * isolation. We however do use the direct compactor's highest_zoneidx
2193 	 * to skip over zones where lowmem reserves would prevent allocation
2194 	 * even if compaction succeeds.
2195 	 * For costly orders, we require low watermark instead of min for
2196 	 * compaction to proceed to increase its chances.
2197 	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2198 	 * suitable migration targets
2199 	 */
2200 	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2201 				low_wmark_pages(zone) : min_wmark_pages(zone);
2202 	watermark += compact_gap(order);
2203 	if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2204 						ALLOC_CMA, wmark_target))
2205 		return COMPACT_SKIPPED;
2206 
2207 	return COMPACT_CONTINUE;
2208 }
2209 
2210 /*
2211  * compaction_suitable: Is this suitable to run compaction on this zone now?
2212  * Returns
2213  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2214  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2215  *   COMPACT_CONTINUE - If compaction should run now
2216  */
2217 enum compact_result compaction_suitable(struct zone *zone, int order,
2218 					unsigned int alloc_flags,
2219 					int highest_zoneidx)
2220 {
2221 	enum compact_result ret;
2222 	int fragindex;
2223 
2224 	ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2225 				    zone_page_state(zone, NR_FREE_PAGES));
2226 	/*
2227 	 * fragmentation index determines if allocation failures are due to
2228 	 * low memory or external fragmentation
2229 	 *
2230 	 * index of -1000 would imply allocations might succeed depending on
2231 	 * watermarks, but we already failed the high-order watermark check
2232 	 * index towards 0 implies failure is due to lack of memory
2233 	 * index towards 1000 implies failure is due to fragmentation
2234 	 *
2235 	 * Only compact if a failure would be due to fragmentation. Also
2236 	 * ignore fragindex for non-costly orders where the alternative to
2237 	 * a successful reclaim/compaction is OOM. Fragindex and the
2238 	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2239 	 * excessive compaction for costly orders, but it should not be at the
2240 	 * expense of system stability.
2241 	 */
2242 	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2243 		fragindex = fragmentation_index(zone, order);
2244 		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2245 			ret = COMPACT_NOT_SUITABLE_ZONE;
2246 	}
2247 
2248 	trace_mm_compaction_suitable(zone, order, ret);
2249 	if (ret == COMPACT_NOT_SUITABLE_ZONE)
2250 		ret = COMPACT_SKIPPED;
2251 
2252 	return ret;
2253 }
2254 
2255 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2256 		int alloc_flags)
2257 {
2258 	struct zone *zone;
2259 	struct zoneref *z;
2260 
2261 	/*
2262 	 * Make sure at least one zone would pass __compaction_suitable if we continue
2263 	 * retrying the reclaim.
2264 	 */
2265 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2266 				ac->highest_zoneidx, ac->nodemask) {
2267 		unsigned long available;
2268 		enum compact_result compact_result;
2269 
2270 		/*
2271 		 * Do not consider all the reclaimable memory because we do not
2272 		 * want to trash just for a single high order allocation which
2273 		 * is even not guaranteed to appear even if __compaction_suitable
2274 		 * is happy about the watermark check.
2275 		 */
2276 		available = zone_reclaimable_pages(zone) / order;
2277 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2278 		compact_result = __compaction_suitable(zone, order, alloc_flags,
2279 				ac->highest_zoneidx, available);
2280 		if (compact_result == COMPACT_CONTINUE)
2281 			return true;
2282 	}
2283 
2284 	return false;
2285 }
2286 
2287 static enum compact_result
2288 compact_zone(struct compact_control *cc, struct capture_control *capc)
2289 {
2290 	enum compact_result ret;
2291 	unsigned long start_pfn = cc->zone->zone_start_pfn;
2292 	unsigned long end_pfn = zone_end_pfn(cc->zone);
2293 	unsigned long last_migrated_pfn;
2294 	const bool sync = cc->mode != MIGRATE_ASYNC;
2295 	bool update_cached;
2296 	unsigned int nr_succeeded = 0;
2297 
2298 	/*
2299 	 * These counters track activities during zone compaction.  Initialize
2300 	 * them before compacting a new zone.
2301 	 */
2302 	cc->total_migrate_scanned = 0;
2303 	cc->total_free_scanned = 0;
2304 	cc->nr_migratepages = 0;
2305 	cc->nr_freepages = 0;
2306 	INIT_LIST_HEAD(&cc->freepages);
2307 	INIT_LIST_HEAD(&cc->migratepages);
2308 
2309 	cc->migratetype = gfp_migratetype(cc->gfp_mask);
2310 	ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2311 							cc->highest_zoneidx);
2312 	/* Compaction is likely to fail */
2313 	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2314 		return ret;
2315 
2316 	/* huh, compaction_suitable is returning something unexpected */
2317 	VM_BUG_ON(ret != COMPACT_CONTINUE);
2318 
2319 	/*
2320 	 * Clear pageblock skip if there were failures recently and compaction
2321 	 * is about to be retried after being deferred.
2322 	 */
2323 	if (compaction_restarting(cc->zone, cc->order))
2324 		__reset_isolation_suitable(cc->zone);
2325 
2326 	/*
2327 	 * Setup to move all movable pages to the end of the zone. Used cached
2328 	 * information on where the scanners should start (unless we explicitly
2329 	 * want to compact the whole zone), but check that it is initialised
2330 	 * by ensuring the values are within zone boundaries.
2331 	 */
2332 	cc->fast_start_pfn = 0;
2333 	if (cc->whole_zone) {
2334 		cc->migrate_pfn = start_pfn;
2335 		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2336 	} else {
2337 		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2338 		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2339 		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2340 			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2341 			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2342 		}
2343 		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2344 			cc->migrate_pfn = start_pfn;
2345 			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2346 			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2347 		}
2348 
2349 		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2350 			cc->whole_zone = true;
2351 	}
2352 
2353 	last_migrated_pfn = 0;
2354 
2355 	/*
2356 	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2357 	 * the basis that some migrations will fail in ASYNC mode. However,
2358 	 * if the cached PFNs match and pageblocks are skipped due to having
2359 	 * no isolation candidates, then the sync state does not matter.
2360 	 * Until a pageblock with isolation candidates is found, keep the
2361 	 * cached PFNs in sync to avoid revisiting the same blocks.
2362 	 */
2363 	update_cached = !sync &&
2364 		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2365 
2366 	trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2367 
2368 	/* lru_add_drain_all could be expensive with involving other CPUs */
2369 	lru_add_drain();
2370 
2371 	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2372 		int err;
2373 		unsigned long iteration_start_pfn = cc->migrate_pfn;
2374 
2375 		/*
2376 		 * Avoid multiple rescans which can happen if a page cannot be
2377 		 * isolated (dirty/writeback in async mode) or if the migrated
2378 		 * pages are being allocated before the pageblock is cleared.
2379 		 * The first rescan will capture the entire pageblock for
2380 		 * migration. If it fails, it'll be marked skip and scanning
2381 		 * will proceed as normal.
2382 		 */
2383 		cc->rescan = false;
2384 		if (pageblock_start_pfn(last_migrated_pfn) ==
2385 		    pageblock_start_pfn(iteration_start_pfn)) {
2386 			cc->rescan = true;
2387 		}
2388 
2389 		switch (isolate_migratepages(cc)) {
2390 		case ISOLATE_ABORT:
2391 			ret = COMPACT_CONTENDED;
2392 			putback_movable_pages(&cc->migratepages);
2393 			cc->nr_migratepages = 0;
2394 			goto out;
2395 		case ISOLATE_NONE:
2396 			if (update_cached) {
2397 				cc->zone->compact_cached_migrate_pfn[1] =
2398 					cc->zone->compact_cached_migrate_pfn[0];
2399 			}
2400 
2401 			/*
2402 			 * We haven't isolated and migrated anything, but
2403 			 * there might still be unflushed migrations from
2404 			 * previous cc->order aligned block.
2405 			 */
2406 			goto check_drain;
2407 		case ISOLATE_SUCCESS:
2408 			update_cached = false;
2409 			last_migrated_pfn = iteration_start_pfn;
2410 		}
2411 
2412 		err = migrate_pages(&cc->migratepages, compaction_alloc,
2413 				compaction_free, (unsigned long)cc, cc->mode,
2414 				MR_COMPACTION, &nr_succeeded);
2415 
2416 		trace_mm_compaction_migratepages(cc, nr_succeeded);
2417 
2418 		/* All pages were either migrated or will be released */
2419 		cc->nr_migratepages = 0;
2420 		if (err) {
2421 			putback_movable_pages(&cc->migratepages);
2422 			/*
2423 			 * migrate_pages() may return -ENOMEM when scanners meet
2424 			 * and we want compact_finished() to detect it
2425 			 */
2426 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2427 				ret = COMPACT_CONTENDED;
2428 				goto out;
2429 			}
2430 			/*
2431 			 * We failed to migrate at least one page in the current
2432 			 * order-aligned block, so skip the rest of it.
2433 			 */
2434 			if (cc->direct_compaction &&
2435 						(cc->mode == MIGRATE_ASYNC)) {
2436 				cc->migrate_pfn = block_end_pfn(
2437 						cc->migrate_pfn - 1, cc->order);
2438 				/* Draining pcplists is useless in this case */
2439 				last_migrated_pfn = 0;
2440 			}
2441 		}
2442 
2443 check_drain:
2444 		/*
2445 		 * Has the migration scanner moved away from the previous
2446 		 * cc->order aligned block where we migrated from? If yes,
2447 		 * flush the pages that were freed, so that they can merge and
2448 		 * compact_finished() can detect immediately if allocation
2449 		 * would succeed.
2450 		 */
2451 		if (cc->order > 0 && last_migrated_pfn) {
2452 			unsigned long current_block_start =
2453 				block_start_pfn(cc->migrate_pfn, cc->order);
2454 
2455 			if (last_migrated_pfn < current_block_start) {
2456 				lru_add_drain_cpu_zone(cc->zone);
2457 				/* No more flushing until we migrate again */
2458 				last_migrated_pfn = 0;
2459 			}
2460 		}
2461 
2462 		/* Stop if a page has been captured */
2463 		if (capc && capc->page) {
2464 			ret = COMPACT_SUCCESS;
2465 			break;
2466 		}
2467 	}
2468 
2469 out:
2470 	/*
2471 	 * Release free pages and update where the free scanner should restart,
2472 	 * so we don't leave any returned pages behind in the next attempt.
2473 	 */
2474 	if (cc->nr_freepages > 0) {
2475 		unsigned long free_pfn = release_freepages(&cc->freepages);
2476 
2477 		cc->nr_freepages = 0;
2478 		VM_BUG_ON(free_pfn == 0);
2479 		/* The cached pfn is always the first in a pageblock */
2480 		free_pfn = pageblock_start_pfn(free_pfn);
2481 		/*
2482 		 * Only go back, not forward. The cached pfn might have been
2483 		 * already reset to zone end in compact_finished()
2484 		 */
2485 		if (free_pfn > cc->zone->compact_cached_free_pfn)
2486 			cc->zone->compact_cached_free_pfn = free_pfn;
2487 	}
2488 
2489 	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2490 	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2491 
2492 	trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2493 
2494 	return ret;
2495 }
2496 
2497 static enum compact_result compact_zone_order(struct zone *zone, int order,
2498 		gfp_t gfp_mask, enum compact_priority prio,
2499 		unsigned int alloc_flags, int highest_zoneidx,
2500 		struct page **capture)
2501 {
2502 	enum compact_result ret;
2503 	struct compact_control cc = {
2504 		.order = order,
2505 		.search_order = order,
2506 		.gfp_mask = gfp_mask,
2507 		.zone = zone,
2508 		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2509 					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2510 		.alloc_flags = alloc_flags,
2511 		.highest_zoneidx = highest_zoneidx,
2512 		.direct_compaction = true,
2513 		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2514 		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2515 		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2516 	};
2517 	struct capture_control capc = {
2518 		.cc = &cc,
2519 		.page = NULL,
2520 	};
2521 
2522 	/*
2523 	 * Make sure the structs are really initialized before we expose the
2524 	 * capture control, in case we are interrupted and the interrupt handler
2525 	 * frees a page.
2526 	 */
2527 	barrier();
2528 	WRITE_ONCE(current->capture_control, &capc);
2529 
2530 	ret = compact_zone(&cc, &capc);
2531 
2532 	VM_BUG_ON(!list_empty(&cc.freepages));
2533 	VM_BUG_ON(!list_empty(&cc.migratepages));
2534 
2535 	/*
2536 	 * Make sure we hide capture control first before we read the captured
2537 	 * page pointer, otherwise an interrupt could free and capture a page
2538 	 * and we would leak it.
2539 	 */
2540 	WRITE_ONCE(current->capture_control, NULL);
2541 	*capture = READ_ONCE(capc.page);
2542 	/*
2543 	 * Technically, it is also possible that compaction is skipped but
2544 	 * the page is still captured out of luck(IRQ came and freed the page).
2545 	 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2546 	 * the COMPACT[STALL|FAIL] when compaction is skipped.
2547 	 */
2548 	if (*capture)
2549 		ret = COMPACT_SUCCESS;
2550 
2551 	return ret;
2552 }
2553 
2554 int sysctl_extfrag_threshold = 500;
2555 
2556 /**
2557  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2558  * @gfp_mask: The GFP mask of the current allocation
2559  * @order: The order of the current allocation
2560  * @alloc_flags: The allocation flags of the current allocation
2561  * @ac: The context of current allocation
2562  * @prio: Determines how hard direct compaction should try to succeed
2563  * @capture: Pointer to free page created by compaction will be stored here
2564  *
2565  * This is the main entry point for direct page compaction.
2566  */
2567 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2568 		unsigned int alloc_flags, const struct alloc_context *ac,
2569 		enum compact_priority prio, struct page **capture)
2570 {
2571 	int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
2572 	struct zoneref *z;
2573 	struct zone *zone;
2574 	enum compact_result rc = COMPACT_SKIPPED;
2575 
2576 	/*
2577 	 * Check if the GFP flags allow compaction - GFP_NOIO is really
2578 	 * tricky context because the migration might require IO
2579 	 */
2580 	if (!may_perform_io)
2581 		return COMPACT_SKIPPED;
2582 
2583 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2584 
2585 	/* Compact each zone in the list */
2586 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2587 					ac->highest_zoneidx, ac->nodemask) {
2588 		enum compact_result status;
2589 
2590 		if (prio > MIN_COMPACT_PRIORITY
2591 					&& compaction_deferred(zone, order)) {
2592 			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2593 			continue;
2594 		}
2595 
2596 		status = compact_zone_order(zone, order, gfp_mask, prio,
2597 				alloc_flags, ac->highest_zoneidx, capture);
2598 		rc = max(status, rc);
2599 
2600 		/* The allocation should succeed, stop compacting */
2601 		if (status == COMPACT_SUCCESS) {
2602 			/*
2603 			 * We think the allocation will succeed in this zone,
2604 			 * but it is not certain, hence the false. The caller
2605 			 * will repeat this with true if allocation indeed
2606 			 * succeeds in this zone.
2607 			 */
2608 			compaction_defer_reset(zone, order, false);
2609 
2610 			break;
2611 		}
2612 
2613 		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2614 					status == COMPACT_PARTIAL_SKIPPED))
2615 			/*
2616 			 * We think that allocation won't succeed in this zone
2617 			 * so we defer compaction there. If it ends up
2618 			 * succeeding after all, it will be reset.
2619 			 */
2620 			defer_compaction(zone, order);
2621 
2622 		/*
2623 		 * We might have stopped compacting due to need_resched() in
2624 		 * async compaction, or due to a fatal signal detected. In that
2625 		 * case do not try further zones
2626 		 */
2627 		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2628 					|| fatal_signal_pending(current))
2629 			break;
2630 	}
2631 
2632 	return rc;
2633 }
2634 
2635 /*
2636  * Compact all zones within a node till each zone's fragmentation score
2637  * reaches within proactive compaction thresholds (as determined by the
2638  * proactiveness tunable).
2639  *
2640  * It is possible that the function returns before reaching score targets
2641  * due to various back-off conditions, such as, contention on per-node or
2642  * per-zone locks.
2643  */
2644 static void proactive_compact_node(pg_data_t *pgdat)
2645 {
2646 	int zoneid;
2647 	struct zone *zone;
2648 	struct compact_control cc = {
2649 		.order = -1,
2650 		.mode = MIGRATE_SYNC_LIGHT,
2651 		.ignore_skip_hint = true,
2652 		.whole_zone = true,
2653 		.gfp_mask = GFP_KERNEL,
2654 		.proactive_compaction = true,
2655 	};
2656 
2657 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2658 		zone = &pgdat->node_zones[zoneid];
2659 		if (!populated_zone(zone))
2660 			continue;
2661 
2662 		cc.zone = zone;
2663 
2664 		compact_zone(&cc, NULL);
2665 
2666 		VM_BUG_ON(!list_empty(&cc.freepages));
2667 		VM_BUG_ON(!list_empty(&cc.migratepages));
2668 	}
2669 }
2670 
2671 /* Compact all zones within a node */
2672 static void compact_node(int nid)
2673 {
2674 	pg_data_t *pgdat = NODE_DATA(nid);
2675 	int zoneid;
2676 	struct zone *zone;
2677 	struct compact_control cc = {
2678 		.order = -1,
2679 		.mode = MIGRATE_SYNC,
2680 		.ignore_skip_hint = true,
2681 		.whole_zone = true,
2682 		.gfp_mask = GFP_KERNEL,
2683 	};
2684 
2685 
2686 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2687 
2688 		zone = &pgdat->node_zones[zoneid];
2689 		if (!populated_zone(zone))
2690 			continue;
2691 
2692 		cc.zone = zone;
2693 
2694 		compact_zone(&cc, NULL);
2695 
2696 		VM_BUG_ON(!list_empty(&cc.freepages));
2697 		VM_BUG_ON(!list_empty(&cc.migratepages));
2698 	}
2699 }
2700 
2701 /* Compact all nodes in the system */
2702 static void compact_nodes(void)
2703 {
2704 	int nid;
2705 
2706 	/* Flush pending updates to the LRU lists */
2707 	lru_add_drain_all();
2708 
2709 	for_each_online_node(nid)
2710 		compact_node(nid);
2711 }
2712 
2713 /*
2714  * Tunable for proactive compaction. It determines how
2715  * aggressively the kernel should compact memory in the
2716  * background. It takes values in the range [0, 100].
2717  */
2718 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2719 
2720 int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2721 		void *buffer, size_t *length, loff_t *ppos)
2722 {
2723 	int rc, nid;
2724 
2725 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2726 	if (rc)
2727 		return rc;
2728 
2729 	if (write && sysctl_compaction_proactiveness) {
2730 		for_each_online_node(nid) {
2731 			pg_data_t *pgdat = NODE_DATA(nid);
2732 
2733 			if (pgdat->proactive_compact_trigger)
2734 				continue;
2735 
2736 			pgdat->proactive_compact_trigger = true;
2737 			wake_up_interruptible(&pgdat->kcompactd_wait);
2738 		}
2739 	}
2740 
2741 	return 0;
2742 }
2743 
2744 /*
2745  * This is the entry point for compacting all nodes via
2746  * /proc/sys/vm/compact_memory
2747  */
2748 int sysctl_compaction_handler(struct ctl_table *table, int write,
2749 			void *buffer, size_t *length, loff_t *ppos)
2750 {
2751 	if (write)
2752 		compact_nodes();
2753 
2754 	return 0;
2755 }
2756 
2757 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2758 static ssize_t compact_store(struct device *dev,
2759 			     struct device_attribute *attr,
2760 			     const char *buf, size_t count)
2761 {
2762 	int nid = dev->id;
2763 
2764 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2765 		/* Flush pending updates to the LRU lists */
2766 		lru_add_drain_all();
2767 
2768 		compact_node(nid);
2769 	}
2770 
2771 	return count;
2772 }
2773 static DEVICE_ATTR_WO(compact);
2774 
2775 int compaction_register_node(struct node *node)
2776 {
2777 	return device_create_file(&node->dev, &dev_attr_compact);
2778 }
2779 
2780 void compaction_unregister_node(struct node *node)
2781 {
2782 	return device_remove_file(&node->dev, &dev_attr_compact);
2783 }
2784 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2785 
2786 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2787 {
2788 	return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2789 		pgdat->proactive_compact_trigger;
2790 }
2791 
2792 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2793 {
2794 	int zoneid;
2795 	struct zone *zone;
2796 	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2797 
2798 	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2799 		zone = &pgdat->node_zones[zoneid];
2800 
2801 		if (!populated_zone(zone))
2802 			continue;
2803 
2804 		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2805 					highest_zoneidx) == COMPACT_CONTINUE)
2806 			return true;
2807 	}
2808 
2809 	return false;
2810 }
2811 
2812 static void kcompactd_do_work(pg_data_t *pgdat)
2813 {
2814 	/*
2815 	 * With no special task, compact all zones so that a page of requested
2816 	 * order is allocatable.
2817 	 */
2818 	int zoneid;
2819 	struct zone *zone;
2820 	struct compact_control cc = {
2821 		.order = pgdat->kcompactd_max_order,
2822 		.search_order = pgdat->kcompactd_max_order,
2823 		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2824 		.mode = MIGRATE_SYNC_LIGHT,
2825 		.ignore_skip_hint = false,
2826 		.gfp_mask = GFP_KERNEL,
2827 	};
2828 	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2829 							cc.highest_zoneidx);
2830 	count_compact_event(KCOMPACTD_WAKE);
2831 
2832 	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2833 		int status;
2834 
2835 		zone = &pgdat->node_zones[zoneid];
2836 		if (!populated_zone(zone))
2837 			continue;
2838 
2839 		if (compaction_deferred(zone, cc.order))
2840 			continue;
2841 
2842 		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2843 							COMPACT_CONTINUE)
2844 			continue;
2845 
2846 		if (kthread_should_stop())
2847 			return;
2848 
2849 		cc.zone = zone;
2850 		status = compact_zone(&cc, NULL);
2851 
2852 		if (status == COMPACT_SUCCESS) {
2853 			compaction_defer_reset(zone, cc.order, false);
2854 		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2855 			/*
2856 			 * Buddy pages may become stranded on pcps that could
2857 			 * otherwise coalesce on the zone's free area for
2858 			 * order >= cc.order.  This is ratelimited by the
2859 			 * upcoming deferral.
2860 			 */
2861 			drain_all_pages(zone);
2862 
2863 			/*
2864 			 * We use sync migration mode here, so we defer like
2865 			 * sync direct compaction does.
2866 			 */
2867 			defer_compaction(zone, cc.order);
2868 		}
2869 
2870 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2871 				     cc.total_migrate_scanned);
2872 		count_compact_events(KCOMPACTD_FREE_SCANNED,
2873 				     cc.total_free_scanned);
2874 
2875 		VM_BUG_ON(!list_empty(&cc.freepages));
2876 		VM_BUG_ON(!list_empty(&cc.migratepages));
2877 	}
2878 
2879 	/*
2880 	 * Regardless of success, we are done until woken up next. But remember
2881 	 * the requested order/highest_zoneidx in case it was higher/tighter
2882 	 * than our current ones
2883 	 */
2884 	if (pgdat->kcompactd_max_order <= cc.order)
2885 		pgdat->kcompactd_max_order = 0;
2886 	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2887 		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2888 }
2889 
2890 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2891 {
2892 	if (!order)
2893 		return;
2894 
2895 	if (pgdat->kcompactd_max_order < order)
2896 		pgdat->kcompactd_max_order = order;
2897 
2898 	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2899 		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2900 
2901 	/*
2902 	 * Pairs with implicit barrier in wait_event_freezable()
2903 	 * such that wakeups are not missed.
2904 	 */
2905 	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2906 		return;
2907 
2908 	if (!kcompactd_node_suitable(pgdat))
2909 		return;
2910 
2911 	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2912 							highest_zoneidx);
2913 	wake_up_interruptible(&pgdat->kcompactd_wait);
2914 }
2915 
2916 /*
2917  * The background compaction daemon, started as a kernel thread
2918  * from the init process.
2919  */
2920 static int kcompactd(void *p)
2921 {
2922 	pg_data_t *pgdat = (pg_data_t *)p;
2923 	struct task_struct *tsk = current;
2924 	long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2925 	long timeout = default_timeout;
2926 
2927 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2928 
2929 	if (!cpumask_empty(cpumask))
2930 		set_cpus_allowed_ptr(tsk, cpumask);
2931 
2932 	set_freezable();
2933 
2934 	pgdat->kcompactd_max_order = 0;
2935 	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2936 
2937 	while (!kthread_should_stop()) {
2938 		unsigned long pflags;
2939 
2940 		/*
2941 		 * Avoid the unnecessary wakeup for proactive compaction
2942 		 * when it is disabled.
2943 		 */
2944 		if (!sysctl_compaction_proactiveness)
2945 			timeout = MAX_SCHEDULE_TIMEOUT;
2946 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2947 		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2948 			kcompactd_work_requested(pgdat), timeout) &&
2949 			!pgdat->proactive_compact_trigger) {
2950 
2951 			psi_memstall_enter(&pflags);
2952 			kcompactd_do_work(pgdat);
2953 			psi_memstall_leave(&pflags);
2954 			/*
2955 			 * Reset the timeout value. The defer timeout from
2956 			 * proactive compaction is lost here but that is fine
2957 			 * as the condition of the zone changing substantionally
2958 			 * then carrying on with the previous defer interval is
2959 			 * not useful.
2960 			 */
2961 			timeout = default_timeout;
2962 			continue;
2963 		}
2964 
2965 		/*
2966 		 * Start the proactive work with default timeout. Based
2967 		 * on the fragmentation score, this timeout is updated.
2968 		 */
2969 		timeout = default_timeout;
2970 		if (should_proactive_compact_node(pgdat)) {
2971 			unsigned int prev_score, score;
2972 
2973 			prev_score = fragmentation_score_node(pgdat);
2974 			proactive_compact_node(pgdat);
2975 			score = fragmentation_score_node(pgdat);
2976 			/*
2977 			 * Defer proactive compaction if the fragmentation
2978 			 * score did not go down i.e. no progress made.
2979 			 */
2980 			if (unlikely(score >= prev_score))
2981 				timeout =
2982 				   default_timeout << COMPACT_MAX_DEFER_SHIFT;
2983 		}
2984 		if (unlikely(pgdat->proactive_compact_trigger))
2985 			pgdat->proactive_compact_trigger = false;
2986 	}
2987 
2988 	return 0;
2989 }
2990 
2991 /*
2992  * This kcompactd start function will be called by init and node-hot-add.
2993  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2994  */
2995 void kcompactd_run(int nid)
2996 {
2997 	pg_data_t *pgdat = NODE_DATA(nid);
2998 
2999 	if (pgdat->kcompactd)
3000 		return;
3001 
3002 	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3003 	if (IS_ERR(pgdat->kcompactd)) {
3004 		pr_err("Failed to start kcompactd on node %d\n", nid);
3005 		pgdat->kcompactd = NULL;
3006 	}
3007 }
3008 
3009 /*
3010  * Called by memory hotplug when all memory in a node is offlined. Caller must
3011  * be holding mem_hotplug_begin/done().
3012  */
3013 void kcompactd_stop(int nid)
3014 {
3015 	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3016 
3017 	if (kcompactd) {
3018 		kthread_stop(kcompactd);
3019 		NODE_DATA(nid)->kcompactd = NULL;
3020 	}
3021 }
3022 
3023 /*
3024  * It's optimal to keep kcompactd on the same CPUs as their memory, but
3025  * not required for correctness. So if the last cpu in a node goes
3026  * away, we get changed to run anywhere: as the first one comes back,
3027  * restore their cpu bindings.
3028  */
3029 static int kcompactd_cpu_online(unsigned int cpu)
3030 {
3031 	int nid;
3032 
3033 	for_each_node_state(nid, N_MEMORY) {
3034 		pg_data_t *pgdat = NODE_DATA(nid);
3035 		const struct cpumask *mask;
3036 
3037 		mask = cpumask_of_node(pgdat->node_id);
3038 
3039 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3040 			/* One of our CPUs online: restore mask */
3041 			if (pgdat->kcompactd)
3042 				set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3043 	}
3044 	return 0;
3045 }
3046 
3047 static int __init kcompactd_init(void)
3048 {
3049 	int nid;
3050 	int ret;
3051 
3052 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3053 					"mm/compaction:online",
3054 					kcompactd_cpu_online, NULL);
3055 	if (ret < 0) {
3056 		pr_err("kcompactd: failed to register hotplug callbacks.\n");
3057 		return ret;
3058 	}
3059 
3060 	for_each_node_state(nid, N_MEMORY)
3061 		kcompactd_run(nid);
3062 	return 0;
3063 }
3064 subsys_initcall(kcompactd_init)
3065 
3066 #endif /* CONFIG_COMPACTION */
3067