1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/compaction.c 4 * 5 * Memory compaction for the reduction of external fragmentation. Note that 6 * this heavily depends upon page migration to do all the real heavy 7 * lifting 8 * 9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 10 */ 11 #include <linux/cpu.h> 12 #include <linux/swap.h> 13 #include <linux/migrate.h> 14 #include <linux/compaction.h> 15 #include <linux/mm_inline.h> 16 #include <linux/sched/signal.h> 17 #include <linux/backing-dev.h> 18 #include <linux/sysctl.h> 19 #include <linux/sysfs.h> 20 #include <linux/page-isolation.h> 21 #include <linux/kasan.h> 22 #include <linux/kthread.h> 23 #include <linux/freezer.h> 24 #include <linux/page_owner.h> 25 #include <linux/psi.h> 26 #include <linux/cpuset.h> 27 #include "internal.h" 28 29 #ifdef CONFIG_COMPACTION 30 /* 31 * Fragmentation score check interval for proactive compaction purposes. 32 */ 33 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500) 34 35 static inline void count_compact_event(enum vm_event_item item) 36 { 37 count_vm_event(item); 38 } 39 40 static inline void count_compact_events(enum vm_event_item item, long delta) 41 { 42 count_vm_events(item, delta); 43 } 44 45 /* 46 * order == -1 is expected when compacting proactively via 47 * 1. /proc/sys/vm/compact_memory 48 * 2. /sys/devices/system/node/nodex/compact 49 * 3. /proc/sys/vm/compaction_proactiveness 50 */ 51 static inline bool is_via_compact_memory(int order) 52 { 53 return order == -1; 54 } 55 56 #else 57 #define count_compact_event(item) do { } while (0) 58 #define count_compact_events(item, delta) do { } while (0) 59 static inline bool is_via_compact_memory(int order) { return false; } 60 #endif 61 62 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 63 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/compaction.h> 66 67 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order)) 68 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order)) 69 70 /* 71 * Page order with-respect-to which proactive compaction 72 * calculates external fragmentation, which is used as 73 * the "fragmentation score" of a node/zone. 74 */ 75 #if defined CONFIG_TRANSPARENT_HUGEPAGE 76 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER 77 #elif defined CONFIG_HUGETLBFS 78 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER 79 #else 80 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT) 81 #endif 82 83 static struct page *mark_allocated_noprof(struct page *page, unsigned int order, gfp_t gfp_flags) 84 { 85 post_alloc_hook(page, order, __GFP_MOVABLE); 86 set_page_refcounted(page); 87 return page; 88 } 89 #define mark_allocated(...) alloc_hooks(mark_allocated_noprof(__VA_ARGS__)) 90 91 static unsigned long release_free_list(struct list_head *freepages) 92 { 93 int order; 94 unsigned long high_pfn = 0; 95 96 for (order = 0; order < NR_PAGE_ORDERS; order++) { 97 struct page *page, *next; 98 99 list_for_each_entry_safe(page, next, &freepages[order], lru) { 100 unsigned long pfn = page_to_pfn(page); 101 102 list_del(&page->lru); 103 /* 104 * Convert free pages into post allocation pages, so 105 * that we can free them via __free_page. 106 */ 107 mark_allocated(page, order, __GFP_MOVABLE); 108 __free_pages(page, order); 109 if (pfn > high_pfn) 110 high_pfn = pfn; 111 } 112 } 113 return high_pfn; 114 } 115 116 #ifdef CONFIG_COMPACTION 117 bool PageMovable(struct page *page) 118 { 119 const struct movable_operations *mops; 120 121 VM_BUG_ON_PAGE(!PageLocked(page), page); 122 if (!__PageMovable(page)) 123 return false; 124 125 mops = page_movable_ops(page); 126 if (mops) 127 return true; 128 129 return false; 130 } 131 132 void __SetPageMovable(struct page *page, const struct movable_operations *mops) 133 { 134 VM_BUG_ON_PAGE(!PageLocked(page), page); 135 VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page); 136 page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE); 137 } 138 EXPORT_SYMBOL(__SetPageMovable); 139 140 void __ClearPageMovable(struct page *page) 141 { 142 VM_BUG_ON_PAGE(!PageMovable(page), page); 143 /* 144 * This page still has the type of a movable page, but it's 145 * actually not movable any more. 146 */ 147 page->mapping = (void *)PAGE_MAPPING_MOVABLE; 148 } 149 EXPORT_SYMBOL(__ClearPageMovable); 150 151 /* Do not skip compaction more than 64 times */ 152 #define COMPACT_MAX_DEFER_SHIFT 6 153 154 /* 155 * Compaction is deferred when compaction fails to result in a page 156 * allocation success. 1 << compact_defer_shift, compactions are skipped up 157 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 158 */ 159 static void defer_compaction(struct zone *zone, int order) 160 { 161 zone->compact_considered = 0; 162 zone->compact_defer_shift++; 163 164 if (order < zone->compact_order_failed) 165 zone->compact_order_failed = order; 166 167 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 168 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 169 170 trace_mm_compaction_defer_compaction(zone, order); 171 } 172 173 /* Returns true if compaction should be skipped this time */ 174 static bool compaction_deferred(struct zone *zone, int order) 175 { 176 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 177 178 if (order < zone->compact_order_failed) 179 return false; 180 181 /* Avoid possible overflow */ 182 if (++zone->compact_considered >= defer_limit) { 183 zone->compact_considered = defer_limit; 184 return false; 185 } 186 187 trace_mm_compaction_deferred(zone, order); 188 189 return true; 190 } 191 192 /* 193 * Update defer tracking counters after successful compaction of given order, 194 * which means an allocation either succeeded (alloc_success == true) or is 195 * expected to succeed. 196 */ 197 void compaction_defer_reset(struct zone *zone, int order, 198 bool alloc_success) 199 { 200 if (alloc_success) { 201 zone->compact_considered = 0; 202 zone->compact_defer_shift = 0; 203 } 204 if (order >= zone->compact_order_failed) 205 zone->compact_order_failed = order + 1; 206 207 trace_mm_compaction_defer_reset(zone, order); 208 } 209 210 /* Returns true if restarting compaction after many failures */ 211 static bool compaction_restarting(struct zone *zone, int order) 212 { 213 if (order < zone->compact_order_failed) 214 return false; 215 216 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 217 zone->compact_considered >= 1UL << zone->compact_defer_shift; 218 } 219 220 /* Returns true if the pageblock should be scanned for pages to isolate. */ 221 static inline bool isolation_suitable(struct compact_control *cc, 222 struct page *page) 223 { 224 if (cc->ignore_skip_hint) 225 return true; 226 227 return !get_pageblock_skip(page); 228 } 229 230 static void reset_cached_positions(struct zone *zone) 231 { 232 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 233 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 234 zone->compact_cached_free_pfn = 235 pageblock_start_pfn(zone_end_pfn(zone) - 1); 236 } 237 238 #ifdef CONFIG_SPARSEMEM 239 /* 240 * If the PFN falls into an offline section, return the start PFN of the 241 * next online section. If the PFN falls into an online section or if 242 * there is no next online section, return 0. 243 */ 244 static unsigned long skip_offline_sections(unsigned long start_pfn) 245 { 246 unsigned long start_nr = pfn_to_section_nr(start_pfn); 247 248 if (online_section_nr(start_nr)) 249 return 0; 250 251 while (++start_nr <= __highest_present_section_nr) { 252 if (online_section_nr(start_nr)) 253 return section_nr_to_pfn(start_nr); 254 } 255 256 return 0; 257 } 258 259 /* 260 * If the PFN falls into an offline section, return the end PFN of the 261 * next online section in reverse. If the PFN falls into an online section 262 * or if there is no next online section in reverse, return 0. 263 */ 264 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn) 265 { 266 unsigned long start_nr = pfn_to_section_nr(start_pfn); 267 268 if (!start_nr || online_section_nr(start_nr)) 269 return 0; 270 271 while (start_nr-- > 0) { 272 if (online_section_nr(start_nr)) 273 return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION; 274 } 275 276 return 0; 277 } 278 #else 279 static unsigned long skip_offline_sections(unsigned long start_pfn) 280 { 281 return 0; 282 } 283 284 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn) 285 { 286 return 0; 287 } 288 #endif 289 290 /* 291 * Compound pages of >= pageblock_order should consistently be skipped until 292 * released. It is always pointless to compact pages of such order (if they are 293 * migratable), and the pageblocks they occupy cannot contain any free pages. 294 */ 295 static bool pageblock_skip_persistent(struct page *page) 296 { 297 if (!PageCompound(page)) 298 return false; 299 300 page = compound_head(page); 301 302 if (compound_order(page) >= pageblock_order) 303 return true; 304 305 return false; 306 } 307 308 static bool 309 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source, 310 bool check_target) 311 { 312 struct page *page = pfn_to_online_page(pfn); 313 struct page *block_page; 314 struct page *end_page; 315 unsigned long block_pfn; 316 317 if (!page) 318 return false; 319 if (zone != page_zone(page)) 320 return false; 321 if (pageblock_skip_persistent(page)) 322 return false; 323 324 /* 325 * If skip is already cleared do no further checking once the 326 * restart points have been set. 327 */ 328 if (check_source && check_target && !get_pageblock_skip(page)) 329 return true; 330 331 /* 332 * If clearing skip for the target scanner, do not select a 333 * non-movable pageblock as the starting point. 334 */ 335 if (!check_source && check_target && 336 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 337 return false; 338 339 /* Ensure the start of the pageblock or zone is online and valid */ 340 block_pfn = pageblock_start_pfn(pfn); 341 block_pfn = max(block_pfn, zone->zone_start_pfn); 342 block_page = pfn_to_online_page(block_pfn); 343 if (block_page) { 344 page = block_page; 345 pfn = block_pfn; 346 } 347 348 /* Ensure the end of the pageblock or zone is online and valid */ 349 block_pfn = pageblock_end_pfn(pfn) - 1; 350 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1); 351 end_page = pfn_to_online_page(block_pfn); 352 if (!end_page) 353 return false; 354 355 /* 356 * Only clear the hint if a sample indicates there is either a 357 * free page or an LRU page in the block. One or other condition 358 * is necessary for the block to be a migration source/target. 359 */ 360 do { 361 if (check_source && PageLRU(page)) { 362 clear_pageblock_skip(page); 363 return true; 364 } 365 366 if (check_target && PageBuddy(page)) { 367 clear_pageblock_skip(page); 368 return true; 369 } 370 371 page += (1 << PAGE_ALLOC_COSTLY_ORDER); 372 } while (page <= end_page); 373 374 return false; 375 } 376 377 /* 378 * This function is called to clear all cached information on pageblocks that 379 * should be skipped for page isolation when the migrate and free page scanner 380 * meet. 381 */ 382 static void __reset_isolation_suitable(struct zone *zone) 383 { 384 unsigned long migrate_pfn = zone->zone_start_pfn; 385 unsigned long free_pfn = zone_end_pfn(zone) - 1; 386 unsigned long reset_migrate = free_pfn; 387 unsigned long reset_free = migrate_pfn; 388 bool source_set = false; 389 bool free_set = false; 390 391 /* Only flush if a full compaction finished recently */ 392 if (!zone->compact_blockskip_flush) 393 return; 394 395 zone->compact_blockskip_flush = false; 396 397 /* 398 * Walk the zone and update pageblock skip information. Source looks 399 * for PageLRU while target looks for PageBuddy. When the scanner 400 * is found, both PageBuddy and PageLRU are checked as the pageblock 401 * is suitable as both source and target. 402 */ 403 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages, 404 free_pfn -= pageblock_nr_pages) { 405 cond_resched(); 406 407 /* Update the migrate PFN */ 408 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) && 409 migrate_pfn < reset_migrate) { 410 source_set = true; 411 reset_migrate = migrate_pfn; 412 zone->compact_init_migrate_pfn = reset_migrate; 413 zone->compact_cached_migrate_pfn[0] = reset_migrate; 414 zone->compact_cached_migrate_pfn[1] = reset_migrate; 415 } 416 417 /* Update the free PFN */ 418 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) && 419 free_pfn > reset_free) { 420 free_set = true; 421 reset_free = free_pfn; 422 zone->compact_init_free_pfn = reset_free; 423 zone->compact_cached_free_pfn = reset_free; 424 } 425 } 426 427 /* Leave no distance if no suitable block was reset */ 428 if (reset_migrate >= reset_free) { 429 zone->compact_cached_migrate_pfn[0] = migrate_pfn; 430 zone->compact_cached_migrate_pfn[1] = migrate_pfn; 431 zone->compact_cached_free_pfn = free_pfn; 432 } 433 } 434 435 void reset_isolation_suitable(pg_data_t *pgdat) 436 { 437 int zoneid; 438 439 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 440 struct zone *zone = &pgdat->node_zones[zoneid]; 441 if (!populated_zone(zone)) 442 continue; 443 444 __reset_isolation_suitable(zone); 445 } 446 } 447 448 /* 449 * Sets the pageblock skip bit if it was clear. Note that this is a hint as 450 * locks are not required for read/writers. Returns true if it was already set. 451 */ 452 static bool test_and_set_skip(struct compact_control *cc, struct page *page) 453 { 454 bool skip; 455 456 /* Do not update if skip hint is being ignored */ 457 if (cc->ignore_skip_hint) 458 return false; 459 460 skip = get_pageblock_skip(page); 461 if (!skip && !cc->no_set_skip_hint) 462 set_pageblock_skip(page); 463 464 return skip; 465 } 466 467 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 468 { 469 struct zone *zone = cc->zone; 470 471 /* Set for isolation rather than compaction */ 472 if (cc->no_set_skip_hint) 473 return; 474 475 pfn = pageblock_end_pfn(pfn); 476 477 /* Update where async and sync compaction should restart */ 478 if (pfn > zone->compact_cached_migrate_pfn[0]) 479 zone->compact_cached_migrate_pfn[0] = pfn; 480 if (cc->mode != MIGRATE_ASYNC && 481 pfn > zone->compact_cached_migrate_pfn[1]) 482 zone->compact_cached_migrate_pfn[1] = pfn; 483 } 484 485 /* 486 * If no pages were isolated then mark this pageblock to be skipped in the 487 * future. The information is later cleared by __reset_isolation_suitable(). 488 */ 489 static void update_pageblock_skip(struct compact_control *cc, 490 struct page *page, unsigned long pfn) 491 { 492 struct zone *zone = cc->zone; 493 494 if (cc->no_set_skip_hint) 495 return; 496 497 set_pageblock_skip(page); 498 499 if (pfn < zone->compact_cached_free_pfn) 500 zone->compact_cached_free_pfn = pfn; 501 } 502 #else 503 static inline bool isolation_suitable(struct compact_control *cc, 504 struct page *page) 505 { 506 return true; 507 } 508 509 static inline bool pageblock_skip_persistent(struct page *page) 510 { 511 return false; 512 } 513 514 static inline void update_pageblock_skip(struct compact_control *cc, 515 struct page *page, unsigned long pfn) 516 { 517 } 518 519 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 520 { 521 } 522 523 static bool test_and_set_skip(struct compact_control *cc, struct page *page) 524 { 525 return false; 526 } 527 #endif /* CONFIG_COMPACTION */ 528 529 /* 530 * Compaction requires the taking of some coarse locks that are potentially 531 * very heavily contended. For async compaction, trylock and record if the 532 * lock is contended. The lock will still be acquired but compaction will 533 * abort when the current block is finished regardless of success rate. 534 * Sync compaction acquires the lock. 535 * 536 * Always returns true which makes it easier to track lock state in callers. 537 */ 538 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags, 539 struct compact_control *cc) 540 __acquires(lock) 541 { 542 /* Track if the lock is contended in async mode */ 543 if (cc->mode == MIGRATE_ASYNC && !cc->contended) { 544 if (spin_trylock_irqsave(lock, *flags)) 545 return true; 546 547 cc->contended = true; 548 } 549 550 spin_lock_irqsave(lock, *flags); 551 return true; 552 } 553 554 /* 555 * Compaction requires the taking of some coarse locks that are potentially 556 * very heavily contended. The lock should be periodically unlocked to avoid 557 * having disabled IRQs for a long time, even when there is nobody waiting on 558 * the lock. It might also be that allowing the IRQs will result in 559 * need_resched() becoming true. If scheduling is needed, compaction schedules. 560 * Either compaction type will also abort if a fatal signal is pending. 561 * In either case if the lock was locked, it is dropped and not regained. 562 * 563 * Returns true if compaction should abort due to fatal signal pending. 564 * Returns false when compaction can continue. 565 */ 566 static bool compact_unlock_should_abort(spinlock_t *lock, 567 unsigned long flags, bool *locked, struct compact_control *cc) 568 { 569 if (*locked) { 570 spin_unlock_irqrestore(lock, flags); 571 *locked = false; 572 } 573 574 if (fatal_signal_pending(current)) { 575 cc->contended = true; 576 return true; 577 } 578 579 cond_resched(); 580 581 return false; 582 } 583 584 /* 585 * Isolate free pages onto a private freelist. If @strict is true, will abort 586 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 587 * (even though it may still end up isolating some pages). 588 */ 589 static unsigned long isolate_freepages_block(struct compact_control *cc, 590 unsigned long *start_pfn, 591 unsigned long end_pfn, 592 struct list_head *freelist, 593 unsigned int stride, 594 bool strict) 595 { 596 int nr_scanned = 0, total_isolated = 0; 597 struct page *page; 598 unsigned long flags = 0; 599 bool locked = false; 600 unsigned long blockpfn = *start_pfn; 601 unsigned int order; 602 603 /* Strict mode is for isolation, speed is secondary */ 604 if (strict) 605 stride = 1; 606 607 page = pfn_to_page(blockpfn); 608 609 /* Isolate free pages. */ 610 for (; blockpfn < end_pfn; blockpfn += stride, page += stride) { 611 int isolated; 612 613 /* 614 * Periodically drop the lock (if held) regardless of its 615 * contention, to give chance to IRQs. Abort if fatal signal 616 * pending. 617 */ 618 if (!(blockpfn % COMPACT_CLUSTER_MAX) 619 && compact_unlock_should_abort(&cc->zone->lock, flags, 620 &locked, cc)) 621 break; 622 623 nr_scanned++; 624 625 /* 626 * For compound pages such as THP and hugetlbfs, we can save 627 * potentially a lot of iterations if we skip them at once. 628 * The check is racy, but we can consider only valid values 629 * and the only danger is skipping too much. 630 */ 631 if (PageCompound(page)) { 632 const unsigned int order = compound_order(page); 633 634 if ((order <= MAX_PAGE_ORDER) && 635 (blockpfn + (1UL << order) <= end_pfn)) { 636 blockpfn += (1UL << order) - 1; 637 page += (1UL << order) - 1; 638 nr_scanned += (1UL << order) - 1; 639 } 640 641 goto isolate_fail; 642 } 643 644 if (!PageBuddy(page)) 645 goto isolate_fail; 646 647 /* If we already hold the lock, we can skip some rechecking. */ 648 if (!locked) { 649 locked = compact_lock_irqsave(&cc->zone->lock, 650 &flags, cc); 651 652 /* Recheck this is a buddy page under lock */ 653 if (!PageBuddy(page)) 654 goto isolate_fail; 655 } 656 657 /* Found a free page, will break it into order-0 pages */ 658 order = buddy_order(page); 659 isolated = __isolate_free_page(page, order); 660 if (!isolated) 661 break; 662 set_page_private(page, order); 663 664 nr_scanned += isolated - 1; 665 total_isolated += isolated; 666 cc->nr_freepages += isolated; 667 list_add_tail(&page->lru, &freelist[order]); 668 669 if (!strict && cc->nr_migratepages <= cc->nr_freepages) { 670 blockpfn += isolated; 671 break; 672 } 673 /* Advance to the end of split page */ 674 blockpfn += isolated - 1; 675 page += isolated - 1; 676 continue; 677 678 isolate_fail: 679 if (strict) 680 break; 681 682 } 683 684 if (locked) 685 spin_unlock_irqrestore(&cc->zone->lock, flags); 686 687 /* 688 * Be careful to not go outside of the pageblock. 689 */ 690 if (unlikely(blockpfn > end_pfn)) 691 blockpfn = end_pfn; 692 693 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 694 nr_scanned, total_isolated); 695 696 /* Record how far we have got within the block */ 697 *start_pfn = blockpfn; 698 699 /* 700 * If strict isolation is requested by CMA then check that all the 701 * pages requested were isolated. If there were any failures, 0 is 702 * returned and CMA will fail. 703 */ 704 if (strict && blockpfn < end_pfn) 705 total_isolated = 0; 706 707 cc->total_free_scanned += nr_scanned; 708 if (total_isolated) 709 count_compact_events(COMPACTISOLATED, total_isolated); 710 return total_isolated; 711 } 712 713 /** 714 * isolate_freepages_range() - isolate free pages. 715 * @cc: Compaction control structure. 716 * @start_pfn: The first PFN to start isolating. 717 * @end_pfn: The one-past-last PFN. 718 * 719 * Non-free pages, invalid PFNs, or zone boundaries within the 720 * [start_pfn, end_pfn) range are considered errors, cause function to 721 * undo its actions and return zero. cc->freepages[] are empty. 722 * 723 * Otherwise, function returns one-past-the-last PFN of isolated page 724 * (which may be greater then end_pfn if end fell in a middle of 725 * a free page). cc->freepages[] contain free pages isolated. 726 */ 727 unsigned long 728 isolate_freepages_range(struct compact_control *cc, 729 unsigned long start_pfn, unsigned long end_pfn) 730 { 731 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 732 int order; 733 734 for (order = 0; order < NR_PAGE_ORDERS; order++) 735 INIT_LIST_HEAD(&cc->freepages[order]); 736 737 pfn = start_pfn; 738 block_start_pfn = pageblock_start_pfn(pfn); 739 if (block_start_pfn < cc->zone->zone_start_pfn) 740 block_start_pfn = cc->zone->zone_start_pfn; 741 block_end_pfn = pageblock_end_pfn(pfn); 742 743 for (; pfn < end_pfn; pfn += isolated, 744 block_start_pfn = block_end_pfn, 745 block_end_pfn += pageblock_nr_pages) { 746 /* Protect pfn from changing by isolate_freepages_block */ 747 unsigned long isolate_start_pfn = pfn; 748 749 /* 750 * pfn could pass the block_end_pfn if isolated freepage 751 * is more than pageblock order. In this case, we adjust 752 * scanning range to right one. 753 */ 754 if (pfn >= block_end_pfn) { 755 block_start_pfn = pageblock_start_pfn(pfn); 756 block_end_pfn = pageblock_end_pfn(pfn); 757 } 758 759 block_end_pfn = min(block_end_pfn, end_pfn); 760 761 if (!pageblock_pfn_to_page(block_start_pfn, 762 block_end_pfn, cc->zone)) 763 break; 764 765 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 766 block_end_pfn, cc->freepages, 0, true); 767 768 /* 769 * In strict mode, isolate_freepages_block() returns 0 if 770 * there are any holes in the block (ie. invalid PFNs or 771 * non-free pages). 772 */ 773 if (!isolated) 774 break; 775 776 /* 777 * If we managed to isolate pages, it is always (1 << n) * 778 * pageblock_nr_pages for some non-negative n. (Max order 779 * page may span two pageblocks). 780 */ 781 } 782 783 if (pfn < end_pfn) { 784 /* Loop terminated early, cleanup. */ 785 release_free_list(cc->freepages); 786 return 0; 787 } 788 789 /* We don't use freelists for anything. */ 790 return pfn; 791 } 792 793 /* Similar to reclaim, but different enough that they don't share logic */ 794 static bool too_many_isolated(struct compact_control *cc) 795 { 796 pg_data_t *pgdat = cc->zone->zone_pgdat; 797 bool too_many; 798 799 unsigned long active, inactive, isolated; 800 801 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) + 802 node_page_state(pgdat, NR_INACTIVE_ANON); 803 active = node_page_state(pgdat, NR_ACTIVE_FILE) + 804 node_page_state(pgdat, NR_ACTIVE_ANON); 805 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) + 806 node_page_state(pgdat, NR_ISOLATED_ANON); 807 808 /* 809 * Allow GFP_NOFS to isolate past the limit set for regular 810 * compaction runs. This prevents an ABBA deadlock when other 811 * compactors have already isolated to the limit, but are 812 * blocked on filesystem locks held by the GFP_NOFS thread. 813 */ 814 if (cc->gfp_mask & __GFP_FS) { 815 inactive >>= 3; 816 active >>= 3; 817 } 818 819 too_many = isolated > (inactive + active) / 2; 820 if (!too_many) 821 wake_throttle_isolated(pgdat); 822 823 return too_many; 824 } 825 826 /** 827 * skip_isolation_on_order() - determine when to skip folio isolation based on 828 * folio order and compaction target order 829 * @order: to-be-isolated folio order 830 * @target_order: compaction target order 831 * 832 * This avoids unnecessary folio isolations during compaction. 833 */ 834 static bool skip_isolation_on_order(int order, int target_order) 835 { 836 /* 837 * Unless we are performing global compaction (i.e., 838 * is_via_compact_memory), skip any folios that are larger than the 839 * target order: we wouldn't be here if we'd have a free folio with 840 * the desired target_order, so migrating this folio would likely fail 841 * later. 842 */ 843 if (!is_via_compact_memory(target_order) && order >= target_order) 844 return true; 845 /* 846 * We limit memory compaction to pageblocks and won't try 847 * creating free blocks of memory that are larger than that. 848 */ 849 return order >= pageblock_order; 850 } 851 852 /** 853 * isolate_migratepages_block() - isolate all migrate-able pages within 854 * a single pageblock 855 * @cc: Compaction control structure. 856 * @low_pfn: The first PFN to isolate 857 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 858 * @mode: Isolation mode to be used. 859 * 860 * Isolate all pages that can be migrated from the range specified by 861 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 862 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion, 863 * -ENOMEM in case we could not allocate a page, or 0. 864 * cc->migrate_pfn will contain the next pfn to scan. 865 * 866 * The pages are isolated on cc->migratepages list (not required to be empty), 867 * and cc->nr_migratepages is updated accordingly. 868 */ 869 static int 870 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 871 unsigned long end_pfn, isolate_mode_t mode) 872 { 873 pg_data_t *pgdat = cc->zone->zone_pgdat; 874 unsigned long nr_scanned = 0, nr_isolated = 0; 875 struct lruvec *lruvec; 876 unsigned long flags = 0; 877 struct lruvec *locked = NULL; 878 struct folio *folio = NULL; 879 struct page *page = NULL, *valid_page = NULL; 880 struct address_space *mapping; 881 unsigned long start_pfn = low_pfn; 882 bool skip_on_failure = false; 883 unsigned long next_skip_pfn = 0; 884 bool skip_updated = false; 885 int ret = 0; 886 887 cc->migrate_pfn = low_pfn; 888 889 /* 890 * Ensure that there are not too many pages isolated from the LRU 891 * list by either parallel reclaimers or compaction. If there are, 892 * delay for some time until fewer pages are isolated 893 */ 894 while (unlikely(too_many_isolated(cc))) { 895 /* stop isolation if there are still pages not migrated */ 896 if (cc->nr_migratepages) 897 return -EAGAIN; 898 899 /* async migration should just abort */ 900 if (cc->mode == MIGRATE_ASYNC) 901 return -EAGAIN; 902 903 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 904 905 if (fatal_signal_pending(current)) 906 return -EINTR; 907 } 908 909 cond_resched(); 910 911 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { 912 skip_on_failure = true; 913 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 914 } 915 916 /* Time to isolate some pages for migration */ 917 for (; low_pfn < end_pfn; low_pfn++) { 918 bool is_dirty, is_unevictable; 919 920 if (skip_on_failure && low_pfn >= next_skip_pfn) { 921 /* 922 * We have isolated all migration candidates in the 923 * previous order-aligned block, and did not skip it due 924 * to failure. We should migrate the pages now and 925 * hopefully succeed compaction. 926 */ 927 if (nr_isolated) 928 break; 929 930 /* 931 * We failed to isolate in the previous order-aligned 932 * block. Set the new boundary to the end of the 933 * current block. Note we can't simply increase 934 * next_skip_pfn by 1 << order, as low_pfn might have 935 * been incremented by a higher number due to skipping 936 * a compound or a high-order buddy page in the 937 * previous loop iteration. 938 */ 939 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 940 } 941 942 /* 943 * Periodically drop the lock (if held) regardless of its 944 * contention, to give chance to IRQs. Abort completely if 945 * a fatal signal is pending. 946 */ 947 if (!(low_pfn % COMPACT_CLUSTER_MAX)) { 948 if (locked) { 949 unlock_page_lruvec_irqrestore(locked, flags); 950 locked = NULL; 951 } 952 953 if (fatal_signal_pending(current)) { 954 cc->contended = true; 955 ret = -EINTR; 956 957 goto fatal_pending; 958 } 959 960 cond_resched(); 961 } 962 963 nr_scanned++; 964 965 page = pfn_to_page(low_pfn); 966 967 /* 968 * Check if the pageblock has already been marked skipped. 969 * Only the first PFN is checked as the caller isolates 970 * COMPACT_CLUSTER_MAX at a time so the second call must 971 * not falsely conclude that the block should be skipped. 972 */ 973 if (!valid_page && (pageblock_aligned(low_pfn) || 974 low_pfn == cc->zone->zone_start_pfn)) { 975 if (!isolation_suitable(cc, page)) { 976 low_pfn = end_pfn; 977 folio = NULL; 978 goto isolate_abort; 979 } 980 valid_page = page; 981 } 982 983 if (PageHuge(page)) { 984 /* 985 * skip hugetlbfs if we are not compacting for pages 986 * bigger than its order. THPs and other compound pages 987 * are handled below. 988 */ 989 if (!cc->alloc_contig) { 990 const unsigned int order = compound_order(page); 991 992 if (order <= MAX_PAGE_ORDER) { 993 low_pfn += (1UL << order) - 1; 994 nr_scanned += (1UL << order) - 1; 995 } 996 goto isolate_fail; 997 } 998 /* for alloc_contig case */ 999 if (locked) { 1000 unlock_page_lruvec_irqrestore(locked, flags); 1001 locked = NULL; 1002 } 1003 1004 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages); 1005 1006 /* 1007 * Fail isolation in case isolate_or_dissolve_huge_page() 1008 * reports an error. In case of -ENOMEM, abort right away. 1009 */ 1010 if (ret < 0) { 1011 /* Do not report -EBUSY down the chain */ 1012 if (ret == -EBUSY) 1013 ret = 0; 1014 low_pfn += compound_nr(page) - 1; 1015 nr_scanned += compound_nr(page) - 1; 1016 goto isolate_fail; 1017 } 1018 1019 if (PageHuge(page)) { 1020 /* 1021 * Hugepage was successfully isolated and placed 1022 * on the cc->migratepages list. 1023 */ 1024 folio = page_folio(page); 1025 low_pfn += folio_nr_pages(folio) - 1; 1026 goto isolate_success_no_list; 1027 } 1028 1029 /* 1030 * Ok, the hugepage was dissolved. Now these pages are 1031 * Buddy and cannot be re-allocated because they are 1032 * isolated. Fall-through as the check below handles 1033 * Buddy pages. 1034 */ 1035 } 1036 1037 /* 1038 * Skip if free. We read page order here without zone lock 1039 * which is generally unsafe, but the race window is small and 1040 * the worst thing that can happen is that we skip some 1041 * potential isolation targets. 1042 */ 1043 if (PageBuddy(page)) { 1044 unsigned long freepage_order = buddy_order_unsafe(page); 1045 1046 /* 1047 * Without lock, we cannot be sure that what we got is 1048 * a valid page order. Consider only values in the 1049 * valid order range to prevent low_pfn overflow. 1050 */ 1051 if (freepage_order > 0 && freepage_order <= MAX_PAGE_ORDER) { 1052 low_pfn += (1UL << freepage_order) - 1; 1053 nr_scanned += (1UL << freepage_order) - 1; 1054 } 1055 continue; 1056 } 1057 1058 /* 1059 * Regardless of being on LRU, compound pages such as THP 1060 * (hugetlbfs is handled above) are not to be compacted unless 1061 * we are attempting an allocation larger than the compound 1062 * page size. We can potentially save a lot of iterations if we 1063 * skip them at once. The check is racy, but we can consider 1064 * only valid values and the only danger is skipping too much. 1065 */ 1066 if (PageCompound(page) && !cc->alloc_contig) { 1067 const unsigned int order = compound_order(page); 1068 1069 /* Skip based on page order and compaction target order. */ 1070 if (skip_isolation_on_order(order, cc->order)) { 1071 if (order <= MAX_PAGE_ORDER) { 1072 low_pfn += (1UL << order) - 1; 1073 nr_scanned += (1UL << order) - 1; 1074 } 1075 goto isolate_fail; 1076 } 1077 } 1078 1079 /* 1080 * Check may be lockless but that's ok as we recheck later. 1081 * It's possible to migrate LRU and non-lru movable pages. 1082 * Skip any other type of page 1083 */ 1084 if (!PageLRU(page)) { 1085 /* 1086 * __PageMovable can return false positive so we need 1087 * to verify it under page_lock. 1088 */ 1089 if (unlikely(__PageMovable(page)) && 1090 !PageIsolated(page)) { 1091 if (locked) { 1092 unlock_page_lruvec_irqrestore(locked, flags); 1093 locked = NULL; 1094 } 1095 1096 if (isolate_movable_page(page, mode)) { 1097 folio = page_folio(page); 1098 goto isolate_success; 1099 } 1100 } 1101 1102 goto isolate_fail; 1103 } 1104 1105 /* 1106 * Be careful not to clear PageLRU until after we're 1107 * sure the page is not being freed elsewhere -- the 1108 * page release code relies on it. 1109 */ 1110 folio = folio_get_nontail_page(page); 1111 if (unlikely(!folio)) 1112 goto isolate_fail; 1113 1114 /* 1115 * Migration will fail if an anonymous page is pinned in memory, 1116 * so avoid taking lru_lock and isolating it unnecessarily in an 1117 * admittedly racy check. 1118 */ 1119 mapping = folio_mapping(folio); 1120 if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio)) 1121 goto isolate_fail_put; 1122 1123 /* 1124 * Only allow to migrate anonymous pages in GFP_NOFS context 1125 * because those do not depend on fs locks. 1126 */ 1127 if (!(cc->gfp_mask & __GFP_FS) && mapping) 1128 goto isolate_fail_put; 1129 1130 /* Only take pages on LRU: a check now makes later tests safe */ 1131 if (!folio_test_lru(folio)) 1132 goto isolate_fail_put; 1133 1134 is_unevictable = folio_test_unevictable(folio); 1135 1136 /* Compaction might skip unevictable pages but CMA takes them */ 1137 if (!(mode & ISOLATE_UNEVICTABLE) && is_unevictable) 1138 goto isolate_fail_put; 1139 1140 /* 1141 * To minimise LRU disruption, the caller can indicate with 1142 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages 1143 * it will be able to migrate without blocking - clean pages 1144 * for the most part. PageWriteback would require blocking. 1145 */ 1146 if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio)) 1147 goto isolate_fail_put; 1148 1149 is_dirty = folio_test_dirty(folio); 1150 1151 if (((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) || 1152 (mapping && is_unevictable)) { 1153 bool migrate_dirty = true; 1154 bool is_inaccessible; 1155 1156 /* 1157 * Only folios without mappings or that have 1158 * a ->migrate_folio callback are possible to migrate 1159 * without blocking. 1160 * 1161 * Folios from inaccessible mappings are not migratable. 1162 * 1163 * However, we can be racing with truncation, which can 1164 * free the mapping that we need to check. Truncation 1165 * holds the folio lock until after the folio is removed 1166 * from the page so holding it ourselves is sufficient. 1167 * 1168 * To avoid locking the folio just to check inaccessible, 1169 * assume every inaccessible folio is also unevictable, 1170 * which is a cheaper test. If our assumption goes 1171 * wrong, it's not a correctness bug, just potentially 1172 * wasted cycles. 1173 */ 1174 if (!folio_trylock(folio)) 1175 goto isolate_fail_put; 1176 1177 mapping = folio_mapping(folio); 1178 if ((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) { 1179 migrate_dirty = !mapping || 1180 mapping->a_ops->migrate_folio; 1181 } 1182 is_inaccessible = mapping && mapping_inaccessible(mapping); 1183 folio_unlock(folio); 1184 if (!migrate_dirty || is_inaccessible) 1185 goto isolate_fail_put; 1186 } 1187 1188 /* Try isolate the folio */ 1189 if (!folio_test_clear_lru(folio)) 1190 goto isolate_fail_put; 1191 1192 lruvec = folio_lruvec(folio); 1193 1194 /* If we already hold the lock, we can skip some rechecking */ 1195 if (lruvec != locked) { 1196 if (locked) 1197 unlock_page_lruvec_irqrestore(locked, flags); 1198 1199 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc); 1200 locked = lruvec; 1201 1202 lruvec_memcg_debug(lruvec, folio); 1203 1204 /* 1205 * Try get exclusive access under lock. If marked for 1206 * skip, the scan is aborted unless the current context 1207 * is a rescan to reach the end of the pageblock. 1208 */ 1209 if (!skip_updated && valid_page) { 1210 skip_updated = true; 1211 if (test_and_set_skip(cc, valid_page) && 1212 !cc->finish_pageblock) { 1213 low_pfn = end_pfn; 1214 goto isolate_abort; 1215 } 1216 } 1217 1218 /* 1219 * Check LRU folio order under the lock 1220 */ 1221 if (unlikely(skip_isolation_on_order(folio_order(folio), 1222 cc->order) && 1223 !cc->alloc_contig)) { 1224 low_pfn += folio_nr_pages(folio) - 1; 1225 nr_scanned += folio_nr_pages(folio) - 1; 1226 folio_set_lru(folio); 1227 goto isolate_fail_put; 1228 } 1229 } 1230 1231 /* The folio is taken off the LRU */ 1232 if (folio_test_large(folio)) 1233 low_pfn += folio_nr_pages(folio) - 1; 1234 1235 /* Successfully isolated */ 1236 lruvec_del_folio(lruvec, folio); 1237 node_stat_mod_folio(folio, 1238 NR_ISOLATED_ANON + folio_is_file_lru(folio), 1239 folio_nr_pages(folio)); 1240 1241 isolate_success: 1242 list_add(&folio->lru, &cc->migratepages); 1243 isolate_success_no_list: 1244 cc->nr_migratepages += folio_nr_pages(folio); 1245 nr_isolated += folio_nr_pages(folio); 1246 nr_scanned += folio_nr_pages(folio) - 1; 1247 1248 /* 1249 * Avoid isolating too much unless this block is being 1250 * fully scanned (e.g. dirty/writeback pages, parallel allocation) 1251 * or a lock is contended. For contention, isolate quickly to 1252 * potentially remove one source of contention. 1253 */ 1254 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX && 1255 !cc->finish_pageblock && !cc->contended) { 1256 ++low_pfn; 1257 break; 1258 } 1259 1260 continue; 1261 1262 isolate_fail_put: 1263 /* Avoid potential deadlock in freeing page under lru_lock */ 1264 if (locked) { 1265 unlock_page_lruvec_irqrestore(locked, flags); 1266 locked = NULL; 1267 } 1268 folio_put(folio); 1269 1270 isolate_fail: 1271 if (!skip_on_failure && ret != -ENOMEM) 1272 continue; 1273 1274 /* 1275 * We have isolated some pages, but then failed. Release them 1276 * instead of migrating, as we cannot form the cc->order buddy 1277 * page anyway. 1278 */ 1279 if (nr_isolated) { 1280 if (locked) { 1281 unlock_page_lruvec_irqrestore(locked, flags); 1282 locked = NULL; 1283 } 1284 putback_movable_pages(&cc->migratepages); 1285 cc->nr_migratepages = 0; 1286 nr_isolated = 0; 1287 } 1288 1289 if (low_pfn < next_skip_pfn) { 1290 low_pfn = next_skip_pfn - 1; 1291 /* 1292 * The check near the loop beginning would have updated 1293 * next_skip_pfn too, but this is a bit simpler. 1294 */ 1295 next_skip_pfn += 1UL << cc->order; 1296 } 1297 1298 if (ret == -ENOMEM) 1299 break; 1300 } 1301 1302 /* 1303 * The PageBuddy() check could have potentially brought us outside 1304 * the range to be scanned. 1305 */ 1306 if (unlikely(low_pfn > end_pfn)) 1307 low_pfn = end_pfn; 1308 1309 folio = NULL; 1310 1311 isolate_abort: 1312 if (locked) 1313 unlock_page_lruvec_irqrestore(locked, flags); 1314 if (folio) { 1315 folio_set_lru(folio); 1316 folio_put(folio); 1317 } 1318 1319 /* 1320 * Update the cached scanner pfn once the pageblock has been scanned. 1321 * Pages will either be migrated in which case there is no point 1322 * scanning in the near future or migration failed in which case the 1323 * failure reason may persist. The block is marked for skipping if 1324 * there were no pages isolated in the block or if the block is 1325 * rescanned twice in a row. 1326 */ 1327 if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) { 1328 if (!cc->no_set_skip_hint && valid_page && !skip_updated) 1329 set_pageblock_skip(valid_page); 1330 update_cached_migrate(cc, low_pfn); 1331 } 1332 1333 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 1334 nr_scanned, nr_isolated); 1335 1336 fatal_pending: 1337 cc->total_migrate_scanned += nr_scanned; 1338 if (nr_isolated) 1339 count_compact_events(COMPACTISOLATED, nr_isolated); 1340 1341 cc->migrate_pfn = low_pfn; 1342 1343 return ret; 1344 } 1345 1346 /** 1347 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 1348 * @cc: Compaction control structure. 1349 * @start_pfn: The first PFN to start isolating. 1350 * @end_pfn: The one-past-last PFN. 1351 * 1352 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM 1353 * in case we could not allocate a page, or 0. 1354 */ 1355 int 1356 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 1357 unsigned long end_pfn) 1358 { 1359 unsigned long pfn, block_start_pfn, block_end_pfn; 1360 int ret = 0; 1361 1362 /* Scan block by block. First and last block may be incomplete */ 1363 pfn = start_pfn; 1364 block_start_pfn = pageblock_start_pfn(pfn); 1365 if (block_start_pfn < cc->zone->zone_start_pfn) 1366 block_start_pfn = cc->zone->zone_start_pfn; 1367 block_end_pfn = pageblock_end_pfn(pfn); 1368 1369 for (; pfn < end_pfn; pfn = block_end_pfn, 1370 block_start_pfn = block_end_pfn, 1371 block_end_pfn += pageblock_nr_pages) { 1372 1373 block_end_pfn = min(block_end_pfn, end_pfn); 1374 1375 if (!pageblock_pfn_to_page(block_start_pfn, 1376 block_end_pfn, cc->zone)) 1377 continue; 1378 1379 ret = isolate_migratepages_block(cc, pfn, block_end_pfn, 1380 ISOLATE_UNEVICTABLE); 1381 1382 if (ret) 1383 break; 1384 1385 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX) 1386 break; 1387 } 1388 1389 return ret; 1390 } 1391 1392 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 1393 #ifdef CONFIG_COMPACTION 1394 1395 static bool suitable_migration_source(struct compact_control *cc, 1396 struct page *page) 1397 { 1398 int block_mt; 1399 1400 if (pageblock_skip_persistent(page)) 1401 return false; 1402 1403 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction) 1404 return true; 1405 1406 block_mt = get_pageblock_migratetype(page); 1407 1408 if (cc->migratetype == MIGRATE_MOVABLE) 1409 return is_migrate_movable(block_mt); 1410 else 1411 return block_mt == cc->migratetype; 1412 } 1413 1414 /* Returns true if the page is within a block suitable for migration to */ 1415 static bool suitable_migration_target(struct compact_control *cc, 1416 struct page *page) 1417 { 1418 /* If the page is a large free page, then disallow migration */ 1419 if (PageBuddy(page)) { 1420 int order = cc->order > 0 ? cc->order : pageblock_order; 1421 1422 /* 1423 * We are checking page_order without zone->lock taken. But 1424 * the only small danger is that we skip a potentially suitable 1425 * pageblock, so it's not worth to check order for valid range. 1426 */ 1427 if (buddy_order_unsafe(page) >= order) 1428 return false; 1429 } 1430 1431 if (cc->ignore_block_suitable) 1432 return true; 1433 1434 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 1435 if (is_migrate_movable(get_pageblock_migratetype(page))) 1436 return true; 1437 1438 /* Otherwise skip the block */ 1439 return false; 1440 } 1441 1442 static inline unsigned int 1443 freelist_scan_limit(struct compact_control *cc) 1444 { 1445 unsigned short shift = BITS_PER_LONG - 1; 1446 1447 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1; 1448 } 1449 1450 /* 1451 * Test whether the free scanner has reached the same or lower pageblock than 1452 * the migration scanner, and compaction should thus terminate. 1453 */ 1454 static inline bool compact_scanners_met(struct compact_control *cc) 1455 { 1456 return (cc->free_pfn >> pageblock_order) 1457 <= (cc->migrate_pfn >> pageblock_order); 1458 } 1459 1460 /* 1461 * Used when scanning for a suitable migration target which scans freelists 1462 * in reverse. Reorders the list such as the unscanned pages are scanned 1463 * first on the next iteration of the free scanner 1464 */ 1465 static void 1466 move_freelist_head(struct list_head *freelist, struct page *freepage) 1467 { 1468 LIST_HEAD(sublist); 1469 1470 if (!list_is_first(&freepage->buddy_list, freelist)) { 1471 list_cut_before(&sublist, freelist, &freepage->buddy_list); 1472 list_splice_tail(&sublist, freelist); 1473 } 1474 } 1475 1476 /* 1477 * Similar to move_freelist_head except used by the migration scanner 1478 * when scanning forward. It's possible for these list operations to 1479 * move against each other if they search the free list exactly in 1480 * lockstep. 1481 */ 1482 static void 1483 move_freelist_tail(struct list_head *freelist, struct page *freepage) 1484 { 1485 LIST_HEAD(sublist); 1486 1487 if (!list_is_last(&freepage->buddy_list, freelist)) { 1488 list_cut_position(&sublist, freelist, &freepage->buddy_list); 1489 list_splice_tail(&sublist, freelist); 1490 } 1491 } 1492 1493 static void 1494 fast_isolate_around(struct compact_control *cc, unsigned long pfn) 1495 { 1496 unsigned long start_pfn, end_pfn; 1497 struct page *page; 1498 1499 /* Do not search around if there are enough pages already */ 1500 if (cc->nr_freepages >= cc->nr_migratepages) 1501 return; 1502 1503 /* Minimise scanning during async compaction */ 1504 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC) 1505 return; 1506 1507 /* Pageblock boundaries */ 1508 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn); 1509 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)); 1510 1511 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone); 1512 if (!page) 1513 return; 1514 1515 isolate_freepages_block(cc, &start_pfn, end_pfn, cc->freepages, 1, false); 1516 1517 /* Skip this pageblock in the future as it's full or nearly full */ 1518 if (start_pfn == end_pfn && !cc->no_set_skip_hint) 1519 set_pageblock_skip(page); 1520 } 1521 1522 /* Search orders in round-robin fashion */ 1523 static int next_search_order(struct compact_control *cc, int order) 1524 { 1525 order--; 1526 if (order < 0) 1527 order = cc->order - 1; 1528 1529 /* Search wrapped around? */ 1530 if (order == cc->search_order) { 1531 cc->search_order--; 1532 if (cc->search_order < 0) 1533 cc->search_order = cc->order - 1; 1534 return -1; 1535 } 1536 1537 return order; 1538 } 1539 1540 static void fast_isolate_freepages(struct compact_control *cc) 1541 { 1542 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1); 1543 unsigned int nr_scanned = 0, total_isolated = 0; 1544 unsigned long low_pfn, min_pfn, highest = 0; 1545 unsigned long nr_isolated = 0; 1546 unsigned long distance; 1547 struct page *page = NULL; 1548 bool scan_start = false; 1549 int order; 1550 1551 /* Full compaction passes in a negative order */ 1552 if (cc->order <= 0) 1553 return; 1554 1555 /* 1556 * If starting the scan, use a deeper search and use the highest 1557 * PFN found if a suitable one is not found. 1558 */ 1559 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) { 1560 limit = pageblock_nr_pages >> 1; 1561 scan_start = true; 1562 } 1563 1564 /* 1565 * Preferred point is in the top quarter of the scan space but take 1566 * a pfn from the top half if the search is problematic. 1567 */ 1568 distance = (cc->free_pfn - cc->migrate_pfn); 1569 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2)); 1570 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1)); 1571 1572 if (WARN_ON_ONCE(min_pfn > low_pfn)) 1573 low_pfn = min_pfn; 1574 1575 /* 1576 * Search starts from the last successful isolation order or the next 1577 * order to search after a previous failure 1578 */ 1579 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order); 1580 1581 for (order = cc->search_order; 1582 !page && order >= 0; 1583 order = next_search_order(cc, order)) { 1584 struct free_area *area = &cc->zone->free_area[order]; 1585 struct list_head *freelist; 1586 struct page *freepage; 1587 unsigned long flags; 1588 unsigned int order_scanned = 0; 1589 unsigned long high_pfn = 0; 1590 1591 if (!area->nr_free) 1592 continue; 1593 1594 spin_lock_irqsave(&cc->zone->lock, flags); 1595 freelist = &area->free_list[MIGRATE_MOVABLE]; 1596 list_for_each_entry_reverse(freepage, freelist, buddy_list) { 1597 unsigned long pfn; 1598 1599 order_scanned++; 1600 nr_scanned++; 1601 pfn = page_to_pfn(freepage); 1602 1603 if (pfn >= highest) 1604 highest = max(pageblock_start_pfn(pfn), 1605 cc->zone->zone_start_pfn); 1606 1607 if (pfn >= low_pfn) { 1608 cc->fast_search_fail = 0; 1609 cc->search_order = order; 1610 page = freepage; 1611 break; 1612 } 1613 1614 if (pfn >= min_pfn && pfn > high_pfn) { 1615 high_pfn = pfn; 1616 1617 /* Shorten the scan if a candidate is found */ 1618 limit >>= 1; 1619 } 1620 1621 if (order_scanned >= limit) 1622 break; 1623 } 1624 1625 /* Use a maximum candidate pfn if a preferred one was not found */ 1626 if (!page && high_pfn) { 1627 page = pfn_to_page(high_pfn); 1628 1629 /* Update freepage for the list reorder below */ 1630 freepage = page; 1631 } 1632 1633 /* Reorder to so a future search skips recent pages */ 1634 move_freelist_head(freelist, freepage); 1635 1636 /* Isolate the page if available */ 1637 if (page) { 1638 if (__isolate_free_page(page, order)) { 1639 set_page_private(page, order); 1640 nr_isolated = 1 << order; 1641 nr_scanned += nr_isolated - 1; 1642 total_isolated += nr_isolated; 1643 cc->nr_freepages += nr_isolated; 1644 list_add_tail(&page->lru, &cc->freepages[order]); 1645 count_compact_events(COMPACTISOLATED, nr_isolated); 1646 } else { 1647 /* If isolation fails, abort the search */ 1648 order = cc->search_order + 1; 1649 page = NULL; 1650 } 1651 } 1652 1653 spin_unlock_irqrestore(&cc->zone->lock, flags); 1654 1655 /* Skip fast search if enough freepages isolated */ 1656 if (cc->nr_freepages >= cc->nr_migratepages) 1657 break; 1658 1659 /* 1660 * Smaller scan on next order so the total scan is related 1661 * to freelist_scan_limit. 1662 */ 1663 if (order_scanned >= limit) 1664 limit = max(1U, limit >> 1); 1665 } 1666 1667 trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn, 1668 nr_scanned, total_isolated); 1669 1670 if (!page) { 1671 cc->fast_search_fail++; 1672 if (scan_start) { 1673 /* 1674 * Use the highest PFN found above min. If one was 1675 * not found, be pessimistic for direct compaction 1676 * and use the min mark. 1677 */ 1678 if (highest >= min_pfn) { 1679 page = pfn_to_page(highest); 1680 cc->free_pfn = highest; 1681 } else { 1682 if (cc->direct_compaction && pfn_valid(min_pfn)) { 1683 page = pageblock_pfn_to_page(min_pfn, 1684 min(pageblock_end_pfn(min_pfn), 1685 zone_end_pfn(cc->zone)), 1686 cc->zone); 1687 if (page && !suitable_migration_target(cc, page)) 1688 page = NULL; 1689 1690 cc->free_pfn = min_pfn; 1691 } 1692 } 1693 } 1694 } 1695 1696 if (highest && highest >= cc->zone->compact_cached_free_pfn) { 1697 highest -= pageblock_nr_pages; 1698 cc->zone->compact_cached_free_pfn = highest; 1699 } 1700 1701 cc->total_free_scanned += nr_scanned; 1702 if (!page) 1703 return; 1704 1705 low_pfn = page_to_pfn(page); 1706 fast_isolate_around(cc, low_pfn); 1707 } 1708 1709 /* 1710 * Based on information in the current compact_control, find blocks 1711 * suitable for isolating free pages from and then isolate them. 1712 */ 1713 static void isolate_freepages(struct compact_control *cc) 1714 { 1715 struct zone *zone = cc->zone; 1716 struct page *page; 1717 unsigned long block_start_pfn; /* start of current pageblock */ 1718 unsigned long isolate_start_pfn; /* exact pfn we start at */ 1719 unsigned long block_end_pfn; /* end of current pageblock */ 1720 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 1721 unsigned int stride; 1722 1723 /* Try a small search of the free lists for a candidate */ 1724 fast_isolate_freepages(cc); 1725 if (cc->nr_freepages) 1726 return; 1727 1728 /* 1729 * Initialise the free scanner. The starting point is where we last 1730 * successfully isolated from, zone-cached value, or the end of the 1731 * zone when isolating for the first time. For looping we also need 1732 * this pfn aligned down to the pageblock boundary, because we do 1733 * block_start_pfn -= pageblock_nr_pages in the for loop. 1734 * For ending point, take care when isolating in last pageblock of a 1735 * zone which ends in the middle of a pageblock. 1736 * The low boundary is the end of the pageblock the migration scanner 1737 * is using. 1738 */ 1739 isolate_start_pfn = cc->free_pfn; 1740 block_start_pfn = pageblock_start_pfn(isolate_start_pfn); 1741 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 1742 zone_end_pfn(zone)); 1743 low_pfn = pageblock_end_pfn(cc->migrate_pfn); 1744 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1; 1745 1746 /* 1747 * Isolate free pages until enough are available to migrate the 1748 * pages on cc->migratepages. We stop searching if the migrate 1749 * and free page scanners meet or enough free pages are isolated. 1750 */ 1751 for (; block_start_pfn >= low_pfn; 1752 block_end_pfn = block_start_pfn, 1753 block_start_pfn -= pageblock_nr_pages, 1754 isolate_start_pfn = block_start_pfn) { 1755 unsigned long nr_isolated; 1756 1757 /* 1758 * This can iterate a massively long zone without finding any 1759 * suitable migration targets, so periodically check resched. 1760 */ 1761 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages))) 1762 cond_resched(); 1763 1764 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1765 zone); 1766 if (!page) { 1767 unsigned long next_pfn; 1768 1769 next_pfn = skip_offline_sections_reverse(block_start_pfn); 1770 if (next_pfn) 1771 block_start_pfn = max(next_pfn, low_pfn); 1772 1773 continue; 1774 } 1775 1776 /* Check the block is suitable for migration */ 1777 if (!suitable_migration_target(cc, page)) 1778 continue; 1779 1780 /* If isolation recently failed, do not retry */ 1781 if (!isolation_suitable(cc, page)) 1782 continue; 1783 1784 /* Found a block suitable for isolating free pages from. */ 1785 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn, 1786 block_end_pfn, cc->freepages, stride, false); 1787 1788 /* Update the skip hint if the full pageblock was scanned */ 1789 if (isolate_start_pfn == block_end_pfn) 1790 update_pageblock_skip(cc, page, block_start_pfn - 1791 pageblock_nr_pages); 1792 1793 /* Are enough freepages isolated? */ 1794 if (cc->nr_freepages >= cc->nr_migratepages) { 1795 if (isolate_start_pfn >= block_end_pfn) { 1796 /* 1797 * Restart at previous pageblock if more 1798 * freepages can be isolated next time. 1799 */ 1800 isolate_start_pfn = 1801 block_start_pfn - pageblock_nr_pages; 1802 } 1803 break; 1804 } else if (isolate_start_pfn < block_end_pfn) { 1805 /* 1806 * If isolation failed early, do not continue 1807 * needlessly. 1808 */ 1809 break; 1810 } 1811 1812 /* Adjust stride depending on isolation */ 1813 if (nr_isolated) { 1814 stride = 1; 1815 continue; 1816 } 1817 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1); 1818 } 1819 1820 /* 1821 * Record where the free scanner will restart next time. Either we 1822 * broke from the loop and set isolate_start_pfn based on the last 1823 * call to isolate_freepages_block(), or we met the migration scanner 1824 * and the loop terminated due to isolate_start_pfn < low_pfn 1825 */ 1826 cc->free_pfn = isolate_start_pfn; 1827 } 1828 1829 /* 1830 * This is a migrate-callback that "allocates" freepages by taking pages 1831 * from the isolated freelists in the block we are migrating to. 1832 */ 1833 static struct folio *compaction_alloc_noprof(struct folio *src, unsigned long data) 1834 { 1835 struct compact_control *cc = (struct compact_control *)data; 1836 struct folio *dst; 1837 int order = folio_order(src); 1838 bool has_isolated_pages = false; 1839 int start_order; 1840 struct page *freepage; 1841 unsigned long size; 1842 1843 again: 1844 for (start_order = order; start_order < NR_PAGE_ORDERS; start_order++) 1845 if (!list_empty(&cc->freepages[start_order])) 1846 break; 1847 1848 /* no free pages in the list */ 1849 if (start_order == NR_PAGE_ORDERS) { 1850 if (has_isolated_pages) 1851 return NULL; 1852 isolate_freepages(cc); 1853 has_isolated_pages = true; 1854 goto again; 1855 } 1856 1857 freepage = list_first_entry(&cc->freepages[start_order], struct page, 1858 lru); 1859 size = 1 << start_order; 1860 1861 list_del(&freepage->lru); 1862 1863 while (start_order > order) { 1864 start_order--; 1865 size >>= 1; 1866 1867 list_add(&freepage[size].lru, &cc->freepages[start_order]); 1868 set_page_private(&freepage[size], start_order); 1869 } 1870 dst = (struct folio *)freepage; 1871 1872 post_alloc_hook(&dst->page, order, __GFP_MOVABLE); 1873 set_page_refcounted(&dst->page); 1874 if (order) 1875 prep_compound_page(&dst->page, order); 1876 cc->nr_freepages -= 1 << order; 1877 cc->nr_migratepages -= 1 << order; 1878 return page_rmappable_folio(&dst->page); 1879 } 1880 1881 static struct folio *compaction_alloc(struct folio *src, unsigned long data) 1882 { 1883 return alloc_hooks(compaction_alloc_noprof(src, data)); 1884 } 1885 1886 /* 1887 * This is a migrate-callback that "frees" freepages back to the isolated 1888 * freelist. All pages on the freelist are from the same zone, so there is no 1889 * special handling needed for NUMA. 1890 */ 1891 static void compaction_free(struct folio *dst, unsigned long data) 1892 { 1893 struct compact_control *cc = (struct compact_control *)data; 1894 int order = folio_order(dst); 1895 struct page *page = &dst->page; 1896 1897 if (folio_put_testzero(dst)) { 1898 free_pages_prepare(page, order); 1899 list_add(&dst->lru, &cc->freepages[order]); 1900 cc->nr_freepages += 1 << order; 1901 } 1902 cc->nr_migratepages += 1 << order; 1903 /* 1904 * someone else has referenced the page, we cannot take it back to our 1905 * free list. 1906 */ 1907 } 1908 1909 /* possible outcome of isolate_migratepages */ 1910 typedef enum { 1911 ISOLATE_ABORT, /* Abort compaction now */ 1912 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1913 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1914 } isolate_migrate_t; 1915 1916 /* 1917 * Allow userspace to control policy on scanning the unevictable LRU for 1918 * compactable pages. 1919 */ 1920 static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT; 1921 /* 1922 * Tunable for proactive compaction. It determines how 1923 * aggressively the kernel should compact memory in the 1924 * background. It takes values in the range [0, 100]. 1925 */ 1926 static unsigned int __read_mostly sysctl_compaction_proactiveness = 20; 1927 static int sysctl_extfrag_threshold = 500; 1928 static int __read_mostly sysctl_compact_memory; 1929 1930 static inline void 1931 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn) 1932 { 1933 if (cc->fast_start_pfn == ULONG_MAX) 1934 return; 1935 1936 if (!cc->fast_start_pfn) 1937 cc->fast_start_pfn = pfn; 1938 1939 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn); 1940 } 1941 1942 static inline unsigned long 1943 reinit_migrate_pfn(struct compact_control *cc) 1944 { 1945 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX) 1946 return cc->migrate_pfn; 1947 1948 cc->migrate_pfn = cc->fast_start_pfn; 1949 cc->fast_start_pfn = ULONG_MAX; 1950 1951 return cc->migrate_pfn; 1952 } 1953 1954 /* 1955 * Briefly search the free lists for a migration source that already has 1956 * some free pages to reduce the number of pages that need migration 1957 * before a pageblock is free. 1958 */ 1959 static unsigned long fast_find_migrateblock(struct compact_control *cc) 1960 { 1961 unsigned int limit = freelist_scan_limit(cc); 1962 unsigned int nr_scanned = 0; 1963 unsigned long distance; 1964 unsigned long pfn = cc->migrate_pfn; 1965 unsigned long high_pfn; 1966 int order; 1967 bool found_block = false; 1968 1969 /* Skip hints are relied on to avoid repeats on the fast search */ 1970 if (cc->ignore_skip_hint) 1971 return pfn; 1972 1973 /* 1974 * If the pageblock should be finished then do not select a different 1975 * pageblock. 1976 */ 1977 if (cc->finish_pageblock) 1978 return pfn; 1979 1980 /* 1981 * If the migrate_pfn is not at the start of a zone or the start 1982 * of a pageblock then assume this is a continuation of a previous 1983 * scan restarted due to COMPACT_CLUSTER_MAX. 1984 */ 1985 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn)) 1986 return pfn; 1987 1988 /* 1989 * For smaller orders, just linearly scan as the number of pages 1990 * to migrate should be relatively small and does not necessarily 1991 * justify freeing up a large block for a small allocation. 1992 */ 1993 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER) 1994 return pfn; 1995 1996 /* 1997 * Only allow kcompactd and direct requests for movable pages to 1998 * quickly clear out a MOVABLE pageblock for allocation. This 1999 * reduces the risk that a large movable pageblock is freed for 2000 * an unmovable/reclaimable small allocation. 2001 */ 2002 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE) 2003 return pfn; 2004 2005 /* 2006 * When starting the migration scanner, pick any pageblock within the 2007 * first half of the search space. Otherwise try and pick a pageblock 2008 * within the first eighth to reduce the chances that a migration 2009 * target later becomes a source. 2010 */ 2011 distance = (cc->free_pfn - cc->migrate_pfn) >> 1; 2012 if (cc->migrate_pfn != cc->zone->zone_start_pfn) 2013 distance >>= 2; 2014 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance); 2015 2016 for (order = cc->order - 1; 2017 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit; 2018 order--) { 2019 struct free_area *area = &cc->zone->free_area[order]; 2020 struct list_head *freelist; 2021 unsigned long flags; 2022 struct page *freepage; 2023 2024 if (!area->nr_free) 2025 continue; 2026 2027 spin_lock_irqsave(&cc->zone->lock, flags); 2028 freelist = &area->free_list[MIGRATE_MOVABLE]; 2029 list_for_each_entry(freepage, freelist, buddy_list) { 2030 unsigned long free_pfn; 2031 2032 if (nr_scanned++ >= limit) { 2033 move_freelist_tail(freelist, freepage); 2034 break; 2035 } 2036 2037 free_pfn = page_to_pfn(freepage); 2038 if (free_pfn < high_pfn) { 2039 /* 2040 * Avoid if skipped recently. Ideally it would 2041 * move to the tail but even safe iteration of 2042 * the list assumes an entry is deleted, not 2043 * reordered. 2044 */ 2045 if (get_pageblock_skip(freepage)) 2046 continue; 2047 2048 /* Reorder to so a future search skips recent pages */ 2049 move_freelist_tail(freelist, freepage); 2050 2051 update_fast_start_pfn(cc, free_pfn); 2052 pfn = pageblock_start_pfn(free_pfn); 2053 if (pfn < cc->zone->zone_start_pfn) 2054 pfn = cc->zone->zone_start_pfn; 2055 cc->fast_search_fail = 0; 2056 found_block = true; 2057 break; 2058 } 2059 } 2060 spin_unlock_irqrestore(&cc->zone->lock, flags); 2061 } 2062 2063 cc->total_migrate_scanned += nr_scanned; 2064 2065 /* 2066 * If fast scanning failed then use a cached entry for a page block 2067 * that had free pages as the basis for starting a linear scan. 2068 */ 2069 if (!found_block) { 2070 cc->fast_search_fail++; 2071 pfn = reinit_migrate_pfn(cc); 2072 } 2073 return pfn; 2074 } 2075 2076 /* 2077 * Isolate all pages that can be migrated from the first suitable block, 2078 * starting at the block pointed to by the migrate scanner pfn within 2079 * compact_control. 2080 */ 2081 static isolate_migrate_t isolate_migratepages(struct compact_control *cc) 2082 { 2083 unsigned long block_start_pfn; 2084 unsigned long block_end_pfn; 2085 unsigned long low_pfn; 2086 struct page *page; 2087 const isolate_mode_t isolate_mode = 2088 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 2089 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0); 2090 bool fast_find_block; 2091 2092 /* 2093 * Start at where we last stopped, or beginning of the zone as 2094 * initialized by compact_zone(). The first failure will use 2095 * the lowest PFN as the starting point for linear scanning. 2096 */ 2097 low_pfn = fast_find_migrateblock(cc); 2098 block_start_pfn = pageblock_start_pfn(low_pfn); 2099 if (block_start_pfn < cc->zone->zone_start_pfn) 2100 block_start_pfn = cc->zone->zone_start_pfn; 2101 2102 /* 2103 * fast_find_migrateblock() has already ensured the pageblock is not 2104 * set with a skipped flag, so to avoid the isolation_suitable check 2105 * below again, check whether the fast search was successful. 2106 */ 2107 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail; 2108 2109 /* Only scan within a pageblock boundary */ 2110 block_end_pfn = pageblock_end_pfn(low_pfn); 2111 2112 /* 2113 * Iterate over whole pageblocks until we find the first suitable. 2114 * Do not cross the free scanner. 2115 */ 2116 for (; block_end_pfn <= cc->free_pfn; 2117 fast_find_block = false, 2118 cc->migrate_pfn = low_pfn = block_end_pfn, 2119 block_start_pfn = block_end_pfn, 2120 block_end_pfn += pageblock_nr_pages) { 2121 2122 /* 2123 * This can potentially iterate a massively long zone with 2124 * many pageblocks unsuitable, so periodically check if we 2125 * need to schedule. 2126 */ 2127 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages))) 2128 cond_resched(); 2129 2130 page = pageblock_pfn_to_page(block_start_pfn, 2131 block_end_pfn, cc->zone); 2132 if (!page) { 2133 unsigned long next_pfn; 2134 2135 next_pfn = skip_offline_sections(block_start_pfn); 2136 if (next_pfn) 2137 block_end_pfn = min(next_pfn, cc->free_pfn); 2138 continue; 2139 } 2140 2141 /* 2142 * If isolation recently failed, do not retry. Only check the 2143 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock 2144 * to be visited multiple times. Assume skip was checked 2145 * before making it "skip" so other compaction instances do 2146 * not scan the same block. 2147 */ 2148 if ((pageblock_aligned(low_pfn) || 2149 low_pfn == cc->zone->zone_start_pfn) && 2150 !fast_find_block && !isolation_suitable(cc, page)) 2151 continue; 2152 2153 /* 2154 * For async direct compaction, only scan the pageblocks of the 2155 * same migratetype without huge pages. Async direct compaction 2156 * is optimistic to see if the minimum amount of work satisfies 2157 * the allocation. The cached PFN is updated as it's possible 2158 * that all remaining blocks between source and target are 2159 * unsuitable and the compaction scanners fail to meet. 2160 */ 2161 if (!suitable_migration_source(cc, page)) { 2162 update_cached_migrate(cc, block_end_pfn); 2163 continue; 2164 } 2165 2166 /* Perform the isolation */ 2167 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn, 2168 isolate_mode)) 2169 return ISOLATE_ABORT; 2170 2171 /* 2172 * Either we isolated something and proceed with migration. Or 2173 * we failed and compact_zone should decide if we should 2174 * continue or not. 2175 */ 2176 break; 2177 } 2178 2179 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 2180 } 2181 2182 /* 2183 * Determine whether kswapd is (or recently was!) running on this node. 2184 * 2185 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't 2186 * zero it. 2187 */ 2188 static bool kswapd_is_running(pg_data_t *pgdat) 2189 { 2190 bool running; 2191 2192 pgdat_kswapd_lock(pgdat); 2193 running = pgdat->kswapd && task_is_running(pgdat->kswapd); 2194 pgdat_kswapd_unlock(pgdat); 2195 2196 return running; 2197 } 2198 2199 /* 2200 * A zone's fragmentation score is the external fragmentation wrt to the 2201 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100]. 2202 */ 2203 static unsigned int fragmentation_score_zone(struct zone *zone) 2204 { 2205 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER); 2206 } 2207 2208 /* 2209 * A weighted zone's fragmentation score is the external fragmentation 2210 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It 2211 * returns a value in the range [0, 100]. 2212 * 2213 * The scaling factor ensures that proactive compaction focuses on larger 2214 * zones like ZONE_NORMAL, rather than smaller, specialized zones like 2215 * ZONE_DMA32. For smaller zones, the score value remains close to zero, 2216 * and thus never exceeds the high threshold for proactive compaction. 2217 */ 2218 static unsigned int fragmentation_score_zone_weighted(struct zone *zone) 2219 { 2220 unsigned long score; 2221 2222 score = zone->present_pages * fragmentation_score_zone(zone); 2223 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1); 2224 } 2225 2226 /* 2227 * The per-node proactive (background) compaction process is started by its 2228 * corresponding kcompactd thread when the node's fragmentation score 2229 * exceeds the high threshold. The compaction process remains active till 2230 * the node's score falls below the low threshold, or one of the back-off 2231 * conditions is met. 2232 */ 2233 static unsigned int fragmentation_score_node(pg_data_t *pgdat) 2234 { 2235 unsigned int score = 0; 2236 int zoneid; 2237 2238 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2239 struct zone *zone; 2240 2241 zone = &pgdat->node_zones[zoneid]; 2242 if (!populated_zone(zone)) 2243 continue; 2244 score += fragmentation_score_zone_weighted(zone); 2245 } 2246 2247 return score; 2248 } 2249 2250 static unsigned int fragmentation_score_wmark(bool low) 2251 { 2252 unsigned int wmark_low; 2253 2254 /* 2255 * Cap the low watermark to avoid excessive compaction 2256 * activity in case a user sets the proactiveness tunable 2257 * close to 100 (maximum). 2258 */ 2259 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U); 2260 return low ? wmark_low : min(wmark_low + 10, 100U); 2261 } 2262 2263 static bool should_proactive_compact_node(pg_data_t *pgdat) 2264 { 2265 int wmark_high; 2266 2267 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat)) 2268 return false; 2269 2270 wmark_high = fragmentation_score_wmark(false); 2271 return fragmentation_score_node(pgdat) > wmark_high; 2272 } 2273 2274 static enum compact_result __compact_finished(struct compact_control *cc) 2275 { 2276 unsigned int order; 2277 const int migratetype = cc->migratetype; 2278 int ret; 2279 2280 /* Compaction run completes if the migrate and free scanner meet */ 2281 if (compact_scanners_met(cc)) { 2282 /* Let the next compaction start anew. */ 2283 reset_cached_positions(cc->zone); 2284 2285 /* 2286 * Mark that the PG_migrate_skip information should be cleared 2287 * by kswapd when it goes to sleep. kcompactd does not set the 2288 * flag itself as the decision to be clear should be directly 2289 * based on an allocation request. 2290 */ 2291 if (cc->direct_compaction) 2292 cc->zone->compact_blockskip_flush = true; 2293 2294 if (cc->whole_zone) 2295 return COMPACT_COMPLETE; 2296 else 2297 return COMPACT_PARTIAL_SKIPPED; 2298 } 2299 2300 if (cc->proactive_compaction) { 2301 int score, wmark_low; 2302 pg_data_t *pgdat; 2303 2304 pgdat = cc->zone->zone_pgdat; 2305 if (kswapd_is_running(pgdat)) 2306 return COMPACT_PARTIAL_SKIPPED; 2307 2308 score = fragmentation_score_zone(cc->zone); 2309 wmark_low = fragmentation_score_wmark(true); 2310 2311 if (score > wmark_low) 2312 ret = COMPACT_CONTINUE; 2313 else 2314 ret = COMPACT_SUCCESS; 2315 2316 goto out; 2317 } 2318 2319 if (is_via_compact_memory(cc->order)) 2320 return COMPACT_CONTINUE; 2321 2322 /* 2323 * Always finish scanning a pageblock to reduce the possibility of 2324 * fallbacks in the future. This is particularly important when 2325 * migration source is unmovable/reclaimable but it's not worth 2326 * special casing. 2327 */ 2328 if (!pageblock_aligned(cc->migrate_pfn)) 2329 return COMPACT_CONTINUE; 2330 2331 /* Direct compactor: Is a suitable page free? */ 2332 ret = COMPACT_NO_SUITABLE_PAGE; 2333 for (order = cc->order; order < NR_PAGE_ORDERS; order++) { 2334 struct free_area *area = &cc->zone->free_area[order]; 2335 bool can_steal; 2336 2337 /* Job done if page is free of the right migratetype */ 2338 if (!free_area_empty(area, migratetype)) 2339 return COMPACT_SUCCESS; 2340 2341 #ifdef CONFIG_CMA 2342 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 2343 if (migratetype == MIGRATE_MOVABLE && 2344 !free_area_empty(area, MIGRATE_CMA)) 2345 return COMPACT_SUCCESS; 2346 #endif 2347 /* 2348 * Job done if allocation would steal freepages from 2349 * other migratetype buddy lists. 2350 */ 2351 if (find_suitable_fallback(area, order, migratetype, 2352 true, &can_steal) != -1) 2353 /* 2354 * Movable pages are OK in any pageblock. If we are 2355 * stealing for a non-movable allocation, make sure 2356 * we finish compacting the current pageblock first 2357 * (which is assured by the above migrate_pfn align 2358 * check) so it is as free as possible and we won't 2359 * have to steal another one soon. 2360 */ 2361 return COMPACT_SUCCESS; 2362 } 2363 2364 out: 2365 if (cc->contended || fatal_signal_pending(current)) 2366 ret = COMPACT_CONTENDED; 2367 2368 return ret; 2369 } 2370 2371 static enum compact_result compact_finished(struct compact_control *cc) 2372 { 2373 int ret; 2374 2375 ret = __compact_finished(cc); 2376 trace_mm_compaction_finished(cc->zone, cc->order, ret); 2377 if (ret == COMPACT_NO_SUITABLE_PAGE) 2378 ret = COMPACT_CONTINUE; 2379 2380 return ret; 2381 } 2382 2383 static bool __compaction_suitable(struct zone *zone, int order, 2384 int highest_zoneidx, 2385 unsigned long wmark_target) 2386 { 2387 unsigned long watermark; 2388 /* 2389 * Watermarks for order-0 must be met for compaction to be able to 2390 * isolate free pages for migration targets. This means that the 2391 * watermark and alloc_flags have to match, or be more pessimistic than 2392 * the check in __isolate_free_page(). We don't use the direct 2393 * compactor's alloc_flags, as they are not relevant for freepage 2394 * isolation. We however do use the direct compactor's highest_zoneidx 2395 * to skip over zones where lowmem reserves would prevent allocation 2396 * even if compaction succeeds. 2397 * For costly orders, we require low watermark instead of min for 2398 * compaction to proceed to increase its chances. 2399 * ALLOC_CMA is used, as pages in CMA pageblocks are considered 2400 * suitable migration targets 2401 */ 2402 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ? 2403 low_wmark_pages(zone) : min_wmark_pages(zone); 2404 watermark += compact_gap(order); 2405 return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx, 2406 ALLOC_CMA, wmark_target); 2407 } 2408 2409 /* 2410 * compaction_suitable: Is this suitable to run compaction on this zone now? 2411 */ 2412 bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx) 2413 { 2414 enum compact_result compact_result; 2415 bool suitable; 2416 2417 suitable = __compaction_suitable(zone, order, highest_zoneidx, 2418 zone_page_state(zone, NR_FREE_PAGES)); 2419 /* 2420 * fragmentation index determines if allocation failures are due to 2421 * low memory or external fragmentation 2422 * 2423 * index of -1000 would imply allocations might succeed depending on 2424 * watermarks, but we already failed the high-order watermark check 2425 * index towards 0 implies failure is due to lack of memory 2426 * index towards 1000 implies failure is due to fragmentation 2427 * 2428 * Only compact if a failure would be due to fragmentation. Also 2429 * ignore fragindex for non-costly orders where the alternative to 2430 * a successful reclaim/compaction is OOM. Fragindex and the 2431 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent 2432 * excessive compaction for costly orders, but it should not be at the 2433 * expense of system stability. 2434 */ 2435 if (suitable) { 2436 compact_result = COMPACT_CONTINUE; 2437 if (order > PAGE_ALLOC_COSTLY_ORDER) { 2438 int fragindex = fragmentation_index(zone, order); 2439 2440 if (fragindex >= 0 && 2441 fragindex <= sysctl_extfrag_threshold) { 2442 suitable = false; 2443 compact_result = COMPACT_NOT_SUITABLE_ZONE; 2444 } 2445 } 2446 } else { 2447 compact_result = COMPACT_SKIPPED; 2448 } 2449 2450 trace_mm_compaction_suitable(zone, order, compact_result); 2451 2452 return suitable; 2453 } 2454 2455 bool compaction_zonelist_suitable(struct alloc_context *ac, int order, 2456 int alloc_flags) 2457 { 2458 struct zone *zone; 2459 struct zoneref *z; 2460 2461 /* 2462 * Make sure at least one zone would pass __compaction_suitable if we continue 2463 * retrying the reclaim. 2464 */ 2465 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2466 ac->highest_zoneidx, ac->nodemask) { 2467 unsigned long available; 2468 2469 /* 2470 * Do not consider all the reclaimable memory because we do not 2471 * want to trash just for a single high order allocation which 2472 * is even not guaranteed to appear even if __compaction_suitable 2473 * is happy about the watermark check. 2474 */ 2475 available = zone_reclaimable_pages(zone) / order; 2476 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 2477 if (__compaction_suitable(zone, order, ac->highest_zoneidx, 2478 available)) 2479 return true; 2480 } 2481 2482 return false; 2483 } 2484 2485 /* 2486 * Should we do compaction for target allocation order. 2487 * Return COMPACT_SUCCESS if allocation for target order can be already 2488 * satisfied 2489 * Return COMPACT_SKIPPED if compaction for target order is likely to fail 2490 * Return COMPACT_CONTINUE if compaction for target order should be ran 2491 */ 2492 static enum compact_result 2493 compaction_suit_allocation_order(struct zone *zone, unsigned int order, 2494 int highest_zoneidx, unsigned int alloc_flags, 2495 bool async) 2496 { 2497 unsigned long watermark; 2498 2499 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 2500 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx, 2501 alloc_flags)) 2502 return COMPACT_SUCCESS; 2503 2504 /* 2505 * For unmovable allocations (without ALLOC_CMA), check if there is enough 2506 * free memory in the non-CMA pageblocks. Otherwise compaction could form 2507 * the high-order page in CMA pageblocks, which would not help the 2508 * allocation to succeed. However, limit the check to costly order async 2509 * compaction (such as opportunistic THP attempts) because there is the 2510 * possibility that compaction would migrate pages from non-CMA to CMA 2511 * pageblock. 2512 */ 2513 if (order > PAGE_ALLOC_COSTLY_ORDER && async && 2514 !(alloc_flags & ALLOC_CMA)) { 2515 watermark = low_wmark_pages(zone) + compact_gap(order); 2516 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx, 2517 0, zone_page_state(zone, NR_FREE_PAGES))) 2518 return COMPACT_SKIPPED; 2519 } 2520 2521 if (!compaction_suitable(zone, order, highest_zoneidx)) 2522 return COMPACT_SKIPPED; 2523 2524 return COMPACT_CONTINUE; 2525 } 2526 2527 static enum compact_result 2528 compact_zone(struct compact_control *cc, struct capture_control *capc) 2529 { 2530 enum compact_result ret; 2531 unsigned long start_pfn = cc->zone->zone_start_pfn; 2532 unsigned long end_pfn = zone_end_pfn(cc->zone); 2533 unsigned long last_migrated_pfn; 2534 const bool sync = cc->mode != MIGRATE_ASYNC; 2535 bool update_cached; 2536 unsigned int nr_succeeded = 0, nr_migratepages; 2537 int order; 2538 2539 /* 2540 * These counters track activities during zone compaction. Initialize 2541 * them before compacting a new zone. 2542 */ 2543 cc->total_migrate_scanned = 0; 2544 cc->total_free_scanned = 0; 2545 cc->nr_migratepages = 0; 2546 cc->nr_freepages = 0; 2547 for (order = 0; order < NR_PAGE_ORDERS; order++) 2548 INIT_LIST_HEAD(&cc->freepages[order]); 2549 INIT_LIST_HEAD(&cc->migratepages); 2550 2551 cc->migratetype = gfp_migratetype(cc->gfp_mask); 2552 2553 if (!is_via_compact_memory(cc->order)) { 2554 ret = compaction_suit_allocation_order(cc->zone, cc->order, 2555 cc->highest_zoneidx, 2556 cc->alloc_flags, 2557 cc->mode == MIGRATE_ASYNC); 2558 if (ret != COMPACT_CONTINUE) 2559 return ret; 2560 } 2561 2562 /* 2563 * Clear pageblock skip if there were failures recently and compaction 2564 * is about to be retried after being deferred. 2565 */ 2566 if (compaction_restarting(cc->zone, cc->order)) 2567 __reset_isolation_suitable(cc->zone); 2568 2569 /* 2570 * Setup to move all movable pages to the end of the zone. Used cached 2571 * information on where the scanners should start (unless we explicitly 2572 * want to compact the whole zone), but check that it is initialised 2573 * by ensuring the values are within zone boundaries. 2574 */ 2575 cc->fast_start_pfn = 0; 2576 if (cc->whole_zone) { 2577 cc->migrate_pfn = start_pfn; 2578 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2579 } else { 2580 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync]; 2581 cc->free_pfn = cc->zone->compact_cached_free_pfn; 2582 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 2583 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2584 cc->zone->compact_cached_free_pfn = cc->free_pfn; 2585 } 2586 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 2587 cc->migrate_pfn = start_pfn; 2588 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 2589 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 2590 } 2591 2592 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn) 2593 cc->whole_zone = true; 2594 } 2595 2596 last_migrated_pfn = 0; 2597 2598 /* 2599 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on 2600 * the basis that some migrations will fail in ASYNC mode. However, 2601 * if the cached PFNs match and pageblocks are skipped due to having 2602 * no isolation candidates, then the sync state does not matter. 2603 * Until a pageblock with isolation candidates is found, keep the 2604 * cached PFNs in sync to avoid revisiting the same blocks. 2605 */ 2606 update_cached = !sync && 2607 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1]; 2608 2609 trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync); 2610 2611 /* lru_add_drain_all could be expensive with involving other CPUs */ 2612 lru_add_drain(); 2613 2614 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) { 2615 int err; 2616 unsigned long iteration_start_pfn = cc->migrate_pfn; 2617 2618 /* 2619 * Avoid multiple rescans of the same pageblock which can 2620 * happen if a page cannot be isolated (dirty/writeback in 2621 * async mode) or if the migrated pages are being allocated 2622 * before the pageblock is cleared. The first rescan will 2623 * capture the entire pageblock for migration. If it fails, 2624 * it'll be marked skip and scanning will proceed as normal. 2625 */ 2626 cc->finish_pageblock = false; 2627 if (pageblock_start_pfn(last_migrated_pfn) == 2628 pageblock_start_pfn(iteration_start_pfn)) { 2629 cc->finish_pageblock = true; 2630 } 2631 2632 rescan: 2633 switch (isolate_migratepages(cc)) { 2634 case ISOLATE_ABORT: 2635 ret = COMPACT_CONTENDED; 2636 putback_movable_pages(&cc->migratepages); 2637 cc->nr_migratepages = 0; 2638 goto out; 2639 case ISOLATE_NONE: 2640 if (update_cached) { 2641 cc->zone->compact_cached_migrate_pfn[1] = 2642 cc->zone->compact_cached_migrate_pfn[0]; 2643 } 2644 2645 /* 2646 * We haven't isolated and migrated anything, but 2647 * there might still be unflushed migrations from 2648 * previous cc->order aligned block. 2649 */ 2650 goto check_drain; 2651 case ISOLATE_SUCCESS: 2652 update_cached = false; 2653 last_migrated_pfn = max(cc->zone->zone_start_pfn, 2654 pageblock_start_pfn(cc->migrate_pfn - 1)); 2655 } 2656 2657 /* 2658 * Record the number of pages to migrate since the 2659 * compaction_alloc/free() will update cc->nr_migratepages 2660 * properly. 2661 */ 2662 nr_migratepages = cc->nr_migratepages; 2663 err = migrate_pages(&cc->migratepages, compaction_alloc, 2664 compaction_free, (unsigned long)cc, cc->mode, 2665 MR_COMPACTION, &nr_succeeded); 2666 2667 trace_mm_compaction_migratepages(nr_migratepages, nr_succeeded); 2668 2669 /* All pages were either migrated or will be released */ 2670 cc->nr_migratepages = 0; 2671 if (err) { 2672 putback_movable_pages(&cc->migratepages); 2673 /* 2674 * migrate_pages() may return -ENOMEM when scanners meet 2675 * and we want compact_finished() to detect it 2676 */ 2677 if (err == -ENOMEM && !compact_scanners_met(cc)) { 2678 ret = COMPACT_CONTENDED; 2679 goto out; 2680 } 2681 /* 2682 * If an ASYNC or SYNC_LIGHT fails to migrate a page 2683 * within the pageblock_order-aligned block and 2684 * fast_find_migrateblock may be used then scan the 2685 * remainder of the pageblock. This will mark the 2686 * pageblock "skip" to avoid rescanning in the near 2687 * future. This will isolate more pages than necessary 2688 * for the request but avoid loops due to 2689 * fast_find_migrateblock revisiting blocks that were 2690 * recently partially scanned. 2691 */ 2692 if (!pageblock_aligned(cc->migrate_pfn) && 2693 !cc->ignore_skip_hint && !cc->finish_pageblock && 2694 (cc->mode < MIGRATE_SYNC)) { 2695 cc->finish_pageblock = true; 2696 2697 /* 2698 * Draining pcplists does not help THP if 2699 * any page failed to migrate. Even after 2700 * drain, the pageblock will not be free. 2701 */ 2702 if (cc->order == COMPACTION_HPAGE_ORDER) 2703 last_migrated_pfn = 0; 2704 2705 goto rescan; 2706 } 2707 } 2708 2709 /* Stop if a page has been captured */ 2710 if (capc && capc->page) { 2711 ret = COMPACT_SUCCESS; 2712 break; 2713 } 2714 2715 check_drain: 2716 /* 2717 * Has the migration scanner moved away from the previous 2718 * cc->order aligned block where we migrated from? If yes, 2719 * flush the pages that were freed, so that they can merge and 2720 * compact_finished() can detect immediately if allocation 2721 * would succeed. 2722 */ 2723 if (cc->order > 0 && last_migrated_pfn) { 2724 unsigned long current_block_start = 2725 block_start_pfn(cc->migrate_pfn, cc->order); 2726 2727 if (last_migrated_pfn < current_block_start) { 2728 lru_add_drain_cpu_zone(cc->zone); 2729 /* No more flushing until we migrate again */ 2730 last_migrated_pfn = 0; 2731 } 2732 } 2733 } 2734 2735 out: 2736 /* 2737 * Release free pages and update where the free scanner should restart, 2738 * so we don't leave any returned pages behind in the next attempt. 2739 */ 2740 if (cc->nr_freepages > 0) { 2741 unsigned long free_pfn = release_free_list(cc->freepages); 2742 2743 cc->nr_freepages = 0; 2744 VM_BUG_ON(free_pfn == 0); 2745 /* The cached pfn is always the first in a pageblock */ 2746 free_pfn = pageblock_start_pfn(free_pfn); 2747 /* 2748 * Only go back, not forward. The cached pfn might have been 2749 * already reset to zone end in compact_finished() 2750 */ 2751 if (free_pfn > cc->zone->compact_cached_free_pfn) 2752 cc->zone->compact_cached_free_pfn = free_pfn; 2753 } 2754 2755 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned); 2756 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned); 2757 2758 trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret); 2759 2760 VM_BUG_ON(!list_empty(&cc->migratepages)); 2761 2762 return ret; 2763 } 2764 2765 static enum compact_result compact_zone_order(struct zone *zone, int order, 2766 gfp_t gfp_mask, enum compact_priority prio, 2767 unsigned int alloc_flags, int highest_zoneidx, 2768 struct page **capture) 2769 { 2770 enum compact_result ret; 2771 struct compact_control cc = { 2772 .order = order, 2773 .search_order = order, 2774 .gfp_mask = gfp_mask, 2775 .zone = zone, 2776 .mode = (prio == COMPACT_PRIO_ASYNC) ? 2777 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT, 2778 .alloc_flags = alloc_flags, 2779 .highest_zoneidx = highest_zoneidx, 2780 .direct_compaction = true, 2781 .whole_zone = (prio == MIN_COMPACT_PRIORITY), 2782 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY), 2783 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY) 2784 }; 2785 struct capture_control capc = { 2786 .cc = &cc, 2787 .page = NULL, 2788 }; 2789 2790 /* 2791 * Make sure the structs are really initialized before we expose the 2792 * capture control, in case we are interrupted and the interrupt handler 2793 * frees a page. 2794 */ 2795 barrier(); 2796 WRITE_ONCE(current->capture_control, &capc); 2797 2798 ret = compact_zone(&cc, &capc); 2799 2800 /* 2801 * Make sure we hide capture control first before we read the captured 2802 * page pointer, otherwise an interrupt could free and capture a page 2803 * and we would leak it. 2804 */ 2805 WRITE_ONCE(current->capture_control, NULL); 2806 *capture = READ_ONCE(capc.page); 2807 /* 2808 * Technically, it is also possible that compaction is skipped but 2809 * the page is still captured out of luck(IRQ came and freed the page). 2810 * Returning COMPACT_SUCCESS in such cases helps in properly accounting 2811 * the COMPACT[STALL|FAIL] when compaction is skipped. 2812 */ 2813 if (*capture) 2814 ret = COMPACT_SUCCESS; 2815 2816 return ret; 2817 } 2818 2819 /** 2820 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 2821 * @gfp_mask: The GFP mask of the current allocation 2822 * @order: The order of the current allocation 2823 * @alloc_flags: The allocation flags of the current allocation 2824 * @ac: The context of current allocation 2825 * @prio: Determines how hard direct compaction should try to succeed 2826 * @capture: Pointer to free page created by compaction will be stored here 2827 * 2828 * This is the main entry point for direct page compaction. 2829 */ 2830 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 2831 unsigned int alloc_flags, const struct alloc_context *ac, 2832 enum compact_priority prio, struct page **capture) 2833 { 2834 struct zoneref *z; 2835 struct zone *zone; 2836 enum compact_result rc = COMPACT_SKIPPED; 2837 2838 if (!gfp_compaction_allowed(gfp_mask)) 2839 return COMPACT_SKIPPED; 2840 2841 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio); 2842 2843 /* Compact each zone in the list */ 2844 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2845 ac->highest_zoneidx, ac->nodemask) { 2846 enum compact_result status; 2847 2848 if (cpusets_enabled() && 2849 (alloc_flags & ALLOC_CPUSET) && 2850 !__cpuset_zone_allowed(zone, gfp_mask)) 2851 continue; 2852 2853 if (prio > MIN_COMPACT_PRIORITY 2854 && compaction_deferred(zone, order)) { 2855 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); 2856 continue; 2857 } 2858 2859 status = compact_zone_order(zone, order, gfp_mask, prio, 2860 alloc_flags, ac->highest_zoneidx, capture); 2861 rc = max(status, rc); 2862 2863 /* The allocation should succeed, stop compacting */ 2864 if (status == COMPACT_SUCCESS) { 2865 /* 2866 * We think the allocation will succeed in this zone, 2867 * but it is not certain, hence the false. The caller 2868 * will repeat this with true if allocation indeed 2869 * succeeds in this zone. 2870 */ 2871 compaction_defer_reset(zone, order, false); 2872 2873 break; 2874 } 2875 2876 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE || 2877 status == COMPACT_PARTIAL_SKIPPED)) 2878 /* 2879 * We think that allocation won't succeed in this zone 2880 * so we defer compaction there. If it ends up 2881 * succeeding after all, it will be reset. 2882 */ 2883 defer_compaction(zone, order); 2884 2885 /* 2886 * We might have stopped compacting due to need_resched() in 2887 * async compaction, or due to a fatal signal detected. In that 2888 * case do not try further zones 2889 */ 2890 if ((prio == COMPACT_PRIO_ASYNC && need_resched()) 2891 || fatal_signal_pending(current)) 2892 break; 2893 } 2894 2895 return rc; 2896 } 2897 2898 /* 2899 * compact_node() - compact all zones within a node 2900 * @pgdat: The node page data 2901 * @proactive: Whether the compaction is proactive 2902 * 2903 * For proactive compaction, compact till each zone's fragmentation score 2904 * reaches within proactive compaction thresholds (as determined by the 2905 * proactiveness tunable), it is possible that the function returns before 2906 * reaching score targets due to various back-off conditions, such as, 2907 * contention on per-node or per-zone locks. 2908 */ 2909 static int compact_node(pg_data_t *pgdat, bool proactive) 2910 { 2911 int zoneid; 2912 struct zone *zone; 2913 struct compact_control cc = { 2914 .order = -1, 2915 .mode = proactive ? MIGRATE_SYNC_LIGHT : MIGRATE_SYNC, 2916 .ignore_skip_hint = true, 2917 .whole_zone = true, 2918 .gfp_mask = GFP_KERNEL, 2919 .proactive_compaction = proactive, 2920 }; 2921 2922 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2923 zone = &pgdat->node_zones[zoneid]; 2924 if (!populated_zone(zone)) 2925 continue; 2926 2927 if (fatal_signal_pending(current)) 2928 return -EINTR; 2929 2930 cc.zone = zone; 2931 2932 compact_zone(&cc, NULL); 2933 2934 if (proactive) { 2935 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 2936 cc.total_migrate_scanned); 2937 count_compact_events(KCOMPACTD_FREE_SCANNED, 2938 cc.total_free_scanned); 2939 } 2940 } 2941 2942 return 0; 2943 } 2944 2945 /* Compact all zones of all nodes in the system */ 2946 static int compact_nodes(void) 2947 { 2948 int ret, nid; 2949 2950 /* Flush pending updates to the LRU lists */ 2951 lru_add_drain_all(); 2952 2953 for_each_online_node(nid) { 2954 ret = compact_node(NODE_DATA(nid), false); 2955 if (ret) 2956 return ret; 2957 } 2958 2959 return 0; 2960 } 2961 2962 static int compaction_proactiveness_sysctl_handler(const struct ctl_table *table, int write, 2963 void *buffer, size_t *length, loff_t *ppos) 2964 { 2965 int rc, nid; 2966 2967 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 2968 if (rc) 2969 return rc; 2970 2971 if (write && sysctl_compaction_proactiveness) { 2972 for_each_online_node(nid) { 2973 pg_data_t *pgdat = NODE_DATA(nid); 2974 2975 if (pgdat->proactive_compact_trigger) 2976 continue; 2977 2978 pgdat->proactive_compact_trigger = true; 2979 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1, 2980 pgdat->nr_zones - 1); 2981 wake_up_interruptible(&pgdat->kcompactd_wait); 2982 } 2983 } 2984 2985 return 0; 2986 } 2987 2988 /* 2989 * This is the entry point for compacting all nodes via 2990 * /proc/sys/vm/compact_memory 2991 */ 2992 static int sysctl_compaction_handler(const struct ctl_table *table, int write, 2993 void *buffer, size_t *length, loff_t *ppos) 2994 { 2995 int ret; 2996 2997 ret = proc_dointvec(table, write, buffer, length, ppos); 2998 if (ret) 2999 return ret; 3000 3001 if (sysctl_compact_memory != 1) 3002 return -EINVAL; 3003 3004 if (write) 3005 ret = compact_nodes(); 3006 3007 return ret; 3008 } 3009 3010 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 3011 static ssize_t compact_store(struct device *dev, 3012 struct device_attribute *attr, 3013 const char *buf, size_t count) 3014 { 3015 int nid = dev->id; 3016 3017 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 3018 /* Flush pending updates to the LRU lists */ 3019 lru_add_drain_all(); 3020 3021 compact_node(NODE_DATA(nid), false); 3022 } 3023 3024 return count; 3025 } 3026 static DEVICE_ATTR_WO(compact); 3027 3028 int compaction_register_node(struct node *node) 3029 { 3030 return device_create_file(&node->dev, &dev_attr_compact); 3031 } 3032 3033 void compaction_unregister_node(struct node *node) 3034 { 3035 device_remove_file(&node->dev, &dev_attr_compact); 3036 } 3037 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 3038 3039 static inline bool kcompactd_work_requested(pg_data_t *pgdat) 3040 { 3041 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() || 3042 pgdat->proactive_compact_trigger; 3043 } 3044 3045 static bool kcompactd_node_suitable(pg_data_t *pgdat) 3046 { 3047 int zoneid; 3048 struct zone *zone; 3049 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx; 3050 enum compact_result ret; 3051 3052 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) { 3053 zone = &pgdat->node_zones[zoneid]; 3054 3055 if (!populated_zone(zone)) 3056 continue; 3057 3058 ret = compaction_suit_allocation_order(zone, 3059 pgdat->kcompactd_max_order, 3060 highest_zoneidx, ALLOC_WMARK_MIN, 3061 false); 3062 if (ret == COMPACT_CONTINUE) 3063 return true; 3064 } 3065 3066 return false; 3067 } 3068 3069 static void kcompactd_do_work(pg_data_t *pgdat) 3070 { 3071 /* 3072 * With no special task, compact all zones so that a page of requested 3073 * order is allocatable. 3074 */ 3075 int zoneid; 3076 struct zone *zone; 3077 struct compact_control cc = { 3078 .order = pgdat->kcompactd_max_order, 3079 .search_order = pgdat->kcompactd_max_order, 3080 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx, 3081 .mode = MIGRATE_SYNC_LIGHT, 3082 .ignore_skip_hint = false, 3083 .gfp_mask = GFP_KERNEL, 3084 }; 3085 enum compact_result ret; 3086 3087 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 3088 cc.highest_zoneidx); 3089 count_compact_event(KCOMPACTD_WAKE); 3090 3091 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) { 3092 int status; 3093 3094 zone = &pgdat->node_zones[zoneid]; 3095 if (!populated_zone(zone)) 3096 continue; 3097 3098 if (compaction_deferred(zone, cc.order)) 3099 continue; 3100 3101 ret = compaction_suit_allocation_order(zone, 3102 cc.order, zoneid, ALLOC_WMARK_MIN, 3103 false); 3104 if (ret != COMPACT_CONTINUE) 3105 continue; 3106 3107 if (kthread_should_stop()) 3108 return; 3109 3110 cc.zone = zone; 3111 status = compact_zone(&cc, NULL); 3112 3113 if (status == COMPACT_SUCCESS) { 3114 compaction_defer_reset(zone, cc.order, false); 3115 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { 3116 /* 3117 * Buddy pages may become stranded on pcps that could 3118 * otherwise coalesce on the zone's free area for 3119 * order >= cc.order. This is ratelimited by the 3120 * upcoming deferral. 3121 */ 3122 drain_all_pages(zone); 3123 3124 /* 3125 * We use sync migration mode here, so we defer like 3126 * sync direct compaction does. 3127 */ 3128 defer_compaction(zone, cc.order); 3129 } 3130 3131 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 3132 cc.total_migrate_scanned); 3133 count_compact_events(KCOMPACTD_FREE_SCANNED, 3134 cc.total_free_scanned); 3135 } 3136 3137 /* 3138 * Regardless of success, we are done until woken up next. But remember 3139 * the requested order/highest_zoneidx in case it was higher/tighter 3140 * than our current ones 3141 */ 3142 if (pgdat->kcompactd_max_order <= cc.order) 3143 pgdat->kcompactd_max_order = 0; 3144 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx) 3145 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 3146 } 3147 3148 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx) 3149 { 3150 if (!order) 3151 return; 3152 3153 if (pgdat->kcompactd_max_order < order) 3154 pgdat->kcompactd_max_order = order; 3155 3156 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx) 3157 pgdat->kcompactd_highest_zoneidx = highest_zoneidx; 3158 3159 /* 3160 * Pairs with implicit barrier in wait_event_freezable() 3161 * such that wakeups are not missed. 3162 */ 3163 if (!wq_has_sleeper(&pgdat->kcompactd_wait)) 3164 return; 3165 3166 if (!kcompactd_node_suitable(pgdat)) 3167 return; 3168 3169 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 3170 highest_zoneidx); 3171 wake_up_interruptible(&pgdat->kcompactd_wait); 3172 } 3173 3174 /* 3175 * The background compaction daemon, started as a kernel thread 3176 * from the init process. 3177 */ 3178 static int kcompactd(void *p) 3179 { 3180 pg_data_t *pgdat = (pg_data_t *)p; 3181 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC); 3182 long timeout = default_timeout; 3183 3184 set_freezable(); 3185 3186 pgdat->kcompactd_max_order = 0; 3187 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 3188 3189 while (!kthread_should_stop()) { 3190 unsigned long pflags; 3191 3192 /* 3193 * Avoid the unnecessary wakeup for proactive compaction 3194 * when it is disabled. 3195 */ 3196 if (!sysctl_compaction_proactiveness) 3197 timeout = MAX_SCHEDULE_TIMEOUT; 3198 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 3199 if (wait_event_freezable_timeout(pgdat->kcompactd_wait, 3200 kcompactd_work_requested(pgdat), timeout) && 3201 !pgdat->proactive_compact_trigger) { 3202 3203 psi_memstall_enter(&pflags); 3204 kcompactd_do_work(pgdat); 3205 psi_memstall_leave(&pflags); 3206 /* 3207 * Reset the timeout value. The defer timeout from 3208 * proactive compaction is lost here but that is fine 3209 * as the condition of the zone changing substantionally 3210 * then carrying on with the previous defer interval is 3211 * not useful. 3212 */ 3213 timeout = default_timeout; 3214 continue; 3215 } 3216 3217 /* 3218 * Start the proactive work with default timeout. Based 3219 * on the fragmentation score, this timeout is updated. 3220 */ 3221 timeout = default_timeout; 3222 if (should_proactive_compact_node(pgdat)) { 3223 unsigned int prev_score, score; 3224 3225 prev_score = fragmentation_score_node(pgdat); 3226 compact_node(pgdat, true); 3227 score = fragmentation_score_node(pgdat); 3228 /* 3229 * Defer proactive compaction if the fragmentation 3230 * score did not go down i.e. no progress made. 3231 */ 3232 if (unlikely(score >= prev_score)) 3233 timeout = 3234 default_timeout << COMPACT_MAX_DEFER_SHIFT; 3235 } 3236 if (unlikely(pgdat->proactive_compact_trigger)) 3237 pgdat->proactive_compact_trigger = false; 3238 } 3239 3240 return 0; 3241 } 3242 3243 /* 3244 * This kcompactd start function will be called by init and node-hot-add. 3245 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 3246 */ 3247 void __meminit kcompactd_run(int nid) 3248 { 3249 pg_data_t *pgdat = NODE_DATA(nid); 3250 3251 if (pgdat->kcompactd) 3252 return; 3253 3254 pgdat->kcompactd = kthread_create_on_node(kcompactd, pgdat, nid, "kcompactd%d", nid); 3255 if (IS_ERR(pgdat->kcompactd)) { 3256 pr_err("Failed to start kcompactd on node %d\n", nid); 3257 pgdat->kcompactd = NULL; 3258 } else { 3259 wake_up_process(pgdat->kcompactd); 3260 } 3261 } 3262 3263 /* 3264 * Called by memory hotplug when all memory in a node is offlined. Caller must 3265 * be holding mem_hotplug_begin/done(). 3266 */ 3267 void __meminit kcompactd_stop(int nid) 3268 { 3269 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 3270 3271 if (kcompactd) { 3272 kthread_stop(kcompactd); 3273 NODE_DATA(nid)->kcompactd = NULL; 3274 } 3275 } 3276 3277 static int proc_dointvec_minmax_warn_RT_change(const struct ctl_table *table, 3278 int write, void *buffer, size_t *lenp, loff_t *ppos) 3279 { 3280 int ret, old; 3281 3282 if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write) 3283 return proc_dointvec_minmax(table, write, buffer, lenp, ppos); 3284 3285 old = *(int *)table->data; 3286 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 3287 if (ret) 3288 return ret; 3289 if (old != *(int *)table->data) 3290 pr_warn_once("sysctl attribute %s changed by %s[%d]\n", 3291 table->procname, current->comm, 3292 task_pid_nr(current)); 3293 return ret; 3294 } 3295 3296 static const struct ctl_table vm_compaction[] = { 3297 { 3298 .procname = "compact_memory", 3299 .data = &sysctl_compact_memory, 3300 .maxlen = sizeof(int), 3301 .mode = 0200, 3302 .proc_handler = sysctl_compaction_handler, 3303 }, 3304 { 3305 .procname = "compaction_proactiveness", 3306 .data = &sysctl_compaction_proactiveness, 3307 .maxlen = sizeof(sysctl_compaction_proactiveness), 3308 .mode = 0644, 3309 .proc_handler = compaction_proactiveness_sysctl_handler, 3310 .extra1 = SYSCTL_ZERO, 3311 .extra2 = SYSCTL_ONE_HUNDRED, 3312 }, 3313 { 3314 .procname = "extfrag_threshold", 3315 .data = &sysctl_extfrag_threshold, 3316 .maxlen = sizeof(int), 3317 .mode = 0644, 3318 .proc_handler = proc_dointvec_minmax, 3319 .extra1 = SYSCTL_ZERO, 3320 .extra2 = SYSCTL_ONE_THOUSAND, 3321 }, 3322 { 3323 .procname = "compact_unevictable_allowed", 3324 .data = &sysctl_compact_unevictable_allowed, 3325 .maxlen = sizeof(int), 3326 .mode = 0644, 3327 .proc_handler = proc_dointvec_minmax_warn_RT_change, 3328 .extra1 = SYSCTL_ZERO, 3329 .extra2 = SYSCTL_ONE, 3330 }, 3331 }; 3332 3333 static int __init kcompactd_init(void) 3334 { 3335 int nid; 3336 3337 for_each_node_state(nid, N_MEMORY) 3338 kcompactd_run(nid); 3339 register_sysctl_init("vm", vm_compaction); 3340 return 0; 3341 } 3342 subsys_initcall(kcompactd_init) 3343 3344 #endif /* CONFIG_COMPACTION */ 3345