xref: /linux/mm/compaction.c (revision 73519ded992fc9dda2807450d6931002bb93cb16)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include <linux/cpuset.h>
27 #include "internal.h"
28 
29 #ifdef CONFIG_COMPACTION
30 /*
31  * Fragmentation score check interval for proactive compaction purposes.
32  */
33 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC	(500)
34 
35 static inline void count_compact_event(enum vm_event_item item)
36 {
37 	count_vm_event(item);
38 }
39 
40 static inline void count_compact_events(enum vm_event_item item, long delta)
41 {
42 	count_vm_events(item, delta);
43 }
44 
45 /*
46  * order == -1 is expected when compacting proactively via
47  * 1. /proc/sys/vm/compact_memory
48  * 2. /sys/devices/system/node/nodex/compact
49  * 3. /proc/sys/vm/compaction_proactiveness
50  */
51 static inline bool is_via_compact_memory(int order)
52 {
53 	return order == -1;
54 }
55 
56 #else
57 #define count_compact_event(item) do { } while (0)
58 #define count_compact_events(item, delta) do { } while (0)
59 static inline bool is_via_compact_memory(int order) { return false; }
60 #endif
61 
62 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/compaction.h>
66 
67 #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
68 #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
69 
70 /*
71  * Page order with-respect-to which proactive compaction
72  * calculates external fragmentation, which is used as
73  * the "fragmentation score" of a node/zone.
74  */
75 #if defined CONFIG_TRANSPARENT_HUGEPAGE
76 #define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
77 #elif defined CONFIG_HUGETLBFS
78 #define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
79 #else
80 #define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
81 #endif
82 
83 static struct page *mark_allocated_noprof(struct page *page, unsigned int order, gfp_t gfp_flags)
84 {
85 	post_alloc_hook(page, order, __GFP_MOVABLE);
86 	set_page_refcounted(page);
87 	return page;
88 }
89 #define mark_allocated(...)	alloc_hooks(mark_allocated_noprof(__VA_ARGS__))
90 
91 static unsigned long release_free_list(struct list_head *freepages)
92 {
93 	int order;
94 	unsigned long high_pfn = 0;
95 
96 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
97 		struct page *page, *next;
98 
99 		list_for_each_entry_safe(page, next, &freepages[order], lru) {
100 			unsigned long pfn = page_to_pfn(page);
101 
102 			list_del(&page->lru);
103 			/*
104 			 * Convert free pages into post allocation pages, so
105 			 * that we can free them via __free_page.
106 			 */
107 			mark_allocated(page, order, __GFP_MOVABLE);
108 			__free_pages(page, order);
109 			if (pfn > high_pfn)
110 				high_pfn = pfn;
111 		}
112 	}
113 	return high_pfn;
114 }
115 
116 #ifdef CONFIG_COMPACTION
117 bool PageMovable(struct page *page)
118 {
119 	const struct movable_operations *mops;
120 
121 	VM_BUG_ON_PAGE(!PageLocked(page), page);
122 	if (!__PageMovable(page))
123 		return false;
124 
125 	mops = page_movable_ops(page);
126 	if (mops)
127 		return true;
128 
129 	return false;
130 }
131 
132 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
133 {
134 	VM_BUG_ON_PAGE(!PageLocked(page), page);
135 	VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
136 	page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
137 }
138 EXPORT_SYMBOL(__SetPageMovable);
139 
140 void __ClearPageMovable(struct page *page)
141 {
142 	VM_BUG_ON_PAGE(!PageMovable(page), page);
143 	/*
144 	 * This page still has the type of a movable page, but it's
145 	 * actually not movable any more.
146 	 */
147 	page->mapping = (void *)PAGE_MAPPING_MOVABLE;
148 }
149 EXPORT_SYMBOL(__ClearPageMovable);
150 
151 /* Do not skip compaction more than 64 times */
152 #define COMPACT_MAX_DEFER_SHIFT 6
153 
154 /*
155  * Compaction is deferred when compaction fails to result in a page
156  * allocation success. 1 << compact_defer_shift, compactions are skipped up
157  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
158  */
159 static void defer_compaction(struct zone *zone, int order)
160 {
161 	zone->compact_considered = 0;
162 	zone->compact_defer_shift++;
163 
164 	if (order < zone->compact_order_failed)
165 		zone->compact_order_failed = order;
166 
167 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
168 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
169 
170 	trace_mm_compaction_defer_compaction(zone, order);
171 }
172 
173 /* Returns true if compaction should be skipped this time */
174 static bool compaction_deferred(struct zone *zone, int order)
175 {
176 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
177 
178 	if (order < zone->compact_order_failed)
179 		return false;
180 
181 	/* Avoid possible overflow */
182 	if (++zone->compact_considered >= defer_limit) {
183 		zone->compact_considered = defer_limit;
184 		return false;
185 	}
186 
187 	trace_mm_compaction_deferred(zone, order);
188 
189 	return true;
190 }
191 
192 /*
193  * Update defer tracking counters after successful compaction of given order,
194  * which means an allocation either succeeded (alloc_success == true) or is
195  * expected to succeed.
196  */
197 void compaction_defer_reset(struct zone *zone, int order,
198 		bool alloc_success)
199 {
200 	if (alloc_success) {
201 		zone->compact_considered = 0;
202 		zone->compact_defer_shift = 0;
203 	}
204 	if (order >= zone->compact_order_failed)
205 		zone->compact_order_failed = order + 1;
206 
207 	trace_mm_compaction_defer_reset(zone, order);
208 }
209 
210 /* Returns true if restarting compaction after many failures */
211 static bool compaction_restarting(struct zone *zone, int order)
212 {
213 	if (order < zone->compact_order_failed)
214 		return false;
215 
216 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
217 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
218 }
219 
220 /* Returns true if the pageblock should be scanned for pages to isolate. */
221 static inline bool isolation_suitable(struct compact_control *cc,
222 					struct page *page)
223 {
224 	if (cc->ignore_skip_hint)
225 		return true;
226 
227 	return !get_pageblock_skip(page);
228 }
229 
230 static void reset_cached_positions(struct zone *zone)
231 {
232 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
233 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
234 	zone->compact_cached_free_pfn =
235 				pageblock_start_pfn(zone_end_pfn(zone) - 1);
236 }
237 
238 #ifdef CONFIG_SPARSEMEM
239 /*
240  * If the PFN falls into an offline section, return the start PFN of the
241  * next online section. If the PFN falls into an online section or if
242  * there is no next online section, return 0.
243  */
244 static unsigned long skip_offline_sections(unsigned long start_pfn)
245 {
246 	unsigned long start_nr = pfn_to_section_nr(start_pfn);
247 
248 	if (online_section_nr(start_nr))
249 		return 0;
250 
251 	while (++start_nr <= __highest_present_section_nr) {
252 		if (online_section_nr(start_nr))
253 			return section_nr_to_pfn(start_nr);
254 	}
255 
256 	return 0;
257 }
258 
259 /*
260  * If the PFN falls into an offline section, return the end PFN of the
261  * next online section in reverse. If the PFN falls into an online section
262  * or if there is no next online section in reverse, return 0.
263  */
264 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
265 {
266 	unsigned long start_nr = pfn_to_section_nr(start_pfn);
267 
268 	if (!start_nr || online_section_nr(start_nr))
269 		return 0;
270 
271 	while (start_nr-- > 0) {
272 		if (online_section_nr(start_nr))
273 			return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION;
274 	}
275 
276 	return 0;
277 }
278 #else
279 static unsigned long skip_offline_sections(unsigned long start_pfn)
280 {
281 	return 0;
282 }
283 
284 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
285 {
286 	return 0;
287 }
288 #endif
289 
290 /*
291  * Compound pages of >= pageblock_order should consistently be skipped until
292  * released. It is always pointless to compact pages of such order (if they are
293  * migratable), and the pageblocks they occupy cannot contain any free pages.
294  */
295 static bool pageblock_skip_persistent(struct page *page)
296 {
297 	if (!PageCompound(page))
298 		return false;
299 
300 	page = compound_head(page);
301 
302 	if (compound_order(page) >= pageblock_order)
303 		return true;
304 
305 	return false;
306 }
307 
308 static bool
309 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
310 							bool check_target)
311 {
312 	struct page *page = pfn_to_online_page(pfn);
313 	struct page *block_page;
314 	struct page *end_page;
315 	unsigned long block_pfn;
316 
317 	if (!page)
318 		return false;
319 	if (zone != page_zone(page))
320 		return false;
321 	if (pageblock_skip_persistent(page))
322 		return false;
323 
324 	/*
325 	 * If skip is already cleared do no further checking once the
326 	 * restart points have been set.
327 	 */
328 	if (check_source && check_target && !get_pageblock_skip(page))
329 		return true;
330 
331 	/*
332 	 * If clearing skip for the target scanner, do not select a
333 	 * non-movable pageblock as the starting point.
334 	 */
335 	if (!check_source && check_target &&
336 	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
337 		return false;
338 
339 	/* Ensure the start of the pageblock or zone is online and valid */
340 	block_pfn = pageblock_start_pfn(pfn);
341 	block_pfn = max(block_pfn, zone->zone_start_pfn);
342 	block_page = pfn_to_online_page(block_pfn);
343 	if (block_page) {
344 		page = block_page;
345 		pfn = block_pfn;
346 	}
347 
348 	/* Ensure the end of the pageblock or zone is online and valid */
349 	block_pfn = pageblock_end_pfn(pfn) - 1;
350 	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
351 	end_page = pfn_to_online_page(block_pfn);
352 	if (!end_page)
353 		return false;
354 
355 	/*
356 	 * Only clear the hint if a sample indicates there is either a
357 	 * free page or an LRU page in the block. One or other condition
358 	 * is necessary for the block to be a migration source/target.
359 	 */
360 	do {
361 		if (check_source && PageLRU(page)) {
362 			clear_pageblock_skip(page);
363 			return true;
364 		}
365 
366 		if (check_target && PageBuddy(page)) {
367 			clear_pageblock_skip(page);
368 			return true;
369 		}
370 
371 		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
372 	} while (page <= end_page);
373 
374 	return false;
375 }
376 
377 /*
378  * This function is called to clear all cached information on pageblocks that
379  * should be skipped for page isolation when the migrate and free page scanner
380  * meet.
381  */
382 static void __reset_isolation_suitable(struct zone *zone)
383 {
384 	unsigned long migrate_pfn = zone->zone_start_pfn;
385 	unsigned long free_pfn = zone_end_pfn(zone) - 1;
386 	unsigned long reset_migrate = free_pfn;
387 	unsigned long reset_free = migrate_pfn;
388 	bool source_set = false;
389 	bool free_set = false;
390 
391 	/* Only flush if a full compaction finished recently */
392 	if (!zone->compact_blockskip_flush)
393 		return;
394 
395 	zone->compact_blockskip_flush = false;
396 
397 	/*
398 	 * Walk the zone and update pageblock skip information. Source looks
399 	 * for PageLRU while target looks for PageBuddy. When the scanner
400 	 * is found, both PageBuddy and PageLRU are checked as the pageblock
401 	 * is suitable as both source and target.
402 	 */
403 	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
404 					free_pfn -= pageblock_nr_pages) {
405 		cond_resched();
406 
407 		/* Update the migrate PFN */
408 		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
409 		    migrate_pfn < reset_migrate) {
410 			source_set = true;
411 			reset_migrate = migrate_pfn;
412 			zone->compact_init_migrate_pfn = reset_migrate;
413 			zone->compact_cached_migrate_pfn[0] = reset_migrate;
414 			zone->compact_cached_migrate_pfn[1] = reset_migrate;
415 		}
416 
417 		/* Update the free PFN */
418 		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
419 		    free_pfn > reset_free) {
420 			free_set = true;
421 			reset_free = free_pfn;
422 			zone->compact_init_free_pfn = reset_free;
423 			zone->compact_cached_free_pfn = reset_free;
424 		}
425 	}
426 
427 	/* Leave no distance if no suitable block was reset */
428 	if (reset_migrate >= reset_free) {
429 		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
430 		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
431 		zone->compact_cached_free_pfn = free_pfn;
432 	}
433 }
434 
435 void reset_isolation_suitable(pg_data_t *pgdat)
436 {
437 	int zoneid;
438 
439 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
440 		struct zone *zone = &pgdat->node_zones[zoneid];
441 		if (!populated_zone(zone))
442 			continue;
443 
444 		__reset_isolation_suitable(zone);
445 	}
446 }
447 
448 /*
449  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
450  * locks are not required for read/writers. Returns true if it was already set.
451  */
452 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
453 {
454 	bool skip;
455 
456 	/* Do not update if skip hint is being ignored */
457 	if (cc->ignore_skip_hint)
458 		return false;
459 
460 	skip = get_pageblock_skip(page);
461 	if (!skip && !cc->no_set_skip_hint)
462 		set_pageblock_skip(page);
463 
464 	return skip;
465 }
466 
467 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
468 {
469 	struct zone *zone = cc->zone;
470 
471 	/* Set for isolation rather than compaction */
472 	if (cc->no_set_skip_hint)
473 		return;
474 
475 	pfn = pageblock_end_pfn(pfn);
476 
477 	/* Update where async and sync compaction should restart */
478 	if (pfn > zone->compact_cached_migrate_pfn[0])
479 		zone->compact_cached_migrate_pfn[0] = pfn;
480 	if (cc->mode != MIGRATE_ASYNC &&
481 	    pfn > zone->compact_cached_migrate_pfn[1])
482 		zone->compact_cached_migrate_pfn[1] = pfn;
483 }
484 
485 /*
486  * If no pages were isolated then mark this pageblock to be skipped in the
487  * future. The information is later cleared by __reset_isolation_suitable().
488  */
489 static void update_pageblock_skip(struct compact_control *cc,
490 			struct page *page, unsigned long pfn)
491 {
492 	struct zone *zone = cc->zone;
493 
494 	if (cc->no_set_skip_hint)
495 		return;
496 
497 	set_pageblock_skip(page);
498 
499 	if (pfn < zone->compact_cached_free_pfn)
500 		zone->compact_cached_free_pfn = pfn;
501 }
502 #else
503 static inline bool isolation_suitable(struct compact_control *cc,
504 					struct page *page)
505 {
506 	return true;
507 }
508 
509 static inline bool pageblock_skip_persistent(struct page *page)
510 {
511 	return false;
512 }
513 
514 static inline void update_pageblock_skip(struct compact_control *cc,
515 			struct page *page, unsigned long pfn)
516 {
517 }
518 
519 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
520 {
521 }
522 
523 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
524 {
525 	return false;
526 }
527 #endif /* CONFIG_COMPACTION */
528 
529 /*
530  * Compaction requires the taking of some coarse locks that are potentially
531  * very heavily contended. For async compaction, trylock and record if the
532  * lock is contended. The lock will still be acquired but compaction will
533  * abort when the current block is finished regardless of success rate.
534  * Sync compaction acquires the lock.
535  *
536  * Always returns true which makes it easier to track lock state in callers.
537  */
538 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
539 						struct compact_control *cc)
540 	__acquires(lock)
541 {
542 	/* Track if the lock is contended in async mode */
543 	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
544 		if (spin_trylock_irqsave(lock, *flags))
545 			return true;
546 
547 		cc->contended = true;
548 	}
549 
550 	spin_lock_irqsave(lock, *flags);
551 	return true;
552 }
553 
554 /*
555  * Compaction requires the taking of some coarse locks that are potentially
556  * very heavily contended. The lock should be periodically unlocked to avoid
557  * having disabled IRQs for a long time, even when there is nobody waiting on
558  * the lock. It might also be that allowing the IRQs will result in
559  * need_resched() becoming true. If scheduling is needed, compaction schedules.
560  * Either compaction type will also abort if a fatal signal is pending.
561  * In either case if the lock was locked, it is dropped and not regained.
562  *
563  * Returns true if compaction should abort due to fatal signal pending.
564  * Returns false when compaction can continue.
565  */
566 static bool compact_unlock_should_abort(spinlock_t *lock,
567 		unsigned long flags, bool *locked, struct compact_control *cc)
568 {
569 	if (*locked) {
570 		spin_unlock_irqrestore(lock, flags);
571 		*locked = false;
572 	}
573 
574 	if (fatal_signal_pending(current)) {
575 		cc->contended = true;
576 		return true;
577 	}
578 
579 	cond_resched();
580 
581 	return false;
582 }
583 
584 /*
585  * Isolate free pages onto a private freelist. If @strict is true, will abort
586  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
587  * (even though it may still end up isolating some pages).
588  */
589 static unsigned long isolate_freepages_block(struct compact_control *cc,
590 				unsigned long *start_pfn,
591 				unsigned long end_pfn,
592 				struct list_head *freelist,
593 				unsigned int stride,
594 				bool strict)
595 {
596 	int nr_scanned = 0, total_isolated = 0;
597 	struct page *page;
598 	unsigned long flags = 0;
599 	bool locked = false;
600 	unsigned long blockpfn = *start_pfn;
601 	unsigned int order;
602 
603 	/* Strict mode is for isolation, speed is secondary */
604 	if (strict)
605 		stride = 1;
606 
607 	page = pfn_to_page(blockpfn);
608 
609 	/* Isolate free pages. */
610 	for (; blockpfn < end_pfn; blockpfn += stride, page += stride) {
611 		int isolated;
612 
613 		/*
614 		 * Periodically drop the lock (if held) regardless of its
615 		 * contention, to give chance to IRQs. Abort if fatal signal
616 		 * pending.
617 		 */
618 		if (!(blockpfn % COMPACT_CLUSTER_MAX)
619 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
620 								&locked, cc))
621 			break;
622 
623 		nr_scanned++;
624 
625 		/*
626 		 * For compound pages such as THP and hugetlbfs, we can save
627 		 * potentially a lot of iterations if we skip them at once.
628 		 * The check is racy, but we can consider only valid values
629 		 * and the only danger is skipping too much.
630 		 */
631 		if (PageCompound(page)) {
632 			const unsigned int order = compound_order(page);
633 
634 			if (blockpfn + (1UL << order) <= end_pfn) {
635 				blockpfn += (1UL << order) - 1;
636 				page += (1UL << order) - 1;
637 				nr_scanned += (1UL << order) - 1;
638 			}
639 
640 			goto isolate_fail;
641 		}
642 
643 		if (!PageBuddy(page))
644 			goto isolate_fail;
645 
646 		/* If we already hold the lock, we can skip some rechecking. */
647 		if (!locked) {
648 			locked = compact_lock_irqsave(&cc->zone->lock,
649 								&flags, cc);
650 
651 			/* Recheck this is a buddy page under lock */
652 			if (!PageBuddy(page))
653 				goto isolate_fail;
654 		}
655 
656 		/* Found a free page, will break it into order-0 pages */
657 		order = buddy_order(page);
658 		isolated = __isolate_free_page(page, order);
659 		if (!isolated)
660 			break;
661 		set_page_private(page, order);
662 
663 		nr_scanned += isolated - 1;
664 		total_isolated += isolated;
665 		cc->nr_freepages += isolated;
666 		list_add_tail(&page->lru, &freelist[order]);
667 
668 		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
669 			blockpfn += isolated;
670 			break;
671 		}
672 		/* Advance to the end of split page */
673 		blockpfn += isolated - 1;
674 		page += isolated - 1;
675 		continue;
676 
677 isolate_fail:
678 		if (strict)
679 			break;
680 
681 	}
682 
683 	if (locked)
684 		spin_unlock_irqrestore(&cc->zone->lock, flags);
685 
686 	/*
687 	 * Be careful to not go outside of the pageblock.
688 	 */
689 	if (unlikely(blockpfn > end_pfn))
690 		blockpfn = end_pfn;
691 
692 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
693 					nr_scanned, total_isolated);
694 
695 	/* Record how far we have got within the block */
696 	*start_pfn = blockpfn;
697 
698 	/*
699 	 * If strict isolation is requested by CMA then check that all the
700 	 * pages requested were isolated. If there were any failures, 0 is
701 	 * returned and CMA will fail.
702 	 */
703 	if (strict && blockpfn < end_pfn)
704 		total_isolated = 0;
705 
706 	cc->total_free_scanned += nr_scanned;
707 	if (total_isolated)
708 		count_compact_events(COMPACTISOLATED, total_isolated);
709 	return total_isolated;
710 }
711 
712 /**
713  * isolate_freepages_range() - isolate free pages.
714  * @cc:        Compaction control structure.
715  * @start_pfn: The first PFN to start isolating.
716  * @end_pfn:   The one-past-last PFN.
717  *
718  * Non-free pages, invalid PFNs, or zone boundaries within the
719  * [start_pfn, end_pfn) range are considered errors, cause function to
720  * undo its actions and return zero. cc->freepages[] are empty.
721  *
722  * Otherwise, function returns one-past-the-last PFN of isolated page
723  * (which may be greater then end_pfn if end fell in a middle of
724  * a free page). cc->freepages[] contain free pages isolated.
725  */
726 unsigned long
727 isolate_freepages_range(struct compact_control *cc,
728 			unsigned long start_pfn, unsigned long end_pfn)
729 {
730 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
731 	int order;
732 
733 	for (order = 0; order < NR_PAGE_ORDERS; order++)
734 		INIT_LIST_HEAD(&cc->freepages[order]);
735 
736 	pfn = start_pfn;
737 	block_start_pfn = pageblock_start_pfn(pfn);
738 	if (block_start_pfn < cc->zone->zone_start_pfn)
739 		block_start_pfn = cc->zone->zone_start_pfn;
740 	block_end_pfn = pageblock_end_pfn(pfn);
741 
742 	for (; pfn < end_pfn; pfn += isolated,
743 				block_start_pfn = block_end_pfn,
744 				block_end_pfn += pageblock_nr_pages) {
745 		/* Protect pfn from changing by isolate_freepages_block */
746 		unsigned long isolate_start_pfn = pfn;
747 
748 		/*
749 		 * pfn could pass the block_end_pfn if isolated freepage
750 		 * is more than pageblock order. In this case, we adjust
751 		 * scanning range to right one.
752 		 */
753 		if (pfn >= block_end_pfn) {
754 			block_start_pfn = pageblock_start_pfn(pfn);
755 			block_end_pfn = pageblock_end_pfn(pfn);
756 		}
757 
758 		block_end_pfn = min(block_end_pfn, end_pfn);
759 
760 		if (!pageblock_pfn_to_page(block_start_pfn,
761 					block_end_pfn, cc->zone))
762 			break;
763 
764 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
765 					block_end_pfn, cc->freepages, 0, true);
766 
767 		/*
768 		 * In strict mode, isolate_freepages_block() returns 0 if
769 		 * there are any holes in the block (ie. invalid PFNs or
770 		 * non-free pages).
771 		 */
772 		if (!isolated)
773 			break;
774 
775 		/*
776 		 * If we managed to isolate pages, it is always (1 << n) *
777 		 * pageblock_nr_pages for some non-negative n.  (Max order
778 		 * page may span two pageblocks).
779 		 */
780 	}
781 
782 	if (pfn < end_pfn) {
783 		/* Loop terminated early, cleanup. */
784 		release_free_list(cc->freepages);
785 		return 0;
786 	}
787 
788 	/* We don't use freelists for anything. */
789 	return pfn;
790 }
791 
792 /* Similar to reclaim, but different enough that they don't share logic */
793 static bool too_many_isolated(struct compact_control *cc)
794 {
795 	pg_data_t *pgdat = cc->zone->zone_pgdat;
796 	bool too_many;
797 
798 	unsigned long active, inactive, isolated;
799 
800 	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
801 			node_page_state(pgdat, NR_INACTIVE_ANON);
802 	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
803 			node_page_state(pgdat, NR_ACTIVE_ANON);
804 	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
805 			node_page_state(pgdat, NR_ISOLATED_ANON);
806 
807 	/*
808 	 * Allow GFP_NOFS to isolate past the limit set for regular
809 	 * compaction runs. This prevents an ABBA deadlock when other
810 	 * compactors have already isolated to the limit, but are
811 	 * blocked on filesystem locks held by the GFP_NOFS thread.
812 	 */
813 	if (cc->gfp_mask & __GFP_FS) {
814 		inactive >>= 3;
815 		active >>= 3;
816 	}
817 
818 	too_many = isolated > (inactive + active) / 2;
819 	if (!too_many)
820 		wake_throttle_isolated(pgdat);
821 
822 	return too_many;
823 }
824 
825 /**
826  * skip_isolation_on_order() - determine when to skip folio isolation based on
827  *			       folio order and compaction target order
828  * @order:		to-be-isolated folio order
829  * @target_order:	compaction target order
830  *
831  * This avoids unnecessary folio isolations during compaction.
832  */
833 static bool skip_isolation_on_order(int order, int target_order)
834 {
835 	/*
836 	 * Unless we are performing global compaction (i.e.,
837 	 * is_via_compact_memory), skip any folios that are larger than the
838 	 * target order: we wouldn't be here if we'd have a free folio with
839 	 * the desired target_order, so migrating this folio would likely fail
840 	 * later.
841 	 */
842 	if (!is_via_compact_memory(target_order) && order >= target_order)
843 		return true;
844 	/*
845 	 * We limit memory compaction to pageblocks and won't try
846 	 * creating free blocks of memory that are larger than that.
847 	 */
848 	return order >= pageblock_order;
849 }
850 
851 /**
852  * isolate_migratepages_block() - isolate all migrate-able pages within
853  *				  a single pageblock
854  * @cc:		Compaction control structure.
855  * @low_pfn:	The first PFN to isolate
856  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
857  * @mode:	Isolation mode to be used.
858  *
859  * Isolate all pages that can be migrated from the range specified by
860  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
861  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
862  * -ENOMEM in case we could not allocate a page, or 0.
863  * cc->migrate_pfn will contain the next pfn to scan.
864  *
865  * The pages are isolated on cc->migratepages list (not required to be empty),
866  * and cc->nr_migratepages is updated accordingly.
867  */
868 static int
869 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
870 			unsigned long end_pfn, isolate_mode_t mode)
871 {
872 	pg_data_t *pgdat = cc->zone->zone_pgdat;
873 	unsigned long nr_scanned = 0, nr_isolated = 0;
874 	struct lruvec *lruvec;
875 	unsigned long flags = 0;
876 	struct lruvec *locked = NULL;
877 	struct folio *folio = NULL;
878 	struct page *page = NULL, *valid_page = NULL;
879 	struct address_space *mapping;
880 	unsigned long start_pfn = low_pfn;
881 	bool skip_on_failure = false;
882 	unsigned long next_skip_pfn = 0;
883 	bool skip_updated = false;
884 	int ret = 0;
885 
886 	cc->migrate_pfn = low_pfn;
887 
888 	/*
889 	 * Ensure that there are not too many pages isolated from the LRU
890 	 * list by either parallel reclaimers or compaction. If there are,
891 	 * delay for some time until fewer pages are isolated
892 	 */
893 	while (unlikely(too_many_isolated(cc))) {
894 		/* stop isolation if there are still pages not migrated */
895 		if (cc->nr_migratepages)
896 			return -EAGAIN;
897 
898 		/* async migration should just abort */
899 		if (cc->mode == MIGRATE_ASYNC)
900 			return -EAGAIN;
901 
902 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
903 
904 		if (fatal_signal_pending(current))
905 			return -EINTR;
906 	}
907 
908 	cond_resched();
909 
910 	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
911 		skip_on_failure = true;
912 		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
913 	}
914 
915 	/* Time to isolate some pages for migration */
916 	for (; low_pfn < end_pfn; low_pfn++) {
917 		bool is_dirty, is_unevictable;
918 
919 		if (skip_on_failure && low_pfn >= next_skip_pfn) {
920 			/*
921 			 * We have isolated all migration candidates in the
922 			 * previous order-aligned block, and did not skip it due
923 			 * to failure. We should migrate the pages now and
924 			 * hopefully succeed compaction.
925 			 */
926 			if (nr_isolated)
927 				break;
928 
929 			/*
930 			 * We failed to isolate in the previous order-aligned
931 			 * block. Set the new boundary to the end of the
932 			 * current block. Note we can't simply increase
933 			 * next_skip_pfn by 1 << order, as low_pfn might have
934 			 * been incremented by a higher number due to skipping
935 			 * a compound or a high-order buddy page in the
936 			 * previous loop iteration.
937 			 */
938 			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
939 		}
940 
941 		/*
942 		 * Periodically drop the lock (if held) regardless of its
943 		 * contention, to give chance to IRQs. Abort completely if
944 		 * a fatal signal is pending.
945 		 */
946 		if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
947 			if (locked) {
948 				unlock_page_lruvec_irqrestore(locked, flags);
949 				locked = NULL;
950 			}
951 
952 			if (fatal_signal_pending(current)) {
953 				cc->contended = true;
954 				ret = -EINTR;
955 
956 				goto fatal_pending;
957 			}
958 
959 			cond_resched();
960 		}
961 
962 		nr_scanned++;
963 
964 		page = pfn_to_page(low_pfn);
965 
966 		/*
967 		 * Check if the pageblock has already been marked skipped.
968 		 * Only the first PFN is checked as the caller isolates
969 		 * COMPACT_CLUSTER_MAX at a time so the second call must
970 		 * not falsely conclude that the block should be skipped.
971 		 */
972 		if (!valid_page && (pageblock_aligned(low_pfn) ||
973 				    low_pfn == cc->zone->zone_start_pfn)) {
974 			if (!isolation_suitable(cc, page)) {
975 				low_pfn = end_pfn;
976 				folio = NULL;
977 				goto isolate_abort;
978 			}
979 			valid_page = page;
980 		}
981 
982 		if (PageHuge(page)) {
983 			/*
984 			 * skip hugetlbfs if we are not compacting for pages
985 			 * bigger than its order. THPs and other compound pages
986 			 * are handled below.
987 			 */
988 			if (!cc->alloc_contig) {
989 				const unsigned int order = compound_order(page);
990 
991 				if (order <= MAX_PAGE_ORDER) {
992 					low_pfn += (1UL << order) - 1;
993 					nr_scanned += (1UL << order) - 1;
994 				}
995 				goto isolate_fail;
996 			}
997 			/* for alloc_contig case */
998 			if (locked) {
999 				unlock_page_lruvec_irqrestore(locked, flags);
1000 				locked = NULL;
1001 			}
1002 
1003 			ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
1004 
1005 			/*
1006 			 * Fail isolation in case isolate_or_dissolve_huge_page()
1007 			 * reports an error. In case of -ENOMEM, abort right away.
1008 			 */
1009 			if (ret < 0) {
1010 				 /* Do not report -EBUSY down the chain */
1011 				if (ret == -EBUSY)
1012 					ret = 0;
1013 				low_pfn += compound_nr(page) - 1;
1014 				nr_scanned += compound_nr(page) - 1;
1015 				goto isolate_fail;
1016 			}
1017 
1018 			if (PageHuge(page)) {
1019 				/*
1020 				 * Hugepage was successfully isolated and placed
1021 				 * on the cc->migratepages list.
1022 				 */
1023 				folio = page_folio(page);
1024 				low_pfn += folio_nr_pages(folio) - 1;
1025 				goto isolate_success_no_list;
1026 			}
1027 
1028 			/*
1029 			 * Ok, the hugepage was dissolved. Now these pages are
1030 			 * Buddy and cannot be re-allocated because they are
1031 			 * isolated. Fall-through as the check below handles
1032 			 * Buddy pages.
1033 			 */
1034 		}
1035 
1036 		/*
1037 		 * Skip if free. We read page order here without zone lock
1038 		 * which is generally unsafe, but the race window is small and
1039 		 * the worst thing that can happen is that we skip some
1040 		 * potential isolation targets.
1041 		 */
1042 		if (PageBuddy(page)) {
1043 			unsigned long freepage_order = buddy_order_unsafe(page);
1044 
1045 			/*
1046 			 * Without lock, we cannot be sure that what we got is
1047 			 * a valid page order. Consider only values in the
1048 			 * valid order range to prevent low_pfn overflow.
1049 			 */
1050 			if (freepage_order > 0 && freepage_order <= MAX_PAGE_ORDER) {
1051 				low_pfn += (1UL << freepage_order) - 1;
1052 				nr_scanned += (1UL << freepage_order) - 1;
1053 			}
1054 			continue;
1055 		}
1056 
1057 		/*
1058 		 * Regardless of being on LRU, compound pages such as THP
1059 		 * (hugetlbfs is handled above) are not to be compacted unless
1060 		 * we are attempting an allocation larger than the compound
1061 		 * page size. We can potentially save a lot of iterations if we
1062 		 * skip them at once. The check is racy, but we can consider
1063 		 * only valid values and the only danger is skipping too much.
1064 		 */
1065 		if (PageCompound(page) && !cc->alloc_contig) {
1066 			const unsigned int order = compound_order(page);
1067 
1068 			/* Skip based on page order and compaction target order. */
1069 			if (skip_isolation_on_order(order, cc->order)) {
1070 				if (order <= MAX_PAGE_ORDER) {
1071 					low_pfn += (1UL << order) - 1;
1072 					nr_scanned += (1UL << order) - 1;
1073 				}
1074 				goto isolate_fail;
1075 			}
1076 		}
1077 
1078 		/*
1079 		 * Check may be lockless but that's ok as we recheck later.
1080 		 * It's possible to migrate LRU and non-lru movable pages.
1081 		 * Skip any other type of page
1082 		 */
1083 		if (!PageLRU(page)) {
1084 			/*
1085 			 * __PageMovable can return false positive so we need
1086 			 * to verify it under page_lock.
1087 			 */
1088 			if (unlikely(__PageMovable(page)) &&
1089 					!PageIsolated(page)) {
1090 				if (locked) {
1091 					unlock_page_lruvec_irqrestore(locked, flags);
1092 					locked = NULL;
1093 				}
1094 
1095 				if (isolate_movable_page(page, mode)) {
1096 					folio = page_folio(page);
1097 					goto isolate_success;
1098 				}
1099 			}
1100 
1101 			goto isolate_fail;
1102 		}
1103 
1104 		/*
1105 		 * Be careful not to clear PageLRU until after we're
1106 		 * sure the page is not being freed elsewhere -- the
1107 		 * page release code relies on it.
1108 		 */
1109 		folio = folio_get_nontail_page(page);
1110 		if (unlikely(!folio))
1111 			goto isolate_fail;
1112 
1113 		/*
1114 		 * Migration will fail if an anonymous page is pinned in memory,
1115 		 * so avoid taking lru_lock and isolating it unnecessarily in an
1116 		 * admittedly racy check.
1117 		 */
1118 		mapping = folio_mapping(folio);
1119 		if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio))
1120 			goto isolate_fail_put;
1121 
1122 		/*
1123 		 * Only allow to migrate anonymous pages in GFP_NOFS context
1124 		 * because those do not depend on fs locks.
1125 		 */
1126 		if (!(cc->gfp_mask & __GFP_FS) && mapping)
1127 			goto isolate_fail_put;
1128 
1129 		/* Only take pages on LRU: a check now makes later tests safe */
1130 		if (!folio_test_lru(folio))
1131 			goto isolate_fail_put;
1132 
1133 		is_unevictable = folio_test_unevictable(folio);
1134 
1135 		/* Compaction might skip unevictable pages but CMA takes them */
1136 		if (!(mode & ISOLATE_UNEVICTABLE) && is_unevictable)
1137 			goto isolate_fail_put;
1138 
1139 		/*
1140 		 * To minimise LRU disruption, the caller can indicate with
1141 		 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1142 		 * it will be able to migrate without blocking - clean pages
1143 		 * for the most part.  PageWriteback would require blocking.
1144 		 */
1145 		if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio))
1146 			goto isolate_fail_put;
1147 
1148 		is_dirty = folio_test_dirty(folio);
1149 
1150 		if (((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) ||
1151 		    (mapping && is_unevictable)) {
1152 			bool migrate_dirty = true;
1153 			bool is_inaccessible;
1154 
1155 			/*
1156 			 * Only folios without mappings or that have
1157 			 * a ->migrate_folio callback are possible to migrate
1158 			 * without blocking.
1159 			 *
1160 			 * Folios from inaccessible mappings are not migratable.
1161 			 *
1162 			 * However, we can be racing with truncation, which can
1163 			 * free the mapping that we need to check. Truncation
1164 			 * holds the folio lock until after the folio is removed
1165 			 * from the page so holding it ourselves is sufficient.
1166 			 *
1167 			 * To avoid locking the folio just to check inaccessible,
1168 			 * assume every inaccessible folio is also unevictable,
1169 			 * which is a cheaper test.  If our assumption goes
1170 			 * wrong, it's not a correctness bug, just potentially
1171 			 * wasted cycles.
1172 			 */
1173 			if (!folio_trylock(folio))
1174 				goto isolate_fail_put;
1175 
1176 			mapping = folio_mapping(folio);
1177 			if ((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) {
1178 				migrate_dirty = !mapping ||
1179 						mapping->a_ops->migrate_folio;
1180 			}
1181 			is_inaccessible = mapping && mapping_inaccessible(mapping);
1182 			folio_unlock(folio);
1183 			if (!migrate_dirty || is_inaccessible)
1184 				goto isolate_fail_put;
1185 		}
1186 
1187 		/* Try isolate the folio */
1188 		if (!folio_test_clear_lru(folio))
1189 			goto isolate_fail_put;
1190 
1191 		lruvec = folio_lruvec(folio);
1192 
1193 		/* If we already hold the lock, we can skip some rechecking */
1194 		if (lruvec != locked) {
1195 			if (locked)
1196 				unlock_page_lruvec_irqrestore(locked, flags);
1197 
1198 			compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1199 			locked = lruvec;
1200 
1201 			lruvec_memcg_debug(lruvec, folio);
1202 
1203 			/*
1204 			 * Try get exclusive access under lock. If marked for
1205 			 * skip, the scan is aborted unless the current context
1206 			 * is a rescan to reach the end of the pageblock.
1207 			 */
1208 			if (!skip_updated && valid_page) {
1209 				skip_updated = true;
1210 				if (test_and_set_skip(cc, valid_page) &&
1211 				    !cc->finish_pageblock) {
1212 					low_pfn = end_pfn;
1213 					goto isolate_abort;
1214 				}
1215 			}
1216 
1217 			/*
1218 			 * Check LRU folio order under the lock
1219 			 */
1220 			if (unlikely(skip_isolation_on_order(folio_order(folio),
1221 							     cc->order) &&
1222 				     !cc->alloc_contig)) {
1223 				low_pfn += folio_nr_pages(folio) - 1;
1224 				nr_scanned += folio_nr_pages(folio) - 1;
1225 				folio_set_lru(folio);
1226 				goto isolate_fail_put;
1227 			}
1228 		}
1229 
1230 		/* The folio is taken off the LRU */
1231 		if (folio_test_large(folio))
1232 			low_pfn += folio_nr_pages(folio) - 1;
1233 
1234 		/* Successfully isolated */
1235 		lruvec_del_folio(lruvec, folio);
1236 		node_stat_mod_folio(folio,
1237 				NR_ISOLATED_ANON + folio_is_file_lru(folio),
1238 				folio_nr_pages(folio));
1239 
1240 isolate_success:
1241 		list_add(&folio->lru, &cc->migratepages);
1242 isolate_success_no_list:
1243 		cc->nr_migratepages += folio_nr_pages(folio);
1244 		nr_isolated += folio_nr_pages(folio);
1245 		nr_scanned += folio_nr_pages(folio) - 1;
1246 
1247 		/*
1248 		 * Avoid isolating too much unless this block is being
1249 		 * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1250 		 * or a lock is contended. For contention, isolate quickly to
1251 		 * potentially remove one source of contention.
1252 		 */
1253 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1254 		    !cc->finish_pageblock && !cc->contended) {
1255 			++low_pfn;
1256 			break;
1257 		}
1258 
1259 		continue;
1260 
1261 isolate_fail_put:
1262 		/* Avoid potential deadlock in freeing page under lru_lock */
1263 		if (locked) {
1264 			unlock_page_lruvec_irqrestore(locked, flags);
1265 			locked = NULL;
1266 		}
1267 		folio_put(folio);
1268 
1269 isolate_fail:
1270 		if (!skip_on_failure && ret != -ENOMEM)
1271 			continue;
1272 
1273 		/*
1274 		 * We have isolated some pages, but then failed. Release them
1275 		 * instead of migrating, as we cannot form the cc->order buddy
1276 		 * page anyway.
1277 		 */
1278 		if (nr_isolated) {
1279 			if (locked) {
1280 				unlock_page_lruvec_irqrestore(locked, flags);
1281 				locked = NULL;
1282 			}
1283 			putback_movable_pages(&cc->migratepages);
1284 			cc->nr_migratepages = 0;
1285 			nr_isolated = 0;
1286 		}
1287 
1288 		if (low_pfn < next_skip_pfn) {
1289 			low_pfn = next_skip_pfn - 1;
1290 			/*
1291 			 * The check near the loop beginning would have updated
1292 			 * next_skip_pfn too, but this is a bit simpler.
1293 			 */
1294 			next_skip_pfn += 1UL << cc->order;
1295 		}
1296 
1297 		if (ret == -ENOMEM)
1298 			break;
1299 	}
1300 
1301 	/*
1302 	 * The PageBuddy() check could have potentially brought us outside
1303 	 * the range to be scanned.
1304 	 */
1305 	if (unlikely(low_pfn > end_pfn))
1306 		low_pfn = end_pfn;
1307 
1308 	folio = NULL;
1309 
1310 isolate_abort:
1311 	if (locked)
1312 		unlock_page_lruvec_irqrestore(locked, flags);
1313 	if (folio) {
1314 		folio_set_lru(folio);
1315 		folio_put(folio);
1316 	}
1317 
1318 	/*
1319 	 * Update the cached scanner pfn once the pageblock has been scanned.
1320 	 * Pages will either be migrated in which case there is no point
1321 	 * scanning in the near future or migration failed in which case the
1322 	 * failure reason may persist. The block is marked for skipping if
1323 	 * there were no pages isolated in the block or if the block is
1324 	 * rescanned twice in a row.
1325 	 */
1326 	if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1327 		if (!cc->no_set_skip_hint && valid_page && !skip_updated)
1328 			set_pageblock_skip(valid_page);
1329 		update_cached_migrate(cc, low_pfn);
1330 	}
1331 
1332 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1333 						nr_scanned, nr_isolated);
1334 
1335 fatal_pending:
1336 	cc->total_migrate_scanned += nr_scanned;
1337 	if (nr_isolated)
1338 		count_compact_events(COMPACTISOLATED, nr_isolated);
1339 
1340 	cc->migrate_pfn = low_pfn;
1341 
1342 	return ret;
1343 }
1344 
1345 /**
1346  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1347  * @cc:        Compaction control structure.
1348  * @start_pfn: The first PFN to start isolating.
1349  * @end_pfn:   The one-past-last PFN.
1350  *
1351  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1352  * in case we could not allocate a page, or 0.
1353  */
1354 int
1355 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1356 							unsigned long end_pfn)
1357 {
1358 	unsigned long pfn, block_start_pfn, block_end_pfn;
1359 	int ret = 0;
1360 
1361 	/* Scan block by block. First and last block may be incomplete */
1362 	pfn = start_pfn;
1363 	block_start_pfn = pageblock_start_pfn(pfn);
1364 	if (block_start_pfn < cc->zone->zone_start_pfn)
1365 		block_start_pfn = cc->zone->zone_start_pfn;
1366 	block_end_pfn = pageblock_end_pfn(pfn);
1367 
1368 	for (; pfn < end_pfn; pfn = block_end_pfn,
1369 				block_start_pfn = block_end_pfn,
1370 				block_end_pfn += pageblock_nr_pages) {
1371 
1372 		block_end_pfn = min(block_end_pfn, end_pfn);
1373 
1374 		if (!pageblock_pfn_to_page(block_start_pfn,
1375 					block_end_pfn, cc->zone))
1376 			continue;
1377 
1378 		ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1379 						 ISOLATE_UNEVICTABLE);
1380 
1381 		if (ret)
1382 			break;
1383 
1384 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1385 			break;
1386 	}
1387 
1388 	return ret;
1389 }
1390 
1391 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1392 #ifdef CONFIG_COMPACTION
1393 
1394 static bool suitable_migration_source(struct compact_control *cc,
1395 							struct page *page)
1396 {
1397 	int block_mt;
1398 
1399 	if (pageblock_skip_persistent(page))
1400 		return false;
1401 
1402 	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1403 		return true;
1404 
1405 	block_mt = get_pageblock_migratetype(page);
1406 
1407 	if (cc->migratetype == MIGRATE_MOVABLE)
1408 		return is_migrate_movable(block_mt);
1409 	else
1410 		return block_mt == cc->migratetype;
1411 }
1412 
1413 /* Returns true if the page is within a block suitable for migration to */
1414 static bool suitable_migration_target(struct compact_control *cc,
1415 							struct page *page)
1416 {
1417 	/* If the page is a large free page, then disallow migration */
1418 	if (PageBuddy(page)) {
1419 		int order = cc->order > 0 ? cc->order : pageblock_order;
1420 
1421 		/*
1422 		 * We are checking page_order without zone->lock taken. But
1423 		 * the only small danger is that we skip a potentially suitable
1424 		 * pageblock, so it's not worth to check order for valid range.
1425 		 */
1426 		if (buddy_order_unsafe(page) >= order)
1427 			return false;
1428 	}
1429 
1430 	if (cc->ignore_block_suitable)
1431 		return true;
1432 
1433 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1434 	if (is_migrate_movable(get_pageblock_migratetype(page)))
1435 		return true;
1436 
1437 	/* Otherwise skip the block */
1438 	return false;
1439 }
1440 
1441 static inline unsigned int
1442 freelist_scan_limit(struct compact_control *cc)
1443 {
1444 	unsigned short shift = BITS_PER_LONG - 1;
1445 
1446 	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1447 }
1448 
1449 /*
1450  * Test whether the free scanner has reached the same or lower pageblock than
1451  * the migration scanner, and compaction should thus terminate.
1452  */
1453 static inline bool compact_scanners_met(struct compact_control *cc)
1454 {
1455 	return (cc->free_pfn >> pageblock_order)
1456 		<= (cc->migrate_pfn >> pageblock_order);
1457 }
1458 
1459 /*
1460  * Used when scanning for a suitable migration target which scans freelists
1461  * in reverse. Reorders the list such as the unscanned pages are scanned
1462  * first on the next iteration of the free scanner
1463  */
1464 static void
1465 move_freelist_head(struct list_head *freelist, struct page *freepage)
1466 {
1467 	LIST_HEAD(sublist);
1468 
1469 	if (!list_is_first(&freepage->buddy_list, freelist)) {
1470 		list_cut_before(&sublist, freelist, &freepage->buddy_list);
1471 		list_splice_tail(&sublist, freelist);
1472 	}
1473 }
1474 
1475 /*
1476  * Similar to move_freelist_head except used by the migration scanner
1477  * when scanning forward. It's possible for these list operations to
1478  * move against each other if they search the free list exactly in
1479  * lockstep.
1480  */
1481 static void
1482 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1483 {
1484 	LIST_HEAD(sublist);
1485 
1486 	if (!list_is_last(&freepage->buddy_list, freelist)) {
1487 		list_cut_position(&sublist, freelist, &freepage->buddy_list);
1488 		list_splice_tail(&sublist, freelist);
1489 	}
1490 }
1491 
1492 static void
1493 fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1494 {
1495 	unsigned long start_pfn, end_pfn;
1496 	struct page *page;
1497 
1498 	/* Do not search around if there are enough pages already */
1499 	if (cc->nr_freepages >= cc->nr_migratepages)
1500 		return;
1501 
1502 	/* Minimise scanning during async compaction */
1503 	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1504 		return;
1505 
1506 	/* Pageblock boundaries */
1507 	start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1508 	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1509 
1510 	page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1511 	if (!page)
1512 		return;
1513 
1514 	isolate_freepages_block(cc, &start_pfn, end_pfn, cc->freepages, 1, false);
1515 
1516 	/* Skip this pageblock in the future as it's full or nearly full */
1517 	if (start_pfn == end_pfn && !cc->no_set_skip_hint)
1518 		set_pageblock_skip(page);
1519 }
1520 
1521 /* Search orders in round-robin fashion */
1522 static int next_search_order(struct compact_control *cc, int order)
1523 {
1524 	order--;
1525 	if (order < 0)
1526 		order = cc->order - 1;
1527 
1528 	/* Search wrapped around? */
1529 	if (order == cc->search_order) {
1530 		cc->search_order--;
1531 		if (cc->search_order < 0)
1532 			cc->search_order = cc->order - 1;
1533 		return -1;
1534 	}
1535 
1536 	return order;
1537 }
1538 
1539 static void fast_isolate_freepages(struct compact_control *cc)
1540 {
1541 	unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1542 	unsigned int nr_scanned = 0, total_isolated = 0;
1543 	unsigned long low_pfn, min_pfn, highest = 0;
1544 	unsigned long nr_isolated = 0;
1545 	unsigned long distance;
1546 	struct page *page = NULL;
1547 	bool scan_start = false;
1548 	int order;
1549 
1550 	/* Full compaction passes in a negative order */
1551 	if (cc->order <= 0)
1552 		return;
1553 
1554 	/*
1555 	 * If starting the scan, use a deeper search and use the highest
1556 	 * PFN found if a suitable one is not found.
1557 	 */
1558 	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1559 		limit = pageblock_nr_pages >> 1;
1560 		scan_start = true;
1561 	}
1562 
1563 	/*
1564 	 * Preferred point is in the top quarter of the scan space but take
1565 	 * a pfn from the top half if the search is problematic.
1566 	 */
1567 	distance = (cc->free_pfn - cc->migrate_pfn);
1568 	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1569 	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1570 
1571 	if (WARN_ON_ONCE(min_pfn > low_pfn))
1572 		low_pfn = min_pfn;
1573 
1574 	/*
1575 	 * Search starts from the last successful isolation order or the next
1576 	 * order to search after a previous failure
1577 	 */
1578 	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1579 
1580 	for (order = cc->search_order;
1581 	     !page && order >= 0;
1582 	     order = next_search_order(cc, order)) {
1583 		struct free_area *area = &cc->zone->free_area[order];
1584 		struct list_head *freelist;
1585 		struct page *freepage;
1586 		unsigned long flags;
1587 		unsigned int order_scanned = 0;
1588 		unsigned long high_pfn = 0;
1589 
1590 		if (!area->nr_free)
1591 			continue;
1592 
1593 		spin_lock_irqsave(&cc->zone->lock, flags);
1594 		freelist = &area->free_list[MIGRATE_MOVABLE];
1595 		list_for_each_entry_reverse(freepage, freelist, buddy_list) {
1596 			unsigned long pfn;
1597 
1598 			order_scanned++;
1599 			nr_scanned++;
1600 			pfn = page_to_pfn(freepage);
1601 
1602 			if (pfn >= highest)
1603 				highest = max(pageblock_start_pfn(pfn),
1604 					      cc->zone->zone_start_pfn);
1605 
1606 			if (pfn >= low_pfn) {
1607 				cc->fast_search_fail = 0;
1608 				cc->search_order = order;
1609 				page = freepage;
1610 				break;
1611 			}
1612 
1613 			if (pfn >= min_pfn && pfn > high_pfn) {
1614 				high_pfn = pfn;
1615 
1616 				/* Shorten the scan if a candidate is found */
1617 				limit >>= 1;
1618 			}
1619 
1620 			if (order_scanned >= limit)
1621 				break;
1622 		}
1623 
1624 		/* Use a maximum candidate pfn if a preferred one was not found */
1625 		if (!page && high_pfn) {
1626 			page = pfn_to_page(high_pfn);
1627 
1628 			/* Update freepage for the list reorder below */
1629 			freepage = page;
1630 		}
1631 
1632 		/* Reorder to so a future search skips recent pages */
1633 		move_freelist_head(freelist, freepage);
1634 
1635 		/* Isolate the page if available */
1636 		if (page) {
1637 			if (__isolate_free_page(page, order)) {
1638 				set_page_private(page, order);
1639 				nr_isolated = 1 << order;
1640 				nr_scanned += nr_isolated - 1;
1641 				total_isolated += nr_isolated;
1642 				cc->nr_freepages += nr_isolated;
1643 				list_add_tail(&page->lru, &cc->freepages[order]);
1644 				count_compact_events(COMPACTISOLATED, nr_isolated);
1645 			} else {
1646 				/* If isolation fails, abort the search */
1647 				order = cc->search_order + 1;
1648 				page = NULL;
1649 			}
1650 		}
1651 
1652 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1653 
1654 		/* Skip fast search if enough freepages isolated */
1655 		if (cc->nr_freepages >= cc->nr_migratepages)
1656 			break;
1657 
1658 		/*
1659 		 * Smaller scan on next order so the total scan is related
1660 		 * to freelist_scan_limit.
1661 		 */
1662 		if (order_scanned >= limit)
1663 			limit = max(1U, limit >> 1);
1664 	}
1665 
1666 	trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn,
1667 						   nr_scanned, total_isolated);
1668 
1669 	if (!page) {
1670 		cc->fast_search_fail++;
1671 		if (scan_start) {
1672 			/*
1673 			 * Use the highest PFN found above min. If one was
1674 			 * not found, be pessimistic for direct compaction
1675 			 * and use the min mark.
1676 			 */
1677 			if (highest >= min_pfn) {
1678 				page = pfn_to_page(highest);
1679 				cc->free_pfn = highest;
1680 			} else {
1681 				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1682 					page = pageblock_pfn_to_page(min_pfn,
1683 						min(pageblock_end_pfn(min_pfn),
1684 						    zone_end_pfn(cc->zone)),
1685 						cc->zone);
1686 					if (page && !suitable_migration_target(cc, page))
1687 						page = NULL;
1688 
1689 					cc->free_pfn = min_pfn;
1690 				}
1691 			}
1692 		}
1693 	}
1694 
1695 	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1696 		highest -= pageblock_nr_pages;
1697 		cc->zone->compact_cached_free_pfn = highest;
1698 	}
1699 
1700 	cc->total_free_scanned += nr_scanned;
1701 	if (!page)
1702 		return;
1703 
1704 	low_pfn = page_to_pfn(page);
1705 	fast_isolate_around(cc, low_pfn);
1706 }
1707 
1708 /*
1709  * Based on information in the current compact_control, find blocks
1710  * suitable for isolating free pages from and then isolate them.
1711  */
1712 static void isolate_freepages(struct compact_control *cc)
1713 {
1714 	struct zone *zone = cc->zone;
1715 	struct page *page;
1716 	unsigned long block_start_pfn;	/* start of current pageblock */
1717 	unsigned long isolate_start_pfn; /* exact pfn we start at */
1718 	unsigned long block_end_pfn;	/* end of current pageblock */
1719 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1720 	unsigned int stride;
1721 
1722 	/* Try a small search of the free lists for a candidate */
1723 	fast_isolate_freepages(cc);
1724 	if (cc->nr_freepages)
1725 		return;
1726 
1727 	/*
1728 	 * Initialise the free scanner. The starting point is where we last
1729 	 * successfully isolated from, zone-cached value, or the end of the
1730 	 * zone when isolating for the first time. For looping we also need
1731 	 * this pfn aligned down to the pageblock boundary, because we do
1732 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1733 	 * For ending point, take care when isolating in last pageblock of a
1734 	 * zone which ends in the middle of a pageblock.
1735 	 * The low boundary is the end of the pageblock the migration scanner
1736 	 * is using.
1737 	 */
1738 	isolate_start_pfn = cc->free_pfn;
1739 	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1740 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1741 						zone_end_pfn(zone));
1742 	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1743 	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1744 
1745 	/*
1746 	 * Isolate free pages until enough are available to migrate the
1747 	 * pages on cc->migratepages. We stop searching if the migrate
1748 	 * and free page scanners meet or enough free pages are isolated.
1749 	 */
1750 	for (; block_start_pfn >= low_pfn;
1751 				block_end_pfn = block_start_pfn,
1752 				block_start_pfn -= pageblock_nr_pages,
1753 				isolate_start_pfn = block_start_pfn) {
1754 		unsigned long nr_isolated;
1755 
1756 		/*
1757 		 * This can iterate a massively long zone without finding any
1758 		 * suitable migration targets, so periodically check resched.
1759 		 */
1760 		if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1761 			cond_resched();
1762 
1763 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1764 									zone);
1765 		if (!page) {
1766 			unsigned long next_pfn;
1767 
1768 			next_pfn = skip_offline_sections_reverse(block_start_pfn);
1769 			if (next_pfn)
1770 				block_start_pfn = max(next_pfn, low_pfn);
1771 
1772 			continue;
1773 		}
1774 
1775 		/* Check the block is suitable for migration */
1776 		if (!suitable_migration_target(cc, page))
1777 			continue;
1778 
1779 		/* If isolation recently failed, do not retry */
1780 		if (!isolation_suitable(cc, page))
1781 			continue;
1782 
1783 		/* Found a block suitable for isolating free pages from. */
1784 		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1785 					block_end_pfn, cc->freepages, stride, false);
1786 
1787 		/* Update the skip hint if the full pageblock was scanned */
1788 		if (isolate_start_pfn == block_end_pfn)
1789 			update_pageblock_skip(cc, page, block_start_pfn -
1790 					      pageblock_nr_pages);
1791 
1792 		/* Are enough freepages isolated? */
1793 		if (cc->nr_freepages >= cc->nr_migratepages) {
1794 			if (isolate_start_pfn >= block_end_pfn) {
1795 				/*
1796 				 * Restart at previous pageblock if more
1797 				 * freepages can be isolated next time.
1798 				 */
1799 				isolate_start_pfn =
1800 					block_start_pfn - pageblock_nr_pages;
1801 			}
1802 			break;
1803 		} else if (isolate_start_pfn < block_end_pfn) {
1804 			/*
1805 			 * If isolation failed early, do not continue
1806 			 * needlessly.
1807 			 */
1808 			break;
1809 		}
1810 
1811 		/* Adjust stride depending on isolation */
1812 		if (nr_isolated) {
1813 			stride = 1;
1814 			continue;
1815 		}
1816 		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1817 	}
1818 
1819 	/*
1820 	 * Record where the free scanner will restart next time. Either we
1821 	 * broke from the loop and set isolate_start_pfn based on the last
1822 	 * call to isolate_freepages_block(), or we met the migration scanner
1823 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1824 	 */
1825 	cc->free_pfn = isolate_start_pfn;
1826 }
1827 
1828 /*
1829  * This is a migrate-callback that "allocates" freepages by taking pages
1830  * from the isolated freelists in the block we are migrating to.
1831  */
1832 static struct folio *compaction_alloc_noprof(struct folio *src, unsigned long data)
1833 {
1834 	struct compact_control *cc = (struct compact_control *)data;
1835 	struct folio *dst;
1836 	int order = folio_order(src);
1837 	bool has_isolated_pages = false;
1838 	int start_order;
1839 	struct page *freepage;
1840 	unsigned long size;
1841 
1842 again:
1843 	for (start_order = order; start_order < NR_PAGE_ORDERS; start_order++)
1844 		if (!list_empty(&cc->freepages[start_order]))
1845 			break;
1846 
1847 	/* no free pages in the list */
1848 	if (start_order == NR_PAGE_ORDERS) {
1849 		if (has_isolated_pages)
1850 			return NULL;
1851 		isolate_freepages(cc);
1852 		has_isolated_pages = true;
1853 		goto again;
1854 	}
1855 
1856 	freepage = list_first_entry(&cc->freepages[start_order], struct page,
1857 				lru);
1858 	size = 1 << start_order;
1859 
1860 	list_del(&freepage->lru);
1861 
1862 	while (start_order > order) {
1863 		start_order--;
1864 		size >>= 1;
1865 
1866 		list_add(&freepage[size].lru, &cc->freepages[start_order]);
1867 		set_page_private(&freepage[size], start_order);
1868 	}
1869 	dst = (struct folio *)freepage;
1870 
1871 	post_alloc_hook(&dst->page, order, __GFP_MOVABLE);
1872 	set_page_refcounted(&dst->page);
1873 	if (order)
1874 		prep_compound_page(&dst->page, order);
1875 	cc->nr_freepages -= 1 << order;
1876 	cc->nr_migratepages -= 1 << order;
1877 	return page_rmappable_folio(&dst->page);
1878 }
1879 
1880 static struct folio *compaction_alloc(struct folio *src, unsigned long data)
1881 {
1882 	return alloc_hooks(compaction_alloc_noprof(src, data));
1883 }
1884 
1885 /*
1886  * This is a migrate-callback that "frees" freepages back to the isolated
1887  * freelist.  All pages on the freelist are from the same zone, so there is no
1888  * special handling needed for NUMA.
1889  */
1890 static void compaction_free(struct folio *dst, unsigned long data)
1891 {
1892 	struct compact_control *cc = (struct compact_control *)data;
1893 	int order = folio_order(dst);
1894 	struct page *page = &dst->page;
1895 
1896 	if (folio_put_testzero(dst)) {
1897 		free_pages_prepare(page, order);
1898 		list_add(&dst->lru, &cc->freepages[order]);
1899 		cc->nr_freepages += 1 << order;
1900 	}
1901 	cc->nr_migratepages += 1 << order;
1902 	/*
1903 	 * someone else has referenced the page, we cannot take it back to our
1904 	 * free list.
1905 	 */
1906 }
1907 
1908 /* possible outcome of isolate_migratepages */
1909 typedef enum {
1910 	ISOLATE_ABORT,		/* Abort compaction now */
1911 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1912 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1913 } isolate_migrate_t;
1914 
1915 /*
1916  * Allow userspace to control policy on scanning the unevictable LRU for
1917  * compactable pages.
1918  */
1919 static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1920 /*
1921  * Tunable for proactive compaction. It determines how
1922  * aggressively the kernel should compact memory in the
1923  * background. It takes values in the range [0, 100].
1924  */
1925 static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1926 static int sysctl_extfrag_threshold = 500;
1927 static int __read_mostly sysctl_compact_memory;
1928 
1929 static inline void
1930 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1931 {
1932 	if (cc->fast_start_pfn == ULONG_MAX)
1933 		return;
1934 
1935 	if (!cc->fast_start_pfn)
1936 		cc->fast_start_pfn = pfn;
1937 
1938 	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1939 }
1940 
1941 static inline unsigned long
1942 reinit_migrate_pfn(struct compact_control *cc)
1943 {
1944 	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1945 		return cc->migrate_pfn;
1946 
1947 	cc->migrate_pfn = cc->fast_start_pfn;
1948 	cc->fast_start_pfn = ULONG_MAX;
1949 
1950 	return cc->migrate_pfn;
1951 }
1952 
1953 /*
1954  * Briefly search the free lists for a migration source that already has
1955  * some free pages to reduce the number of pages that need migration
1956  * before a pageblock is free.
1957  */
1958 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1959 {
1960 	unsigned int limit = freelist_scan_limit(cc);
1961 	unsigned int nr_scanned = 0;
1962 	unsigned long distance;
1963 	unsigned long pfn = cc->migrate_pfn;
1964 	unsigned long high_pfn;
1965 	int order;
1966 	bool found_block = false;
1967 
1968 	/* Skip hints are relied on to avoid repeats on the fast search */
1969 	if (cc->ignore_skip_hint)
1970 		return pfn;
1971 
1972 	/*
1973 	 * If the pageblock should be finished then do not select a different
1974 	 * pageblock.
1975 	 */
1976 	if (cc->finish_pageblock)
1977 		return pfn;
1978 
1979 	/*
1980 	 * If the migrate_pfn is not at the start of a zone or the start
1981 	 * of a pageblock then assume this is a continuation of a previous
1982 	 * scan restarted due to COMPACT_CLUSTER_MAX.
1983 	 */
1984 	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1985 		return pfn;
1986 
1987 	/*
1988 	 * For smaller orders, just linearly scan as the number of pages
1989 	 * to migrate should be relatively small and does not necessarily
1990 	 * justify freeing up a large block for a small allocation.
1991 	 */
1992 	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1993 		return pfn;
1994 
1995 	/*
1996 	 * Only allow kcompactd and direct requests for movable pages to
1997 	 * quickly clear out a MOVABLE pageblock for allocation. This
1998 	 * reduces the risk that a large movable pageblock is freed for
1999 	 * an unmovable/reclaimable small allocation.
2000 	 */
2001 	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
2002 		return pfn;
2003 
2004 	/*
2005 	 * When starting the migration scanner, pick any pageblock within the
2006 	 * first half of the search space. Otherwise try and pick a pageblock
2007 	 * within the first eighth to reduce the chances that a migration
2008 	 * target later becomes a source.
2009 	 */
2010 	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
2011 	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
2012 		distance >>= 2;
2013 	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
2014 
2015 	for (order = cc->order - 1;
2016 	     order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
2017 	     order--) {
2018 		struct free_area *area = &cc->zone->free_area[order];
2019 		struct list_head *freelist;
2020 		unsigned long flags;
2021 		struct page *freepage;
2022 
2023 		if (!area->nr_free)
2024 			continue;
2025 
2026 		spin_lock_irqsave(&cc->zone->lock, flags);
2027 		freelist = &area->free_list[MIGRATE_MOVABLE];
2028 		list_for_each_entry(freepage, freelist, buddy_list) {
2029 			unsigned long free_pfn;
2030 
2031 			if (nr_scanned++ >= limit) {
2032 				move_freelist_tail(freelist, freepage);
2033 				break;
2034 			}
2035 
2036 			free_pfn = page_to_pfn(freepage);
2037 			if (free_pfn < high_pfn) {
2038 				/*
2039 				 * Avoid if skipped recently. Ideally it would
2040 				 * move to the tail but even safe iteration of
2041 				 * the list assumes an entry is deleted, not
2042 				 * reordered.
2043 				 */
2044 				if (get_pageblock_skip(freepage))
2045 					continue;
2046 
2047 				/* Reorder to so a future search skips recent pages */
2048 				move_freelist_tail(freelist, freepage);
2049 
2050 				update_fast_start_pfn(cc, free_pfn);
2051 				pfn = pageblock_start_pfn(free_pfn);
2052 				if (pfn < cc->zone->zone_start_pfn)
2053 					pfn = cc->zone->zone_start_pfn;
2054 				cc->fast_search_fail = 0;
2055 				found_block = true;
2056 				break;
2057 			}
2058 		}
2059 		spin_unlock_irqrestore(&cc->zone->lock, flags);
2060 	}
2061 
2062 	cc->total_migrate_scanned += nr_scanned;
2063 
2064 	/*
2065 	 * If fast scanning failed then use a cached entry for a page block
2066 	 * that had free pages as the basis for starting a linear scan.
2067 	 */
2068 	if (!found_block) {
2069 		cc->fast_search_fail++;
2070 		pfn = reinit_migrate_pfn(cc);
2071 	}
2072 	return pfn;
2073 }
2074 
2075 /*
2076  * Isolate all pages that can be migrated from the first suitable block,
2077  * starting at the block pointed to by the migrate scanner pfn within
2078  * compact_control.
2079  */
2080 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
2081 {
2082 	unsigned long block_start_pfn;
2083 	unsigned long block_end_pfn;
2084 	unsigned long low_pfn;
2085 	struct page *page;
2086 	const isolate_mode_t isolate_mode =
2087 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
2088 		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
2089 	bool fast_find_block;
2090 
2091 	/*
2092 	 * Start at where we last stopped, or beginning of the zone as
2093 	 * initialized by compact_zone(). The first failure will use
2094 	 * the lowest PFN as the starting point for linear scanning.
2095 	 */
2096 	low_pfn = fast_find_migrateblock(cc);
2097 	block_start_pfn = pageblock_start_pfn(low_pfn);
2098 	if (block_start_pfn < cc->zone->zone_start_pfn)
2099 		block_start_pfn = cc->zone->zone_start_pfn;
2100 
2101 	/*
2102 	 * fast_find_migrateblock() has already ensured the pageblock is not
2103 	 * set with a skipped flag, so to avoid the isolation_suitable check
2104 	 * below again, check whether the fast search was successful.
2105 	 */
2106 	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
2107 
2108 	/* Only scan within a pageblock boundary */
2109 	block_end_pfn = pageblock_end_pfn(low_pfn);
2110 
2111 	/*
2112 	 * Iterate over whole pageblocks until we find the first suitable.
2113 	 * Do not cross the free scanner.
2114 	 */
2115 	for (; block_end_pfn <= cc->free_pfn;
2116 			fast_find_block = false,
2117 			cc->migrate_pfn = low_pfn = block_end_pfn,
2118 			block_start_pfn = block_end_pfn,
2119 			block_end_pfn += pageblock_nr_pages) {
2120 
2121 		/*
2122 		 * This can potentially iterate a massively long zone with
2123 		 * many pageblocks unsuitable, so periodically check if we
2124 		 * need to schedule.
2125 		 */
2126 		if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
2127 			cond_resched();
2128 
2129 		page = pageblock_pfn_to_page(block_start_pfn,
2130 						block_end_pfn, cc->zone);
2131 		if (!page) {
2132 			unsigned long next_pfn;
2133 
2134 			next_pfn = skip_offline_sections(block_start_pfn);
2135 			if (next_pfn)
2136 				block_end_pfn = min(next_pfn, cc->free_pfn);
2137 			continue;
2138 		}
2139 
2140 		/*
2141 		 * If isolation recently failed, do not retry. Only check the
2142 		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
2143 		 * to be visited multiple times. Assume skip was checked
2144 		 * before making it "skip" so other compaction instances do
2145 		 * not scan the same block.
2146 		 */
2147 		if ((pageblock_aligned(low_pfn) ||
2148 		     low_pfn == cc->zone->zone_start_pfn) &&
2149 		    !fast_find_block && !isolation_suitable(cc, page))
2150 			continue;
2151 
2152 		/*
2153 		 * For async direct compaction, only scan the pageblocks of the
2154 		 * same migratetype without huge pages. Async direct compaction
2155 		 * is optimistic to see if the minimum amount of work satisfies
2156 		 * the allocation. The cached PFN is updated as it's possible
2157 		 * that all remaining blocks between source and target are
2158 		 * unsuitable and the compaction scanners fail to meet.
2159 		 */
2160 		if (!suitable_migration_source(cc, page)) {
2161 			update_cached_migrate(cc, block_end_pfn);
2162 			continue;
2163 		}
2164 
2165 		/* Perform the isolation */
2166 		if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
2167 						isolate_mode))
2168 			return ISOLATE_ABORT;
2169 
2170 		/*
2171 		 * Either we isolated something and proceed with migration. Or
2172 		 * we failed and compact_zone should decide if we should
2173 		 * continue or not.
2174 		 */
2175 		break;
2176 	}
2177 
2178 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
2179 }
2180 
2181 /*
2182  * Determine whether kswapd is (or recently was!) running on this node.
2183  *
2184  * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
2185  * zero it.
2186  */
2187 static bool kswapd_is_running(pg_data_t *pgdat)
2188 {
2189 	bool running;
2190 
2191 	pgdat_kswapd_lock(pgdat);
2192 	running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2193 	pgdat_kswapd_unlock(pgdat);
2194 
2195 	return running;
2196 }
2197 
2198 /*
2199  * A zone's fragmentation score is the external fragmentation wrt to the
2200  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2201  */
2202 static unsigned int fragmentation_score_zone(struct zone *zone)
2203 {
2204 	return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2205 }
2206 
2207 /*
2208  * A weighted zone's fragmentation score is the external fragmentation
2209  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2210  * returns a value in the range [0, 100].
2211  *
2212  * The scaling factor ensures that proactive compaction focuses on larger
2213  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2214  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2215  * and thus never exceeds the high threshold for proactive compaction.
2216  */
2217 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2218 {
2219 	unsigned long score;
2220 
2221 	score = zone->present_pages * fragmentation_score_zone(zone);
2222 	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2223 }
2224 
2225 /*
2226  * The per-node proactive (background) compaction process is started by its
2227  * corresponding kcompactd thread when the node's fragmentation score
2228  * exceeds the high threshold. The compaction process remains active till
2229  * the node's score falls below the low threshold, or one of the back-off
2230  * conditions is met.
2231  */
2232 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2233 {
2234 	unsigned int score = 0;
2235 	int zoneid;
2236 
2237 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2238 		struct zone *zone;
2239 
2240 		zone = &pgdat->node_zones[zoneid];
2241 		if (!populated_zone(zone))
2242 			continue;
2243 		score += fragmentation_score_zone_weighted(zone);
2244 	}
2245 
2246 	return score;
2247 }
2248 
2249 static unsigned int fragmentation_score_wmark(bool low)
2250 {
2251 	unsigned int wmark_low;
2252 
2253 	/*
2254 	 * Cap the low watermark to avoid excessive compaction
2255 	 * activity in case a user sets the proactiveness tunable
2256 	 * close to 100 (maximum).
2257 	 */
2258 	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2259 	return low ? wmark_low : min(wmark_low + 10, 100U);
2260 }
2261 
2262 static bool should_proactive_compact_node(pg_data_t *pgdat)
2263 {
2264 	int wmark_high;
2265 
2266 	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2267 		return false;
2268 
2269 	wmark_high = fragmentation_score_wmark(false);
2270 	return fragmentation_score_node(pgdat) > wmark_high;
2271 }
2272 
2273 static enum compact_result __compact_finished(struct compact_control *cc)
2274 {
2275 	unsigned int order;
2276 	const int migratetype = cc->migratetype;
2277 	int ret;
2278 
2279 	/* Compaction run completes if the migrate and free scanner meet */
2280 	if (compact_scanners_met(cc)) {
2281 		/* Let the next compaction start anew. */
2282 		reset_cached_positions(cc->zone);
2283 
2284 		/*
2285 		 * Mark that the PG_migrate_skip information should be cleared
2286 		 * by kswapd when it goes to sleep. kcompactd does not set the
2287 		 * flag itself as the decision to be clear should be directly
2288 		 * based on an allocation request.
2289 		 */
2290 		if (cc->direct_compaction)
2291 			cc->zone->compact_blockskip_flush = true;
2292 
2293 		if (cc->whole_zone)
2294 			return COMPACT_COMPLETE;
2295 		else
2296 			return COMPACT_PARTIAL_SKIPPED;
2297 	}
2298 
2299 	if (cc->proactive_compaction) {
2300 		int score, wmark_low;
2301 		pg_data_t *pgdat;
2302 
2303 		pgdat = cc->zone->zone_pgdat;
2304 		if (kswapd_is_running(pgdat))
2305 			return COMPACT_PARTIAL_SKIPPED;
2306 
2307 		score = fragmentation_score_zone(cc->zone);
2308 		wmark_low = fragmentation_score_wmark(true);
2309 
2310 		if (score > wmark_low)
2311 			ret = COMPACT_CONTINUE;
2312 		else
2313 			ret = COMPACT_SUCCESS;
2314 
2315 		goto out;
2316 	}
2317 
2318 	if (is_via_compact_memory(cc->order))
2319 		return COMPACT_CONTINUE;
2320 
2321 	/*
2322 	 * Always finish scanning a pageblock to reduce the possibility of
2323 	 * fallbacks in the future. This is particularly important when
2324 	 * migration source is unmovable/reclaimable but it's not worth
2325 	 * special casing.
2326 	 */
2327 	if (!pageblock_aligned(cc->migrate_pfn))
2328 		return COMPACT_CONTINUE;
2329 
2330 	/* Direct compactor: Is a suitable page free? */
2331 	ret = COMPACT_NO_SUITABLE_PAGE;
2332 	for (order = cc->order; order < NR_PAGE_ORDERS; order++) {
2333 		struct free_area *area = &cc->zone->free_area[order];
2334 		bool can_steal;
2335 
2336 		/* Job done if page is free of the right migratetype */
2337 		if (!free_area_empty(area, migratetype))
2338 			return COMPACT_SUCCESS;
2339 
2340 #ifdef CONFIG_CMA
2341 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2342 		if (migratetype == MIGRATE_MOVABLE &&
2343 			!free_area_empty(area, MIGRATE_CMA))
2344 			return COMPACT_SUCCESS;
2345 #endif
2346 		/*
2347 		 * Job done if allocation would steal freepages from
2348 		 * other migratetype buddy lists.
2349 		 */
2350 		if (find_suitable_fallback(area, order, migratetype,
2351 						true, &can_steal) != -1)
2352 			/*
2353 			 * Movable pages are OK in any pageblock. If we are
2354 			 * stealing for a non-movable allocation, make sure
2355 			 * we finish compacting the current pageblock first
2356 			 * (which is assured by the above migrate_pfn align
2357 			 * check) so it is as free as possible and we won't
2358 			 * have to steal another one soon.
2359 			 */
2360 			return COMPACT_SUCCESS;
2361 	}
2362 
2363 out:
2364 	if (cc->contended || fatal_signal_pending(current))
2365 		ret = COMPACT_CONTENDED;
2366 
2367 	return ret;
2368 }
2369 
2370 static enum compact_result compact_finished(struct compact_control *cc)
2371 {
2372 	int ret;
2373 
2374 	ret = __compact_finished(cc);
2375 	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2376 	if (ret == COMPACT_NO_SUITABLE_PAGE)
2377 		ret = COMPACT_CONTINUE;
2378 
2379 	return ret;
2380 }
2381 
2382 static bool __compaction_suitable(struct zone *zone, int order,
2383 				  int highest_zoneidx,
2384 				  unsigned long wmark_target)
2385 {
2386 	unsigned long watermark;
2387 	/*
2388 	 * Watermarks for order-0 must be met for compaction to be able to
2389 	 * isolate free pages for migration targets. This means that the
2390 	 * watermark and alloc_flags have to match, or be more pessimistic than
2391 	 * the check in __isolate_free_page(). We don't use the direct
2392 	 * compactor's alloc_flags, as they are not relevant for freepage
2393 	 * isolation. We however do use the direct compactor's highest_zoneidx
2394 	 * to skip over zones where lowmem reserves would prevent allocation
2395 	 * even if compaction succeeds.
2396 	 * For costly orders, we require low watermark instead of min for
2397 	 * compaction to proceed to increase its chances.
2398 	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2399 	 * suitable migration targets
2400 	 */
2401 	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2402 				low_wmark_pages(zone) : min_wmark_pages(zone);
2403 	watermark += compact_gap(order);
2404 	return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2405 				   ALLOC_CMA, wmark_target);
2406 }
2407 
2408 /*
2409  * compaction_suitable: Is this suitable to run compaction on this zone now?
2410  */
2411 bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx)
2412 {
2413 	enum compact_result compact_result;
2414 	bool suitable;
2415 
2416 	suitable = __compaction_suitable(zone, order, highest_zoneidx,
2417 					 zone_page_state(zone, NR_FREE_PAGES));
2418 	/*
2419 	 * fragmentation index determines if allocation failures are due to
2420 	 * low memory or external fragmentation
2421 	 *
2422 	 * index of -1000 would imply allocations might succeed depending on
2423 	 * watermarks, but we already failed the high-order watermark check
2424 	 * index towards 0 implies failure is due to lack of memory
2425 	 * index towards 1000 implies failure is due to fragmentation
2426 	 *
2427 	 * Only compact if a failure would be due to fragmentation. Also
2428 	 * ignore fragindex for non-costly orders where the alternative to
2429 	 * a successful reclaim/compaction is OOM. Fragindex and the
2430 	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2431 	 * excessive compaction for costly orders, but it should not be at the
2432 	 * expense of system stability.
2433 	 */
2434 	if (suitable) {
2435 		compact_result = COMPACT_CONTINUE;
2436 		if (order > PAGE_ALLOC_COSTLY_ORDER) {
2437 			int fragindex = fragmentation_index(zone, order);
2438 
2439 			if (fragindex >= 0 &&
2440 			    fragindex <= sysctl_extfrag_threshold) {
2441 				suitable = false;
2442 				compact_result = COMPACT_NOT_SUITABLE_ZONE;
2443 			}
2444 		}
2445 	} else {
2446 		compact_result = COMPACT_SKIPPED;
2447 	}
2448 
2449 	trace_mm_compaction_suitable(zone, order, compact_result);
2450 
2451 	return suitable;
2452 }
2453 
2454 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2455 		int alloc_flags)
2456 {
2457 	struct zone *zone;
2458 	struct zoneref *z;
2459 
2460 	/*
2461 	 * Make sure at least one zone would pass __compaction_suitable if we continue
2462 	 * retrying the reclaim.
2463 	 */
2464 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2465 				ac->highest_zoneidx, ac->nodemask) {
2466 		unsigned long available;
2467 
2468 		/*
2469 		 * Do not consider all the reclaimable memory because we do not
2470 		 * want to trash just for a single high order allocation which
2471 		 * is even not guaranteed to appear even if __compaction_suitable
2472 		 * is happy about the watermark check.
2473 		 */
2474 		available = zone_reclaimable_pages(zone) / order;
2475 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2476 		if (__compaction_suitable(zone, order, ac->highest_zoneidx,
2477 					  available))
2478 			return true;
2479 	}
2480 
2481 	return false;
2482 }
2483 
2484 /*
2485  * Should we do compaction for target allocation order.
2486  * Return COMPACT_SUCCESS if allocation for target order can be already
2487  * satisfied
2488  * Return COMPACT_SKIPPED if compaction for target order is likely to fail
2489  * Return COMPACT_CONTINUE if compaction for target order should be ran
2490  */
2491 static enum compact_result
2492 compaction_suit_allocation_order(struct zone *zone, unsigned int order,
2493 				 int highest_zoneidx, unsigned int alloc_flags)
2494 {
2495 	unsigned long watermark;
2496 
2497 	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2498 	if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2499 			      alloc_flags))
2500 		return COMPACT_SUCCESS;
2501 
2502 	if (!compaction_suitable(zone, order, highest_zoneidx))
2503 		return COMPACT_SKIPPED;
2504 
2505 	return COMPACT_CONTINUE;
2506 }
2507 
2508 static enum compact_result
2509 compact_zone(struct compact_control *cc, struct capture_control *capc)
2510 {
2511 	enum compact_result ret;
2512 	unsigned long start_pfn = cc->zone->zone_start_pfn;
2513 	unsigned long end_pfn = zone_end_pfn(cc->zone);
2514 	unsigned long last_migrated_pfn;
2515 	const bool sync = cc->mode != MIGRATE_ASYNC;
2516 	bool update_cached;
2517 	unsigned int nr_succeeded = 0, nr_migratepages;
2518 	int order;
2519 
2520 	/*
2521 	 * These counters track activities during zone compaction.  Initialize
2522 	 * them before compacting a new zone.
2523 	 */
2524 	cc->total_migrate_scanned = 0;
2525 	cc->total_free_scanned = 0;
2526 	cc->nr_migratepages = 0;
2527 	cc->nr_freepages = 0;
2528 	for (order = 0; order < NR_PAGE_ORDERS; order++)
2529 		INIT_LIST_HEAD(&cc->freepages[order]);
2530 	INIT_LIST_HEAD(&cc->migratepages);
2531 
2532 	cc->migratetype = gfp_migratetype(cc->gfp_mask);
2533 
2534 	if (!is_via_compact_memory(cc->order)) {
2535 		ret = compaction_suit_allocation_order(cc->zone, cc->order,
2536 						       cc->highest_zoneidx,
2537 						       cc->alloc_flags);
2538 		if (ret != COMPACT_CONTINUE)
2539 			return ret;
2540 	}
2541 
2542 	/*
2543 	 * Clear pageblock skip if there were failures recently and compaction
2544 	 * is about to be retried after being deferred.
2545 	 */
2546 	if (compaction_restarting(cc->zone, cc->order))
2547 		__reset_isolation_suitable(cc->zone);
2548 
2549 	/*
2550 	 * Setup to move all movable pages to the end of the zone. Used cached
2551 	 * information on where the scanners should start (unless we explicitly
2552 	 * want to compact the whole zone), but check that it is initialised
2553 	 * by ensuring the values are within zone boundaries.
2554 	 */
2555 	cc->fast_start_pfn = 0;
2556 	if (cc->whole_zone) {
2557 		cc->migrate_pfn = start_pfn;
2558 		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2559 	} else {
2560 		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2561 		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2562 		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2563 			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2564 			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2565 		}
2566 		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2567 			cc->migrate_pfn = start_pfn;
2568 			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2569 			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2570 		}
2571 
2572 		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2573 			cc->whole_zone = true;
2574 	}
2575 
2576 	last_migrated_pfn = 0;
2577 
2578 	/*
2579 	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2580 	 * the basis that some migrations will fail in ASYNC mode. However,
2581 	 * if the cached PFNs match and pageblocks are skipped due to having
2582 	 * no isolation candidates, then the sync state does not matter.
2583 	 * Until a pageblock with isolation candidates is found, keep the
2584 	 * cached PFNs in sync to avoid revisiting the same blocks.
2585 	 */
2586 	update_cached = !sync &&
2587 		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2588 
2589 	trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2590 
2591 	/* lru_add_drain_all could be expensive with involving other CPUs */
2592 	lru_add_drain();
2593 
2594 	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2595 		int err;
2596 		unsigned long iteration_start_pfn = cc->migrate_pfn;
2597 
2598 		/*
2599 		 * Avoid multiple rescans of the same pageblock which can
2600 		 * happen if a page cannot be isolated (dirty/writeback in
2601 		 * async mode) or if the migrated pages are being allocated
2602 		 * before the pageblock is cleared.  The first rescan will
2603 		 * capture the entire pageblock for migration. If it fails,
2604 		 * it'll be marked skip and scanning will proceed as normal.
2605 		 */
2606 		cc->finish_pageblock = false;
2607 		if (pageblock_start_pfn(last_migrated_pfn) ==
2608 		    pageblock_start_pfn(iteration_start_pfn)) {
2609 			cc->finish_pageblock = true;
2610 		}
2611 
2612 rescan:
2613 		switch (isolate_migratepages(cc)) {
2614 		case ISOLATE_ABORT:
2615 			ret = COMPACT_CONTENDED;
2616 			putback_movable_pages(&cc->migratepages);
2617 			cc->nr_migratepages = 0;
2618 			goto out;
2619 		case ISOLATE_NONE:
2620 			if (update_cached) {
2621 				cc->zone->compact_cached_migrate_pfn[1] =
2622 					cc->zone->compact_cached_migrate_pfn[0];
2623 			}
2624 
2625 			/*
2626 			 * We haven't isolated and migrated anything, but
2627 			 * there might still be unflushed migrations from
2628 			 * previous cc->order aligned block.
2629 			 */
2630 			goto check_drain;
2631 		case ISOLATE_SUCCESS:
2632 			update_cached = false;
2633 			last_migrated_pfn = max(cc->zone->zone_start_pfn,
2634 				pageblock_start_pfn(cc->migrate_pfn - 1));
2635 		}
2636 
2637 		/*
2638 		 * Record the number of pages to migrate since the
2639 		 * compaction_alloc/free() will update cc->nr_migratepages
2640 		 * properly.
2641 		 */
2642 		nr_migratepages = cc->nr_migratepages;
2643 		err = migrate_pages(&cc->migratepages, compaction_alloc,
2644 				compaction_free, (unsigned long)cc, cc->mode,
2645 				MR_COMPACTION, &nr_succeeded);
2646 
2647 		trace_mm_compaction_migratepages(nr_migratepages, nr_succeeded);
2648 
2649 		/* All pages were either migrated or will be released */
2650 		cc->nr_migratepages = 0;
2651 		if (err) {
2652 			putback_movable_pages(&cc->migratepages);
2653 			/*
2654 			 * migrate_pages() may return -ENOMEM when scanners meet
2655 			 * and we want compact_finished() to detect it
2656 			 */
2657 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2658 				ret = COMPACT_CONTENDED;
2659 				goto out;
2660 			}
2661 			/*
2662 			 * If an ASYNC or SYNC_LIGHT fails to migrate a page
2663 			 * within the pageblock_order-aligned block and
2664 			 * fast_find_migrateblock may be used then scan the
2665 			 * remainder of the pageblock. This will mark the
2666 			 * pageblock "skip" to avoid rescanning in the near
2667 			 * future. This will isolate more pages than necessary
2668 			 * for the request but avoid loops due to
2669 			 * fast_find_migrateblock revisiting blocks that were
2670 			 * recently partially scanned.
2671 			 */
2672 			if (!pageblock_aligned(cc->migrate_pfn) &&
2673 			    !cc->ignore_skip_hint && !cc->finish_pageblock &&
2674 			    (cc->mode < MIGRATE_SYNC)) {
2675 				cc->finish_pageblock = true;
2676 
2677 				/*
2678 				 * Draining pcplists does not help THP if
2679 				 * any page failed to migrate. Even after
2680 				 * drain, the pageblock will not be free.
2681 				 */
2682 				if (cc->order == COMPACTION_HPAGE_ORDER)
2683 					last_migrated_pfn = 0;
2684 
2685 				goto rescan;
2686 			}
2687 		}
2688 
2689 		/* Stop if a page has been captured */
2690 		if (capc && capc->page) {
2691 			ret = COMPACT_SUCCESS;
2692 			break;
2693 		}
2694 
2695 check_drain:
2696 		/*
2697 		 * Has the migration scanner moved away from the previous
2698 		 * cc->order aligned block where we migrated from? If yes,
2699 		 * flush the pages that were freed, so that they can merge and
2700 		 * compact_finished() can detect immediately if allocation
2701 		 * would succeed.
2702 		 */
2703 		if (cc->order > 0 && last_migrated_pfn) {
2704 			unsigned long current_block_start =
2705 				block_start_pfn(cc->migrate_pfn, cc->order);
2706 
2707 			if (last_migrated_pfn < current_block_start) {
2708 				lru_add_drain_cpu_zone(cc->zone);
2709 				/* No more flushing until we migrate again */
2710 				last_migrated_pfn = 0;
2711 			}
2712 		}
2713 	}
2714 
2715 out:
2716 	/*
2717 	 * Release free pages and update where the free scanner should restart,
2718 	 * so we don't leave any returned pages behind in the next attempt.
2719 	 */
2720 	if (cc->nr_freepages > 0) {
2721 		unsigned long free_pfn = release_free_list(cc->freepages);
2722 
2723 		cc->nr_freepages = 0;
2724 		VM_BUG_ON(free_pfn == 0);
2725 		/* The cached pfn is always the first in a pageblock */
2726 		free_pfn = pageblock_start_pfn(free_pfn);
2727 		/*
2728 		 * Only go back, not forward. The cached pfn might have been
2729 		 * already reset to zone end in compact_finished()
2730 		 */
2731 		if (free_pfn > cc->zone->compact_cached_free_pfn)
2732 			cc->zone->compact_cached_free_pfn = free_pfn;
2733 	}
2734 
2735 	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2736 	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2737 
2738 	trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2739 
2740 	VM_BUG_ON(!list_empty(&cc->migratepages));
2741 
2742 	return ret;
2743 }
2744 
2745 static enum compact_result compact_zone_order(struct zone *zone, int order,
2746 		gfp_t gfp_mask, enum compact_priority prio,
2747 		unsigned int alloc_flags, int highest_zoneidx,
2748 		struct page **capture)
2749 {
2750 	enum compact_result ret;
2751 	struct compact_control cc = {
2752 		.order = order,
2753 		.search_order = order,
2754 		.gfp_mask = gfp_mask,
2755 		.zone = zone,
2756 		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2757 					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2758 		.alloc_flags = alloc_flags,
2759 		.highest_zoneidx = highest_zoneidx,
2760 		.direct_compaction = true,
2761 		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2762 		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2763 		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2764 	};
2765 	struct capture_control capc = {
2766 		.cc = &cc,
2767 		.page = NULL,
2768 	};
2769 
2770 	/*
2771 	 * Make sure the structs are really initialized before we expose the
2772 	 * capture control, in case we are interrupted and the interrupt handler
2773 	 * frees a page.
2774 	 */
2775 	barrier();
2776 	WRITE_ONCE(current->capture_control, &capc);
2777 
2778 	ret = compact_zone(&cc, &capc);
2779 
2780 	/*
2781 	 * Make sure we hide capture control first before we read the captured
2782 	 * page pointer, otherwise an interrupt could free and capture a page
2783 	 * and we would leak it.
2784 	 */
2785 	WRITE_ONCE(current->capture_control, NULL);
2786 	*capture = READ_ONCE(capc.page);
2787 	/*
2788 	 * Technically, it is also possible that compaction is skipped but
2789 	 * the page is still captured out of luck(IRQ came and freed the page).
2790 	 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2791 	 * the COMPACT[STALL|FAIL] when compaction is skipped.
2792 	 */
2793 	if (*capture)
2794 		ret = COMPACT_SUCCESS;
2795 
2796 	return ret;
2797 }
2798 
2799 /**
2800  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2801  * @gfp_mask: The GFP mask of the current allocation
2802  * @order: The order of the current allocation
2803  * @alloc_flags: The allocation flags of the current allocation
2804  * @ac: The context of current allocation
2805  * @prio: Determines how hard direct compaction should try to succeed
2806  * @capture: Pointer to free page created by compaction will be stored here
2807  *
2808  * This is the main entry point for direct page compaction.
2809  */
2810 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2811 		unsigned int alloc_flags, const struct alloc_context *ac,
2812 		enum compact_priority prio, struct page **capture)
2813 {
2814 	struct zoneref *z;
2815 	struct zone *zone;
2816 	enum compact_result rc = COMPACT_SKIPPED;
2817 
2818 	if (!gfp_compaction_allowed(gfp_mask))
2819 		return COMPACT_SKIPPED;
2820 
2821 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2822 
2823 	/* Compact each zone in the list */
2824 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2825 					ac->highest_zoneidx, ac->nodemask) {
2826 		enum compact_result status;
2827 
2828 		if (cpusets_enabled() &&
2829 			(alloc_flags & ALLOC_CPUSET) &&
2830 			!__cpuset_zone_allowed(zone, gfp_mask))
2831 				continue;
2832 
2833 		if (prio > MIN_COMPACT_PRIORITY
2834 					&& compaction_deferred(zone, order)) {
2835 			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2836 			continue;
2837 		}
2838 
2839 		status = compact_zone_order(zone, order, gfp_mask, prio,
2840 				alloc_flags, ac->highest_zoneidx, capture);
2841 		rc = max(status, rc);
2842 
2843 		/* The allocation should succeed, stop compacting */
2844 		if (status == COMPACT_SUCCESS) {
2845 			/*
2846 			 * We think the allocation will succeed in this zone,
2847 			 * but it is not certain, hence the false. The caller
2848 			 * will repeat this with true if allocation indeed
2849 			 * succeeds in this zone.
2850 			 */
2851 			compaction_defer_reset(zone, order, false);
2852 
2853 			break;
2854 		}
2855 
2856 		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2857 					status == COMPACT_PARTIAL_SKIPPED))
2858 			/*
2859 			 * We think that allocation won't succeed in this zone
2860 			 * so we defer compaction there. If it ends up
2861 			 * succeeding after all, it will be reset.
2862 			 */
2863 			defer_compaction(zone, order);
2864 
2865 		/*
2866 		 * We might have stopped compacting due to need_resched() in
2867 		 * async compaction, or due to a fatal signal detected. In that
2868 		 * case do not try further zones
2869 		 */
2870 		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2871 					|| fatal_signal_pending(current))
2872 			break;
2873 	}
2874 
2875 	return rc;
2876 }
2877 
2878 /*
2879  * compact_node() - compact all zones within a node
2880  * @pgdat: The node page data
2881  * @proactive: Whether the compaction is proactive
2882  *
2883  * For proactive compaction, compact till each zone's fragmentation score
2884  * reaches within proactive compaction thresholds (as determined by the
2885  * proactiveness tunable), it is possible that the function returns before
2886  * reaching score targets due to various back-off conditions, such as,
2887  * contention on per-node or per-zone locks.
2888  */
2889 static int compact_node(pg_data_t *pgdat, bool proactive)
2890 {
2891 	int zoneid;
2892 	struct zone *zone;
2893 	struct compact_control cc = {
2894 		.order = -1,
2895 		.mode = proactive ? MIGRATE_SYNC_LIGHT : MIGRATE_SYNC,
2896 		.ignore_skip_hint = true,
2897 		.whole_zone = true,
2898 		.gfp_mask = GFP_KERNEL,
2899 		.proactive_compaction = proactive,
2900 	};
2901 
2902 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2903 		zone = &pgdat->node_zones[zoneid];
2904 		if (!populated_zone(zone))
2905 			continue;
2906 
2907 		if (fatal_signal_pending(current))
2908 			return -EINTR;
2909 
2910 		cc.zone = zone;
2911 
2912 		compact_zone(&cc, NULL);
2913 
2914 		if (proactive) {
2915 			count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2916 					     cc.total_migrate_scanned);
2917 			count_compact_events(KCOMPACTD_FREE_SCANNED,
2918 					     cc.total_free_scanned);
2919 		}
2920 	}
2921 
2922 	return 0;
2923 }
2924 
2925 /* Compact all zones of all nodes in the system */
2926 static int compact_nodes(void)
2927 {
2928 	int ret, nid;
2929 
2930 	/* Flush pending updates to the LRU lists */
2931 	lru_add_drain_all();
2932 
2933 	for_each_online_node(nid) {
2934 		ret = compact_node(NODE_DATA(nid), false);
2935 		if (ret)
2936 			return ret;
2937 	}
2938 
2939 	return 0;
2940 }
2941 
2942 static int compaction_proactiveness_sysctl_handler(const struct ctl_table *table, int write,
2943 		void *buffer, size_t *length, loff_t *ppos)
2944 {
2945 	int rc, nid;
2946 
2947 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2948 	if (rc)
2949 		return rc;
2950 
2951 	if (write && sysctl_compaction_proactiveness) {
2952 		for_each_online_node(nid) {
2953 			pg_data_t *pgdat = NODE_DATA(nid);
2954 
2955 			if (pgdat->proactive_compact_trigger)
2956 				continue;
2957 
2958 			pgdat->proactive_compact_trigger = true;
2959 			trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2960 							     pgdat->nr_zones - 1);
2961 			wake_up_interruptible(&pgdat->kcompactd_wait);
2962 		}
2963 	}
2964 
2965 	return 0;
2966 }
2967 
2968 /*
2969  * This is the entry point for compacting all nodes via
2970  * /proc/sys/vm/compact_memory
2971  */
2972 static int sysctl_compaction_handler(const struct ctl_table *table, int write,
2973 			void *buffer, size_t *length, loff_t *ppos)
2974 {
2975 	int ret;
2976 
2977 	ret = proc_dointvec(table, write, buffer, length, ppos);
2978 	if (ret)
2979 		return ret;
2980 
2981 	if (sysctl_compact_memory != 1)
2982 		return -EINVAL;
2983 
2984 	if (write)
2985 		ret = compact_nodes();
2986 
2987 	return ret;
2988 }
2989 
2990 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2991 static ssize_t compact_store(struct device *dev,
2992 			     struct device_attribute *attr,
2993 			     const char *buf, size_t count)
2994 {
2995 	int nid = dev->id;
2996 
2997 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2998 		/* Flush pending updates to the LRU lists */
2999 		lru_add_drain_all();
3000 
3001 		compact_node(NODE_DATA(nid), false);
3002 	}
3003 
3004 	return count;
3005 }
3006 static DEVICE_ATTR_WO(compact);
3007 
3008 int compaction_register_node(struct node *node)
3009 {
3010 	return device_create_file(&node->dev, &dev_attr_compact);
3011 }
3012 
3013 void compaction_unregister_node(struct node *node)
3014 {
3015 	device_remove_file(&node->dev, &dev_attr_compact);
3016 }
3017 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
3018 
3019 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
3020 {
3021 	return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
3022 		pgdat->proactive_compact_trigger;
3023 }
3024 
3025 static bool kcompactd_node_suitable(pg_data_t *pgdat)
3026 {
3027 	int zoneid;
3028 	struct zone *zone;
3029 	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
3030 	enum compact_result ret;
3031 
3032 	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
3033 		zone = &pgdat->node_zones[zoneid];
3034 
3035 		if (!populated_zone(zone))
3036 			continue;
3037 
3038 		ret = compaction_suit_allocation_order(zone,
3039 				pgdat->kcompactd_max_order,
3040 				highest_zoneidx, ALLOC_WMARK_MIN);
3041 		if (ret == COMPACT_CONTINUE)
3042 			return true;
3043 	}
3044 
3045 	return false;
3046 }
3047 
3048 static void kcompactd_do_work(pg_data_t *pgdat)
3049 {
3050 	/*
3051 	 * With no special task, compact all zones so that a page of requested
3052 	 * order is allocatable.
3053 	 */
3054 	int zoneid;
3055 	struct zone *zone;
3056 	struct compact_control cc = {
3057 		.order = pgdat->kcompactd_max_order,
3058 		.search_order = pgdat->kcompactd_max_order,
3059 		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
3060 		.mode = MIGRATE_SYNC_LIGHT,
3061 		.ignore_skip_hint = false,
3062 		.gfp_mask = GFP_KERNEL,
3063 	};
3064 	enum compact_result ret;
3065 
3066 	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
3067 							cc.highest_zoneidx);
3068 	count_compact_event(KCOMPACTD_WAKE);
3069 
3070 	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
3071 		int status;
3072 
3073 		zone = &pgdat->node_zones[zoneid];
3074 		if (!populated_zone(zone))
3075 			continue;
3076 
3077 		if (compaction_deferred(zone, cc.order))
3078 			continue;
3079 
3080 		ret = compaction_suit_allocation_order(zone,
3081 				cc.order, zoneid, ALLOC_WMARK_MIN);
3082 		if (ret != COMPACT_CONTINUE)
3083 			continue;
3084 
3085 		if (kthread_should_stop())
3086 			return;
3087 
3088 		cc.zone = zone;
3089 		status = compact_zone(&cc, NULL);
3090 
3091 		if (status == COMPACT_SUCCESS) {
3092 			compaction_defer_reset(zone, cc.order, false);
3093 		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
3094 			/*
3095 			 * Buddy pages may become stranded on pcps that could
3096 			 * otherwise coalesce on the zone's free area for
3097 			 * order >= cc.order.  This is ratelimited by the
3098 			 * upcoming deferral.
3099 			 */
3100 			drain_all_pages(zone);
3101 
3102 			/*
3103 			 * We use sync migration mode here, so we defer like
3104 			 * sync direct compaction does.
3105 			 */
3106 			defer_compaction(zone, cc.order);
3107 		}
3108 
3109 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
3110 				     cc.total_migrate_scanned);
3111 		count_compact_events(KCOMPACTD_FREE_SCANNED,
3112 				     cc.total_free_scanned);
3113 	}
3114 
3115 	/*
3116 	 * Regardless of success, we are done until woken up next. But remember
3117 	 * the requested order/highest_zoneidx in case it was higher/tighter
3118 	 * than our current ones
3119 	 */
3120 	if (pgdat->kcompactd_max_order <= cc.order)
3121 		pgdat->kcompactd_max_order = 0;
3122 	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
3123 		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3124 }
3125 
3126 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
3127 {
3128 	if (!order)
3129 		return;
3130 
3131 	if (pgdat->kcompactd_max_order < order)
3132 		pgdat->kcompactd_max_order = order;
3133 
3134 	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
3135 		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
3136 
3137 	/*
3138 	 * Pairs with implicit barrier in wait_event_freezable()
3139 	 * such that wakeups are not missed.
3140 	 */
3141 	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
3142 		return;
3143 
3144 	if (!kcompactd_node_suitable(pgdat))
3145 		return;
3146 
3147 	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
3148 							highest_zoneidx);
3149 	wake_up_interruptible(&pgdat->kcompactd_wait);
3150 }
3151 
3152 /*
3153  * The background compaction daemon, started as a kernel thread
3154  * from the init process.
3155  */
3156 static int kcompactd(void *p)
3157 {
3158 	pg_data_t *pgdat = (pg_data_t *)p;
3159 	struct task_struct *tsk = current;
3160 	long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
3161 	long timeout = default_timeout;
3162 
3163 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3164 
3165 	if (!cpumask_empty(cpumask))
3166 		set_cpus_allowed_ptr(tsk, cpumask);
3167 
3168 	set_freezable();
3169 
3170 	pgdat->kcompactd_max_order = 0;
3171 	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3172 
3173 	while (!kthread_should_stop()) {
3174 		unsigned long pflags;
3175 
3176 		/*
3177 		 * Avoid the unnecessary wakeup for proactive compaction
3178 		 * when it is disabled.
3179 		 */
3180 		if (!sysctl_compaction_proactiveness)
3181 			timeout = MAX_SCHEDULE_TIMEOUT;
3182 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
3183 		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
3184 			kcompactd_work_requested(pgdat), timeout) &&
3185 			!pgdat->proactive_compact_trigger) {
3186 
3187 			psi_memstall_enter(&pflags);
3188 			kcompactd_do_work(pgdat);
3189 			psi_memstall_leave(&pflags);
3190 			/*
3191 			 * Reset the timeout value. The defer timeout from
3192 			 * proactive compaction is lost here but that is fine
3193 			 * as the condition of the zone changing substantionally
3194 			 * then carrying on with the previous defer interval is
3195 			 * not useful.
3196 			 */
3197 			timeout = default_timeout;
3198 			continue;
3199 		}
3200 
3201 		/*
3202 		 * Start the proactive work with default timeout. Based
3203 		 * on the fragmentation score, this timeout is updated.
3204 		 */
3205 		timeout = default_timeout;
3206 		if (should_proactive_compact_node(pgdat)) {
3207 			unsigned int prev_score, score;
3208 
3209 			prev_score = fragmentation_score_node(pgdat);
3210 			compact_node(pgdat, true);
3211 			score = fragmentation_score_node(pgdat);
3212 			/*
3213 			 * Defer proactive compaction if the fragmentation
3214 			 * score did not go down i.e. no progress made.
3215 			 */
3216 			if (unlikely(score >= prev_score))
3217 				timeout =
3218 				   default_timeout << COMPACT_MAX_DEFER_SHIFT;
3219 		}
3220 		if (unlikely(pgdat->proactive_compact_trigger))
3221 			pgdat->proactive_compact_trigger = false;
3222 	}
3223 
3224 	return 0;
3225 }
3226 
3227 /*
3228  * This kcompactd start function will be called by init and node-hot-add.
3229  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3230  */
3231 void __meminit kcompactd_run(int nid)
3232 {
3233 	pg_data_t *pgdat = NODE_DATA(nid);
3234 
3235 	if (pgdat->kcompactd)
3236 		return;
3237 
3238 	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3239 	if (IS_ERR(pgdat->kcompactd)) {
3240 		pr_err("Failed to start kcompactd on node %d\n", nid);
3241 		pgdat->kcompactd = NULL;
3242 	}
3243 }
3244 
3245 /*
3246  * Called by memory hotplug when all memory in a node is offlined. Caller must
3247  * be holding mem_hotplug_begin/done().
3248  */
3249 void __meminit kcompactd_stop(int nid)
3250 {
3251 	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3252 
3253 	if (kcompactd) {
3254 		kthread_stop(kcompactd);
3255 		NODE_DATA(nid)->kcompactd = NULL;
3256 	}
3257 }
3258 
3259 /*
3260  * It's optimal to keep kcompactd on the same CPUs as their memory, but
3261  * not required for correctness. So if the last cpu in a node goes
3262  * away, we get changed to run anywhere: as the first one comes back,
3263  * restore their cpu bindings.
3264  */
3265 static int kcompactd_cpu_online(unsigned int cpu)
3266 {
3267 	int nid;
3268 
3269 	for_each_node_state(nid, N_MEMORY) {
3270 		pg_data_t *pgdat = NODE_DATA(nid);
3271 		const struct cpumask *mask;
3272 
3273 		mask = cpumask_of_node(pgdat->node_id);
3274 
3275 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3276 			/* One of our CPUs online: restore mask */
3277 			if (pgdat->kcompactd)
3278 				set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3279 	}
3280 	return 0;
3281 }
3282 
3283 static int proc_dointvec_minmax_warn_RT_change(const struct ctl_table *table,
3284 		int write, void *buffer, size_t *lenp, loff_t *ppos)
3285 {
3286 	int ret, old;
3287 
3288 	if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3289 		return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3290 
3291 	old = *(int *)table->data;
3292 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3293 	if (ret)
3294 		return ret;
3295 	if (old != *(int *)table->data)
3296 		pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3297 			     table->procname, current->comm,
3298 			     task_pid_nr(current));
3299 	return ret;
3300 }
3301 
3302 static struct ctl_table vm_compaction[] = {
3303 	{
3304 		.procname	= "compact_memory",
3305 		.data		= &sysctl_compact_memory,
3306 		.maxlen		= sizeof(int),
3307 		.mode		= 0200,
3308 		.proc_handler	= sysctl_compaction_handler,
3309 	},
3310 	{
3311 		.procname	= "compaction_proactiveness",
3312 		.data		= &sysctl_compaction_proactiveness,
3313 		.maxlen		= sizeof(sysctl_compaction_proactiveness),
3314 		.mode		= 0644,
3315 		.proc_handler	= compaction_proactiveness_sysctl_handler,
3316 		.extra1		= SYSCTL_ZERO,
3317 		.extra2		= SYSCTL_ONE_HUNDRED,
3318 	},
3319 	{
3320 		.procname	= "extfrag_threshold",
3321 		.data		= &sysctl_extfrag_threshold,
3322 		.maxlen		= sizeof(int),
3323 		.mode		= 0644,
3324 		.proc_handler	= proc_dointvec_minmax,
3325 		.extra1		= SYSCTL_ZERO,
3326 		.extra2		= SYSCTL_ONE_THOUSAND,
3327 	},
3328 	{
3329 		.procname	= "compact_unevictable_allowed",
3330 		.data		= &sysctl_compact_unevictable_allowed,
3331 		.maxlen		= sizeof(int),
3332 		.mode		= 0644,
3333 		.proc_handler	= proc_dointvec_minmax_warn_RT_change,
3334 		.extra1		= SYSCTL_ZERO,
3335 		.extra2		= SYSCTL_ONE,
3336 	},
3337 };
3338 
3339 static int __init kcompactd_init(void)
3340 {
3341 	int nid;
3342 	int ret;
3343 
3344 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3345 					"mm/compaction:online",
3346 					kcompactd_cpu_online, NULL);
3347 	if (ret < 0) {
3348 		pr_err("kcompactd: failed to register hotplug callbacks.\n");
3349 		return ret;
3350 	}
3351 
3352 	for_each_node_state(nid, N_MEMORY)
3353 		kcompactd_run(nid);
3354 	register_sysctl_init("vm", vm_compaction);
3355 	return 0;
3356 }
3357 subsys_initcall(kcompactd_init)
3358 
3359 #endif /* CONFIG_COMPACTION */
3360