1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/compaction.c 4 * 5 * Memory compaction for the reduction of external fragmentation. Note that 6 * this heavily depends upon page migration to do all the real heavy 7 * lifting 8 * 9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 10 */ 11 #include <linux/cpu.h> 12 #include <linux/swap.h> 13 #include <linux/migrate.h> 14 #include <linux/compaction.h> 15 #include <linux/mm_inline.h> 16 #include <linux/sched/signal.h> 17 #include <linux/backing-dev.h> 18 #include <linux/sysctl.h> 19 #include <linux/sysfs.h> 20 #include <linux/page-isolation.h> 21 #include <linux/kasan.h> 22 #include <linux/kthread.h> 23 #include <linux/freezer.h> 24 #include <linux/page_owner.h> 25 #include <linux/psi.h> 26 #include <linux/cpuset.h> 27 #include "internal.h" 28 29 #ifdef CONFIG_COMPACTION 30 /* 31 * Fragmentation score check interval for proactive compaction purposes. 32 */ 33 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500) 34 35 static inline void count_compact_event(enum vm_event_item item) 36 { 37 count_vm_event(item); 38 } 39 40 static inline void count_compact_events(enum vm_event_item item, long delta) 41 { 42 count_vm_events(item, delta); 43 } 44 45 /* 46 * order == -1 is expected when compacting proactively via 47 * 1. /proc/sys/vm/compact_memory 48 * 2. /sys/devices/system/node/nodex/compact 49 * 3. /proc/sys/vm/compaction_proactiveness 50 */ 51 static inline bool is_via_compact_memory(int order) 52 { 53 return order == -1; 54 } 55 56 #else 57 #define count_compact_event(item) do { } while (0) 58 #define count_compact_events(item, delta) do { } while (0) 59 static inline bool is_via_compact_memory(int order) { return false; } 60 #endif 61 62 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 63 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/compaction.h> 66 67 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order)) 68 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order)) 69 70 /* 71 * Page order with-respect-to which proactive compaction 72 * calculates external fragmentation, which is used as 73 * the "fragmentation score" of a node/zone. 74 */ 75 #if defined CONFIG_TRANSPARENT_HUGEPAGE 76 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER 77 #elif defined CONFIG_HUGETLBFS 78 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER 79 #else 80 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT) 81 #endif 82 83 static struct page *mark_allocated_noprof(struct page *page, unsigned int order, gfp_t gfp_flags) 84 { 85 post_alloc_hook(page, order, __GFP_MOVABLE); 86 set_page_refcounted(page); 87 return page; 88 } 89 #define mark_allocated(...) alloc_hooks(mark_allocated_noprof(__VA_ARGS__)) 90 91 static unsigned long release_free_list(struct list_head *freepages) 92 { 93 int order; 94 unsigned long high_pfn = 0; 95 96 for (order = 0; order < NR_PAGE_ORDERS; order++) { 97 struct page *page, *next; 98 99 list_for_each_entry_safe(page, next, &freepages[order], lru) { 100 unsigned long pfn = page_to_pfn(page); 101 102 list_del(&page->lru); 103 /* 104 * Convert free pages into post allocation pages, so 105 * that we can free them via __free_page. 106 */ 107 mark_allocated(page, order, __GFP_MOVABLE); 108 __free_pages(page, order); 109 if (pfn > high_pfn) 110 high_pfn = pfn; 111 } 112 } 113 return high_pfn; 114 } 115 116 #ifdef CONFIG_COMPACTION 117 bool PageMovable(struct page *page) 118 { 119 const struct movable_operations *mops; 120 121 VM_BUG_ON_PAGE(!PageLocked(page), page); 122 if (!__PageMovable(page)) 123 return false; 124 125 mops = page_movable_ops(page); 126 if (mops) 127 return true; 128 129 return false; 130 } 131 132 void __SetPageMovable(struct page *page, const struct movable_operations *mops) 133 { 134 VM_BUG_ON_PAGE(!PageLocked(page), page); 135 VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page); 136 page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE); 137 } 138 EXPORT_SYMBOL(__SetPageMovable); 139 140 void __ClearPageMovable(struct page *page) 141 { 142 VM_BUG_ON_PAGE(!PageMovable(page), page); 143 /* 144 * This page still has the type of a movable page, but it's 145 * actually not movable any more. 146 */ 147 page->mapping = (void *)PAGE_MAPPING_MOVABLE; 148 } 149 EXPORT_SYMBOL(__ClearPageMovable); 150 151 /* Do not skip compaction more than 64 times */ 152 #define COMPACT_MAX_DEFER_SHIFT 6 153 154 /* 155 * Compaction is deferred when compaction fails to result in a page 156 * allocation success. 1 << compact_defer_shift, compactions are skipped up 157 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 158 */ 159 static void defer_compaction(struct zone *zone, int order) 160 { 161 zone->compact_considered = 0; 162 zone->compact_defer_shift++; 163 164 if (order < zone->compact_order_failed) 165 zone->compact_order_failed = order; 166 167 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 168 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 169 170 trace_mm_compaction_defer_compaction(zone, order); 171 } 172 173 /* Returns true if compaction should be skipped this time */ 174 static bool compaction_deferred(struct zone *zone, int order) 175 { 176 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 177 178 if (order < zone->compact_order_failed) 179 return false; 180 181 /* Avoid possible overflow */ 182 if (++zone->compact_considered >= defer_limit) { 183 zone->compact_considered = defer_limit; 184 return false; 185 } 186 187 trace_mm_compaction_deferred(zone, order); 188 189 return true; 190 } 191 192 /* 193 * Update defer tracking counters after successful compaction of given order, 194 * which means an allocation either succeeded (alloc_success == true) or is 195 * expected to succeed. 196 */ 197 void compaction_defer_reset(struct zone *zone, int order, 198 bool alloc_success) 199 { 200 if (alloc_success) { 201 zone->compact_considered = 0; 202 zone->compact_defer_shift = 0; 203 } 204 if (order >= zone->compact_order_failed) 205 zone->compact_order_failed = order + 1; 206 207 trace_mm_compaction_defer_reset(zone, order); 208 } 209 210 /* Returns true if restarting compaction after many failures */ 211 static bool compaction_restarting(struct zone *zone, int order) 212 { 213 if (order < zone->compact_order_failed) 214 return false; 215 216 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 217 zone->compact_considered >= 1UL << zone->compact_defer_shift; 218 } 219 220 /* Returns true if the pageblock should be scanned for pages to isolate. */ 221 static inline bool isolation_suitable(struct compact_control *cc, 222 struct page *page) 223 { 224 if (cc->ignore_skip_hint) 225 return true; 226 227 return !get_pageblock_skip(page); 228 } 229 230 static void reset_cached_positions(struct zone *zone) 231 { 232 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 233 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 234 zone->compact_cached_free_pfn = 235 pageblock_start_pfn(zone_end_pfn(zone) - 1); 236 } 237 238 #ifdef CONFIG_SPARSEMEM 239 /* 240 * If the PFN falls into an offline section, return the start PFN of the 241 * next online section. If the PFN falls into an online section or if 242 * there is no next online section, return 0. 243 */ 244 static unsigned long skip_offline_sections(unsigned long start_pfn) 245 { 246 unsigned long start_nr = pfn_to_section_nr(start_pfn); 247 248 if (online_section_nr(start_nr)) 249 return 0; 250 251 while (++start_nr <= __highest_present_section_nr) { 252 if (online_section_nr(start_nr)) 253 return section_nr_to_pfn(start_nr); 254 } 255 256 return 0; 257 } 258 259 /* 260 * If the PFN falls into an offline section, return the end PFN of the 261 * next online section in reverse. If the PFN falls into an online section 262 * or if there is no next online section in reverse, return 0. 263 */ 264 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn) 265 { 266 unsigned long start_nr = pfn_to_section_nr(start_pfn); 267 268 if (!start_nr || online_section_nr(start_nr)) 269 return 0; 270 271 while (start_nr-- > 0) { 272 if (online_section_nr(start_nr)) 273 return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION; 274 } 275 276 return 0; 277 } 278 #else 279 static unsigned long skip_offline_sections(unsigned long start_pfn) 280 { 281 return 0; 282 } 283 284 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn) 285 { 286 return 0; 287 } 288 #endif 289 290 /* 291 * Compound pages of >= pageblock_order should consistently be skipped until 292 * released. It is always pointless to compact pages of such order (if they are 293 * migratable), and the pageblocks they occupy cannot contain any free pages. 294 */ 295 static bool pageblock_skip_persistent(struct page *page) 296 { 297 if (!PageCompound(page)) 298 return false; 299 300 page = compound_head(page); 301 302 if (compound_order(page) >= pageblock_order) 303 return true; 304 305 return false; 306 } 307 308 static bool 309 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source, 310 bool check_target) 311 { 312 struct page *page = pfn_to_online_page(pfn); 313 struct page *block_page; 314 struct page *end_page; 315 unsigned long block_pfn; 316 317 if (!page) 318 return false; 319 if (zone != page_zone(page)) 320 return false; 321 if (pageblock_skip_persistent(page)) 322 return false; 323 324 /* 325 * If skip is already cleared do no further checking once the 326 * restart points have been set. 327 */ 328 if (check_source && check_target && !get_pageblock_skip(page)) 329 return true; 330 331 /* 332 * If clearing skip for the target scanner, do not select a 333 * non-movable pageblock as the starting point. 334 */ 335 if (!check_source && check_target && 336 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 337 return false; 338 339 /* Ensure the start of the pageblock or zone is online and valid */ 340 block_pfn = pageblock_start_pfn(pfn); 341 block_pfn = max(block_pfn, zone->zone_start_pfn); 342 block_page = pfn_to_online_page(block_pfn); 343 if (block_page) { 344 page = block_page; 345 pfn = block_pfn; 346 } 347 348 /* Ensure the end of the pageblock or zone is online and valid */ 349 block_pfn = pageblock_end_pfn(pfn) - 1; 350 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1); 351 end_page = pfn_to_online_page(block_pfn); 352 if (!end_page) 353 return false; 354 355 /* 356 * Only clear the hint if a sample indicates there is either a 357 * free page or an LRU page in the block. One or other condition 358 * is necessary for the block to be a migration source/target. 359 */ 360 do { 361 if (check_source && PageLRU(page)) { 362 clear_pageblock_skip(page); 363 return true; 364 } 365 366 if (check_target && PageBuddy(page)) { 367 clear_pageblock_skip(page); 368 return true; 369 } 370 371 page += (1 << PAGE_ALLOC_COSTLY_ORDER); 372 } while (page <= end_page); 373 374 return false; 375 } 376 377 /* 378 * This function is called to clear all cached information on pageblocks that 379 * should be skipped for page isolation when the migrate and free page scanner 380 * meet. 381 */ 382 static void __reset_isolation_suitable(struct zone *zone) 383 { 384 unsigned long migrate_pfn = zone->zone_start_pfn; 385 unsigned long free_pfn = zone_end_pfn(zone) - 1; 386 unsigned long reset_migrate = free_pfn; 387 unsigned long reset_free = migrate_pfn; 388 bool source_set = false; 389 bool free_set = false; 390 391 /* Only flush if a full compaction finished recently */ 392 if (!zone->compact_blockskip_flush) 393 return; 394 395 zone->compact_blockskip_flush = false; 396 397 /* 398 * Walk the zone and update pageblock skip information. Source looks 399 * for PageLRU while target looks for PageBuddy. When the scanner 400 * is found, both PageBuddy and PageLRU are checked as the pageblock 401 * is suitable as both source and target. 402 */ 403 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages, 404 free_pfn -= pageblock_nr_pages) { 405 cond_resched(); 406 407 /* Update the migrate PFN */ 408 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) && 409 migrate_pfn < reset_migrate) { 410 source_set = true; 411 reset_migrate = migrate_pfn; 412 zone->compact_init_migrate_pfn = reset_migrate; 413 zone->compact_cached_migrate_pfn[0] = reset_migrate; 414 zone->compact_cached_migrate_pfn[1] = reset_migrate; 415 } 416 417 /* Update the free PFN */ 418 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) && 419 free_pfn > reset_free) { 420 free_set = true; 421 reset_free = free_pfn; 422 zone->compact_init_free_pfn = reset_free; 423 zone->compact_cached_free_pfn = reset_free; 424 } 425 } 426 427 /* Leave no distance if no suitable block was reset */ 428 if (reset_migrate >= reset_free) { 429 zone->compact_cached_migrate_pfn[0] = migrate_pfn; 430 zone->compact_cached_migrate_pfn[1] = migrate_pfn; 431 zone->compact_cached_free_pfn = free_pfn; 432 } 433 } 434 435 void reset_isolation_suitable(pg_data_t *pgdat) 436 { 437 int zoneid; 438 439 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 440 struct zone *zone = &pgdat->node_zones[zoneid]; 441 if (!populated_zone(zone)) 442 continue; 443 444 __reset_isolation_suitable(zone); 445 } 446 } 447 448 /* 449 * Sets the pageblock skip bit if it was clear. Note that this is a hint as 450 * locks are not required for read/writers. Returns true if it was already set. 451 */ 452 static bool test_and_set_skip(struct compact_control *cc, struct page *page) 453 { 454 bool skip; 455 456 /* Do not update if skip hint is being ignored */ 457 if (cc->ignore_skip_hint) 458 return false; 459 460 skip = get_pageblock_skip(page); 461 if (!skip && !cc->no_set_skip_hint) 462 set_pageblock_skip(page); 463 464 return skip; 465 } 466 467 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 468 { 469 struct zone *zone = cc->zone; 470 471 /* Set for isolation rather than compaction */ 472 if (cc->no_set_skip_hint) 473 return; 474 475 pfn = pageblock_end_pfn(pfn); 476 477 /* Update where async and sync compaction should restart */ 478 if (pfn > zone->compact_cached_migrate_pfn[0]) 479 zone->compact_cached_migrate_pfn[0] = pfn; 480 if (cc->mode != MIGRATE_ASYNC && 481 pfn > zone->compact_cached_migrate_pfn[1]) 482 zone->compact_cached_migrate_pfn[1] = pfn; 483 } 484 485 /* 486 * If no pages were isolated then mark this pageblock to be skipped in the 487 * future. The information is later cleared by __reset_isolation_suitable(). 488 */ 489 static void update_pageblock_skip(struct compact_control *cc, 490 struct page *page, unsigned long pfn) 491 { 492 struct zone *zone = cc->zone; 493 494 if (cc->no_set_skip_hint) 495 return; 496 497 set_pageblock_skip(page); 498 499 if (pfn < zone->compact_cached_free_pfn) 500 zone->compact_cached_free_pfn = pfn; 501 } 502 #else 503 static inline bool isolation_suitable(struct compact_control *cc, 504 struct page *page) 505 { 506 return true; 507 } 508 509 static inline bool pageblock_skip_persistent(struct page *page) 510 { 511 return false; 512 } 513 514 static inline void update_pageblock_skip(struct compact_control *cc, 515 struct page *page, unsigned long pfn) 516 { 517 } 518 519 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 520 { 521 } 522 523 static bool test_and_set_skip(struct compact_control *cc, struct page *page) 524 { 525 return false; 526 } 527 #endif /* CONFIG_COMPACTION */ 528 529 /* 530 * Compaction requires the taking of some coarse locks that are potentially 531 * very heavily contended. For async compaction, trylock and record if the 532 * lock is contended. The lock will still be acquired but compaction will 533 * abort when the current block is finished regardless of success rate. 534 * Sync compaction acquires the lock. 535 * 536 * Always returns true which makes it easier to track lock state in callers. 537 */ 538 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags, 539 struct compact_control *cc) 540 __acquires(lock) 541 { 542 /* Track if the lock is contended in async mode */ 543 if (cc->mode == MIGRATE_ASYNC && !cc->contended) { 544 if (spin_trylock_irqsave(lock, *flags)) 545 return true; 546 547 cc->contended = true; 548 } 549 550 spin_lock_irqsave(lock, *flags); 551 return true; 552 } 553 554 /* 555 * Compaction requires the taking of some coarse locks that are potentially 556 * very heavily contended. The lock should be periodically unlocked to avoid 557 * having disabled IRQs for a long time, even when there is nobody waiting on 558 * the lock. It might also be that allowing the IRQs will result in 559 * need_resched() becoming true. If scheduling is needed, compaction schedules. 560 * Either compaction type will also abort if a fatal signal is pending. 561 * In either case if the lock was locked, it is dropped and not regained. 562 * 563 * Returns true if compaction should abort due to fatal signal pending. 564 * Returns false when compaction can continue. 565 */ 566 static bool compact_unlock_should_abort(spinlock_t *lock, 567 unsigned long flags, bool *locked, struct compact_control *cc) 568 { 569 if (*locked) { 570 spin_unlock_irqrestore(lock, flags); 571 *locked = false; 572 } 573 574 if (fatal_signal_pending(current)) { 575 cc->contended = true; 576 return true; 577 } 578 579 cond_resched(); 580 581 return false; 582 } 583 584 /* 585 * Isolate free pages onto a private freelist. If @strict is true, will abort 586 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 587 * (even though it may still end up isolating some pages). 588 */ 589 static unsigned long isolate_freepages_block(struct compact_control *cc, 590 unsigned long *start_pfn, 591 unsigned long end_pfn, 592 struct list_head *freelist, 593 unsigned int stride, 594 bool strict) 595 { 596 int nr_scanned = 0, total_isolated = 0; 597 struct page *page; 598 unsigned long flags = 0; 599 bool locked = false; 600 unsigned long blockpfn = *start_pfn; 601 unsigned int order; 602 603 /* Strict mode is for isolation, speed is secondary */ 604 if (strict) 605 stride = 1; 606 607 page = pfn_to_page(blockpfn); 608 609 /* Isolate free pages. */ 610 for (; blockpfn < end_pfn; blockpfn += stride, page += stride) { 611 int isolated; 612 613 /* 614 * Periodically drop the lock (if held) regardless of its 615 * contention, to give chance to IRQs. Abort if fatal signal 616 * pending. 617 */ 618 if (!(blockpfn % COMPACT_CLUSTER_MAX) 619 && compact_unlock_should_abort(&cc->zone->lock, flags, 620 &locked, cc)) 621 break; 622 623 nr_scanned++; 624 625 /* 626 * For compound pages such as THP and hugetlbfs, we can save 627 * potentially a lot of iterations if we skip them at once. 628 * The check is racy, but we can consider only valid values 629 * and the only danger is skipping too much. 630 */ 631 if (PageCompound(page)) { 632 const unsigned int order = compound_order(page); 633 634 if (blockpfn + (1UL << order) <= end_pfn) { 635 blockpfn += (1UL << order) - 1; 636 page += (1UL << order) - 1; 637 nr_scanned += (1UL << order) - 1; 638 } 639 640 goto isolate_fail; 641 } 642 643 if (!PageBuddy(page)) 644 goto isolate_fail; 645 646 /* If we already hold the lock, we can skip some rechecking. */ 647 if (!locked) { 648 locked = compact_lock_irqsave(&cc->zone->lock, 649 &flags, cc); 650 651 /* Recheck this is a buddy page under lock */ 652 if (!PageBuddy(page)) 653 goto isolate_fail; 654 } 655 656 /* Found a free page, will break it into order-0 pages */ 657 order = buddy_order(page); 658 isolated = __isolate_free_page(page, order); 659 if (!isolated) 660 break; 661 set_page_private(page, order); 662 663 nr_scanned += isolated - 1; 664 total_isolated += isolated; 665 cc->nr_freepages += isolated; 666 list_add_tail(&page->lru, &freelist[order]); 667 668 if (!strict && cc->nr_migratepages <= cc->nr_freepages) { 669 blockpfn += isolated; 670 break; 671 } 672 /* Advance to the end of split page */ 673 blockpfn += isolated - 1; 674 page += isolated - 1; 675 continue; 676 677 isolate_fail: 678 if (strict) 679 break; 680 681 } 682 683 if (locked) 684 spin_unlock_irqrestore(&cc->zone->lock, flags); 685 686 /* 687 * Be careful to not go outside of the pageblock. 688 */ 689 if (unlikely(blockpfn > end_pfn)) 690 blockpfn = end_pfn; 691 692 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 693 nr_scanned, total_isolated); 694 695 /* Record how far we have got within the block */ 696 *start_pfn = blockpfn; 697 698 /* 699 * If strict isolation is requested by CMA then check that all the 700 * pages requested were isolated. If there were any failures, 0 is 701 * returned and CMA will fail. 702 */ 703 if (strict && blockpfn < end_pfn) 704 total_isolated = 0; 705 706 cc->total_free_scanned += nr_scanned; 707 if (total_isolated) 708 count_compact_events(COMPACTISOLATED, total_isolated); 709 return total_isolated; 710 } 711 712 /** 713 * isolate_freepages_range() - isolate free pages. 714 * @cc: Compaction control structure. 715 * @start_pfn: The first PFN to start isolating. 716 * @end_pfn: The one-past-last PFN. 717 * 718 * Non-free pages, invalid PFNs, or zone boundaries within the 719 * [start_pfn, end_pfn) range are considered errors, cause function to 720 * undo its actions and return zero. cc->freepages[] are empty. 721 * 722 * Otherwise, function returns one-past-the-last PFN of isolated page 723 * (which may be greater then end_pfn if end fell in a middle of 724 * a free page). cc->freepages[] contain free pages isolated. 725 */ 726 unsigned long 727 isolate_freepages_range(struct compact_control *cc, 728 unsigned long start_pfn, unsigned long end_pfn) 729 { 730 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 731 int order; 732 733 for (order = 0; order < NR_PAGE_ORDERS; order++) 734 INIT_LIST_HEAD(&cc->freepages[order]); 735 736 pfn = start_pfn; 737 block_start_pfn = pageblock_start_pfn(pfn); 738 if (block_start_pfn < cc->zone->zone_start_pfn) 739 block_start_pfn = cc->zone->zone_start_pfn; 740 block_end_pfn = pageblock_end_pfn(pfn); 741 742 for (; pfn < end_pfn; pfn += isolated, 743 block_start_pfn = block_end_pfn, 744 block_end_pfn += pageblock_nr_pages) { 745 /* Protect pfn from changing by isolate_freepages_block */ 746 unsigned long isolate_start_pfn = pfn; 747 748 /* 749 * pfn could pass the block_end_pfn if isolated freepage 750 * is more than pageblock order. In this case, we adjust 751 * scanning range to right one. 752 */ 753 if (pfn >= block_end_pfn) { 754 block_start_pfn = pageblock_start_pfn(pfn); 755 block_end_pfn = pageblock_end_pfn(pfn); 756 } 757 758 block_end_pfn = min(block_end_pfn, end_pfn); 759 760 if (!pageblock_pfn_to_page(block_start_pfn, 761 block_end_pfn, cc->zone)) 762 break; 763 764 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 765 block_end_pfn, cc->freepages, 0, true); 766 767 /* 768 * In strict mode, isolate_freepages_block() returns 0 if 769 * there are any holes in the block (ie. invalid PFNs or 770 * non-free pages). 771 */ 772 if (!isolated) 773 break; 774 775 /* 776 * If we managed to isolate pages, it is always (1 << n) * 777 * pageblock_nr_pages for some non-negative n. (Max order 778 * page may span two pageblocks). 779 */ 780 } 781 782 if (pfn < end_pfn) { 783 /* Loop terminated early, cleanup. */ 784 release_free_list(cc->freepages); 785 return 0; 786 } 787 788 /* We don't use freelists for anything. */ 789 return pfn; 790 } 791 792 /* Similar to reclaim, but different enough that they don't share logic */ 793 static bool too_many_isolated(struct compact_control *cc) 794 { 795 pg_data_t *pgdat = cc->zone->zone_pgdat; 796 bool too_many; 797 798 unsigned long active, inactive, isolated; 799 800 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) + 801 node_page_state(pgdat, NR_INACTIVE_ANON); 802 active = node_page_state(pgdat, NR_ACTIVE_FILE) + 803 node_page_state(pgdat, NR_ACTIVE_ANON); 804 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) + 805 node_page_state(pgdat, NR_ISOLATED_ANON); 806 807 /* 808 * Allow GFP_NOFS to isolate past the limit set for regular 809 * compaction runs. This prevents an ABBA deadlock when other 810 * compactors have already isolated to the limit, but are 811 * blocked on filesystem locks held by the GFP_NOFS thread. 812 */ 813 if (cc->gfp_mask & __GFP_FS) { 814 inactive >>= 3; 815 active >>= 3; 816 } 817 818 too_many = isolated > (inactive + active) / 2; 819 if (!too_many) 820 wake_throttle_isolated(pgdat); 821 822 return too_many; 823 } 824 825 /** 826 * skip_isolation_on_order() - determine when to skip folio isolation based on 827 * folio order and compaction target order 828 * @order: to-be-isolated folio order 829 * @target_order: compaction target order 830 * 831 * This avoids unnecessary folio isolations during compaction. 832 */ 833 static bool skip_isolation_on_order(int order, int target_order) 834 { 835 /* 836 * Unless we are performing global compaction (i.e., 837 * is_via_compact_memory), skip any folios that are larger than the 838 * target order: we wouldn't be here if we'd have a free folio with 839 * the desired target_order, so migrating this folio would likely fail 840 * later. 841 */ 842 if (!is_via_compact_memory(target_order) && order >= target_order) 843 return true; 844 /* 845 * We limit memory compaction to pageblocks and won't try 846 * creating free blocks of memory that are larger than that. 847 */ 848 return order >= pageblock_order; 849 } 850 851 /** 852 * isolate_migratepages_block() - isolate all migrate-able pages within 853 * a single pageblock 854 * @cc: Compaction control structure. 855 * @low_pfn: The first PFN to isolate 856 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 857 * @mode: Isolation mode to be used. 858 * 859 * Isolate all pages that can be migrated from the range specified by 860 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 861 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion, 862 * -ENOMEM in case we could not allocate a page, or 0. 863 * cc->migrate_pfn will contain the next pfn to scan. 864 * 865 * The pages are isolated on cc->migratepages list (not required to be empty), 866 * and cc->nr_migratepages is updated accordingly. 867 */ 868 static int 869 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 870 unsigned long end_pfn, isolate_mode_t mode) 871 { 872 pg_data_t *pgdat = cc->zone->zone_pgdat; 873 unsigned long nr_scanned = 0, nr_isolated = 0; 874 struct lruvec *lruvec; 875 unsigned long flags = 0; 876 struct lruvec *locked = NULL; 877 struct folio *folio = NULL; 878 struct page *page = NULL, *valid_page = NULL; 879 struct address_space *mapping; 880 unsigned long start_pfn = low_pfn; 881 bool skip_on_failure = false; 882 unsigned long next_skip_pfn = 0; 883 bool skip_updated = false; 884 int ret = 0; 885 886 cc->migrate_pfn = low_pfn; 887 888 /* 889 * Ensure that there are not too many pages isolated from the LRU 890 * list by either parallel reclaimers or compaction. If there are, 891 * delay for some time until fewer pages are isolated 892 */ 893 while (unlikely(too_many_isolated(cc))) { 894 /* stop isolation if there are still pages not migrated */ 895 if (cc->nr_migratepages) 896 return -EAGAIN; 897 898 /* async migration should just abort */ 899 if (cc->mode == MIGRATE_ASYNC) 900 return -EAGAIN; 901 902 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 903 904 if (fatal_signal_pending(current)) 905 return -EINTR; 906 } 907 908 cond_resched(); 909 910 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { 911 skip_on_failure = true; 912 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 913 } 914 915 /* Time to isolate some pages for migration */ 916 for (; low_pfn < end_pfn; low_pfn++) { 917 bool is_dirty, is_unevictable; 918 919 if (skip_on_failure && low_pfn >= next_skip_pfn) { 920 /* 921 * We have isolated all migration candidates in the 922 * previous order-aligned block, and did not skip it due 923 * to failure. We should migrate the pages now and 924 * hopefully succeed compaction. 925 */ 926 if (nr_isolated) 927 break; 928 929 /* 930 * We failed to isolate in the previous order-aligned 931 * block. Set the new boundary to the end of the 932 * current block. Note we can't simply increase 933 * next_skip_pfn by 1 << order, as low_pfn might have 934 * been incremented by a higher number due to skipping 935 * a compound or a high-order buddy page in the 936 * previous loop iteration. 937 */ 938 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 939 } 940 941 /* 942 * Periodically drop the lock (if held) regardless of its 943 * contention, to give chance to IRQs. Abort completely if 944 * a fatal signal is pending. 945 */ 946 if (!(low_pfn % COMPACT_CLUSTER_MAX)) { 947 if (locked) { 948 unlock_page_lruvec_irqrestore(locked, flags); 949 locked = NULL; 950 } 951 952 if (fatal_signal_pending(current)) { 953 cc->contended = true; 954 ret = -EINTR; 955 956 goto fatal_pending; 957 } 958 959 cond_resched(); 960 } 961 962 nr_scanned++; 963 964 page = pfn_to_page(low_pfn); 965 966 /* 967 * Check if the pageblock has already been marked skipped. 968 * Only the first PFN is checked as the caller isolates 969 * COMPACT_CLUSTER_MAX at a time so the second call must 970 * not falsely conclude that the block should be skipped. 971 */ 972 if (!valid_page && (pageblock_aligned(low_pfn) || 973 low_pfn == cc->zone->zone_start_pfn)) { 974 if (!isolation_suitable(cc, page)) { 975 low_pfn = end_pfn; 976 folio = NULL; 977 goto isolate_abort; 978 } 979 valid_page = page; 980 } 981 982 if (PageHuge(page)) { 983 /* 984 * skip hugetlbfs if we are not compacting for pages 985 * bigger than its order. THPs and other compound pages 986 * are handled below. 987 */ 988 if (!cc->alloc_contig) { 989 const unsigned int order = compound_order(page); 990 991 if (order <= MAX_PAGE_ORDER) { 992 low_pfn += (1UL << order) - 1; 993 nr_scanned += (1UL << order) - 1; 994 } 995 goto isolate_fail; 996 } 997 /* for alloc_contig case */ 998 if (locked) { 999 unlock_page_lruvec_irqrestore(locked, flags); 1000 locked = NULL; 1001 } 1002 1003 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages); 1004 1005 /* 1006 * Fail isolation in case isolate_or_dissolve_huge_page() 1007 * reports an error. In case of -ENOMEM, abort right away. 1008 */ 1009 if (ret < 0) { 1010 /* Do not report -EBUSY down the chain */ 1011 if (ret == -EBUSY) 1012 ret = 0; 1013 low_pfn += compound_nr(page) - 1; 1014 nr_scanned += compound_nr(page) - 1; 1015 goto isolate_fail; 1016 } 1017 1018 if (PageHuge(page)) { 1019 /* 1020 * Hugepage was successfully isolated and placed 1021 * on the cc->migratepages list. 1022 */ 1023 folio = page_folio(page); 1024 low_pfn += folio_nr_pages(folio) - 1; 1025 goto isolate_success_no_list; 1026 } 1027 1028 /* 1029 * Ok, the hugepage was dissolved. Now these pages are 1030 * Buddy and cannot be re-allocated because they are 1031 * isolated. Fall-through as the check below handles 1032 * Buddy pages. 1033 */ 1034 } 1035 1036 /* 1037 * Skip if free. We read page order here without zone lock 1038 * which is generally unsafe, but the race window is small and 1039 * the worst thing that can happen is that we skip some 1040 * potential isolation targets. 1041 */ 1042 if (PageBuddy(page)) { 1043 unsigned long freepage_order = buddy_order_unsafe(page); 1044 1045 /* 1046 * Without lock, we cannot be sure that what we got is 1047 * a valid page order. Consider only values in the 1048 * valid order range to prevent low_pfn overflow. 1049 */ 1050 if (freepage_order > 0 && freepage_order <= MAX_PAGE_ORDER) { 1051 low_pfn += (1UL << freepage_order) - 1; 1052 nr_scanned += (1UL << freepage_order) - 1; 1053 } 1054 continue; 1055 } 1056 1057 /* 1058 * Regardless of being on LRU, compound pages such as THP 1059 * (hugetlbfs is handled above) are not to be compacted unless 1060 * we are attempting an allocation larger than the compound 1061 * page size. We can potentially save a lot of iterations if we 1062 * skip them at once. The check is racy, but we can consider 1063 * only valid values and the only danger is skipping too much. 1064 */ 1065 if (PageCompound(page) && !cc->alloc_contig) { 1066 const unsigned int order = compound_order(page); 1067 1068 /* Skip based on page order and compaction target order. */ 1069 if (skip_isolation_on_order(order, cc->order)) { 1070 if (order <= MAX_PAGE_ORDER) { 1071 low_pfn += (1UL << order) - 1; 1072 nr_scanned += (1UL << order) - 1; 1073 } 1074 goto isolate_fail; 1075 } 1076 } 1077 1078 /* 1079 * Check may be lockless but that's ok as we recheck later. 1080 * It's possible to migrate LRU and non-lru movable pages. 1081 * Skip any other type of page 1082 */ 1083 if (!PageLRU(page)) { 1084 /* 1085 * __PageMovable can return false positive so we need 1086 * to verify it under page_lock. 1087 */ 1088 if (unlikely(__PageMovable(page)) && 1089 !PageIsolated(page)) { 1090 if (locked) { 1091 unlock_page_lruvec_irqrestore(locked, flags); 1092 locked = NULL; 1093 } 1094 1095 if (isolate_movable_page(page, mode)) { 1096 folio = page_folio(page); 1097 goto isolate_success; 1098 } 1099 } 1100 1101 goto isolate_fail; 1102 } 1103 1104 /* 1105 * Be careful not to clear PageLRU until after we're 1106 * sure the page is not being freed elsewhere -- the 1107 * page release code relies on it. 1108 */ 1109 folio = folio_get_nontail_page(page); 1110 if (unlikely(!folio)) 1111 goto isolate_fail; 1112 1113 /* 1114 * Migration will fail if an anonymous page is pinned in memory, 1115 * so avoid taking lru_lock and isolating it unnecessarily in an 1116 * admittedly racy check. 1117 */ 1118 mapping = folio_mapping(folio); 1119 if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio)) 1120 goto isolate_fail_put; 1121 1122 /* 1123 * Only allow to migrate anonymous pages in GFP_NOFS context 1124 * because those do not depend on fs locks. 1125 */ 1126 if (!(cc->gfp_mask & __GFP_FS) && mapping) 1127 goto isolate_fail_put; 1128 1129 /* Only take pages on LRU: a check now makes later tests safe */ 1130 if (!folio_test_lru(folio)) 1131 goto isolate_fail_put; 1132 1133 is_unevictable = folio_test_unevictable(folio); 1134 1135 /* Compaction might skip unevictable pages but CMA takes them */ 1136 if (!(mode & ISOLATE_UNEVICTABLE) && is_unevictable) 1137 goto isolate_fail_put; 1138 1139 /* 1140 * To minimise LRU disruption, the caller can indicate with 1141 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages 1142 * it will be able to migrate without blocking - clean pages 1143 * for the most part. PageWriteback would require blocking. 1144 */ 1145 if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio)) 1146 goto isolate_fail_put; 1147 1148 is_dirty = folio_test_dirty(folio); 1149 1150 if (((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) || 1151 (mapping && is_unevictable)) { 1152 bool migrate_dirty = true; 1153 bool is_inaccessible; 1154 1155 /* 1156 * Only folios without mappings or that have 1157 * a ->migrate_folio callback are possible to migrate 1158 * without blocking. 1159 * 1160 * Folios from inaccessible mappings are not migratable. 1161 * 1162 * However, we can be racing with truncation, which can 1163 * free the mapping that we need to check. Truncation 1164 * holds the folio lock until after the folio is removed 1165 * from the page so holding it ourselves is sufficient. 1166 * 1167 * To avoid locking the folio just to check inaccessible, 1168 * assume every inaccessible folio is also unevictable, 1169 * which is a cheaper test. If our assumption goes 1170 * wrong, it's not a correctness bug, just potentially 1171 * wasted cycles. 1172 */ 1173 if (!folio_trylock(folio)) 1174 goto isolate_fail_put; 1175 1176 mapping = folio_mapping(folio); 1177 if ((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) { 1178 migrate_dirty = !mapping || 1179 mapping->a_ops->migrate_folio; 1180 } 1181 is_inaccessible = mapping && mapping_inaccessible(mapping); 1182 folio_unlock(folio); 1183 if (!migrate_dirty || is_inaccessible) 1184 goto isolate_fail_put; 1185 } 1186 1187 /* Try isolate the folio */ 1188 if (!folio_test_clear_lru(folio)) 1189 goto isolate_fail_put; 1190 1191 lruvec = folio_lruvec(folio); 1192 1193 /* If we already hold the lock, we can skip some rechecking */ 1194 if (lruvec != locked) { 1195 if (locked) 1196 unlock_page_lruvec_irqrestore(locked, flags); 1197 1198 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc); 1199 locked = lruvec; 1200 1201 lruvec_memcg_debug(lruvec, folio); 1202 1203 /* 1204 * Try get exclusive access under lock. If marked for 1205 * skip, the scan is aborted unless the current context 1206 * is a rescan to reach the end of the pageblock. 1207 */ 1208 if (!skip_updated && valid_page) { 1209 skip_updated = true; 1210 if (test_and_set_skip(cc, valid_page) && 1211 !cc->finish_pageblock) { 1212 low_pfn = end_pfn; 1213 goto isolate_abort; 1214 } 1215 } 1216 1217 /* 1218 * Check LRU folio order under the lock 1219 */ 1220 if (unlikely(skip_isolation_on_order(folio_order(folio), 1221 cc->order) && 1222 !cc->alloc_contig)) { 1223 low_pfn += folio_nr_pages(folio) - 1; 1224 nr_scanned += folio_nr_pages(folio) - 1; 1225 folio_set_lru(folio); 1226 goto isolate_fail_put; 1227 } 1228 } 1229 1230 /* The folio is taken off the LRU */ 1231 if (folio_test_large(folio)) 1232 low_pfn += folio_nr_pages(folio) - 1; 1233 1234 /* Successfully isolated */ 1235 lruvec_del_folio(lruvec, folio); 1236 node_stat_mod_folio(folio, 1237 NR_ISOLATED_ANON + folio_is_file_lru(folio), 1238 folio_nr_pages(folio)); 1239 1240 isolate_success: 1241 list_add(&folio->lru, &cc->migratepages); 1242 isolate_success_no_list: 1243 cc->nr_migratepages += folio_nr_pages(folio); 1244 nr_isolated += folio_nr_pages(folio); 1245 nr_scanned += folio_nr_pages(folio) - 1; 1246 1247 /* 1248 * Avoid isolating too much unless this block is being 1249 * fully scanned (e.g. dirty/writeback pages, parallel allocation) 1250 * or a lock is contended. For contention, isolate quickly to 1251 * potentially remove one source of contention. 1252 */ 1253 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX && 1254 !cc->finish_pageblock && !cc->contended) { 1255 ++low_pfn; 1256 break; 1257 } 1258 1259 continue; 1260 1261 isolate_fail_put: 1262 /* Avoid potential deadlock in freeing page under lru_lock */ 1263 if (locked) { 1264 unlock_page_lruvec_irqrestore(locked, flags); 1265 locked = NULL; 1266 } 1267 folio_put(folio); 1268 1269 isolate_fail: 1270 if (!skip_on_failure && ret != -ENOMEM) 1271 continue; 1272 1273 /* 1274 * We have isolated some pages, but then failed. Release them 1275 * instead of migrating, as we cannot form the cc->order buddy 1276 * page anyway. 1277 */ 1278 if (nr_isolated) { 1279 if (locked) { 1280 unlock_page_lruvec_irqrestore(locked, flags); 1281 locked = NULL; 1282 } 1283 putback_movable_pages(&cc->migratepages); 1284 cc->nr_migratepages = 0; 1285 nr_isolated = 0; 1286 } 1287 1288 if (low_pfn < next_skip_pfn) { 1289 low_pfn = next_skip_pfn - 1; 1290 /* 1291 * The check near the loop beginning would have updated 1292 * next_skip_pfn too, but this is a bit simpler. 1293 */ 1294 next_skip_pfn += 1UL << cc->order; 1295 } 1296 1297 if (ret == -ENOMEM) 1298 break; 1299 } 1300 1301 /* 1302 * The PageBuddy() check could have potentially brought us outside 1303 * the range to be scanned. 1304 */ 1305 if (unlikely(low_pfn > end_pfn)) 1306 low_pfn = end_pfn; 1307 1308 folio = NULL; 1309 1310 isolate_abort: 1311 if (locked) 1312 unlock_page_lruvec_irqrestore(locked, flags); 1313 if (folio) { 1314 folio_set_lru(folio); 1315 folio_put(folio); 1316 } 1317 1318 /* 1319 * Update the cached scanner pfn once the pageblock has been scanned. 1320 * Pages will either be migrated in which case there is no point 1321 * scanning in the near future or migration failed in which case the 1322 * failure reason may persist. The block is marked for skipping if 1323 * there were no pages isolated in the block or if the block is 1324 * rescanned twice in a row. 1325 */ 1326 if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) { 1327 if (!cc->no_set_skip_hint && valid_page && !skip_updated) 1328 set_pageblock_skip(valid_page); 1329 update_cached_migrate(cc, low_pfn); 1330 } 1331 1332 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 1333 nr_scanned, nr_isolated); 1334 1335 fatal_pending: 1336 cc->total_migrate_scanned += nr_scanned; 1337 if (nr_isolated) 1338 count_compact_events(COMPACTISOLATED, nr_isolated); 1339 1340 cc->migrate_pfn = low_pfn; 1341 1342 return ret; 1343 } 1344 1345 /** 1346 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 1347 * @cc: Compaction control structure. 1348 * @start_pfn: The first PFN to start isolating. 1349 * @end_pfn: The one-past-last PFN. 1350 * 1351 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM 1352 * in case we could not allocate a page, or 0. 1353 */ 1354 int 1355 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 1356 unsigned long end_pfn) 1357 { 1358 unsigned long pfn, block_start_pfn, block_end_pfn; 1359 int ret = 0; 1360 1361 /* Scan block by block. First and last block may be incomplete */ 1362 pfn = start_pfn; 1363 block_start_pfn = pageblock_start_pfn(pfn); 1364 if (block_start_pfn < cc->zone->zone_start_pfn) 1365 block_start_pfn = cc->zone->zone_start_pfn; 1366 block_end_pfn = pageblock_end_pfn(pfn); 1367 1368 for (; pfn < end_pfn; pfn = block_end_pfn, 1369 block_start_pfn = block_end_pfn, 1370 block_end_pfn += pageblock_nr_pages) { 1371 1372 block_end_pfn = min(block_end_pfn, end_pfn); 1373 1374 if (!pageblock_pfn_to_page(block_start_pfn, 1375 block_end_pfn, cc->zone)) 1376 continue; 1377 1378 ret = isolate_migratepages_block(cc, pfn, block_end_pfn, 1379 ISOLATE_UNEVICTABLE); 1380 1381 if (ret) 1382 break; 1383 1384 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX) 1385 break; 1386 } 1387 1388 return ret; 1389 } 1390 1391 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 1392 #ifdef CONFIG_COMPACTION 1393 1394 static bool suitable_migration_source(struct compact_control *cc, 1395 struct page *page) 1396 { 1397 int block_mt; 1398 1399 if (pageblock_skip_persistent(page)) 1400 return false; 1401 1402 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction) 1403 return true; 1404 1405 block_mt = get_pageblock_migratetype(page); 1406 1407 if (cc->migratetype == MIGRATE_MOVABLE) 1408 return is_migrate_movable(block_mt); 1409 else 1410 return block_mt == cc->migratetype; 1411 } 1412 1413 /* Returns true if the page is within a block suitable for migration to */ 1414 static bool suitable_migration_target(struct compact_control *cc, 1415 struct page *page) 1416 { 1417 /* If the page is a large free page, then disallow migration */ 1418 if (PageBuddy(page)) { 1419 int order = cc->order > 0 ? cc->order : pageblock_order; 1420 1421 /* 1422 * We are checking page_order without zone->lock taken. But 1423 * the only small danger is that we skip a potentially suitable 1424 * pageblock, so it's not worth to check order for valid range. 1425 */ 1426 if (buddy_order_unsafe(page) >= order) 1427 return false; 1428 } 1429 1430 if (cc->ignore_block_suitable) 1431 return true; 1432 1433 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 1434 if (is_migrate_movable(get_pageblock_migratetype(page))) 1435 return true; 1436 1437 /* Otherwise skip the block */ 1438 return false; 1439 } 1440 1441 static inline unsigned int 1442 freelist_scan_limit(struct compact_control *cc) 1443 { 1444 unsigned short shift = BITS_PER_LONG - 1; 1445 1446 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1; 1447 } 1448 1449 /* 1450 * Test whether the free scanner has reached the same or lower pageblock than 1451 * the migration scanner, and compaction should thus terminate. 1452 */ 1453 static inline bool compact_scanners_met(struct compact_control *cc) 1454 { 1455 return (cc->free_pfn >> pageblock_order) 1456 <= (cc->migrate_pfn >> pageblock_order); 1457 } 1458 1459 /* 1460 * Used when scanning for a suitable migration target which scans freelists 1461 * in reverse. Reorders the list such as the unscanned pages are scanned 1462 * first on the next iteration of the free scanner 1463 */ 1464 static void 1465 move_freelist_head(struct list_head *freelist, struct page *freepage) 1466 { 1467 LIST_HEAD(sublist); 1468 1469 if (!list_is_first(&freepage->buddy_list, freelist)) { 1470 list_cut_before(&sublist, freelist, &freepage->buddy_list); 1471 list_splice_tail(&sublist, freelist); 1472 } 1473 } 1474 1475 /* 1476 * Similar to move_freelist_head except used by the migration scanner 1477 * when scanning forward. It's possible for these list operations to 1478 * move against each other if they search the free list exactly in 1479 * lockstep. 1480 */ 1481 static void 1482 move_freelist_tail(struct list_head *freelist, struct page *freepage) 1483 { 1484 LIST_HEAD(sublist); 1485 1486 if (!list_is_last(&freepage->buddy_list, freelist)) { 1487 list_cut_position(&sublist, freelist, &freepage->buddy_list); 1488 list_splice_tail(&sublist, freelist); 1489 } 1490 } 1491 1492 static void 1493 fast_isolate_around(struct compact_control *cc, unsigned long pfn) 1494 { 1495 unsigned long start_pfn, end_pfn; 1496 struct page *page; 1497 1498 /* Do not search around if there are enough pages already */ 1499 if (cc->nr_freepages >= cc->nr_migratepages) 1500 return; 1501 1502 /* Minimise scanning during async compaction */ 1503 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC) 1504 return; 1505 1506 /* Pageblock boundaries */ 1507 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn); 1508 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)); 1509 1510 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone); 1511 if (!page) 1512 return; 1513 1514 isolate_freepages_block(cc, &start_pfn, end_pfn, cc->freepages, 1, false); 1515 1516 /* Skip this pageblock in the future as it's full or nearly full */ 1517 if (start_pfn == end_pfn && !cc->no_set_skip_hint) 1518 set_pageblock_skip(page); 1519 } 1520 1521 /* Search orders in round-robin fashion */ 1522 static int next_search_order(struct compact_control *cc, int order) 1523 { 1524 order--; 1525 if (order < 0) 1526 order = cc->order - 1; 1527 1528 /* Search wrapped around? */ 1529 if (order == cc->search_order) { 1530 cc->search_order--; 1531 if (cc->search_order < 0) 1532 cc->search_order = cc->order - 1; 1533 return -1; 1534 } 1535 1536 return order; 1537 } 1538 1539 static void fast_isolate_freepages(struct compact_control *cc) 1540 { 1541 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1); 1542 unsigned int nr_scanned = 0, total_isolated = 0; 1543 unsigned long low_pfn, min_pfn, highest = 0; 1544 unsigned long nr_isolated = 0; 1545 unsigned long distance; 1546 struct page *page = NULL; 1547 bool scan_start = false; 1548 int order; 1549 1550 /* Full compaction passes in a negative order */ 1551 if (cc->order <= 0) 1552 return; 1553 1554 /* 1555 * If starting the scan, use a deeper search and use the highest 1556 * PFN found if a suitable one is not found. 1557 */ 1558 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) { 1559 limit = pageblock_nr_pages >> 1; 1560 scan_start = true; 1561 } 1562 1563 /* 1564 * Preferred point is in the top quarter of the scan space but take 1565 * a pfn from the top half if the search is problematic. 1566 */ 1567 distance = (cc->free_pfn - cc->migrate_pfn); 1568 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2)); 1569 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1)); 1570 1571 if (WARN_ON_ONCE(min_pfn > low_pfn)) 1572 low_pfn = min_pfn; 1573 1574 /* 1575 * Search starts from the last successful isolation order or the next 1576 * order to search after a previous failure 1577 */ 1578 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order); 1579 1580 for (order = cc->search_order; 1581 !page && order >= 0; 1582 order = next_search_order(cc, order)) { 1583 struct free_area *area = &cc->zone->free_area[order]; 1584 struct list_head *freelist; 1585 struct page *freepage; 1586 unsigned long flags; 1587 unsigned int order_scanned = 0; 1588 unsigned long high_pfn = 0; 1589 1590 if (!area->nr_free) 1591 continue; 1592 1593 spin_lock_irqsave(&cc->zone->lock, flags); 1594 freelist = &area->free_list[MIGRATE_MOVABLE]; 1595 list_for_each_entry_reverse(freepage, freelist, buddy_list) { 1596 unsigned long pfn; 1597 1598 order_scanned++; 1599 nr_scanned++; 1600 pfn = page_to_pfn(freepage); 1601 1602 if (pfn >= highest) 1603 highest = max(pageblock_start_pfn(pfn), 1604 cc->zone->zone_start_pfn); 1605 1606 if (pfn >= low_pfn) { 1607 cc->fast_search_fail = 0; 1608 cc->search_order = order; 1609 page = freepage; 1610 break; 1611 } 1612 1613 if (pfn >= min_pfn && pfn > high_pfn) { 1614 high_pfn = pfn; 1615 1616 /* Shorten the scan if a candidate is found */ 1617 limit >>= 1; 1618 } 1619 1620 if (order_scanned >= limit) 1621 break; 1622 } 1623 1624 /* Use a maximum candidate pfn if a preferred one was not found */ 1625 if (!page && high_pfn) { 1626 page = pfn_to_page(high_pfn); 1627 1628 /* Update freepage for the list reorder below */ 1629 freepage = page; 1630 } 1631 1632 /* Reorder to so a future search skips recent pages */ 1633 move_freelist_head(freelist, freepage); 1634 1635 /* Isolate the page if available */ 1636 if (page) { 1637 if (__isolate_free_page(page, order)) { 1638 set_page_private(page, order); 1639 nr_isolated = 1 << order; 1640 nr_scanned += nr_isolated - 1; 1641 total_isolated += nr_isolated; 1642 cc->nr_freepages += nr_isolated; 1643 list_add_tail(&page->lru, &cc->freepages[order]); 1644 count_compact_events(COMPACTISOLATED, nr_isolated); 1645 } else { 1646 /* If isolation fails, abort the search */ 1647 order = cc->search_order + 1; 1648 page = NULL; 1649 } 1650 } 1651 1652 spin_unlock_irqrestore(&cc->zone->lock, flags); 1653 1654 /* Skip fast search if enough freepages isolated */ 1655 if (cc->nr_freepages >= cc->nr_migratepages) 1656 break; 1657 1658 /* 1659 * Smaller scan on next order so the total scan is related 1660 * to freelist_scan_limit. 1661 */ 1662 if (order_scanned >= limit) 1663 limit = max(1U, limit >> 1); 1664 } 1665 1666 trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn, 1667 nr_scanned, total_isolated); 1668 1669 if (!page) { 1670 cc->fast_search_fail++; 1671 if (scan_start) { 1672 /* 1673 * Use the highest PFN found above min. If one was 1674 * not found, be pessimistic for direct compaction 1675 * and use the min mark. 1676 */ 1677 if (highest >= min_pfn) { 1678 page = pfn_to_page(highest); 1679 cc->free_pfn = highest; 1680 } else { 1681 if (cc->direct_compaction && pfn_valid(min_pfn)) { 1682 page = pageblock_pfn_to_page(min_pfn, 1683 min(pageblock_end_pfn(min_pfn), 1684 zone_end_pfn(cc->zone)), 1685 cc->zone); 1686 if (page && !suitable_migration_target(cc, page)) 1687 page = NULL; 1688 1689 cc->free_pfn = min_pfn; 1690 } 1691 } 1692 } 1693 } 1694 1695 if (highest && highest >= cc->zone->compact_cached_free_pfn) { 1696 highest -= pageblock_nr_pages; 1697 cc->zone->compact_cached_free_pfn = highest; 1698 } 1699 1700 cc->total_free_scanned += nr_scanned; 1701 if (!page) 1702 return; 1703 1704 low_pfn = page_to_pfn(page); 1705 fast_isolate_around(cc, low_pfn); 1706 } 1707 1708 /* 1709 * Based on information in the current compact_control, find blocks 1710 * suitable for isolating free pages from and then isolate them. 1711 */ 1712 static void isolate_freepages(struct compact_control *cc) 1713 { 1714 struct zone *zone = cc->zone; 1715 struct page *page; 1716 unsigned long block_start_pfn; /* start of current pageblock */ 1717 unsigned long isolate_start_pfn; /* exact pfn we start at */ 1718 unsigned long block_end_pfn; /* end of current pageblock */ 1719 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 1720 unsigned int stride; 1721 1722 /* Try a small search of the free lists for a candidate */ 1723 fast_isolate_freepages(cc); 1724 if (cc->nr_freepages) 1725 return; 1726 1727 /* 1728 * Initialise the free scanner. The starting point is where we last 1729 * successfully isolated from, zone-cached value, or the end of the 1730 * zone when isolating for the first time. For looping we also need 1731 * this pfn aligned down to the pageblock boundary, because we do 1732 * block_start_pfn -= pageblock_nr_pages in the for loop. 1733 * For ending point, take care when isolating in last pageblock of a 1734 * zone which ends in the middle of a pageblock. 1735 * The low boundary is the end of the pageblock the migration scanner 1736 * is using. 1737 */ 1738 isolate_start_pfn = cc->free_pfn; 1739 block_start_pfn = pageblock_start_pfn(isolate_start_pfn); 1740 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 1741 zone_end_pfn(zone)); 1742 low_pfn = pageblock_end_pfn(cc->migrate_pfn); 1743 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1; 1744 1745 /* 1746 * Isolate free pages until enough are available to migrate the 1747 * pages on cc->migratepages. We stop searching if the migrate 1748 * and free page scanners meet or enough free pages are isolated. 1749 */ 1750 for (; block_start_pfn >= low_pfn; 1751 block_end_pfn = block_start_pfn, 1752 block_start_pfn -= pageblock_nr_pages, 1753 isolate_start_pfn = block_start_pfn) { 1754 unsigned long nr_isolated; 1755 1756 /* 1757 * This can iterate a massively long zone without finding any 1758 * suitable migration targets, so periodically check resched. 1759 */ 1760 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages))) 1761 cond_resched(); 1762 1763 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1764 zone); 1765 if (!page) { 1766 unsigned long next_pfn; 1767 1768 next_pfn = skip_offline_sections_reverse(block_start_pfn); 1769 if (next_pfn) 1770 block_start_pfn = max(next_pfn, low_pfn); 1771 1772 continue; 1773 } 1774 1775 /* Check the block is suitable for migration */ 1776 if (!suitable_migration_target(cc, page)) 1777 continue; 1778 1779 /* If isolation recently failed, do not retry */ 1780 if (!isolation_suitable(cc, page)) 1781 continue; 1782 1783 /* Found a block suitable for isolating free pages from. */ 1784 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn, 1785 block_end_pfn, cc->freepages, stride, false); 1786 1787 /* Update the skip hint if the full pageblock was scanned */ 1788 if (isolate_start_pfn == block_end_pfn) 1789 update_pageblock_skip(cc, page, block_start_pfn - 1790 pageblock_nr_pages); 1791 1792 /* Are enough freepages isolated? */ 1793 if (cc->nr_freepages >= cc->nr_migratepages) { 1794 if (isolate_start_pfn >= block_end_pfn) { 1795 /* 1796 * Restart at previous pageblock if more 1797 * freepages can be isolated next time. 1798 */ 1799 isolate_start_pfn = 1800 block_start_pfn - pageblock_nr_pages; 1801 } 1802 break; 1803 } else if (isolate_start_pfn < block_end_pfn) { 1804 /* 1805 * If isolation failed early, do not continue 1806 * needlessly. 1807 */ 1808 break; 1809 } 1810 1811 /* Adjust stride depending on isolation */ 1812 if (nr_isolated) { 1813 stride = 1; 1814 continue; 1815 } 1816 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1); 1817 } 1818 1819 /* 1820 * Record where the free scanner will restart next time. Either we 1821 * broke from the loop and set isolate_start_pfn based on the last 1822 * call to isolate_freepages_block(), or we met the migration scanner 1823 * and the loop terminated due to isolate_start_pfn < low_pfn 1824 */ 1825 cc->free_pfn = isolate_start_pfn; 1826 } 1827 1828 /* 1829 * This is a migrate-callback that "allocates" freepages by taking pages 1830 * from the isolated freelists in the block we are migrating to. 1831 */ 1832 static struct folio *compaction_alloc_noprof(struct folio *src, unsigned long data) 1833 { 1834 struct compact_control *cc = (struct compact_control *)data; 1835 struct folio *dst; 1836 int order = folio_order(src); 1837 bool has_isolated_pages = false; 1838 int start_order; 1839 struct page *freepage; 1840 unsigned long size; 1841 1842 again: 1843 for (start_order = order; start_order < NR_PAGE_ORDERS; start_order++) 1844 if (!list_empty(&cc->freepages[start_order])) 1845 break; 1846 1847 /* no free pages in the list */ 1848 if (start_order == NR_PAGE_ORDERS) { 1849 if (has_isolated_pages) 1850 return NULL; 1851 isolate_freepages(cc); 1852 has_isolated_pages = true; 1853 goto again; 1854 } 1855 1856 freepage = list_first_entry(&cc->freepages[start_order], struct page, 1857 lru); 1858 size = 1 << start_order; 1859 1860 list_del(&freepage->lru); 1861 1862 while (start_order > order) { 1863 start_order--; 1864 size >>= 1; 1865 1866 list_add(&freepage[size].lru, &cc->freepages[start_order]); 1867 set_page_private(&freepage[size], start_order); 1868 } 1869 dst = (struct folio *)freepage; 1870 1871 post_alloc_hook(&dst->page, order, __GFP_MOVABLE); 1872 set_page_refcounted(&dst->page); 1873 if (order) 1874 prep_compound_page(&dst->page, order); 1875 cc->nr_freepages -= 1 << order; 1876 cc->nr_migratepages -= 1 << order; 1877 return page_rmappable_folio(&dst->page); 1878 } 1879 1880 static struct folio *compaction_alloc(struct folio *src, unsigned long data) 1881 { 1882 return alloc_hooks(compaction_alloc_noprof(src, data)); 1883 } 1884 1885 /* 1886 * This is a migrate-callback that "frees" freepages back to the isolated 1887 * freelist. All pages on the freelist are from the same zone, so there is no 1888 * special handling needed for NUMA. 1889 */ 1890 static void compaction_free(struct folio *dst, unsigned long data) 1891 { 1892 struct compact_control *cc = (struct compact_control *)data; 1893 int order = folio_order(dst); 1894 struct page *page = &dst->page; 1895 1896 if (folio_put_testzero(dst)) { 1897 free_pages_prepare(page, order); 1898 list_add(&dst->lru, &cc->freepages[order]); 1899 cc->nr_freepages += 1 << order; 1900 } 1901 cc->nr_migratepages += 1 << order; 1902 /* 1903 * someone else has referenced the page, we cannot take it back to our 1904 * free list. 1905 */ 1906 } 1907 1908 /* possible outcome of isolate_migratepages */ 1909 typedef enum { 1910 ISOLATE_ABORT, /* Abort compaction now */ 1911 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1912 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1913 } isolate_migrate_t; 1914 1915 /* 1916 * Allow userspace to control policy on scanning the unevictable LRU for 1917 * compactable pages. 1918 */ 1919 static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT; 1920 /* 1921 * Tunable for proactive compaction. It determines how 1922 * aggressively the kernel should compact memory in the 1923 * background. It takes values in the range [0, 100]. 1924 */ 1925 static unsigned int __read_mostly sysctl_compaction_proactiveness = 20; 1926 static int sysctl_extfrag_threshold = 500; 1927 static int __read_mostly sysctl_compact_memory; 1928 1929 static inline void 1930 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn) 1931 { 1932 if (cc->fast_start_pfn == ULONG_MAX) 1933 return; 1934 1935 if (!cc->fast_start_pfn) 1936 cc->fast_start_pfn = pfn; 1937 1938 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn); 1939 } 1940 1941 static inline unsigned long 1942 reinit_migrate_pfn(struct compact_control *cc) 1943 { 1944 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX) 1945 return cc->migrate_pfn; 1946 1947 cc->migrate_pfn = cc->fast_start_pfn; 1948 cc->fast_start_pfn = ULONG_MAX; 1949 1950 return cc->migrate_pfn; 1951 } 1952 1953 /* 1954 * Briefly search the free lists for a migration source that already has 1955 * some free pages to reduce the number of pages that need migration 1956 * before a pageblock is free. 1957 */ 1958 static unsigned long fast_find_migrateblock(struct compact_control *cc) 1959 { 1960 unsigned int limit = freelist_scan_limit(cc); 1961 unsigned int nr_scanned = 0; 1962 unsigned long distance; 1963 unsigned long pfn = cc->migrate_pfn; 1964 unsigned long high_pfn; 1965 int order; 1966 bool found_block = false; 1967 1968 /* Skip hints are relied on to avoid repeats on the fast search */ 1969 if (cc->ignore_skip_hint) 1970 return pfn; 1971 1972 /* 1973 * If the pageblock should be finished then do not select a different 1974 * pageblock. 1975 */ 1976 if (cc->finish_pageblock) 1977 return pfn; 1978 1979 /* 1980 * If the migrate_pfn is not at the start of a zone or the start 1981 * of a pageblock then assume this is a continuation of a previous 1982 * scan restarted due to COMPACT_CLUSTER_MAX. 1983 */ 1984 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn)) 1985 return pfn; 1986 1987 /* 1988 * For smaller orders, just linearly scan as the number of pages 1989 * to migrate should be relatively small and does not necessarily 1990 * justify freeing up a large block for a small allocation. 1991 */ 1992 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER) 1993 return pfn; 1994 1995 /* 1996 * Only allow kcompactd and direct requests for movable pages to 1997 * quickly clear out a MOVABLE pageblock for allocation. This 1998 * reduces the risk that a large movable pageblock is freed for 1999 * an unmovable/reclaimable small allocation. 2000 */ 2001 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE) 2002 return pfn; 2003 2004 /* 2005 * When starting the migration scanner, pick any pageblock within the 2006 * first half of the search space. Otherwise try and pick a pageblock 2007 * within the first eighth to reduce the chances that a migration 2008 * target later becomes a source. 2009 */ 2010 distance = (cc->free_pfn - cc->migrate_pfn) >> 1; 2011 if (cc->migrate_pfn != cc->zone->zone_start_pfn) 2012 distance >>= 2; 2013 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance); 2014 2015 for (order = cc->order - 1; 2016 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit; 2017 order--) { 2018 struct free_area *area = &cc->zone->free_area[order]; 2019 struct list_head *freelist; 2020 unsigned long flags; 2021 struct page *freepage; 2022 2023 if (!area->nr_free) 2024 continue; 2025 2026 spin_lock_irqsave(&cc->zone->lock, flags); 2027 freelist = &area->free_list[MIGRATE_MOVABLE]; 2028 list_for_each_entry(freepage, freelist, buddy_list) { 2029 unsigned long free_pfn; 2030 2031 if (nr_scanned++ >= limit) { 2032 move_freelist_tail(freelist, freepage); 2033 break; 2034 } 2035 2036 free_pfn = page_to_pfn(freepage); 2037 if (free_pfn < high_pfn) { 2038 /* 2039 * Avoid if skipped recently. Ideally it would 2040 * move to the tail but even safe iteration of 2041 * the list assumes an entry is deleted, not 2042 * reordered. 2043 */ 2044 if (get_pageblock_skip(freepage)) 2045 continue; 2046 2047 /* Reorder to so a future search skips recent pages */ 2048 move_freelist_tail(freelist, freepage); 2049 2050 update_fast_start_pfn(cc, free_pfn); 2051 pfn = pageblock_start_pfn(free_pfn); 2052 if (pfn < cc->zone->zone_start_pfn) 2053 pfn = cc->zone->zone_start_pfn; 2054 cc->fast_search_fail = 0; 2055 found_block = true; 2056 break; 2057 } 2058 } 2059 spin_unlock_irqrestore(&cc->zone->lock, flags); 2060 } 2061 2062 cc->total_migrate_scanned += nr_scanned; 2063 2064 /* 2065 * If fast scanning failed then use a cached entry for a page block 2066 * that had free pages as the basis for starting a linear scan. 2067 */ 2068 if (!found_block) { 2069 cc->fast_search_fail++; 2070 pfn = reinit_migrate_pfn(cc); 2071 } 2072 return pfn; 2073 } 2074 2075 /* 2076 * Isolate all pages that can be migrated from the first suitable block, 2077 * starting at the block pointed to by the migrate scanner pfn within 2078 * compact_control. 2079 */ 2080 static isolate_migrate_t isolate_migratepages(struct compact_control *cc) 2081 { 2082 unsigned long block_start_pfn; 2083 unsigned long block_end_pfn; 2084 unsigned long low_pfn; 2085 struct page *page; 2086 const isolate_mode_t isolate_mode = 2087 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 2088 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0); 2089 bool fast_find_block; 2090 2091 /* 2092 * Start at where we last stopped, or beginning of the zone as 2093 * initialized by compact_zone(). The first failure will use 2094 * the lowest PFN as the starting point for linear scanning. 2095 */ 2096 low_pfn = fast_find_migrateblock(cc); 2097 block_start_pfn = pageblock_start_pfn(low_pfn); 2098 if (block_start_pfn < cc->zone->zone_start_pfn) 2099 block_start_pfn = cc->zone->zone_start_pfn; 2100 2101 /* 2102 * fast_find_migrateblock() has already ensured the pageblock is not 2103 * set with a skipped flag, so to avoid the isolation_suitable check 2104 * below again, check whether the fast search was successful. 2105 */ 2106 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail; 2107 2108 /* Only scan within a pageblock boundary */ 2109 block_end_pfn = pageblock_end_pfn(low_pfn); 2110 2111 /* 2112 * Iterate over whole pageblocks until we find the first suitable. 2113 * Do not cross the free scanner. 2114 */ 2115 for (; block_end_pfn <= cc->free_pfn; 2116 fast_find_block = false, 2117 cc->migrate_pfn = low_pfn = block_end_pfn, 2118 block_start_pfn = block_end_pfn, 2119 block_end_pfn += pageblock_nr_pages) { 2120 2121 /* 2122 * This can potentially iterate a massively long zone with 2123 * many pageblocks unsuitable, so periodically check if we 2124 * need to schedule. 2125 */ 2126 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages))) 2127 cond_resched(); 2128 2129 page = pageblock_pfn_to_page(block_start_pfn, 2130 block_end_pfn, cc->zone); 2131 if (!page) { 2132 unsigned long next_pfn; 2133 2134 next_pfn = skip_offline_sections(block_start_pfn); 2135 if (next_pfn) 2136 block_end_pfn = min(next_pfn, cc->free_pfn); 2137 continue; 2138 } 2139 2140 /* 2141 * If isolation recently failed, do not retry. Only check the 2142 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock 2143 * to be visited multiple times. Assume skip was checked 2144 * before making it "skip" so other compaction instances do 2145 * not scan the same block. 2146 */ 2147 if ((pageblock_aligned(low_pfn) || 2148 low_pfn == cc->zone->zone_start_pfn) && 2149 !fast_find_block && !isolation_suitable(cc, page)) 2150 continue; 2151 2152 /* 2153 * For async direct compaction, only scan the pageblocks of the 2154 * same migratetype without huge pages. Async direct compaction 2155 * is optimistic to see if the minimum amount of work satisfies 2156 * the allocation. The cached PFN is updated as it's possible 2157 * that all remaining blocks between source and target are 2158 * unsuitable and the compaction scanners fail to meet. 2159 */ 2160 if (!suitable_migration_source(cc, page)) { 2161 update_cached_migrate(cc, block_end_pfn); 2162 continue; 2163 } 2164 2165 /* Perform the isolation */ 2166 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn, 2167 isolate_mode)) 2168 return ISOLATE_ABORT; 2169 2170 /* 2171 * Either we isolated something and proceed with migration. Or 2172 * we failed and compact_zone should decide if we should 2173 * continue or not. 2174 */ 2175 break; 2176 } 2177 2178 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 2179 } 2180 2181 /* 2182 * Determine whether kswapd is (or recently was!) running on this node. 2183 * 2184 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't 2185 * zero it. 2186 */ 2187 static bool kswapd_is_running(pg_data_t *pgdat) 2188 { 2189 bool running; 2190 2191 pgdat_kswapd_lock(pgdat); 2192 running = pgdat->kswapd && task_is_running(pgdat->kswapd); 2193 pgdat_kswapd_unlock(pgdat); 2194 2195 return running; 2196 } 2197 2198 /* 2199 * A zone's fragmentation score is the external fragmentation wrt to the 2200 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100]. 2201 */ 2202 static unsigned int fragmentation_score_zone(struct zone *zone) 2203 { 2204 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER); 2205 } 2206 2207 /* 2208 * A weighted zone's fragmentation score is the external fragmentation 2209 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It 2210 * returns a value in the range [0, 100]. 2211 * 2212 * The scaling factor ensures that proactive compaction focuses on larger 2213 * zones like ZONE_NORMAL, rather than smaller, specialized zones like 2214 * ZONE_DMA32. For smaller zones, the score value remains close to zero, 2215 * and thus never exceeds the high threshold for proactive compaction. 2216 */ 2217 static unsigned int fragmentation_score_zone_weighted(struct zone *zone) 2218 { 2219 unsigned long score; 2220 2221 score = zone->present_pages * fragmentation_score_zone(zone); 2222 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1); 2223 } 2224 2225 /* 2226 * The per-node proactive (background) compaction process is started by its 2227 * corresponding kcompactd thread when the node's fragmentation score 2228 * exceeds the high threshold. The compaction process remains active till 2229 * the node's score falls below the low threshold, or one of the back-off 2230 * conditions is met. 2231 */ 2232 static unsigned int fragmentation_score_node(pg_data_t *pgdat) 2233 { 2234 unsigned int score = 0; 2235 int zoneid; 2236 2237 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2238 struct zone *zone; 2239 2240 zone = &pgdat->node_zones[zoneid]; 2241 if (!populated_zone(zone)) 2242 continue; 2243 score += fragmentation_score_zone_weighted(zone); 2244 } 2245 2246 return score; 2247 } 2248 2249 static unsigned int fragmentation_score_wmark(bool low) 2250 { 2251 unsigned int wmark_low; 2252 2253 /* 2254 * Cap the low watermark to avoid excessive compaction 2255 * activity in case a user sets the proactiveness tunable 2256 * close to 100 (maximum). 2257 */ 2258 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U); 2259 return low ? wmark_low : min(wmark_low + 10, 100U); 2260 } 2261 2262 static bool should_proactive_compact_node(pg_data_t *pgdat) 2263 { 2264 int wmark_high; 2265 2266 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat)) 2267 return false; 2268 2269 wmark_high = fragmentation_score_wmark(false); 2270 return fragmentation_score_node(pgdat) > wmark_high; 2271 } 2272 2273 static enum compact_result __compact_finished(struct compact_control *cc) 2274 { 2275 unsigned int order; 2276 const int migratetype = cc->migratetype; 2277 int ret; 2278 2279 /* Compaction run completes if the migrate and free scanner meet */ 2280 if (compact_scanners_met(cc)) { 2281 /* Let the next compaction start anew. */ 2282 reset_cached_positions(cc->zone); 2283 2284 /* 2285 * Mark that the PG_migrate_skip information should be cleared 2286 * by kswapd when it goes to sleep. kcompactd does not set the 2287 * flag itself as the decision to be clear should be directly 2288 * based on an allocation request. 2289 */ 2290 if (cc->direct_compaction) 2291 cc->zone->compact_blockskip_flush = true; 2292 2293 if (cc->whole_zone) 2294 return COMPACT_COMPLETE; 2295 else 2296 return COMPACT_PARTIAL_SKIPPED; 2297 } 2298 2299 if (cc->proactive_compaction) { 2300 int score, wmark_low; 2301 pg_data_t *pgdat; 2302 2303 pgdat = cc->zone->zone_pgdat; 2304 if (kswapd_is_running(pgdat)) 2305 return COMPACT_PARTIAL_SKIPPED; 2306 2307 score = fragmentation_score_zone(cc->zone); 2308 wmark_low = fragmentation_score_wmark(true); 2309 2310 if (score > wmark_low) 2311 ret = COMPACT_CONTINUE; 2312 else 2313 ret = COMPACT_SUCCESS; 2314 2315 goto out; 2316 } 2317 2318 if (is_via_compact_memory(cc->order)) 2319 return COMPACT_CONTINUE; 2320 2321 /* 2322 * Always finish scanning a pageblock to reduce the possibility of 2323 * fallbacks in the future. This is particularly important when 2324 * migration source is unmovable/reclaimable but it's not worth 2325 * special casing. 2326 */ 2327 if (!pageblock_aligned(cc->migrate_pfn)) 2328 return COMPACT_CONTINUE; 2329 2330 /* Direct compactor: Is a suitable page free? */ 2331 ret = COMPACT_NO_SUITABLE_PAGE; 2332 for (order = cc->order; order < NR_PAGE_ORDERS; order++) { 2333 struct free_area *area = &cc->zone->free_area[order]; 2334 bool can_steal; 2335 2336 /* Job done if page is free of the right migratetype */ 2337 if (!free_area_empty(area, migratetype)) 2338 return COMPACT_SUCCESS; 2339 2340 #ifdef CONFIG_CMA 2341 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 2342 if (migratetype == MIGRATE_MOVABLE && 2343 !free_area_empty(area, MIGRATE_CMA)) 2344 return COMPACT_SUCCESS; 2345 #endif 2346 /* 2347 * Job done if allocation would steal freepages from 2348 * other migratetype buddy lists. 2349 */ 2350 if (find_suitable_fallback(area, order, migratetype, 2351 true, &can_steal) != -1) 2352 /* 2353 * Movable pages are OK in any pageblock. If we are 2354 * stealing for a non-movable allocation, make sure 2355 * we finish compacting the current pageblock first 2356 * (which is assured by the above migrate_pfn align 2357 * check) so it is as free as possible and we won't 2358 * have to steal another one soon. 2359 */ 2360 return COMPACT_SUCCESS; 2361 } 2362 2363 out: 2364 if (cc->contended || fatal_signal_pending(current)) 2365 ret = COMPACT_CONTENDED; 2366 2367 return ret; 2368 } 2369 2370 static enum compact_result compact_finished(struct compact_control *cc) 2371 { 2372 int ret; 2373 2374 ret = __compact_finished(cc); 2375 trace_mm_compaction_finished(cc->zone, cc->order, ret); 2376 if (ret == COMPACT_NO_SUITABLE_PAGE) 2377 ret = COMPACT_CONTINUE; 2378 2379 return ret; 2380 } 2381 2382 static bool __compaction_suitable(struct zone *zone, int order, 2383 int highest_zoneidx, 2384 unsigned long wmark_target) 2385 { 2386 unsigned long watermark; 2387 /* 2388 * Watermarks for order-0 must be met for compaction to be able to 2389 * isolate free pages for migration targets. This means that the 2390 * watermark and alloc_flags have to match, or be more pessimistic than 2391 * the check in __isolate_free_page(). We don't use the direct 2392 * compactor's alloc_flags, as they are not relevant for freepage 2393 * isolation. We however do use the direct compactor's highest_zoneidx 2394 * to skip over zones where lowmem reserves would prevent allocation 2395 * even if compaction succeeds. 2396 * For costly orders, we require low watermark instead of min for 2397 * compaction to proceed to increase its chances. 2398 * ALLOC_CMA is used, as pages in CMA pageblocks are considered 2399 * suitable migration targets 2400 */ 2401 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ? 2402 low_wmark_pages(zone) : min_wmark_pages(zone); 2403 watermark += compact_gap(order); 2404 return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx, 2405 ALLOC_CMA, wmark_target); 2406 } 2407 2408 /* 2409 * compaction_suitable: Is this suitable to run compaction on this zone now? 2410 */ 2411 bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx) 2412 { 2413 enum compact_result compact_result; 2414 bool suitable; 2415 2416 suitable = __compaction_suitable(zone, order, highest_zoneidx, 2417 zone_page_state(zone, NR_FREE_PAGES)); 2418 /* 2419 * fragmentation index determines if allocation failures are due to 2420 * low memory or external fragmentation 2421 * 2422 * index of -1000 would imply allocations might succeed depending on 2423 * watermarks, but we already failed the high-order watermark check 2424 * index towards 0 implies failure is due to lack of memory 2425 * index towards 1000 implies failure is due to fragmentation 2426 * 2427 * Only compact if a failure would be due to fragmentation. Also 2428 * ignore fragindex for non-costly orders where the alternative to 2429 * a successful reclaim/compaction is OOM. Fragindex and the 2430 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent 2431 * excessive compaction for costly orders, but it should not be at the 2432 * expense of system stability. 2433 */ 2434 if (suitable) { 2435 compact_result = COMPACT_CONTINUE; 2436 if (order > PAGE_ALLOC_COSTLY_ORDER) { 2437 int fragindex = fragmentation_index(zone, order); 2438 2439 if (fragindex >= 0 && 2440 fragindex <= sysctl_extfrag_threshold) { 2441 suitable = false; 2442 compact_result = COMPACT_NOT_SUITABLE_ZONE; 2443 } 2444 } 2445 } else { 2446 compact_result = COMPACT_SKIPPED; 2447 } 2448 2449 trace_mm_compaction_suitable(zone, order, compact_result); 2450 2451 return suitable; 2452 } 2453 2454 bool compaction_zonelist_suitable(struct alloc_context *ac, int order, 2455 int alloc_flags) 2456 { 2457 struct zone *zone; 2458 struct zoneref *z; 2459 2460 /* 2461 * Make sure at least one zone would pass __compaction_suitable if we continue 2462 * retrying the reclaim. 2463 */ 2464 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2465 ac->highest_zoneidx, ac->nodemask) { 2466 unsigned long available; 2467 2468 /* 2469 * Do not consider all the reclaimable memory because we do not 2470 * want to trash just for a single high order allocation which 2471 * is even not guaranteed to appear even if __compaction_suitable 2472 * is happy about the watermark check. 2473 */ 2474 available = zone_reclaimable_pages(zone) / order; 2475 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 2476 if (__compaction_suitable(zone, order, ac->highest_zoneidx, 2477 available)) 2478 return true; 2479 } 2480 2481 return false; 2482 } 2483 2484 /* 2485 * Should we do compaction for target allocation order. 2486 * Return COMPACT_SUCCESS if allocation for target order can be already 2487 * satisfied 2488 * Return COMPACT_SKIPPED if compaction for target order is likely to fail 2489 * Return COMPACT_CONTINUE if compaction for target order should be ran 2490 */ 2491 static enum compact_result 2492 compaction_suit_allocation_order(struct zone *zone, unsigned int order, 2493 int highest_zoneidx, unsigned int alloc_flags) 2494 { 2495 unsigned long watermark; 2496 2497 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 2498 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx, 2499 alloc_flags)) 2500 return COMPACT_SUCCESS; 2501 2502 if (!compaction_suitable(zone, order, highest_zoneidx)) 2503 return COMPACT_SKIPPED; 2504 2505 return COMPACT_CONTINUE; 2506 } 2507 2508 static enum compact_result 2509 compact_zone(struct compact_control *cc, struct capture_control *capc) 2510 { 2511 enum compact_result ret; 2512 unsigned long start_pfn = cc->zone->zone_start_pfn; 2513 unsigned long end_pfn = zone_end_pfn(cc->zone); 2514 unsigned long last_migrated_pfn; 2515 const bool sync = cc->mode != MIGRATE_ASYNC; 2516 bool update_cached; 2517 unsigned int nr_succeeded = 0, nr_migratepages; 2518 int order; 2519 2520 /* 2521 * These counters track activities during zone compaction. Initialize 2522 * them before compacting a new zone. 2523 */ 2524 cc->total_migrate_scanned = 0; 2525 cc->total_free_scanned = 0; 2526 cc->nr_migratepages = 0; 2527 cc->nr_freepages = 0; 2528 for (order = 0; order < NR_PAGE_ORDERS; order++) 2529 INIT_LIST_HEAD(&cc->freepages[order]); 2530 INIT_LIST_HEAD(&cc->migratepages); 2531 2532 cc->migratetype = gfp_migratetype(cc->gfp_mask); 2533 2534 if (!is_via_compact_memory(cc->order)) { 2535 ret = compaction_suit_allocation_order(cc->zone, cc->order, 2536 cc->highest_zoneidx, 2537 cc->alloc_flags); 2538 if (ret != COMPACT_CONTINUE) 2539 return ret; 2540 } 2541 2542 /* 2543 * Clear pageblock skip if there were failures recently and compaction 2544 * is about to be retried after being deferred. 2545 */ 2546 if (compaction_restarting(cc->zone, cc->order)) 2547 __reset_isolation_suitable(cc->zone); 2548 2549 /* 2550 * Setup to move all movable pages to the end of the zone. Used cached 2551 * information on where the scanners should start (unless we explicitly 2552 * want to compact the whole zone), but check that it is initialised 2553 * by ensuring the values are within zone boundaries. 2554 */ 2555 cc->fast_start_pfn = 0; 2556 if (cc->whole_zone) { 2557 cc->migrate_pfn = start_pfn; 2558 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2559 } else { 2560 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync]; 2561 cc->free_pfn = cc->zone->compact_cached_free_pfn; 2562 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 2563 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2564 cc->zone->compact_cached_free_pfn = cc->free_pfn; 2565 } 2566 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 2567 cc->migrate_pfn = start_pfn; 2568 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 2569 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 2570 } 2571 2572 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn) 2573 cc->whole_zone = true; 2574 } 2575 2576 last_migrated_pfn = 0; 2577 2578 /* 2579 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on 2580 * the basis that some migrations will fail in ASYNC mode. However, 2581 * if the cached PFNs match and pageblocks are skipped due to having 2582 * no isolation candidates, then the sync state does not matter. 2583 * Until a pageblock with isolation candidates is found, keep the 2584 * cached PFNs in sync to avoid revisiting the same blocks. 2585 */ 2586 update_cached = !sync && 2587 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1]; 2588 2589 trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync); 2590 2591 /* lru_add_drain_all could be expensive with involving other CPUs */ 2592 lru_add_drain(); 2593 2594 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) { 2595 int err; 2596 unsigned long iteration_start_pfn = cc->migrate_pfn; 2597 2598 /* 2599 * Avoid multiple rescans of the same pageblock which can 2600 * happen if a page cannot be isolated (dirty/writeback in 2601 * async mode) or if the migrated pages are being allocated 2602 * before the pageblock is cleared. The first rescan will 2603 * capture the entire pageblock for migration. If it fails, 2604 * it'll be marked skip and scanning will proceed as normal. 2605 */ 2606 cc->finish_pageblock = false; 2607 if (pageblock_start_pfn(last_migrated_pfn) == 2608 pageblock_start_pfn(iteration_start_pfn)) { 2609 cc->finish_pageblock = true; 2610 } 2611 2612 rescan: 2613 switch (isolate_migratepages(cc)) { 2614 case ISOLATE_ABORT: 2615 ret = COMPACT_CONTENDED; 2616 putback_movable_pages(&cc->migratepages); 2617 cc->nr_migratepages = 0; 2618 goto out; 2619 case ISOLATE_NONE: 2620 if (update_cached) { 2621 cc->zone->compact_cached_migrate_pfn[1] = 2622 cc->zone->compact_cached_migrate_pfn[0]; 2623 } 2624 2625 /* 2626 * We haven't isolated and migrated anything, but 2627 * there might still be unflushed migrations from 2628 * previous cc->order aligned block. 2629 */ 2630 goto check_drain; 2631 case ISOLATE_SUCCESS: 2632 update_cached = false; 2633 last_migrated_pfn = max(cc->zone->zone_start_pfn, 2634 pageblock_start_pfn(cc->migrate_pfn - 1)); 2635 } 2636 2637 /* 2638 * Record the number of pages to migrate since the 2639 * compaction_alloc/free() will update cc->nr_migratepages 2640 * properly. 2641 */ 2642 nr_migratepages = cc->nr_migratepages; 2643 err = migrate_pages(&cc->migratepages, compaction_alloc, 2644 compaction_free, (unsigned long)cc, cc->mode, 2645 MR_COMPACTION, &nr_succeeded); 2646 2647 trace_mm_compaction_migratepages(nr_migratepages, nr_succeeded); 2648 2649 /* All pages were either migrated or will be released */ 2650 cc->nr_migratepages = 0; 2651 if (err) { 2652 putback_movable_pages(&cc->migratepages); 2653 /* 2654 * migrate_pages() may return -ENOMEM when scanners meet 2655 * and we want compact_finished() to detect it 2656 */ 2657 if (err == -ENOMEM && !compact_scanners_met(cc)) { 2658 ret = COMPACT_CONTENDED; 2659 goto out; 2660 } 2661 /* 2662 * If an ASYNC or SYNC_LIGHT fails to migrate a page 2663 * within the pageblock_order-aligned block and 2664 * fast_find_migrateblock may be used then scan the 2665 * remainder of the pageblock. This will mark the 2666 * pageblock "skip" to avoid rescanning in the near 2667 * future. This will isolate more pages than necessary 2668 * for the request but avoid loops due to 2669 * fast_find_migrateblock revisiting blocks that were 2670 * recently partially scanned. 2671 */ 2672 if (!pageblock_aligned(cc->migrate_pfn) && 2673 !cc->ignore_skip_hint && !cc->finish_pageblock && 2674 (cc->mode < MIGRATE_SYNC)) { 2675 cc->finish_pageblock = true; 2676 2677 /* 2678 * Draining pcplists does not help THP if 2679 * any page failed to migrate. Even after 2680 * drain, the pageblock will not be free. 2681 */ 2682 if (cc->order == COMPACTION_HPAGE_ORDER) 2683 last_migrated_pfn = 0; 2684 2685 goto rescan; 2686 } 2687 } 2688 2689 /* Stop if a page has been captured */ 2690 if (capc && capc->page) { 2691 ret = COMPACT_SUCCESS; 2692 break; 2693 } 2694 2695 check_drain: 2696 /* 2697 * Has the migration scanner moved away from the previous 2698 * cc->order aligned block where we migrated from? If yes, 2699 * flush the pages that were freed, so that they can merge and 2700 * compact_finished() can detect immediately if allocation 2701 * would succeed. 2702 */ 2703 if (cc->order > 0 && last_migrated_pfn) { 2704 unsigned long current_block_start = 2705 block_start_pfn(cc->migrate_pfn, cc->order); 2706 2707 if (last_migrated_pfn < current_block_start) { 2708 lru_add_drain_cpu_zone(cc->zone); 2709 /* No more flushing until we migrate again */ 2710 last_migrated_pfn = 0; 2711 } 2712 } 2713 } 2714 2715 out: 2716 /* 2717 * Release free pages and update where the free scanner should restart, 2718 * so we don't leave any returned pages behind in the next attempt. 2719 */ 2720 if (cc->nr_freepages > 0) { 2721 unsigned long free_pfn = release_free_list(cc->freepages); 2722 2723 cc->nr_freepages = 0; 2724 VM_BUG_ON(free_pfn == 0); 2725 /* The cached pfn is always the first in a pageblock */ 2726 free_pfn = pageblock_start_pfn(free_pfn); 2727 /* 2728 * Only go back, not forward. The cached pfn might have been 2729 * already reset to zone end in compact_finished() 2730 */ 2731 if (free_pfn > cc->zone->compact_cached_free_pfn) 2732 cc->zone->compact_cached_free_pfn = free_pfn; 2733 } 2734 2735 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned); 2736 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned); 2737 2738 trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret); 2739 2740 VM_BUG_ON(!list_empty(&cc->migratepages)); 2741 2742 return ret; 2743 } 2744 2745 static enum compact_result compact_zone_order(struct zone *zone, int order, 2746 gfp_t gfp_mask, enum compact_priority prio, 2747 unsigned int alloc_flags, int highest_zoneidx, 2748 struct page **capture) 2749 { 2750 enum compact_result ret; 2751 struct compact_control cc = { 2752 .order = order, 2753 .search_order = order, 2754 .gfp_mask = gfp_mask, 2755 .zone = zone, 2756 .mode = (prio == COMPACT_PRIO_ASYNC) ? 2757 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT, 2758 .alloc_flags = alloc_flags, 2759 .highest_zoneidx = highest_zoneidx, 2760 .direct_compaction = true, 2761 .whole_zone = (prio == MIN_COMPACT_PRIORITY), 2762 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY), 2763 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY) 2764 }; 2765 struct capture_control capc = { 2766 .cc = &cc, 2767 .page = NULL, 2768 }; 2769 2770 /* 2771 * Make sure the structs are really initialized before we expose the 2772 * capture control, in case we are interrupted and the interrupt handler 2773 * frees a page. 2774 */ 2775 barrier(); 2776 WRITE_ONCE(current->capture_control, &capc); 2777 2778 ret = compact_zone(&cc, &capc); 2779 2780 /* 2781 * Make sure we hide capture control first before we read the captured 2782 * page pointer, otherwise an interrupt could free and capture a page 2783 * and we would leak it. 2784 */ 2785 WRITE_ONCE(current->capture_control, NULL); 2786 *capture = READ_ONCE(capc.page); 2787 /* 2788 * Technically, it is also possible that compaction is skipped but 2789 * the page is still captured out of luck(IRQ came and freed the page). 2790 * Returning COMPACT_SUCCESS in such cases helps in properly accounting 2791 * the COMPACT[STALL|FAIL] when compaction is skipped. 2792 */ 2793 if (*capture) 2794 ret = COMPACT_SUCCESS; 2795 2796 return ret; 2797 } 2798 2799 /** 2800 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 2801 * @gfp_mask: The GFP mask of the current allocation 2802 * @order: The order of the current allocation 2803 * @alloc_flags: The allocation flags of the current allocation 2804 * @ac: The context of current allocation 2805 * @prio: Determines how hard direct compaction should try to succeed 2806 * @capture: Pointer to free page created by compaction will be stored here 2807 * 2808 * This is the main entry point for direct page compaction. 2809 */ 2810 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 2811 unsigned int alloc_flags, const struct alloc_context *ac, 2812 enum compact_priority prio, struct page **capture) 2813 { 2814 struct zoneref *z; 2815 struct zone *zone; 2816 enum compact_result rc = COMPACT_SKIPPED; 2817 2818 if (!gfp_compaction_allowed(gfp_mask)) 2819 return COMPACT_SKIPPED; 2820 2821 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio); 2822 2823 /* Compact each zone in the list */ 2824 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2825 ac->highest_zoneidx, ac->nodemask) { 2826 enum compact_result status; 2827 2828 if (cpusets_enabled() && 2829 (alloc_flags & ALLOC_CPUSET) && 2830 !__cpuset_zone_allowed(zone, gfp_mask)) 2831 continue; 2832 2833 if (prio > MIN_COMPACT_PRIORITY 2834 && compaction_deferred(zone, order)) { 2835 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); 2836 continue; 2837 } 2838 2839 status = compact_zone_order(zone, order, gfp_mask, prio, 2840 alloc_flags, ac->highest_zoneidx, capture); 2841 rc = max(status, rc); 2842 2843 /* The allocation should succeed, stop compacting */ 2844 if (status == COMPACT_SUCCESS) { 2845 /* 2846 * We think the allocation will succeed in this zone, 2847 * but it is not certain, hence the false. The caller 2848 * will repeat this with true if allocation indeed 2849 * succeeds in this zone. 2850 */ 2851 compaction_defer_reset(zone, order, false); 2852 2853 break; 2854 } 2855 2856 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE || 2857 status == COMPACT_PARTIAL_SKIPPED)) 2858 /* 2859 * We think that allocation won't succeed in this zone 2860 * so we defer compaction there. If it ends up 2861 * succeeding after all, it will be reset. 2862 */ 2863 defer_compaction(zone, order); 2864 2865 /* 2866 * We might have stopped compacting due to need_resched() in 2867 * async compaction, or due to a fatal signal detected. In that 2868 * case do not try further zones 2869 */ 2870 if ((prio == COMPACT_PRIO_ASYNC && need_resched()) 2871 || fatal_signal_pending(current)) 2872 break; 2873 } 2874 2875 return rc; 2876 } 2877 2878 /* 2879 * compact_node() - compact all zones within a node 2880 * @pgdat: The node page data 2881 * @proactive: Whether the compaction is proactive 2882 * 2883 * For proactive compaction, compact till each zone's fragmentation score 2884 * reaches within proactive compaction thresholds (as determined by the 2885 * proactiveness tunable), it is possible that the function returns before 2886 * reaching score targets due to various back-off conditions, such as, 2887 * contention on per-node or per-zone locks. 2888 */ 2889 static int compact_node(pg_data_t *pgdat, bool proactive) 2890 { 2891 int zoneid; 2892 struct zone *zone; 2893 struct compact_control cc = { 2894 .order = -1, 2895 .mode = proactive ? MIGRATE_SYNC_LIGHT : MIGRATE_SYNC, 2896 .ignore_skip_hint = true, 2897 .whole_zone = true, 2898 .gfp_mask = GFP_KERNEL, 2899 .proactive_compaction = proactive, 2900 }; 2901 2902 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2903 zone = &pgdat->node_zones[zoneid]; 2904 if (!populated_zone(zone)) 2905 continue; 2906 2907 if (fatal_signal_pending(current)) 2908 return -EINTR; 2909 2910 cc.zone = zone; 2911 2912 compact_zone(&cc, NULL); 2913 2914 if (proactive) { 2915 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 2916 cc.total_migrate_scanned); 2917 count_compact_events(KCOMPACTD_FREE_SCANNED, 2918 cc.total_free_scanned); 2919 } 2920 } 2921 2922 return 0; 2923 } 2924 2925 /* Compact all zones of all nodes in the system */ 2926 static int compact_nodes(void) 2927 { 2928 int ret, nid; 2929 2930 /* Flush pending updates to the LRU lists */ 2931 lru_add_drain_all(); 2932 2933 for_each_online_node(nid) { 2934 ret = compact_node(NODE_DATA(nid), false); 2935 if (ret) 2936 return ret; 2937 } 2938 2939 return 0; 2940 } 2941 2942 static int compaction_proactiveness_sysctl_handler(const struct ctl_table *table, int write, 2943 void *buffer, size_t *length, loff_t *ppos) 2944 { 2945 int rc, nid; 2946 2947 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 2948 if (rc) 2949 return rc; 2950 2951 if (write && sysctl_compaction_proactiveness) { 2952 for_each_online_node(nid) { 2953 pg_data_t *pgdat = NODE_DATA(nid); 2954 2955 if (pgdat->proactive_compact_trigger) 2956 continue; 2957 2958 pgdat->proactive_compact_trigger = true; 2959 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1, 2960 pgdat->nr_zones - 1); 2961 wake_up_interruptible(&pgdat->kcompactd_wait); 2962 } 2963 } 2964 2965 return 0; 2966 } 2967 2968 /* 2969 * This is the entry point for compacting all nodes via 2970 * /proc/sys/vm/compact_memory 2971 */ 2972 static int sysctl_compaction_handler(const struct ctl_table *table, int write, 2973 void *buffer, size_t *length, loff_t *ppos) 2974 { 2975 int ret; 2976 2977 ret = proc_dointvec(table, write, buffer, length, ppos); 2978 if (ret) 2979 return ret; 2980 2981 if (sysctl_compact_memory != 1) 2982 return -EINVAL; 2983 2984 if (write) 2985 ret = compact_nodes(); 2986 2987 return ret; 2988 } 2989 2990 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 2991 static ssize_t compact_store(struct device *dev, 2992 struct device_attribute *attr, 2993 const char *buf, size_t count) 2994 { 2995 int nid = dev->id; 2996 2997 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 2998 /* Flush pending updates to the LRU lists */ 2999 lru_add_drain_all(); 3000 3001 compact_node(NODE_DATA(nid), false); 3002 } 3003 3004 return count; 3005 } 3006 static DEVICE_ATTR_WO(compact); 3007 3008 int compaction_register_node(struct node *node) 3009 { 3010 return device_create_file(&node->dev, &dev_attr_compact); 3011 } 3012 3013 void compaction_unregister_node(struct node *node) 3014 { 3015 device_remove_file(&node->dev, &dev_attr_compact); 3016 } 3017 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 3018 3019 static inline bool kcompactd_work_requested(pg_data_t *pgdat) 3020 { 3021 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() || 3022 pgdat->proactive_compact_trigger; 3023 } 3024 3025 static bool kcompactd_node_suitable(pg_data_t *pgdat) 3026 { 3027 int zoneid; 3028 struct zone *zone; 3029 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx; 3030 enum compact_result ret; 3031 3032 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) { 3033 zone = &pgdat->node_zones[zoneid]; 3034 3035 if (!populated_zone(zone)) 3036 continue; 3037 3038 ret = compaction_suit_allocation_order(zone, 3039 pgdat->kcompactd_max_order, 3040 highest_zoneidx, ALLOC_WMARK_MIN); 3041 if (ret == COMPACT_CONTINUE) 3042 return true; 3043 } 3044 3045 return false; 3046 } 3047 3048 static void kcompactd_do_work(pg_data_t *pgdat) 3049 { 3050 /* 3051 * With no special task, compact all zones so that a page of requested 3052 * order is allocatable. 3053 */ 3054 int zoneid; 3055 struct zone *zone; 3056 struct compact_control cc = { 3057 .order = pgdat->kcompactd_max_order, 3058 .search_order = pgdat->kcompactd_max_order, 3059 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx, 3060 .mode = MIGRATE_SYNC_LIGHT, 3061 .ignore_skip_hint = false, 3062 .gfp_mask = GFP_KERNEL, 3063 }; 3064 enum compact_result ret; 3065 3066 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 3067 cc.highest_zoneidx); 3068 count_compact_event(KCOMPACTD_WAKE); 3069 3070 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) { 3071 int status; 3072 3073 zone = &pgdat->node_zones[zoneid]; 3074 if (!populated_zone(zone)) 3075 continue; 3076 3077 if (compaction_deferred(zone, cc.order)) 3078 continue; 3079 3080 ret = compaction_suit_allocation_order(zone, 3081 cc.order, zoneid, ALLOC_WMARK_MIN); 3082 if (ret != COMPACT_CONTINUE) 3083 continue; 3084 3085 if (kthread_should_stop()) 3086 return; 3087 3088 cc.zone = zone; 3089 status = compact_zone(&cc, NULL); 3090 3091 if (status == COMPACT_SUCCESS) { 3092 compaction_defer_reset(zone, cc.order, false); 3093 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { 3094 /* 3095 * Buddy pages may become stranded on pcps that could 3096 * otherwise coalesce on the zone's free area for 3097 * order >= cc.order. This is ratelimited by the 3098 * upcoming deferral. 3099 */ 3100 drain_all_pages(zone); 3101 3102 /* 3103 * We use sync migration mode here, so we defer like 3104 * sync direct compaction does. 3105 */ 3106 defer_compaction(zone, cc.order); 3107 } 3108 3109 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 3110 cc.total_migrate_scanned); 3111 count_compact_events(KCOMPACTD_FREE_SCANNED, 3112 cc.total_free_scanned); 3113 } 3114 3115 /* 3116 * Regardless of success, we are done until woken up next. But remember 3117 * the requested order/highest_zoneidx in case it was higher/tighter 3118 * than our current ones 3119 */ 3120 if (pgdat->kcompactd_max_order <= cc.order) 3121 pgdat->kcompactd_max_order = 0; 3122 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx) 3123 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 3124 } 3125 3126 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx) 3127 { 3128 if (!order) 3129 return; 3130 3131 if (pgdat->kcompactd_max_order < order) 3132 pgdat->kcompactd_max_order = order; 3133 3134 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx) 3135 pgdat->kcompactd_highest_zoneidx = highest_zoneidx; 3136 3137 /* 3138 * Pairs with implicit barrier in wait_event_freezable() 3139 * such that wakeups are not missed. 3140 */ 3141 if (!wq_has_sleeper(&pgdat->kcompactd_wait)) 3142 return; 3143 3144 if (!kcompactd_node_suitable(pgdat)) 3145 return; 3146 3147 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 3148 highest_zoneidx); 3149 wake_up_interruptible(&pgdat->kcompactd_wait); 3150 } 3151 3152 /* 3153 * The background compaction daemon, started as a kernel thread 3154 * from the init process. 3155 */ 3156 static int kcompactd(void *p) 3157 { 3158 pg_data_t *pgdat = (pg_data_t *)p; 3159 struct task_struct *tsk = current; 3160 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC); 3161 long timeout = default_timeout; 3162 3163 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3164 3165 if (!cpumask_empty(cpumask)) 3166 set_cpus_allowed_ptr(tsk, cpumask); 3167 3168 set_freezable(); 3169 3170 pgdat->kcompactd_max_order = 0; 3171 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 3172 3173 while (!kthread_should_stop()) { 3174 unsigned long pflags; 3175 3176 /* 3177 * Avoid the unnecessary wakeup for proactive compaction 3178 * when it is disabled. 3179 */ 3180 if (!sysctl_compaction_proactiveness) 3181 timeout = MAX_SCHEDULE_TIMEOUT; 3182 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 3183 if (wait_event_freezable_timeout(pgdat->kcompactd_wait, 3184 kcompactd_work_requested(pgdat), timeout) && 3185 !pgdat->proactive_compact_trigger) { 3186 3187 psi_memstall_enter(&pflags); 3188 kcompactd_do_work(pgdat); 3189 psi_memstall_leave(&pflags); 3190 /* 3191 * Reset the timeout value. The defer timeout from 3192 * proactive compaction is lost here but that is fine 3193 * as the condition of the zone changing substantionally 3194 * then carrying on with the previous defer interval is 3195 * not useful. 3196 */ 3197 timeout = default_timeout; 3198 continue; 3199 } 3200 3201 /* 3202 * Start the proactive work with default timeout. Based 3203 * on the fragmentation score, this timeout is updated. 3204 */ 3205 timeout = default_timeout; 3206 if (should_proactive_compact_node(pgdat)) { 3207 unsigned int prev_score, score; 3208 3209 prev_score = fragmentation_score_node(pgdat); 3210 compact_node(pgdat, true); 3211 score = fragmentation_score_node(pgdat); 3212 /* 3213 * Defer proactive compaction if the fragmentation 3214 * score did not go down i.e. no progress made. 3215 */ 3216 if (unlikely(score >= prev_score)) 3217 timeout = 3218 default_timeout << COMPACT_MAX_DEFER_SHIFT; 3219 } 3220 if (unlikely(pgdat->proactive_compact_trigger)) 3221 pgdat->proactive_compact_trigger = false; 3222 } 3223 3224 return 0; 3225 } 3226 3227 /* 3228 * This kcompactd start function will be called by init and node-hot-add. 3229 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 3230 */ 3231 void __meminit kcompactd_run(int nid) 3232 { 3233 pg_data_t *pgdat = NODE_DATA(nid); 3234 3235 if (pgdat->kcompactd) 3236 return; 3237 3238 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); 3239 if (IS_ERR(pgdat->kcompactd)) { 3240 pr_err("Failed to start kcompactd on node %d\n", nid); 3241 pgdat->kcompactd = NULL; 3242 } 3243 } 3244 3245 /* 3246 * Called by memory hotplug when all memory in a node is offlined. Caller must 3247 * be holding mem_hotplug_begin/done(). 3248 */ 3249 void __meminit kcompactd_stop(int nid) 3250 { 3251 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 3252 3253 if (kcompactd) { 3254 kthread_stop(kcompactd); 3255 NODE_DATA(nid)->kcompactd = NULL; 3256 } 3257 } 3258 3259 /* 3260 * It's optimal to keep kcompactd on the same CPUs as their memory, but 3261 * not required for correctness. So if the last cpu in a node goes 3262 * away, we get changed to run anywhere: as the first one comes back, 3263 * restore their cpu bindings. 3264 */ 3265 static int kcompactd_cpu_online(unsigned int cpu) 3266 { 3267 int nid; 3268 3269 for_each_node_state(nid, N_MEMORY) { 3270 pg_data_t *pgdat = NODE_DATA(nid); 3271 const struct cpumask *mask; 3272 3273 mask = cpumask_of_node(pgdat->node_id); 3274 3275 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3276 /* One of our CPUs online: restore mask */ 3277 if (pgdat->kcompactd) 3278 set_cpus_allowed_ptr(pgdat->kcompactd, mask); 3279 } 3280 return 0; 3281 } 3282 3283 static int proc_dointvec_minmax_warn_RT_change(const struct ctl_table *table, 3284 int write, void *buffer, size_t *lenp, loff_t *ppos) 3285 { 3286 int ret, old; 3287 3288 if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write) 3289 return proc_dointvec_minmax(table, write, buffer, lenp, ppos); 3290 3291 old = *(int *)table->data; 3292 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 3293 if (ret) 3294 return ret; 3295 if (old != *(int *)table->data) 3296 pr_warn_once("sysctl attribute %s changed by %s[%d]\n", 3297 table->procname, current->comm, 3298 task_pid_nr(current)); 3299 return ret; 3300 } 3301 3302 static struct ctl_table vm_compaction[] = { 3303 { 3304 .procname = "compact_memory", 3305 .data = &sysctl_compact_memory, 3306 .maxlen = sizeof(int), 3307 .mode = 0200, 3308 .proc_handler = sysctl_compaction_handler, 3309 }, 3310 { 3311 .procname = "compaction_proactiveness", 3312 .data = &sysctl_compaction_proactiveness, 3313 .maxlen = sizeof(sysctl_compaction_proactiveness), 3314 .mode = 0644, 3315 .proc_handler = compaction_proactiveness_sysctl_handler, 3316 .extra1 = SYSCTL_ZERO, 3317 .extra2 = SYSCTL_ONE_HUNDRED, 3318 }, 3319 { 3320 .procname = "extfrag_threshold", 3321 .data = &sysctl_extfrag_threshold, 3322 .maxlen = sizeof(int), 3323 .mode = 0644, 3324 .proc_handler = proc_dointvec_minmax, 3325 .extra1 = SYSCTL_ZERO, 3326 .extra2 = SYSCTL_ONE_THOUSAND, 3327 }, 3328 { 3329 .procname = "compact_unevictable_allowed", 3330 .data = &sysctl_compact_unevictable_allowed, 3331 .maxlen = sizeof(int), 3332 .mode = 0644, 3333 .proc_handler = proc_dointvec_minmax_warn_RT_change, 3334 .extra1 = SYSCTL_ZERO, 3335 .extra2 = SYSCTL_ONE, 3336 }, 3337 }; 3338 3339 static int __init kcompactd_init(void) 3340 { 3341 int nid; 3342 int ret; 3343 3344 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 3345 "mm/compaction:online", 3346 kcompactd_cpu_online, NULL); 3347 if (ret < 0) { 3348 pr_err("kcompactd: failed to register hotplug callbacks.\n"); 3349 return ret; 3350 } 3351 3352 for_each_node_state(nid, N_MEMORY) 3353 kcompactd_run(nid); 3354 register_sysctl_init("vm", vm_compaction); 3355 return 0; 3356 } 3357 subsys_initcall(kcompactd_init) 3358 3359 #endif /* CONFIG_COMPACTION */ 3360