1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/compaction.c 4 * 5 * Memory compaction for the reduction of external fragmentation. Note that 6 * this heavily depends upon page migration to do all the real heavy 7 * lifting 8 * 9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 10 */ 11 #include <linux/cpu.h> 12 #include <linux/swap.h> 13 #include <linux/migrate.h> 14 #include <linux/compaction.h> 15 #include <linux/mm_inline.h> 16 #include <linux/sched/signal.h> 17 #include <linux/backing-dev.h> 18 #include <linux/sysctl.h> 19 #include <linux/sysfs.h> 20 #include <linux/page-isolation.h> 21 #include <linux/kasan.h> 22 #include <linux/kthread.h> 23 #include <linux/freezer.h> 24 #include <linux/page_owner.h> 25 #include <linux/psi.h> 26 #include "internal.h" 27 28 #ifdef CONFIG_COMPACTION 29 /* 30 * Fragmentation score check interval for proactive compaction purposes. 31 */ 32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500) 33 34 static inline void count_compact_event(enum vm_event_item item) 35 { 36 count_vm_event(item); 37 } 38 39 static inline void count_compact_events(enum vm_event_item item, long delta) 40 { 41 count_vm_events(item, delta); 42 } 43 #else 44 #define count_compact_event(item) do { } while (0) 45 #define count_compact_events(item, delta) do { } while (0) 46 #endif 47 48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 49 50 #define CREATE_TRACE_POINTS 51 #include <trace/events/compaction.h> 52 53 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order)) 54 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order)) 55 56 /* 57 * Page order with-respect-to which proactive compaction 58 * calculates external fragmentation, which is used as 59 * the "fragmentation score" of a node/zone. 60 */ 61 #if defined CONFIG_TRANSPARENT_HUGEPAGE 62 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER 63 #elif defined CONFIG_HUGETLBFS 64 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER 65 #else 66 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT) 67 #endif 68 69 static unsigned long release_freepages(struct list_head *freelist) 70 { 71 struct page *page, *next; 72 unsigned long high_pfn = 0; 73 74 list_for_each_entry_safe(page, next, freelist, lru) { 75 unsigned long pfn = page_to_pfn(page); 76 list_del(&page->lru); 77 __free_page(page); 78 if (pfn > high_pfn) 79 high_pfn = pfn; 80 } 81 82 return high_pfn; 83 } 84 85 static void split_map_pages(struct list_head *list) 86 { 87 unsigned int i, order, nr_pages; 88 struct page *page, *next; 89 LIST_HEAD(tmp_list); 90 91 list_for_each_entry_safe(page, next, list, lru) { 92 list_del(&page->lru); 93 94 order = page_private(page); 95 nr_pages = 1 << order; 96 97 post_alloc_hook(page, order, __GFP_MOVABLE); 98 if (order) 99 split_page(page, order); 100 101 for (i = 0; i < nr_pages; i++) { 102 list_add(&page->lru, &tmp_list); 103 page++; 104 } 105 } 106 107 list_splice(&tmp_list, list); 108 } 109 110 #ifdef CONFIG_COMPACTION 111 bool PageMovable(struct page *page) 112 { 113 const struct movable_operations *mops; 114 115 VM_BUG_ON_PAGE(!PageLocked(page), page); 116 if (!__PageMovable(page)) 117 return false; 118 119 mops = page_movable_ops(page); 120 if (mops) 121 return true; 122 123 return false; 124 } 125 126 void __SetPageMovable(struct page *page, const struct movable_operations *mops) 127 { 128 VM_BUG_ON_PAGE(!PageLocked(page), page); 129 VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page); 130 page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE); 131 } 132 EXPORT_SYMBOL(__SetPageMovable); 133 134 void __ClearPageMovable(struct page *page) 135 { 136 VM_BUG_ON_PAGE(!PageMovable(page), page); 137 /* 138 * This page still has the type of a movable page, but it's 139 * actually not movable any more. 140 */ 141 page->mapping = (void *)PAGE_MAPPING_MOVABLE; 142 } 143 EXPORT_SYMBOL(__ClearPageMovable); 144 145 /* Do not skip compaction more than 64 times */ 146 #define COMPACT_MAX_DEFER_SHIFT 6 147 148 /* 149 * Compaction is deferred when compaction fails to result in a page 150 * allocation success. 1 << compact_defer_shift, compactions are skipped up 151 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 152 */ 153 static void defer_compaction(struct zone *zone, int order) 154 { 155 zone->compact_considered = 0; 156 zone->compact_defer_shift++; 157 158 if (order < zone->compact_order_failed) 159 zone->compact_order_failed = order; 160 161 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 162 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 163 164 trace_mm_compaction_defer_compaction(zone, order); 165 } 166 167 /* Returns true if compaction should be skipped this time */ 168 static bool compaction_deferred(struct zone *zone, int order) 169 { 170 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 171 172 if (order < zone->compact_order_failed) 173 return false; 174 175 /* Avoid possible overflow */ 176 if (++zone->compact_considered >= defer_limit) { 177 zone->compact_considered = defer_limit; 178 return false; 179 } 180 181 trace_mm_compaction_deferred(zone, order); 182 183 return true; 184 } 185 186 /* 187 * Update defer tracking counters after successful compaction of given order, 188 * which means an allocation either succeeded (alloc_success == true) or is 189 * expected to succeed. 190 */ 191 void compaction_defer_reset(struct zone *zone, int order, 192 bool alloc_success) 193 { 194 if (alloc_success) { 195 zone->compact_considered = 0; 196 zone->compact_defer_shift = 0; 197 } 198 if (order >= zone->compact_order_failed) 199 zone->compact_order_failed = order + 1; 200 201 trace_mm_compaction_defer_reset(zone, order); 202 } 203 204 /* Returns true if restarting compaction after many failures */ 205 static bool compaction_restarting(struct zone *zone, int order) 206 { 207 if (order < zone->compact_order_failed) 208 return false; 209 210 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 211 zone->compact_considered >= 1UL << zone->compact_defer_shift; 212 } 213 214 /* Returns true if the pageblock should be scanned for pages to isolate. */ 215 static inline bool isolation_suitable(struct compact_control *cc, 216 struct page *page) 217 { 218 if (cc->ignore_skip_hint) 219 return true; 220 221 return !get_pageblock_skip(page); 222 } 223 224 static void reset_cached_positions(struct zone *zone) 225 { 226 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 227 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 228 zone->compact_cached_free_pfn = 229 pageblock_start_pfn(zone_end_pfn(zone) - 1); 230 } 231 232 #ifdef CONFIG_SPARSEMEM 233 /* 234 * If the PFN falls into an offline section, return the start PFN of the 235 * next online section. If the PFN falls into an online section or if 236 * there is no next online section, return 0. 237 */ 238 static unsigned long skip_offline_sections(unsigned long start_pfn) 239 { 240 unsigned long start_nr = pfn_to_section_nr(start_pfn); 241 242 if (online_section_nr(start_nr)) 243 return 0; 244 245 while (++start_nr <= __highest_present_section_nr) { 246 if (online_section_nr(start_nr)) 247 return section_nr_to_pfn(start_nr); 248 } 249 250 return 0; 251 } 252 #else 253 static unsigned long skip_offline_sections(unsigned long start_pfn) 254 { 255 return 0; 256 } 257 #endif 258 259 /* 260 * Compound pages of >= pageblock_order should consistently be skipped until 261 * released. It is always pointless to compact pages of such order (if they are 262 * migratable), and the pageblocks they occupy cannot contain any free pages. 263 */ 264 static bool pageblock_skip_persistent(struct page *page) 265 { 266 if (!PageCompound(page)) 267 return false; 268 269 page = compound_head(page); 270 271 if (compound_order(page) >= pageblock_order) 272 return true; 273 274 return false; 275 } 276 277 static bool 278 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source, 279 bool check_target) 280 { 281 struct page *page = pfn_to_online_page(pfn); 282 struct page *block_page; 283 struct page *end_page; 284 unsigned long block_pfn; 285 286 if (!page) 287 return false; 288 if (zone != page_zone(page)) 289 return false; 290 if (pageblock_skip_persistent(page)) 291 return false; 292 293 /* 294 * If skip is already cleared do no further checking once the 295 * restart points have been set. 296 */ 297 if (check_source && check_target && !get_pageblock_skip(page)) 298 return true; 299 300 /* 301 * If clearing skip for the target scanner, do not select a 302 * non-movable pageblock as the starting point. 303 */ 304 if (!check_source && check_target && 305 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 306 return false; 307 308 /* Ensure the start of the pageblock or zone is online and valid */ 309 block_pfn = pageblock_start_pfn(pfn); 310 block_pfn = max(block_pfn, zone->zone_start_pfn); 311 block_page = pfn_to_online_page(block_pfn); 312 if (block_page) { 313 page = block_page; 314 pfn = block_pfn; 315 } 316 317 /* Ensure the end of the pageblock or zone is online and valid */ 318 block_pfn = pageblock_end_pfn(pfn) - 1; 319 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1); 320 end_page = pfn_to_online_page(block_pfn); 321 if (!end_page) 322 return false; 323 324 /* 325 * Only clear the hint if a sample indicates there is either a 326 * free page or an LRU page in the block. One or other condition 327 * is necessary for the block to be a migration source/target. 328 */ 329 do { 330 if (check_source && PageLRU(page)) { 331 clear_pageblock_skip(page); 332 return true; 333 } 334 335 if (check_target && PageBuddy(page)) { 336 clear_pageblock_skip(page); 337 return true; 338 } 339 340 page += (1 << PAGE_ALLOC_COSTLY_ORDER); 341 } while (page <= end_page); 342 343 return false; 344 } 345 346 /* 347 * This function is called to clear all cached information on pageblocks that 348 * should be skipped for page isolation when the migrate and free page scanner 349 * meet. 350 */ 351 static void __reset_isolation_suitable(struct zone *zone) 352 { 353 unsigned long migrate_pfn = zone->zone_start_pfn; 354 unsigned long free_pfn = zone_end_pfn(zone) - 1; 355 unsigned long reset_migrate = free_pfn; 356 unsigned long reset_free = migrate_pfn; 357 bool source_set = false; 358 bool free_set = false; 359 360 if (!zone->compact_blockskip_flush) 361 return; 362 363 zone->compact_blockskip_flush = false; 364 365 /* 366 * Walk the zone and update pageblock skip information. Source looks 367 * for PageLRU while target looks for PageBuddy. When the scanner 368 * is found, both PageBuddy and PageLRU are checked as the pageblock 369 * is suitable as both source and target. 370 */ 371 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages, 372 free_pfn -= pageblock_nr_pages) { 373 cond_resched(); 374 375 /* Update the migrate PFN */ 376 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) && 377 migrate_pfn < reset_migrate) { 378 source_set = true; 379 reset_migrate = migrate_pfn; 380 zone->compact_init_migrate_pfn = reset_migrate; 381 zone->compact_cached_migrate_pfn[0] = reset_migrate; 382 zone->compact_cached_migrate_pfn[1] = reset_migrate; 383 } 384 385 /* Update the free PFN */ 386 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) && 387 free_pfn > reset_free) { 388 free_set = true; 389 reset_free = free_pfn; 390 zone->compact_init_free_pfn = reset_free; 391 zone->compact_cached_free_pfn = reset_free; 392 } 393 } 394 395 /* Leave no distance if no suitable block was reset */ 396 if (reset_migrate >= reset_free) { 397 zone->compact_cached_migrate_pfn[0] = migrate_pfn; 398 zone->compact_cached_migrate_pfn[1] = migrate_pfn; 399 zone->compact_cached_free_pfn = free_pfn; 400 } 401 } 402 403 void reset_isolation_suitable(pg_data_t *pgdat) 404 { 405 int zoneid; 406 407 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 408 struct zone *zone = &pgdat->node_zones[zoneid]; 409 if (!populated_zone(zone)) 410 continue; 411 412 /* Only flush if a full compaction finished recently */ 413 if (zone->compact_blockskip_flush) 414 __reset_isolation_suitable(zone); 415 } 416 } 417 418 /* 419 * Sets the pageblock skip bit if it was clear. Note that this is a hint as 420 * locks are not required for read/writers. Returns true if it was already set. 421 */ 422 static bool test_and_set_skip(struct compact_control *cc, struct page *page) 423 { 424 bool skip; 425 426 /* Do not update if skip hint is being ignored */ 427 if (cc->ignore_skip_hint) 428 return false; 429 430 skip = get_pageblock_skip(page); 431 if (!skip && !cc->no_set_skip_hint) 432 set_pageblock_skip(page); 433 434 return skip; 435 } 436 437 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 438 { 439 struct zone *zone = cc->zone; 440 441 pfn = pageblock_end_pfn(pfn); 442 443 /* Set for isolation rather than compaction */ 444 if (cc->no_set_skip_hint) 445 return; 446 447 if (pfn > zone->compact_cached_migrate_pfn[0]) 448 zone->compact_cached_migrate_pfn[0] = pfn; 449 if (cc->mode != MIGRATE_ASYNC && 450 pfn > zone->compact_cached_migrate_pfn[1]) 451 zone->compact_cached_migrate_pfn[1] = pfn; 452 } 453 454 /* 455 * If no pages were isolated then mark this pageblock to be skipped in the 456 * future. The information is later cleared by __reset_isolation_suitable(). 457 */ 458 static void update_pageblock_skip(struct compact_control *cc, 459 struct page *page, unsigned long pfn) 460 { 461 struct zone *zone = cc->zone; 462 463 if (cc->no_set_skip_hint) 464 return; 465 466 set_pageblock_skip(page); 467 468 /* Update where async and sync compaction should restart */ 469 if (pfn < zone->compact_cached_free_pfn) 470 zone->compact_cached_free_pfn = pfn; 471 } 472 #else 473 static inline bool isolation_suitable(struct compact_control *cc, 474 struct page *page) 475 { 476 return true; 477 } 478 479 static inline bool pageblock_skip_persistent(struct page *page) 480 { 481 return false; 482 } 483 484 static inline void update_pageblock_skip(struct compact_control *cc, 485 struct page *page, unsigned long pfn) 486 { 487 } 488 489 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 490 { 491 } 492 493 static bool test_and_set_skip(struct compact_control *cc, struct page *page) 494 { 495 return false; 496 } 497 #endif /* CONFIG_COMPACTION */ 498 499 /* 500 * Compaction requires the taking of some coarse locks that are potentially 501 * very heavily contended. For async compaction, trylock and record if the 502 * lock is contended. The lock will still be acquired but compaction will 503 * abort when the current block is finished regardless of success rate. 504 * Sync compaction acquires the lock. 505 * 506 * Always returns true which makes it easier to track lock state in callers. 507 */ 508 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags, 509 struct compact_control *cc) 510 __acquires(lock) 511 { 512 /* Track if the lock is contended in async mode */ 513 if (cc->mode == MIGRATE_ASYNC && !cc->contended) { 514 if (spin_trylock_irqsave(lock, *flags)) 515 return true; 516 517 cc->contended = true; 518 } 519 520 spin_lock_irqsave(lock, *flags); 521 return true; 522 } 523 524 /* 525 * Compaction requires the taking of some coarse locks that are potentially 526 * very heavily contended. The lock should be periodically unlocked to avoid 527 * having disabled IRQs for a long time, even when there is nobody waiting on 528 * the lock. It might also be that allowing the IRQs will result in 529 * need_resched() becoming true. If scheduling is needed, compaction schedules. 530 * Either compaction type will also abort if a fatal signal is pending. 531 * In either case if the lock was locked, it is dropped and not regained. 532 * 533 * Returns true if compaction should abort due to fatal signal pending. 534 * Returns false when compaction can continue. 535 */ 536 static bool compact_unlock_should_abort(spinlock_t *lock, 537 unsigned long flags, bool *locked, struct compact_control *cc) 538 { 539 if (*locked) { 540 spin_unlock_irqrestore(lock, flags); 541 *locked = false; 542 } 543 544 if (fatal_signal_pending(current)) { 545 cc->contended = true; 546 return true; 547 } 548 549 cond_resched(); 550 551 return false; 552 } 553 554 /* 555 * Isolate free pages onto a private freelist. If @strict is true, will abort 556 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 557 * (even though it may still end up isolating some pages). 558 */ 559 static unsigned long isolate_freepages_block(struct compact_control *cc, 560 unsigned long *start_pfn, 561 unsigned long end_pfn, 562 struct list_head *freelist, 563 unsigned int stride, 564 bool strict) 565 { 566 int nr_scanned = 0, total_isolated = 0; 567 struct page *cursor; 568 unsigned long flags = 0; 569 bool locked = false; 570 unsigned long blockpfn = *start_pfn; 571 unsigned int order; 572 573 /* Strict mode is for isolation, speed is secondary */ 574 if (strict) 575 stride = 1; 576 577 cursor = pfn_to_page(blockpfn); 578 579 /* Isolate free pages. */ 580 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) { 581 int isolated; 582 struct page *page = cursor; 583 584 /* 585 * Periodically drop the lock (if held) regardless of its 586 * contention, to give chance to IRQs. Abort if fatal signal 587 * pending. 588 */ 589 if (!(blockpfn % COMPACT_CLUSTER_MAX) 590 && compact_unlock_should_abort(&cc->zone->lock, flags, 591 &locked, cc)) 592 break; 593 594 nr_scanned++; 595 596 /* 597 * For compound pages such as THP and hugetlbfs, we can save 598 * potentially a lot of iterations if we skip them at once. 599 * The check is racy, but we can consider only valid values 600 * and the only danger is skipping too much. 601 */ 602 if (PageCompound(page)) { 603 const unsigned int order = compound_order(page); 604 605 if (likely(order <= MAX_ORDER)) { 606 blockpfn += (1UL << order) - 1; 607 cursor += (1UL << order) - 1; 608 nr_scanned += (1UL << order) - 1; 609 } 610 goto isolate_fail; 611 } 612 613 if (!PageBuddy(page)) 614 goto isolate_fail; 615 616 /* If we already hold the lock, we can skip some rechecking. */ 617 if (!locked) { 618 locked = compact_lock_irqsave(&cc->zone->lock, 619 &flags, cc); 620 621 /* Recheck this is a buddy page under lock */ 622 if (!PageBuddy(page)) 623 goto isolate_fail; 624 } 625 626 /* Found a free page, will break it into order-0 pages */ 627 order = buddy_order(page); 628 isolated = __isolate_free_page(page, order); 629 if (!isolated) 630 break; 631 set_page_private(page, order); 632 633 nr_scanned += isolated - 1; 634 total_isolated += isolated; 635 cc->nr_freepages += isolated; 636 list_add_tail(&page->lru, freelist); 637 638 if (!strict && cc->nr_migratepages <= cc->nr_freepages) { 639 blockpfn += isolated; 640 break; 641 } 642 /* Advance to the end of split page */ 643 blockpfn += isolated - 1; 644 cursor += isolated - 1; 645 continue; 646 647 isolate_fail: 648 if (strict) 649 break; 650 else 651 continue; 652 653 } 654 655 if (locked) 656 spin_unlock_irqrestore(&cc->zone->lock, flags); 657 658 /* 659 * There is a tiny chance that we have read bogus compound_order(), 660 * so be careful to not go outside of the pageblock. 661 */ 662 if (unlikely(blockpfn > end_pfn)) 663 blockpfn = end_pfn; 664 665 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 666 nr_scanned, total_isolated); 667 668 /* Record how far we have got within the block */ 669 *start_pfn = blockpfn; 670 671 /* 672 * If strict isolation is requested by CMA then check that all the 673 * pages requested were isolated. If there were any failures, 0 is 674 * returned and CMA will fail. 675 */ 676 if (strict && blockpfn < end_pfn) 677 total_isolated = 0; 678 679 cc->total_free_scanned += nr_scanned; 680 if (total_isolated) 681 count_compact_events(COMPACTISOLATED, total_isolated); 682 return total_isolated; 683 } 684 685 /** 686 * isolate_freepages_range() - isolate free pages. 687 * @cc: Compaction control structure. 688 * @start_pfn: The first PFN to start isolating. 689 * @end_pfn: The one-past-last PFN. 690 * 691 * Non-free pages, invalid PFNs, or zone boundaries within the 692 * [start_pfn, end_pfn) range are considered errors, cause function to 693 * undo its actions and return zero. 694 * 695 * Otherwise, function returns one-past-the-last PFN of isolated page 696 * (which may be greater then end_pfn if end fell in a middle of 697 * a free page). 698 */ 699 unsigned long 700 isolate_freepages_range(struct compact_control *cc, 701 unsigned long start_pfn, unsigned long end_pfn) 702 { 703 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 704 LIST_HEAD(freelist); 705 706 pfn = start_pfn; 707 block_start_pfn = pageblock_start_pfn(pfn); 708 if (block_start_pfn < cc->zone->zone_start_pfn) 709 block_start_pfn = cc->zone->zone_start_pfn; 710 block_end_pfn = pageblock_end_pfn(pfn); 711 712 for (; pfn < end_pfn; pfn += isolated, 713 block_start_pfn = block_end_pfn, 714 block_end_pfn += pageblock_nr_pages) { 715 /* Protect pfn from changing by isolate_freepages_block */ 716 unsigned long isolate_start_pfn = pfn; 717 718 block_end_pfn = min(block_end_pfn, end_pfn); 719 720 /* 721 * pfn could pass the block_end_pfn if isolated freepage 722 * is more than pageblock order. In this case, we adjust 723 * scanning range to right one. 724 */ 725 if (pfn >= block_end_pfn) { 726 block_start_pfn = pageblock_start_pfn(pfn); 727 block_end_pfn = pageblock_end_pfn(pfn); 728 block_end_pfn = min(block_end_pfn, end_pfn); 729 } 730 731 if (!pageblock_pfn_to_page(block_start_pfn, 732 block_end_pfn, cc->zone)) 733 break; 734 735 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 736 block_end_pfn, &freelist, 0, true); 737 738 /* 739 * In strict mode, isolate_freepages_block() returns 0 if 740 * there are any holes in the block (ie. invalid PFNs or 741 * non-free pages). 742 */ 743 if (!isolated) 744 break; 745 746 /* 747 * If we managed to isolate pages, it is always (1 << n) * 748 * pageblock_nr_pages for some non-negative n. (Max order 749 * page may span two pageblocks). 750 */ 751 } 752 753 /* __isolate_free_page() does not map the pages */ 754 split_map_pages(&freelist); 755 756 if (pfn < end_pfn) { 757 /* Loop terminated early, cleanup. */ 758 release_freepages(&freelist); 759 return 0; 760 } 761 762 /* We don't use freelists for anything. */ 763 return pfn; 764 } 765 766 /* Similar to reclaim, but different enough that they don't share logic */ 767 static bool too_many_isolated(struct compact_control *cc) 768 { 769 pg_data_t *pgdat = cc->zone->zone_pgdat; 770 bool too_many; 771 772 unsigned long active, inactive, isolated; 773 774 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) + 775 node_page_state(pgdat, NR_INACTIVE_ANON); 776 active = node_page_state(pgdat, NR_ACTIVE_FILE) + 777 node_page_state(pgdat, NR_ACTIVE_ANON); 778 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) + 779 node_page_state(pgdat, NR_ISOLATED_ANON); 780 781 /* 782 * Allow GFP_NOFS to isolate past the limit set for regular 783 * compaction runs. This prevents an ABBA deadlock when other 784 * compactors have already isolated to the limit, but are 785 * blocked on filesystem locks held by the GFP_NOFS thread. 786 */ 787 if (cc->gfp_mask & __GFP_FS) { 788 inactive >>= 3; 789 active >>= 3; 790 } 791 792 too_many = isolated > (inactive + active) / 2; 793 if (!too_many) 794 wake_throttle_isolated(pgdat); 795 796 return too_many; 797 } 798 799 /** 800 * isolate_migratepages_block() - isolate all migrate-able pages within 801 * a single pageblock 802 * @cc: Compaction control structure. 803 * @low_pfn: The first PFN to isolate 804 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 805 * @mode: Isolation mode to be used. 806 * 807 * Isolate all pages that can be migrated from the range specified by 808 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 809 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion, 810 * -ENOMEM in case we could not allocate a page, or 0. 811 * cc->migrate_pfn will contain the next pfn to scan. 812 * 813 * The pages are isolated on cc->migratepages list (not required to be empty), 814 * and cc->nr_migratepages is updated accordingly. 815 */ 816 static int 817 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 818 unsigned long end_pfn, isolate_mode_t mode) 819 { 820 pg_data_t *pgdat = cc->zone->zone_pgdat; 821 unsigned long nr_scanned = 0, nr_isolated = 0; 822 struct lruvec *lruvec; 823 unsigned long flags = 0; 824 struct lruvec *locked = NULL; 825 struct folio *folio = NULL; 826 struct page *page = NULL, *valid_page = NULL; 827 struct address_space *mapping; 828 unsigned long start_pfn = low_pfn; 829 bool skip_on_failure = false; 830 unsigned long next_skip_pfn = 0; 831 bool skip_updated = false; 832 int ret = 0; 833 834 cc->migrate_pfn = low_pfn; 835 836 /* 837 * Ensure that there are not too many pages isolated from the LRU 838 * list by either parallel reclaimers or compaction. If there are, 839 * delay for some time until fewer pages are isolated 840 */ 841 while (unlikely(too_many_isolated(cc))) { 842 /* stop isolation if there are still pages not migrated */ 843 if (cc->nr_migratepages) 844 return -EAGAIN; 845 846 /* async migration should just abort */ 847 if (cc->mode == MIGRATE_ASYNC) 848 return -EAGAIN; 849 850 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 851 852 if (fatal_signal_pending(current)) 853 return -EINTR; 854 } 855 856 cond_resched(); 857 858 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { 859 skip_on_failure = true; 860 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 861 } 862 863 /* Time to isolate some pages for migration */ 864 for (; low_pfn < end_pfn; low_pfn++) { 865 866 if (skip_on_failure && low_pfn >= next_skip_pfn) { 867 /* 868 * We have isolated all migration candidates in the 869 * previous order-aligned block, and did not skip it due 870 * to failure. We should migrate the pages now and 871 * hopefully succeed compaction. 872 */ 873 if (nr_isolated) 874 break; 875 876 /* 877 * We failed to isolate in the previous order-aligned 878 * block. Set the new boundary to the end of the 879 * current block. Note we can't simply increase 880 * next_skip_pfn by 1 << order, as low_pfn might have 881 * been incremented by a higher number due to skipping 882 * a compound or a high-order buddy page in the 883 * previous loop iteration. 884 */ 885 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 886 } 887 888 /* 889 * Periodically drop the lock (if held) regardless of its 890 * contention, to give chance to IRQs. Abort completely if 891 * a fatal signal is pending. 892 */ 893 if (!(low_pfn % COMPACT_CLUSTER_MAX)) { 894 if (locked) { 895 unlock_page_lruvec_irqrestore(locked, flags); 896 locked = NULL; 897 } 898 899 if (fatal_signal_pending(current)) { 900 cc->contended = true; 901 ret = -EINTR; 902 903 goto fatal_pending; 904 } 905 906 cond_resched(); 907 } 908 909 nr_scanned++; 910 911 page = pfn_to_page(low_pfn); 912 913 /* 914 * Check if the pageblock has already been marked skipped. 915 * Only the aligned PFN is checked as the caller isolates 916 * COMPACT_CLUSTER_MAX at a time so the second call must 917 * not falsely conclude that the block should be skipped. 918 */ 919 if (!valid_page && pageblock_aligned(low_pfn)) { 920 if (!isolation_suitable(cc, page)) { 921 low_pfn = end_pfn; 922 folio = NULL; 923 goto isolate_abort; 924 } 925 valid_page = page; 926 } 927 928 if (PageHuge(page) && cc->alloc_contig) { 929 if (locked) { 930 unlock_page_lruvec_irqrestore(locked, flags); 931 locked = NULL; 932 } 933 934 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages); 935 936 /* 937 * Fail isolation in case isolate_or_dissolve_huge_page() 938 * reports an error. In case of -ENOMEM, abort right away. 939 */ 940 if (ret < 0) { 941 /* Do not report -EBUSY down the chain */ 942 if (ret == -EBUSY) 943 ret = 0; 944 low_pfn += compound_nr(page) - 1; 945 nr_scanned += compound_nr(page) - 1; 946 goto isolate_fail; 947 } 948 949 if (PageHuge(page)) { 950 /* 951 * Hugepage was successfully isolated and placed 952 * on the cc->migratepages list. 953 */ 954 folio = page_folio(page); 955 low_pfn += folio_nr_pages(folio) - 1; 956 goto isolate_success_no_list; 957 } 958 959 /* 960 * Ok, the hugepage was dissolved. Now these pages are 961 * Buddy and cannot be re-allocated because they are 962 * isolated. Fall-through as the check below handles 963 * Buddy pages. 964 */ 965 } 966 967 /* 968 * Skip if free. We read page order here without zone lock 969 * which is generally unsafe, but the race window is small and 970 * the worst thing that can happen is that we skip some 971 * potential isolation targets. 972 */ 973 if (PageBuddy(page)) { 974 unsigned long freepage_order = buddy_order_unsafe(page); 975 976 /* 977 * Without lock, we cannot be sure that what we got is 978 * a valid page order. Consider only values in the 979 * valid order range to prevent low_pfn overflow. 980 */ 981 if (freepage_order > 0 && freepage_order <= MAX_ORDER) { 982 low_pfn += (1UL << freepage_order) - 1; 983 nr_scanned += (1UL << freepage_order) - 1; 984 } 985 continue; 986 } 987 988 /* 989 * Regardless of being on LRU, compound pages such as THP and 990 * hugetlbfs are not to be compacted unless we are attempting 991 * an allocation much larger than the huge page size (eg CMA). 992 * We can potentially save a lot of iterations if we skip them 993 * at once. The check is racy, but we can consider only valid 994 * values and the only danger is skipping too much. 995 */ 996 if (PageCompound(page) && !cc->alloc_contig) { 997 const unsigned int order = compound_order(page); 998 999 if (likely(order <= MAX_ORDER)) { 1000 low_pfn += (1UL << order) - 1; 1001 nr_scanned += (1UL << order) - 1; 1002 } 1003 goto isolate_fail; 1004 } 1005 1006 /* 1007 * Check may be lockless but that's ok as we recheck later. 1008 * It's possible to migrate LRU and non-lru movable pages. 1009 * Skip any other type of page 1010 */ 1011 if (!PageLRU(page)) { 1012 /* 1013 * __PageMovable can return false positive so we need 1014 * to verify it under page_lock. 1015 */ 1016 if (unlikely(__PageMovable(page)) && 1017 !PageIsolated(page)) { 1018 if (locked) { 1019 unlock_page_lruvec_irqrestore(locked, flags); 1020 locked = NULL; 1021 } 1022 1023 if (isolate_movable_page(page, mode)) { 1024 folio = page_folio(page); 1025 goto isolate_success; 1026 } 1027 } 1028 1029 goto isolate_fail; 1030 } 1031 1032 /* 1033 * Be careful not to clear PageLRU until after we're 1034 * sure the page is not being freed elsewhere -- the 1035 * page release code relies on it. 1036 */ 1037 folio = folio_get_nontail_page(page); 1038 if (unlikely(!folio)) 1039 goto isolate_fail; 1040 1041 /* 1042 * Migration will fail if an anonymous page is pinned in memory, 1043 * so avoid taking lru_lock and isolating it unnecessarily in an 1044 * admittedly racy check. 1045 */ 1046 mapping = folio_mapping(folio); 1047 if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio)) 1048 goto isolate_fail_put; 1049 1050 /* 1051 * Only allow to migrate anonymous pages in GFP_NOFS context 1052 * because those do not depend on fs locks. 1053 */ 1054 if (!(cc->gfp_mask & __GFP_FS) && mapping) 1055 goto isolate_fail_put; 1056 1057 /* Only take pages on LRU: a check now makes later tests safe */ 1058 if (!folio_test_lru(folio)) 1059 goto isolate_fail_put; 1060 1061 /* Compaction might skip unevictable pages but CMA takes them */ 1062 if (!(mode & ISOLATE_UNEVICTABLE) && folio_test_unevictable(folio)) 1063 goto isolate_fail_put; 1064 1065 /* 1066 * To minimise LRU disruption, the caller can indicate with 1067 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages 1068 * it will be able to migrate without blocking - clean pages 1069 * for the most part. PageWriteback would require blocking. 1070 */ 1071 if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio)) 1072 goto isolate_fail_put; 1073 1074 if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_dirty(folio)) { 1075 bool migrate_dirty; 1076 1077 /* 1078 * Only pages without mappings or that have a 1079 * ->migrate_folio callback are possible to migrate 1080 * without blocking. However, we can be racing with 1081 * truncation so it's necessary to lock the page 1082 * to stabilise the mapping as truncation holds 1083 * the page lock until after the page is removed 1084 * from the page cache. 1085 */ 1086 if (!folio_trylock(folio)) 1087 goto isolate_fail_put; 1088 1089 mapping = folio_mapping(folio); 1090 migrate_dirty = !mapping || 1091 mapping->a_ops->migrate_folio; 1092 folio_unlock(folio); 1093 if (!migrate_dirty) 1094 goto isolate_fail_put; 1095 } 1096 1097 /* Try isolate the folio */ 1098 if (!folio_test_clear_lru(folio)) 1099 goto isolate_fail_put; 1100 1101 lruvec = folio_lruvec(folio); 1102 1103 /* If we already hold the lock, we can skip some rechecking */ 1104 if (lruvec != locked) { 1105 if (locked) 1106 unlock_page_lruvec_irqrestore(locked, flags); 1107 1108 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc); 1109 locked = lruvec; 1110 1111 lruvec_memcg_debug(lruvec, folio); 1112 1113 /* 1114 * Try get exclusive access under lock. If marked for 1115 * skip, the scan is aborted unless the current context 1116 * is a rescan to reach the end of the pageblock. 1117 */ 1118 if (!skip_updated && valid_page) { 1119 skip_updated = true; 1120 if (test_and_set_skip(cc, valid_page) && 1121 !cc->finish_pageblock) { 1122 goto isolate_abort; 1123 } 1124 } 1125 1126 /* 1127 * folio become large since the non-locked check, 1128 * and it's on LRU. 1129 */ 1130 if (unlikely(folio_test_large(folio) && !cc->alloc_contig)) { 1131 low_pfn += folio_nr_pages(folio) - 1; 1132 nr_scanned += folio_nr_pages(folio) - 1; 1133 folio_set_lru(folio); 1134 goto isolate_fail_put; 1135 } 1136 } 1137 1138 /* The folio is taken off the LRU */ 1139 if (folio_test_large(folio)) 1140 low_pfn += folio_nr_pages(folio) - 1; 1141 1142 /* Successfully isolated */ 1143 lruvec_del_folio(lruvec, folio); 1144 node_stat_mod_folio(folio, 1145 NR_ISOLATED_ANON + folio_is_file_lru(folio), 1146 folio_nr_pages(folio)); 1147 1148 isolate_success: 1149 list_add(&folio->lru, &cc->migratepages); 1150 isolate_success_no_list: 1151 cc->nr_migratepages += folio_nr_pages(folio); 1152 nr_isolated += folio_nr_pages(folio); 1153 nr_scanned += folio_nr_pages(folio) - 1; 1154 1155 /* 1156 * Avoid isolating too much unless this block is being 1157 * fully scanned (e.g. dirty/writeback pages, parallel allocation) 1158 * or a lock is contended. For contention, isolate quickly to 1159 * potentially remove one source of contention. 1160 */ 1161 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX && 1162 !cc->finish_pageblock && !cc->contended) { 1163 ++low_pfn; 1164 break; 1165 } 1166 1167 continue; 1168 1169 isolate_fail_put: 1170 /* Avoid potential deadlock in freeing page under lru_lock */ 1171 if (locked) { 1172 unlock_page_lruvec_irqrestore(locked, flags); 1173 locked = NULL; 1174 } 1175 folio_put(folio); 1176 1177 isolate_fail: 1178 if (!skip_on_failure && ret != -ENOMEM) 1179 continue; 1180 1181 /* 1182 * We have isolated some pages, but then failed. Release them 1183 * instead of migrating, as we cannot form the cc->order buddy 1184 * page anyway. 1185 */ 1186 if (nr_isolated) { 1187 if (locked) { 1188 unlock_page_lruvec_irqrestore(locked, flags); 1189 locked = NULL; 1190 } 1191 putback_movable_pages(&cc->migratepages); 1192 cc->nr_migratepages = 0; 1193 nr_isolated = 0; 1194 } 1195 1196 if (low_pfn < next_skip_pfn) { 1197 low_pfn = next_skip_pfn - 1; 1198 /* 1199 * The check near the loop beginning would have updated 1200 * next_skip_pfn too, but this is a bit simpler. 1201 */ 1202 next_skip_pfn += 1UL << cc->order; 1203 } 1204 1205 if (ret == -ENOMEM) 1206 break; 1207 } 1208 1209 /* 1210 * The PageBuddy() check could have potentially brought us outside 1211 * the range to be scanned. 1212 */ 1213 if (unlikely(low_pfn > end_pfn)) 1214 low_pfn = end_pfn; 1215 1216 folio = NULL; 1217 1218 isolate_abort: 1219 if (locked) 1220 unlock_page_lruvec_irqrestore(locked, flags); 1221 if (folio) { 1222 folio_set_lru(folio); 1223 folio_put(folio); 1224 } 1225 1226 /* 1227 * Update the cached scanner pfn once the pageblock has been scanned. 1228 * Pages will either be migrated in which case there is no point 1229 * scanning in the near future or migration failed in which case the 1230 * failure reason may persist. The block is marked for skipping if 1231 * there were no pages isolated in the block or if the block is 1232 * rescanned twice in a row. 1233 */ 1234 if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) { 1235 if (!cc->no_set_skip_hint && valid_page && !skip_updated) 1236 set_pageblock_skip(valid_page); 1237 update_cached_migrate(cc, low_pfn); 1238 } 1239 1240 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 1241 nr_scanned, nr_isolated); 1242 1243 fatal_pending: 1244 cc->total_migrate_scanned += nr_scanned; 1245 if (nr_isolated) 1246 count_compact_events(COMPACTISOLATED, nr_isolated); 1247 1248 cc->migrate_pfn = low_pfn; 1249 1250 return ret; 1251 } 1252 1253 /** 1254 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 1255 * @cc: Compaction control structure. 1256 * @start_pfn: The first PFN to start isolating. 1257 * @end_pfn: The one-past-last PFN. 1258 * 1259 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM 1260 * in case we could not allocate a page, or 0. 1261 */ 1262 int 1263 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 1264 unsigned long end_pfn) 1265 { 1266 unsigned long pfn, block_start_pfn, block_end_pfn; 1267 int ret = 0; 1268 1269 /* Scan block by block. First and last block may be incomplete */ 1270 pfn = start_pfn; 1271 block_start_pfn = pageblock_start_pfn(pfn); 1272 if (block_start_pfn < cc->zone->zone_start_pfn) 1273 block_start_pfn = cc->zone->zone_start_pfn; 1274 block_end_pfn = pageblock_end_pfn(pfn); 1275 1276 for (; pfn < end_pfn; pfn = block_end_pfn, 1277 block_start_pfn = block_end_pfn, 1278 block_end_pfn += pageblock_nr_pages) { 1279 1280 block_end_pfn = min(block_end_pfn, end_pfn); 1281 1282 if (!pageblock_pfn_to_page(block_start_pfn, 1283 block_end_pfn, cc->zone)) 1284 continue; 1285 1286 ret = isolate_migratepages_block(cc, pfn, block_end_pfn, 1287 ISOLATE_UNEVICTABLE); 1288 1289 if (ret) 1290 break; 1291 1292 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX) 1293 break; 1294 } 1295 1296 return ret; 1297 } 1298 1299 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 1300 #ifdef CONFIG_COMPACTION 1301 1302 static bool suitable_migration_source(struct compact_control *cc, 1303 struct page *page) 1304 { 1305 int block_mt; 1306 1307 if (pageblock_skip_persistent(page)) 1308 return false; 1309 1310 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction) 1311 return true; 1312 1313 block_mt = get_pageblock_migratetype(page); 1314 1315 if (cc->migratetype == MIGRATE_MOVABLE) 1316 return is_migrate_movable(block_mt); 1317 else 1318 return block_mt == cc->migratetype; 1319 } 1320 1321 /* Returns true if the page is within a block suitable for migration to */ 1322 static bool suitable_migration_target(struct compact_control *cc, 1323 struct page *page) 1324 { 1325 /* If the page is a large free page, then disallow migration */ 1326 if (PageBuddy(page)) { 1327 /* 1328 * We are checking page_order without zone->lock taken. But 1329 * the only small danger is that we skip a potentially suitable 1330 * pageblock, so it's not worth to check order for valid range. 1331 */ 1332 if (buddy_order_unsafe(page) >= pageblock_order) 1333 return false; 1334 } 1335 1336 if (cc->ignore_block_suitable) 1337 return true; 1338 1339 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 1340 if (is_migrate_movable(get_pageblock_migratetype(page))) 1341 return true; 1342 1343 /* Otherwise skip the block */ 1344 return false; 1345 } 1346 1347 static inline unsigned int 1348 freelist_scan_limit(struct compact_control *cc) 1349 { 1350 unsigned short shift = BITS_PER_LONG - 1; 1351 1352 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1; 1353 } 1354 1355 /* 1356 * Test whether the free scanner has reached the same or lower pageblock than 1357 * the migration scanner, and compaction should thus terminate. 1358 */ 1359 static inline bool compact_scanners_met(struct compact_control *cc) 1360 { 1361 return (cc->free_pfn >> pageblock_order) 1362 <= (cc->migrate_pfn >> pageblock_order); 1363 } 1364 1365 /* 1366 * Used when scanning for a suitable migration target which scans freelists 1367 * in reverse. Reorders the list such as the unscanned pages are scanned 1368 * first on the next iteration of the free scanner 1369 */ 1370 static void 1371 move_freelist_head(struct list_head *freelist, struct page *freepage) 1372 { 1373 LIST_HEAD(sublist); 1374 1375 if (!list_is_last(freelist, &freepage->lru)) { 1376 list_cut_before(&sublist, freelist, &freepage->lru); 1377 list_splice_tail(&sublist, freelist); 1378 } 1379 } 1380 1381 /* 1382 * Similar to move_freelist_head except used by the migration scanner 1383 * when scanning forward. It's possible for these list operations to 1384 * move against each other if they search the free list exactly in 1385 * lockstep. 1386 */ 1387 static void 1388 move_freelist_tail(struct list_head *freelist, struct page *freepage) 1389 { 1390 LIST_HEAD(sublist); 1391 1392 if (!list_is_first(freelist, &freepage->lru)) { 1393 list_cut_position(&sublist, freelist, &freepage->lru); 1394 list_splice_tail(&sublist, freelist); 1395 } 1396 } 1397 1398 static void 1399 fast_isolate_around(struct compact_control *cc, unsigned long pfn) 1400 { 1401 unsigned long start_pfn, end_pfn; 1402 struct page *page; 1403 1404 /* Do not search around if there are enough pages already */ 1405 if (cc->nr_freepages >= cc->nr_migratepages) 1406 return; 1407 1408 /* Minimise scanning during async compaction */ 1409 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC) 1410 return; 1411 1412 /* Pageblock boundaries */ 1413 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn); 1414 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)); 1415 1416 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone); 1417 if (!page) 1418 return; 1419 1420 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false); 1421 1422 /* Skip this pageblock in the future as it's full or nearly full */ 1423 if (start_pfn == end_pfn) 1424 set_pageblock_skip(page); 1425 1426 return; 1427 } 1428 1429 /* Search orders in round-robin fashion */ 1430 static int next_search_order(struct compact_control *cc, int order) 1431 { 1432 order--; 1433 if (order < 0) 1434 order = cc->order - 1; 1435 1436 /* Search wrapped around? */ 1437 if (order == cc->search_order) { 1438 cc->search_order--; 1439 if (cc->search_order < 0) 1440 cc->search_order = cc->order - 1; 1441 return -1; 1442 } 1443 1444 return order; 1445 } 1446 1447 static void fast_isolate_freepages(struct compact_control *cc) 1448 { 1449 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1); 1450 unsigned int nr_scanned = 0, total_isolated = 0; 1451 unsigned long low_pfn, min_pfn, highest = 0; 1452 unsigned long nr_isolated = 0; 1453 unsigned long distance; 1454 struct page *page = NULL; 1455 bool scan_start = false; 1456 int order; 1457 1458 /* Full compaction passes in a negative order */ 1459 if (cc->order <= 0) 1460 return; 1461 1462 /* 1463 * If starting the scan, use a deeper search and use the highest 1464 * PFN found if a suitable one is not found. 1465 */ 1466 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) { 1467 limit = pageblock_nr_pages >> 1; 1468 scan_start = true; 1469 } 1470 1471 /* 1472 * Preferred point is in the top quarter of the scan space but take 1473 * a pfn from the top half if the search is problematic. 1474 */ 1475 distance = (cc->free_pfn - cc->migrate_pfn); 1476 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2)); 1477 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1)); 1478 1479 if (WARN_ON_ONCE(min_pfn > low_pfn)) 1480 low_pfn = min_pfn; 1481 1482 /* 1483 * Search starts from the last successful isolation order or the next 1484 * order to search after a previous failure 1485 */ 1486 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order); 1487 1488 for (order = cc->search_order; 1489 !page && order >= 0; 1490 order = next_search_order(cc, order)) { 1491 struct free_area *area = &cc->zone->free_area[order]; 1492 struct list_head *freelist; 1493 struct page *freepage; 1494 unsigned long flags; 1495 unsigned int order_scanned = 0; 1496 unsigned long high_pfn = 0; 1497 1498 if (!area->nr_free) 1499 continue; 1500 1501 spin_lock_irqsave(&cc->zone->lock, flags); 1502 freelist = &area->free_list[MIGRATE_MOVABLE]; 1503 list_for_each_entry_reverse(freepage, freelist, lru) { 1504 unsigned long pfn; 1505 1506 order_scanned++; 1507 nr_scanned++; 1508 pfn = page_to_pfn(freepage); 1509 1510 if (pfn >= highest) 1511 highest = max(pageblock_start_pfn(pfn), 1512 cc->zone->zone_start_pfn); 1513 1514 if (pfn >= low_pfn) { 1515 cc->fast_search_fail = 0; 1516 cc->search_order = order; 1517 page = freepage; 1518 break; 1519 } 1520 1521 if (pfn >= min_pfn && pfn > high_pfn) { 1522 high_pfn = pfn; 1523 1524 /* Shorten the scan if a candidate is found */ 1525 limit >>= 1; 1526 } 1527 1528 if (order_scanned >= limit) 1529 break; 1530 } 1531 1532 /* Use a minimum pfn if a preferred one was not found */ 1533 if (!page && high_pfn) { 1534 page = pfn_to_page(high_pfn); 1535 1536 /* Update freepage for the list reorder below */ 1537 freepage = page; 1538 } 1539 1540 /* Reorder to so a future search skips recent pages */ 1541 move_freelist_head(freelist, freepage); 1542 1543 /* Isolate the page if available */ 1544 if (page) { 1545 if (__isolate_free_page(page, order)) { 1546 set_page_private(page, order); 1547 nr_isolated = 1 << order; 1548 nr_scanned += nr_isolated - 1; 1549 total_isolated += nr_isolated; 1550 cc->nr_freepages += nr_isolated; 1551 list_add_tail(&page->lru, &cc->freepages); 1552 count_compact_events(COMPACTISOLATED, nr_isolated); 1553 } else { 1554 /* If isolation fails, abort the search */ 1555 order = cc->search_order + 1; 1556 page = NULL; 1557 } 1558 } 1559 1560 spin_unlock_irqrestore(&cc->zone->lock, flags); 1561 1562 /* Skip fast search if enough freepages isolated */ 1563 if (cc->nr_freepages >= cc->nr_migratepages) 1564 break; 1565 1566 /* 1567 * Smaller scan on next order so the total scan is related 1568 * to freelist_scan_limit. 1569 */ 1570 if (order_scanned >= limit) 1571 limit = max(1U, limit >> 1); 1572 } 1573 1574 trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn, 1575 nr_scanned, total_isolated); 1576 1577 if (!page) { 1578 cc->fast_search_fail++; 1579 if (scan_start) { 1580 /* 1581 * Use the highest PFN found above min. If one was 1582 * not found, be pessimistic for direct compaction 1583 * and use the min mark. 1584 */ 1585 if (highest >= min_pfn) { 1586 page = pfn_to_page(highest); 1587 cc->free_pfn = highest; 1588 } else { 1589 if (cc->direct_compaction && pfn_valid(min_pfn)) { 1590 page = pageblock_pfn_to_page(min_pfn, 1591 min(pageblock_end_pfn(min_pfn), 1592 zone_end_pfn(cc->zone)), 1593 cc->zone); 1594 cc->free_pfn = min_pfn; 1595 } 1596 } 1597 } 1598 } 1599 1600 if (highest && highest >= cc->zone->compact_cached_free_pfn) { 1601 highest -= pageblock_nr_pages; 1602 cc->zone->compact_cached_free_pfn = highest; 1603 } 1604 1605 cc->total_free_scanned += nr_scanned; 1606 if (!page) 1607 return; 1608 1609 low_pfn = page_to_pfn(page); 1610 fast_isolate_around(cc, low_pfn); 1611 } 1612 1613 /* 1614 * Based on information in the current compact_control, find blocks 1615 * suitable for isolating free pages from and then isolate them. 1616 */ 1617 static void isolate_freepages(struct compact_control *cc) 1618 { 1619 struct zone *zone = cc->zone; 1620 struct page *page; 1621 unsigned long block_start_pfn; /* start of current pageblock */ 1622 unsigned long isolate_start_pfn; /* exact pfn we start at */ 1623 unsigned long block_end_pfn; /* end of current pageblock */ 1624 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 1625 struct list_head *freelist = &cc->freepages; 1626 unsigned int stride; 1627 1628 /* Try a small search of the free lists for a candidate */ 1629 fast_isolate_freepages(cc); 1630 if (cc->nr_freepages) 1631 goto splitmap; 1632 1633 /* 1634 * Initialise the free scanner. The starting point is where we last 1635 * successfully isolated from, zone-cached value, or the end of the 1636 * zone when isolating for the first time. For looping we also need 1637 * this pfn aligned down to the pageblock boundary, because we do 1638 * block_start_pfn -= pageblock_nr_pages in the for loop. 1639 * For ending point, take care when isolating in last pageblock of a 1640 * zone which ends in the middle of a pageblock. 1641 * The low boundary is the end of the pageblock the migration scanner 1642 * is using. 1643 */ 1644 isolate_start_pfn = cc->free_pfn; 1645 block_start_pfn = pageblock_start_pfn(isolate_start_pfn); 1646 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 1647 zone_end_pfn(zone)); 1648 low_pfn = pageblock_end_pfn(cc->migrate_pfn); 1649 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1; 1650 1651 /* 1652 * Isolate free pages until enough are available to migrate the 1653 * pages on cc->migratepages. We stop searching if the migrate 1654 * and free page scanners meet or enough free pages are isolated. 1655 */ 1656 for (; block_start_pfn >= low_pfn; 1657 block_end_pfn = block_start_pfn, 1658 block_start_pfn -= pageblock_nr_pages, 1659 isolate_start_pfn = block_start_pfn) { 1660 unsigned long nr_isolated; 1661 1662 /* 1663 * This can iterate a massively long zone without finding any 1664 * suitable migration targets, so periodically check resched. 1665 */ 1666 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages))) 1667 cond_resched(); 1668 1669 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1670 zone); 1671 if (!page) 1672 continue; 1673 1674 /* Check the block is suitable for migration */ 1675 if (!suitable_migration_target(cc, page)) 1676 continue; 1677 1678 /* If isolation recently failed, do not retry */ 1679 if (!isolation_suitable(cc, page)) 1680 continue; 1681 1682 /* Found a block suitable for isolating free pages from. */ 1683 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn, 1684 block_end_pfn, freelist, stride, false); 1685 1686 /* Update the skip hint if the full pageblock was scanned */ 1687 if (isolate_start_pfn == block_end_pfn) 1688 update_pageblock_skip(cc, page, block_start_pfn); 1689 1690 /* Are enough freepages isolated? */ 1691 if (cc->nr_freepages >= cc->nr_migratepages) { 1692 if (isolate_start_pfn >= block_end_pfn) { 1693 /* 1694 * Restart at previous pageblock if more 1695 * freepages can be isolated next time. 1696 */ 1697 isolate_start_pfn = 1698 block_start_pfn - pageblock_nr_pages; 1699 } 1700 break; 1701 } else if (isolate_start_pfn < block_end_pfn) { 1702 /* 1703 * If isolation failed early, do not continue 1704 * needlessly. 1705 */ 1706 break; 1707 } 1708 1709 /* Adjust stride depending on isolation */ 1710 if (nr_isolated) { 1711 stride = 1; 1712 continue; 1713 } 1714 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1); 1715 } 1716 1717 /* 1718 * Record where the free scanner will restart next time. Either we 1719 * broke from the loop and set isolate_start_pfn based on the last 1720 * call to isolate_freepages_block(), or we met the migration scanner 1721 * and the loop terminated due to isolate_start_pfn < low_pfn 1722 */ 1723 cc->free_pfn = isolate_start_pfn; 1724 1725 splitmap: 1726 /* __isolate_free_page() does not map the pages */ 1727 split_map_pages(freelist); 1728 } 1729 1730 /* 1731 * This is a migrate-callback that "allocates" freepages by taking pages 1732 * from the isolated freelists in the block we are migrating to. 1733 */ 1734 static struct folio *compaction_alloc(struct folio *src, unsigned long data) 1735 { 1736 struct compact_control *cc = (struct compact_control *)data; 1737 struct folio *dst; 1738 1739 if (list_empty(&cc->freepages)) { 1740 isolate_freepages(cc); 1741 1742 if (list_empty(&cc->freepages)) 1743 return NULL; 1744 } 1745 1746 dst = list_entry(cc->freepages.next, struct folio, lru); 1747 list_del(&dst->lru); 1748 cc->nr_freepages--; 1749 1750 return dst; 1751 } 1752 1753 /* 1754 * This is a migrate-callback that "frees" freepages back to the isolated 1755 * freelist. All pages on the freelist are from the same zone, so there is no 1756 * special handling needed for NUMA. 1757 */ 1758 static void compaction_free(struct folio *dst, unsigned long data) 1759 { 1760 struct compact_control *cc = (struct compact_control *)data; 1761 1762 list_add(&dst->lru, &cc->freepages); 1763 cc->nr_freepages++; 1764 } 1765 1766 /* possible outcome of isolate_migratepages */ 1767 typedef enum { 1768 ISOLATE_ABORT, /* Abort compaction now */ 1769 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1770 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1771 } isolate_migrate_t; 1772 1773 /* 1774 * Allow userspace to control policy on scanning the unevictable LRU for 1775 * compactable pages. 1776 */ 1777 static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT; 1778 /* 1779 * Tunable for proactive compaction. It determines how 1780 * aggressively the kernel should compact memory in the 1781 * background. It takes values in the range [0, 100]. 1782 */ 1783 static unsigned int __read_mostly sysctl_compaction_proactiveness = 20; 1784 static int sysctl_extfrag_threshold = 500; 1785 static int __read_mostly sysctl_compact_memory; 1786 1787 static inline void 1788 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn) 1789 { 1790 if (cc->fast_start_pfn == ULONG_MAX) 1791 return; 1792 1793 if (!cc->fast_start_pfn) 1794 cc->fast_start_pfn = pfn; 1795 1796 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn); 1797 } 1798 1799 static inline unsigned long 1800 reinit_migrate_pfn(struct compact_control *cc) 1801 { 1802 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX) 1803 return cc->migrate_pfn; 1804 1805 cc->migrate_pfn = cc->fast_start_pfn; 1806 cc->fast_start_pfn = ULONG_MAX; 1807 1808 return cc->migrate_pfn; 1809 } 1810 1811 /* 1812 * Briefly search the free lists for a migration source that already has 1813 * some free pages to reduce the number of pages that need migration 1814 * before a pageblock is free. 1815 */ 1816 static unsigned long fast_find_migrateblock(struct compact_control *cc) 1817 { 1818 unsigned int limit = freelist_scan_limit(cc); 1819 unsigned int nr_scanned = 0; 1820 unsigned long distance; 1821 unsigned long pfn = cc->migrate_pfn; 1822 unsigned long high_pfn; 1823 int order; 1824 bool found_block = false; 1825 1826 /* Skip hints are relied on to avoid repeats on the fast search */ 1827 if (cc->ignore_skip_hint) 1828 return pfn; 1829 1830 /* 1831 * If the pageblock should be finished then do not select a different 1832 * pageblock. 1833 */ 1834 if (cc->finish_pageblock) 1835 return pfn; 1836 1837 /* 1838 * If the migrate_pfn is not at the start of a zone or the start 1839 * of a pageblock then assume this is a continuation of a previous 1840 * scan restarted due to COMPACT_CLUSTER_MAX. 1841 */ 1842 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn)) 1843 return pfn; 1844 1845 /* 1846 * For smaller orders, just linearly scan as the number of pages 1847 * to migrate should be relatively small and does not necessarily 1848 * justify freeing up a large block for a small allocation. 1849 */ 1850 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER) 1851 return pfn; 1852 1853 /* 1854 * Only allow kcompactd and direct requests for movable pages to 1855 * quickly clear out a MOVABLE pageblock for allocation. This 1856 * reduces the risk that a large movable pageblock is freed for 1857 * an unmovable/reclaimable small allocation. 1858 */ 1859 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE) 1860 return pfn; 1861 1862 /* 1863 * When starting the migration scanner, pick any pageblock within the 1864 * first half of the search space. Otherwise try and pick a pageblock 1865 * within the first eighth to reduce the chances that a migration 1866 * target later becomes a source. 1867 */ 1868 distance = (cc->free_pfn - cc->migrate_pfn) >> 1; 1869 if (cc->migrate_pfn != cc->zone->zone_start_pfn) 1870 distance >>= 2; 1871 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance); 1872 1873 for (order = cc->order - 1; 1874 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit; 1875 order--) { 1876 struct free_area *area = &cc->zone->free_area[order]; 1877 struct list_head *freelist; 1878 unsigned long flags; 1879 struct page *freepage; 1880 1881 if (!area->nr_free) 1882 continue; 1883 1884 spin_lock_irqsave(&cc->zone->lock, flags); 1885 freelist = &area->free_list[MIGRATE_MOVABLE]; 1886 list_for_each_entry(freepage, freelist, lru) { 1887 unsigned long free_pfn; 1888 1889 if (nr_scanned++ >= limit) { 1890 move_freelist_tail(freelist, freepage); 1891 break; 1892 } 1893 1894 free_pfn = page_to_pfn(freepage); 1895 if (free_pfn < high_pfn) { 1896 /* 1897 * Avoid if skipped recently. Ideally it would 1898 * move to the tail but even safe iteration of 1899 * the list assumes an entry is deleted, not 1900 * reordered. 1901 */ 1902 if (get_pageblock_skip(freepage)) 1903 continue; 1904 1905 /* Reorder to so a future search skips recent pages */ 1906 move_freelist_tail(freelist, freepage); 1907 1908 update_fast_start_pfn(cc, free_pfn); 1909 pfn = pageblock_start_pfn(free_pfn); 1910 if (pfn < cc->zone->zone_start_pfn) 1911 pfn = cc->zone->zone_start_pfn; 1912 cc->fast_search_fail = 0; 1913 found_block = true; 1914 break; 1915 } 1916 } 1917 spin_unlock_irqrestore(&cc->zone->lock, flags); 1918 } 1919 1920 cc->total_migrate_scanned += nr_scanned; 1921 1922 /* 1923 * If fast scanning failed then use a cached entry for a page block 1924 * that had free pages as the basis for starting a linear scan. 1925 */ 1926 if (!found_block) { 1927 cc->fast_search_fail++; 1928 pfn = reinit_migrate_pfn(cc); 1929 } 1930 return pfn; 1931 } 1932 1933 /* 1934 * Isolate all pages that can be migrated from the first suitable block, 1935 * starting at the block pointed to by the migrate scanner pfn within 1936 * compact_control. 1937 */ 1938 static isolate_migrate_t isolate_migratepages(struct compact_control *cc) 1939 { 1940 unsigned long block_start_pfn; 1941 unsigned long block_end_pfn; 1942 unsigned long low_pfn; 1943 struct page *page; 1944 const isolate_mode_t isolate_mode = 1945 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 1946 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0); 1947 bool fast_find_block; 1948 1949 /* 1950 * Start at where we last stopped, or beginning of the zone as 1951 * initialized by compact_zone(). The first failure will use 1952 * the lowest PFN as the starting point for linear scanning. 1953 */ 1954 low_pfn = fast_find_migrateblock(cc); 1955 block_start_pfn = pageblock_start_pfn(low_pfn); 1956 if (block_start_pfn < cc->zone->zone_start_pfn) 1957 block_start_pfn = cc->zone->zone_start_pfn; 1958 1959 /* 1960 * fast_find_migrateblock marks a pageblock skipped so to avoid 1961 * the isolation_suitable check below, check whether the fast 1962 * search was successful. 1963 */ 1964 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail; 1965 1966 /* Only scan within a pageblock boundary */ 1967 block_end_pfn = pageblock_end_pfn(low_pfn); 1968 1969 /* 1970 * Iterate over whole pageblocks until we find the first suitable. 1971 * Do not cross the free scanner. 1972 */ 1973 for (; block_end_pfn <= cc->free_pfn; 1974 fast_find_block = false, 1975 cc->migrate_pfn = low_pfn = block_end_pfn, 1976 block_start_pfn = block_end_pfn, 1977 block_end_pfn += pageblock_nr_pages) { 1978 1979 /* 1980 * This can potentially iterate a massively long zone with 1981 * many pageblocks unsuitable, so periodically check if we 1982 * need to schedule. 1983 */ 1984 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages))) 1985 cond_resched(); 1986 1987 page = pageblock_pfn_to_page(block_start_pfn, 1988 block_end_pfn, cc->zone); 1989 if (!page) { 1990 unsigned long next_pfn; 1991 1992 next_pfn = skip_offline_sections(block_start_pfn); 1993 if (next_pfn) 1994 block_end_pfn = min(next_pfn, cc->free_pfn); 1995 continue; 1996 } 1997 1998 /* 1999 * If isolation recently failed, do not retry. Only check the 2000 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock 2001 * to be visited multiple times. Assume skip was checked 2002 * before making it "skip" so other compaction instances do 2003 * not scan the same block. 2004 */ 2005 if (pageblock_aligned(low_pfn) && 2006 !fast_find_block && !isolation_suitable(cc, page)) 2007 continue; 2008 2009 /* 2010 * For async direct compaction, only scan the pageblocks of the 2011 * same migratetype without huge pages. Async direct compaction 2012 * is optimistic to see if the minimum amount of work satisfies 2013 * the allocation. The cached PFN is updated as it's possible 2014 * that all remaining blocks between source and target are 2015 * unsuitable and the compaction scanners fail to meet. 2016 */ 2017 if (!suitable_migration_source(cc, page)) { 2018 update_cached_migrate(cc, block_end_pfn); 2019 continue; 2020 } 2021 2022 /* Perform the isolation */ 2023 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn, 2024 isolate_mode)) 2025 return ISOLATE_ABORT; 2026 2027 /* 2028 * Either we isolated something and proceed with migration. Or 2029 * we failed and compact_zone should decide if we should 2030 * continue or not. 2031 */ 2032 break; 2033 } 2034 2035 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 2036 } 2037 2038 /* 2039 * order == -1 is expected when compacting via 2040 * /proc/sys/vm/compact_memory 2041 */ 2042 static inline bool is_via_compact_memory(int order) 2043 { 2044 return order == -1; 2045 } 2046 2047 /* 2048 * Determine whether kswapd is (or recently was!) running on this node. 2049 * 2050 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't 2051 * zero it. 2052 */ 2053 static bool kswapd_is_running(pg_data_t *pgdat) 2054 { 2055 bool running; 2056 2057 pgdat_kswapd_lock(pgdat); 2058 running = pgdat->kswapd && task_is_running(pgdat->kswapd); 2059 pgdat_kswapd_unlock(pgdat); 2060 2061 return running; 2062 } 2063 2064 /* 2065 * A zone's fragmentation score is the external fragmentation wrt to the 2066 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100]. 2067 */ 2068 static unsigned int fragmentation_score_zone(struct zone *zone) 2069 { 2070 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER); 2071 } 2072 2073 /* 2074 * A weighted zone's fragmentation score is the external fragmentation 2075 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It 2076 * returns a value in the range [0, 100]. 2077 * 2078 * The scaling factor ensures that proactive compaction focuses on larger 2079 * zones like ZONE_NORMAL, rather than smaller, specialized zones like 2080 * ZONE_DMA32. For smaller zones, the score value remains close to zero, 2081 * and thus never exceeds the high threshold for proactive compaction. 2082 */ 2083 static unsigned int fragmentation_score_zone_weighted(struct zone *zone) 2084 { 2085 unsigned long score; 2086 2087 score = zone->present_pages * fragmentation_score_zone(zone); 2088 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1); 2089 } 2090 2091 /* 2092 * The per-node proactive (background) compaction process is started by its 2093 * corresponding kcompactd thread when the node's fragmentation score 2094 * exceeds the high threshold. The compaction process remains active till 2095 * the node's score falls below the low threshold, or one of the back-off 2096 * conditions is met. 2097 */ 2098 static unsigned int fragmentation_score_node(pg_data_t *pgdat) 2099 { 2100 unsigned int score = 0; 2101 int zoneid; 2102 2103 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2104 struct zone *zone; 2105 2106 zone = &pgdat->node_zones[zoneid]; 2107 if (!populated_zone(zone)) 2108 continue; 2109 score += fragmentation_score_zone_weighted(zone); 2110 } 2111 2112 return score; 2113 } 2114 2115 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low) 2116 { 2117 unsigned int wmark_low; 2118 2119 /* 2120 * Cap the low watermark to avoid excessive compaction 2121 * activity in case a user sets the proactiveness tunable 2122 * close to 100 (maximum). 2123 */ 2124 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U); 2125 return low ? wmark_low : min(wmark_low + 10, 100U); 2126 } 2127 2128 static bool should_proactive_compact_node(pg_data_t *pgdat) 2129 { 2130 int wmark_high; 2131 2132 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat)) 2133 return false; 2134 2135 wmark_high = fragmentation_score_wmark(pgdat, false); 2136 return fragmentation_score_node(pgdat) > wmark_high; 2137 } 2138 2139 static enum compact_result __compact_finished(struct compact_control *cc) 2140 { 2141 unsigned int order; 2142 const int migratetype = cc->migratetype; 2143 int ret; 2144 2145 /* Compaction run completes if the migrate and free scanner meet */ 2146 if (compact_scanners_met(cc)) { 2147 /* Let the next compaction start anew. */ 2148 reset_cached_positions(cc->zone); 2149 2150 /* 2151 * Mark that the PG_migrate_skip information should be cleared 2152 * by kswapd when it goes to sleep. kcompactd does not set the 2153 * flag itself as the decision to be clear should be directly 2154 * based on an allocation request. 2155 */ 2156 if (cc->direct_compaction) 2157 cc->zone->compact_blockskip_flush = true; 2158 2159 if (cc->whole_zone) 2160 return COMPACT_COMPLETE; 2161 else 2162 return COMPACT_PARTIAL_SKIPPED; 2163 } 2164 2165 if (cc->proactive_compaction) { 2166 int score, wmark_low; 2167 pg_data_t *pgdat; 2168 2169 pgdat = cc->zone->zone_pgdat; 2170 if (kswapd_is_running(pgdat)) 2171 return COMPACT_PARTIAL_SKIPPED; 2172 2173 score = fragmentation_score_zone(cc->zone); 2174 wmark_low = fragmentation_score_wmark(pgdat, true); 2175 2176 if (score > wmark_low) 2177 ret = COMPACT_CONTINUE; 2178 else 2179 ret = COMPACT_SUCCESS; 2180 2181 goto out; 2182 } 2183 2184 if (is_via_compact_memory(cc->order)) 2185 return COMPACT_CONTINUE; 2186 2187 /* 2188 * Always finish scanning a pageblock to reduce the possibility of 2189 * fallbacks in the future. This is particularly important when 2190 * migration source is unmovable/reclaimable but it's not worth 2191 * special casing. 2192 */ 2193 if (!pageblock_aligned(cc->migrate_pfn)) 2194 return COMPACT_CONTINUE; 2195 2196 /* Direct compactor: Is a suitable page free? */ 2197 ret = COMPACT_NO_SUITABLE_PAGE; 2198 for (order = cc->order; order <= MAX_ORDER; order++) { 2199 struct free_area *area = &cc->zone->free_area[order]; 2200 bool can_steal; 2201 2202 /* Job done if page is free of the right migratetype */ 2203 if (!free_area_empty(area, migratetype)) 2204 return COMPACT_SUCCESS; 2205 2206 #ifdef CONFIG_CMA 2207 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 2208 if (migratetype == MIGRATE_MOVABLE && 2209 !free_area_empty(area, MIGRATE_CMA)) 2210 return COMPACT_SUCCESS; 2211 #endif 2212 /* 2213 * Job done if allocation would steal freepages from 2214 * other migratetype buddy lists. 2215 */ 2216 if (find_suitable_fallback(area, order, migratetype, 2217 true, &can_steal) != -1) 2218 /* 2219 * Movable pages are OK in any pageblock. If we are 2220 * stealing for a non-movable allocation, make sure 2221 * we finish compacting the current pageblock first 2222 * (which is assured by the above migrate_pfn align 2223 * check) so it is as free as possible and we won't 2224 * have to steal another one soon. 2225 */ 2226 return COMPACT_SUCCESS; 2227 } 2228 2229 out: 2230 if (cc->contended || fatal_signal_pending(current)) 2231 ret = COMPACT_CONTENDED; 2232 2233 return ret; 2234 } 2235 2236 static enum compact_result compact_finished(struct compact_control *cc) 2237 { 2238 int ret; 2239 2240 ret = __compact_finished(cc); 2241 trace_mm_compaction_finished(cc->zone, cc->order, ret); 2242 if (ret == COMPACT_NO_SUITABLE_PAGE) 2243 ret = COMPACT_CONTINUE; 2244 2245 return ret; 2246 } 2247 2248 static bool __compaction_suitable(struct zone *zone, int order, 2249 int highest_zoneidx, 2250 unsigned long wmark_target) 2251 { 2252 unsigned long watermark; 2253 /* 2254 * Watermarks for order-0 must be met for compaction to be able to 2255 * isolate free pages for migration targets. This means that the 2256 * watermark and alloc_flags have to match, or be more pessimistic than 2257 * the check in __isolate_free_page(). We don't use the direct 2258 * compactor's alloc_flags, as they are not relevant for freepage 2259 * isolation. We however do use the direct compactor's highest_zoneidx 2260 * to skip over zones where lowmem reserves would prevent allocation 2261 * even if compaction succeeds. 2262 * For costly orders, we require low watermark instead of min for 2263 * compaction to proceed to increase its chances. 2264 * ALLOC_CMA is used, as pages in CMA pageblocks are considered 2265 * suitable migration targets 2266 */ 2267 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ? 2268 low_wmark_pages(zone) : min_wmark_pages(zone); 2269 watermark += compact_gap(order); 2270 return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx, 2271 ALLOC_CMA, wmark_target); 2272 } 2273 2274 /* 2275 * compaction_suitable: Is this suitable to run compaction on this zone now? 2276 */ 2277 bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx) 2278 { 2279 enum compact_result compact_result; 2280 bool suitable; 2281 2282 suitable = __compaction_suitable(zone, order, highest_zoneidx, 2283 zone_page_state(zone, NR_FREE_PAGES)); 2284 /* 2285 * fragmentation index determines if allocation failures are due to 2286 * low memory or external fragmentation 2287 * 2288 * index of -1000 would imply allocations might succeed depending on 2289 * watermarks, but we already failed the high-order watermark check 2290 * index towards 0 implies failure is due to lack of memory 2291 * index towards 1000 implies failure is due to fragmentation 2292 * 2293 * Only compact if a failure would be due to fragmentation. Also 2294 * ignore fragindex for non-costly orders where the alternative to 2295 * a successful reclaim/compaction is OOM. Fragindex and the 2296 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent 2297 * excessive compaction for costly orders, but it should not be at the 2298 * expense of system stability. 2299 */ 2300 if (suitable) { 2301 compact_result = COMPACT_CONTINUE; 2302 if (order > PAGE_ALLOC_COSTLY_ORDER) { 2303 int fragindex = fragmentation_index(zone, order); 2304 2305 if (fragindex >= 0 && 2306 fragindex <= sysctl_extfrag_threshold) { 2307 suitable = false; 2308 compact_result = COMPACT_NOT_SUITABLE_ZONE; 2309 } 2310 } 2311 } else { 2312 compact_result = COMPACT_SKIPPED; 2313 } 2314 2315 trace_mm_compaction_suitable(zone, order, compact_result); 2316 2317 return suitable; 2318 } 2319 2320 bool compaction_zonelist_suitable(struct alloc_context *ac, int order, 2321 int alloc_flags) 2322 { 2323 struct zone *zone; 2324 struct zoneref *z; 2325 2326 /* 2327 * Make sure at least one zone would pass __compaction_suitable if we continue 2328 * retrying the reclaim. 2329 */ 2330 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2331 ac->highest_zoneidx, ac->nodemask) { 2332 unsigned long available; 2333 2334 /* 2335 * Do not consider all the reclaimable memory because we do not 2336 * want to trash just for a single high order allocation which 2337 * is even not guaranteed to appear even if __compaction_suitable 2338 * is happy about the watermark check. 2339 */ 2340 available = zone_reclaimable_pages(zone) / order; 2341 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 2342 if (__compaction_suitable(zone, order, ac->highest_zoneidx, 2343 available)) 2344 return true; 2345 } 2346 2347 return false; 2348 } 2349 2350 static enum compact_result 2351 compact_zone(struct compact_control *cc, struct capture_control *capc) 2352 { 2353 enum compact_result ret; 2354 unsigned long start_pfn = cc->zone->zone_start_pfn; 2355 unsigned long end_pfn = zone_end_pfn(cc->zone); 2356 unsigned long last_migrated_pfn; 2357 const bool sync = cc->mode != MIGRATE_ASYNC; 2358 bool update_cached; 2359 unsigned int nr_succeeded = 0; 2360 2361 /* 2362 * These counters track activities during zone compaction. Initialize 2363 * them before compacting a new zone. 2364 */ 2365 cc->total_migrate_scanned = 0; 2366 cc->total_free_scanned = 0; 2367 cc->nr_migratepages = 0; 2368 cc->nr_freepages = 0; 2369 INIT_LIST_HEAD(&cc->freepages); 2370 INIT_LIST_HEAD(&cc->migratepages); 2371 2372 cc->migratetype = gfp_migratetype(cc->gfp_mask); 2373 2374 if (!is_via_compact_memory(cc->order)) { 2375 unsigned long watermark; 2376 2377 /* Allocation can already succeed, nothing to do */ 2378 watermark = wmark_pages(cc->zone, 2379 cc->alloc_flags & ALLOC_WMARK_MASK); 2380 if (zone_watermark_ok(cc->zone, cc->order, watermark, 2381 cc->highest_zoneidx, cc->alloc_flags)) 2382 return COMPACT_SUCCESS; 2383 2384 /* Compaction is likely to fail */ 2385 if (!compaction_suitable(cc->zone, cc->order, 2386 cc->highest_zoneidx)) 2387 return COMPACT_SKIPPED; 2388 } 2389 2390 /* 2391 * Clear pageblock skip if there were failures recently and compaction 2392 * is about to be retried after being deferred. 2393 */ 2394 if (compaction_restarting(cc->zone, cc->order)) 2395 __reset_isolation_suitable(cc->zone); 2396 2397 /* 2398 * Setup to move all movable pages to the end of the zone. Used cached 2399 * information on where the scanners should start (unless we explicitly 2400 * want to compact the whole zone), but check that it is initialised 2401 * by ensuring the values are within zone boundaries. 2402 */ 2403 cc->fast_start_pfn = 0; 2404 if (cc->whole_zone) { 2405 cc->migrate_pfn = start_pfn; 2406 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2407 } else { 2408 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync]; 2409 cc->free_pfn = cc->zone->compact_cached_free_pfn; 2410 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 2411 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2412 cc->zone->compact_cached_free_pfn = cc->free_pfn; 2413 } 2414 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 2415 cc->migrate_pfn = start_pfn; 2416 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 2417 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 2418 } 2419 2420 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn) 2421 cc->whole_zone = true; 2422 } 2423 2424 last_migrated_pfn = 0; 2425 2426 /* 2427 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on 2428 * the basis that some migrations will fail in ASYNC mode. However, 2429 * if the cached PFNs match and pageblocks are skipped due to having 2430 * no isolation candidates, then the sync state does not matter. 2431 * Until a pageblock with isolation candidates is found, keep the 2432 * cached PFNs in sync to avoid revisiting the same blocks. 2433 */ 2434 update_cached = !sync && 2435 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1]; 2436 2437 trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync); 2438 2439 /* lru_add_drain_all could be expensive with involving other CPUs */ 2440 lru_add_drain(); 2441 2442 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) { 2443 int err; 2444 unsigned long iteration_start_pfn = cc->migrate_pfn; 2445 2446 /* 2447 * Avoid multiple rescans of the same pageblock which can 2448 * happen if a page cannot be isolated (dirty/writeback in 2449 * async mode) or if the migrated pages are being allocated 2450 * before the pageblock is cleared. The first rescan will 2451 * capture the entire pageblock for migration. If it fails, 2452 * it'll be marked skip and scanning will proceed as normal. 2453 */ 2454 cc->finish_pageblock = false; 2455 if (pageblock_start_pfn(last_migrated_pfn) == 2456 pageblock_start_pfn(iteration_start_pfn)) { 2457 cc->finish_pageblock = true; 2458 } 2459 2460 rescan: 2461 switch (isolate_migratepages(cc)) { 2462 case ISOLATE_ABORT: 2463 ret = COMPACT_CONTENDED; 2464 putback_movable_pages(&cc->migratepages); 2465 cc->nr_migratepages = 0; 2466 goto out; 2467 case ISOLATE_NONE: 2468 if (update_cached) { 2469 cc->zone->compact_cached_migrate_pfn[1] = 2470 cc->zone->compact_cached_migrate_pfn[0]; 2471 } 2472 2473 /* 2474 * We haven't isolated and migrated anything, but 2475 * there might still be unflushed migrations from 2476 * previous cc->order aligned block. 2477 */ 2478 goto check_drain; 2479 case ISOLATE_SUCCESS: 2480 update_cached = false; 2481 last_migrated_pfn = iteration_start_pfn; 2482 } 2483 2484 err = migrate_pages(&cc->migratepages, compaction_alloc, 2485 compaction_free, (unsigned long)cc, cc->mode, 2486 MR_COMPACTION, &nr_succeeded); 2487 2488 trace_mm_compaction_migratepages(cc, nr_succeeded); 2489 2490 /* All pages were either migrated or will be released */ 2491 cc->nr_migratepages = 0; 2492 if (err) { 2493 putback_movable_pages(&cc->migratepages); 2494 /* 2495 * migrate_pages() may return -ENOMEM when scanners meet 2496 * and we want compact_finished() to detect it 2497 */ 2498 if (err == -ENOMEM && !compact_scanners_met(cc)) { 2499 ret = COMPACT_CONTENDED; 2500 goto out; 2501 } 2502 /* 2503 * If an ASYNC or SYNC_LIGHT fails to migrate a page 2504 * within the current order-aligned block and 2505 * fast_find_migrateblock may be used then scan the 2506 * remainder of the pageblock. This will mark the 2507 * pageblock "skip" to avoid rescanning in the near 2508 * future. This will isolate more pages than necessary 2509 * for the request but avoid loops due to 2510 * fast_find_migrateblock revisiting blocks that were 2511 * recently partially scanned. 2512 */ 2513 if (!pageblock_aligned(cc->migrate_pfn) && 2514 !cc->ignore_skip_hint && !cc->finish_pageblock && 2515 (cc->mode < MIGRATE_SYNC)) { 2516 cc->finish_pageblock = true; 2517 2518 /* 2519 * Draining pcplists does not help THP if 2520 * any page failed to migrate. Even after 2521 * drain, the pageblock will not be free. 2522 */ 2523 if (cc->order == COMPACTION_HPAGE_ORDER) 2524 last_migrated_pfn = 0; 2525 2526 goto rescan; 2527 } 2528 } 2529 2530 /* Stop if a page has been captured */ 2531 if (capc && capc->page) { 2532 ret = COMPACT_SUCCESS; 2533 break; 2534 } 2535 2536 check_drain: 2537 /* 2538 * Has the migration scanner moved away from the previous 2539 * cc->order aligned block where we migrated from? If yes, 2540 * flush the pages that were freed, so that they can merge and 2541 * compact_finished() can detect immediately if allocation 2542 * would succeed. 2543 */ 2544 if (cc->order > 0 && last_migrated_pfn) { 2545 unsigned long current_block_start = 2546 block_start_pfn(cc->migrate_pfn, cc->order); 2547 2548 if (last_migrated_pfn < current_block_start) { 2549 lru_add_drain_cpu_zone(cc->zone); 2550 /* No more flushing until we migrate again */ 2551 last_migrated_pfn = 0; 2552 } 2553 } 2554 } 2555 2556 out: 2557 /* 2558 * Release free pages and update where the free scanner should restart, 2559 * so we don't leave any returned pages behind in the next attempt. 2560 */ 2561 if (cc->nr_freepages > 0) { 2562 unsigned long free_pfn = release_freepages(&cc->freepages); 2563 2564 cc->nr_freepages = 0; 2565 VM_BUG_ON(free_pfn == 0); 2566 /* The cached pfn is always the first in a pageblock */ 2567 free_pfn = pageblock_start_pfn(free_pfn); 2568 /* 2569 * Only go back, not forward. The cached pfn might have been 2570 * already reset to zone end in compact_finished() 2571 */ 2572 if (free_pfn > cc->zone->compact_cached_free_pfn) 2573 cc->zone->compact_cached_free_pfn = free_pfn; 2574 } 2575 2576 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned); 2577 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned); 2578 2579 trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret); 2580 2581 VM_BUG_ON(!list_empty(&cc->freepages)); 2582 VM_BUG_ON(!list_empty(&cc->migratepages)); 2583 2584 return ret; 2585 } 2586 2587 static enum compact_result compact_zone_order(struct zone *zone, int order, 2588 gfp_t gfp_mask, enum compact_priority prio, 2589 unsigned int alloc_flags, int highest_zoneidx, 2590 struct page **capture) 2591 { 2592 enum compact_result ret; 2593 struct compact_control cc = { 2594 .order = order, 2595 .search_order = order, 2596 .gfp_mask = gfp_mask, 2597 .zone = zone, 2598 .mode = (prio == COMPACT_PRIO_ASYNC) ? 2599 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT, 2600 .alloc_flags = alloc_flags, 2601 .highest_zoneidx = highest_zoneidx, 2602 .direct_compaction = true, 2603 .whole_zone = (prio == MIN_COMPACT_PRIORITY), 2604 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY), 2605 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY) 2606 }; 2607 struct capture_control capc = { 2608 .cc = &cc, 2609 .page = NULL, 2610 }; 2611 2612 /* 2613 * Make sure the structs are really initialized before we expose the 2614 * capture control, in case we are interrupted and the interrupt handler 2615 * frees a page. 2616 */ 2617 barrier(); 2618 WRITE_ONCE(current->capture_control, &capc); 2619 2620 ret = compact_zone(&cc, &capc); 2621 2622 /* 2623 * Make sure we hide capture control first before we read the captured 2624 * page pointer, otherwise an interrupt could free and capture a page 2625 * and we would leak it. 2626 */ 2627 WRITE_ONCE(current->capture_control, NULL); 2628 *capture = READ_ONCE(capc.page); 2629 /* 2630 * Technically, it is also possible that compaction is skipped but 2631 * the page is still captured out of luck(IRQ came and freed the page). 2632 * Returning COMPACT_SUCCESS in such cases helps in properly accounting 2633 * the COMPACT[STALL|FAIL] when compaction is skipped. 2634 */ 2635 if (*capture) 2636 ret = COMPACT_SUCCESS; 2637 2638 return ret; 2639 } 2640 2641 /** 2642 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 2643 * @gfp_mask: The GFP mask of the current allocation 2644 * @order: The order of the current allocation 2645 * @alloc_flags: The allocation flags of the current allocation 2646 * @ac: The context of current allocation 2647 * @prio: Determines how hard direct compaction should try to succeed 2648 * @capture: Pointer to free page created by compaction will be stored here 2649 * 2650 * This is the main entry point for direct page compaction. 2651 */ 2652 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 2653 unsigned int alloc_flags, const struct alloc_context *ac, 2654 enum compact_priority prio, struct page **capture) 2655 { 2656 int may_perform_io = (__force int)(gfp_mask & __GFP_IO); 2657 struct zoneref *z; 2658 struct zone *zone; 2659 enum compact_result rc = COMPACT_SKIPPED; 2660 2661 /* 2662 * Check if the GFP flags allow compaction - GFP_NOIO is really 2663 * tricky context because the migration might require IO 2664 */ 2665 if (!may_perform_io) 2666 return COMPACT_SKIPPED; 2667 2668 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio); 2669 2670 /* Compact each zone in the list */ 2671 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2672 ac->highest_zoneidx, ac->nodemask) { 2673 enum compact_result status; 2674 2675 if (prio > MIN_COMPACT_PRIORITY 2676 && compaction_deferred(zone, order)) { 2677 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); 2678 continue; 2679 } 2680 2681 status = compact_zone_order(zone, order, gfp_mask, prio, 2682 alloc_flags, ac->highest_zoneidx, capture); 2683 rc = max(status, rc); 2684 2685 /* The allocation should succeed, stop compacting */ 2686 if (status == COMPACT_SUCCESS) { 2687 /* 2688 * We think the allocation will succeed in this zone, 2689 * but it is not certain, hence the false. The caller 2690 * will repeat this with true if allocation indeed 2691 * succeeds in this zone. 2692 */ 2693 compaction_defer_reset(zone, order, false); 2694 2695 break; 2696 } 2697 2698 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE || 2699 status == COMPACT_PARTIAL_SKIPPED)) 2700 /* 2701 * We think that allocation won't succeed in this zone 2702 * so we defer compaction there. If it ends up 2703 * succeeding after all, it will be reset. 2704 */ 2705 defer_compaction(zone, order); 2706 2707 /* 2708 * We might have stopped compacting due to need_resched() in 2709 * async compaction, or due to a fatal signal detected. In that 2710 * case do not try further zones 2711 */ 2712 if ((prio == COMPACT_PRIO_ASYNC && need_resched()) 2713 || fatal_signal_pending(current)) 2714 break; 2715 } 2716 2717 return rc; 2718 } 2719 2720 /* 2721 * Compact all zones within a node till each zone's fragmentation score 2722 * reaches within proactive compaction thresholds (as determined by the 2723 * proactiveness tunable). 2724 * 2725 * It is possible that the function returns before reaching score targets 2726 * due to various back-off conditions, such as, contention on per-node or 2727 * per-zone locks. 2728 */ 2729 static void proactive_compact_node(pg_data_t *pgdat) 2730 { 2731 int zoneid; 2732 struct zone *zone; 2733 struct compact_control cc = { 2734 .order = -1, 2735 .mode = MIGRATE_SYNC_LIGHT, 2736 .ignore_skip_hint = true, 2737 .whole_zone = true, 2738 .gfp_mask = GFP_KERNEL, 2739 .proactive_compaction = true, 2740 }; 2741 2742 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2743 zone = &pgdat->node_zones[zoneid]; 2744 if (!populated_zone(zone)) 2745 continue; 2746 2747 cc.zone = zone; 2748 2749 compact_zone(&cc, NULL); 2750 2751 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 2752 cc.total_migrate_scanned); 2753 count_compact_events(KCOMPACTD_FREE_SCANNED, 2754 cc.total_free_scanned); 2755 } 2756 } 2757 2758 /* Compact all zones within a node */ 2759 static void compact_node(int nid) 2760 { 2761 pg_data_t *pgdat = NODE_DATA(nid); 2762 int zoneid; 2763 struct zone *zone; 2764 struct compact_control cc = { 2765 .order = -1, 2766 .mode = MIGRATE_SYNC, 2767 .ignore_skip_hint = true, 2768 .whole_zone = true, 2769 .gfp_mask = GFP_KERNEL, 2770 }; 2771 2772 2773 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2774 2775 zone = &pgdat->node_zones[zoneid]; 2776 if (!populated_zone(zone)) 2777 continue; 2778 2779 cc.zone = zone; 2780 2781 compact_zone(&cc, NULL); 2782 } 2783 } 2784 2785 /* Compact all nodes in the system */ 2786 static void compact_nodes(void) 2787 { 2788 int nid; 2789 2790 /* Flush pending updates to the LRU lists */ 2791 lru_add_drain_all(); 2792 2793 for_each_online_node(nid) 2794 compact_node(nid); 2795 } 2796 2797 static int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write, 2798 void *buffer, size_t *length, loff_t *ppos) 2799 { 2800 int rc, nid; 2801 2802 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 2803 if (rc) 2804 return rc; 2805 2806 if (write && sysctl_compaction_proactiveness) { 2807 for_each_online_node(nid) { 2808 pg_data_t *pgdat = NODE_DATA(nid); 2809 2810 if (pgdat->proactive_compact_trigger) 2811 continue; 2812 2813 pgdat->proactive_compact_trigger = true; 2814 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1, 2815 pgdat->nr_zones - 1); 2816 wake_up_interruptible(&pgdat->kcompactd_wait); 2817 } 2818 } 2819 2820 return 0; 2821 } 2822 2823 /* 2824 * This is the entry point for compacting all nodes via 2825 * /proc/sys/vm/compact_memory 2826 */ 2827 static int sysctl_compaction_handler(struct ctl_table *table, int write, 2828 void *buffer, size_t *length, loff_t *ppos) 2829 { 2830 int ret; 2831 2832 ret = proc_dointvec(table, write, buffer, length, ppos); 2833 if (ret) 2834 return ret; 2835 2836 if (sysctl_compact_memory != 1) 2837 return -EINVAL; 2838 2839 if (write) 2840 compact_nodes(); 2841 2842 return 0; 2843 } 2844 2845 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 2846 static ssize_t compact_store(struct device *dev, 2847 struct device_attribute *attr, 2848 const char *buf, size_t count) 2849 { 2850 int nid = dev->id; 2851 2852 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 2853 /* Flush pending updates to the LRU lists */ 2854 lru_add_drain_all(); 2855 2856 compact_node(nid); 2857 } 2858 2859 return count; 2860 } 2861 static DEVICE_ATTR_WO(compact); 2862 2863 int compaction_register_node(struct node *node) 2864 { 2865 return device_create_file(&node->dev, &dev_attr_compact); 2866 } 2867 2868 void compaction_unregister_node(struct node *node) 2869 { 2870 return device_remove_file(&node->dev, &dev_attr_compact); 2871 } 2872 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 2873 2874 static inline bool kcompactd_work_requested(pg_data_t *pgdat) 2875 { 2876 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() || 2877 pgdat->proactive_compact_trigger; 2878 } 2879 2880 static bool kcompactd_node_suitable(pg_data_t *pgdat) 2881 { 2882 int zoneid; 2883 struct zone *zone; 2884 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx; 2885 2886 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) { 2887 zone = &pgdat->node_zones[zoneid]; 2888 2889 if (!populated_zone(zone)) 2890 continue; 2891 2892 /* Allocation can already succeed, check other zones */ 2893 if (zone_watermark_ok(zone, pgdat->kcompactd_max_order, 2894 min_wmark_pages(zone), 2895 highest_zoneidx, 0)) 2896 continue; 2897 2898 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 2899 highest_zoneidx)) 2900 return true; 2901 } 2902 2903 return false; 2904 } 2905 2906 static void kcompactd_do_work(pg_data_t *pgdat) 2907 { 2908 /* 2909 * With no special task, compact all zones so that a page of requested 2910 * order is allocatable. 2911 */ 2912 int zoneid; 2913 struct zone *zone; 2914 struct compact_control cc = { 2915 .order = pgdat->kcompactd_max_order, 2916 .search_order = pgdat->kcompactd_max_order, 2917 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx, 2918 .mode = MIGRATE_SYNC_LIGHT, 2919 .ignore_skip_hint = false, 2920 .gfp_mask = GFP_KERNEL, 2921 }; 2922 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 2923 cc.highest_zoneidx); 2924 count_compact_event(KCOMPACTD_WAKE); 2925 2926 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) { 2927 int status; 2928 2929 zone = &pgdat->node_zones[zoneid]; 2930 if (!populated_zone(zone)) 2931 continue; 2932 2933 if (compaction_deferred(zone, cc.order)) 2934 continue; 2935 2936 /* Allocation can already succeed, nothing to do */ 2937 if (zone_watermark_ok(zone, cc.order, 2938 min_wmark_pages(zone), zoneid, 0)) 2939 continue; 2940 2941 if (!compaction_suitable(zone, cc.order, zoneid)) 2942 continue; 2943 2944 if (kthread_should_stop()) 2945 return; 2946 2947 cc.zone = zone; 2948 status = compact_zone(&cc, NULL); 2949 2950 if (status == COMPACT_SUCCESS) { 2951 compaction_defer_reset(zone, cc.order, false); 2952 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { 2953 /* 2954 * Buddy pages may become stranded on pcps that could 2955 * otherwise coalesce on the zone's free area for 2956 * order >= cc.order. This is ratelimited by the 2957 * upcoming deferral. 2958 */ 2959 drain_all_pages(zone); 2960 2961 /* 2962 * We use sync migration mode here, so we defer like 2963 * sync direct compaction does. 2964 */ 2965 defer_compaction(zone, cc.order); 2966 } 2967 2968 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 2969 cc.total_migrate_scanned); 2970 count_compact_events(KCOMPACTD_FREE_SCANNED, 2971 cc.total_free_scanned); 2972 } 2973 2974 /* 2975 * Regardless of success, we are done until woken up next. But remember 2976 * the requested order/highest_zoneidx in case it was higher/tighter 2977 * than our current ones 2978 */ 2979 if (pgdat->kcompactd_max_order <= cc.order) 2980 pgdat->kcompactd_max_order = 0; 2981 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx) 2982 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 2983 } 2984 2985 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx) 2986 { 2987 if (!order) 2988 return; 2989 2990 if (pgdat->kcompactd_max_order < order) 2991 pgdat->kcompactd_max_order = order; 2992 2993 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx) 2994 pgdat->kcompactd_highest_zoneidx = highest_zoneidx; 2995 2996 /* 2997 * Pairs with implicit barrier in wait_event_freezable() 2998 * such that wakeups are not missed. 2999 */ 3000 if (!wq_has_sleeper(&pgdat->kcompactd_wait)) 3001 return; 3002 3003 if (!kcompactd_node_suitable(pgdat)) 3004 return; 3005 3006 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 3007 highest_zoneidx); 3008 wake_up_interruptible(&pgdat->kcompactd_wait); 3009 } 3010 3011 /* 3012 * The background compaction daemon, started as a kernel thread 3013 * from the init process. 3014 */ 3015 static int kcompactd(void *p) 3016 { 3017 pg_data_t *pgdat = (pg_data_t *)p; 3018 struct task_struct *tsk = current; 3019 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC); 3020 long timeout = default_timeout; 3021 3022 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3023 3024 if (!cpumask_empty(cpumask)) 3025 set_cpus_allowed_ptr(tsk, cpumask); 3026 3027 set_freezable(); 3028 3029 pgdat->kcompactd_max_order = 0; 3030 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 3031 3032 while (!kthread_should_stop()) { 3033 unsigned long pflags; 3034 3035 /* 3036 * Avoid the unnecessary wakeup for proactive compaction 3037 * when it is disabled. 3038 */ 3039 if (!sysctl_compaction_proactiveness) 3040 timeout = MAX_SCHEDULE_TIMEOUT; 3041 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 3042 if (wait_event_freezable_timeout(pgdat->kcompactd_wait, 3043 kcompactd_work_requested(pgdat), timeout) && 3044 !pgdat->proactive_compact_trigger) { 3045 3046 psi_memstall_enter(&pflags); 3047 kcompactd_do_work(pgdat); 3048 psi_memstall_leave(&pflags); 3049 /* 3050 * Reset the timeout value. The defer timeout from 3051 * proactive compaction is lost here but that is fine 3052 * as the condition of the zone changing substantionally 3053 * then carrying on with the previous defer interval is 3054 * not useful. 3055 */ 3056 timeout = default_timeout; 3057 continue; 3058 } 3059 3060 /* 3061 * Start the proactive work with default timeout. Based 3062 * on the fragmentation score, this timeout is updated. 3063 */ 3064 timeout = default_timeout; 3065 if (should_proactive_compact_node(pgdat)) { 3066 unsigned int prev_score, score; 3067 3068 prev_score = fragmentation_score_node(pgdat); 3069 proactive_compact_node(pgdat); 3070 score = fragmentation_score_node(pgdat); 3071 /* 3072 * Defer proactive compaction if the fragmentation 3073 * score did not go down i.e. no progress made. 3074 */ 3075 if (unlikely(score >= prev_score)) 3076 timeout = 3077 default_timeout << COMPACT_MAX_DEFER_SHIFT; 3078 } 3079 if (unlikely(pgdat->proactive_compact_trigger)) 3080 pgdat->proactive_compact_trigger = false; 3081 } 3082 3083 return 0; 3084 } 3085 3086 /* 3087 * This kcompactd start function will be called by init and node-hot-add. 3088 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 3089 */ 3090 void __meminit kcompactd_run(int nid) 3091 { 3092 pg_data_t *pgdat = NODE_DATA(nid); 3093 3094 if (pgdat->kcompactd) 3095 return; 3096 3097 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); 3098 if (IS_ERR(pgdat->kcompactd)) { 3099 pr_err("Failed to start kcompactd on node %d\n", nid); 3100 pgdat->kcompactd = NULL; 3101 } 3102 } 3103 3104 /* 3105 * Called by memory hotplug when all memory in a node is offlined. Caller must 3106 * be holding mem_hotplug_begin/done(). 3107 */ 3108 void __meminit kcompactd_stop(int nid) 3109 { 3110 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 3111 3112 if (kcompactd) { 3113 kthread_stop(kcompactd); 3114 NODE_DATA(nid)->kcompactd = NULL; 3115 } 3116 } 3117 3118 /* 3119 * It's optimal to keep kcompactd on the same CPUs as their memory, but 3120 * not required for correctness. So if the last cpu in a node goes 3121 * away, we get changed to run anywhere: as the first one comes back, 3122 * restore their cpu bindings. 3123 */ 3124 static int kcompactd_cpu_online(unsigned int cpu) 3125 { 3126 int nid; 3127 3128 for_each_node_state(nid, N_MEMORY) { 3129 pg_data_t *pgdat = NODE_DATA(nid); 3130 const struct cpumask *mask; 3131 3132 mask = cpumask_of_node(pgdat->node_id); 3133 3134 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3135 /* One of our CPUs online: restore mask */ 3136 if (pgdat->kcompactd) 3137 set_cpus_allowed_ptr(pgdat->kcompactd, mask); 3138 } 3139 return 0; 3140 } 3141 3142 static int proc_dointvec_minmax_warn_RT_change(struct ctl_table *table, 3143 int write, void *buffer, size_t *lenp, loff_t *ppos) 3144 { 3145 int ret, old; 3146 3147 if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write) 3148 return proc_dointvec_minmax(table, write, buffer, lenp, ppos); 3149 3150 old = *(int *)table->data; 3151 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 3152 if (ret) 3153 return ret; 3154 if (old != *(int *)table->data) 3155 pr_warn_once("sysctl attribute %s changed by %s[%d]\n", 3156 table->procname, current->comm, 3157 task_pid_nr(current)); 3158 return ret; 3159 } 3160 3161 static struct ctl_table vm_compaction[] = { 3162 { 3163 .procname = "compact_memory", 3164 .data = &sysctl_compact_memory, 3165 .maxlen = sizeof(int), 3166 .mode = 0200, 3167 .proc_handler = sysctl_compaction_handler, 3168 }, 3169 { 3170 .procname = "compaction_proactiveness", 3171 .data = &sysctl_compaction_proactiveness, 3172 .maxlen = sizeof(sysctl_compaction_proactiveness), 3173 .mode = 0644, 3174 .proc_handler = compaction_proactiveness_sysctl_handler, 3175 .extra1 = SYSCTL_ZERO, 3176 .extra2 = SYSCTL_ONE_HUNDRED, 3177 }, 3178 { 3179 .procname = "extfrag_threshold", 3180 .data = &sysctl_extfrag_threshold, 3181 .maxlen = sizeof(int), 3182 .mode = 0644, 3183 .proc_handler = proc_dointvec_minmax, 3184 .extra1 = SYSCTL_ZERO, 3185 .extra2 = SYSCTL_ONE_THOUSAND, 3186 }, 3187 { 3188 .procname = "compact_unevictable_allowed", 3189 .data = &sysctl_compact_unevictable_allowed, 3190 .maxlen = sizeof(int), 3191 .mode = 0644, 3192 .proc_handler = proc_dointvec_minmax_warn_RT_change, 3193 .extra1 = SYSCTL_ZERO, 3194 .extra2 = SYSCTL_ONE, 3195 }, 3196 { } 3197 }; 3198 3199 static int __init kcompactd_init(void) 3200 { 3201 int nid; 3202 int ret; 3203 3204 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 3205 "mm/compaction:online", 3206 kcompactd_cpu_online, NULL); 3207 if (ret < 0) { 3208 pr_err("kcompactd: failed to register hotplug callbacks.\n"); 3209 return ret; 3210 } 3211 3212 for_each_node_state(nid, N_MEMORY) 3213 kcompactd_run(nid); 3214 register_sysctl_init("vm", vm_compaction); 3215 return 0; 3216 } 3217 subsys_initcall(kcompactd_init) 3218 3219 #endif /* CONFIG_COMPACTION */ 3220