1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/compaction.c 4 * 5 * Memory compaction for the reduction of external fragmentation. Note that 6 * this heavily depends upon page migration to do all the real heavy 7 * lifting 8 * 9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 10 */ 11 #include <linux/cpu.h> 12 #include <linux/swap.h> 13 #include <linux/migrate.h> 14 #include <linux/compaction.h> 15 #include <linux/mm_inline.h> 16 #include <linux/sched/signal.h> 17 #include <linux/backing-dev.h> 18 #include <linux/sysctl.h> 19 #include <linux/sysfs.h> 20 #include <linux/page-isolation.h> 21 #include <linux/kasan.h> 22 #include <linux/kthread.h> 23 #include <linux/freezer.h> 24 #include <linux/page_owner.h> 25 #include <linux/psi.h> 26 #include "internal.h" 27 28 #ifdef CONFIG_COMPACTION 29 static inline void count_compact_event(enum vm_event_item item) 30 { 31 count_vm_event(item); 32 } 33 34 static inline void count_compact_events(enum vm_event_item item, long delta) 35 { 36 count_vm_events(item, delta); 37 } 38 #else 39 #define count_compact_event(item) do { } while (0) 40 #define count_compact_events(item, delta) do { } while (0) 41 #endif 42 43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/compaction.h> 47 48 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order)) 49 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order)) 50 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order) 51 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order) 52 53 static unsigned long release_freepages(struct list_head *freelist) 54 { 55 struct page *page, *next; 56 unsigned long high_pfn = 0; 57 58 list_for_each_entry_safe(page, next, freelist, lru) { 59 unsigned long pfn = page_to_pfn(page); 60 list_del(&page->lru); 61 __free_page(page); 62 if (pfn > high_pfn) 63 high_pfn = pfn; 64 } 65 66 return high_pfn; 67 } 68 69 static void split_map_pages(struct list_head *list) 70 { 71 unsigned int i, order, nr_pages; 72 struct page *page, *next; 73 LIST_HEAD(tmp_list); 74 75 list_for_each_entry_safe(page, next, list, lru) { 76 list_del(&page->lru); 77 78 order = page_private(page); 79 nr_pages = 1 << order; 80 81 post_alloc_hook(page, order, __GFP_MOVABLE); 82 if (order) 83 split_page(page, order); 84 85 for (i = 0; i < nr_pages; i++) { 86 list_add(&page->lru, &tmp_list); 87 page++; 88 } 89 } 90 91 list_splice(&tmp_list, list); 92 } 93 94 #ifdef CONFIG_COMPACTION 95 96 int PageMovable(struct page *page) 97 { 98 struct address_space *mapping; 99 100 VM_BUG_ON_PAGE(!PageLocked(page), page); 101 if (!__PageMovable(page)) 102 return 0; 103 104 mapping = page_mapping(page); 105 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page) 106 return 1; 107 108 return 0; 109 } 110 EXPORT_SYMBOL(PageMovable); 111 112 void __SetPageMovable(struct page *page, struct address_space *mapping) 113 { 114 VM_BUG_ON_PAGE(!PageLocked(page), page); 115 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page); 116 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE); 117 } 118 EXPORT_SYMBOL(__SetPageMovable); 119 120 void __ClearPageMovable(struct page *page) 121 { 122 VM_BUG_ON_PAGE(!PageLocked(page), page); 123 VM_BUG_ON_PAGE(!PageMovable(page), page); 124 /* 125 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE 126 * flag so that VM can catch up released page by driver after isolation. 127 * With it, VM migration doesn't try to put it back. 128 */ 129 page->mapping = (void *)((unsigned long)page->mapping & 130 PAGE_MAPPING_MOVABLE); 131 } 132 EXPORT_SYMBOL(__ClearPageMovable); 133 134 /* Do not skip compaction more than 64 times */ 135 #define COMPACT_MAX_DEFER_SHIFT 6 136 137 /* 138 * Compaction is deferred when compaction fails to result in a page 139 * allocation success. 1 << compact_defer_limit compactions are skipped up 140 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 141 */ 142 void defer_compaction(struct zone *zone, int order) 143 { 144 zone->compact_considered = 0; 145 zone->compact_defer_shift++; 146 147 if (order < zone->compact_order_failed) 148 zone->compact_order_failed = order; 149 150 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 151 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 152 153 trace_mm_compaction_defer_compaction(zone, order); 154 } 155 156 /* Returns true if compaction should be skipped this time */ 157 bool compaction_deferred(struct zone *zone, int order) 158 { 159 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 160 161 if (order < zone->compact_order_failed) 162 return false; 163 164 /* Avoid possible overflow */ 165 if (++zone->compact_considered > defer_limit) 166 zone->compact_considered = defer_limit; 167 168 if (zone->compact_considered >= defer_limit) 169 return false; 170 171 trace_mm_compaction_deferred(zone, order); 172 173 return true; 174 } 175 176 /* 177 * Update defer tracking counters after successful compaction of given order, 178 * which means an allocation either succeeded (alloc_success == true) or is 179 * expected to succeed. 180 */ 181 void compaction_defer_reset(struct zone *zone, int order, 182 bool alloc_success) 183 { 184 if (alloc_success) { 185 zone->compact_considered = 0; 186 zone->compact_defer_shift = 0; 187 } 188 if (order >= zone->compact_order_failed) 189 zone->compact_order_failed = order + 1; 190 191 trace_mm_compaction_defer_reset(zone, order); 192 } 193 194 /* Returns true if restarting compaction after many failures */ 195 bool compaction_restarting(struct zone *zone, int order) 196 { 197 if (order < zone->compact_order_failed) 198 return false; 199 200 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 201 zone->compact_considered >= 1UL << zone->compact_defer_shift; 202 } 203 204 /* Returns true if the pageblock should be scanned for pages to isolate. */ 205 static inline bool isolation_suitable(struct compact_control *cc, 206 struct page *page) 207 { 208 if (cc->ignore_skip_hint) 209 return true; 210 211 return !get_pageblock_skip(page); 212 } 213 214 static void reset_cached_positions(struct zone *zone) 215 { 216 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 217 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 218 zone->compact_cached_free_pfn = 219 pageblock_start_pfn(zone_end_pfn(zone) - 1); 220 } 221 222 /* 223 * Compound pages of >= pageblock_order should consistenly be skipped until 224 * released. It is always pointless to compact pages of such order (if they are 225 * migratable), and the pageblocks they occupy cannot contain any free pages. 226 */ 227 static bool pageblock_skip_persistent(struct page *page) 228 { 229 if (!PageCompound(page)) 230 return false; 231 232 page = compound_head(page); 233 234 if (compound_order(page) >= pageblock_order) 235 return true; 236 237 return false; 238 } 239 240 static bool 241 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source, 242 bool check_target) 243 { 244 struct page *page = pfn_to_online_page(pfn); 245 struct page *block_page; 246 struct page *end_page; 247 unsigned long block_pfn; 248 249 if (!page) 250 return false; 251 if (zone != page_zone(page)) 252 return false; 253 if (pageblock_skip_persistent(page)) 254 return false; 255 256 /* 257 * If skip is already cleared do no further checking once the 258 * restart points have been set. 259 */ 260 if (check_source && check_target && !get_pageblock_skip(page)) 261 return true; 262 263 /* 264 * If clearing skip for the target scanner, do not select a 265 * non-movable pageblock as the starting point. 266 */ 267 if (!check_source && check_target && 268 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 269 return false; 270 271 /* Ensure the start of the pageblock or zone is online and valid */ 272 block_pfn = pageblock_start_pfn(pfn); 273 block_pfn = max(block_pfn, zone->zone_start_pfn); 274 block_page = pfn_to_online_page(block_pfn); 275 if (block_page) { 276 page = block_page; 277 pfn = block_pfn; 278 } 279 280 /* Ensure the end of the pageblock or zone is online and valid */ 281 block_pfn = pageblock_end_pfn(pfn) - 1; 282 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1); 283 end_page = pfn_to_online_page(block_pfn); 284 if (!end_page) 285 return false; 286 287 /* 288 * Only clear the hint if a sample indicates there is either a 289 * free page or an LRU page in the block. One or other condition 290 * is necessary for the block to be a migration source/target. 291 */ 292 do { 293 if (pfn_valid_within(pfn)) { 294 if (check_source && PageLRU(page)) { 295 clear_pageblock_skip(page); 296 return true; 297 } 298 299 if (check_target && PageBuddy(page)) { 300 clear_pageblock_skip(page); 301 return true; 302 } 303 } 304 305 page += (1 << PAGE_ALLOC_COSTLY_ORDER); 306 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER); 307 } while (page <= end_page); 308 309 return false; 310 } 311 312 /* 313 * This function is called to clear all cached information on pageblocks that 314 * should be skipped for page isolation when the migrate and free page scanner 315 * meet. 316 */ 317 static void __reset_isolation_suitable(struct zone *zone) 318 { 319 unsigned long migrate_pfn = zone->zone_start_pfn; 320 unsigned long free_pfn = zone_end_pfn(zone) - 1; 321 unsigned long reset_migrate = free_pfn; 322 unsigned long reset_free = migrate_pfn; 323 bool source_set = false; 324 bool free_set = false; 325 326 if (!zone->compact_blockskip_flush) 327 return; 328 329 zone->compact_blockskip_flush = false; 330 331 /* 332 * Walk the zone and update pageblock skip information. Source looks 333 * for PageLRU while target looks for PageBuddy. When the scanner 334 * is found, both PageBuddy and PageLRU are checked as the pageblock 335 * is suitable as both source and target. 336 */ 337 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages, 338 free_pfn -= pageblock_nr_pages) { 339 cond_resched(); 340 341 /* Update the migrate PFN */ 342 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) && 343 migrate_pfn < reset_migrate) { 344 source_set = true; 345 reset_migrate = migrate_pfn; 346 zone->compact_init_migrate_pfn = reset_migrate; 347 zone->compact_cached_migrate_pfn[0] = reset_migrate; 348 zone->compact_cached_migrate_pfn[1] = reset_migrate; 349 } 350 351 /* Update the free PFN */ 352 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) && 353 free_pfn > reset_free) { 354 free_set = true; 355 reset_free = free_pfn; 356 zone->compact_init_free_pfn = reset_free; 357 zone->compact_cached_free_pfn = reset_free; 358 } 359 } 360 361 /* Leave no distance if no suitable block was reset */ 362 if (reset_migrate >= reset_free) { 363 zone->compact_cached_migrate_pfn[0] = migrate_pfn; 364 zone->compact_cached_migrate_pfn[1] = migrate_pfn; 365 zone->compact_cached_free_pfn = free_pfn; 366 } 367 } 368 369 void reset_isolation_suitable(pg_data_t *pgdat) 370 { 371 int zoneid; 372 373 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 374 struct zone *zone = &pgdat->node_zones[zoneid]; 375 if (!populated_zone(zone)) 376 continue; 377 378 /* Only flush if a full compaction finished recently */ 379 if (zone->compact_blockskip_flush) 380 __reset_isolation_suitable(zone); 381 } 382 } 383 384 /* 385 * Sets the pageblock skip bit if it was clear. Note that this is a hint as 386 * locks are not required for read/writers. Returns true if it was already set. 387 */ 388 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 389 unsigned long pfn) 390 { 391 bool skip; 392 393 /* Do no update if skip hint is being ignored */ 394 if (cc->ignore_skip_hint) 395 return false; 396 397 if (!IS_ALIGNED(pfn, pageblock_nr_pages)) 398 return false; 399 400 skip = get_pageblock_skip(page); 401 if (!skip && !cc->no_set_skip_hint) 402 set_pageblock_skip(page); 403 404 return skip; 405 } 406 407 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 408 { 409 struct zone *zone = cc->zone; 410 411 pfn = pageblock_end_pfn(pfn); 412 413 /* Set for isolation rather than compaction */ 414 if (cc->no_set_skip_hint) 415 return; 416 417 if (pfn > zone->compact_cached_migrate_pfn[0]) 418 zone->compact_cached_migrate_pfn[0] = pfn; 419 if (cc->mode != MIGRATE_ASYNC && 420 pfn > zone->compact_cached_migrate_pfn[1]) 421 zone->compact_cached_migrate_pfn[1] = pfn; 422 } 423 424 /* 425 * If no pages were isolated then mark this pageblock to be skipped in the 426 * future. The information is later cleared by __reset_isolation_suitable(). 427 */ 428 static void update_pageblock_skip(struct compact_control *cc, 429 struct page *page, unsigned long pfn) 430 { 431 struct zone *zone = cc->zone; 432 433 if (cc->no_set_skip_hint) 434 return; 435 436 if (!page) 437 return; 438 439 set_pageblock_skip(page); 440 441 /* Update where async and sync compaction should restart */ 442 if (pfn < zone->compact_cached_free_pfn) 443 zone->compact_cached_free_pfn = pfn; 444 } 445 #else 446 static inline bool isolation_suitable(struct compact_control *cc, 447 struct page *page) 448 { 449 return true; 450 } 451 452 static inline bool pageblock_skip_persistent(struct page *page) 453 { 454 return false; 455 } 456 457 static inline void update_pageblock_skip(struct compact_control *cc, 458 struct page *page, unsigned long pfn) 459 { 460 } 461 462 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 463 { 464 } 465 466 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 467 unsigned long pfn) 468 { 469 return false; 470 } 471 #endif /* CONFIG_COMPACTION */ 472 473 /* 474 * Compaction requires the taking of some coarse locks that are potentially 475 * very heavily contended. For async compaction, trylock and record if the 476 * lock is contended. The lock will still be acquired but compaction will 477 * abort when the current block is finished regardless of success rate. 478 * Sync compaction acquires the lock. 479 * 480 * Always returns true which makes it easier to track lock state in callers. 481 */ 482 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags, 483 struct compact_control *cc) 484 __acquires(lock) 485 { 486 /* Track if the lock is contended in async mode */ 487 if (cc->mode == MIGRATE_ASYNC && !cc->contended) { 488 if (spin_trylock_irqsave(lock, *flags)) 489 return true; 490 491 cc->contended = true; 492 } 493 494 spin_lock_irqsave(lock, *flags); 495 return true; 496 } 497 498 /* 499 * Compaction requires the taking of some coarse locks that are potentially 500 * very heavily contended. The lock should be periodically unlocked to avoid 501 * having disabled IRQs for a long time, even when there is nobody waiting on 502 * the lock. It might also be that allowing the IRQs will result in 503 * need_resched() becoming true. If scheduling is needed, async compaction 504 * aborts. Sync compaction schedules. 505 * Either compaction type will also abort if a fatal signal is pending. 506 * In either case if the lock was locked, it is dropped and not regained. 507 * 508 * Returns true if compaction should abort due to fatal signal pending, or 509 * async compaction due to need_resched() 510 * Returns false when compaction can continue (sync compaction might have 511 * scheduled) 512 */ 513 static bool compact_unlock_should_abort(spinlock_t *lock, 514 unsigned long flags, bool *locked, struct compact_control *cc) 515 { 516 if (*locked) { 517 spin_unlock_irqrestore(lock, flags); 518 *locked = false; 519 } 520 521 if (fatal_signal_pending(current)) { 522 cc->contended = true; 523 return true; 524 } 525 526 cond_resched(); 527 528 return false; 529 } 530 531 /* 532 * Isolate free pages onto a private freelist. If @strict is true, will abort 533 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 534 * (even though it may still end up isolating some pages). 535 */ 536 static unsigned long isolate_freepages_block(struct compact_control *cc, 537 unsigned long *start_pfn, 538 unsigned long end_pfn, 539 struct list_head *freelist, 540 unsigned int stride, 541 bool strict) 542 { 543 int nr_scanned = 0, total_isolated = 0; 544 struct page *cursor; 545 unsigned long flags = 0; 546 bool locked = false; 547 unsigned long blockpfn = *start_pfn; 548 unsigned int order; 549 550 /* Strict mode is for isolation, speed is secondary */ 551 if (strict) 552 stride = 1; 553 554 cursor = pfn_to_page(blockpfn); 555 556 /* Isolate free pages. */ 557 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) { 558 int isolated; 559 struct page *page = cursor; 560 561 /* 562 * Periodically drop the lock (if held) regardless of its 563 * contention, to give chance to IRQs. Abort if fatal signal 564 * pending or async compaction detects need_resched() 565 */ 566 if (!(blockpfn % SWAP_CLUSTER_MAX) 567 && compact_unlock_should_abort(&cc->zone->lock, flags, 568 &locked, cc)) 569 break; 570 571 nr_scanned++; 572 if (!pfn_valid_within(blockpfn)) 573 goto isolate_fail; 574 575 /* 576 * For compound pages such as THP and hugetlbfs, we can save 577 * potentially a lot of iterations if we skip them at once. 578 * The check is racy, but we can consider only valid values 579 * and the only danger is skipping too much. 580 */ 581 if (PageCompound(page)) { 582 const unsigned int order = compound_order(page); 583 584 if (likely(order < MAX_ORDER)) { 585 blockpfn += (1UL << order) - 1; 586 cursor += (1UL << order) - 1; 587 } 588 goto isolate_fail; 589 } 590 591 if (!PageBuddy(page)) 592 goto isolate_fail; 593 594 /* 595 * If we already hold the lock, we can skip some rechecking. 596 * Note that if we hold the lock now, checked_pageblock was 597 * already set in some previous iteration (or strict is true), 598 * so it is correct to skip the suitable migration target 599 * recheck as well. 600 */ 601 if (!locked) { 602 locked = compact_lock_irqsave(&cc->zone->lock, 603 &flags, cc); 604 605 /* Recheck this is a buddy page under lock */ 606 if (!PageBuddy(page)) 607 goto isolate_fail; 608 } 609 610 /* Found a free page, will break it into order-0 pages */ 611 order = page_order(page); 612 isolated = __isolate_free_page(page, order); 613 if (!isolated) 614 break; 615 set_page_private(page, order); 616 617 total_isolated += isolated; 618 cc->nr_freepages += isolated; 619 list_add_tail(&page->lru, freelist); 620 621 if (!strict && cc->nr_migratepages <= cc->nr_freepages) { 622 blockpfn += isolated; 623 break; 624 } 625 /* Advance to the end of split page */ 626 blockpfn += isolated - 1; 627 cursor += isolated - 1; 628 continue; 629 630 isolate_fail: 631 if (strict) 632 break; 633 else 634 continue; 635 636 } 637 638 if (locked) 639 spin_unlock_irqrestore(&cc->zone->lock, flags); 640 641 /* 642 * There is a tiny chance that we have read bogus compound_order(), 643 * so be careful to not go outside of the pageblock. 644 */ 645 if (unlikely(blockpfn > end_pfn)) 646 blockpfn = end_pfn; 647 648 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 649 nr_scanned, total_isolated); 650 651 /* Record how far we have got within the block */ 652 *start_pfn = blockpfn; 653 654 /* 655 * If strict isolation is requested by CMA then check that all the 656 * pages requested were isolated. If there were any failures, 0 is 657 * returned and CMA will fail. 658 */ 659 if (strict && blockpfn < end_pfn) 660 total_isolated = 0; 661 662 cc->total_free_scanned += nr_scanned; 663 if (total_isolated) 664 count_compact_events(COMPACTISOLATED, total_isolated); 665 return total_isolated; 666 } 667 668 /** 669 * isolate_freepages_range() - isolate free pages. 670 * @cc: Compaction control structure. 671 * @start_pfn: The first PFN to start isolating. 672 * @end_pfn: The one-past-last PFN. 673 * 674 * Non-free pages, invalid PFNs, or zone boundaries within the 675 * [start_pfn, end_pfn) range are considered errors, cause function to 676 * undo its actions and return zero. 677 * 678 * Otherwise, function returns one-past-the-last PFN of isolated page 679 * (which may be greater then end_pfn if end fell in a middle of 680 * a free page). 681 */ 682 unsigned long 683 isolate_freepages_range(struct compact_control *cc, 684 unsigned long start_pfn, unsigned long end_pfn) 685 { 686 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 687 LIST_HEAD(freelist); 688 689 pfn = start_pfn; 690 block_start_pfn = pageblock_start_pfn(pfn); 691 if (block_start_pfn < cc->zone->zone_start_pfn) 692 block_start_pfn = cc->zone->zone_start_pfn; 693 block_end_pfn = pageblock_end_pfn(pfn); 694 695 for (; pfn < end_pfn; pfn += isolated, 696 block_start_pfn = block_end_pfn, 697 block_end_pfn += pageblock_nr_pages) { 698 /* Protect pfn from changing by isolate_freepages_block */ 699 unsigned long isolate_start_pfn = pfn; 700 701 block_end_pfn = min(block_end_pfn, end_pfn); 702 703 /* 704 * pfn could pass the block_end_pfn if isolated freepage 705 * is more than pageblock order. In this case, we adjust 706 * scanning range to right one. 707 */ 708 if (pfn >= block_end_pfn) { 709 block_start_pfn = pageblock_start_pfn(pfn); 710 block_end_pfn = pageblock_end_pfn(pfn); 711 block_end_pfn = min(block_end_pfn, end_pfn); 712 } 713 714 if (!pageblock_pfn_to_page(block_start_pfn, 715 block_end_pfn, cc->zone)) 716 break; 717 718 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 719 block_end_pfn, &freelist, 0, true); 720 721 /* 722 * In strict mode, isolate_freepages_block() returns 0 if 723 * there are any holes in the block (ie. invalid PFNs or 724 * non-free pages). 725 */ 726 if (!isolated) 727 break; 728 729 /* 730 * If we managed to isolate pages, it is always (1 << n) * 731 * pageblock_nr_pages for some non-negative n. (Max order 732 * page may span two pageblocks). 733 */ 734 } 735 736 /* __isolate_free_page() does not map the pages */ 737 split_map_pages(&freelist); 738 739 if (pfn < end_pfn) { 740 /* Loop terminated early, cleanup. */ 741 release_freepages(&freelist); 742 return 0; 743 } 744 745 /* We don't use freelists for anything. */ 746 return pfn; 747 } 748 749 /* Similar to reclaim, but different enough that they don't share logic */ 750 static bool too_many_isolated(pg_data_t *pgdat) 751 { 752 unsigned long active, inactive, isolated; 753 754 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) + 755 node_page_state(pgdat, NR_INACTIVE_ANON); 756 active = node_page_state(pgdat, NR_ACTIVE_FILE) + 757 node_page_state(pgdat, NR_ACTIVE_ANON); 758 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) + 759 node_page_state(pgdat, NR_ISOLATED_ANON); 760 761 return isolated > (inactive + active) / 2; 762 } 763 764 /** 765 * isolate_migratepages_block() - isolate all migrate-able pages within 766 * a single pageblock 767 * @cc: Compaction control structure. 768 * @low_pfn: The first PFN to isolate 769 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 770 * @isolate_mode: Isolation mode to be used. 771 * 772 * Isolate all pages that can be migrated from the range specified by 773 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 774 * Returns zero if there is a fatal signal pending, otherwise PFN of the 775 * first page that was not scanned (which may be both less, equal to or more 776 * than end_pfn). 777 * 778 * The pages are isolated on cc->migratepages list (not required to be empty), 779 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field 780 * is neither read nor updated. 781 */ 782 static unsigned long 783 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 784 unsigned long end_pfn, isolate_mode_t isolate_mode) 785 { 786 pg_data_t *pgdat = cc->zone->zone_pgdat; 787 unsigned long nr_scanned = 0, nr_isolated = 0; 788 struct lruvec *lruvec; 789 unsigned long flags = 0; 790 bool locked = false; 791 struct page *page = NULL, *valid_page = NULL; 792 unsigned long start_pfn = low_pfn; 793 bool skip_on_failure = false; 794 unsigned long next_skip_pfn = 0; 795 bool skip_updated = false; 796 797 /* 798 * Ensure that there are not too many pages isolated from the LRU 799 * list by either parallel reclaimers or compaction. If there are, 800 * delay for some time until fewer pages are isolated 801 */ 802 while (unlikely(too_many_isolated(pgdat))) { 803 /* async migration should just abort */ 804 if (cc->mode == MIGRATE_ASYNC) 805 return 0; 806 807 congestion_wait(BLK_RW_ASYNC, HZ/10); 808 809 if (fatal_signal_pending(current)) 810 return 0; 811 } 812 813 cond_resched(); 814 815 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { 816 skip_on_failure = true; 817 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 818 } 819 820 /* Time to isolate some pages for migration */ 821 for (; low_pfn < end_pfn; low_pfn++) { 822 823 if (skip_on_failure && low_pfn >= next_skip_pfn) { 824 /* 825 * We have isolated all migration candidates in the 826 * previous order-aligned block, and did not skip it due 827 * to failure. We should migrate the pages now and 828 * hopefully succeed compaction. 829 */ 830 if (nr_isolated) 831 break; 832 833 /* 834 * We failed to isolate in the previous order-aligned 835 * block. Set the new boundary to the end of the 836 * current block. Note we can't simply increase 837 * next_skip_pfn by 1 << order, as low_pfn might have 838 * been incremented by a higher number due to skipping 839 * a compound or a high-order buddy page in the 840 * previous loop iteration. 841 */ 842 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 843 } 844 845 /* 846 * Periodically drop the lock (if held) regardless of its 847 * contention, to give chance to IRQs. Abort completely if 848 * a fatal signal is pending. 849 */ 850 if (!(low_pfn % SWAP_CLUSTER_MAX) 851 && compact_unlock_should_abort(&pgdat->lru_lock, 852 flags, &locked, cc)) { 853 low_pfn = 0; 854 goto fatal_pending; 855 } 856 857 if (!pfn_valid_within(low_pfn)) 858 goto isolate_fail; 859 nr_scanned++; 860 861 page = pfn_to_page(low_pfn); 862 863 /* 864 * Check if the pageblock has already been marked skipped. 865 * Only the aligned PFN is checked as the caller isolates 866 * COMPACT_CLUSTER_MAX at a time so the second call must 867 * not falsely conclude that the block should be skipped. 868 */ 869 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) { 870 if (!cc->ignore_skip_hint && get_pageblock_skip(page)) { 871 low_pfn = end_pfn; 872 goto isolate_abort; 873 } 874 valid_page = page; 875 } 876 877 /* 878 * Skip if free. We read page order here without zone lock 879 * which is generally unsafe, but the race window is small and 880 * the worst thing that can happen is that we skip some 881 * potential isolation targets. 882 */ 883 if (PageBuddy(page)) { 884 unsigned long freepage_order = page_order_unsafe(page); 885 886 /* 887 * Without lock, we cannot be sure that what we got is 888 * a valid page order. Consider only values in the 889 * valid order range to prevent low_pfn overflow. 890 */ 891 if (freepage_order > 0 && freepage_order < MAX_ORDER) 892 low_pfn += (1UL << freepage_order) - 1; 893 continue; 894 } 895 896 /* 897 * Regardless of being on LRU, compound pages such as THP and 898 * hugetlbfs are not to be compacted unless we are attempting 899 * an allocation much larger than the huge page size (eg CMA). 900 * We can potentially save a lot of iterations if we skip them 901 * at once. The check is racy, but we can consider only valid 902 * values and the only danger is skipping too much. 903 */ 904 if (PageCompound(page) && !cc->alloc_contig) { 905 const unsigned int order = compound_order(page); 906 907 if (likely(order < MAX_ORDER)) 908 low_pfn += (1UL << order) - 1; 909 goto isolate_fail; 910 } 911 912 /* 913 * Check may be lockless but that's ok as we recheck later. 914 * It's possible to migrate LRU and non-lru movable pages. 915 * Skip any other type of page 916 */ 917 if (!PageLRU(page)) { 918 /* 919 * __PageMovable can return false positive so we need 920 * to verify it under page_lock. 921 */ 922 if (unlikely(__PageMovable(page)) && 923 !PageIsolated(page)) { 924 if (locked) { 925 spin_unlock_irqrestore(&pgdat->lru_lock, 926 flags); 927 locked = false; 928 } 929 930 if (!isolate_movable_page(page, isolate_mode)) 931 goto isolate_success; 932 } 933 934 goto isolate_fail; 935 } 936 937 /* 938 * Migration will fail if an anonymous page is pinned in memory, 939 * so avoid taking lru_lock and isolating it unnecessarily in an 940 * admittedly racy check. 941 */ 942 if (!page_mapping(page) && 943 page_count(page) > page_mapcount(page)) 944 goto isolate_fail; 945 946 /* 947 * Only allow to migrate anonymous pages in GFP_NOFS context 948 * because those do not depend on fs locks. 949 */ 950 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page)) 951 goto isolate_fail; 952 953 /* If we already hold the lock, we can skip some rechecking */ 954 if (!locked) { 955 locked = compact_lock_irqsave(&pgdat->lru_lock, 956 &flags, cc); 957 958 /* Try get exclusive access under lock */ 959 if (!skip_updated) { 960 skip_updated = true; 961 if (test_and_set_skip(cc, page, low_pfn)) 962 goto isolate_abort; 963 } 964 965 /* Recheck PageLRU and PageCompound under lock */ 966 if (!PageLRU(page)) 967 goto isolate_fail; 968 969 /* 970 * Page become compound since the non-locked check, 971 * and it's on LRU. It can only be a THP so the order 972 * is safe to read and it's 0 for tail pages. 973 */ 974 if (unlikely(PageCompound(page) && !cc->alloc_contig)) { 975 low_pfn += compound_nr(page) - 1; 976 goto isolate_fail; 977 } 978 } 979 980 lruvec = mem_cgroup_page_lruvec(page, pgdat); 981 982 /* Try isolate the page */ 983 if (__isolate_lru_page(page, isolate_mode) != 0) 984 goto isolate_fail; 985 986 /* The whole page is taken off the LRU; skip the tail pages. */ 987 if (PageCompound(page)) 988 low_pfn += compound_nr(page) - 1; 989 990 /* Successfully isolated */ 991 del_page_from_lru_list(page, lruvec, page_lru(page)); 992 mod_node_page_state(page_pgdat(page), 993 NR_ISOLATED_ANON + page_is_file_lru(page), 994 hpage_nr_pages(page)); 995 996 isolate_success: 997 list_add(&page->lru, &cc->migratepages); 998 cc->nr_migratepages++; 999 nr_isolated++; 1000 1001 /* 1002 * Avoid isolating too much unless this block is being 1003 * rescanned (e.g. dirty/writeback pages, parallel allocation) 1004 * or a lock is contended. For contention, isolate quickly to 1005 * potentially remove one source of contention. 1006 */ 1007 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX && 1008 !cc->rescan && !cc->contended) { 1009 ++low_pfn; 1010 break; 1011 } 1012 1013 continue; 1014 isolate_fail: 1015 if (!skip_on_failure) 1016 continue; 1017 1018 /* 1019 * We have isolated some pages, but then failed. Release them 1020 * instead of migrating, as we cannot form the cc->order buddy 1021 * page anyway. 1022 */ 1023 if (nr_isolated) { 1024 if (locked) { 1025 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 1026 locked = false; 1027 } 1028 putback_movable_pages(&cc->migratepages); 1029 cc->nr_migratepages = 0; 1030 nr_isolated = 0; 1031 } 1032 1033 if (low_pfn < next_skip_pfn) { 1034 low_pfn = next_skip_pfn - 1; 1035 /* 1036 * The check near the loop beginning would have updated 1037 * next_skip_pfn too, but this is a bit simpler. 1038 */ 1039 next_skip_pfn += 1UL << cc->order; 1040 } 1041 } 1042 1043 /* 1044 * The PageBuddy() check could have potentially brought us outside 1045 * the range to be scanned. 1046 */ 1047 if (unlikely(low_pfn > end_pfn)) 1048 low_pfn = end_pfn; 1049 1050 isolate_abort: 1051 if (locked) 1052 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 1053 1054 /* 1055 * Updated the cached scanner pfn once the pageblock has been scanned 1056 * Pages will either be migrated in which case there is no point 1057 * scanning in the near future or migration failed in which case the 1058 * failure reason may persist. The block is marked for skipping if 1059 * there were no pages isolated in the block or if the block is 1060 * rescanned twice in a row. 1061 */ 1062 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) { 1063 if (valid_page && !skip_updated) 1064 set_pageblock_skip(valid_page); 1065 update_cached_migrate(cc, low_pfn); 1066 } 1067 1068 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 1069 nr_scanned, nr_isolated); 1070 1071 fatal_pending: 1072 cc->total_migrate_scanned += nr_scanned; 1073 if (nr_isolated) 1074 count_compact_events(COMPACTISOLATED, nr_isolated); 1075 1076 return low_pfn; 1077 } 1078 1079 /** 1080 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 1081 * @cc: Compaction control structure. 1082 * @start_pfn: The first PFN to start isolating. 1083 * @end_pfn: The one-past-last PFN. 1084 * 1085 * Returns zero if isolation fails fatally due to e.g. pending signal. 1086 * Otherwise, function returns one-past-the-last PFN of isolated page 1087 * (which may be greater than end_pfn if end fell in a middle of a THP page). 1088 */ 1089 unsigned long 1090 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 1091 unsigned long end_pfn) 1092 { 1093 unsigned long pfn, block_start_pfn, block_end_pfn; 1094 1095 /* Scan block by block. First and last block may be incomplete */ 1096 pfn = start_pfn; 1097 block_start_pfn = pageblock_start_pfn(pfn); 1098 if (block_start_pfn < cc->zone->zone_start_pfn) 1099 block_start_pfn = cc->zone->zone_start_pfn; 1100 block_end_pfn = pageblock_end_pfn(pfn); 1101 1102 for (; pfn < end_pfn; pfn = block_end_pfn, 1103 block_start_pfn = block_end_pfn, 1104 block_end_pfn += pageblock_nr_pages) { 1105 1106 block_end_pfn = min(block_end_pfn, end_pfn); 1107 1108 if (!pageblock_pfn_to_page(block_start_pfn, 1109 block_end_pfn, cc->zone)) 1110 continue; 1111 1112 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn, 1113 ISOLATE_UNEVICTABLE); 1114 1115 if (!pfn) 1116 break; 1117 1118 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) 1119 break; 1120 } 1121 1122 return pfn; 1123 } 1124 1125 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 1126 #ifdef CONFIG_COMPACTION 1127 1128 static bool suitable_migration_source(struct compact_control *cc, 1129 struct page *page) 1130 { 1131 int block_mt; 1132 1133 if (pageblock_skip_persistent(page)) 1134 return false; 1135 1136 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction) 1137 return true; 1138 1139 block_mt = get_pageblock_migratetype(page); 1140 1141 if (cc->migratetype == MIGRATE_MOVABLE) 1142 return is_migrate_movable(block_mt); 1143 else 1144 return block_mt == cc->migratetype; 1145 } 1146 1147 /* Returns true if the page is within a block suitable for migration to */ 1148 static bool suitable_migration_target(struct compact_control *cc, 1149 struct page *page) 1150 { 1151 /* If the page is a large free page, then disallow migration */ 1152 if (PageBuddy(page)) { 1153 /* 1154 * We are checking page_order without zone->lock taken. But 1155 * the only small danger is that we skip a potentially suitable 1156 * pageblock, so it's not worth to check order for valid range. 1157 */ 1158 if (page_order_unsafe(page) >= pageblock_order) 1159 return false; 1160 } 1161 1162 if (cc->ignore_block_suitable) 1163 return true; 1164 1165 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 1166 if (is_migrate_movable(get_pageblock_migratetype(page))) 1167 return true; 1168 1169 /* Otherwise skip the block */ 1170 return false; 1171 } 1172 1173 static inline unsigned int 1174 freelist_scan_limit(struct compact_control *cc) 1175 { 1176 unsigned short shift = BITS_PER_LONG - 1; 1177 1178 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1; 1179 } 1180 1181 /* 1182 * Test whether the free scanner has reached the same or lower pageblock than 1183 * the migration scanner, and compaction should thus terminate. 1184 */ 1185 static inline bool compact_scanners_met(struct compact_control *cc) 1186 { 1187 return (cc->free_pfn >> pageblock_order) 1188 <= (cc->migrate_pfn >> pageblock_order); 1189 } 1190 1191 /* 1192 * Used when scanning for a suitable migration target which scans freelists 1193 * in reverse. Reorders the list such as the unscanned pages are scanned 1194 * first on the next iteration of the free scanner 1195 */ 1196 static void 1197 move_freelist_head(struct list_head *freelist, struct page *freepage) 1198 { 1199 LIST_HEAD(sublist); 1200 1201 if (!list_is_last(freelist, &freepage->lru)) { 1202 list_cut_before(&sublist, freelist, &freepage->lru); 1203 if (!list_empty(&sublist)) 1204 list_splice_tail(&sublist, freelist); 1205 } 1206 } 1207 1208 /* 1209 * Similar to move_freelist_head except used by the migration scanner 1210 * when scanning forward. It's possible for these list operations to 1211 * move against each other if they search the free list exactly in 1212 * lockstep. 1213 */ 1214 static void 1215 move_freelist_tail(struct list_head *freelist, struct page *freepage) 1216 { 1217 LIST_HEAD(sublist); 1218 1219 if (!list_is_first(freelist, &freepage->lru)) { 1220 list_cut_position(&sublist, freelist, &freepage->lru); 1221 if (!list_empty(&sublist)) 1222 list_splice_tail(&sublist, freelist); 1223 } 1224 } 1225 1226 static void 1227 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated) 1228 { 1229 unsigned long start_pfn, end_pfn; 1230 struct page *page = pfn_to_page(pfn); 1231 1232 /* Do not search around if there are enough pages already */ 1233 if (cc->nr_freepages >= cc->nr_migratepages) 1234 return; 1235 1236 /* Minimise scanning during async compaction */ 1237 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC) 1238 return; 1239 1240 /* Pageblock boundaries */ 1241 start_pfn = pageblock_start_pfn(pfn); 1242 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1; 1243 1244 /* Scan before */ 1245 if (start_pfn != pfn) { 1246 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false); 1247 if (cc->nr_freepages >= cc->nr_migratepages) 1248 return; 1249 } 1250 1251 /* Scan after */ 1252 start_pfn = pfn + nr_isolated; 1253 if (start_pfn < end_pfn) 1254 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false); 1255 1256 /* Skip this pageblock in the future as it's full or nearly full */ 1257 if (cc->nr_freepages < cc->nr_migratepages) 1258 set_pageblock_skip(page); 1259 } 1260 1261 /* Search orders in round-robin fashion */ 1262 static int next_search_order(struct compact_control *cc, int order) 1263 { 1264 order--; 1265 if (order < 0) 1266 order = cc->order - 1; 1267 1268 /* Search wrapped around? */ 1269 if (order == cc->search_order) { 1270 cc->search_order--; 1271 if (cc->search_order < 0) 1272 cc->search_order = cc->order - 1; 1273 return -1; 1274 } 1275 1276 return order; 1277 } 1278 1279 static unsigned long 1280 fast_isolate_freepages(struct compact_control *cc) 1281 { 1282 unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1); 1283 unsigned int nr_scanned = 0; 1284 unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0; 1285 unsigned long nr_isolated = 0; 1286 unsigned long distance; 1287 struct page *page = NULL; 1288 bool scan_start = false; 1289 int order; 1290 1291 /* Full compaction passes in a negative order */ 1292 if (cc->order <= 0) 1293 return cc->free_pfn; 1294 1295 /* 1296 * If starting the scan, use a deeper search and use the highest 1297 * PFN found if a suitable one is not found. 1298 */ 1299 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) { 1300 limit = pageblock_nr_pages >> 1; 1301 scan_start = true; 1302 } 1303 1304 /* 1305 * Preferred point is in the top quarter of the scan space but take 1306 * a pfn from the top half if the search is problematic. 1307 */ 1308 distance = (cc->free_pfn - cc->migrate_pfn); 1309 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2)); 1310 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1)); 1311 1312 if (WARN_ON_ONCE(min_pfn > low_pfn)) 1313 low_pfn = min_pfn; 1314 1315 /* 1316 * Search starts from the last successful isolation order or the next 1317 * order to search after a previous failure 1318 */ 1319 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order); 1320 1321 for (order = cc->search_order; 1322 !page && order >= 0; 1323 order = next_search_order(cc, order)) { 1324 struct free_area *area = &cc->zone->free_area[order]; 1325 struct list_head *freelist; 1326 struct page *freepage; 1327 unsigned long flags; 1328 unsigned int order_scanned = 0; 1329 1330 if (!area->nr_free) 1331 continue; 1332 1333 spin_lock_irqsave(&cc->zone->lock, flags); 1334 freelist = &area->free_list[MIGRATE_MOVABLE]; 1335 list_for_each_entry_reverse(freepage, freelist, lru) { 1336 unsigned long pfn; 1337 1338 order_scanned++; 1339 nr_scanned++; 1340 pfn = page_to_pfn(freepage); 1341 1342 if (pfn >= highest) 1343 highest = pageblock_start_pfn(pfn); 1344 1345 if (pfn >= low_pfn) { 1346 cc->fast_search_fail = 0; 1347 cc->search_order = order; 1348 page = freepage; 1349 break; 1350 } 1351 1352 if (pfn >= min_pfn && pfn > high_pfn) { 1353 high_pfn = pfn; 1354 1355 /* Shorten the scan if a candidate is found */ 1356 limit >>= 1; 1357 } 1358 1359 if (order_scanned >= limit) 1360 break; 1361 } 1362 1363 /* Use a minimum pfn if a preferred one was not found */ 1364 if (!page && high_pfn) { 1365 page = pfn_to_page(high_pfn); 1366 1367 /* Update freepage for the list reorder below */ 1368 freepage = page; 1369 } 1370 1371 /* Reorder to so a future search skips recent pages */ 1372 move_freelist_head(freelist, freepage); 1373 1374 /* Isolate the page if available */ 1375 if (page) { 1376 if (__isolate_free_page(page, order)) { 1377 set_page_private(page, order); 1378 nr_isolated = 1 << order; 1379 cc->nr_freepages += nr_isolated; 1380 list_add_tail(&page->lru, &cc->freepages); 1381 count_compact_events(COMPACTISOLATED, nr_isolated); 1382 } else { 1383 /* If isolation fails, abort the search */ 1384 order = cc->search_order + 1; 1385 page = NULL; 1386 } 1387 } 1388 1389 spin_unlock_irqrestore(&cc->zone->lock, flags); 1390 1391 /* 1392 * Smaller scan on next order so the total scan ig related 1393 * to freelist_scan_limit. 1394 */ 1395 if (order_scanned >= limit) 1396 limit = min(1U, limit >> 1); 1397 } 1398 1399 if (!page) { 1400 cc->fast_search_fail++; 1401 if (scan_start) { 1402 /* 1403 * Use the highest PFN found above min. If one was 1404 * not found, be pessemistic for direct compaction 1405 * and use the min mark. 1406 */ 1407 if (highest) { 1408 page = pfn_to_page(highest); 1409 cc->free_pfn = highest; 1410 } else { 1411 if (cc->direct_compaction && pfn_valid(min_pfn)) { 1412 page = pfn_to_page(min_pfn); 1413 cc->free_pfn = min_pfn; 1414 } 1415 } 1416 } 1417 } 1418 1419 if (highest && highest >= cc->zone->compact_cached_free_pfn) { 1420 highest -= pageblock_nr_pages; 1421 cc->zone->compact_cached_free_pfn = highest; 1422 } 1423 1424 cc->total_free_scanned += nr_scanned; 1425 if (!page) 1426 return cc->free_pfn; 1427 1428 low_pfn = page_to_pfn(page); 1429 fast_isolate_around(cc, low_pfn, nr_isolated); 1430 return low_pfn; 1431 } 1432 1433 /* 1434 * Based on information in the current compact_control, find blocks 1435 * suitable for isolating free pages from and then isolate them. 1436 */ 1437 static void isolate_freepages(struct compact_control *cc) 1438 { 1439 struct zone *zone = cc->zone; 1440 struct page *page; 1441 unsigned long block_start_pfn; /* start of current pageblock */ 1442 unsigned long isolate_start_pfn; /* exact pfn we start at */ 1443 unsigned long block_end_pfn; /* end of current pageblock */ 1444 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 1445 struct list_head *freelist = &cc->freepages; 1446 unsigned int stride; 1447 1448 /* Try a small search of the free lists for a candidate */ 1449 isolate_start_pfn = fast_isolate_freepages(cc); 1450 if (cc->nr_freepages) 1451 goto splitmap; 1452 1453 /* 1454 * Initialise the free scanner. The starting point is where we last 1455 * successfully isolated from, zone-cached value, or the end of the 1456 * zone when isolating for the first time. For looping we also need 1457 * this pfn aligned down to the pageblock boundary, because we do 1458 * block_start_pfn -= pageblock_nr_pages in the for loop. 1459 * For ending point, take care when isolating in last pageblock of a 1460 * a zone which ends in the middle of a pageblock. 1461 * The low boundary is the end of the pageblock the migration scanner 1462 * is using. 1463 */ 1464 isolate_start_pfn = cc->free_pfn; 1465 block_start_pfn = pageblock_start_pfn(isolate_start_pfn); 1466 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 1467 zone_end_pfn(zone)); 1468 low_pfn = pageblock_end_pfn(cc->migrate_pfn); 1469 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1; 1470 1471 /* 1472 * Isolate free pages until enough are available to migrate the 1473 * pages on cc->migratepages. We stop searching if the migrate 1474 * and free page scanners meet or enough free pages are isolated. 1475 */ 1476 for (; block_start_pfn >= low_pfn; 1477 block_end_pfn = block_start_pfn, 1478 block_start_pfn -= pageblock_nr_pages, 1479 isolate_start_pfn = block_start_pfn) { 1480 unsigned long nr_isolated; 1481 1482 /* 1483 * This can iterate a massively long zone without finding any 1484 * suitable migration targets, so periodically check resched. 1485 */ 1486 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))) 1487 cond_resched(); 1488 1489 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1490 zone); 1491 if (!page) 1492 continue; 1493 1494 /* Check the block is suitable for migration */ 1495 if (!suitable_migration_target(cc, page)) 1496 continue; 1497 1498 /* If isolation recently failed, do not retry */ 1499 if (!isolation_suitable(cc, page)) 1500 continue; 1501 1502 /* Found a block suitable for isolating free pages from. */ 1503 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn, 1504 block_end_pfn, freelist, stride, false); 1505 1506 /* Update the skip hint if the full pageblock was scanned */ 1507 if (isolate_start_pfn == block_end_pfn) 1508 update_pageblock_skip(cc, page, block_start_pfn); 1509 1510 /* Are enough freepages isolated? */ 1511 if (cc->nr_freepages >= cc->nr_migratepages) { 1512 if (isolate_start_pfn >= block_end_pfn) { 1513 /* 1514 * Restart at previous pageblock if more 1515 * freepages can be isolated next time. 1516 */ 1517 isolate_start_pfn = 1518 block_start_pfn - pageblock_nr_pages; 1519 } 1520 break; 1521 } else if (isolate_start_pfn < block_end_pfn) { 1522 /* 1523 * If isolation failed early, do not continue 1524 * needlessly. 1525 */ 1526 break; 1527 } 1528 1529 /* Adjust stride depending on isolation */ 1530 if (nr_isolated) { 1531 stride = 1; 1532 continue; 1533 } 1534 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1); 1535 } 1536 1537 /* 1538 * Record where the free scanner will restart next time. Either we 1539 * broke from the loop and set isolate_start_pfn based on the last 1540 * call to isolate_freepages_block(), or we met the migration scanner 1541 * and the loop terminated due to isolate_start_pfn < low_pfn 1542 */ 1543 cc->free_pfn = isolate_start_pfn; 1544 1545 splitmap: 1546 /* __isolate_free_page() does not map the pages */ 1547 split_map_pages(freelist); 1548 } 1549 1550 /* 1551 * This is a migrate-callback that "allocates" freepages by taking pages 1552 * from the isolated freelists in the block we are migrating to. 1553 */ 1554 static struct page *compaction_alloc(struct page *migratepage, 1555 unsigned long data) 1556 { 1557 struct compact_control *cc = (struct compact_control *)data; 1558 struct page *freepage; 1559 1560 if (list_empty(&cc->freepages)) { 1561 isolate_freepages(cc); 1562 1563 if (list_empty(&cc->freepages)) 1564 return NULL; 1565 } 1566 1567 freepage = list_entry(cc->freepages.next, struct page, lru); 1568 list_del(&freepage->lru); 1569 cc->nr_freepages--; 1570 1571 return freepage; 1572 } 1573 1574 /* 1575 * This is a migrate-callback that "frees" freepages back to the isolated 1576 * freelist. All pages on the freelist are from the same zone, so there is no 1577 * special handling needed for NUMA. 1578 */ 1579 static void compaction_free(struct page *page, unsigned long data) 1580 { 1581 struct compact_control *cc = (struct compact_control *)data; 1582 1583 list_add(&page->lru, &cc->freepages); 1584 cc->nr_freepages++; 1585 } 1586 1587 /* possible outcome of isolate_migratepages */ 1588 typedef enum { 1589 ISOLATE_ABORT, /* Abort compaction now */ 1590 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1591 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1592 } isolate_migrate_t; 1593 1594 /* 1595 * Allow userspace to control policy on scanning the unevictable LRU for 1596 * compactable pages. 1597 */ 1598 #ifdef CONFIG_PREEMPT_RT 1599 int sysctl_compact_unevictable_allowed __read_mostly = 0; 1600 #else 1601 int sysctl_compact_unevictable_allowed __read_mostly = 1; 1602 #endif 1603 1604 static inline void 1605 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn) 1606 { 1607 if (cc->fast_start_pfn == ULONG_MAX) 1608 return; 1609 1610 if (!cc->fast_start_pfn) 1611 cc->fast_start_pfn = pfn; 1612 1613 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn); 1614 } 1615 1616 static inline unsigned long 1617 reinit_migrate_pfn(struct compact_control *cc) 1618 { 1619 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX) 1620 return cc->migrate_pfn; 1621 1622 cc->migrate_pfn = cc->fast_start_pfn; 1623 cc->fast_start_pfn = ULONG_MAX; 1624 1625 return cc->migrate_pfn; 1626 } 1627 1628 /* 1629 * Briefly search the free lists for a migration source that already has 1630 * some free pages to reduce the number of pages that need migration 1631 * before a pageblock is free. 1632 */ 1633 static unsigned long fast_find_migrateblock(struct compact_control *cc) 1634 { 1635 unsigned int limit = freelist_scan_limit(cc); 1636 unsigned int nr_scanned = 0; 1637 unsigned long distance; 1638 unsigned long pfn = cc->migrate_pfn; 1639 unsigned long high_pfn; 1640 int order; 1641 1642 /* Skip hints are relied on to avoid repeats on the fast search */ 1643 if (cc->ignore_skip_hint) 1644 return pfn; 1645 1646 /* 1647 * If the migrate_pfn is not at the start of a zone or the start 1648 * of a pageblock then assume this is a continuation of a previous 1649 * scan restarted due to COMPACT_CLUSTER_MAX. 1650 */ 1651 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn)) 1652 return pfn; 1653 1654 /* 1655 * For smaller orders, just linearly scan as the number of pages 1656 * to migrate should be relatively small and does not necessarily 1657 * justify freeing up a large block for a small allocation. 1658 */ 1659 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER) 1660 return pfn; 1661 1662 /* 1663 * Only allow kcompactd and direct requests for movable pages to 1664 * quickly clear out a MOVABLE pageblock for allocation. This 1665 * reduces the risk that a large movable pageblock is freed for 1666 * an unmovable/reclaimable small allocation. 1667 */ 1668 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE) 1669 return pfn; 1670 1671 /* 1672 * When starting the migration scanner, pick any pageblock within the 1673 * first half of the search space. Otherwise try and pick a pageblock 1674 * within the first eighth to reduce the chances that a migration 1675 * target later becomes a source. 1676 */ 1677 distance = (cc->free_pfn - cc->migrate_pfn) >> 1; 1678 if (cc->migrate_pfn != cc->zone->zone_start_pfn) 1679 distance >>= 2; 1680 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance); 1681 1682 for (order = cc->order - 1; 1683 order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit; 1684 order--) { 1685 struct free_area *area = &cc->zone->free_area[order]; 1686 struct list_head *freelist; 1687 unsigned long flags; 1688 struct page *freepage; 1689 1690 if (!area->nr_free) 1691 continue; 1692 1693 spin_lock_irqsave(&cc->zone->lock, flags); 1694 freelist = &area->free_list[MIGRATE_MOVABLE]; 1695 list_for_each_entry(freepage, freelist, lru) { 1696 unsigned long free_pfn; 1697 1698 nr_scanned++; 1699 free_pfn = page_to_pfn(freepage); 1700 if (free_pfn < high_pfn) { 1701 /* 1702 * Avoid if skipped recently. Ideally it would 1703 * move to the tail but even safe iteration of 1704 * the list assumes an entry is deleted, not 1705 * reordered. 1706 */ 1707 if (get_pageblock_skip(freepage)) { 1708 if (list_is_last(freelist, &freepage->lru)) 1709 break; 1710 1711 continue; 1712 } 1713 1714 /* Reorder to so a future search skips recent pages */ 1715 move_freelist_tail(freelist, freepage); 1716 1717 update_fast_start_pfn(cc, free_pfn); 1718 pfn = pageblock_start_pfn(free_pfn); 1719 cc->fast_search_fail = 0; 1720 set_pageblock_skip(freepage); 1721 break; 1722 } 1723 1724 if (nr_scanned >= limit) { 1725 cc->fast_search_fail++; 1726 move_freelist_tail(freelist, freepage); 1727 break; 1728 } 1729 } 1730 spin_unlock_irqrestore(&cc->zone->lock, flags); 1731 } 1732 1733 cc->total_migrate_scanned += nr_scanned; 1734 1735 /* 1736 * If fast scanning failed then use a cached entry for a page block 1737 * that had free pages as the basis for starting a linear scan. 1738 */ 1739 if (pfn == cc->migrate_pfn) 1740 pfn = reinit_migrate_pfn(cc); 1741 1742 return pfn; 1743 } 1744 1745 /* 1746 * Isolate all pages that can be migrated from the first suitable block, 1747 * starting at the block pointed to by the migrate scanner pfn within 1748 * compact_control. 1749 */ 1750 static isolate_migrate_t isolate_migratepages(struct compact_control *cc) 1751 { 1752 unsigned long block_start_pfn; 1753 unsigned long block_end_pfn; 1754 unsigned long low_pfn; 1755 struct page *page; 1756 const isolate_mode_t isolate_mode = 1757 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 1758 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0); 1759 bool fast_find_block; 1760 1761 /* 1762 * Start at where we last stopped, or beginning of the zone as 1763 * initialized by compact_zone(). The first failure will use 1764 * the lowest PFN as the starting point for linear scanning. 1765 */ 1766 low_pfn = fast_find_migrateblock(cc); 1767 block_start_pfn = pageblock_start_pfn(low_pfn); 1768 if (block_start_pfn < cc->zone->zone_start_pfn) 1769 block_start_pfn = cc->zone->zone_start_pfn; 1770 1771 /* 1772 * fast_find_migrateblock marks a pageblock skipped so to avoid 1773 * the isolation_suitable check below, check whether the fast 1774 * search was successful. 1775 */ 1776 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail; 1777 1778 /* Only scan within a pageblock boundary */ 1779 block_end_pfn = pageblock_end_pfn(low_pfn); 1780 1781 /* 1782 * Iterate over whole pageblocks until we find the first suitable. 1783 * Do not cross the free scanner. 1784 */ 1785 for (; block_end_pfn <= cc->free_pfn; 1786 fast_find_block = false, 1787 low_pfn = block_end_pfn, 1788 block_start_pfn = block_end_pfn, 1789 block_end_pfn += pageblock_nr_pages) { 1790 1791 /* 1792 * This can potentially iterate a massively long zone with 1793 * many pageblocks unsuitable, so periodically check if we 1794 * need to schedule. 1795 */ 1796 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))) 1797 cond_resched(); 1798 1799 page = pageblock_pfn_to_page(block_start_pfn, 1800 block_end_pfn, cc->zone); 1801 if (!page) 1802 continue; 1803 1804 /* 1805 * If isolation recently failed, do not retry. Only check the 1806 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock 1807 * to be visited multiple times. Assume skip was checked 1808 * before making it "skip" so other compaction instances do 1809 * not scan the same block. 1810 */ 1811 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) && 1812 !fast_find_block && !isolation_suitable(cc, page)) 1813 continue; 1814 1815 /* 1816 * For async compaction, also only scan in MOVABLE blocks 1817 * without huge pages. Async compaction is optimistic to see 1818 * if the minimum amount of work satisfies the allocation. 1819 * The cached PFN is updated as it's possible that all 1820 * remaining blocks between source and target are unsuitable 1821 * and the compaction scanners fail to meet. 1822 */ 1823 if (!suitable_migration_source(cc, page)) { 1824 update_cached_migrate(cc, block_end_pfn); 1825 continue; 1826 } 1827 1828 /* Perform the isolation */ 1829 low_pfn = isolate_migratepages_block(cc, low_pfn, 1830 block_end_pfn, isolate_mode); 1831 1832 if (!low_pfn) 1833 return ISOLATE_ABORT; 1834 1835 /* 1836 * Either we isolated something and proceed with migration. Or 1837 * we failed and compact_zone should decide if we should 1838 * continue or not. 1839 */ 1840 break; 1841 } 1842 1843 /* Record where migration scanner will be restarted. */ 1844 cc->migrate_pfn = low_pfn; 1845 1846 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 1847 } 1848 1849 /* 1850 * order == -1 is expected when compacting via 1851 * /proc/sys/vm/compact_memory 1852 */ 1853 static inline bool is_via_compact_memory(int order) 1854 { 1855 return order == -1; 1856 } 1857 1858 static enum compact_result __compact_finished(struct compact_control *cc) 1859 { 1860 unsigned int order; 1861 const int migratetype = cc->migratetype; 1862 int ret; 1863 1864 /* Compaction run completes if the migrate and free scanner meet */ 1865 if (compact_scanners_met(cc)) { 1866 /* Let the next compaction start anew. */ 1867 reset_cached_positions(cc->zone); 1868 1869 /* 1870 * Mark that the PG_migrate_skip information should be cleared 1871 * by kswapd when it goes to sleep. kcompactd does not set the 1872 * flag itself as the decision to be clear should be directly 1873 * based on an allocation request. 1874 */ 1875 if (cc->direct_compaction) 1876 cc->zone->compact_blockskip_flush = true; 1877 1878 if (cc->whole_zone) 1879 return COMPACT_COMPLETE; 1880 else 1881 return COMPACT_PARTIAL_SKIPPED; 1882 } 1883 1884 if (is_via_compact_memory(cc->order)) 1885 return COMPACT_CONTINUE; 1886 1887 /* 1888 * Always finish scanning a pageblock to reduce the possibility of 1889 * fallbacks in the future. This is particularly important when 1890 * migration source is unmovable/reclaimable but it's not worth 1891 * special casing. 1892 */ 1893 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages)) 1894 return COMPACT_CONTINUE; 1895 1896 /* Direct compactor: Is a suitable page free? */ 1897 ret = COMPACT_NO_SUITABLE_PAGE; 1898 for (order = cc->order; order < MAX_ORDER; order++) { 1899 struct free_area *area = &cc->zone->free_area[order]; 1900 bool can_steal; 1901 1902 /* Job done if page is free of the right migratetype */ 1903 if (!free_area_empty(area, migratetype)) 1904 return COMPACT_SUCCESS; 1905 1906 #ifdef CONFIG_CMA 1907 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 1908 if (migratetype == MIGRATE_MOVABLE && 1909 !free_area_empty(area, MIGRATE_CMA)) 1910 return COMPACT_SUCCESS; 1911 #endif 1912 /* 1913 * Job done if allocation would steal freepages from 1914 * other migratetype buddy lists. 1915 */ 1916 if (find_suitable_fallback(area, order, migratetype, 1917 true, &can_steal) != -1) { 1918 1919 /* movable pages are OK in any pageblock */ 1920 if (migratetype == MIGRATE_MOVABLE) 1921 return COMPACT_SUCCESS; 1922 1923 /* 1924 * We are stealing for a non-movable allocation. Make 1925 * sure we finish compacting the current pageblock 1926 * first so it is as free as possible and we won't 1927 * have to steal another one soon. This only applies 1928 * to sync compaction, as async compaction operates 1929 * on pageblocks of the same migratetype. 1930 */ 1931 if (cc->mode == MIGRATE_ASYNC || 1932 IS_ALIGNED(cc->migrate_pfn, 1933 pageblock_nr_pages)) { 1934 return COMPACT_SUCCESS; 1935 } 1936 1937 ret = COMPACT_CONTINUE; 1938 break; 1939 } 1940 } 1941 1942 if (cc->contended || fatal_signal_pending(current)) 1943 ret = COMPACT_CONTENDED; 1944 1945 return ret; 1946 } 1947 1948 static enum compact_result compact_finished(struct compact_control *cc) 1949 { 1950 int ret; 1951 1952 ret = __compact_finished(cc); 1953 trace_mm_compaction_finished(cc->zone, cc->order, ret); 1954 if (ret == COMPACT_NO_SUITABLE_PAGE) 1955 ret = COMPACT_CONTINUE; 1956 1957 return ret; 1958 } 1959 1960 /* 1961 * compaction_suitable: Is this suitable to run compaction on this zone now? 1962 * Returns 1963 * COMPACT_SKIPPED - If there are too few free pages for compaction 1964 * COMPACT_SUCCESS - If the allocation would succeed without compaction 1965 * COMPACT_CONTINUE - If compaction should run now 1966 */ 1967 static enum compact_result __compaction_suitable(struct zone *zone, int order, 1968 unsigned int alloc_flags, 1969 int classzone_idx, 1970 unsigned long wmark_target) 1971 { 1972 unsigned long watermark; 1973 1974 if (is_via_compact_memory(order)) 1975 return COMPACT_CONTINUE; 1976 1977 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 1978 /* 1979 * If watermarks for high-order allocation are already met, there 1980 * should be no need for compaction at all. 1981 */ 1982 if (zone_watermark_ok(zone, order, watermark, classzone_idx, 1983 alloc_flags)) 1984 return COMPACT_SUCCESS; 1985 1986 /* 1987 * Watermarks for order-0 must be met for compaction to be able to 1988 * isolate free pages for migration targets. This means that the 1989 * watermark and alloc_flags have to match, or be more pessimistic than 1990 * the check in __isolate_free_page(). We don't use the direct 1991 * compactor's alloc_flags, as they are not relevant for freepage 1992 * isolation. We however do use the direct compactor's classzone_idx to 1993 * skip over zones where lowmem reserves would prevent allocation even 1994 * if compaction succeeds. 1995 * For costly orders, we require low watermark instead of min for 1996 * compaction to proceed to increase its chances. 1997 * ALLOC_CMA is used, as pages in CMA pageblocks are considered 1998 * suitable migration targets 1999 */ 2000 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ? 2001 low_wmark_pages(zone) : min_wmark_pages(zone); 2002 watermark += compact_gap(order); 2003 if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx, 2004 ALLOC_CMA, wmark_target)) 2005 return COMPACT_SKIPPED; 2006 2007 return COMPACT_CONTINUE; 2008 } 2009 2010 enum compact_result compaction_suitable(struct zone *zone, int order, 2011 unsigned int alloc_flags, 2012 int classzone_idx) 2013 { 2014 enum compact_result ret; 2015 int fragindex; 2016 2017 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx, 2018 zone_page_state(zone, NR_FREE_PAGES)); 2019 /* 2020 * fragmentation index determines if allocation failures are due to 2021 * low memory or external fragmentation 2022 * 2023 * index of -1000 would imply allocations might succeed depending on 2024 * watermarks, but we already failed the high-order watermark check 2025 * index towards 0 implies failure is due to lack of memory 2026 * index towards 1000 implies failure is due to fragmentation 2027 * 2028 * Only compact if a failure would be due to fragmentation. Also 2029 * ignore fragindex for non-costly orders where the alternative to 2030 * a successful reclaim/compaction is OOM. Fragindex and the 2031 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent 2032 * excessive compaction for costly orders, but it should not be at the 2033 * expense of system stability. 2034 */ 2035 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) { 2036 fragindex = fragmentation_index(zone, order); 2037 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 2038 ret = COMPACT_NOT_SUITABLE_ZONE; 2039 } 2040 2041 trace_mm_compaction_suitable(zone, order, ret); 2042 if (ret == COMPACT_NOT_SUITABLE_ZONE) 2043 ret = COMPACT_SKIPPED; 2044 2045 return ret; 2046 } 2047 2048 bool compaction_zonelist_suitable(struct alloc_context *ac, int order, 2049 int alloc_flags) 2050 { 2051 struct zone *zone; 2052 struct zoneref *z; 2053 2054 /* 2055 * Make sure at least one zone would pass __compaction_suitable if we continue 2056 * retrying the reclaim. 2057 */ 2058 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 2059 ac->nodemask) { 2060 unsigned long available; 2061 enum compact_result compact_result; 2062 2063 /* 2064 * Do not consider all the reclaimable memory because we do not 2065 * want to trash just for a single high order allocation which 2066 * is even not guaranteed to appear even if __compaction_suitable 2067 * is happy about the watermark check. 2068 */ 2069 available = zone_reclaimable_pages(zone) / order; 2070 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 2071 compact_result = __compaction_suitable(zone, order, alloc_flags, 2072 ac_classzone_idx(ac), available); 2073 if (compact_result != COMPACT_SKIPPED) 2074 return true; 2075 } 2076 2077 return false; 2078 } 2079 2080 static enum compact_result 2081 compact_zone(struct compact_control *cc, struct capture_control *capc) 2082 { 2083 enum compact_result ret; 2084 unsigned long start_pfn = cc->zone->zone_start_pfn; 2085 unsigned long end_pfn = zone_end_pfn(cc->zone); 2086 unsigned long last_migrated_pfn; 2087 const bool sync = cc->mode != MIGRATE_ASYNC; 2088 bool update_cached; 2089 2090 /* 2091 * These counters track activities during zone compaction. Initialize 2092 * them before compacting a new zone. 2093 */ 2094 cc->total_migrate_scanned = 0; 2095 cc->total_free_scanned = 0; 2096 cc->nr_migratepages = 0; 2097 cc->nr_freepages = 0; 2098 INIT_LIST_HEAD(&cc->freepages); 2099 INIT_LIST_HEAD(&cc->migratepages); 2100 2101 cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask); 2102 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags, 2103 cc->classzone_idx); 2104 /* Compaction is likely to fail */ 2105 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED) 2106 return ret; 2107 2108 /* huh, compaction_suitable is returning something unexpected */ 2109 VM_BUG_ON(ret != COMPACT_CONTINUE); 2110 2111 /* 2112 * Clear pageblock skip if there were failures recently and compaction 2113 * is about to be retried after being deferred. 2114 */ 2115 if (compaction_restarting(cc->zone, cc->order)) 2116 __reset_isolation_suitable(cc->zone); 2117 2118 /* 2119 * Setup to move all movable pages to the end of the zone. Used cached 2120 * information on where the scanners should start (unless we explicitly 2121 * want to compact the whole zone), but check that it is initialised 2122 * by ensuring the values are within zone boundaries. 2123 */ 2124 cc->fast_start_pfn = 0; 2125 if (cc->whole_zone) { 2126 cc->migrate_pfn = start_pfn; 2127 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2128 } else { 2129 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync]; 2130 cc->free_pfn = cc->zone->compact_cached_free_pfn; 2131 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 2132 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2133 cc->zone->compact_cached_free_pfn = cc->free_pfn; 2134 } 2135 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 2136 cc->migrate_pfn = start_pfn; 2137 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 2138 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 2139 } 2140 2141 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn) 2142 cc->whole_zone = true; 2143 } 2144 2145 last_migrated_pfn = 0; 2146 2147 /* 2148 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on 2149 * the basis that some migrations will fail in ASYNC mode. However, 2150 * if the cached PFNs match and pageblocks are skipped due to having 2151 * no isolation candidates, then the sync state does not matter. 2152 * Until a pageblock with isolation candidates is found, keep the 2153 * cached PFNs in sync to avoid revisiting the same blocks. 2154 */ 2155 update_cached = !sync && 2156 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1]; 2157 2158 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, 2159 cc->free_pfn, end_pfn, sync); 2160 2161 migrate_prep_local(); 2162 2163 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) { 2164 int err; 2165 unsigned long start_pfn = cc->migrate_pfn; 2166 2167 /* 2168 * Avoid multiple rescans which can happen if a page cannot be 2169 * isolated (dirty/writeback in async mode) or if the migrated 2170 * pages are being allocated before the pageblock is cleared. 2171 * The first rescan will capture the entire pageblock for 2172 * migration. If it fails, it'll be marked skip and scanning 2173 * will proceed as normal. 2174 */ 2175 cc->rescan = false; 2176 if (pageblock_start_pfn(last_migrated_pfn) == 2177 pageblock_start_pfn(start_pfn)) { 2178 cc->rescan = true; 2179 } 2180 2181 switch (isolate_migratepages(cc)) { 2182 case ISOLATE_ABORT: 2183 ret = COMPACT_CONTENDED; 2184 putback_movable_pages(&cc->migratepages); 2185 cc->nr_migratepages = 0; 2186 goto out; 2187 case ISOLATE_NONE: 2188 if (update_cached) { 2189 cc->zone->compact_cached_migrate_pfn[1] = 2190 cc->zone->compact_cached_migrate_pfn[0]; 2191 } 2192 2193 /* 2194 * We haven't isolated and migrated anything, but 2195 * there might still be unflushed migrations from 2196 * previous cc->order aligned block. 2197 */ 2198 goto check_drain; 2199 case ISOLATE_SUCCESS: 2200 update_cached = false; 2201 last_migrated_pfn = start_pfn; 2202 ; 2203 } 2204 2205 err = migrate_pages(&cc->migratepages, compaction_alloc, 2206 compaction_free, (unsigned long)cc, cc->mode, 2207 MR_COMPACTION); 2208 2209 trace_mm_compaction_migratepages(cc->nr_migratepages, err, 2210 &cc->migratepages); 2211 2212 /* All pages were either migrated or will be released */ 2213 cc->nr_migratepages = 0; 2214 if (err) { 2215 putback_movable_pages(&cc->migratepages); 2216 /* 2217 * migrate_pages() may return -ENOMEM when scanners meet 2218 * and we want compact_finished() to detect it 2219 */ 2220 if (err == -ENOMEM && !compact_scanners_met(cc)) { 2221 ret = COMPACT_CONTENDED; 2222 goto out; 2223 } 2224 /* 2225 * We failed to migrate at least one page in the current 2226 * order-aligned block, so skip the rest of it. 2227 */ 2228 if (cc->direct_compaction && 2229 (cc->mode == MIGRATE_ASYNC)) { 2230 cc->migrate_pfn = block_end_pfn( 2231 cc->migrate_pfn - 1, cc->order); 2232 /* Draining pcplists is useless in this case */ 2233 last_migrated_pfn = 0; 2234 } 2235 } 2236 2237 check_drain: 2238 /* 2239 * Has the migration scanner moved away from the previous 2240 * cc->order aligned block where we migrated from? If yes, 2241 * flush the pages that were freed, so that they can merge and 2242 * compact_finished() can detect immediately if allocation 2243 * would succeed. 2244 */ 2245 if (cc->order > 0 && last_migrated_pfn) { 2246 int cpu; 2247 unsigned long current_block_start = 2248 block_start_pfn(cc->migrate_pfn, cc->order); 2249 2250 if (last_migrated_pfn < current_block_start) { 2251 cpu = get_cpu(); 2252 lru_add_drain_cpu(cpu); 2253 drain_local_pages(cc->zone); 2254 put_cpu(); 2255 /* No more flushing until we migrate again */ 2256 last_migrated_pfn = 0; 2257 } 2258 } 2259 2260 /* Stop if a page has been captured */ 2261 if (capc && capc->page) { 2262 ret = COMPACT_SUCCESS; 2263 break; 2264 } 2265 } 2266 2267 out: 2268 /* 2269 * Release free pages and update where the free scanner should restart, 2270 * so we don't leave any returned pages behind in the next attempt. 2271 */ 2272 if (cc->nr_freepages > 0) { 2273 unsigned long free_pfn = release_freepages(&cc->freepages); 2274 2275 cc->nr_freepages = 0; 2276 VM_BUG_ON(free_pfn == 0); 2277 /* The cached pfn is always the first in a pageblock */ 2278 free_pfn = pageblock_start_pfn(free_pfn); 2279 /* 2280 * Only go back, not forward. The cached pfn might have been 2281 * already reset to zone end in compact_finished() 2282 */ 2283 if (free_pfn > cc->zone->compact_cached_free_pfn) 2284 cc->zone->compact_cached_free_pfn = free_pfn; 2285 } 2286 2287 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned); 2288 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned); 2289 2290 trace_mm_compaction_end(start_pfn, cc->migrate_pfn, 2291 cc->free_pfn, end_pfn, sync, ret); 2292 2293 return ret; 2294 } 2295 2296 static enum compact_result compact_zone_order(struct zone *zone, int order, 2297 gfp_t gfp_mask, enum compact_priority prio, 2298 unsigned int alloc_flags, int classzone_idx, 2299 struct page **capture) 2300 { 2301 enum compact_result ret; 2302 struct compact_control cc = { 2303 .order = order, 2304 .search_order = order, 2305 .gfp_mask = gfp_mask, 2306 .zone = zone, 2307 .mode = (prio == COMPACT_PRIO_ASYNC) ? 2308 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT, 2309 .alloc_flags = alloc_flags, 2310 .classzone_idx = classzone_idx, 2311 .direct_compaction = true, 2312 .whole_zone = (prio == MIN_COMPACT_PRIORITY), 2313 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY), 2314 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY) 2315 }; 2316 struct capture_control capc = { 2317 .cc = &cc, 2318 .page = NULL, 2319 }; 2320 2321 current->capture_control = &capc; 2322 2323 ret = compact_zone(&cc, &capc); 2324 2325 VM_BUG_ON(!list_empty(&cc.freepages)); 2326 VM_BUG_ON(!list_empty(&cc.migratepages)); 2327 2328 *capture = capc.page; 2329 current->capture_control = NULL; 2330 2331 return ret; 2332 } 2333 2334 int sysctl_extfrag_threshold = 500; 2335 2336 /** 2337 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 2338 * @gfp_mask: The GFP mask of the current allocation 2339 * @order: The order of the current allocation 2340 * @alloc_flags: The allocation flags of the current allocation 2341 * @ac: The context of current allocation 2342 * @prio: Determines how hard direct compaction should try to succeed 2343 * @capture: Pointer to free page created by compaction will be stored here 2344 * 2345 * This is the main entry point for direct page compaction. 2346 */ 2347 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 2348 unsigned int alloc_flags, const struct alloc_context *ac, 2349 enum compact_priority prio, struct page **capture) 2350 { 2351 int may_perform_io = gfp_mask & __GFP_IO; 2352 struct zoneref *z; 2353 struct zone *zone; 2354 enum compact_result rc = COMPACT_SKIPPED; 2355 2356 /* 2357 * Check if the GFP flags allow compaction - GFP_NOIO is really 2358 * tricky context because the migration might require IO 2359 */ 2360 if (!may_perform_io) 2361 return COMPACT_SKIPPED; 2362 2363 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio); 2364 2365 /* Compact each zone in the list */ 2366 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 2367 ac->nodemask) { 2368 enum compact_result status; 2369 2370 if (prio > MIN_COMPACT_PRIORITY 2371 && compaction_deferred(zone, order)) { 2372 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); 2373 continue; 2374 } 2375 2376 status = compact_zone_order(zone, order, gfp_mask, prio, 2377 alloc_flags, ac_classzone_idx(ac), capture); 2378 rc = max(status, rc); 2379 2380 /* The allocation should succeed, stop compacting */ 2381 if (status == COMPACT_SUCCESS) { 2382 /* 2383 * We think the allocation will succeed in this zone, 2384 * but it is not certain, hence the false. The caller 2385 * will repeat this with true if allocation indeed 2386 * succeeds in this zone. 2387 */ 2388 compaction_defer_reset(zone, order, false); 2389 2390 break; 2391 } 2392 2393 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE || 2394 status == COMPACT_PARTIAL_SKIPPED)) 2395 /* 2396 * We think that allocation won't succeed in this zone 2397 * so we defer compaction there. If it ends up 2398 * succeeding after all, it will be reset. 2399 */ 2400 defer_compaction(zone, order); 2401 2402 /* 2403 * We might have stopped compacting due to need_resched() in 2404 * async compaction, or due to a fatal signal detected. In that 2405 * case do not try further zones 2406 */ 2407 if ((prio == COMPACT_PRIO_ASYNC && need_resched()) 2408 || fatal_signal_pending(current)) 2409 break; 2410 } 2411 2412 return rc; 2413 } 2414 2415 2416 /* Compact all zones within a node */ 2417 static void compact_node(int nid) 2418 { 2419 pg_data_t *pgdat = NODE_DATA(nid); 2420 int zoneid; 2421 struct zone *zone; 2422 struct compact_control cc = { 2423 .order = -1, 2424 .mode = MIGRATE_SYNC, 2425 .ignore_skip_hint = true, 2426 .whole_zone = true, 2427 .gfp_mask = GFP_KERNEL, 2428 }; 2429 2430 2431 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2432 2433 zone = &pgdat->node_zones[zoneid]; 2434 if (!populated_zone(zone)) 2435 continue; 2436 2437 cc.zone = zone; 2438 2439 compact_zone(&cc, NULL); 2440 2441 VM_BUG_ON(!list_empty(&cc.freepages)); 2442 VM_BUG_ON(!list_empty(&cc.migratepages)); 2443 } 2444 } 2445 2446 /* Compact all nodes in the system */ 2447 static void compact_nodes(void) 2448 { 2449 int nid; 2450 2451 /* Flush pending updates to the LRU lists */ 2452 lru_add_drain_all(); 2453 2454 for_each_online_node(nid) 2455 compact_node(nid); 2456 } 2457 2458 /* The written value is actually unused, all memory is compacted */ 2459 int sysctl_compact_memory; 2460 2461 /* 2462 * This is the entry point for compacting all nodes via 2463 * /proc/sys/vm/compact_memory 2464 */ 2465 int sysctl_compaction_handler(struct ctl_table *table, int write, 2466 void __user *buffer, size_t *length, loff_t *ppos) 2467 { 2468 if (write) 2469 compact_nodes(); 2470 2471 return 0; 2472 } 2473 2474 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 2475 static ssize_t sysfs_compact_node(struct device *dev, 2476 struct device_attribute *attr, 2477 const char *buf, size_t count) 2478 { 2479 int nid = dev->id; 2480 2481 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 2482 /* Flush pending updates to the LRU lists */ 2483 lru_add_drain_all(); 2484 2485 compact_node(nid); 2486 } 2487 2488 return count; 2489 } 2490 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node); 2491 2492 int compaction_register_node(struct node *node) 2493 { 2494 return device_create_file(&node->dev, &dev_attr_compact); 2495 } 2496 2497 void compaction_unregister_node(struct node *node) 2498 { 2499 return device_remove_file(&node->dev, &dev_attr_compact); 2500 } 2501 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 2502 2503 static inline bool kcompactd_work_requested(pg_data_t *pgdat) 2504 { 2505 return pgdat->kcompactd_max_order > 0 || kthread_should_stop(); 2506 } 2507 2508 static bool kcompactd_node_suitable(pg_data_t *pgdat) 2509 { 2510 int zoneid; 2511 struct zone *zone; 2512 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx; 2513 2514 for (zoneid = 0; zoneid <= classzone_idx; zoneid++) { 2515 zone = &pgdat->node_zones[zoneid]; 2516 2517 if (!populated_zone(zone)) 2518 continue; 2519 2520 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0, 2521 classzone_idx) == COMPACT_CONTINUE) 2522 return true; 2523 } 2524 2525 return false; 2526 } 2527 2528 static void kcompactd_do_work(pg_data_t *pgdat) 2529 { 2530 /* 2531 * With no special task, compact all zones so that a page of requested 2532 * order is allocatable. 2533 */ 2534 int zoneid; 2535 struct zone *zone; 2536 struct compact_control cc = { 2537 .order = pgdat->kcompactd_max_order, 2538 .search_order = pgdat->kcompactd_max_order, 2539 .classzone_idx = pgdat->kcompactd_classzone_idx, 2540 .mode = MIGRATE_SYNC_LIGHT, 2541 .ignore_skip_hint = false, 2542 .gfp_mask = GFP_KERNEL, 2543 }; 2544 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 2545 cc.classzone_idx); 2546 count_compact_event(KCOMPACTD_WAKE); 2547 2548 for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) { 2549 int status; 2550 2551 zone = &pgdat->node_zones[zoneid]; 2552 if (!populated_zone(zone)) 2553 continue; 2554 2555 if (compaction_deferred(zone, cc.order)) 2556 continue; 2557 2558 if (compaction_suitable(zone, cc.order, 0, zoneid) != 2559 COMPACT_CONTINUE) 2560 continue; 2561 2562 if (kthread_should_stop()) 2563 return; 2564 2565 cc.zone = zone; 2566 status = compact_zone(&cc, NULL); 2567 2568 if (status == COMPACT_SUCCESS) { 2569 compaction_defer_reset(zone, cc.order, false); 2570 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { 2571 /* 2572 * Buddy pages may become stranded on pcps that could 2573 * otherwise coalesce on the zone's free area for 2574 * order >= cc.order. This is ratelimited by the 2575 * upcoming deferral. 2576 */ 2577 drain_all_pages(zone); 2578 2579 /* 2580 * We use sync migration mode here, so we defer like 2581 * sync direct compaction does. 2582 */ 2583 defer_compaction(zone, cc.order); 2584 } 2585 2586 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 2587 cc.total_migrate_scanned); 2588 count_compact_events(KCOMPACTD_FREE_SCANNED, 2589 cc.total_free_scanned); 2590 2591 VM_BUG_ON(!list_empty(&cc.freepages)); 2592 VM_BUG_ON(!list_empty(&cc.migratepages)); 2593 } 2594 2595 /* 2596 * Regardless of success, we are done until woken up next. But remember 2597 * the requested order/classzone_idx in case it was higher/tighter than 2598 * our current ones 2599 */ 2600 if (pgdat->kcompactd_max_order <= cc.order) 2601 pgdat->kcompactd_max_order = 0; 2602 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx) 2603 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1; 2604 } 2605 2606 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx) 2607 { 2608 if (!order) 2609 return; 2610 2611 if (pgdat->kcompactd_max_order < order) 2612 pgdat->kcompactd_max_order = order; 2613 2614 if (pgdat->kcompactd_classzone_idx > classzone_idx) 2615 pgdat->kcompactd_classzone_idx = classzone_idx; 2616 2617 /* 2618 * Pairs with implicit barrier in wait_event_freezable() 2619 * such that wakeups are not missed. 2620 */ 2621 if (!wq_has_sleeper(&pgdat->kcompactd_wait)) 2622 return; 2623 2624 if (!kcompactd_node_suitable(pgdat)) 2625 return; 2626 2627 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 2628 classzone_idx); 2629 wake_up_interruptible(&pgdat->kcompactd_wait); 2630 } 2631 2632 /* 2633 * The background compaction daemon, started as a kernel thread 2634 * from the init process. 2635 */ 2636 static int kcompactd(void *p) 2637 { 2638 pg_data_t *pgdat = (pg_data_t*)p; 2639 struct task_struct *tsk = current; 2640 2641 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2642 2643 if (!cpumask_empty(cpumask)) 2644 set_cpus_allowed_ptr(tsk, cpumask); 2645 2646 set_freezable(); 2647 2648 pgdat->kcompactd_max_order = 0; 2649 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1; 2650 2651 while (!kthread_should_stop()) { 2652 unsigned long pflags; 2653 2654 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 2655 wait_event_freezable(pgdat->kcompactd_wait, 2656 kcompactd_work_requested(pgdat)); 2657 2658 psi_memstall_enter(&pflags); 2659 kcompactd_do_work(pgdat); 2660 psi_memstall_leave(&pflags); 2661 } 2662 2663 return 0; 2664 } 2665 2666 /* 2667 * This kcompactd start function will be called by init and node-hot-add. 2668 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 2669 */ 2670 int kcompactd_run(int nid) 2671 { 2672 pg_data_t *pgdat = NODE_DATA(nid); 2673 int ret = 0; 2674 2675 if (pgdat->kcompactd) 2676 return 0; 2677 2678 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); 2679 if (IS_ERR(pgdat->kcompactd)) { 2680 pr_err("Failed to start kcompactd on node %d\n", nid); 2681 ret = PTR_ERR(pgdat->kcompactd); 2682 pgdat->kcompactd = NULL; 2683 } 2684 return ret; 2685 } 2686 2687 /* 2688 * Called by memory hotplug when all memory in a node is offlined. Caller must 2689 * hold mem_hotplug_begin/end(). 2690 */ 2691 void kcompactd_stop(int nid) 2692 { 2693 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 2694 2695 if (kcompactd) { 2696 kthread_stop(kcompactd); 2697 NODE_DATA(nid)->kcompactd = NULL; 2698 } 2699 } 2700 2701 /* 2702 * It's optimal to keep kcompactd on the same CPUs as their memory, but 2703 * not required for correctness. So if the last cpu in a node goes 2704 * away, we get changed to run anywhere: as the first one comes back, 2705 * restore their cpu bindings. 2706 */ 2707 static int kcompactd_cpu_online(unsigned int cpu) 2708 { 2709 int nid; 2710 2711 for_each_node_state(nid, N_MEMORY) { 2712 pg_data_t *pgdat = NODE_DATA(nid); 2713 const struct cpumask *mask; 2714 2715 mask = cpumask_of_node(pgdat->node_id); 2716 2717 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 2718 /* One of our CPUs online: restore mask */ 2719 set_cpus_allowed_ptr(pgdat->kcompactd, mask); 2720 } 2721 return 0; 2722 } 2723 2724 static int __init kcompactd_init(void) 2725 { 2726 int nid; 2727 int ret; 2728 2729 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 2730 "mm/compaction:online", 2731 kcompactd_cpu_online, NULL); 2732 if (ret < 0) { 2733 pr_err("kcompactd: failed to register hotplug callbacks.\n"); 2734 return ret; 2735 } 2736 2737 for_each_node_state(nid, N_MEMORY) 2738 kcompactd_run(nid); 2739 return 0; 2740 } 2741 subsys_initcall(kcompactd_init) 2742 2743 #endif /* CONFIG_COMPACTION */ 2744