1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/compaction.c 4 * 5 * Memory compaction for the reduction of external fragmentation. Note that 6 * this heavily depends upon page migration to do all the real heavy 7 * lifting 8 * 9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 10 */ 11 #include <linux/cpu.h> 12 #include <linux/swap.h> 13 #include <linux/migrate.h> 14 #include <linux/compaction.h> 15 #include <linux/mm_inline.h> 16 #include <linux/sched/signal.h> 17 #include <linux/backing-dev.h> 18 #include <linux/sysctl.h> 19 #include <linux/sysfs.h> 20 #include <linux/page-isolation.h> 21 #include <linux/kasan.h> 22 #include <linux/kthread.h> 23 #include <linux/freezer.h> 24 #include <linux/page_owner.h> 25 #include <linux/psi.h> 26 #include "internal.h" 27 28 #ifdef CONFIG_COMPACTION 29 /* 30 * Fragmentation score check interval for proactive compaction purposes. 31 */ 32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500) 33 34 static inline void count_compact_event(enum vm_event_item item) 35 { 36 count_vm_event(item); 37 } 38 39 static inline void count_compact_events(enum vm_event_item item, long delta) 40 { 41 count_vm_events(item, delta); 42 } 43 #else 44 #define count_compact_event(item) do { } while (0) 45 #define count_compact_events(item, delta) do { } while (0) 46 #endif 47 48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 49 50 #define CREATE_TRACE_POINTS 51 #include <trace/events/compaction.h> 52 53 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order)) 54 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order)) 55 56 /* 57 * Page order with-respect-to which proactive compaction 58 * calculates external fragmentation, which is used as 59 * the "fragmentation score" of a node/zone. 60 */ 61 #if defined CONFIG_TRANSPARENT_HUGEPAGE 62 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER 63 #elif defined CONFIG_HUGETLBFS 64 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER 65 #else 66 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT) 67 #endif 68 69 static unsigned long release_freepages(struct list_head *freelist) 70 { 71 struct page *page, *next; 72 unsigned long high_pfn = 0; 73 74 list_for_each_entry_safe(page, next, freelist, lru) { 75 unsigned long pfn = page_to_pfn(page); 76 list_del(&page->lru); 77 __free_page(page); 78 if (pfn > high_pfn) 79 high_pfn = pfn; 80 } 81 82 return high_pfn; 83 } 84 85 static void split_map_pages(struct list_head *list) 86 { 87 unsigned int i, order, nr_pages; 88 struct page *page, *next; 89 LIST_HEAD(tmp_list); 90 91 list_for_each_entry_safe(page, next, list, lru) { 92 list_del(&page->lru); 93 94 order = page_private(page); 95 nr_pages = 1 << order; 96 97 post_alloc_hook(page, order, __GFP_MOVABLE); 98 if (order) 99 split_page(page, order); 100 101 for (i = 0; i < nr_pages; i++) { 102 list_add(&page->lru, &tmp_list); 103 page++; 104 } 105 } 106 107 list_splice(&tmp_list, list); 108 } 109 110 #ifdef CONFIG_COMPACTION 111 bool PageMovable(struct page *page) 112 { 113 const struct movable_operations *mops; 114 115 VM_BUG_ON_PAGE(!PageLocked(page), page); 116 if (!__PageMovable(page)) 117 return false; 118 119 mops = page_movable_ops(page); 120 if (mops) 121 return true; 122 123 return false; 124 } 125 126 void __SetPageMovable(struct page *page, const struct movable_operations *mops) 127 { 128 VM_BUG_ON_PAGE(!PageLocked(page), page); 129 VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page); 130 page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE); 131 } 132 EXPORT_SYMBOL(__SetPageMovable); 133 134 void __ClearPageMovable(struct page *page) 135 { 136 VM_BUG_ON_PAGE(!PageMovable(page), page); 137 /* 138 * This page still has the type of a movable page, but it's 139 * actually not movable any more. 140 */ 141 page->mapping = (void *)PAGE_MAPPING_MOVABLE; 142 } 143 EXPORT_SYMBOL(__ClearPageMovable); 144 145 /* Do not skip compaction more than 64 times */ 146 #define COMPACT_MAX_DEFER_SHIFT 6 147 148 /* 149 * Compaction is deferred when compaction fails to result in a page 150 * allocation success. 1 << compact_defer_shift, compactions are skipped up 151 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 152 */ 153 static void defer_compaction(struct zone *zone, int order) 154 { 155 zone->compact_considered = 0; 156 zone->compact_defer_shift++; 157 158 if (order < zone->compact_order_failed) 159 zone->compact_order_failed = order; 160 161 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 162 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 163 164 trace_mm_compaction_defer_compaction(zone, order); 165 } 166 167 /* Returns true if compaction should be skipped this time */ 168 static bool compaction_deferred(struct zone *zone, int order) 169 { 170 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 171 172 if (order < zone->compact_order_failed) 173 return false; 174 175 /* Avoid possible overflow */ 176 if (++zone->compact_considered >= defer_limit) { 177 zone->compact_considered = defer_limit; 178 return false; 179 } 180 181 trace_mm_compaction_deferred(zone, order); 182 183 return true; 184 } 185 186 /* 187 * Update defer tracking counters after successful compaction of given order, 188 * which means an allocation either succeeded (alloc_success == true) or is 189 * expected to succeed. 190 */ 191 void compaction_defer_reset(struct zone *zone, int order, 192 bool alloc_success) 193 { 194 if (alloc_success) { 195 zone->compact_considered = 0; 196 zone->compact_defer_shift = 0; 197 } 198 if (order >= zone->compact_order_failed) 199 zone->compact_order_failed = order + 1; 200 201 trace_mm_compaction_defer_reset(zone, order); 202 } 203 204 /* Returns true if restarting compaction after many failures */ 205 static bool compaction_restarting(struct zone *zone, int order) 206 { 207 if (order < zone->compact_order_failed) 208 return false; 209 210 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 211 zone->compact_considered >= 1UL << zone->compact_defer_shift; 212 } 213 214 /* Returns true if the pageblock should be scanned for pages to isolate. */ 215 static inline bool isolation_suitable(struct compact_control *cc, 216 struct page *page) 217 { 218 if (cc->ignore_skip_hint) 219 return true; 220 221 return !get_pageblock_skip(page); 222 } 223 224 static void reset_cached_positions(struct zone *zone) 225 { 226 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 227 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 228 zone->compact_cached_free_pfn = 229 pageblock_start_pfn(zone_end_pfn(zone) - 1); 230 } 231 232 #ifdef CONFIG_SPARSEMEM 233 /* 234 * If the PFN falls into an offline section, return the start PFN of the 235 * next online section. If the PFN falls into an online section or if 236 * there is no next online section, return 0. 237 */ 238 static unsigned long skip_offline_sections(unsigned long start_pfn) 239 { 240 unsigned long start_nr = pfn_to_section_nr(start_pfn); 241 242 if (online_section_nr(start_nr)) 243 return 0; 244 245 while (++start_nr <= __highest_present_section_nr) { 246 if (online_section_nr(start_nr)) 247 return section_nr_to_pfn(start_nr); 248 } 249 250 return 0; 251 } 252 253 /* 254 * If the PFN falls into an offline section, return the end PFN of the 255 * next online section in reverse. If the PFN falls into an online section 256 * or if there is no next online section in reverse, return 0. 257 */ 258 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn) 259 { 260 unsigned long start_nr = pfn_to_section_nr(start_pfn); 261 262 if (!start_nr || online_section_nr(start_nr)) 263 return 0; 264 265 while (start_nr-- > 0) { 266 if (online_section_nr(start_nr)) 267 return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION; 268 } 269 270 return 0; 271 } 272 #else 273 static unsigned long skip_offline_sections(unsigned long start_pfn) 274 { 275 return 0; 276 } 277 278 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn) 279 { 280 return 0; 281 } 282 #endif 283 284 /* 285 * Compound pages of >= pageblock_order should consistently be skipped until 286 * released. It is always pointless to compact pages of such order (if they are 287 * migratable), and the pageblocks they occupy cannot contain any free pages. 288 */ 289 static bool pageblock_skip_persistent(struct page *page) 290 { 291 if (!PageCompound(page)) 292 return false; 293 294 page = compound_head(page); 295 296 if (compound_order(page) >= pageblock_order) 297 return true; 298 299 return false; 300 } 301 302 static bool 303 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source, 304 bool check_target) 305 { 306 struct page *page = pfn_to_online_page(pfn); 307 struct page *block_page; 308 struct page *end_page; 309 unsigned long block_pfn; 310 311 if (!page) 312 return false; 313 if (zone != page_zone(page)) 314 return false; 315 if (pageblock_skip_persistent(page)) 316 return false; 317 318 /* 319 * If skip is already cleared do no further checking once the 320 * restart points have been set. 321 */ 322 if (check_source && check_target && !get_pageblock_skip(page)) 323 return true; 324 325 /* 326 * If clearing skip for the target scanner, do not select a 327 * non-movable pageblock as the starting point. 328 */ 329 if (!check_source && check_target && 330 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 331 return false; 332 333 /* Ensure the start of the pageblock or zone is online and valid */ 334 block_pfn = pageblock_start_pfn(pfn); 335 block_pfn = max(block_pfn, zone->zone_start_pfn); 336 block_page = pfn_to_online_page(block_pfn); 337 if (block_page) { 338 page = block_page; 339 pfn = block_pfn; 340 } 341 342 /* Ensure the end of the pageblock or zone is online and valid */ 343 block_pfn = pageblock_end_pfn(pfn) - 1; 344 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1); 345 end_page = pfn_to_online_page(block_pfn); 346 if (!end_page) 347 return false; 348 349 /* 350 * Only clear the hint if a sample indicates there is either a 351 * free page or an LRU page in the block. One or other condition 352 * is necessary for the block to be a migration source/target. 353 */ 354 do { 355 if (check_source && PageLRU(page)) { 356 clear_pageblock_skip(page); 357 return true; 358 } 359 360 if (check_target && PageBuddy(page)) { 361 clear_pageblock_skip(page); 362 return true; 363 } 364 365 page += (1 << PAGE_ALLOC_COSTLY_ORDER); 366 } while (page <= end_page); 367 368 return false; 369 } 370 371 /* 372 * This function is called to clear all cached information on pageblocks that 373 * should be skipped for page isolation when the migrate and free page scanner 374 * meet. 375 */ 376 static void __reset_isolation_suitable(struct zone *zone) 377 { 378 unsigned long migrate_pfn = zone->zone_start_pfn; 379 unsigned long free_pfn = zone_end_pfn(zone) - 1; 380 unsigned long reset_migrate = free_pfn; 381 unsigned long reset_free = migrate_pfn; 382 bool source_set = false; 383 bool free_set = false; 384 385 /* Only flush if a full compaction finished recently */ 386 if (!zone->compact_blockskip_flush) 387 return; 388 389 zone->compact_blockskip_flush = false; 390 391 /* 392 * Walk the zone and update pageblock skip information. Source looks 393 * for PageLRU while target looks for PageBuddy. When the scanner 394 * is found, both PageBuddy and PageLRU are checked as the pageblock 395 * is suitable as both source and target. 396 */ 397 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages, 398 free_pfn -= pageblock_nr_pages) { 399 cond_resched(); 400 401 /* Update the migrate PFN */ 402 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) && 403 migrate_pfn < reset_migrate) { 404 source_set = true; 405 reset_migrate = migrate_pfn; 406 zone->compact_init_migrate_pfn = reset_migrate; 407 zone->compact_cached_migrate_pfn[0] = reset_migrate; 408 zone->compact_cached_migrate_pfn[1] = reset_migrate; 409 } 410 411 /* Update the free PFN */ 412 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) && 413 free_pfn > reset_free) { 414 free_set = true; 415 reset_free = free_pfn; 416 zone->compact_init_free_pfn = reset_free; 417 zone->compact_cached_free_pfn = reset_free; 418 } 419 } 420 421 /* Leave no distance if no suitable block was reset */ 422 if (reset_migrate >= reset_free) { 423 zone->compact_cached_migrate_pfn[0] = migrate_pfn; 424 zone->compact_cached_migrate_pfn[1] = migrate_pfn; 425 zone->compact_cached_free_pfn = free_pfn; 426 } 427 } 428 429 void reset_isolation_suitable(pg_data_t *pgdat) 430 { 431 int zoneid; 432 433 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 434 struct zone *zone = &pgdat->node_zones[zoneid]; 435 if (!populated_zone(zone)) 436 continue; 437 438 __reset_isolation_suitable(zone); 439 } 440 } 441 442 /* 443 * Sets the pageblock skip bit if it was clear. Note that this is a hint as 444 * locks are not required for read/writers. Returns true if it was already set. 445 */ 446 static bool test_and_set_skip(struct compact_control *cc, struct page *page) 447 { 448 bool skip; 449 450 /* Do not update if skip hint is being ignored */ 451 if (cc->ignore_skip_hint) 452 return false; 453 454 skip = get_pageblock_skip(page); 455 if (!skip && !cc->no_set_skip_hint) 456 set_pageblock_skip(page); 457 458 return skip; 459 } 460 461 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 462 { 463 struct zone *zone = cc->zone; 464 465 /* Set for isolation rather than compaction */ 466 if (cc->no_set_skip_hint) 467 return; 468 469 pfn = pageblock_end_pfn(pfn); 470 471 /* Update where async and sync compaction should restart */ 472 if (pfn > zone->compact_cached_migrate_pfn[0]) 473 zone->compact_cached_migrate_pfn[0] = pfn; 474 if (cc->mode != MIGRATE_ASYNC && 475 pfn > zone->compact_cached_migrate_pfn[1]) 476 zone->compact_cached_migrate_pfn[1] = pfn; 477 } 478 479 /* 480 * If no pages were isolated then mark this pageblock to be skipped in the 481 * future. The information is later cleared by __reset_isolation_suitable(). 482 */ 483 static void update_pageblock_skip(struct compact_control *cc, 484 struct page *page, unsigned long pfn) 485 { 486 struct zone *zone = cc->zone; 487 488 if (cc->no_set_skip_hint) 489 return; 490 491 set_pageblock_skip(page); 492 493 if (pfn < zone->compact_cached_free_pfn) 494 zone->compact_cached_free_pfn = pfn; 495 } 496 #else 497 static inline bool isolation_suitable(struct compact_control *cc, 498 struct page *page) 499 { 500 return true; 501 } 502 503 static inline bool pageblock_skip_persistent(struct page *page) 504 { 505 return false; 506 } 507 508 static inline void update_pageblock_skip(struct compact_control *cc, 509 struct page *page, unsigned long pfn) 510 { 511 } 512 513 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 514 { 515 } 516 517 static bool test_and_set_skip(struct compact_control *cc, struct page *page) 518 { 519 return false; 520 } 521 #endif /* CONFIG_COMPACTION */ 522 523 /* 524 * Compaction requires the taking of some coarse locks that are potentially 525 * very heavily contended. For async compaction, trylock and record if the 526 * lock is contended. The lock will still be acquired but compaction will 527 * abort when the current block is finished regardless of success rate. 528 * Sync compaction acquires the lock. 529 * 530 * Always returns true which makes it easier to track lock state in callers. 531 */ 532 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags, 533 struct compact_control *cc) 534 __acquires(lock) 535 { 536 /* Track if the lock is contended in async mode */ 537 if (cc->mode == MIGRATE_ASYNC && !cc->contended) { 538 if (spin_trylock_irqsave(lock, *flags)) 539 return true; 540 541 cc->contended = true; 542 } 543 544 spin_lock_irqsave(lock, *flags); 545 return true; 546 } 547 548 /* 549 * Compaction requires the taking of some coarse locks that are potentially 550 * very heavily contended. The lock should be periodically unlocked to avoid 551 * having disabled IRQs for a long time, even when there is nobody waiting on 552 * the lock. It might also be that allowing the IRQs will result in 553 * need_resched() becoming true. If scheduling is needed, compaction schedules. 554 * Either compaction type will also abort if a fatal signal is pending. 555 * In either case if the lock was locked, it is dropped and not regained. 556 * 557 * Returns true if compaction should abort due to fatal signal pending. 558 * Returns false when compaction can continue. 559 */ 560 static bool compact_unlock_should_abort(spinlock_t *lock, 561 unsigned long flags, bool *locked, struct compact_control *cc) 562 { 563 if (*locked) { 564 spin_unlock_irqrestore(lock, flags); 565 *locked = false; 566 } 567 568 if (fatal_signal_pending(current)) { 569 cc->contended = true; 570 return true; 571 } 572 573 cond_resched(); 574 575 return false; 576 } 577 578 /* 579 * Isolate free pages onto a private freelist. If @strict is true, will abort 580 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 581 * (even though it may still end up isolating some pages). 582 */ 583 static unsigned long isolate_freepages_block(struct compact_control *cc, 584 unsigned long *start_pfn, 585 unsigned long end_pfn, 586 struct list_head *freelist, 587 unsigned int stride, 588 bool strict) 589 { 590 int nr_scanned = 0, total_isolated = 0; 591 struct page *page; 592 unsigned long flags = 0; 593 bool locked = false; 594 unsigned long blockpfn = *start_pfn; 595 unsigned int order; 596 597 /* Strict mode is for isolation, speed is secondary */ 598 if (strict) 599 stride = 1; 600 601 page = pfn_to_page(blockpfn); 602 603 /* Isolate free pages. */ 604 for (; blockpfn < end_pfn; blockpfn += stride, page += stride) { 605 int isolated; 606 607 /* 608 * Periodically drop the lock (if held) regardless of its 609 * contention, to give chance to IRQs. Abort if fatal signal 610 * pending. 611 */ 612 if (!(blockpfn % COMPACT_CLUSTER_MAX) 613 && compact_unlock_should_abort(&cc->zone->lock, flags, 614 &locked, cc)) 615 break; 616 617 nr_scanned++; 618 619 /* 620 * For compound pages such as THP and hugetlbfs, we can save 621 * potentially a lot of iterations if we skip them at once. 622 * The check is racy, but we can consider only valid values 623 * and the only danger is skipping too much. 624 */ 625 if (PageCompound(page)) { 626 const unsigned int order = compound_order(page); 627 628 if (blockpfn + (1UL << order) <= end_pfn) { 629 blockpfn += (1UL << order) - 1; 630 page += (1UL << order) - 1; 631 nr_scanned += (1UL << order) - 1; 632 } 633 634 goto isolate_fail; 635 } 636 637 if (!PageBuddy(page)) 638 goto isolate_fail; 639 640 /* If we already hold the lock, we can skip some rechecking. */ 641 if (!locked) { 642 locked = compact_lock_irqsave(&cc->zone->lock, 643 &flags, cc); 644 645 /* Recheck this is a buddy page under lock */ 646 if (!PageBuddy(page)) 647 goto isolate_fail; 648 } 649 650 /* Found a free page, will break it into order-0 pages */ 651 order = buddy_order(page); 652 isolated = __isolate_free_page(page, order); 653 if (!isolated) 654 break; 655 set_page_private(page, order); 656 657 nr_scanned += isolated - 1; 658 total_isolated += isolated; 659 cc->nr_freepages += isolated; 660 list_add_tail(&page->lru, freelist); 661 662 if (!strict && cc->nr_migratepages <= cc->nr_freepages) { 663 blockpfn += isolated; 664 break; 665 } 666 /* Advance to the end of split page */ 667 blockpfn += isolated - 1; 668 page += isolated - 1; 669 continue; 670 671 isolate_fail: 672 if (strict) 673 break; 674 675 } 676 677 if (locked) 678 spin_unlock_irqrestore(&cc->zone->lock, flags); 679 680 /* 681 * Be careful to not go outside of the pageblock. 682 */ 683 if (unlikely(blockpfn > end_pfn)) 684 blockpfn = end_pfn; 685 686 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 687 nr_scanned, total_isolated); 688 689 /* Record how far we have got within the block */ 690 *start_pfn = blockpfn; 691 692 /* 693 * If strict isolation is requested by CMA then check that all the 694 * pages requested were isolated. If there were any failures, 0 is 695 * returned and CMA will fail. 696 */ 697 if (strict && blockpfn < end_pfn) 698 total_isolated = 0; 699 700 cc->total_free_scanned += nr_scanned; 701 if (total_isolated) 702 count_compact_events(COMPACTISOLATED, total_isolated); 703 return total_isolated; 704 } 705 706 /** 707 * isolate_freepages_range() - isolate free pages. 708 * @cc: Compaction control structure. 709 * @start_pfn: The first PFN to start isolating. 710 * @end_pfn: The one-past-last PFN. 711 * 712 * Non-free pages, invalid PFNs, or zone boundaries within the 713 * [start_pfn, end_pfn) range are considered errors, cause function to 714 * undo its actions and return zero. 715 * 716 * Otherwise, function returns one-past-the-last PFN of isolated page 717 * (which may be greater then end_pfn if end fell in a middle of 718 * a free page). 719 */ 720 unsigned long 721 isolate_freepages_range(struct compact_control *cc, 722 unsigned long start_pfn, unsigned long end_pfn) 723 { 724 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 725 LIST_HEAD(freelist); 726 727 pfn = start_pfn; 728 block_start_pfn = pageblock_start_pfn(pfn); 729 if (block_start_pfn < cc->zone->zone_start_pfn) 730 block_start_pfn = cc->zone->zone_start_pfn; 731 block_end_pfn = pageblock_end_pfn(pfn); 732 733 for (; pfn < end_pfn; pfn += isolated, 734 block_start_pfn = block_end_pfn, 735 block_end_pfn += pageblock_nr_pages) { 736 /* Protect pfn from changing by isolate_freepages_block */ 737 unsigned long isolate_start_pfn = pfn; 738 739 /* 740 * pfn could pass the block_end_pfn if isolated freepage 741 * is more than pageblock order. In this case, we adjust 742 * scanning range to right one. 743 */ 744 if (pfn >= block_end_pfn) { 745 block_start_pfn = pageblock_start_pfn(pfn); 746 block_end_pfn = pageblock_end_pfn(pfn); 747 } 748 749 block_end_pfn = min(block_end_pfn, end_pfn); 750 751 if (!pageblock_pfn_to_page(block_start_pfn, 752 block_end_pfn, cc->zone)) 753 break; 754 755 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 756 block_end_pfn, &freelist, 0, true); 757 758 /* 759 * In strict mode, isolate_freepages_block() returns 0 if 760 * there are any holes in the block (ie. invalid PFNs or 761 * non-free pages). 762 */ 763 if (!isolated) 764 break; 765 766 /* 767 * If we managed to isolate pages, it is always (1 << n) * 768 * pageblock_nr_pages for some non-negative n. (Max order 769 * page may span two pageblocks). 770 */ 771 } 772 773 /* __isolate_free_page() does not map the pages */ 774 split_map_pages(&freelist); 775 776 if (pfn < end_pfn) { 777 /* Loop terminated early, cleanup. */ 778 release_freepages(&freelist); 779 return 0; 780 } 781 782 /* We don't use freelists for anything. */ 783 return pfn; 784 } 785 786 /* Similar to reclaim, but different enough that they don't share logic */ 787 static bool too_many_isolated(struct compact_control *cc) 788 { 789 pg_data_t *pgdat = cc->zone->zone_pgdat; 790 bool too_many; 791 792 unsigned long active, inactive, isolated; 793 794 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) + 795 node_page_state(pgdat, NR_INACTIVE_ANON); 796 active = node_page_state(pgdat, NR_ACTIVE_FILE) + 797 node_page_state(pgdat, NR_ACTIVE_ANON); 798 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) + 799 node_page_state(pgdat, NR_ISOLATED_ANON); 800 801 /* 802 * Allow GFP_NOFS to isolate past the limit set for regular 803 * compaction runs. This prevents an ABBA deadlock when other 804 * compactors have already isolated to the limit, but are 805 * blocked on filesystem locks held by the GFP_NOFS thread. 806 */ 807 if (cc->gfp_mask & __GFP_FS) { 808 inactive >>= 3; 809 active >>= 3; 810 } 811 812 too_many = isolated > (inactive + active) / 2; 813 if (!too_many) 814 wake_throttle_isolated(pgdat); 815 816 return too_many; 817 } 818 819 /** 820 * isolate_migratepages_block() - isolate all migrate-able pages within 821 * a single pageblock 822 * @cc: Compaction control structure. 823 * @low_pfn: The first PFN to isolate 824 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 825 * @mode: Isolation mode to be used. 826 * 827 * Isolate all pages that can be migrated from the range specified by 828 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 829 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion, 830 * -ENOMEM in case we could not allocate a page, or 0. 831 * cc->migrate_pfn will contain the next pfn to scan. 832 * 833 * The pages are isolated on cc->migratepages list (not required to be empty), 834 * and cc->nr_migratepages is updated accordingly. 835 */ 836 static int 837 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 838 unsigned long end_pfn, isolate_mode_t mode) 839 { 840 pg_data_t *pgdat = cc->zone->zone_pgdat; 841 unsigned long nr_scanned = 0, nr_isolated = 0; 842 struct lruvec *lruvec; 843 unsigned long flags = 0; 844 struct lruvec *locked = NULL; 845 struct folio *folio = NULL; 846 struct page *page = NULL, *valid_page = NULL; 847 struct address_space *mapping; 848 unsigned long start_pfn = low_pfn; 849 bool skip_on_failure = false; 850 unsigned long next_skip_pfn = 0; 851 bool skip_updated = false; 852 int ret = 0; 853 854 cc->migrate_pfn = low_pfn; 855 856 /* 857 * Ensure that there are not too many pages isolated from the LRU 858 * list by either parallel reclaimers or compaction. If there are, 859 * delay for some time until fewer pages are isolated 860 */ 861 while (unlikely(too_many_isolated(cc))) { 862 /* stop isolation if there are still pages not migrated */ 863 if (cc->nr_migratepages) 864 return -EAGAIN; 865 866 /* async migration should just abort */ 867 if (cc->mode == MIGRATE_ASYNC) 868 return -EAGAIN; 869 870 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 871 872 if (fatal_signal_pending(current)) 873 return -EINTR; 874 } 875 876 cond_resched(); 877 878 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { 879 skip_on_failure = true; 880 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 881 } 882 883 /* Time to isolate some pages for migration */ 884 for (; low_pfn < end_pfn; low_pfn++) { 885 886 if (skip_on_failure && low_pfn >= next_skip_pfn) { 887 /* 888 * We have isolated all migration candidates in the 889 * previous order-aligned block, and did not skip it due 890 * to failure. We should migrate the pages now and 891 * hopefully succeed compaction. 892 */ 893 if (nr_isolated) 894 break; 895 896 /* 897 * We failed to isolate in the previous order-aligned 898 * block. Set the new boundary to the end of the 899 * current block. Note we can't simply increase 900 * next_skip_pfn by 1 << order, as low_pfn might have 901 * been incremented by a higher number due to skipping 902 * a compound or a high-order buddy page in the 903 * previous loop iteration. 904 */ 905 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 906 } 907 908 /* 909 * Periodically drop the lock (if held) regardless of its 910 * contention, to give chance to IRQs. Abort completely if 911 * a fatal signal is pending. 912 */ 913 if (!(low_pfn % COMPACT_CLUSTER_MAX)) { 914 if (locked) { 915 unlock_page_lruvec_irqrestore(locked, flags); 916 locked = NULL; 917 } 918 919 if (fatal_signal_pending(current)) { 920 cc->contended = true; 921 ret = -EINTR; 922 923 goto fatal_pending; 924 } 925 926 cond_resched(); 927 } 928 929 nr_scanned++; 930 931 page = pfn_to_page(low_pfn); 932 933 /* 934 * Check if the pageblock has already been marked skipped. 935 * Only the first PFN is checked as the caller isolates 936 * COMPACT_CLUSTER_MAX at a time so the second call must 937 * not falsely conclude that the block should be skipped. 938 */ 939 if (!valid_page && (pageblock_aligned(low_pfn) || 940 low_pfn == cc->zone->zone_start_pfn)) { 941 if (!isolation_suitable(cc, page)) { 942 low_pfn = end_pfn; 943 folio = NULL; 944 goto isolate_abort; 945 } 946 valid_page = page; 947 } 948 949 if (PageHuge(page) && cc->alloc_contig) { 950 if (locked) { 951 unlock_page_lruvec_irqrestore(locked, flags); 952 locked = NULL; 953 } 954 955 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages); 956 957 /* 958 * Fail isolation in case isolate_or_dissolve_huge_page() 959 * reports an error. In case of -ENOMEM, abort right away. 960 */ 961 if (ret < 0) { 962 /* Do not report -EBUSY down the chain */ 963 if (ret == -EBUSY) 964 ret = 0; 965 low_pfn += compound_nr(page) - 1; 966 nr_scanned += compound_nr(page) - 1; 967 goto isolate_fail; 968 } 969 970 if (PageHuge(page)) { 971 /* 972 * Hugepage was successfully isolated and placed 973 * on the cc->migratepages list. 974 */ 975 folio = page_folio(page); 976 low_pfn += folio_nr_pages(folio) - 1; 977 goto isolate_success_no_list; 978 } 979 980 /* 981 * Ok, the hugepage was dissolved. Now these pages are 982 * Buddy and cannot be re-allocated because they are 983 * isolated. Fall-through as the check below handles 984 * Buddy pages. 985 */ 986 } 987 988 /* 989 * Skip if free. We read page order here without zone lock 990 * which is generally unsafe, but the race window is small and 991 * the worst thing that can happen is that we skip some 992 * potential isolation targets. 993 */ 994 if (PageBuddy(page)) { 995 unsigned long freepage_order = buddy_order_unsafe(page); 996 997 /* 998 * Without lock, we cannot be sure that what we got is 999 * a valid page order. Consider only values in the 1000 * valid order range to prevent low_pfn overflow. 1001 */ 1002 if (freepage_order > 0 && freepage_order <= MAX_PAGE_ORDER) { 1003 low_pfn += (1UL << freepage_order) - 1; 1004 nr_scanned += (1UL << freepage_order) - 1; 1005 } 1006 continue; 1007 } 1008 1009 /* 1010 * Regardless of being on LRU, compound pages such as THP and 1011 * hugetlbfs are not to be compacted unless we are attempting 1012 * an allocation much larger than the huge page size (eg CMA). 1013 * We can potentially save a lot of iterations if we skip them 1014 * at once. The check is racy, but we can consider only valid 1015 * values and the only danger is skipping too much. 1016 */ 1017 if (PageCompound(page) && !cc->alloc_contig) { 1018 const unsigned int order = compound_order(page); 1019 1020 if (likely(order <= MAX_PAGE_ORDER)) { 1021 low_pfn += (1UL << order) - 1; 1022 nr_scanned += (1UL << order) - 1; 1023 } 1024 goto isolate_fail; 1025 } 1026 1027 /* 1028 * Check may be lockless but that's ok as we recheck later. 1029 * It's possible to migrate LRU and non-lru movable pages. 1030 * Skip any other type of page 1031 */ 1032 if (!PageLRU(page)) { 1033 /* 1034 * __PageMovable can return false positive so we need 1035 * to verify it under page_lock. 1036 */ 1037 if (unlikely(__PageMovable(page)) && 1038 !PageIsolated(page)) { 1039 if (locked) { 1040 unlock_page_lruvec_irqrestore(locked, flags); 1041 locked = NULL; 1042 } 1043 1044 if (isolate_movable_page(page, mode)) { 1045 folio = page_folio(page); 1046 goto isolate_success; 1047 } 1048 } 1049 1050 goto isolate_fail; 1051 } 1052 1053 /* 1054 * Be careful not to clear PageLRU until after we're 1055 * sure the page is not being freed elsewhere -- the 1056 * page release code relies on it. 1057 */ 1058 folio = folio_get_nontail_page(page); 1059 if (unlikely(!folio)) 1060 goto isolate_fail; 1061 1062 /* 1063 * Migration will fail if an anonymous page is pinned in memory, 1064 * so avoid taking lru_lock and isolating it unnecessarily in an 1065 * admittedly racy check. 1066 */ 1067 mapping = folio_mapping(folio); 1068 if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio)) 1069 goto isolate_fail_put; 1070 1071 /* 1072 * Only allow to migrate anonymous pages in GFP_NOFS context 1073 * because those do not depend on fs locks. 1074 */ 1075 if (!(cc->gfp_mask & __GFP_FS) && mapping) 1076 goto isolate_fail_put; 1077 1078 /* Only take pages on LRU: a check now makes later tests safe */ 1079 if (!folio_test_lru(folio)) 1080 goto isolate_fail_put; 1081 1082 /* Compaction might skip unevictable pages but CMA takes them */ 1083 if (!(mode & ISOLATE_UNEVICTABLE) && folio_test_unevictable(folio)) 1084 goto isolate_fail_put; 1085 1086 /* 1087 * To minimise LRU disruption, the caller can indicate with 1088 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages 1089 * it will be able to migrate without blocking - clean pages 1090 * for the most part. PageWriteback would require blocking. 1091 */ 1092 if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio)) 1093 goto isolate_fail_put; 1094 1095 if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_dirty(folio)) { 1096 bool migrate_dirty; 1097 1098 /* 1099 * Only folios without mappings or that have 1100 * a ->migrate_folio callback are possible to 1101 * migrate without blocking. However, we may 1102 * be racing with truncation, which can free 1103 * the mapping. Truncation holds the folio lock 1104 * until after the folio is removed from the page 1105 * cache so holding it ourselves is sufficient. 1106 */ 1107 if (!folio_trylock(folio)) 1108 goto isolate_fail_put; 1109 1110 mapping = folio_mapping(folio); 1111 migrate_dirty = !mapping || 1112 mapping->a_ops->migrate_folio; 1113 folio_unlock(folio); 1114 if (!migrate_dirty) 1115 goto isolate_fail_put; 1116 } 1117 1118 /* Try isolate the folio */ 1119 if (!folio_test_clear_lru(folio)) 1120 goto isolate_fail_put; 1121 1122 lruvec = folio_lruvec(folio); 1123 1124 /* If we already hold the lock, we can skip some rechecking */ 1125 if (lruvec != locked) { 1126 if (locked) 1127 unlock_page_lruvec_irqrestore(locked, flags); 1128 1129 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc); 1130 locked = lruvec; 1131 1132 lruvec_memcg_debug(lruvec, folio); 1133 1134 /* 1135 * Try get exclusive access under lock. If marked for 1136 * skip, the scan is aborted unless the current context 1137 * is a rescan to reach the end of the pageblock. 1138 */ 1139 if (!skip_updated && valid_page) { 1140 skip_updated = true; 1141 if (test_and_set_skip(cc, valid_page) && 1142 !cc->finish_pageblock) { 1143 low_pfn = end_pfn; 1144 goto isolate_abort; 1145 } 1146 } 1147 1148 /* 1149 * folio become large since the non-locked check, 1150 * and it's on LRU. 1151 */ 1152 if (unlikely(folio_test_large(folio) && !cc->alloc_contig)) { 1153 low_pfn += folio_nr_pages(folio) - 1; 1154 nr_scanned += folio_nr_pages(folio) - 1; 1155 folio_set_lru(folio); 1156 goto isolate_fail_put; 1157 } 1158 } 1159 1160 /* The folio is taken off the LRU */ 1161 if (folio_test_large(folio)) 1162 low_pfn += folio_nr_pages(folio) - 1; 1163 1164 /* Successfully isolated */ 1165 lruvec_del_folio(lruvec, folio); 1166 node_stat_mod_folio(folio, 1167 NR_ISOLATED_ANON + folio_is_file_lru(folio), 1168 folio_nr_pages(folio)); 1169 1170 isolate_success: 1171 list_add(&folio->lru, &cc->migratepages); 1172 isolate_success_no_list: 1173 cc->nr_migratepages += folio_nr_pages(folio); 1174 nr_isolated += folio_nr_pages(folio); 1175 nr_scanned += folio_nr_pages(folio) - 1; 1176 1177 /* 1178 * Avoid isolating too much unless this block is being 1179 * fully scanned (e.g. dirty/writeback pages, parallel allocation) 1180 * or a lock is contended. For contention, isolate quickly to 1181 * potentially remove one source of contention. 1182 */ 1183 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX && 1184 !cc->finish_pageblock && !cc->contended) { 1185 ++low_pfn; 1186 break; 1187 } 1188 1189 continue; 1190 1191 isolate_fail_put: 1192 /* Avoid potential deadlock in freeing page under lru_lock */ 1193 if (locked) { 1194 unlock_page_lruvec_irqrestore(locked, flags); 1195 locked = NULL; 1196 } 1197 folio_put(folio); 1198 1199 isolate_fail: 1200 if (!skip_on_failure && ret != -ENOMEM) 1201 continue; 1202 1203 /* 1204 * We have isolated some pages, but then failed. Release them 1205 * instead of migrating, as we cannot form the cc->order buddy 1206 * page anyway. 1207 */ 1208 if (nr_isolated) { 1209 if (locked) { 1210 unlock_page_lruvec_irqrestore(locked, flags); 1211 locked = NULL; 1212 } 1213 putback_movable_pages(&cc->migratepages); 1214 cc->nr_migratepages = 0; 1215 nr_isolated = 0; 1216 } 1217 1218 if (low_pfn < next_skip_pfn) { 1219 low_pfn = next_skip_pfn - 1; 1220 /* 1221 * The check near the loop beginning would have updated 1222 * next_skip_pfn too, but this is a bit simpler. 1223 */ 1224 next_skip_pfn += 1UL << cc->order; 1225 } 1226 1227 if (ret == -ENOMEM) 1228 break; 1229 } 1230 1231 /* 1232 * The PageBuddy() check could have potentially brought us outside 1233 * the range to be scanned. 1234 */ 1235 if (unlikely(low_pfn > end_pfn)) 1236 low_pfn = end_pfn; 1237 1238 folio = NULL; 1239 1240 isolate_abort: 1241 if (locked) 1242 unlock_page_lruvec_irqrestore(locked, flags); 1243 if (folio) { 1244 folio_set_lru(folio); 1245 folio_put(folio); 1246 } 1247 1248 /* 1249 * Update the cached scanner pfn once the pageblock has been scanned. 1250 * Pages will either be migrated in which case there is no point 1251 * scanning in the near future or migration failed in which case the 1252 * failure reason may persist. The block is marked for skipping if 1253 * there were no pages isolated in the block or if the block is 1254 * rescanned twice in a row. 1255 */ 1256 if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) { 1257 if (!cc->no_set_skip_hint && valid_page && !skip_updated) 1258 set_pageblock_skip(valid_page); 1259 update_cached_migrate(cc, low_pfn); 1260 } 1261 1262 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 1263 nr_scanned, nr_isolated); 1264 1265 fatal_pending: 1266 cc->total_migrate_scanned += nr_scanned; 1267 if (nr_isolated) 1268 count_compact_events(COMPACTISOLATED, nr_isolated); 1269 1270 cc->migrate_pfn = low_pfn; 1271 1272 return ret; 1273 } 1274 1275 /** 1276 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 1277 * @cc: Compaction control structure. 1278 * @start_pfn: The first PFN to start isolating. 1279 * @end_pfn: The one-past-last PFN. 1280 * 1281 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM 1282 * in case we could not allocate a page, or 0. 1283 */ 1284 int 1285 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 1286 unsigned long end_pfn) 1287 { 1288 unsigned long pfn, block_start_pfn, block_end_pfn; 1289 int ret = 0; 1290 1291 /* Scan block by block. First and last block may be incomplete */ 1292 pfn = start_pfn; 1293 block_start_pfn = pageblock_start_pfn(pfn); 1294 if (block_start_pfn < cc->zone->zone_start_pfn) 1295 block_start_pfn = cc->zone->zone_start_pfn; 1296 block_end_pfn = pageblock_end_pfn(pfn); 1297 1298 for (; pfn < end_pfn; pfn = block_end_pfn, 1299 block_start_pfn = block_end_pfn, 1300 block_end_pfn += pageblock_nr_pages) { 1301 1302 block_end_pfn = min(block_end_pfn, end_pfn); 1303 1304 if (!pageblock_pfn_to_page(block_start_pfn, 1305 block_end_pfn, cc->zone)) 1306 continue; 1307 1308 ret = isolate_migratepages_block(cc, pfn, block_end_pfn, 1309 ISOLATE_UNEVICTABLE); 1310 1311 if (ret) 1312 break; 1313 1314 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX) 1315 break; 1316 } 1317 1318 return ret; 1319 } 1320 1321 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 1322 #ifdef CONFIG_COMPACTION 1323 1324 static bool suitable_migration_source(struct compact_control *cc, 1325 struct page *page) 1326 { 1327 int block_mt; 1328 1329 if (pageblock_skip_persistent(page)) 1330 return false; 1331 1332 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction) 1333 return true; 1334 1335 block_mt = get_pageblock_migratetype(page); 1336 1337 if (cc->migratetype == MIGRATE_MOVABLE) 1338 return is_migrate_movable(block_mt); 1339 else 1340 return block_mt == cc->migratetype; 1341 } 1342 1343 /* Returns true if the page is within a block suitable for migration to */ 1344 static bool suitable_migration_target(struct compact_control *cc, 1345 struct page *page) 1346 { 1347 /* If the page is a large free page, then disallow migration */ 1348 if (PageBuddy(page)) { 1349 /* 1350 * We are checking page_order without zone->lock taken. But 1351 * the only small danger is that we skip a potentially suitable 1352 * pageblock, so it's not worth to check order for valid range. 1353 */ 1354 if (buddy_order_unsafe(page) >= pageblock_order) 1355 return false; 1356 } 1357 1358 if (cc->ignore_block_suitable) 1359 return true; 1360 1361 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 1362 if (is_migrate_movable(get_pageblock_migratetype(page))) 1363 return true; 1364 1365 /* Otherwise skip the block */ 1366 return false; 1367 } 1368 1369 static inline unsigned int 1370 freelist_scan_limit(struct compact_control *cc) 1371 { 1372 unsigned short shift = BITS_PER_LONG - 1; 1373 1374 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1; 1375 } 1376 1377 /* 1378 * Test whether the free scanner has reached the same or lower pageblock than 1379 * the migration scanner, and compaction should thus terminate. 1380 */ 1381 static inline bool compact_scanners_met(struct compact_control *cc) 1382 { 1383 return (cc->free_pfn >> pageblock_order) 1384 <= (cc->migrate_pfn >> pageblock_order); 1385 } 1386 1387 /* 1388 * Used when scanning for a suitable migration target which scans freelists 1389 * in reverse. Reorders the list such as the unscanned pages are scanned 1390 * first on the next iteration of the free scanner 1391 */ 1392 static void 1393 move_freelist_head(struct list_head *freelist, struct page *freepage) 1394 { 1395 LIST_HEAD(sublist); 1396 1397 if (!list_is_first(&freepage->buddy_list, freelist)) { 1398 list_cut_before(&sublist, freelist, &freepage->buddy_list); 1399 list_splice_tail(&sublist, freelist); 1400 } 1401 } 1402 1403 /* 1404 * Similar to move_freelist_head except used by the migration scanner 1405 * when scanning forward. It's possible for these list operations to 1406 * move against each other if they search the free list exactly in 1407 * lockstep. 1408 */ 1409 static void 1410 move_freelist_tail(struct list_head *freelist, struct page *freepage) 1411 { 1412 LIST_HEAD(sublist); 1413 1414 if (!list_is_last(&freepage->buddy_list, freelist)) { 1415 list_cut_position(&sublist, freelist, &freepage->buddy_list); 1416 list_splice_tail(&sublist, freelist); 1417 } 1418 } 1419 1420 static void 1421 fast_isolate_around(struct compact_control *cc, unsigned long pfn) 1422 { 1423 unsigned long start_pfn, end_pfn; 1424 struct page *page; 1425 1426 /* Do not search around if there are enough pages already */ 1427 if (cc->nr_freepages >= cc->nr_migratepages) 1428 return; 1429 1430 /* Minimise scanning during async compaction */ 1431 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC) 1432 return; 1433 1434 /* Pageblock boundaries */ 1435 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn); 1436 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)); 1437 1438 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone); 1439 if (!page) 1440 return; 1441 1442 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false); 1443 1444 /* Skip this pageblock in the future as it's full or nearly full */ 1445 if (start_pfn == end_pfn && !cc->no_set_skip_hint) 1446 set_pageblock_skip(page); 1447 } 1448 1449 /* Search orders in round-robin fashion */ 1450 static int next_search_order(struct compact_control *cc, int order) 1451 { 1452 order--; 1453 if (order < 0) 1454 order = cc->order - 1; 1455 1456 /* Search wrapped around? */ 1457 if (order == cc->search_order) { 1458 cc->search_order--; 1459 if (cc->search_order < 0) 1460 cc->search_order = cc->order - 1; 1461 return -1; 1462 } 1463 1464 return order; 1465 } 1466 1467 static void fast_isolate_freepages(struct compact_control *cc) 1468 { 1469 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1); 1470 unsigned int nr_scanned = 0, total_isolated = 0; 1471 unsigned long low_pfn, min_pfn, highest = 0; 1472 unsigned long nr_isolated = 0; 1473 unsigned long distance; 1474 struct page *page = NULL; 1475 bool scan_start = false; 1476 int order; 1477 1478 /* Full compaction passes in a negative order */ 1479 if (cc->order <= 0) 1480 return; 1481 1482 /* 1483 * If starting the scan, use a deeper search and use the highest 1484 * PFN found if a suitable one is not found. 1485 */ 1486 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) { 1487 limit = pageblock_nr_pages >> 1; 1488 scan_start = true; 1489 } 1490 1491 /* 1492 * Preferred point is in the top quarter of the scan space but take 1493 * a pfn from the top half if the search is problematic. 1494 */ 1495 distance = (cc->free_pfn - cc->migrate_pfn); 1496 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2)); 1497 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1)); 1498 1499 if (WARN_ON_ONCE(min_pfn > low_pfn)) 1500 low_pfn = min_pfn; 1501 1502 /* 1503 * Search starts from the last successful isolation order or the next 1504 * order to search after a previous failure 1505 */ 1506 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order); 1507 1508 for (order = cc->search_order; 1509 !page && order >= 0; 1510 order = next_search_order(cc, order)) { 1511 struct free_area *area = &cc->zone->free_area[order]; 1512 struct list_head *freelist; 1513 struct page *freepage; 1514 unsigned long flags; 1515 unsigned int order_scanned = 0; 1516 unsigned long high_pfn = 0; 1517 1518 if (!area->nr_free) 1519 continue; 1520 1521 spin_lock_irqsave(&cc->zone->lock, flags); 1522 freelist = &area->free_list[MIGRATE_MOVABLE]; 1523 list_for_each_entry_reverse(freepage, freelist, buddy_list) { 1524 unsigned long pfn; 1525 1526 order_scanned++; 1527 nr_scanned++; 1528 pfn = page_to_pfn(freepage); 1529 1530 if (pfn >= highest) 1531 highest = max(pageblock_start_pfn(pfn), 1532 cc->zone->zone_start_pfn); 1533 1534 if (pfn >= low_pfn) { 1535 cc->fast_search_fail = 0; 1536 cc->search_order = order; 1537 page = freepage; 1538 break; 1539 } 1540 1541 if (pfn >= min_pfn && pfn > high_pfn) { 1542 high_pfn = pfn; 1543 1544 /* Shorten the scan if a candidate is found */ 1545 limit >>= 1; 1546 } 1547 1548 if (order_scanned >= limit) 1549 break; 1550 } 1551 1552 /* Use a maximum candidate pfn if a preferred one was not found */ 1553 if (!page && high_pfn) { 1554 page = pfn_to_page(high_pfn); 1555 1556 /* Update freepage for the list reorder below */ 1557 freepage = page; 1558 } 1559 1560 /* Reorder to so a future search skips recent pages */ 1561 move_freelist_head(freelist, freepage); 1562 1563 /* Isolate the page if available */ 1564 if (page) { 1565 if (__isolate_free_page(page, order)) { 1566 set_page_private(page, order); 1567 nr_isolated = 1 << order; 1568 nr_scanned += nr_isolated - 1; 1569 total_isolated += nr_isolated; 1570 cc->nr_freepages += nr_isolated; 1571 list_add_tail(&page->lru, &cc->freepages); 1572 count_compact_events(COMPACTISOLATED, nr_isolated); 1573 } else { 1574 /* If isolation fails, abort the search */ 1575 order = cc->search_order + 1; 1576 page = NULL; 1577 } 1578 } 1579 1580 spin_unlock_irqrestore(&cc->zone->lock, flags); 1581 1582 /* Skip fast search if enough freepages isolated */ 1583 if (cc->nr_freepages >= cc->nr_migratepages) 1584 break; 1585 1586 /* 1587 * Smaller scan on next order so the total scan is related 1588 * to freelist_scan_limit. 1589 */ 1590 if (order_scanned >= limit) 1591 limit = max(1U, limit >> 1); 1592 } 1593 1594 trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn, 1595 nr_scanned, total_isolated); 1596 1597 if (!page) { 1598 cc->fast_search_fail++; 1599 if (scan_start) { 1600 /* 1601 * Use the highest PFN found above min. If one was 1602 * not found, be pessimistic for direct compaction 1603 * and use the min mark. 1604 */ 1605 if (highest >= min_pfn) { 1606 page = pfn_to_page(highest); 1607 cc->free_pfn = highest; 1608 } else { 1609 if (cc->direct_compaction && pfn_valid(min_pfn)) { 1610 page = pageblock_pfn_to_page(min_pfn, 1611 min(pageblock_end_pfn(min_pfn), 1612 zone_end_pfn(cc->zone)), 1613 cc->zone); 1614 if (page && !suitable_migration_target(cc, page)) 1615 page = NULL; 1616 1617 cc->free_pfn = min_pfn; 1618 } 1619 } 1620 } 1621 } 1622 1623 if (highest && highest >= cc->zone->compact_cached_free_pfn) { 1624 highest -= pageblock_nr_pages; 1625 cc->zone->compact_cached_free_pfn = highest; 1626 } 1627 1628 cc->total_free_scanned += nr_scanned; 1629 if (!page) 1630 return; 1631 1632 low_pfn = page_to_pfn(page); 1633 fast_isolate_around(cc, low_pfn); 1634 } 1635 1636 /* 1637 * Based on information in the current compact_control, find blocks 1638 * suitable for isolating free pages from and then isolate them. 1639 */ 1640 static void isolate_freepages(struct compact_control *cc) 1641 { 1642 struct zone *zone = cc->zone; 1643 struct page *page; 1644 unsigned long block_start_pfn; /* start of current pageblock */ 1645 unsigned long isolate_start_pfn; /* exact pfn we start at */ 1646 unsigned long block_end_pfn; /* end of current pageblock */ 1647 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 1648 struct list_head *freelist = &cc->freepages; 1649 unsigned int stride; 1650 1651 /* Try a small search of the free lists for a candidate */ 1652 fast_isolate_freepages(cc); 1653 if (cc->nr_freepages) 1654 goto splitmap; 1655 1656 /* 1657 * Initialise the free scanner. The starting point is where we last 1658 * successfully isolated from, zone-cached value, or the end of the 1659 * zone when isolating for the first time. For looping we also need 1660 * this pfn aligned down to the pageblock boundary, because we do 1661 * block_start_pfn -= pageblock_nr_pages in the for loop. 1662 * For ending point, take care when isolating in last pageblock of a 1663 * zone which ends in the middle of a pageblock. 1664 * The low boundary is the end of the pageblock the migration scanner 1665 * is using. 1666 */ 1667 isolate_start_pfn = cc->free_pfn; 1668 block_start_pfn = pageblock_start_pfn(isolate_start_pfn); 1669 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 1670 zone_end_pfn(zone)); 1671 low_pfn = pageblock_end_pfn(cc->migrate_pfn); 1672 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1; 1673 1674 /* 1675 * Isolate free pages until enough are available to migrate the 1676 * pages on cc->migratepages. We stop searching if the migrate 1677 * and free page scanners meet or enough free pages are isolated. 1678 */ 1679 for (; block_start_pfn >= low_pfn; 1680 block_end_pfn = block_start_pfn, 1681 block_start_pfn -= pageblock_nr_pages, 1682 isolate_start_pfn = block_start_pfn) { 1683 unsigned long nr_isolated; 1684 1685 /* 1686 * This can iterate a massively long zone without finding any 1687 * suitable migration targets, so periodically check resched. 1688 */ 1689 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages))) 1690 cond_resched(); 1691 1692 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1693 zone); 1694 if (!page) { 1695 unsigned long next_pfn; 1696 1697 next_pfn = skip_offline_sections_reverse(block_start_pfn); 1698 if (next_pfn) 1699 block_start_pfn = max(next_pfn, low_pfn); 1700 1701 continue; 1702 } 1703 1704 /* Check the block is suitable for migration */ 1705 if (!suitable_migration_target(cc, page)) 1706 continue; 1707 1708 /* If isolation recently failed, do not retry */ 1709 if (!isolation_suitable(cc, page)) 1710 continue; 1711 1712 /* Found a block suitable for isolating free pages from. */ 1713 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn, 1714 block_end_pfn, freelist, stride, false); 1715 1716 /* Update the skip hint if the full pageblock was scanned */ 1717 if (isolate_start_pfn == block_end_pfn) 1718 update_pageblock_skip(cc, page, block_start_pfn - 1719 pageblock_nr_pages); 1720 1721 /* Are enough freepages isolated? */ 1722 if (cc->nr_freepages >= cc->nr_migratepages) { 1723 if (isolate_start_pfn >= block_end_pfn) { 1724 /* 1725 * Restart at previous pageblock if more 1726 * freepages can be isolated next time. 1727 */ 1728 isolate_start_pfn = 1729 block_start_pfn - pageblock_nr_pages; 1730 } 1731 break; 1732 } else if (isolate_start_pfn < block_end_pfn) { 1733 /* 1734 * If isolation failed early, do not continue 1735 * needlessly. 1736 */ 1737 break; 1738 } 1739 1740 /* Adjust stride depending on isolation */ 1741 if (nr_isolated) { 1742 stride = 1; 1743 continue; 1744 } 1745 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1); 1746 } 1747 1748 /* 1749 * Record where the free scanner will restart next time. Either we 1750 * broke from the loop and set isolate_start_pfn based on the last 1751 * call to isolate_freepages_block(), or we met the migration scanner 1752 * and the loop terminated due to isolate_start_pfn < low_pfn 1753 */ 1754 cc->free_pfn = isolate_start_pfn; 1755 1756 splitmap: 1757 /* __isolate_free_page() does not map the pages */ 1758 split_map_pages(freelist); 1759 } 1760 1761 /* 1762 * This is a migrate-callback that "allocates" freepages by taking pages 1763 * from the isolated freelists in the block we are migrating to. 1764 */ 1765 static struct folio *compaction_alloc(struct folio *src, unsigned long data) 1766 { 1767 struct compact_control *cc = (struct compact_control *)data; 1768 struct folio *dst; 1769 1770 if (list_empty(&cc->freepages)) { 1771 isolate_freepages(cc); 1772 1773 if (list_empty(&cc->freepages)) 1774 return NULL; 1775 } 1776 1777 dst = list_entry(cc->freepages.next, struct folio, lru); 1778 list_del(&dst->lru); 1779 cc->nr_freepages--; 1780 1781 return dst; 1782 } 1783 1784 /* 1785 * This is a migrate-callback that "frees" freepages back to the isolated 1786 * freelist. All pages on the freelist are from the same zone, so there is no 1787 * special handling needed for NUMA. 1788 */ 1789 static void compaction_free(struct folio *dst, unsigned long data) 1790 { 1791 struct compact_control *cc = (struct compact_control *)data; 1792 1793 list_add(&dst->lru, &cc->freepages); 1794 cc->nr_freepages++; 1795 } 1796 1797 /* possible outcome of isolate_migratepages */ 1798 typedef enum { 1799 ISOLATE_ABORT, /* Abort compaction now */ 1800 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1801 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1802 } isolate_migrate_t; 1803 1804 /* 1805 * Allow userspace to control policy on scanning the unevictable LRU for 1806 * compactable pages. 1807 */ 1808 static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT; 1809 /* 1810 * Tunable for proactive compaction. It determines how 1811 * aggressively the kernel should compact memory in the 1812 * background. It takes values in the range [0, 100]. 1813 */ 1814 static unsigned int __read_mostly sysctl_compaction_proactiveness = 20; 1815 static int sysctl_extfrag_threshold = 500; 1816 static int __read_mostly sysctl_compact_memory; 1817 1818 static inline void 1819 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn) 1820 { 1821 if (cc->fast_start_pfn == ULONG_MAX) 1822 return; 1823 1824 if (!cc->fast_start_pfn) 1825 cc->fast_start_pfn = pfn; 1826 1827 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn); 1828 } 1829 1830 static inline unsigned long 1831 reinit_migrate_pfn(struct compact_control *cc) 1832 { 1833 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX) 1834 return cc->migrate_pfn; 1835 1836 cc->migrate_pfn = cc->fast_start_pfn; 1837 cc->fast_start_pfn = ULONG_MAX; 1838 1839 return cc->migrate_pfn; 1840 } 1841 1842 /* 1843 * Briefly search the free lists for a migration source that already has 1844 * some free pages to reduce the number of pages that need migration 1845 * before a pageblock is free. 1846 */ 1847 static unsigned long fast_find_migrateblock(struct compact_control *cc) 1848 { 1849 unsigned int limit = freelist_scan_limit(cc); 1850 unsigned int nr_scanned = 0; 1851 unsigned long distance; 1852 unsigned long pfn = cc->migrate_pfn; 1853 unsigned long high_pfn; 1854 int order; 1855 bool found_block = false; 1856 1857 /* Skip hints are relied on to avoid repeats on the fast search */ 1858 if (cc->ignore_skip_hint) 1859 return pfn; 1860 1861 /* 1862 * If the pageblock should be finished then do not select a different 1863 * pageblock. 1864 */ 1865 if (cc->finish_pageblock) 1866 return pfn; 1867 1868 /* 1869 * If the migrate_pfn is not at the start of a zone or the start 1870 * of a pageblock then assume this is a continuation of a previous 1871 * scan restarted due to COMPACT_CLUSTER_MAX. 1872 */ 1873 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn)) 1874 return pfn; 1875 1876 /* 1877 * For smaller orders, just linearly scan as the number of pages 1878 * to migrate should be relatively small and does not necessarily 1879 * justify freeing up a large block for a small allocation. 1880 */ 1881 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER) 1882 return pfn; 1883 1884 /* 1885 * Only allow kcompactd and direct requests for movable pages to 1886 * quickly clear out a MOVABLE pageblock for allocation. This 1887 * reduces the risk that a large movable pageblock is freed for 1888 * an unmovable/reclaimable small allocation. 1889 */ 1890 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE) 1891 return pfn; 1892 1893 /* 1894 * When starting the migration scanner, pick any pageblock within the 1895 * first half of the search space. Otherwise try and pick a pageblock 1896 * within the first eighth to reduce the chances that a migration 1897 * target later becomes a source. 1898 */ 1899 distance = (cc->free_pfn - cc->migrate_pfn) >> 1; 1900 if (cc->migrate_pfn != cc->zone->zone_start_pfn) 1901 distance >>= 2; 1902 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance); 1903 1904 for (order = cc->order - 1; 1905 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit; 1906 order--) { 1907 struct free_area *area = &cc->zone->free_area[order]; 1908 struct list_head *freelist; 1909 unsigned long flags; 1910 struct page *freepage; 1911 1912 if (!area->nr_free) 1913 continue; 1914 1915 spin_lock_irqsave(&cc->zone->lock, flags); 1916 freelist = &area->free_list[MIGRATE_MOVABLE]; 1917 list_for_each_entry(freepage, freelist, buddy_list) { 1918 unsigned long free_pfn; 1919 1920 if (nr_scanned++ >= limit) { 1921 move_freelist_tail(freelist, freepage); 1922 break; 1923 } 1924 1925 free_pfn = page_to_pfn(freepage); 1926 if (free_pfn < high_pfn) { 1927 /* 1928 * Avoid if skipped recently. Ideally it would 1929 * move to the tail but even safe iteration of 1930 * the list assumes an entry is deleted, not 1931 * reordered. 1932 */ 1933 if (get_pageblock_skip(freepage)) 1934 continue; 1935 1936 /* Reorder to so a future search skips recent pages */ 1937 move_freelist_tail(freelist, freepage); 1938 1939 update_fast_start_pfn(cc, free_pfn); 1940 pfn = pageblock_start_pfn(free_pfn); 1941 if (pfn < cc->zone->zone_start_pfn) 1942 pfn = cc->zone->zone_start_pfn; 1943 cc->fast_search_fail = 0; 1944 found_block = true; 1945 break; 1946 } 1947 } 1948 spin_unlock_irqrestore(&cc->zone->lock, flags); 1949 } 1950 1951 cc->total_migrate_scanned += nr_scanned; 1952 1953 /* 1954 * If fast scanning failed then use a cached entry for a page block 1955 * that had free pages as the basis for starting a linear scan. 1956 */ 1957 if (!found_block) { 1958 cc->fast_search_fail++; 1959 pfn = reinit_migrate_pfn(cc); 1960 } 1961 return pfn; 1962 } 1963 1964 /* 1965 * Isolate all pages that can be migrated from the first suitable block, 1966 * starting at the block pointed to by the migrate scanner pfn within 1967 * compact_control. 1968 */ 1969 static isolate_migrate_t isolate_migratepages(struct compact_control *cc) 1970 { 1971 unsigned long block_start_pfn; 1972 unsigned long block_end_pfn; 1973 unsigned long low_pfn; 1974 struct page *page; 1975 const isolate_mode_t isolate_mode = 1976 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 1977 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0); 1978 bool fast_find_block; 1979 1980 /* 1981 * Start at where we last stopped, or beginning of the zone as 1982 * initialized by compact_zone(). The first failure will use 1983 * the lowest PFN as the starting point for linear scanning. 1984 */ 1985 low_pfn = fast_find_migrateblock(cc); 1986 block_start_pfn = pageblock_start_pfn(low_pfn); 1987 if (block_start_pfn < cc->zone->zone_start_pfn) 1988 block_start_pfn = cc->zone->zone_start_pfn; 1989 1990 /* 1991 * fast_find_migrateblock() has already ensured the pageblock is not 1992 * set with a skipped flag, so to avoid the isolation_suitable check 1993 * below again, check whether the fast search was successful. 1994 */ 1995 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail; 1996 1997 /* Only scan within a pageblock boundary */ 1998 block_end_pfn = pageblock_end_pfn(low_pfn); 1999 2000 /* 2001 * Iterate over whole pageblocks until we find the first suitable. 2002 * Do not cross the free scanner. 2003 */ 2004 for (; block_end_pfn <= cc->free_pfn; 2005 fast_find_block = false, 2006 cc->migrate_pfn = low_pfn = block_end_pfn, 2007 block_start_pfn = block_end_pfn, 2008 block_end_pfn += pageblock_nr_pages) { 2009 2010 /* 2011 * This can potentially iterate a massively long zone with 2012 * many pageblocks unsuitable, so periodically check if we 2013 * need to schedule. 2014 */ 2015 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages))) 2016 cond_resched(); 2017 2018 page = pageblock_pfn_to_page(block_start_pfn, 2019 block_end_pfn, cc->zone); 2020 if (!page) { 2021 unsigned long next_pfn; 2022 2023 next_pfn = skip_offline_sections(block_start_pfn); 2024 if (next_pfn) 2025 block_end_pfn = min(next_pfn, cc->free_pfn); 2026 continue; 2027 } 2028 2029 /* 2030 * If isolation recently failed, do not retry. Only check the 2031 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock 2032 * to be visited multiple times. Assume skip was checked 2033 * before making it "skip" so other compaction instances do 2034 * not scan the same block. 2035 */ 2036 if ((pageblock_aligned(low_pfn) || 2037 low_pfn == cc->zone->zone_start_pfn) && 2038 !fast_find_block && !isolation_suitable(cc, page)) 2039 continue; 2040 2041 /* 2042 * For async direct compaction, only scan the pageblocks of the 2043 * same migratetype without huge pages. Async direct compaction 2044 * is optimistic to see if the minimum amount of work satisfies 2045 * the allocation. The cached PFN is updated as it's possible 2046 * that all remaining blocks between source and target are 2047 * unsuitable and the compaction scanners fail to meet. 2048 */ 2049 if (!suitable_migration_source(cc, page)) { 2050 update_cached_migrate(cc, block_end_pfn); 2051 continue; 2052 } 2053 2054 /* Perform the isolation */ 2055 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn, 2056 isolate_mode)) 2057 return ISOLATE_ABORT; 2058 2059 /* 2060 * Either we isolated something and proceed with migration. Or 2061 * we failed and compact_zone should decide if we should 2062 * continue or not. 2063 */ 2064 break; 2065 } 2066 2067 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 2068 } 2069 2070 /* 2071 * order == -1 is expected when compacting proactively via 2072 * 1. /proc/sys/vm/compact_memory 2073 * 2. /sys/devices/system/node/nodex/compact 2074 * 3. /proc/sys/vm/compaction_proactiveness 2075 */ 2076 static inline bool is_via_compact_memory(int order) 2077 { 2078 return order == -1; 2079 } 2080 2081 /* 2082 * Determine whether kswapd is (or recently was!) running on this node. 2083 * 2084 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't 2085 * zero it. 2086 */ 2087 static bool kswapd_is_running(pg_data_t *pgdat) 2088 { 2089 bool running; 2090 2091 pgdat_kswapd_lock(pgdat); 2092 running = pgdat->kswapd && task_is_running(pgdat->kswapd); 2093 pgdat_kswapd_unlock(pgdat); 2094 2095 return running; 2096 } 2097 2098 /* 2099 * A zone's fragmentation score is the external fragmentation wrt to the 2100 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100]. 2101 */ 2102 static unsigned int fragmentation_score_zone(struct zone *zone) 2103 { 2104 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER); 2105 } 2106 2107 /* 2108 * A weighted zone's fragmentation score is the external fragmentation 2109 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It 2110 * returns a value in the range [0, 100]. 2111 * 2112 * The scaling factor ensures that proactive compaction focuses on larger 2113 * zones like ZONE_NORMAL, rather than smaller, specialized zones like 2114 * ZONE_DMA32. For smaller zones, the score value remains close to zero, 2115 * and thus never exceeds the high threshold for proactive compaction. 2116 */ 2117 static unsigned int fragmentation_score_zone_weighted(struct zone *zone) 2118 { 2119 unsigned long score; 2120 2121 score = zone->present_pages * fragmentation_score_zone(zone); 2122 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1); 2123 } 2124 2125 /* 2126 * The per-node proactive (background) compaction process is started by its 2127 * corresponding kcompactd thread when the node's fragmentation score 2128 * exceeds the high threshold. The compaction process remains active till 2129 * the node's score falls below the low threshold, or one of the back-off 2130 * conditions is met. 2131 */ 2132 static unsigned int fragmentation_score_node(pg_data_t *pgdat) 2133 { 2134 unsigned int score = 0; 2135 int zoneid; 2136 2137 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2138 struct zone *zone; 2139 2140 zone = &pgdat->node_zones[zoneid]; 2141 if (!populated_zone(zone)) 2142 continue; 2143 score += fragmentation_score_zone_weighted(zone); 2144 } 2145 2146 return score; 2147 } 2148 2149 static unsigned int fragmentation_score_wmark(bool low) 2150 { 2151 unsigned int wmark_low; 2152 2153 /* 2154 * Cap the low watermark to avoid excessive compaction 2155 * activity in case a user sets the proactiveness tunable 2156 * close to 100 (maximum). 2157 */ 2158 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U); 2159 return low ? wmark_low : min(wmark_low + 10, 100U); 2160 } 2161 2162 static bool should_proactive_compact_node(pg_data_t *pgdat) 2163 { 2164 int wmark_high; 2165 2166 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat)) 2167 return false; 2168 2169 wmark_high = fragmentation_score_wmark(false); 2170 return fragmentation_score_node(pgdat) > wmark_high; 2171 } 2172 2173 static enum compact_result __compact_finished(struct compact_control *cc) 2174 { 2175 unsigned int order; 2176 const int migratetype = cc->migratetype; 2177 int ret; 2178 2179 /* Compaction run completes if the migrate and free scanner meet */ 2180 if (compact_scanners_met(cc)) { 2181 /* Let the next compaction start anew. */ 2182 reset_cached_positions(cc->zone); 2183 2184 /* 2185 * Mark that the PG_migrate_skip information should be cleared 2186 * by kswapd when it goes to sleep. kcompactd does not set the 2187 * flag itself as the decision to be clear should be directly 2188 * based on an allocation request. 2189 */ 2190 if (cc->direct_compaction) 2191 cc->zone->compact_blockskip_flush = true; 2192 2193 if (cc->whole_zone) 2194 return COMPACT_COMPLETE; 2195 else 2196 return COMPACT_PARTIAL_SKIPPED; 2197 } 2198 2199 if (cc->proactive_compaction) { 2200 int score, wmark_low; 2201 pg_data_t *pgdat; 2202 2203 pgdat = cc->zone->zone_pgdat; 2204 if (kswapd_is_running(pgdat)) 2205 return COMPACT_PARTIAL_SKIPPED; 2206 2207 score = fragmentation_score_zone(cc->zone); 2208 wmark_low = fragmentation_score_wmark(true); 2209 2210 if (score > wmark_low) 2211 ret = COMPACT_CONTINUE; 2212 else 2213 ret = COMPACT_SUCCESS; 2214 2215 goto out; 2216 } 2217 2218 if (is_via_compact_memory(cc->order)) 2219 return COMPACT_CONTINUE; 2220 2221 /* 2222 * Always finish scanning a pageblock to reduce the possibility of 2223 * fallbacks in the future. This is particularly important when 2224 * migration source is unmovable/reclaimable but it's not worth 2225 * special casing. 2226 */ 2227 if (!pageblock_aligned(cc->migrate_pfn)) 2228 return COMPACT_CONTINUE; 2229 2230 /* Direct compactor: Is a suitable page free? */ 2231 ret = COMPACT_NO_SUITABLE_PAGE; 2232 for (order = cc->order; order < NR_PAGE_ORDERS; order++) { 2233 struct free_area *area = &cc->zone->free_area[order]; 2234 bool can_steal; 2235 2236 /* Job done if page is free of the right migratetype */ 2237 if (!free_area_empty(area, migratetype)) 2238 return COMPACT_SUCCESS; 2239 2240 #ifdef CONFIG_CMA 2241 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 2242 if (migratetype == MIGRATE_MOVABLE && 2243 !free_area_empty(area, MIGRATE_CMA)) 2244 return COMPACT_SUCCESS; 2245 #endif 2246 /* 2247 * Job done if allocation would steal freepages from 2248 * other migratetype buddy lists. 2249 */ 2250 if (find_suitable_fallback(area, order, migratetype, 2251 true, &can_steal) != -1) 2252 /* 2253 * Movable pages are OK in any pageblock. If we are 2254 * stealing for a non-movable allocation, make sure 2255 * we finish compacting the current pageblock first 2256 * (which is assured by the above migrate_pfn align 2257 * check) so it is as free as possible and we won't 2258 * have to steal another one soon. 2259 */ 2260 return COMPACT_SUCCESS; 2261 } 2262 2263 out: 2264 if (cc->contended || fatal_signal_pending(current)) 2265 ret = COMPACT_CONTENDED; 2266 2267 return ret; 2268 } 2269 2270 static enum compact_result compact_finished(struct compact_control *cc) 2271 { 2272 int ret; 2273 2274 ret = __compact_finished(cc); 2275 trace_mm_compaction_finished(cc->zone, cc->order, ret); 2276 if (ret == COMPACT_NO_SUITABLE_PAGE) 2277 ret = COMPACT_CONTINUE; 2278 2279 return ret; 2280 } 2281 2282 static bool __compaction_suitable(struct zone *zone, int order, 2283 int highest_zoneidx, 2284 unsigned long wmark_target) 2285 { 2286 unsigned long watermark; 2287 /* 2288 * Watermarks for order-0 must be met for compaction to be able to 2289 * isolate free pages for migration targets. This means that the 2290 * watermark and alloc_flags have to match, or be more pessimistic than 2291 * the check in __isolate_free_page(). We don't use the direct 2292 * compactor's alloc_flags, as they are not relevant for freepage 2293 * isolation. We however do use the direct compactor's highest_zoneidx 2294 * to skip over zones where lowmem reserves would prevent allocation 2295 * even if compaction succeeds. 2296 * For costly orders, we require low watermark instead of min for 2297 * compaction to proceed to increase its chances. 2298 * ALLOC_CMA is used, as pages in CMA pageblocks are considered 2299 * suitable migration targets 2300 */ 2301 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ? 2302 low_wmark_pages(zone) : min_wmark_pages(zone); 2303 watermark += compact_gap(order); 2304 return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx, 2305 ALLOC_CMA, wmark_target); 2306 } 2307 2308 /* 2309 * compaction_suitable: Is this suitable to run compaction on this zone now? 2310 */ 2311 bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx) 2312 { 2313 enum compact_result compact_result; 2314 bool suitable; 2315 2316 suitable = __compaction_suitable(zone, order, highest_zoneidx, 2317 zone_page_state(zone, NR_FREE_PAGES)); 2318 /* 2319 * fragmentation index determines if allocation failures are due to 2320 * low memory or external fragmentation 2321 * 2322 * index of -1000 would imply allocations might succeed depending on 2323 * watermarks, but we already failed the high-order watermark check 2324 * index towards 0 implies failure is due to lack of memory 2325 * index towards 1000 implies failure is due to fragmentation 2326 * 2327 * Only compact if a failure would be due to fragmentation. Also 2328 * ignore fragindex for non-costly orders where the alternative to 2329 * a successful reclaim/compaction is OOM. Fragindex and the 2330 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent 2331 * excessive compaction for costly orders, but it should not be at the 2332 * expense of system stability. 2333 */ 2334 if (suitable) { 2335 compact_result = COMPACT_CONTINUE; 2336 if (order > PAGE_ALLOC_COSTLY_ORDER) { 2337 int fragindex = fragmentation_index(zone, order); 2338 2339 if (fragindex >= 0 && 2340 fragindex <= sysctl_extfrag_threshold) { 2341 suitable = false; 2342 compact_result = COMPACT_NOT_SUITABLE_ZONE; 2343 } 2344 } 2345 } else { 2346 compact_result = COMPACT_SKIPPED; 2347 } 2348 2349 trace_mm_compaction_suitable(zone, order, compact_result); 2350 2351 return suitable; 2352 } 2353 2354 bool compaction_zonelist_suitable(struct alloc_context *ac, int order, 2355 int alloc_flags) 2356 { 2357 struct zone *zone; 2358 struct zoneref *z; 2359 2360 /* 2361 * Make sure at least one zone would pass __compaction_suitable if we continue 2362 * retrying the reclaim. 2363 */ 2364 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2365 ac->highest_zoneidx, ac->nodemask) { 2366 unsigned long available; 2367 2368 /* 2369 * Do not consider all the reclaimable memory because we do not 2370 * want to trash just for a single high order allocation which 2371 * is even not guaranteed to appear even if __compaction_suitable 2372 * is happy about the watermark check. 2373 */ 2374 available = zone_reclaimable_pages(zone) / order; 2375 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 2376 if (__compaction_suitable(zone, order, ac->highest_zoneidx, 2377 available)) 2378 return true; 2379 } 2380 2381 return false; 2382 } 2383 2384 /* 2385 * Should we do compaction for target allocation order. 2386 * Return COMPACT_SUCCESS if allocation for target order can be already 2387 * satisfied 2388 * Return COMPACT_SKIPPED if compaction for target order is likely to fail 2389 * Return COMPACT_CONTINUE if compaction for target order should be ran 2390 */ 2391 static enum compact_result 2392 compaction_suit_allocation_order(struct zone *zone, unsigned int order, 2393 int highest_zoneidx, unsigned int alloc_flags) 2394 { 2395 unsigned long watermark; 2396 2397 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 2398 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx, 2399 alloc_flags)) 2400 return COMPACT_SUCCESS; 2401 2402 if (!compaction_suitable(zone, order, highest_zoneidx)) 2403 return COMPACT_SKIPPED; 2404 2405 return COMPACT_CONTINUE; 2406 } 2407 2408 static enum compact_result 2409 compact_zone(struct compact_control *cc, struct capture_control *capc) 2410 { 2411 enum compact_result ret; 2412 unsigned long start_pfn = cc->zone->zone_start_pfn; 2413 unsigned long end_pfn = zone_end_pfn(cc->zone); 2414 unsigned long last_migrated_pfn; 2415 const bool sync = cc->mode != MIGRATE_ASYNC; 2416 bool update_cached; 2417 unsigned int nr_succeeded = 0; 2418 2419 /* 2420 * These counters track activities during zone compaction. Initialize 2421 * them before compacting a new zone. 2422 */ 2423 cc->total_migrate_scanned = 0; 2424 cc->total_free_scanned = 0; 2425 cc->nr_migratepages = 0; 2426 cc->nr_freepages = 0; 2427 INIT_LIST_HEAD(&cc->freepages); 2428 INIT_LIST_HEAD(&cc->migratepages); 2429 2430 cc->migratetype = gfp_migratetype(cc->gfp_mask); 2431 2432 if (!is_via_compact_memory(cc->order)) { 2433 ret = compaction_suit_allocation_order(cc->zone, cc->order, 2434 cc->highest_zoneidx, 2435 cc->alloc_flags); 2436 if (ret != COMPACT_CONTINUE) 2437 return ret; 2438 } 2439 2440 /* 2441 * Clear pageblock skip if there were failures recently and compaction 2442 * is about to be retried after being deferred. 2443 */ 2444 if (compaction_restarting(cc->zone, cc->order)) 2445 __reset_isolation_suitable(cc->zone); 2446 2447 /* 2448 * Setup to move all movable pages to the end of the zone. Used cached 2449 * information on where the scanners should start (unless we explicitly 2450 * want to compact the whole zone), but check that it is initialised 2451 * by ensuring the values are within zone boundaries. 2452 */ 2453 cc->fast_start_pfn = 0; 2454 if (cc->whole_zone) { 2455 cc->migrate_pfn = start_pfn; 2456 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2457 } else { 2458 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync]; 2459 cc->free_pfn = cc->zone->compact_cached_free_pfn; 2460 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 2461 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2462 cc->zone->compact_cached_free_pfn = cc->free_pfn; 2463 } 2464 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 2465 cc->migrate_pfn = start_pfn; 2466 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 2467 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 2468 } 2469 2470 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn) 2471 cc->whole_zone = true; 2472 } 2473 2474 last_migrated_pfn = 0; 2475 2476 /* 2477 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on 2478 * the basis that some migrations will fail in ASYNC mode. However, 2479 * if the cached PFNs match and pageblocks are skipped due to having 2480 * no isolation candidates, then the sync state does not matter. 2481 * Until a pageblock with isolation candidates is found, keep the 2482 * cached PFNs in sync to avoid revisiting the same blocks. 2483 */ 2484 update_cached = !sync && 2485 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1]; 2486 2487 trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync); 2488 2489 /* lru_add_drain_all could be expensive with involving other CPUs */ 2490 lru_add_drain(); 2491 2492 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) { 2493 int err; 2494 unsigned long iteration_start_pfn = cc->migrate_pfn; 2495 2496 /* 2497 * Avoid multiple rescans of the same pageblock which can 2498 * happen if a page cannot be isolated (dirty/writeback in 2499 * async mode) or if the migrated pages are being allocated 2500 * before the pageblock is cleared. The first rescan will 2501 * capture the entire pageblock for migration. If it fails, 2502 * it'll be marked skip and scanning will proceed as normal. 2503 */ 2504 cc->finish_pageblock = false; 2505 if (pageblock_start_pfn(last_migrated_pfn) == 2506 pageblock_start_pfn(iteration_start_pfn)) { 2507 cc->finish_pageblock = true; 2508 } 2509 2510 rescan: 2511 switch (isolate_migratepages(cc)) { 2512 case ISOLATE_ABORT: 2513 ret = COMPACT_CONTENDED; 2514 putback_movable_pages(&cc->migratepages); 2515 cc->nr_migratepages = 0; 2516 goto out; 2517 case ISOLATE_NONE: 2518 if (update_cached) { 2519 cc->zone->compact_cached_migrate_pfn[1] = 2520 cc->zone->compact_cached_migrate_pfn[0]; 2521 } 2522 2523 /* 2524 * We haven't isolated and migrated anything, but 2525 * there might still be unflushed migrations from 2526 * previous cc->order aligned block. 2527 */ 2528 goto check_drain; 2529 case ISOLATE_SUCCESS: 2530 update_cached = false; 2531 last_migrated_pfn = max(cc->zone->zone_start_pfn, 2532 pageblock_start_pfn(cc->migrate_pfn - 1)); 2533 } 2534 2535 err = migrate_pages(&cc->migratepages, compaction_alloc, 2536 compaction_free, (unsigned long)cc, cc->mode, 2537 MR_COMPACTION, &nr_succeeded); 2538 2539 trace_mm_compaction_migratepages(cc, nr_succeeded); 2540 2541 /* All pages were either migrated or will be released */ 2542 cc->nr_migratepages = 0; 2543 if (err) { 2544 putback_movable_pages(&cc->migratepages); 2545 /* 2546 * migrate_pages() may return -ENOMEM when scanners meet 2547 * and we want compact_finished() to detect it 2548 */ 2549 if (err == -ENOMEM && !compact_scanners_met(cc)) { 2550 ret = COMPACT_CONTENDED; 2551 goto out; 2552 } 2553 /* 2554 * If an ASYNC or SYNC_LIGHT fails to migrate a page 2555 * within the pageblock_order-aligned block and 2556 * fast_find_migrateblock may be used then scan the 2557 * remainder of the pageblock. This will mark the 2558 * pageblock "skip" to avoid rescanning in the near 2559 * future. This will isolate more pages than necessary 2560 * for the request but avoid loops due to 2561 * fast_find_migrateblock revisiting blocks that were 2562 * recently partially scanned. 2563 */ 2564 if (!pageblock_aligned(cc->migrate_pfn) && 2565 !cc->ignore_skip_hint && !cc->finish_pageblock && 2566 (cc->mode < MIGRATE_SYNC)) { 2567 cc->finish_pageblock = true; 2568 2569 /* 2570 * Draining pcplists does not help THP if 2571 * any page failed to migrate. Even after 2572 * drain, the pageblock will not be free. 2573 */ 2574 if (cc->order == COMPACTION_HPAGE_ORDER) 2575 last_migrated_pfn = 0; 2576 2577 goto rescan; 2578 } 2579 } 2580 2581 /* Stop if a page has been captured */ 2582 if (capc && capc->page) { 2583 ret = COMPACT_SUCCESS; 2584 break; 2585 } 2586 2587 check_drain: 2588 /* 2589 * Has the migration scanner moved away from the previous 2590 * cc->order aligned block where we migrated from? If yes, 2591 * flush the pages that were freed, so that they can merge and 2592 * compact_finished() can detect immediately if allocation 2593 * would succeed. 2594 */ 2595 if (cc->order > 0 && last_migrated_pfn) { 2596 unsigned long current_block_start = 2597 block_start_pfn(cc->migrate_pfn, cc->order); 2598 2599 if (last_migrated_pfn < current_block_start) { 2600 lru_add_drain_cpu_zone(cc->zone); 2601 /* No more flushing until we migrate again */ 2602 last_migrated_pfn = 0; 2603 } 2604 } 2605 } 2606 2607 out: 2608 /* 2609 * Release free pages and update where the free scanner should restart, 2610 * so we don't leave any returned pages behind in the next attempt. 2611 */ 2612 if (cc->nr_freepages > 0) { 2613 unsigned long free_pfn = release_freepages(&cc->freepages); 2614 2615 cc->nr_freepages = 0; 2616 VM_BUG_ON(free_pfn == 0); 2617 /* The cached pfn is always the first in a pageblock */ 2618 free_pfn = pageblock_start_pfn(free_pfn); 2619 /* 2620 * Only go back, not forward. The cached pfn might have been 2621 * already reset to zone end in compact_finished() 2622 */ 2623 if (free_pfn > cc->zone->compact_cached_free_pfn) 2624 cc->zone->compact_cached_free_pfn = free_pfn; 2625 } 2626 2627 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned); 2628 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned); 2629 2630 trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret); 2631 2632 VM_BUG_ON(!list_empty(&cc->freepages)); 2633 VM_BUG_ON(!list_empty(&cc->migratepages)); 2634 2635 return ret; 2636 } 2637 2638 static enum compact_result compact_zone_order(struct zone *zone, int order, 2639 gfp_t gfp_mask, enum compact_priority prio, 2640 unsigned int alloc_flags, int highest_zoneidx, 2641 struct page **capture) 2642 { 2643 enum compact_result ret; 2644 struct compact_control cc = { 2645 .order = order, 2646 .search_order = order, 2647 .gfp_mask = gfp_mask, 2648 .zone = zone, 2649 .mode = (prio == COMPACT_PRIO_ASYNC) ? 2650 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT, 2651 .alloc_flags = alloc_flags, 2652 .highest_zoneidx = highest_zoneidx, 2653 .direct_compaction = true, 2654 .whole_zone = (prio == MIN_COMPACT_PRIORITY), 2655 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY), 2656 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY) 2657 }; 2658 struct capture_control capc = { 2659 .cc = &cc, 2660 .page = NULL, 2661 }; 2662 2663 /* 2664 * Make sure the structs are really initialized before we expose the 2665 * capture control, in case we are interrupted and the interrupt handler 2666 * frees a page. 2667 */ 2668 barrier(); 2669 WRITE_ONCE(current->capture_control, &capc); 2670 2671 ret = compact_zone(&cc, &capc); 2672 2673 /* 2674 * Make sure we hide capture control first before we read the captured 2675 * page pointer, otherwise an interrupt could free and capture a page 2676 * and we would leak it. 2677 */ 2678 WRITE_ONCE(current->capture_control, NULL); 2679 *capture = READ_ONCE(capc.page); 2680 /* 2681 * Technically, it is also possible that compaction is skipped but 2682 * the page is still captured out of luck(IRQ came and freed the page). 2683 * Returning COMPACT_SUCCESS in such cases helps in properly accounting 2684 * the COMPACT[STALL|FAIL] when compaction is skipped. 2685 */ 2686 if (*capture) 2687 ret = COMPACT_SUCCESS; 2688 2689 return ret; 2690 } 2691 2692 /** 2693 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 2694 * @gfp_mask: The GFP mask of the current allocation 2695 * @order: The order of the current allocation 2696 * @alloc_flags: The allocation flags of the current allocation 2697 * @ac: The context of current allocation 2698 * @prio: Determines how hard direct compaction should try to succeed 2699 * @capture: Pointer to free page created by compaction will be stored here 2700 * 2701 * This is the main entry point for direct page compaction. 2702 */ 2703 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 2704 unsigned int alloc_flags, const struct alloc_context *ac, 2705 enum compact_priority prio, struct page **capture) 2706 { 2707 int may_perform_io = (__force int)(gfp_mask & __GFP_IO); 2708 struct zoneref *z; 2709 struct zone *zone; 2710 enum compact_result rc = COMPACT_SKIPPED; 2711 2712 /* 2713 * Check if the GFP flags allow compaction - GFP_NOIO is really 2714 * tricky context because the migration might require IO 2715 */ 2716 if (!may_perform_io) 2717 return COMPACT_SKIPPED; 2718 2719 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio); 2720 2721 /* Compact each zone in the list */ 2722 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2723 ac->highest_zoneidx, ac->nodemask) { 2724 enum compact_result status; 2725 2726 if (prio > MIN_COMPACT_PRIORITY 2727 && compaction_deferred(zone, order)) { 2728 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); 2729 continue; 2730 } 2731 2732 status = compact_zone_order(zone, order, gfp_mask, prio, 2733 alloc_flags, ac->highest_zoneidx, capture); 2734 rc = max(status, rc); 2735 2736 /* The allocation should succeed, stop compacting */ 2737 if (status == COMPACT_SUCCESS) { 2738 /* 2739 * We think the allocation will succeed in this zone, 2740 * but it is not certain, hence the false. The caller 2741 * will repeat this with true if allocation indeed 2742 * succeeds in this zone. 2743 */ 2744 compaction_defer_reset(zone, order, false); 2745 2746 break; 2747 } 2748 2749 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE || 2750 status == COMPACT_PARTIAL_SKIPPED)) 2751 /* 2752 * We think that allocation won't succeed in this zone 2753 * so we defer compaction there. If it ends up 2754 * succeeding after all, it will be reset. 2755 */ 2756 defer_compaction(zone, order); 2757 2758 /* 2759 * We might have stopped compacting due to need_resched() in 2760 * async compaction, or due to a fatal signal detected. In that 2761 * case do not try further zones 2762 */ 2763 if ((prio == COMPACT_PRIO_ASYNC && need_resched()) 2764 || fatal_signal_pending(current)) 2765 break; 2766 } 2767 2768 return rc; 2769 } 2770 2771 /* 2772 * Compact all zones within a node till each zone's fragmentation score 2773 * reaches within proactive compaction thresholds (as determined by the 2774 * proactiveness tunable). 2775 * 2776 * It is possible that the function returns before reaching score targets 2777 * due to various back-off conditions, such as, contention on per-node or 2778 * per-zone locks. 2779 */ 2780 static void proactive_compact_node(pg_data_t *pgdat) 2781 { 2782 int zoneid; 2783 struct zone *zone; 2784 struct compact_control cc = { 2785 .order = -1, 2786 .mode = MIGRATE_SYNC_LIGHT, 2787 .ignore_skip_hint = true, 2788 .whole_zone = true, 2789 .gfp_mask = GFP_KERNEL, 2790 .proactive_compaction = true, 2791 }; 2792 2793 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2794 zone = &pgdat->node_zones[zoneid]; 2795 if (!populated_zone(zone)) 2796 continue; 2797 2798 cc.zone = zone; 2799 2800 compact_zone(&cc, NULL); 2801 2802 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 2803 cc.total_migrate_scanned); 2804 count_compact_events(KCOMPACTD_FREE_SCANNED, 2805 cc.total_free_scanned); 2806 } 2807 } 2808 2809 /* Compact all zones within a node */ 2810 static void compact_node(int nid) 2811 { 2812 pg_data_t *pgdat = NODE_DATA(nid); 2813 int zoneid; 2814 struct zone *zone; 2815 struct compact_control cc = { 2816 .order = -1, 2817 .mode = MIGRATE_SYNC, 2818 .ignore_skip_hint = true, 2819 .whole_zone = true, 2820 .gfp_mask = GFP_KERNEL, 2821 }; 2822 2823 2824 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2825 2826 zone = &pgdat->node_zones[zoneid]; 2827 if (!populated_zone(zone)) 2828 continue; 2829 2830 cc.zone = zone; 2831 2832 compact_zone(&cc, NULL); 2833 } 2834 } 2835 2836 /* Compact all nodes in the system */ 2837 static void compact_nodes(void) 2838 { 2839 int nid; 2840 2841 /* Flush pending updates to the LRU lists */ 2842 lru_add_drain_all(); 2843 2844 for_each_online_node(nid) 2845 compact_node(nid); 2846 } 2847 2848 static int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write, 2849 void *buffer, size_t *length, loff_t *ppos) 2850 { 2851 int rc, nid; 2852 2853 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 2854 if (rc) 2855 return rc; 2856 2857 if (write && sysctl_compaction_proactiveness) { 2858 for_each_online_node(nid) { 2859 pg_data_t *pgdat = NODE_DATA(nid); 2860 2861 if (pgdat->proactive_compact_trigger) 2862 continue; 2863 2864 pgdat->proactive_compact_trigger = true; 2865 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1, 2866 pgdat->nr_zones - 1); 2867 wake_up_interruptible(&pgdat->kcompactd_wait); 2868 } 2869 } 2870 2871 return 0; 2872 } 2873 2874 /* 2875 * This is the entry point for compacting all nodes via 2876 * /proc/sys/vm/compact_memory 2877 */ 2878 static int sysctl_compaction_handler(struct ctl_table *table, int write, 2879 void *buffer, size_t *length, loff_t *ppos) 2880 { 2881 int ret; 2882 2883 ret = proc_dointvec(table, write, buffer, length, ppos); 2884 if (ret) 2885 return ret; 2886 2887 if (sysctl_compact_memory != 1) 2888 return -EINVAL; 2889 2890 if (write) 2891 compact_nodes(); 2892 2893 return 0; 2894 } 2895 2896 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 2897 static ssize_t compact_store(struct device *dev, 2898 struct device_attribute *attr, 2899 const char *buf, size_t count) 2900 { 2901 int nid = dev->id; 2902 2903 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 2904 /* Flush pending updates to the LRU lists */ 2905 lru_add_drain_all(); 2906 2907 compact_node(nid); 2908 } 2909 2910 return count; 2911 } 2912 static DEVICE_ATTR_WO(compact); 2913 2914 int compaction_register_node(struct node *node) 2915 { 2916 return device_create_file(&node->dev, &dev_attr_compact); 2917 } 2918 2919 void compaction_unregister_node(struct node *node) 2920 { 2921 device_remove_file(&node->dev, &dev_attr_compact); 2922 } 2923 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 2924 2925 static inline bool kcompactd_work_requested(pg_data_t *pgdat) 2926 { 2927 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() || 2928 pgdat->proactive_compact_trigger; 2929 } 2930 2931 static bool kcompactd_node_suitable(pg_data_t *pgdat) 2932 { 2933 int zoneid; 2934 struct zone *zone; 2935 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx; 2936 enum compact_result ret; 2937 2938 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) { 2939 zone = &pgdat->node_zones[zoneid]; 2940 2941 if (!populated_zone(zone)) 2942 continue; 2943 2944 ret = compaction_suit_allocation_order(zone, 2945 pgdat->kcompactd_max_order, 2946 highest_zoneidx, ALLOC_WMARK_MIN); 2947 if (ret == COMPACT_CONTINUE) 2948 return true; 2949 } 2950 2951 return false; 2952 } 2953 2954 static void kcompactd_do_work(pg_data_t *pgdat) 2955 { 2956 /* 2957 * With no special task, compact all zones so that a page of requested 2958 * order is allocatable. 2959 */ 2960 int zoneid; 2961 struct zone *zone; 2962 struct compact_control cc = { 2963 .order = pgdat->kcompactd_max_order, 2964 .search_order = pgdat->kcompactd_max_order, 2965 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx, 2966 .mode = MIGRATE_SYNC_LIGHT, 2967 .ignore_skip_hint = false, 2968 .gfp_mask = GFP_KERNEL, 2969 }; 2970 enum compact_result ret; 2971 2972 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 2973 cc.highest_zoneidx); 2974 count_compact_event(KCOMPACTD_WAKE); 2975 2976 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) { 2977 int status; 2978 2979 zone = &pgdat->node_zones[zoneid]; 2980 if (!populated_zone(zone)) 2981 continue; 2982 2983 if (compaction_deferred(zone, cc.order)) 2984 continue; 2985 2986 ret = compaction_suit_allocation_order(zone, 2987 cc.order, zoneid, ALLOC_WMARK_MIN); 2988 if (ret != COMPACT_CONTINUE) 2989 continue; 2990 2991 if (kthread_should_stop()) 2992 return; 2993 2994 cc.zone = zone; 2995 status = compact_zone(&cc, NULL); 2996 2997 if (status == COMPACT_SUCCESS) { 2998 compaction_defer_reset(zone, cc.order, false); 2999 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { 3000 /* 3001 * Buddy pages may become stranded on pcps that could 3002 * otherwise coalesce on the zone's free area for 3003 * order >= cc.order. This is ratelimited by the 3004 * upcoming deferral. 3005 */ 3006 drain_all_pages(zone); 3007 3008 /* 3009 * We use sync migration mode here, so we defer like 3010 * sync direct compaction does. 3011 */ 3012 defer_compaction(zone, cc.order); 3013 } 3014 3015 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 3016 cc.total_migrate_scanned); 3017 count_compact_events(KCOMPACTD_FREE_SCANNED, 3018 cc.total_free_scanned); 3019 } 3020 3021 /* 3022 * Regardless of success, we are done until woken up next. But remember 3023 * the requested order/highest_zoneidx in case it was higher/tighter 3024 * than our current ones 3025 */ 3026 if (pgdat->kcompactd_max_order <= cc.order) 3027 pgdat->kcompactd_max_order = 0; 3028 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx) 3029 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 3030 } 3031 3032 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx) 3033 { 3034 if (!order) 3035 return; 3036 3037 if (pgdat->kcompactd_max_order < order) 3038 pgdat->kcompactd_max_order = order; 3039 3040 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx) 3041 pgdat->kcompactd_highest_zoneidx = highest_zoneidx; 3042 3043 /* 3044 * Pairs with implicit barrier in wait_event_freezable() 3045 * such that wakeups are not missed. 3046 */ 3047 if (!wq_has_sleeper(&pgdat->kcompactd_wait)) 3048 return; 3049 3050 if (!kcompactd_node_suitable(pgdat)) 3051 return; 3052 3053 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 3054 highest_zoneidx); 3055 wake_up_interruptible(&pgdat->kcompactd_wait); 3056 } 3057 3058 /* 3059 * The background compaction daemon, started as a kernel thread 3060 * from the init process. 3061 */ 3062 static int kcompactd(void *p) 3063 { 3064 pg_data_t *pgdat = (pg_data_t *)p; 3065 struct task_struct *tsk = current; 3066 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC); 3067 long timeout = default_timeout; 3068 3069 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3070 3071 if (!cpumask_empty(cpumask)) 3072 set_cpus_allowed_ptr(tsk, cpumask); 3073 3074 set_freezable(); 3075 3076 pgdat->kcompactd_max_order = 0; 3077 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 3078 3079 while (!kthread_should_stop()) { 3080 unsigned long pflags; 3081 3082 /* 3083 * Avoid the unnecessary wakeup for proactive compaction 3084 * when it is disabled. 3085 */ 3086 if (!sysctl_compaction_proactiveness) 3087 timeout = MAX_SCHEDULE_TIMEOUT; 3088 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 3089 if (wait_event_freezable_timeout(pgdat->kcompactd_wait, 3090 kcompactd_work_requested(pgdat), timeout) && 3091 !pgdat->proactive_compact_trigger) { 3092 3093 psi_memstall_enter(&pflags); 3094 kcompactd_do_work(pgdat); 3095 psi_memstall_leave(&pflags); 3096 /* 3097 * Reset the timeout value. The defer timeout from 3098 * proactive compaction is lost here but that is fine 3099 * as the condition of the zone changing substantionally 3100 * then carrying on with the previous defer interval is 3101 * not useful. 3102 */ 3103 timeout = default_timeout; 3104 continue; 3105 } 3106 3107 /* 3108 * Start the proactive work with default timeout. Based 3109 * on the fragmentation score, this timeout is updated. 3110 */ 3111 timeout = default_timeout; 3112 if (should_proactive_compact_node(pgdat)) { 3113 unsigned int prev_score, score; 3114 3115 prev_score = fragmentation_score_node(pgdat); 3116 proactive_compact_node(pgdat); 3117 score = fragmentation_score_node(pgdat); 3118 /* 3119 * Defer proactive compaction if the fragmentation 3120 * score did not go down i.e. no progress made. 3121 */ 3122 if (unlikely(score >= prev_score)) 3123 timeout = 3124 default_timeout << COMPACT_MAX_DEFER_SHIFT; 3125 } 3126 if (unlikely(pgdat->proactive_compact_trigger)) 3127 pgdat->proactive_compact_trigger = false; 3128 } 3129 3130 return 0; 3131 } 3132 3133 /* 3134 * This kcompactd start function will be called by init and node-hot-add. 3135 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 3136 */ 3137 void __meminit kcompactd_run(int nid) 3138 { 3139 pg_data_t *pgdat = NODE_DATA(nid); 3140 3141 if (pgdat->kcompactd) 3142 return; 3143 3144 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); 3145 if (IS_ERR(pgdat->kcompactd)) { 3146 pr_err("Failed to start kcompactd on node %d\n", nid); 3147 pgdat->kcompactd = NULL; 3148 } 3149 } 3150 3151 /* 3152 * Called by memory hotplug when all memory in a node is offlined. Caller must 3153 * be holding mem_hotplug_begin/done(). 3154 */ 3155 void __meminit kcompactd_stop(int nid) 3156 { 3157 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 3158 3159 if (kcompactd) { 3160 kthread_stop(kcompactd); 3161 NODE_DATA(nid)->kcompactd = NULL; 3162 } 3163 } 3164 3165 /* 3166 * It's optimal to keep kcompactd on the same CPUs as their memory, but 3167 * not required for correctness. So if the last cpu in a node goes 3168 * away, we get changed to run anywhere: as the first one comes back, 3169 * restore their cpu bindings. 3170 */ 3171 static int kcompactd_cpu_online(unsigned int cpu) 3172 { 3173 int nid; 3174 3175 for_each_node_state(nid, N_MEMORY) { 3176 pg_data_t *pgdat = NODE_DATA(nid); 3177 const struct cpumask *mask; 3178 3179 mask = cpumask_of_node(pgdat->node_id); 3180 3181 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3182 /* One of our CPUs online: restore mask */ 3183 if (pgdat->kcompactd) 3184 set_cpus_allowed_ptr(pgdat->kcompactd, mask); 3185 } 3186 return 0; 3187 } 3188 3189 static int proc_dointvec_minmax_warn_RT_change(struct ctl_table *table, 3190 int write, void *buffer, size_t *lenp, loff_t *ppos) 3191 { 3192 int ret, old; 3193 3194 if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write) 3195 return proc_dointvec_minmax(table, write, buffer, lenp, ppos); 3196 3197 old = *(int *)table->data; 3198 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 3199 if (ret) 3200 return ret; 3201 if (old != *(int *)table->data) 3202 pr_warn_once("sysctl attribute %s changed by %s[%d]\n", 3203 table->procname, current->comm, 3204 task_pid_nr(current)); 3205 return ret; 3206 } 3207 3208 static struct ctl_table vm_compaction[] = { 3209 { 3210 .procname = "compact_memory", 3211 .data = &sysctl_compact_memory, 3212 .maxlen = sizeof(int), 3213 .mode = 0200, 3214 .proc_handler = sysctl_compaction_handler, 3215 }, 3216 { 3217 .procname = "compaction_proactiveness", 3218 .data = &sysctl_compaction_proactiveness, 3219 .maxlen = sizeof(sysctl_compaction_proactiveness), 3220 .mode = 0644, 3221 .proc_handler = compaction_proactiveness_sysctl_handler, 3222 .extra1 = SYSCTL_ZERO, 3223 .extra2 = SYSCTL_ONE_HUNDRED, 3224 }, 3225 { 3226 .procname = "extfrag_threshold", 3227 .data = &sysctl_extfrag_threshold, 3228 .maxlen = sizeof(int), 3229 .mode = 0644, 3230 .proc_handler = proc_dointvec_minmax, 3231 .extra1 = SYSCTL_ZERO, 3232 .extra2 = SYSCTL_ONE_THOUSAND, 3233 }, 3234 { 3235 .procname = "compact_unevictable_allowed", 3236 .data = &sysctl_compact_unevictable_allowed, 3237 .maxlen = sizeof(int), 3238 .mode = 0644, 3239 .proc_handler = proc_dointvec_minmax_warn_RT_change, 3240 .extra1 = SYSCTL_ZERO, 3241 .extra2 = SYSCTL_ONE, 3242 }, 3243 { } 3244 }; 3245 3246 static int __init kcompactd_init(void) 3247 { 3248 int nid; 3249 int ret; 3250 3251 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 3252 "mm/compaction:online", 3253 kcompactd_cpu_online, NULL); 3254 if (ret < 0) { 3255 pr_err("kcompactd: failed to register hotplug callbacks.\n"); 3256 return ret; 3257 } 3258 3259 for_each_node_state(nid, N_MEMORY) 3260 kcompactd_run(nid); 3261 register_sysctl_init("vm", vm_compaction); 3262 return 0; 3263 } 3264 subsys_initcall(kcompactd_init) 3265 3266 #endif /* CONFIG_COMPACTION */ 3267