1 /* 2 * linux/mm/compaction.c 3 * 4 * Memory compaction for the reduction of external fragmentation. Note that 5 * this heavily depends upon page migration to do all the real heavy 6 * lifting 7 * 8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 9 */ 10 #include <linux/cpu.h> 11 #include <linux/swap.h> 12 #include <linux/migrate.h> 13 #include <linux/compaction.h> 14 #include <linux/mm_inline.h> 15 #include <linux/backing-dev.h> 16 #include <linux/sysctl.h> 17 #include <linux/sysfs.h> 18 #include <linux/balloon_compaction.h> 19 #include <linux/page-isolation.h> 20 #include <linux/kasan.h> 21 #include <linux/kthread.h> 22 #include <linux/freezer.h> 23 #include "internal.h" 24 25 #ifdef CONFIG_COMPACTION 26 static inline void count_compact_event(enum vm_event_item item) 27 { 28 count_vm_event(item); 29 } 30 31 static inline void count_compact_events(enum vm_event_item item, long delta) 32 { 33 count_vm_events(item, delta); 34 } 35 #else 36 #define count_compact_event(item) do { } while (0) 37 #define count_compact_events(item, delta) do { } while (0) 38 #endif 39 40 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 41 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/compaction.h> 44 45 static unsigned long release_freepages(struct list_head *freelist) 46 { 47 struct page *page, *next; 48 unsigned long high_pfn = 0; 49 50 list_for_each_entry_safe(page, next, freelist, lru) { 51 unsigned long pfn = page_to_pfn(page); 52 list_del(&page->lru); 53 __free_page(page); 54 if (pfn > high_pfn) 55 high_pfn = pfn; 56 } 57 58 return high_pfn; 59 } 60 61 static void map_pages(struct list_head *list) 62 { 63 struct page *page; 64 65 list_for_each_entry(page, list, lru) { 66 arch_alloc_page(page, 0); 67 kernel_map_pages(page, 1, 1); 68 kasan_alloc_pages(page, 0); 69 } 70 } 71 72 static inline bool migrate_async_suitable(int migratetype) 73 { 74 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE; 75 } 76 77 #ifdef CONFIG_COMPACTION 78 79 /* Do not skip compaction more than 64 times */ 80 #define COMPACT_MAX_DEFER_SHIFT 6 81 82 /* 83 * Compaction is deferred when compaction fails to result in a page 84 * allocation success. 1 << compact_defer_limit compactions are skipped up 85 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 86 */ 87 void defer_compaction(struct zone *zone, int order) 88 { 89 zone->compact_considered = 0; 90 zone->compact_defer_shift++; 91 92 if (order < zone->compact_order_failed) 93 zone->compact_order_failed = order; 94 95 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 96 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 97 98 trace_mm_compaction_defer_compaction(zone, order); 99 } 100 101 /* Returns true if compaction should be skipped this time */ 102 bool compaction_deferred(struct zone *zone, int order) 103 { 104 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 105 106 if (order < zone->compact_order_failed) 107 return false; 108 109 /* Avoid possible overflow */ 110 if (++zone->compact_considered > defer_limit) 111 zone->compact_considered = defer_limit; 112 113 if (zone->compact_considered >= defer_limit) 114 return false; 115 116 trace_mm_compaction_deferred(zone, order); 117 118 return true; 119 } 120 121 /* 122 * Update defer tracking counters after successful compaction of given order, 123 * which means an allocation either succeeded (alloc_success == true) or is 124 * expected to succeed. 125 */ 126 void compaction_defer_reset(struct zone *zone, int order, 127 bool alloc_success) 128 { 129 if (alloc_success) { 130 zone->compact_considered = 0; 131 zone->compact_defer_shift = 0; 132 } 133 if (order >= zone->compact_order_failed) 134 zone->compact_order_failed = order + 1; 135 136 trace_mm_compaction_defer_reset(zone, order); 137 } 138 139 /* Returns true if restarting compaction after many failures */ 140 bool compaction_restarting(struct zone *zone, int order) 141 { 142 if (order < zone->compact_order_failed) 143 return false; 144 145 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 146 zone->compact_considered >= 1UL << zone->compact_defer_shift; 147 } 148 149 /* Returns true if the pageblock should be scanned for pages to isolate. */ 150 static inline bool isolation_suitable(struct compact_control *cc, 151 struct page *page) 152 { 153 if (cc->ignore_skip_hint) 154 return true; 155 156 return !get_pageblock_skip(page); 157 } 158 159 static void reset_cached_positions(struct zone *zone) 160 { 161 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 162 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 163 zone->compact_cached_free_pfn = 164 round_down(zone_end_pfn(zone) - 1, pageblock_nr_pages); 165 } 166 167 /* 168 * This function is called to clear all cached information on pageblocks that 169 * should be skipped for page isolation when the migrate and free page scanner 170 * meet. 171 */ 172 static void __reset_isolation_suitable(struct zone *zone) 173 { 174 unsigned long start_pfn = zone->zone_start_pfn; 175 unsigned long end_pfn = zone_end_pfn(zone); 176 unsigned long pfn; 177 178 zone->compact_blockskip_flush = false; 179 180 /* Walk the zone and mark every pageblock as suitable for isolation */ 181 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 182 struct page *page; 183 184 cond_resched(); 185 186 if (!pfn_valid(pfn)) 187 continue; 188 189 page = pfn_to_page(pfn); 190 if (zone != page_zone(page)) 191 continue; 192 193 clear_pageblock_skip(page); 194 } 195 196 reset_cached_positions(zone); 197 } 198 199 void reset_isolation_suitable(pg_data_t *pgdat) 200 { 201 int zoneid; 202 203 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 204 struct zone *zone = &pgdat->node_zones[zoneid]; 205 if (!populated_zone(zone)) 206 continue; 207 208 /* Only flush if a full compaction finished recently */ 209 if (zone->compact_blockskip_flush) 210 __reset_isolation_suitable(zone); 211 } 212 } 213 214 /* 215 * If no pages were isolated then mark this pageblock to be skipped in the 216 * future. The information is later cleared by __reset_isolation_suitable(). 217 */ 218 static void update_pageblock_skip(struct compact_control *cc, 219 struct page *page, unsigned long nr_isolated, 220 bool migrate_scanner) 221 { 222 struct zone *zone = cc->zone; 223 unsigned long pfn; 224 225 if (cc->ignore_skip_hint) 226 return; 227 228 if (!page) 229 return; 230 231 if (nr_isolated) 232 return; 233 234 set_pageblock_skip(page); 235 236 pfn = page_to_pfn(page); 237 238 /* Update where async and sync compaction should restart */ 239 if (migrate_scanner) { 240 if (pfn > zone->compact_cached_migrate_pfn[0]) 241 zone->compact_cached_migrate_pfn[0] = pfn; 242 if (cc->mode != MIGRATE_ASYNC && 243 pfn > zone->compact_cached_migrate_pfn[1]) 244 zone->compact_cached_migrate_pfn[1] = pfn; 245 } else { 246 if (pfn < zone->compact_cached_free_pfn) 247 zone->compact_cached_free_pfn = pfn; 248 } 249 } 250 #else 251 static inline bool isolation_suitable(struct compact_control *cc, 252 struct page *page) 253 { 254 return true; 255 } 256 257 static void update_pageblock_skip(struct compact_control *cc, 258 struct page *page, unsigned long nr_isolated, 259 bool migrate_scanner) 260 { 261 } 262 #endif /* CONFIG_COMPACTION */ 263 264 /* 265 * Compaction requires the taking of some coarse locks that are potentially 266 * very heavily contended. For async compaction, back out if the lock cannot 267 * be taken immediately. For sync compaction, spin on the lock if needed. 268 * 269 * Returns true if the lock is held 270 * Returns false if the lock is not held and compaction should abort 271 */ 272 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags, 273 struct compact_control *cc) 274 { 275 if (cc->mode == MIGRATE_ASYNC) { 276 if (!spin_trylock_irqsave(lock, *flags)) { 277 cc->contended = COMPACT_CONTENDED_LOCK; 278 return false; 279 } 280 } else { 281 spin_lock_irqsave(lock, *flags); 282 } 283 284 return true; 285 } 286 287 /* 288 * Compaction requires the taking of some coarse locks that are potentially 289 * very heavily contended. The lock should be periodically unlocked to avoid 290 * having disabled IRQs for a long time, even when there is nobody waiting on 291 * the lock. It might also be that allowing the IRQs will result in 292 * need_resched() becoming true. If scheduling is needed, async compaction 293 * aborts. Sync compaction schedules. 294 * Either compaction type will also abort if a fatal signal is pending. 295 * In either case if the lock was locked, it is dropped and not regained. 296 * 297 * Returns true if compaction should abort due to fatal signal pending, or 298 * async compaction due to need_resched() 299 * Returns false when compaction can continue (sync compaction might have 300 * scheduled) 301 */ 302 static bool compact_unlock_should_abort(spinlock_t *lock, 303 unsigned long flags, bool *locked, struct compact_control *cc) 304 { 305 if (*locked) { 306 spin_unlock_irqrestore(lock, flags); 307 *locked = false; 308 } 309 310 if (fatal_signal_pending(current)) { 311 cc->contended = COMPACT_CONTENDED_SCHED; 312 return true; 313 } 314 315 if (need_resched()) { 316 if (cc->mode == MIGRATE_ASYNC) { 317 cc->contended = COMPACT_CONTENDED_SCHED; 318 return true; 319 } 320 cond_resched(); 321 } 322 323 return false; 324 } 325 326 /* 327 * Aside from avoiding lock contention, compaction also periodically checks 328 * need_resched() and either schedules in sync compaction or aborts async 329 * compaction. This is similar to what compact_unlock_should_abort() does, but 330 * is used where no lock is concerned. 331 * 332 * Returns false when no scheduling was needed, or sync compaction scheduled. 333 * Returns true when async compaction should abort. 334 */ 335 static inline bool compact_should_abort(struct compact_control *cc) 336 { 337 /* async compaction aborts if contended */ 338 if (need_resched()) { 339 if (cc->mode == MIGRATE_ASYNC) { 340 cc->contended = COMPACT_CONTENDED_SCHED; 341 return true; 342 } 343 344 cond_resched(); 345 } 346 347 return false; 348 } 349 350 /* 351 * Isolate free pages onto a private freelist. If @strict is true, will abort 352 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 353 * (even though it may still end up isolating some pages). 354 */ 355 static unsigned long isolate_freepages_block(struct compact_control *cc, 356 unsigned long *start_pfn, 357 unsigned long end_pfn, 358 struct list_head *freelist, 359 bool strict) 360 { 361 int nr_scanned = 0, total_isolated = 0; 362 struct page *cursor, *valid_page = NULL; 363 unsigned long flags = 0; 364 bool locked = false; 365 unsigned long blockpfn = *start_pfn; 366 367 cursor = pfn_to_page(blockpfn); 368 369 /* Isolate free pages. */ 370 for (; blockpfn < end_pfn; blockpfn++, cursor++) { 371 int isolated, i; 372 struct page *page = cursor; 373 374 /* 375 * Periodically drop the lock (if held) regardless of its 376 * contention, to give chance to IRQs. Abort if fatal signal 377 * pending or async compaction detects need_resched() 378 */ 379 if (!(blockpfn % SWAP_CLUSTER_MAX) 380 && compact_unlock_should_abort(&cc->zone->lock, flags, 381 &locked, cc)) 382 break; 383 384 nr_scanned++; 385 if (!pfn_valid_within(blockpfn)) 386 goto isolate_fail; 387 388 if (!valid_page) 389 valid_page = page; 390 391 /* 392 * For compound pages such as THP and hugetlbfs, we can save 393 * potentially a lot of iterations if we skip them at once. 394 * The check is racy, but we can consider only valid values 395 * and the only danger is skipping too much. 396 */ 397 if (PageCompound(page)) { 398 unsigned int comp_order = compound_order(page); 399 400 if (likely(comp_order < MAX_ORDER)) { 401 blockpfn += (1UL << comp_order) - 1; 402 cursor += (1UL << comp_order) - 1; 403 } 404 405 goto isolate_fail; 406 } 407 408 if (!PageBuddy(page)) 409 goto isolate_fail; 410 411 /* 412 * If we already hold the lock, we can skip some rechecking. 413 * Note that if we hold the lock now, checked_pageblock was 414 * already set in some previous iteration (or strict is true), 415 * so it is correct to skip the suitable migration target 416 * recheck as well. 417 */ 418 if (!locked) { 419 /* 420 * The zone lock must be held to isolate freepages. 421 * Unfortunately this is a very coarse lock and can be 422 * heavily contended if there are parallel allocations 423 * or parallel compactions. For async compaction do not 424 * spin on the lock and we acquire the lock as late as 425 * possible. 426 */ 427 locked = compact_trylock_irqsave(&cc->zone->lock, 428 &flags, cc); 429 if (!locked) 430 break; 431 432 /* Recheck this is a buddy page under lock */ 433 if (!PageBuddy(page)) 434 goto isolate_fail; 435 } 436 437 /* Found a free page, break it into order-0 pages */ 438 isolated = split_free_page(page); 439 total_isolated += isolated; 440 for (i = 0; i < isolated; i++) { 441 list_add(&page->lru, freelist); 442 page++; 443 } 444 445 /* If a page was split, advance to the end of it */ 446 if (isolated) { 447 cc->nr_freepages += isolated; 448 if (!strict && 449 cc->nr_migratepages <= cc->nr_freepages) { 450 blockpfn += isolated; 451 break; 452 } 453 454 blockpfn += isolated - 1; 455 cursor += isolated - 1; 456 continue; 457 } 458 459 isolate_fail: 460 if (strict) 461 break; 462 else 463 continue; 464 465 } 466 467 /* 468 * There is a tiny chance that we have read bogus compound_order(), 469 * so be careful to not go outside of the pageblock. 470 */ 471 if (unlikely(blockpfn > end_pfn)) 472 blockpfn = end_pfn; 473 474 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 475 nr_scanned, total_isolated); 476 477 /* Record how far we have got within the block */ 478 *start_pfn = blockpfn; 479 480 /* 481 * If strict isolation is requested by CMA then check that all the 482 * pages requested were isolated. If there were any failures, 0 is 483 * returned and CMA will fail. 484 */ 485 if (strict && blockpfn < end_pfn) 486 total_isolated = 0; 487 488 if (locked) 489 spin_unlock_irqrestore(&cc->zone->lock, flags); 490 491 /* Update the pageblock-skip if the whole pageblock was scanned */ 492 if (blockpfn == end_pfn) 493 update_pageblock_skip(cc, valid_page, total_isolated, false); 494 495 count_compact_events(COMPACTFREE_SCANNED, nr_scanned); 496 if (total_isolated) 497 count_compact_events(COMPACTISOLATED, total_isolated); 498 return total_isolated; 499 } 500 501 /** 502 * isolate_freepages_range() - isolate free pages. 503 * @start_pfn: The first PFN to start isolating. 504 * @end_pfn: The one-past-last PFN. 505 * 506 * Non-free pages, invalid PFNs, or zone boundaries within the 507 * [start_pfn, end_pfn) range are considered errors, cause function to 508 * undo its actions and return zero. 509 * 510 * Otherwise, function returns one-past-the-last PFN of isolated page 511 * (which may be greater then end_pfn if end fell in a middle of 512 * a free page). 513 */ 514 unsigned long 515 isolate_freepages_range(struct compact_control *cc, 516 unsigned long start_pfn, unsigned long end_pfn) 517 { 518 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 519 LIST_HEAD(freelist); 520 521 pfn = start_pfn; 522 block_start_pfn = pfn & ~(pageblock_nr_pages - 1); 523 if (block_start_pfn < cc->zone->zone_start_pfn) 524 block_start_pfn = cc->zone->zone_start_pfn; 525 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages); 526 527 for (; pfn < end_pfn; pfn += isolated, 528 block_start_pfn = block_end_pfn, 529 block_end_pfn += pageblock_nr_pages) { 530 /* Protect pfn from changing by isolate_freepages_block */ 531 unsigned long isolate_start_pfn = pfn; 532 533 block_end_pfn = min(block_end_pfn, end_pfn); 534 535 /* 536 * pfn could pass the block_end_pfn if isolated freepage 537 * is more than pageblock order. In this case, we adjust 538 * scanning range to right one. 539 */ 540 if (pfn >= block_end_pfn) { 541 block_start_pfn = pfn & ~(pageblock_nr_pages - 1); 542 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages); 543 block_end_pfn = min(block_end_pfn, end_pfn); 544 } 545 546 if (!pageblock_pfn_to_page(block_start_pfn, 547 block_end_pfn, cc->zone)) 548 break; 549 550 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 551 block_end_pfn, &freelist, true); 552 553 /* 554 * In strict mode, isolate_freepages_block() returns 0 if 555 * there are any holes in the block (ie. invalid PFNs or 556 * non-free pages). 557 */ 558 if (!isolated) 559 break; 560 561 /* 562 * If we managed to isolate pages, it is always (1 << n) * 563 * pageblock_nr_pages for some non-negative n. (Max order 564 * page may span two pageblocks). 565 */ 566 } 567 568 /* split_free_page does not map the pages */ 569 map_pages(&freelist); 570 571 if (pfn < end_pfn) { 572 /* Loop terminated early, cleanup. */ 573 release_freepages(&freelist); 574 return 0; 575 } 576 577 /* We don't use freelists for anything. */ 578 return pfn; 579 } 580 581 /* Update the number of anon and file isolated pages in the zone */ 582 static void acct_isolated(struct zone *zone, struct compact_control *cc) 583 { 584 struct page *page; 585 unsigned int count[2] = { 0, }; 586 587 if (list_empty(&cc->migratepages)) 588 return; 589 590 list_for_each_entry(page, &cc->migratepages, lru) 591 count[!!page_is_file_cache(page)]++; 592 593 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]); 594 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]); 595 } 596 597 /* Similar to reclaim, but different enough that they don't share logic */ 598 static bool too_many_isolated(struct zone *zone) 599 { 600 unsigned long active, inactive, isolated; 601 602 inactive = zone_page_state(zone, NR_INACTIVE_FILE) + 603 zone_page_state(zone, NR_INACTIVE_ANON); 604 active = zone_page_state(zone, NR_ACTIVE_FILE) + 605 zone_page_state(zone, NR_ACTIVE_ANON); 606 isolated = zone_page_state(zone, NR_ISOLATED_FILE) + 607 zone_page_state(zone, NR_ISOLATED_ANON); 608 609 return isolated > (inactive + active) / 2; 610 } 611 612 /** 613 * isolate_migratepages_block() - isolate all migrate-able pages within 614 * a single pageblock 615 * @cc: Compaction control structure. 616 * @low_pfn: The first PFN to isolate 617 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 618 * @isolate_mode: Isolation mode to be used. 619 * 620 * Isolate all pages that can be migrated from the range specified by 621 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 622 * Returns zero if there is a fatal signal pending, otherwise PFN of the 623 * first page that was not scanned (which may be both less, equal to or more 624 * than end_pfn). 625 * 626 * The pages are isolated on cc->migratepages list (not required to be empty), 627 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field 628 * is neither read nor updated. 629 */ 630 static unsigned long 631 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 632 unsigned long end_pfn, isolate_mode_t isolate_mode) 633 { 634 struct zone *zone = cc->zone; 635 unsigned long nr_scanned = 0, nr_isolated = 0; 636 struct list_head *migratelist = &cc->migratepages; 637 struct lruvec *lruvec; 638 unsigned long flags = 0; 639 bool locked = false; 640 struct page *page = NULL, *valid_page = NULL; 641 unsigned long start_pfn = low_pfn; 642 643 /* 644 * Ensure that there are not too many pages isolated from the LRU 645 * list by either parallel reclaimers or compaction. If there are, 646 * delay for some time until fewer pages are isolated 647 */ 648 while (unlikely(too_many_isolated(zone))) { 649 /* async migration should just abort */ 650 if (cc->mode == MIGRATE_ASYNC) 651 return 0; 652 653 congestion_wait(BLK_RW_ASYNC, HZ/10); 654 655 if (fatal_signal_pending(current)) 656 return 0; 657 } 658 659 if (compact_should_abort(cc)) 660 return 0; 661 662 /* Time to isolate some pages for migration */ 663 for (; low_pfn < end_pfn; low_pfn++) { 664 bool is_lru; 665 666 /* 667 * Periodically drop the lock (if held) regardless of its 668 * contention, to give chance to IRQs. Abort async compaction 669 * if contended. 670 */ 671 if (!(low_pfn % SWAP_CLUSTER_MAX) 672 && compact_unlock_should_abort(&zone->lru_lock, flags, 673 &locked, cc)) 674 break; 675 676 if (!pfn_valid_within(low_pfn)) 677 continue; 678 nr_scanned++; 679 680 page = pfn_to_page(low_pfn); 681 682 if (!valid_page) 683 valid_page = page; 684 685 /* 686 * Skip if free. We read page order here without zone lock 687 * which is generally unsafe, but the race window is small and 688 * the worst thing that can happen is that we skip some 689 * potential isolation targets. 690 */ 691 if (PageBuddy(page)) { 692 unsigned long freepage_order = page_order_unsafe(page); 693 694 /* 695 * Without lock, we cannot be sure that what we got is 696 * a valid page order. Consider only values in the 697 * valid order range to prevent low_pfn overflow. 698 */ 699 if (freepage_order > 0 && freepage_order < MAX_ORDER) 700 low_pfn += (1UL << freepage_order) - 1; 701 continue; 702 } 703 704 /* 705 * Check may be lockless but that's ok as we recheck later. 706 * It's possible to migrate LRU pages and balloon pages 707 * Skip any other type of page 708 */ 709 is_lru = PageLRU(page); 710 if (!is_lru) { 711 if (unlikely(balloon_page_movable(page))) { 712 if (balloon_page_isolate(page)) { 713 /* Successfully isolated */ 714 goto isolate_success; 715 } 716 } 717 } 718 719 /* 720 * Regardless of being on LRU, compound pages such as THP and 721 * hugetlbfs are not to be compacted. We can potentially save 722 * a lot of iterations if we skip them at once. The check is 723 * racy, but we can consider only valid values and the only 724 * danger is skipping too much. 725 */ 726 if (PageCompound(page)) { 727 unsigned int comp_order = compound_order(page); 728 729 if (likely(comp_order < MAX_ORDER)) 730 low_pfn += (1UL << comp_order) - 1; 731 732 continue; 733 } 734 735 if (!is_lru) 736 continue; 737 738 /* 739 * Migration will fail if an anonymous page is pinned in memory, 740 * so avoid taking lru_lock and isolating it unnecessarily in an 741 * admittedly racy check. 742 */ 743 if (!page_mapping(page) && 744 page_count(page) > page_mapcount(page)) 745 continue; 746 747 /* If we already hold the lock, we can skip some rechecking */ 748 if (!locked) { 749 locked = compact_trylock_irqsave(&zone->lru_lock, 750 &flags, cc); 751 if (!locked) 752 break; 753 754 /* Recheck PageLRU and PageCompound under lock */ 755 if (!PageLRU(page)) 756 continue; 757 758 /* 759 * Page become compound since the non-locked check, 760 * and it's on LRU. It can only be a THP so the order 761 * is safe to read and it's 0 for tail pages. 762 */ 763 if (unlikely(PageCompound(page))) { 764 low_pfn += (1UL << compound_order(page)) - 1; 765 continue; 766 } 767 } 768 769 lruvec = mem_cgroup_page_lruvec(page, zone); 770 771 /* Try isolate the page */ 772 if (__isolate_lru_page(page, isolate_mode) != 0) 773 continue; 774 775 VM_BUG_ON_PAGE(PageCompound(page), page); 776 777 /* Successfully isolated */ 778 del_page_from_lru_list(page, lruvec, page_lru(page)); 779 780 isolate_success: 781 list_add(&page->lru, migratelist); 782 cc->nr_migratepages++; 783 nr_isolated++; 784 785 /* Avoid isolating too much */ 786 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) { 787 ++low_pfn; 788 break; 789 } 790 } 791 792 /* 793 * The PageBuddy() check could have potentially brought us outside 794 * the range to be scanned. 795 */ 796 if (unlikely(low_pfn > end_pfn)) 797 low_pfn = end_pfn; 798 799 if (locked) 800 spin_unlock_irqrestore(&zone->lru_lock, flags); 801 802 /* 803 * Update the pageblock-skip information and cached scanner pfn, 804 * if the whole pageblock was scanned without isolating any page. 805 */ 806 if (low_pfn == end_pfn) 807 update_pageblock_skip(cc, valid_page, nr_isolated, true); 808 809 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 810 nr_scanned, nr_isolated); 811 812 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned); 813 if (nr_isolated) 814 count_compact_events(COMPACTISOLATED, nr_isolated); 815 816 return low_pfn; 817 } 818 819 /** 820 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 821 * @cc: Compaction control structure. 822 * @start_pfn: The first PFN to start isolating. 823 * @end_pfn: The one-past-last PFN. 824 * 825 * Returns zero if isolation fails fatally due to e.g. pending signal. 826 * Otherwise, function returns one-past-the-last PFN of isolated page 827 * (which may be greater than end_pfn if end fell in a middle of a THP page). 828 */ 829 unsigned long 830 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 831 unsigned long end_pfn) 832 { 833 unsigned long pfn, block_start_pfn, block_end_pfn; 834 835 /* Scan block by block. First and last block may be incomplete */ 836 pfn = start_pfn; 837 block_start_pfn = pfn & ~(pageblock_nr_pages - 1); 838 if (block_start_pfn < cc->zone->zone_start_pfn) 839 block_start_pfn = cc->zone->zone_start_pfn; 840 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages); 841 842 for (; pfn < end_pfn; pfn = block_end_pfn, 843 block_start_pfn = block_end_pfn, 844 block_end_pfn += pageblock_nr_pages) { 845 846 block_end_pfn = min(block_end_pfn, end_pfn); 847 848 if (!pageblock_pfn_to_page(block_start_pfn, 849 block_end_pfn, cc->zone)) 850 continue; 851 852 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn, 853 ISOLATE_UNEVICTABLE); 854 855 if (!pfn) 856 break; 857 858 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) 859 break; 860 } 861 acct_isolated(cc->zone, cc); 862 863 return pfn; 864 } 865 866 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 867 #ifdef CONFIG_COMPACTION 868 869 /* Returns true if the page is within a block suitable for migration to */ 870 static bool suitable_migration_target(struct page *page) 871 { 872 /* If the page is a large free page, then disallow migration */ 873 if (PageBuddy(page)) { 874 /* 875 * We are checking page_order without zone->lock taken. But 876 * the only small danger is that we skip a potentially suitable 877 * pageblock, so it's not worth to check order for valid range. 878 */ 879 if (page_order_unsafe(page) >= pageblock_order) 880 return false; 881 } 882 883 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 884 if (migrate_async_suitable(get_pageblock_migratetype(page))) 885 return true; 886 887 /* Otherwise skip the block */ 888 return false; 889 } 890 891 /* 892 * Test whether the free scanner has reached the same or lower pageblock than 893 * the migration scanner, and compaction should thus terminate. 894 */ 895 static inline bool compact_scanners_met(struct compact_control *cc) 896 { 897 return (cc->free_pfn >> pageblock_order) 898 <= (cc->migrate_pfn >> pageblock_order); 899 } 900 901 /* 902 * Based on information in the current compact_control, find blocks 903 * suitable for isolating free pages from and then isolate them. 904 */ 905 static void isolate_freepages(struct compact_control *cc) 906 { 907 struct zone *zone = cc->zone; 908 struct page *page; 909 unsigned long block_start_pfn; /* start of current pageblock */ 910 unsigned long isolate_start_pfn; /* exact pfn we start at */ 911 unsigned long block_end_pfn; /* end of current pageblock */ 912 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 913 struct list_head *freelist = &cc->freepages; 914 915 /* 916 * Initialise the free scanner. The starting point is where we last 917 * successfully isolated from, zone-cached value, or the end of the 918 * zone when isolating for the first time. For looping we also need 919 * this pfn aligned down to the pageblock boundary, because we do 920 * block_start_pfn -= pageblock_nr_pages in the for loop. 921 * For ending point, take care when isolating in last pageblock of a 922 * a zone which ends in the middle of a pageblock. 923 * The low boundary is the end of the pageblock the migration scanner 924 * is using. 925 */ 926 isolate_start_pfn = cc->free_pfn; 927 block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1); 928 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 929 zone_end_pfn(zone)); 930 low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages); 931 932 /* 933 * Isolate free pages until enough are available to migrate the 934 * pages on cc->migratepages. We stop searching if the migrate 935 * and free page scanners meet or enough free pages are isolated. 936 */ 937 for (; block_start_pfn >= low_pfn; 938 block_end_pfn = block_start_pfn, 939 block_start_pfn -= pageblock_nr_pages, 940 isolate_start_pfn = block_start_pfn) { 941 942 /* 943 * This can iterate a massively long zone without finding any 944 * suitable migration targets, so periodically check if we need 945 * to schedule, or even abort async compaction. 946 */ 947 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)) 948 && compact_should_abort(cc)) 949 break; 950 951 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 952 zone); 953 if (!page) 954 continue; 955 956 /* Check the block is suitable for migration */ 957 if (!suitable_migration_target(page)) 958 continue; 959 960 /* If isolation recently failed, do not retry */ 961 if (!isolation_suitable(cc, page)) 962 continue; 963 964 /* Found a block suitable for isolating free pages from. */ 965 isolate_freepages_block(cc, &isolate_start_pfn, 966 block_end_pfn, freelist, false); 967 968 /* 969 * If we isolated enough freepages, or aborted due to async 970 * compaction being contended, terminate the loop. 971 * Remember where the free scanner should restart next time, 972 * which is where isolate_freepages_block() left off. 973 * But if it scanned the whole pageblock, isolate_start_pfn 974 * now points at block_end_pfn, which is the start of the next 975 * pageblock. 976 * In that case we will however want to restart at the start 977 * of the previous pageblock. 978 */ 979 if ((cc->nr_freepages >= cc->nr_migratepages) 980 || cc->contended) { 981 if (isolate_start_pfn >= block_end_pfn) 982 isolate_start_pfn = 983 block_start_pfn - pageblock_nr_pages; 984 break; 985 } else { 986 /* 987 * isolate_freepages_block() should not terminate 988 * prematurely unless contended, or isolated enough 989 */ 990 VM_BUG_ON(isolate_start_pfn < block_end_pfn); 991 } 992 } 993 994 /* split_free_page does not map the pages */ 995 map_pages(freelist); 996 997 /* 998 * Record where the free scanner will restart next time. Either we 999 * broke from the loop and set isolate_start_pfn based on the last 1000 * call to isolate_freepages_block(), or we met the migration scanner 1001 * and the loop terminated due to isolate_start_pfn < low_pfn 1002 */ 1003 cc->free_pfn = isolate_start_pfn; 1004 } 1005 1006 /* 1007 * This is a migrate-callback that "allocates" freepages by taking pages 1008 * from the isolated freelists in the block we are migrating to. 1009 */ 1010 static struct page *compaction_alloc(struct page *migratepage, 1011 unsigned long data, 1012 int **result) 1013 { 1014 struct compact_control *cc = (struct compact_control *)data; 1015 struct page *freepage; 1016 1017 /* 1018 * Isolate free pages if necessary, and if we are not aborting due to 1019 * contention. 1020 */ 1021 if (list_empty(&cc->freepages)) { 1022 if (!cc->contended) 1023 isolate_freepages(cc); 1024 1025 if (list_empty(&cc->freepages)) 1026 return NULL; 1027 } 1028 1029 freepage = list_entry(cc->freepages.next, struct page, lru); 1030 list_del(&freepage->lru); 1031 cc->nr_freepages--; 1032 1033 return freepage; 1034 } 1035 1036 /* 1037 * This is a migrate-callback that "frees" freepages back to the isolated 1038 * freelist. All pages on the freelist are from the same zone, so there is no 1039 * special handling needed for NUMA. 1040 */ 1041 static void compaction_free(struct page *page, unsigned long data) 1042 { 1043 struct compact_control *cc = (struct compact_control *)data; 1044 1045 list_add(&page->lru, &cc->freepages); 1046 cc->nr_freepages++; 1047 } 1048 1049 /* possible outcome of isolate_migratepages */ 1050 typedef enum { 1051 ISOLATE_ABORT, /* Abort compaction now */ 1052 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1053 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1054 } isolate_migrate_t; 1055 1056 /* 1057 * Allow userspace to control policy on scanning the unevictable LRU for 1058 * compactable pages. 1059 */ 1060 int sysctl_compact_unevictable_allowed __read_mostly = 1; 1061 1062 /* 1063 * Isolate all pages that can be migrated from the first suitable block, 1064 * starting at the block pointed to by the migrate scanner pfn within 1065 * compact_control. 1066 */ 1067 static isolate_migrate_t isolate_migratepages(struct zone *zone, 1068 struct compact_control *cc) 1069 { 1070 unsigned long block_start_pfn; 1071 unsigned long block_end_pfn; 1072 unsigned long low_pfn; 1073 unsigned long isolate_start_pfn; 1074 struct page *page; 1075 const isolate_mode_t isolate_mode = 1076 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 1077 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0); 1078 1079 /* 1080 * Start at where we last stopped, or beginning of the zone as 1081 * initialized by compact_zone() 1082 */ 1083 low_pfn = cc->migrate_pfn; 1084 block_start_pfn = cc->migrate_pfn & ~(pageblock_nr_pages - 1); 1085 if (block_start_pfn < zone->zone_start_pfn) 1086 block_start_pfn = zone->zone_start_pfn; 1087 1088 /* Only scan within a pageblock boundary */ 1089 block_end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages); 1090 1091 /* 1092 * Iterate over whole pageblocks until we find the first suitable. 1093 * Do not cross the free scanner. 1094 */ 1095 for (; block_end_pfn <= cc->free_pfn; 1096 low_pfn = block_end_pfn, 1097 block_start_pfn = block_end_pfn, 1098 block_end_pfn += pageblock_nr_pages) { 1099 1100 /* 1101 * This can potentially iterate a massively long zone with 1102 * many pageblocks unsuitable, so periodically check if we 1103 * need to schedule, or even abort async compaction. 1104 */ 1105 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)) 1106 && compact_should_abort(cc)) 1107 break; 1108 1109 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1110 zone); 1111 if (!page) 1112 continue; 1113 1114 /* If isolation recently failed, do not retry */ 1115 if (!isolation_suitable(cc, page)) 1116 continue; 1117 1118 /* 1119 * For async compaction, also only scan in MOVABLE blocks. 1120 * Async compaction is optimistic to see if the minimum amount 1121 * of work satisfies the allocation. 1122 */ 1123 if (cc->mode == MIGRATE_ASYNC && 1124 !migrate_async_suitable(get_pageblock_migratetype(page))) 1125 continue; 1126 1127 /* Perform the isolation */ 1128 isolate_start_pfn = low_pfn; 1129 low_pfn = isolate_migratepages_block(cc, low_pfn, 1130 block_end_pfn, isolate_mode); 1131 1132 if (!low_pfn || cc->contended) { 1133 acct_isolated(zone, cc); 1134 return ISOLATE_ABORT; 1135 } 1136 1137 /* 1138 * Record where we could have freed pages by migration and not 1139 * yet flushed them to buddy allocator. 1140 * - this is the lowest page that could have been isolated and 1141 * then freed by migration. 1142 */ 1143 if (cc->nr_migratepages && !cc->last_migrated_pfn) 1144 cc->last_migrated_pfn = isolate_start_pfn; 1145 1146 /* 1147 * Either we isolated something and proceed with migration. Or 1148 * we failed and compact_zone should decide if we should 1149 * continue or not. 1150 */ 1151 break; 1152 } 1153 1154 acct_isolated(zone, cc); 1155 /* Record where migration scanner will be restarted. */ 1156 cc->migrate_pfn = low_pfn; 1157 1158 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 1159 } 1160 1161 /* 1162 * order == -1 is expected when compacting via 1163 * /proc/sys/vm/compact_memory 1164 */ 1165 static inline bool is_via_compact_memory(int order) 1166 { 1167 return order == -1; 1168 } 1169 1170 static int __compact_finished(struct zone *zone, struct compact_control *cc, 1171 const int migratetype) 1172 { 1173 unsigned int order; 1174 unsigned long watermark; 1175 1176 if (cc->contended || fatal_signal_pending(current)) 1177 return COMPACT_CONTENDED; 1178 1179 /* Compaction run completes if the migrate and free scanner meet */ 1180 if (compact_scanners_met(cc)) { 1181 /* Let the next compaction start anew. */ 1182 reset_cached_positions(zone); 1183 1184 /* 1185 * Mark that the PG_migrate_skip information should be cleared 1186 * by kswapd when it goes to sleep. kcompactd does not set the 1187 * flag itself as the decision to be clear should be directly 1188 * based on an allocation request. 1189 */ 1190 if (cc->direct_compaction) 1191 zone->compact_blockskip_flush = true; 1192 1193 return COMPACT_COMPLETE; 1194 } 1195 1196 if (is_via_compact_memory(cc->order)) 1197 return COMPACT_CONTINUE; 1198 1199 /* Compaction run is not finished if the watermark is not met */ 1200 watermark = low_wmark_pages(zone); 1201 1202 if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx, 1203 cc->alloc_flags)) 1204 return COMPACT_CONTINUE; 1205 1206 /* Direct compactor: Is a suitable page free? */ 1207 for (order = cc->order; order < MAX_ORDER; order++) { 1208 struct free_area *area = &zone->free_area[order]; 1209 bool can_steal; 1210 1211 /* Job done if page is free of the right migratetype */ 1212 if (!list_empty(&area->free_list[migratetype])) 1213 return COMPACT_PARTIAL; 1214 1215 #ifdef CONFIG_CMA 1216 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 1217 if (migratetype == MIGRATE_MOVABLE && 1218 !list_empty(&area->free_list[MIGRATE_CMA])) 1219 return COMPACT_PARTIAL; 1220 #endif 1221 /* 1222 * Job done if allocation would steal freepages from 1223 * other migratetype buddy lists. 1224 */ 1225 if (find_suitable_fallback(area, order, migratetype, 1226 true, &can_steal) != -1) 1227 return COMPACT_PARTIAL; 1228 } 1229 1230 return COMPACT_NO_SUITABLE_PAGE; 1231 } 1232 1233 static int compact_finished(struct zone *zone, struct compact_control *cc, 1234 const int migratetype) 1235 { 1236 int ret; 1237 1238 ret = __compact_finished(zone, cc, migratetype); 1239 trace_mm_compaction_finished(zone, cc->order, ret); 1240 if (ret == COMPACT_NO_SUITABLE_PAGE) 1241 ret = COMPACT_CONTINUE; 1242 1243 return ret; 1244 } 1245 1246 /* 1247 * compaction_suitable: Is this suitable to run compaction on this zone now? 1248 * Returns 1249 * COMPACT_SKIPPED - If there are too few free pages for compaction 1250 * COMPACT_PARTIAL - If the allocation would succeed without compaction 1251 * COMPACT_CONTINUE - If compaction should run now 1252 */ 1253 static unsigned long __compaction_suitable(struct zone *zone, int order, 1254 int alloc_flags, int classzone_idx) 1255 { 1256 int fragindex; 1257 unsigned long watermark; 1258 1259 if (is_via_compact_memory(order)) 1260 return COMPACT_CONTINUE; 1261 1262 watermark = low_wmark_pages(zone); 1263 /* 1264 * If watermarks for high-order allocation are already met, there 1265 * should be no need for compaction at all. 1266 */ 1267 if (zone_watermark_ok(zone, order, watermark, classzone_idx, 1268 alloc_flags)) 1269 return COMPACT_PARTIAL; 1270 1271 /* 1272 * Watermarks for order-0 must be met for compaction. Note the 2UL. 1273 * This is because during migration, copies of pages need to be 1274 * allocated and for a short time, the footprint is higher 1275 */ 1276 watermark += (2UL << order); 1277 if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags)) 1278 return COMPACT_SKIPPED; 1279 1280 /* 1281 * fragmentation index determines if allocation failures are due to 1282 * low memory or external fragmentation 1283 * 1284 * index of -1000 would imply allocations might succeed depending on 1285 * watermarks, but we already failed the high-order watermark check 1286 * index towards 0 implies failure is due to lack of memory 1287 * index towards 1000 implies failure is due to fragmentation 1288 * 1289 * Only compact if a failure would be due to fragmentation. 1290 */ 1291 fragindex = fragmentation_index(zone, order); 1292 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 1293 return COMPACT_NOT_SUITABLE_ZONE; 1294 1295 return COMPACT_CONTINUE; 1296 } 1297 1298 unsigned long compaction_suitable(struct zone *zone, int order, 1299 int alloc_flags, int classzone_idx) 1300 { 1301 unsigned long ret; 1302 1303 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx); 1304 trace_mm_compaction_suitable(zone, order, ret); 1305 if (ret == COMPACT_NOT_SUITABLE_ZONE) 1306 ret = COMPACT_SKIPPED; 1307 1308 return ret; 1309 } 1310 1311 static int compact_zone(struct zone *zone, struct compact_control *cc) 1312 { 1313 int ret; 1314 unsigned long start_pfn = zone->zone_start_pfn; 1315 unsigned long end_pfn = zone_end_pfn(zone); 1316 const int migratetype = gfpflags_to_migratetype(cc->gfp_mask); 1317 const bool sync = cc->mode != MIGRATE_ASYNC; 1318 1319 ret = compaction_suitable(zone, cc->order, cc->alloc_flags, 1320 cc->classzone_idx); 1321 switch (ret) { 1322 case COMPACT_PARTIAL: 1323 case COMPACT_SKIPPED: 1324 /* Compaction is likely to fail */ 1325 return ret; 1326 case COMPACT_CONTINUE: 1327 /* Fall through to compaction */ 1328 ; 1329 } 1330 1331 /* 1332 * Clear pageblock skip if there were failures recently and compaction 1333 * is about to be retried after being deferred. 1334 */ 1335 if (compaction_restarting(zone, cc->order)) 1336 __reset_isolation_suitable(zone); 1337 1338 /* 1339 * Setup to move all movable pages to the end of the zone. Used cached 1340 * information on where the scanners should start but check that it 1341 * is initialised by ensuring the values are within zone boundaries. 1342 */ 1343 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync]; 1344 cc->free_pfn = zone->compact_cached_free_pfn; 1345 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 1346 cc->free_pfn = round_down(end_pfn - 1, pageblock_nr_pages); 1347 zone->compact_cached_free_pfn = cc->free_pfn; 1348 } 1349 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 1350 cc->migrate_pfn = start_pfn; 1351 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 1352 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 1353 } 1354 cc->last_migrated_pfn = 0; 1355 1356 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, 1357 cc->free_pfn, end_pfn, sync); 1358 1359 migrate_prep_local(); 1360 1361 while ((ret = compact_finished(zone, cc, migratetype)) == 1362 COMPACT_CONTINUE) { 1363 int err; 1364 1365 switch (isolate_migratepages(zone, cc)) { 1366 case ISOLATE_ABORT: 1367 ret = COMPACT_CONTENDED; 1368 putback_movable_pages(&cc->migratepages); 1369 cc->nr_migratepages = 0; 1370 goto out; 1371 case ISOLATE_NONE: 1372 /* 1373 * We haven't isolated and migrated anything, but 1374 * there might still be unflushed migrations from 1375 * previous cc->order aligned block. 1376 */ 1377 goto check_drain; 1378 case ISOLATE_SUCCESS: 1379 ; 1380 } 1381 1382 err = migrate_pages(&cc->migratepages, compaction_alloc, 1383 compaction_free, (unsigned long)cc, cc->mode, 1384 MR_COMPACTION); 1385 1386 trace_mm_compaction_migratepages(cc->nr_migratepages, err, 1387 &cc->migratepages); 1388 1389 /* All pages were either migrated or will be released */ 1390 cc->nr_migratepages = 0; 1391 if (err) { 1392 putback_movable_pages(&cc->migratepages); 1393 /* 1394 * migrate_pages() may return -ENOMEM when scanners meet 1395 * and we want compact_finished() to detect it 1396 */ 1397 if (err == -ENOMEM && !compact_scanners_met(cc)) { 1398 ret = COMPACT_CONTENDED; 1399 goto out; 1400 } 1401 } 1402 1403 check_drain: 1404 /* 1405 * Has the migration scanner moved away from the previous 1406 * cc->order aligned block where we migrated from? If yes, 1407 * flush the pages that were freed, so that they can merge and 1408 * compact_finished() can detect immediately if allocation 1409 * would succeed. 1410 */ 1411 if (cc->order > 0 && cc->last_migrated_pfn) { 1412 int cpu; 1413 unsigned long current_block_start = 1414 cc->migrate_pfn & ~((1UL << cc->order) - 1); 1415 1416 if (cc->last_migrated_pfn < current_block_start) { 1417 cpu = get_cpu(); 1418 lru_add_drain_cpu(cpu); 1419 drain_local_pages(zone); 1420 put_cpu(); 1421 /* No more flushing until we migrate again */ 1422 cc->last_migrated_pfn = 0; 1423 } 1424 } 1425 1426 } 1427 1428 out: 1429 /* 1430 * Release free pages and update where the free scanner should restart, 1431 * so we don't leave any returned pages behind in the next attempt. 1432 */ 1433 if (cc->nr_freepages > 0) { 1434 unsigned long free_pfn = release_freepages(&cc->freepages); 1435 1436 cc->nr_freepages = 0; 1437 VM_BUG_ON(free_pfn == 0); 1438 /* The cached pfn is always the first in a pageblock */ 1439 free_pfn &= ~(pageblock_nr_pages-1); 1440 /* 1441 * Only go back, not forward. The cached pfn might have been 1442 * already reset to zone end in compact_finished() 1443 */ 1444 if (free_pfn > zone->compact_cached_free_pfn) 1445 zone->compact_cached_free_pfn = free_pfn; 1446 } 1447 1448 trace_mm_compaction_end(start_pfn, cc->migrate_pfn, 1449 cc->free_pfn, end_pfn, sync, ret); 1450 1451 if (ret == COMPACT_CONTENDED) 1452 ret = COMPACT_PARTIAL; 1453 1454 return ret; 1455 } 1456 1457 static unsigned long compact_zone_order(struct zone *zone, int order, 1458 gfp_t gfp_mask, enum migrate_mode mode, int *contended, 1459 int alloc_flags, int classzone_idx) 1460 { 1461 unsigned long ret; 1462 struct compact_control cc = { 1463 .nr_freepages = 0, 1464 .nr_migratepages = 0, 1465 .order = order, 1466 .gfp_mask = gfp_mask, 1467 .zone = zone, 1468 .mode = mode, 1469 .alloc_flags = alloc_flags, 1470 .classzone_idx = classzone_idx, 1471 .direct_compaction = true, 1472 }; 1473 INIT_LIST_HEAD(&cc.freepages); 1474 INIT_LIST_HEAD(&cc.migratepages); 1475 1476 ret = compact_zone(zone, &cc); 1477 1478 VM_BUG_ON(!list_empty(&cc.freepages)); 1479 VM_BUG_ON(!list_empty(&cc.migratepages)); 1480 1481 *contended = cc.contended; 1482 return ret; 1483 } 1484 1485 int sysctl_extfrag_threshold = 500; 1486 1487 /** 1488 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 1489 * @gfp_mask: The GFP mask of the current allocation 1490 * @order: The order of the current allocation 1491 * @alloc_flags: The allocation flags of the current allocation 1492 * @ac: The context of current allocation 1493 * @mode: The migration mode for async, sync light, or sync migration 1494 * @contended: Return value that determines if compaction was aborted due to 1495 * need_resched() or lock contention 1496 * 1497 * This is the main entry point for direct page compaction. 1498 */ 1499 unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 1500 int alloc_flags, const struct alloc_context *ac, 1501 enum migrate_mode mode, int *contended) 1502 { 1503 int may_enter_fs = gfp_mask & __GFP_FS; 1504 int may_perform_io = gfp_mask & __GFP_IO; 1505 struct zoneref *z; 1506 struct zone *zone; 1507 int rc = COMPACT_DEFERRED; 1508 int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */ 1509 1510 *contended = COMPACT_CONTENDED_NONE; 1511 1512 /* Check if the GFP flags allow compaction */ 1513 if (!order || !may_enter_fs || !may_perform_io) 1514 return COMPACT_SKIPPED; 1515 1516 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode); 1517 1518 /* Compact each zone in the list */ 1519 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 1520 ac->nodemask) { 1521 int status; 1522 int zone_contended; 1523 1524 if (compaction_deferred(zone, order)) 1525 continue; 1526 1527 status = compact_zone_order(zone, order, gfp_mask, mode, 1528 &zone_contended, alloc_flags, 1529 ac->classzone_idx); 1530 rc = max(status, rc); 1531 /* 1532 * It takes at least one zone that wasn't lock contended 1533 * to clear all_zones_contended. 1534 */ 1535 all_zones_contended &= zone_contended; 1536 1537 /* If a normal allocation would succeed, stop compacting */ 1538 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 1539 ac->classzone_idx, alloc_flags)) { 1540 /* 1541 * We think the allocation will succeed in this zone, 1542 * but it is not certain, hence the false. The caller 1543 * will repeat this with true if allocation indeed 1544 * succeeds in this zone. 1545 */ 1546 compaction_defer_reset(zone, order, false); 1547 /* 1548 * It is possible that async compaction aborted due to 1549 * need_resched() and the watermarks were ok thanks to 1550 * somebody else freeing memory. The allocation can 1551 * however still fail so we better signal the 1552 * need_resched() contention anyway (this will not 1553 * prevent the allocation attempt). 1554 */ 1555 if (zone_contended == COMPACT_CONTENDED_SCHED) 1556 *contended = COMPACT_CONTENDED_SCHED; 1557 1558 goto break_loop; 1559 } 1560 1561 if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) { 1562 /* 1563 * We think that allocation won't succeed in this zone 1564 * so we defer compaction there. If it ends up 1565 * succeeding after all, it will be reset. 1566 */ 1567 defer_compaction(zone, order); 1568 } 1569 1570 /* 1571 * We might have stopped compacting due to need_resched() in 1572 * async compaction, or due to a fatal signal detected. In that 1573 * case do not try further zones and signal need_resched() 1574 * contention. 1575 */ 1576 if ((zone_contended == COMPACT_CONTENDED_SCHED) 1577 || fatal_signal_pending(current)) { 1578 *contended = COMPACT_CONTENDED_SCHED; 1579 goto break_loop; 1580 } 1581 1582 continue; 1583 break_loop: 1584 /* 1585 * We might not have tried all the zones, so be conservative 1586 * and assume they are not all lock contended. 1587 */ 1588 all_zones_contended = 0; 1589 break; 1590 } 1591 1592 /* 1593 * If at least one zone wasn't deferred or skipped, we report if all 1594 * zones that were tried were lock contended. 1595 */ 1596 if (rc > COMPACT_SKIPPED && all_zones_contended) 1597 *contended = COMPACT_CONTENDED_LOCK; 1598 1599 return rc; 1600 } 1601 1602 1603 /* Compact all zones within a node */ 1604 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc) 1605 { 1606 int zoneid; 1607 struct zone *zone; 1608 1609 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 1610 1611 zone = &pgdat->node_zones[zoneid]; 1612 if (!populated_zone(zone)) 1613 continue; 1614 1615 cc->nr_freepages = 0; 1616 cc->nr_migratepages = 0; 1617 cc->zone = zone; 1618 INIT_LIST_HEAD(&cc->freepages); 1619 INIT_LIST_HEAD(&cc->migratepages); 1620 1621 /* 1622 * When called via /proc/sys/vm/compact_memory 1623 * this makes sure we compact the whole zone regardless of 1624 * cached scanner positions. 1625 */ 1626 if (is_via_compact_memory(cc->order)) 1627 __reset_isolation_suitable(zone); 1628 1629 if (is_via_compact_memory(cc->order) || 1630 !compaction_deferred(zone, cc->order)) 1631 compact_zone(zone, cc); 1632 1633 VM_BUG_ON(!list_empty(&cc->freepages)); 1634 VM_BUG_ON(!list_empty(&cc->migratepages)); 1635 1636 if (is_via_compact_memory(cc->order)) 1637 continue; 1638 1639 if (zone_watermark_ok(zone, cc->order, 1640 low_wmark_pages(zone), 0, 0)) 1641 compaction_defer_reset(zone, cc->order, false); 1642 } 1643 } 1644 1645 void compact_pgdat(pg_data_t *pgdat, int order) 1646 { 1647 struct compact_control cc = { 1648 .order = order, 1649 .mode = MIGRATE_ASYNC, 1650 }; 1651 1652 if (!order) 1653 return; 1654 1655 __compact_pgdat(pgdat, &cc); 1656 } 1657 1658 static void compact_node(int nid) 1659 { 1660 struct compact_control cc = { 1661 .order = -1, 1662 .mode = MIGRATE_SYNC, 1663 .ignore_skip_hint = true, 1664 }; 1665 1666 __compact_pgdat(NODE_DATA(nid), &cc); 1667 } 1668 1669 /* Compact all nodes in the system */ 1670 static void compact_nodes(void) 1671 { 1672 int nid; 1673 1674 /* Flush pending updates to the LRU lists */ 1675 lru_add_drain_all(); 1676 1677 for_each_online_node(nid) 1678 compact_node(nid); 1679 } 1680 1681 /* The written value is actually unused, all memory is compacted */ 1682 int sysctl_compact_memory; 1683 1684 /* 1685 * This is the entry point for compacting all nodes via 1686 * /proc/sys/vm/compact_memory 1687 */ 1688 int sysctl_compaction_handler(struct ctl_table *table, int write, 1689 void __user *buffer, size_t *length, loff_t *ppos) 1690 { 1691 if (write) 1692 compact_nodes(); 1693 1694 return 0; 1695 } 1696 1697 int sysctl_extfrag_handler(struct ctl_table *table, int write, 1698 void __user *buffer, size_t *length, loff_t *ppos) 1699 { 1700 proc_dointvec_minmax(table, write, buffer, length, ppos); 1701 1702 return 0; 1703 } 1704 1705 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 1706 static ssize_t sysfs_compact_node(struct device *dev, 1707 struct device_attribute *attr, 1708 const char *buf, size_t count) 1709 { 1710 int nid = dev->id; 1711 1712 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 1713 /* Flush pending updates to the LRU lists */ 1714 lru_add_drain_all(); 1715 1716 compact_node(nid); 1717 } 1718 1719 return count; 1720 } 1721 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node); 1722 1723 int compaction_register_node(struct node *node) 1724 { 1725 return device_create_file(&node->dev, &dev_attr_compact); 1726 } 1727 1728 void compaction_unregister_node(struct node *node) 1729 { 1730 return device_remove_file(&node->dev, &dev_attr_compact); 1731 } 1732 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 1733 1734 static inline bool kcompactd_work_requested(pg_data_t *pgdat) 1735 { 1736 return pgdat->kcompactd_max_order > 0 || kthread_should_stop(); 1737 } 1738 1739 static bool kcompactd_node_suitable(pg_data_t *pgdat) 1740 { 1741 int zoneid; 1742 struct zone *zone; 1743 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx; 1744 1745 for (zoneid = 0; zoneid < classzone_idx; zoneid++) { 1746 zone = &pgdat->node_zones[zoneid]; 1747 1748 if (!populated_zone(zone)) 1749 continue; 1750 1751 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0, 1752 classzone_idx) == COMPACT_CONTINUE) 1753 return true; 1754 } 1755 1756 return false; 1757 } 1758 1759 static void kcompactd_do_work(pg_data_t *pgdat) 1760 { 1761 /* 1762 * With no special task, compact all zones so that a page of requested 1763 * order is allocatable. 1764 */ 1765 int zoneid; 1766 struct zone *zone; 1767 struct compact_control cc = { 1768 .order = pgdat->kcompactd_max_order, 1769 .classzone_idx = pgdat->kcompactd_classzone_idx, 1770 .mode = MIGRATE_SYNC_LIGHT, 1771 .ignore_skip_hint = true, 1772 1773 }; 1774 bool success = false; 1775 1776 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 1777 cc.classzone_idx); 1778 count_vm_event(KCOMPACTD_WAKE); 1779 1780 for (zoneid = 0; zoneid < cc.classzone_idx; zoneid++) { 1781 int status; 1782 1783 zone = &pgdat->node_zones[zoneid]; 1784 if (!populated_zone(zone)) 1785 continue; 1786 1787 if (compaction_deferred(zone, cc.order)) 1788 continue; 1789 1790 if (compaction_suitable(zone, cc.order, 0, zoneid) != 1791 COMPACT_CONTINUE) 1792 continue; 1793 1794 cc.nr_freepages = 0; 1795 cc.nr_migratepages = 0; 1796 cc.zone = zone; 1797 INIT_LIST_HEAD(&cc.freepages); 1798 INIT_LIST_HEAD(&cc.migratepages); 1799 1800 if (kthread_should_stop()) 1801 return; 1802 status = compact_zone(zone, &cc); 1803 1804 if (zone_watermark_ok(zone, cc.order, low_wmark_pages(zone), 1805 cc.classzone_idx, 0)) { 1806 success = true; 1807 compaction_defer_reset(zone, cc.order, false); 1808 } else if (status == COMPACT_COMPLETE) { 1809 /* 1810 * We use sync migration mode here, so we defer like 1811 * sync direct compaction does. 1812 */ 1813 defer_compaction(zone, cc.order); 1814 } 1815 1816 VM_BUG_ON(!list_empty(&cc.freepages)); 1817 VM_BUG_ON(!list_empty(&cc.migratepages)); 1818 } 1819 1820 /* 1821 * Regardless of success, we are done until woken up next. But remember 1822 * the requested order/classzone_idx in case it was higher/tighter than 1823 * our current ones 1824 */ 1825 if (pgdat->kcompactd_max_order <= cc.order) 1826 pgdat->kcompactd_max_order = 0; 1827 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx) 1828 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1; 1829 } 1830 1831 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx) 1832 { 1833 if (!order) 1834 return; 1835 1836 if (pgdat->kcompactd_max_order < order) 1837 pgdat->kcompactd_max_order = order; 1838 1839 if (pgdat->kcompactd_classzone_idx > classzone_idx) 1840 pgdat->kcompactd_classzone_idx = classzone_idx; 1841 1842 if (!waitqueue_active(&pgdat->kcompactd_wait)) 1843 return; 1844 1845 if (!kcompactd_node_suitable(pgdat)) 1846 return; 1847 1848 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 1849 classzone_idx); 1850 wake_up_interruptible(&pgdat->kcompactd_wait); 1851 } 1852 1853 /* 1854 * The background compaction daemon, started as a kernel thread 1855 * from the init process. 1856 */ 1857 static int kcompactd(void *p) 1858 { 1859 pg_data_t *pgdat = (pg_data_t*)p; 1860 struct task_struct *tsk = current; 1861 1862 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1863 1864 if (!cpumask_empty(cpumask)) 1865 set_cpus_allowed_ptr(tsk, cpumask); 1866 1867 set_freezable(); 1868 1869 pgdat->kcompactd_max_order = 0; 1870 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1; 1871 1872 while (!kthread_should_stop()) { 1873 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 1874 wait_event_freezable(pgdat->kcompactd_wait, 1875 kcompactd_work_requested(pgdat)); 1876 1877 kcompactd_do_work(pgdat); 1878 } 1879 1880 return 0; 1881 } 1882 1883 /* 1884 * This kcompactd start function will be called by init and node-hot-add. 1885 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 1886 */ 1887 int kcompactd_run(int nid) 1888 { 1889 pg_data_t *pgdat = NODE_DATA(nid); 1890 int ret = 0; 1891 1892 if (pgdat->kcompactd) 1893 return 0; 1894 1895 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); 1896 if (IS_ERR(pgdat->kcompactd)) { 1897 pr_err("Failed to start kcompactd on node %d\n", nid); 1898 ret = PTR_ERR(pgdat->kcompactd); 1899 pgdat->kcompactd = NULL; 1900 } 1901 return ret; 1902 } 1903 1904 /* 1905 * Called by memory hotplug when all memory in a node is offlined. Caller must 1906 * hold mem_hotplug_begin/end(). 1907 */ 1908 void kcompactd_stop(int nid) 1909 { 1910 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 1911 1912 if (kcompactd) { 1913 kthread_stop(kcompactd); 1914 NODE_DATA(nid)->kcompactd = NULL; 1915 } 1916 } 1917 1918 /* 1919 * It's optimal to keep kcompactd on the same CPUs as their memory, but 1920 * not required for correctness. So if the last cpu in a node goes 1921 * away, we get changed to run anywhere: as the first one comes back, 1922 * restore their cpu bindings. 1923 */ 1924 static int cpu_callback(struct notifier_block *nfb, unsigned long action, 1925 void *hcpu) 1926 { 1927 int nid; 1928 1929 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 1930 for_each_node_state(nid, N_MEMORY) { 1931 pg_data_t *pgdat = NODE_DATA(nid); 1932 const struct cpumask *mask; 1933 1934 mask = cpumask_of_node(pgdat->node_id); 1935 1936 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 1937 /* One of our CPUs online: restore mask */ 1938 set_cpus_allowed_ptr(pgdat->kcompactd, mask); 1939 } 1940 } 1941 return NOTIFY_OK; 1942 } 1943 1944 static int __init kcompactd_init(void) 1945 { 1946 int nid; 1947 1948 for_each_node_state(nid, N_MEMORY) 1949 kcompactd_run(nid); 1950 hotcpu_notifier(cpu_callback, 0); 1951 return 0; 1952 } 1953 subsys_initcall(kcompactd_init) 1954 1955 #endif /* CONFIG_COMPACTION */ 1956