1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/compaction.c 4 * 5 * Memory compaction for the reduction of external fragmentation. Note that 6 * this heavily depends upon page migration to do all the real heavy 7 * lifting 8 * 9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 10 */ 11 #include <linux/cpu.h> 12 #include <linux/swap.h> 13 #include <linux/migrate.h> 14 #include <linux/compaction.h> 15 #include <linux/mm_inline.h> 16 #include <linux/sched/signal.h> 17 #include <linux/backing-dev.h> 18 #include <linux/sysctl.h> 19 #include <linux/sysfs.h> 20 #include <linux/page-isolation.h> 21 #include <linux/kasan.h> 22 #include <linux/kthread.h> 23 #include <linux/freezer.h> 24 #include <linux/page_owner.h> 25 #include <linux/psi.h> 26 #include "internal.h" 27 28 #ifdef CONFIG_COMPACTION 29 /* 30 * Fragmentation score check interval for proactive compaction purposes. 31 */ 32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500) 33 34 static inline void count_compact_event(enum vm_event_item item) 35 { 36 count_vm_event(item); 37 } 38 39 static inline void count_compact_events(enum vm_event_item item, long delta) 40 { 41 count_vm_events(item, delta); 42 } 43 44 /* 45 * order == -1 is expected when compacting proactively via 46 * 1. /proc/sys/vm/compact_memory 47 * 2. /sys/devices/system/node/nodex/compact 48 * 3. /proc/sys/vm/compaction_proactiveness 49 */ 50 static inline bool is_via_compact_memory(int order) 51 { 52 return order == -1; 53 } 54 55 #else 56 #define count_compact_event(item) do { } while (0) 57 #define count_compact_events(item, delta) do { } while (0) 58 static inline bool is_via_compact_memory(int order) { return false; } 59 #endif 60 61 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/compaction.h> 65 66 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order)) 67 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order)) 68 69 /* 70 * Page order with-respect-to which proactive compaction 71 * calculates external fragmentation, which is used as 72 * the "fragmentation score" of a node/zone. 73 */ 74 #if defined CONFIG_TRANSPARENT_HUGEPAGE 75 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER 76 #elif defined CONFIG_HUGETLBFS 77 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER 78 #else 79 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT) 80 #endif 81 82 static void split_map_pages(struct list_head *freepages) 83 { 84 unsigned int i, order; 85 struct page *page, *next; 86 LIST_HEAD(tmp_list); 87 88 for (order = 0; order < NR_PAGE_ORDERS; order++) { 89 list_for_each_entry_safe(page, next, &freepages[order], lru) { 90 unsigned int nr_pages; 91 92 list_del(&page->lru); 93 94 nr_pages = 1 << order; 95 96 post_alloc_hook(page, order, __GFP_MOVABLE); 97 if (order) 98 split_page(page, order); 99 100 for (i = 0; i < nr_pages; i++) { 101 list_add(&page->lru, &tmp_list); 102 page++; 103 } 104 } 105 list_splice_init(&tmp_list, &freepages[0]); 106 } 107 } 108 109 static unsigned long release_free_list(struct list_head *freepages) 110 { 111 int order; 112 unsigned long high_pfn = 0; 113 114 for (order = 0; order < NR_PAGE_ORDERS; order++) { 115 struct page *page, *next; 116 117 list_for_each_entry_safe(page, next, &freepages[order], lru) { 118 unsigned long pfn = page_to_pfn(page); 119 120 list_del(&page->lru); 121 /* 122 * Convert free pages into post allocation pages, so 123 * that we can free them via __free_page. 124 */ 125 post_alloc_hook(page, order, __GFP_MOVABLE); 126 __free_pages(page, order); 127 if (pfn > high_pfn) 128 high_pfn = pfn; 129 } 130 } 131 return high_pfn; 132 } 133 134 #ifdef CONFIG_COMPACTION 135 bool PageMovable(struct page *page) 136 { 137 const struct movable_operations *mops; 138 139 VM_BUG_ON_PAGE(!PageLocked(page), page); 140 if (!__PageMovable(page)) 141 return false; 142 143 mops = page_movable_ops(page); 144 if (mops) 145 return true; 146 147 return false; 148 } 149 150 void __SetPageMovable(struct page *page, const struct movable_operations *mops) 151 { 152 VM_BUG_ON_PAGE(!PageLocked(page), page); 153 VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page); 154 page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE); 155 } 156 EXPORT_SYMBOL(__SetPageMovable); 157 158 void __ClearPageMovable(struct page *page) 159 { 160 VM_BUG_ON_PAGE(!PageMovable(page), page); 161 /* 162 * This page still has the type of a movable page, but it's 163 * actually not movable any more. 164 */ 165 page->mapping = (void *)PAGE_MAPPING_MOVABLE; 166 } 167 EXPORT_SYMBOL(__ClearPageMovable); 168 169 /* Do not skip compaction more than 64 times */ 170 #define COMPACT_MAX_DEFER_SHIFT 6 171 172 /* 173 * Compaction is deferred when compaction fails to result in a page 174 * allocation success. 1 << compact_defer_shift, compactions are skipped up 175 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 176 */ 177 static void defer_compaction(struct zone *zone, int order) 178 { 179 zone->compact_considered = 0; 180 zone->compact_defer_shift++; 181 182 if (order < zone->compact_order_failed) 183 zone->compact_order_failed = order; 184 185 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 186 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 187 188 trace_mm_compaction_defer_compaction(zone, order); 189 } 190 191 /* Returns true if compaction should be skipped this time */ 192 static bool compaction_deferred(struct zone *zone, int order) 193 { 194 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 195 196 if (order < zone->compact_order_failed) 197 return false; 198 199 /* Avoid possible overflow */ 200 if (++zone->compact_considered >= defer_limit) { 201 zone->compact_considered = defer_limit; 202 return false; 203 } 204 205 trace_mm_compaction_deferred(zone, order); 206 207 return true; 208 } 209 210 /* 211 * Update defer tracking counters after successful compaction of given order, 212 * which means an allocation either succeeded (alloc_success == true) or is 213 * expected to succeed. 214 */ 215 void compaction_defer_reset(struct zone *zone, int order, 216 bool alloc_success) 217 { 218 if (alloc_success) { 219 zone->compact_considered = 0; 220 zone->compact_defer_shift = 0; 221 } 222 if (order >= zone->compact_order_failed) 223 zone->compact_order_failed = order + 1; 224 225 trace_mm_compaction_defer_reset(zone, order); 226 } 227 228 /* Returns true if restarting compaction after many failures */ 229 static bool compaction_restarting(struct zone *zone, int order) 230 { 231 if (order < zone->compact_order_failed) 232 return false; 233 234 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 235 zone->compact_considered >= 1UL << zone->compact_defer_shift; 236 } 237 238 /* Returns true if the pageblock should be scanned for pages to isolate. */ 239 static inline bool isolation_suitable(struct compact_control *cc, 240 struct page *page) 241 { 242 if (cc->ignore_skip_hint) 243 return true; 244 245 return !get_pageblock_skip(page); 246 } 247 248 static void reset_cached_positions(struct zone *zone) 249 { 250 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 251 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 252 zone->compact_cached_free_pfn = 253 pageblock_start_pfn(zone_end_pfn(zone) - 1); 254 } 255 256 #ifdef CONFIG_SPARSEMEM 257 /* 258 * If the PFN falls into an offline section, return the start PFN of the 259 * next online section. If the PFN falls into an online section or if 260 * there is no next online section, return 0. 261 */ 262 static unsigned long skip_offline_sections(unsigned long start_pfn) 263 { 264 unsigned long start_nr = pfn_to_section_nr(start_pfn); 265 266 if (online_section_nr(start_nr)) 267 return 0; 268 269 while (++start_nr <= __highest_present_section_nr) { 270 if (online_section_nr(start_nr)) 271 return section_nr_to_pfn(start_nr); 272 } 273 274 return 0; 275 } 276 277 /* 278 * If the PFN falls into an offline section, return the end PFN of the 279 * next online section in reverse. If the PFN falls into an online section 280 * or if there is no next online section in reverse, return 0. 281 */ 282 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn) 283 { 284 unsigned long start_nr = pfn_to_section_nr(start_pfn); 285 286 if (!start_nr || online_section_nr(start_nr)) 287 return 0; 288 289 while (start_nr-- > 0) { 290 if (online_section_nr(start_nr)) 291 return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION; 292 } 293 294 return 0; 295 } 296 #else 297 static unsigned long skip_offline_sections(unsigned long start_pfn) 298 { 299 return 0; 300 } 301 302 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn) 303 { 304 return 0; 305 } 306 #endif 307 308 /* 309 * Compound pages of >= pageblock_order should consistently be skipped until 310 * released. It is always pointless to compact pages of such order (if they are 311 * migratable), and the pageblocks they occupy cannot contain any free pages. 312 */ 313 static bool pageblock_skip_persistent(struct page *page) 314 { 315 if (!PageCompound(page)) 316 return false; 317 318 page = compound_head(page); 319 320 if (compound_order(page) >= pageblock_order) 321 return true; 322 323 return false; 324 } 325 326 static bool 327 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source, 328 bool check_target) 329 { 330 struct page *page = pfn_to_online_page(pfn); 331 struct page *block_page; 332 struct page *end_page; 333 unsigned long block_pfn; 334 335 if (!page) 336 return false; 337 if (zone != page_zone(page)) 338 return false; 339 if (pageblock_skip_persistent(page)) 340 return false; 341 342 /* 343 * If skip is already cleared do no further checking once the 344 * restart points have been set. 345 */ 346 if (check_source && check_target && !get_pageblock_skip(page)) 347 return true; 348 349 /* 350 * If clearing skip for the target scanner, do not select a 351 * non-movable pageblock as the starting point. 352 */ 353 if (!check_source && check_target && 354 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 355 return false; 356 357 /* Ensure the start of the pageblock or zone is online and valid */ 358 block_pfn = pageblock_start_pfn(pfn); 359 block_pfn = max(block_pfn, zone->zone_start_pfn); 360 block_page = pfn_to_online_page(block_pfn); 361 if (block_page) { 362 page = block_page; 363 pfn = block_pfn; 364 } 365 366 /* Ensure the end of the pageblock or zone is online and valid */ 367 block_pfn = pageblock_end_pfn(pfn) - 1; 368 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1); 369 end_page = pfn_to_online_page(block_pfn); 370 if (!end_page) 371 return false; 372 373 /* 374 * Only clear the hint if a sample indicates there is either a 375 * free page or an LRU page in the block. One or other condition 376 * is necessary for the block to be a migration source/target. 377 */ 378 do { 379 if (check_source && PageLRU(page)) { 380 clear_pageblock_skip(page); 381 return true; 382 } 383 384 if (check_target && PageBuddy(page)) { 385 clear_pageblock_skip(page); 386 return true; 387 } 388 389 page += (1 << PAGE_ALLOC_COSTLY_ORDER); 390 } while (page <= end_page); 391 392 return false; 393 } 394 395 /* 396 * This function is called to clear all cached information on pageblocks that 397 * should be skipped for page isolation when the migrate and free page scanner 398 * meet. 399 */ 400 static void __reset_isolation_suitable(struct zone *zone) 401 { 402 unsigned long migrate_pfn = zone->zone_start_pfn; 403 unsigned long free_pfn = zone_end_pfn(zone) - 1; 404 unsigned long reset_migrate = free_pfn; 405 unsigned long reset_free = migrate_pfn; 406 bool source_set = false; 407 bool free_set = false; 408 409 /* Only flush if a full compaction finished recently */ 410 if (!zone->compact_blockskip_flush) 411 return; 412 413 zone->compact_blockskip_flush = false; 414 415 /* 416 * Walk the zone and update pageblock skip information. Source looks 417 * for PageLRU while target looks for PageBuddy. When the scanner 418 * is found, both PageBuddy and PageLRU are checked as the pageblock 419 * is suitable as both source and target. 420 */ 421 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages, 422 free_pfn -= pageblock_nr_pages) { 423 cond_resched(); 424 425 /* Update the migrate PFN */ 426 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) && 427 migrate_pfn < reset_migrate) { 428 source_set = true; 429 reset_migrate = migrate_pfn; 430 zone->compact_init_migrate_pfn = reset_migrate; 431 zone->compact_cached_migrate_pfn[0] = reset_migrate; 432 zone->compact_cached_migrate_pfn[1] = reset_migrate; 433 } 434 435 /* Update the free PFN */ 436 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) && 437 free_pfn > reset_free) { 438 free_set = true; 439 reset_free = free_pfn; 440 zone->compact_init_free_pfn = reset_free; 441 zone->compact_cached_free_pfn = reset_free; 442 } 443 } 444 445 /* Leave no distance if no suitable block was reset */ 446 if (reset_migrate >= reset_free) { 447 zone->compact_cached_migrate_pfn[0] = migrate_pfn; 448 zone->compact_cached_migrate_pfn[1] = migrate_pfn; 449 zone->compact_cached_free_pfn = free_pfn; 450 } 451 } 452 453 void reset_isolation_suitable(pg_data_t *pgdat) 454 { 455 int zoneid; 456 457 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 458 struct zone *zone = &pgdat->node_zones[zoneid]; 459 if (!populated_zone(zone)) 460 continue; 461 462 __reset_isolation_suitable(zone); 463 } 464 } 465 466 /* 467 * Sets the pageblock skip bit if it was clear. Note that this is a hint as 468 * locks are not required for read/writers. Returns true if it was already set. 469 */ 470 static bool test_and_set_skip(struct compact_control *cc, struct page *page) 471 { 472 bool skip; 473 474 /* Do not update if skip hint is being ignored */ 475 if (cc->ignore_skip_hint) 476 return false; 477 478 skip = get_pageblock_skip(page); 479 if (!skip && !cc->no_set_skip_hint) 480 set_pageblock_skip(page); 481 482 return skip; 483 } 484 485 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 486 { 487 struct zone *zone = cc->zone; 488 489 /* Set for isolation rather than compaction */ 490 if (cc->no_set_skip_hint) 491 return; 492 493 pfn = pageblock_end_pfn(pfn); 494 495 /* Update where async and sync compaction should restart */ 496 if (pfn > zone->compact_cached_migrate_pfn[0]) 497 zone->compact_cached_migrate_pfn[0] = pfn; 498 if (cc->mode != MIGRATE_ASYNC && 499 pfn > zone->compact_cached_migrate_pfn[1]) 500 zone->compact_cached_migrate_pfn[1] = pfn; 501 } 502 503 /* 504 * If no pages were isolated then mark this pageblock to be skipped in the 505 * future. The information is later cleared by __reset_isolation_suitable(). 506 */ 507 static void update_pageblock_skip(struct compact_control *cc, 508 struct page *page, unsigned long pfn) 509 { 510 struct zone *zone = cc->zone; 511 512 if (cc->no_set_skip_hint) 513 return; 514 515 set_pageblock_skip(page); 516 517 if (pfn < zone->compact_cached_free_pfn) 518 zone->compact_cached_free_pfn = pfn; 519 } 520 #else 521 static inline bool isolation_suitable(struct compact_control *cc, 522 struct page *page) 523 { 524 return true; 525 } 526 527 static inline bool pageblock_skip_persistent(struct page *page) 528 { 529 return false; 530 } 531 532 static inline void update_pageblock_skip(struct compact_control *cc, 533 struct page *page, unsigned long pfn) 534 { 535 } 536 537 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 538 { 539 } 540 541 static bool test_and_set_skip(struct compact_control *cc, struct page *page) 542 { 543 return false; 544 } 545 #endif /* CONFIG_COMPACTION */ 546 547 /* 548 * Compaction requires the taking of some coarse locks that are potentially 549 * very heavily contended. For async compaction, trylock and record if the 550 * lock is contended. The lock will still be acquired but compaction will 551 * abort when the current block is finished regardless of success rate. 552 * Sync compaction acquires the lock. 553 * 554 * Always returns true which makes it easier to track lock state in callers. 555 */ 556 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags, 557 struct compact_control *cc) 558 __acquires(lock) 559 { 560 /* Track if the lock is contended in async mode */ 561 if (cc->mode == MIGRATE_ASYNC && !cc->contended) { 562 if (spin_trylock_irqsave(lock, *flags)) 563 return true; 564 565 cc->contended = true; 566 } 567 568 spin_lock_irqsave(lock, *flags); 569 return true; 570 } 571 572 /* 573 * Compaction requires the taking of some coarse locks that are potentially 574 * very heavily contended. The lock should be periodically unlocked to avoid 575 * having disabled IRQs for a long time, even when there is nobody waiting on 576 * the lock. It might also be that allowing the IRQs will result in 577 * need_resched() becoming true. If scheduling is needed, compaction schedules. 578 * Either compaction type will also abort if a fatal signal is pending. 579 * In either case if the lock was locked, it is dropped and not regained. 580 * 581 * Returns true if compaction should abort due to fatal signal pending. 582 * Returns false when compaction can continue. 583 */ 584 static bool compact_unlock_should_abort(spinlock_t *lock, 585 unsigned long flags, bool *locked, struct compact_control *cc) 586 { 587 if (*locked) { 588 spin_unlock_irqrestore(lock, flags); 589 *locked = false; 590 } 591 592 if (fatal_signal_pending(current)) { 593 cc->contended = true; 594 return true; 595 } 596 597 cond_resched(); 598 599 return false; 600 } 601 602 /* 603 * Isolate free pages onto a private freelist. If @strict is true, will abort 604 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 605 * (even though it may still end up isolating some pages). 606 */ 607 static unsigned long isolate_freepages_block(struct compact_control *cc, 608 unsigned long *start_pfn, 609 unsigned long end_pfn, 610 struct list_head *freelist, 611 unsigned int stride, 612 bool strict) 613 { 614 int nr_scanned = 0, total_isolated = 0; 615 struct page *page; 616 unsigned long flags = 0; 617 bool locked = false; 618 unsigned long blockpfn = *start_pfn; 619 unsigned int order; 620 621 /* Strict mode is for isolation, speed is secondary */ 622 if (strict) 623 stride = 1; 624 625 page = pfn_to_page(blockpfn); 626 627 /* Isolate free pages. */ 628 for (; blockpfn < end_pfn; blockpfn += stride, page += stride) { 629 int isolated; 630 631 /* 632 * Periodically drop the lock (if held) regardless of its 633 * contention, to give chance to IRQs. Abort if fatal signal 634 * pending. 635 */ 636 if (!(blockpfn % COMPACT_CLUSTER_MAX) 637 && compact_unlock_should_abort(&cc->zone->lock, flags, 638 &locked, cc)) 639 break; 640 641 nr_scanned++; 642 643 /* 644 * For compound pages such as THP and hugetlbfs, we can save 645 * potentially a lot of iterations if we skip them at once. 646 * The check is racy, but we can consider only valid values 647 * and the only danger is skipping too much. 648 */ 649 if (PageCompound(page)) { 650 const unsigned int order = compound_order(page); 651 652 if (blockpfn + (1UL << order) <= end_pfn) { 653 blockpfn += (1UL << order) - 1; 654 page += (1UL << order) - 1; 655 nr_scanned += (1UL << order) - 1; 656 } 657 658 goto isolate_fail; 659 } 660 661 if (!PageBuddy(page)) 662 goto isolate_fail; 663 664 /* If we already hold the lock, we can skip some rechecking. */ 665 if (!locked) { 666 locked = compact_lock_irqsave(&cc->zone->lock, 667 &flags, cc); 668 669 /* Recheck this is a buddy page under lock */ 670 if (!PageBuddy(page)) 671 goto isolate_fail; 672 } 673 674 /* Found a free page, will break it into order-0 pages */ 675 order = buddy_order(page); 676 isolated = __isolate_free_page(page, order); 677 if (!isolated) 678 break; 679 set_page_private(page, order); 680 681 nr_scanned += isolated - 1; 682 total_isolated += isolated; 683 cc->nr_freepages += isolated; 684 list_add_tail(&page->lru, &freelist[order]); 685 686 if (!strict && cc->nr_migratepages <= cc->nr_freepages) { 687 blockpfn += isolated; 688 break; 689 } 690 /* Advance to the end of split page */ 691 blockpfn += isolated - 1; 692 page += isolated - 1; 693 continue; 694 695 isolate_fail: 696 if (strict) 697 break; 698 699 } 700 701 if (locked) 702 spin_unlock_irqrestore(&cc->zone->lock, flags); 703 704 /* 705 * Be careful to not go outside of the pageblock. 706 */ 707 if (unlikely(blockpfn > end_pfn)) 708 blockpfn = end_pfn; 709 710 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 711 nr_scanned, total_isolated); 712 713 /* Record how far we have got within the block */ 714 *start_pfn = blockpfn; 715 716 /* 717 * If strict isolation is requested by CMA then check that all the 718 * pages requested were isolated. If there were any failures, 0 is 719 * returned and CMA will fail. 720 */ 721 if (strict && blockpfn < end_pfn) 722 total_isolated = 0; 723 724 cc->total_free_scanned += nr_scanned; 725 if (total_isolated) 726 count_compact_events(COMPACTISOLATED, total_isolated); 727 return total_isolated; 728 } 729 730 /** 731 * isolate_freepages_range() - isolate free pages. 732 * @cc: Compaction control structure. 733 * @start_pfn: The first PFN to start isolating. 734 * @end_pfn: The one-past-last PFN. 735 * 736 * Non-free pages, invalid PFNs, or zone boundaries within the 737 * [start_pfn, end_pfn) range are considered errors, cause function to 738 * undo its actions and return zero. 739 * 740 * Otherwise, function returns one-past-the-last PFN of isolated page 741 * (which may be greater then end_pfn if end fell in a middle of 742 * a free page). 743 */ 744 unsigned long 745 isolate_freepages_range(struct compact_control *cc, 746 unsigned long start_pfn, unsigned long end_pfn) 747 { 748 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 749 int order; 750 struct list_head tmp_freepages[NR_PAGE_ORDERS]; 751 752 for (order = 0; order < NR_PAGE_ORDERS; order++) 753 INIT_LIST_HEAD(&tmp_freepages[order]); 754 755 pfn = start_pfn; 756 block_start_pfn = pageblock_start_pfn(pfn); 757 if (block_start_pfn < cc->zone->zone_start_pfn) 758 block_start_pfn = cc->zone->zone_start_pfn; 759 block_end_pfn = pageblock_end_pfn(pfn); 760 761 for (; pfn < end_pfn; pfn += isolated, 762 block_start_pfn = block_end_pfn, 763 block_end_pfn += pageblock_nr_pages) { 764 /* Protect pfn from changing by isolate_freepages_block */ 765 unsigned long isolate_start_pfn = pfn; 766 767 /* 768 * pfn could pass the block_end_pfn if isolated freepage 769 * is more than pageblock order. In this case, we adjust 770 * scanning range to right one. 771 */ 772 if (pfn >= block_end_pfn) { 773 block_start_pfn = pageblock_start_pfn(pfn); 774 block_end_pfn = pageblock_end_pfn(pfn); 775 } 776 777 block_end_pfn = min(block_end_pfn, end_pfn); 778 779 if (!pageblock_pfn_to_page(block_start_pfn, 780 block_end_pfn, cc->zone)) 781 break; 782 783 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 784 block_end_pfn, tmp_freepages, 0, true); 785 786 /* 787 * In strict mode, isolate_freepages_block() returns 0 if 788 * there are any holes in the block (ie. invalid PFNs or 789 * non-free pages). 790 */ 791 if (!isolated) 792 break; 793 794 /* 795 * If we managed to isolate pages, it is always (1 << n) * 796 * pageblock_nr_pages for some non-negative n. (Max order 797 * page may span two pageblocks). 798 */ 799 } 800 801 if (pfn < end_pfn) { 802 /* Loop terminated early, cleanup. */ 803 release_free_list(tmp_freepages); 804 return 0; 805 } 806 807 /* __isolate_free_page() does not map the pages */ 808 split_map_pages(tmp_freepages); 809 810 /* We don't use freelists for anything. */ 811 return pfn; 812 } 813 814 /* Similar to reclaim, but different enough that they don't share logic */ 815 static bool too_many_isolated(struct compact_control *cc) 816 { 817 pg_data_t *pgdat = cc->zone->zone_pgdat; 818 bool too_many; 819 820 unsigned long active, inactive, isolated; 821 822 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) + 823 node_page_state(pgdat, NR_INACTIVE_ANON); 824 active = node_page_state(pgdat, NR_ACTIVE_FILE) + 825 node_page_state(pgdat, NR_ACTIVE_ANON); 826 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) + 827 node_page_state(pgdat, NR_ISOLATED_ANON); 828 829 /* 830 * Allow GFP_NOFS to isolate past the limit set for regular 831 * compaction runs. This prevents an ABBA deadlock when other 832 * compactors have already isolated to the limit, but are 833 * blocked on filesystem locks held by the GFP_NOFS thread. 834 */ 835 if (cc->gfp_mask & __GFP_FS) { 836 inactive >>= 3; 837 active >>= 3; 838 } 839 840 too_many = isolated > (inactive + active) / 2; 841 if (!too_many) 842 wake_throttle_isolated(pgdat); 843 844 return too_many; 845 } 846 847 /** 848 * skip_isolation_on_order() - determine when to skip folio isolation based on 849 * folio order and compaction target order 850 * @order: to-be-isolated folio order 851 * @target_order: compaction target order 852 * 853 * This avoids unnecessary folio isolations during compaction. 854 */ 855 static bool skip_isolation_on_order(int order, int target_order) 856 { 857 /* 858 * Unless we are performing global compaction (i.e., 859 * is_via_compact_memory), skip any folios that are larger than the 860 * target order: we wouldn't be here if we'd have a free folio with 861 * the desired target_order, so migrating this folio would likely fail 862 * later. 863 */ 864 if (!is_via_compact_memory(target_order) && order >= target_order) 865 return true; 866 /* 867 * We limit memory compaction to pageblocks and won't try 868 * creating free blocks of memory that are larger than that. 869 */ 870 return order >= pageblock_order; 871 } 872 873 /** 874 * isolate_migratepages_block() - isolate all migrate-able pages within 875 * a single pageblock 876 * @cc: Compaction control structure. 877 * @low_pfn: The first PFN to isolate 878 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 879 * @mode: Isolation mode to be used. 880 * 881 * Isolate all pages that can be migrated from the range specified by 882 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 883 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion, 884 * -ENOMEM in case we could not allocate a page, or 0. 885 * cc->migrate_pfn will contain the next pfn to scan. 886 * 887 * The pages are isolated on cc->migratepages list (not required to be empty), 888 * and cc->nr_migratepages is updated accordingly. 889 */ 890 static int 891 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 892 unsigned long end_pfn, isolate_mode_t mode) 893 { 894 pg_data_t *pgdat = cc->zone->zone_pgdat; 895 unsigned long nr_scanned = 0, nr_isolated = 0; 896 struct lruvec *lruvec; 897 unsigned long flags = 0; 898 struct lruvec *locked = NULL; 899 struct folio *folio = NULL; 900 struct page *page = NULL, *valid_page = NULL; 901 struct address_space *mapping; 902 unsigned long start_pfn = low_pfn; 903 bool skip_on_failure = false; 904 unsigned long next_skip_pfn = 0; 905 bool skip_updated = false; 906 int ret = 0; 907 908 cc->migrate_pfn = low_pfn; 909 910 /* 911 * Ensure that there are not too many pages isolated from the LRU 912 * list by either parallel reclaimers or compaction. If there are, 913 * delay for some time until fewer pages are isolated 914 */ 915 while (unlikely(too_many_isolated(cc))) { 916 /* stop isolation if there are still pages not migrated */ 917 if (cc->nr_migratepages) 918 return -EAGAIN; 919 920 /* async migration should just abort */ 921 if (cc->mode == MIGRATE_ASYNC) 922 return -EAGAIN; 923 924 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 925 926 if (fatal_signal_pending(current)) 927 return -EINTR; 928 } 929 930 cond_resched(); 931 932 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { 933 skip_on_failure = true; 934 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 935 } 936 937 /* Time to isolate some pages for migration */ 938 for (; low_pfn < end_pfn; low_pfn++) { 939 bool is_dirty, is_unevictable; 940 941 if (skip_on_failure && low_pfn >= next_skip_pfn) { 942 /* 943 * We have isolated all migration candidates in the 944 * previous order-aligned block, and did not skip it due 945 * to failure. We should migrate the pages now and 946 * hopefully succeed compaction. 947 */ 948 if (nr_isolated) 949 break; 950 951 /* 952 * We failed to isolate in the previous order-aligned 953 * block. Set the new boundary to the end of the 954 * current block. Note we can't simply increase 955 * next_skip_pfn by 1 << order, as low_pfn might have 956 * been incremented by a higher number due to skipping 957 * a compound or a high-order buddy page in the 958 * previous loop iteration. 959 */ 960 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 961 } 962 963 /* 964 * Periodically drop the lock (if held) regardless of its 965 * contention, to give chance to IRQs. Abort completely if 966 * a fatal signal is pending. 967 */ 968 if (!(low_pfn % COMPACT_CLUSTER_MAX)) { 969 if (locked) { 970 unlock_page_lruvec_irqrestore(locked, flags); 971 locked = NULL; 972 } 973 974 if (fatal_signal_pending(current)) { 975 cc->contended = true; 976 ret = -EINTR; 977 978 goto fatal_pending; 979 } 980 981 cond_resched(); 982 } 983 984 nr_scanned++; 985 986 page = pfn_to_page(low_pfn); 987 988 /* 989 * Check if the pageblock has already been marked skipped. 990 * Only the first PFN is checked as the caller isolates 991 * COMPACT_CLUSTER_MAX at a time so the second call must 992 * not falsely conclude that the block should be skipped. 993 */ 994 if (!valid_page && (pageblock_aligned(low_pfn) || 995 low_pfn == cc->zone->zone_start_pfn)) { 996 if (!isolation_suitable(cc, page)) { 997 low_pfn = end_pfn; 998 folio = NULL; 999 goto isolate_abort; 1000 } 1001 valid_page = page; 1002 } 1003 1004 if (PageHuge(page)) { 1005 /* 1006 * skip hugetlbfs if we are not compacting for pages 1007 * bigger than its order. THPs and other compound pages 1008 * are handled below. 1009 */ 1010 if (!cc->alloc_contig) { 1011 const unsigned int order = compound_order(page); 1012 1013 if (order <= MAX_PAGE_ORDER) { 1014 low_pfn += (1UL << order) - 1; 1015 nr_scanned += (1UL << order) - 1; 1016 } 1017 goto isolate_fail; 1018 } 1019 /* for alloc_contig case */ 1020 if (locked) { 1021 unlock_page_lruvec_irqrestore(locked, flags); 1022 locked = NULL; 1023 } 1024 1025 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages); 1026 1027 /* 1028 * Fail isolation in case isolate_or_dissolve_huge_page() 1029 * reports an error. In case of -ENOMEM, abort right away. 1030 */ 1031 if (ret < 0) { 1032 /* Do not report -EBUSY down the chain */ 1033 if (ret == -EBUSY) 1034 ret = 0; 1035 low_pfn += compound_nr(page) - 1; 1036 nr_scanned += compound_nr(page) - 1; 1037 goto isolate_fail; 1038 } 1039 1040 if (PageHuge(page)) { 1041 /* 1042 * Hugepage was successfully isolated and placed 1043 * on the cc->migratepages list. 1044 */ 1045 folio = page_folio(page); 1046 low_pfn += folio_nr_pages(folio) - 1; 1047 goto isolate_success_no_list; 1048 } 1049 1050 /* 1051 * Ok, the hugepage was dissolved. Now these pages are 1052 * Buddy and cannot be re-allocated because they are 1053 * isolated. Fall-through as the check below handles 1054 * Buddy pages. 1055 */ 1056 } 1057 1058 /* 1059 * Skip if free. We read page order here without zone lock 1060 * which is generally unsafe, but the race window is small and 1061 * the worst thing that can happen is that we skip some 1062 * potential isolation targets. 1063 */ 1064 if (PageBuddy(page)) { 1065 unsigned long freepage_order = buddy_order_unsafe(page); 1066 1067 /* 1068 * Without lock, we cannot be sure that what we got is 1069 * a valid page order. Consider only values in the 1070 * valid order range to prevent low_pfn overflow. 1071 */ 1072 if (freepage_order > 0 && freepage_order <= MAX_PAGE_ORDER) { 1073 low_pfn += (1UL << freepage_order) - 1; 1074 nr_scanned += (1UL << freepage_order) - 1; 1075 } 1076 continue; 1077 } 1078 1079 /* 1080 * Regardless of being on LRU, compound pages such as THP 1081 * (hugetlbfs is handled above) are not to be compacted unless 1082 * we are attempting an allocation larger than the compound 1083 * page size. We can potentially save a lot of iterations if we 1084 * skip them at once. The check is racy, but we can consider 1085 * only valid values and the only danger is skipping too much. 1086 */ 1087 if (PageCompound(page) && !cc->alloc_contig) { 1088 const unsigned int order = compound_order(page); 1089 1090 /* Skip based on page order and compaction target order. */ 1091 if (skip_isolation_on_order(order, cc->order)) { 1092 if (order <= MAX_PAGE_ORDER) { 1093 low_pfn += (1UL << order) - 1; 1094 nr_scanned += (1UL << order) - 1; 1095 } 1096 goto isolate_fail; 1097 } 1098 } 1099 1100 /* 1101 * Check may be lockless but that's ok as we recheck later. 1102 * It's possible to migrate LRU and non-lru movable pages. 1103 * Skip any other type of page 1104 */ 1105 if (!PageLRU(page)) { 1106 /* 1107 * __PageMovable can return false positive so we need 1108 * to verify it under page_lock. 1109 */ 1110 if (unlikely(__PageMovable(page)) && 1111 !PageIsolated(page)) { 1112 if (locked) { 1113 unlock_page_lruvec_irqrestore(locked, flags); 1114 locked = NULL; 1115 } 1116 1117 if (isolate_movable_page(page, mode)) { 1118 folio = page_folio(page); 1119 goto isolate_success; 1120 } 1121 } 1122 1123 goto isolate_fail; 1124 } 1125 1126 /* 1127 * Be careful not to clear PageLRU until after we're 1128 * sure the page is not being freed elsewhere -- the 1129 * page release code relies on it. 1130 */ 1131 folio = folio_get_nontail_page(page); 1132 if (unlikely(!folio)) 1133 goto isolate_fail; 1134 1135 /* 1136 * Migration will fail if an anonymous page is pinned in memory, 1137 * so avoid taking lru_lock and isolating it unnecessarily in an 1138 * admittedly racy check. 1139 */ 1140 mapping = folio_mapping(folio); 1141 if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio)) 1142 goto isolate_fail_put; 1143 1144 /* 1145 * Only allow to migrate anonymous pages in GFP_NOFS context 1146 * because those do not depend on fs locks. 1147 */ 1148 if (!(cc->gfp_mask & __GFP_FS) && mapping) 1149 goto isolate_fail_put; 1150 1151 /* Only take pages on LRU: a check now makes later tests safe */ 1152 if (!folio_test_lru(folio)) 1153 goto isolate_fail_put; 1154 1155 is_unevictable = folio_test_unevictable(folio); 1156 1157 /* Compaction might skip unevictable pages but CMA takes them */ 1158 if (!(mode & ISOLATE_UNEVICTABLE) && is_unevictable) 1159 goto isolate_fail_put; 1160 1161 /* 1162 * To minimise LRU disruption, the caller can indicate with 1163 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages 1164 * it will be able to migrate without blocking - clean pages 1165 * for the most part. PageWriteback would require blocking. 1166 */ 1167 if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio)) 1168 goto isolate_fail_put; 1169 1170 is_dirty = folio_test_dirty(folio); 1171 1172 if (((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) || 1173 (mapping && is_unevictable)) { 1174 bool migrate_dirty = true; 1175 bool is_unmovable; 1176 1177 /* 1178 * Only folios without mappings or that have 1179 * a ->migrate_folio callback are possible to migrate 1180 * without blocking. 1181 * 1182 * Folios from unmovable mappings are not migratable. 1183 * 1184 * However, we can be racing with truncation, which can 1185 * free the mapping that we need to check. Truncation 1186 * holds the folio lock until after the folio is removed 1187 * from the page so holding it ourselves is sufficient. 1188 * 1189 * To avoid locking the folio just to check unmovable, 1190 * assume every unmovable folio is also unevictable, 1191 * which is a cheaper test. If our assumption goes 1192 * wrong, it's not a correctness bug, just potentially 1193 * wasted cycles. 1194 */ 1195 if (!folio_trylock(folio)) 1196 goto isolate_fail_put; 1197 1198 mapping = folio_mapping(folio); 1199 if ((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) { 1200 migrate_dirty = !mapping || 1201 mapping->a_ops->migrate_folio; 1202 } 1203 is_unmovable = mapping && mapping_unmovable(mapping); 1204 folio_unlock(folio); 1205 if (!migrate_dirty || is_unmovable) 1206 goto isolate_fail_put; 1207 } 1208 1209 /* Try isolate the folio */ 1210 if (!folio_test_clear_lru(folio)) 1211 goto isolate_fail_put; 1212 1213 lruvec = folio_lruvec(folio); 1214 1215 /* If we already hold the lock, we can skip some rechecking */ 1216 if (lruvec != locked) { 1217 if (locked) 1218 unlock_page_lruvec_irqrestore(locked, flags); 1219 1220 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc); 1221 locked = lruvec; 1222 1223 lruvec_memcg_debug(lruvec, folio); 1224 1225 /* 1226 * Try get exclusive access under lock. If marked for 1227 * skip, the scan is aborted unless the current context 1228 * is a rescan to reach the end of the pageblock. 1229 */ 1230 if (!skip_updated && valid_page) { 1231 skip_updated = true; 1232 if (test_and_set_skip(cc, valid_page) && 1233 !cc->finish_pageblock) { 1234 low_pfn = end_pfn; 1235 goto isolate_abort; 1236 } 1237 } 1238 1239 /* 1240 * Check LRU folio order under the lock 1241 */ 1242 if (unlikely(skip_isolation_on_order(folio_order(folio), 1243 cc->order) && 1244 !cc->alloc_contig)) { 1245 low_pfn += folio_nr_pages(folio) - 1; 1246 nr_scanned += folio_nr_pages(folio) - 1; 1247 folio_set_lru(folio); 1248 goto isolate_fail_put; 1249 } 1250 } 1251 1252 /* The folio is taken off the LRU */ 1253 if (folio_test_large(folio)) 1254 low_pfn += folio_nr_pages(folio) - 1; 1255 1256 /* Successfully isolated */ 1257 lruvec_del_folio(lruvec, folio); 1258 node_stat_mod_folio(folio, 1259 NR_ISOLATED_ANON + folio_is_file_lru(folio), 1260 folio_nr_pages(folio)); 1261 1262 isolate_success: 1263 list_add(&folio->lru, &cc->migratepages); 1264 isolate_success_no_list: 1265 cc->nr_migratepages += folio_nr_pages(folio); 1266 nr_isolated += folio_nr_pages(folio); 1267 nr_scanned += folio_nr_pages(folio) - 1; 1268 1269 /* 1270 * Avoid isolating too much unless this block is being 1271 * fully scanned (e.g. dirty/writeback pages, parallel allocation) 1272 * or a lock is contended. For contention, isolate quickly to 1273 * potentially remove one source of contention. 1274 */ 1275 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX && 1276 !cc->finish_pageblock && !cc->contended) { 1277 ++low_pfn; 1278 break; 1279 } 1280 1281 continue; 1282 1283 isolate_fail_put: 1284 /* Avoid potential deadlock in freeing page under lru_lock */ 1285 if (locked) { 1286 unlock_page_lruvec_irqrestore(locked, flags); 1287 locked = NULL; 1288 } 1289 folio_put(folio); 1290 1291 isolate_fail: 1292 if (!skip_on_failure && ret != -ENOMEM) 1293 continue; 1294 1295 /* 1296 * We have isolated some pages, but then failed. Release them 1297 * instead of migrating, as we cannot form the cc->order buddy 1298 * page anyway. 1299 */ 1300 if (nr_isolated) { 1301 if (locked) { 1302 unlock_page_lruvec_irqrestore(locked, flags); 1303 locked = NULL; 1304 } 1305 putback_movable_pages(&cc->migratepages); 1306 cc->nr_migratepages = 0; 1307 nr_isolated = 0; 1308 } 1309 1310 if (low_pfn < next_skip_pfn) { 1311 low_pfn = next_skip_pfn - 1; 1312 /* 1313 * The check near the loop beginning would have updated 1314 * next_skip_pfn too, but this is a bit simpler. 1315 */ 1316 next_skip_pfn += 1UL << cc->order; 1317 } 1318 1319 if (ret == -ENOMEM) 1320 break; 1321 } 1322 1323 /* 1324 * The PageBuddy() check could have potentially brought us outside 1325 * the range to be scanned. 1326 */ 1327 if (unlikely(low_pfn > end_pfn)) 1328 low_pfn = end_pfn; 1329 1330 folio = NULL; 1331 1332 isolate_abort: 1333 if (locked) 1334 unlock_page_lruvec_irqrestore(locked, flags); 1335 if (folio) { 1336 folio_set_lru(folio); 1337 folio_put(folio); 1338 } 1339 1340 /* 1341 * Update the cached scanner pfn once the pageblock has been scanned. 1342 * Pages will either be migrated in which case there is no point 1343 * scanning in the near future or migration failed in which case the 1344 * failure reason may persist. The block is marked for skipping if 1345 * there were no pages isolated in the block or if the block is 1346 * rescanned twice in a row. 1347 */ 1348 if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) { 1349 if (!cc->no_set_skip_hint && valid_page && !skip_updated) 1350 set_pageblock_skip(valid_page); 1351 update_cached_migrate(cc, low_pfn); 1352 } 1353 1354 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 1355 nr_scanned, nr_isolated); 1356 1357 fatal_pending: 1358 cc->total_migrate_scanned += nr_scanned; 1359 if (nr_isolated) 1360 count_compact_events(COMPACTISOLATED, nr_isolated); 1361 1362 cc->migrate_pfn = low_pfn; 1363 1364 return ret; 1365 } 1366 1367 /** 1368 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 1369 * @cc: Compaction control structure. 1370 * @start_pfn: The first PFN to start isolating. 1371 * @end_pfn: The one-past-last PFN. 1372 * 1373 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM 1374 * in case we could not allocate a page, or 0. 1375 */ 1376 int 1377 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 1378 unsigned long end_pfn) 1379 { 1380 unsigned long pfn, block_start_pfn, block_end_pfn; 1381 int ret = 0; 1382 1383 /* Scan block by block. First and last block may be incomplete */ 1384 pfn = start_pfn; 1385 block_start_pfn = pageblock_start_pfn(pfn); 1386 if (block_start_pfn < cc->zone->zone_start_pfn) 1387 block_start_pfn = cc->zone->zone_start_pfn; 1388 block_end_pfn = pageblock_end_pfn(pfn); 1389 1390 for (; pfn < end_pfn; pfn = block_end_pfn, 1391 block_start_pfn = block_end_pfn, 1392 block_end_pfn += pageblock_nr_pages) { 1393 1394 block_end_pfn = min(block_end_pfn, end_pfn); 1395 1396 if (!pageblock_pfn_to_page(block_start_pfn, 1397 block_end_pfn, cc->zone)) 1398 continue; 1399 1400 ret = isolate_migratepages_block(cc, pfn, block_end_pfn, 1401 ISOLATE_UNEVICTABLE); 1402 1403 if (ret) 1404 break; 1405 1406 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX) 1407 break; 1408 } 1409 1410 return ret; 1411 } 1412 1413 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 1414 #ifdef CONFIG_COMPACTION 1415 1416 static bool suitable_migration_source(struct compact_control *cc, 1417 struct page *page) 1418 { 1419 int block_mt; 1420 1421 if (pageblock_skip_persistent(page)) 1422 return false; 1423 1424 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction) 1425 return true; 1426 1427 block_mt = get_pageblock_migratetype(page); 1428 1429 if (cc->migratetype == MIGRATE_MOVABLE) 1430 return is_migrate_movable(block_mt); 1431 else 1432 return block_mt == cc->migratetype; 1433 } 1434 1435 /* Returns true if the page is within a block suitable for migration to */ 1436 static bool suitable_migration_target(struct compact_control *cc, 1437 struct page *page) 1438 { 1439 /* If the page is a large free page, then disallow migration */ 1440 if (PageBuddy(page)) { 1441 int order = cc->order > 0 ? cc->order : pageblock_order; 1442 1443 /* 1444 * We are checking page_order without zone->lock taken. But 1445 * the only small danger is that we skip a potentially suitable 1446 * pageblock, so it's not worth to check order for valid range. 1447 */ 1448 if (buddy_order_unsafe(page) >= order) 1449 return false; 1450 } 1451 1452 if (cc->ignore_block_suitable) 1453 return true; 1454 1455 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 1456 if (is_migrate_movable(get_pageblock_migratetype(page))) 1457 return true; 1458 1459 /* Otherwise skip the block */ 1460 return false; 1461 } 1462 1463 static inline unsigned int 1464 freelist_scan_limit(struct compact_control *cc) 1465 { 1466 unsigned short shift = BITS_PER_LONG - 1; 1467 1468 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1; 1469 } 1470 1471 /* 1472 * Test whether the free scanner has reached the same or lower pageblock than 1473 * the migration scanner, and compaction should thus terminate. 1474 */ 1475 static inline bool compact_scanners_met(struct compact_control *cc) 1476 { 1477 return (cc->free_pfn >> pageblock_order) 1478 <= (cc->migrate_pfn >> pageblock_order); 1479 } 1480 1481 /* 1482 * Used when scanning for a suitable migration target which scans freelists 1483 * in reverse. Reorders the list such as the unscanned pages are scanned 1484 * first on the next iteration of the free scanner 1485 */ 1486 static void 1487 move_freelist_head(struct list_head *freelist, struct page *freepage) 1488 { 1489 LIST_HEAD(sublist); 1490 1491 if (!list_is_first(&freepage->buddy_list, freelist)) { 1492 list_cut_before(&sublist, freelist, &freepage->buddy_list); 1493 list_splice_tail(&sublist, freelist); 1494 } 1495 } 1496 1497 /* 1498 * Similar to move_freelist_head except used by the migration scanner 1499 * when scanning forward. It's possible for these list operations to 1500 * move against each other if they search the free list exactly in 1501 * lockstep. 1502 */ 1503 static void 1504 move_freelist_tail(struct list_head *freelist, struct page *freepage) 1505 { 1506 LIST_HEAD(sublist); 1507 1508 if (!list_is_last(&freepage->buddy_list, freelist)) { 1509 list_cut_position(&sublist, freelist, &freepage->buddy_list); 1510 list_splice_tail(&sublist, freelist); 1511 } 1512 } 1513 1514 static void 1515 fast_isolate_around(struct compact_control *cc, unsigned long pfn) 1516 { 1517 unsigned long start_pfn, end_pfn; 1518 struct page *page; 1519 1520 /* Do not search around if there are enough pages already */ 1521 if (cc->nr_freepages >= cc->nr_migratepages) 1522 return; 1523 1524 /* Minimise scanning during async compaction */ 1525 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC) 1526 return; 1527 1528 /* Pageblock boundaries */ 1529 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn); 1530 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)); 1531 1532 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone); 1533 if (!page) 1534 return; 1535 1536 isolate_freepages_block(cc, &start_pfn, end_pfn, cc->freepages, 1, false); 1537 1538 /* Skip this pageblock in the future as it's full or nearly full */ 1539 if (start_pfn == end_pfn && !cc->no_set_skip_hint) 1540 set_pageblock_skip(page); 1541 } 1542 1543 /* Search orders in round-robin fashion */ 1544 static int next_search_order(struct compact_control *cc, int order) 1545 { 1546 order--; 1547 if (order < 0) 1548 order = cc->order - 1; 1549 1550 /* Search wrapped around? */ 1551 if (order == cc->search_order) { 1552 cc->search_order--; 1553 if (cc->search_order < 0) 1554 cc->search_order = cc->order - 1; 1555 return -1; 1556 } 1557 1558 return order; 1559 } 1560 1561 static void fast_isolate_freepages(struct compact_control *cc) 1562 { 1563 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1); 1564 unsigned int nr_scanned = 0, total_isolated = 0; 1565 unsigned long low_pfn, min_pfn, highest = 0; 1566 unsigned long nr_isolated = 0; 1567 unsigned long distance; 1568 struct page *page = NULL; 1569 bool scan_start = false; 1570 int order; 1571 1572 /* Full compaction passes in a negative order */ 1573 if (cc->order <= 0) 1574 return; 1575 1576 /* 1577 * If starting the scan, use a deeper search and use the highest 1578 * PFN found if a suitable one is not found. 1579 */ 1580 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) { 1581 limit = pageblock_nr_pages >> 1; 1582 scan_start = true; 1583 } 1584 1585 /* 1586 * Preferred point is in the top quarter of the scan space but take 1587 * a pfn from the top half if the search is problematic. 1588 */ 1589 distance = (cc->free_pfn - cc->migrate_pfn); 1590 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2)); 1591 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1)); 1592 1593 if (WARN_ON_ONCE(min_pfn > low_pfn)) 1594 low_pfn = min_pfn; 1595 1596 /* 1597 * Search starts from the last successful isolation order or the next 1598 * order to search after a previous failure 1599 */ 1600 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order); 1601 1602 for (order = cc->search_order; 1603 !page && order >= 0; 1604 order = next_search_order(cc, order)) { 1605 struct free_area *area = &cc->zone->free_area[order]; 1606 struct list_head *freelist; 1607 struct page *freepage; 1608 unsigned long flags; 1609 unsigned int order_scanned = 0; 1610 unsigned long high_pfn = 0; 1611 1612 if (!area->nr_free) 1613 continue; 1614 1615 spin_lock_irqsave(&cc->zone->lock, flags); 1616 freelist = &area->free_list[MIGRATE_MOVABLE]; 1617 list_for_each_entry_reverse(freepage, freelist, buddy_list) { 1618 unsigned long pfn; 1619 1620 order_scanned++; 1621 nr_scanned++; 1622 pfn = page_to_pfn(freepage); 1623 1624 if (pfn >= highest) 1625 highest = max(pageblock_start_pfn(pfn), 1626 cc->zone->zone_start_pfn); 1627 1628 if (pfn >= low_pfn) { 1629 cc->fast_search_fail = 0; 1630 cc->search_order = order; 1631 page = freepage; 1632 break; 1633 } 1634 1635 if (pfn >= min_pfn && pfn > high_pfn) { 1636 high_pfn = pfn; 1637 1638 /* Shorten the scan if a candidate is found */ 1639 limit >>= 1; 1640 } 1641 1642 if (order_scanned >= limit) 1643 break; 1644 } 1645 1646 /* Use a maximum candidate pfn if a preferred one was not found */ 1647 if (!page && high_pfn) { 1648 page = pfn_to_page(high_pfn); 1649 1650 /* Update freepage for the list reorder below */ 1651 freepage = page; 1652 } 1653 1654 /* Reorder to so a future search skips recent pages */ 1655 move_freelist_head(freelist, freepage); 1656 1657 /* Isolate the page if available */ 1658 if (page) { 1659 if (__isolate_free_page(page, order)) { 1660 set_page_private(page, order); 1661 nr_isolated = 1 << order; 1662 nr_scanned += nr_isolated - 1; 1663 total_isolated += nr_isolated; 1664 cc->nr_freepages += nr_isolated; 1665 list_add_tail(&page->lru, &cc->freepages[order]); 1666 count_compact_events(COMPACTISOLATED, nr_isolated); 1667 } else { 1668 /* If isolation fails, abort the search */ 1669 order = cc->search_order + 1; 1670 page = NULL; 1671 } 1672 } 1673 1674 spin_unlock_irqrestore(&cc->zone->lock, flags); 1675 1676 /* Skip fast search if enough freepages isolated */ 1677 if (cc->nr_freepages >= cc->nr_migratepages) 1678 break; 1679 1680 /* 1681 * Smaller scan on next order so the total scan is related 1682 * to freelist_scan_limit. 1683 */ 1684 if (order_scanned >= limit) 1685 limit = max(1U, limit >> 1); 1686 } 1687 1688 trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn, 1689 nr_scanned, total_isolated); 1690 1691 if (!page) { 1692 cc->fast_search_fail++; 1693 if (scan_start) { 1694 /* 1695 * Use the highest PFN found above min. If one was 1696 * not found, be pessimistic for direct compaction 1697 * and use the min mark. 1698 */ 1699 if (highest >= min_pfn) { 1700 page = pfn_to_page(highest); 1701 cc->free_pfn = highest; 1702 } else { 1703 if (cc->direct_compaction && pfn_valid(min_pfn)) { 1704 page = pageblock_pfn_to_page(min_pfn, 1705 min(pageblock_end_pfn(min_pfn), 1706 zone_end_pfn(cc->zone)), 1707 cc->zone); 1708 if (page && !suitable_migration_target(cc, page)) 1709 page = NULL; 1710 1711 cc->free_pfn = min_pfn; 1712 } 1713 } 1714 } 1715 } 1716 1717 if (highest && highest >= cc->zone->compact_cached_free_pfn) { 1718 highest -= pageblock_nr_pages; 1719 cc->zone->compact_cached_free_pfn = highest; 1720 } 1721 1722 cc->total_free_scanned += nr_scanned; 1723 if (!page) 1724 return; 1725 1726 low_pfn = page_to_pfn(page); 1727 fast_isolate_around(cc, low_pfn); 1728 } 1729 1730 /* 1731 * Based on information in the current compact_control, find blocks 1732 * suitable for isolating free pages from and then isolate them. 1733 */ 1734 static void isolate_freepages(struct compact_control *cc) 1735 { 1736 struct zone *zone = cc->zone; 1737 struct page *page; 1738 unsigned long block_start_pfn; /* start of current pageblock */ 1739 unsigned long isolate_start_pfn; /* exact pfn we start at */ 1740 unsigned long block_end_pfn; /* end of current pageblock */ 1741 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 1742 unsigned int stride; 1743 1744 /* Try a small search of the free lists for a candidate */ 1745 fast_isolate_freepages(cc); 1746 if (cc->nr_freepages) 1747 return; 1748 1749 /* 1750 * Initialise the free scanner. The starting point is where we last 1751 * successfully isolated from, zone-cached value, or the end of the 1752 * zone when isolating for the first time. For looping we also need 1753 * this pfn aligned down to the pageblock boundary, because we do 1754 * block_start_pfn -= pageblock_nr_pages in the for loop. 1755 * For ending point, take care when isolating in last pageblock of a 1756 * zone which ends in the middle of a pageblock. 1757 * The low boundary is the end of the pageblock the migration scanner 1758 * is using. 1759 */ 1760 isolate_start_pfn = cc->free_pfn; 1761 block_start_pfn = pageblock_start_pfn(isolate_start_pfn); 1762 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 1763 zone_end_pfn(zone)); 1764 low_pfn = pageblock_end_pfn(cc->migrate_pfn); 1765 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1; 1766 1767 /* 1768 * Isolate free pages until enough are available to migrate the 1769 * pages on cc->migratepages. We stop searching if the migrate 1770 * and free page scanners meet or enough free pages are isolated. 1771 */ 1772 for (; block_start_pfn >= low_pfn; 1773 block_end_pfn = block_start_pfn, 1774 block_start_pfn -= pageblock_nr_pages, 1775 isolate_start_pfn = block_start_pfn) { 1776 unsigned long nr_isolated; 1777 1778 /* 1779 * This can iterate a massively long zone without finding any 1780 * suitable migration targets, so periodically check resched. 1781 */ 1782 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages))) 1783 cond_resched(); 1784 1785 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1786 zone); 1787 if (!page) { 1788 unsigned long next_pfn; 1789 1790 next_pfn = skip_offline_sections_reverse(block_start_pfn); 1791 if (next_pfn) 1792 block_start_pfn = max(next_pfn, low_pfn); 1793 1794 continue; 1795 } 1796 1797 /* Check the block is suitable for migration */ 1798 if (!suitable_migration_target(cc, page)) 1799 continue; 1800 1801 /* If isolation recently failed, do not retry */ 1802 if (!isolation_suitable(cc, page)) 1803 continue; 1804 1805 /* Found a block suitable for isolating free pages from. */ 1806 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn, 1807 block_end_pfn, cc->freepages, stride, false); 1808 1809 /* Update the skip hint if the full pageblock was scanned */ 1810 if (isolate_start_pfn == block_end_pfn) 1811 update_pageblock_skip(cc, page, block_start_pfn - 1812 pageblock_nr_pages); 1813 1814 /* Are enough freepages isolated? */ 1815 if (cc->nr_freepages >= cc->nr_migratepages) { 1816 if (isolate_start_pfn >= block_end_pfn) { 1817 /* 1818 * Restart at previous pageblock if more 1819 * freepages can be isolated next time. 1820 */ 1821 isolate_start_pfn = 1822 block_start_pfn - pageblock_nr_pages; 1823 } 1824 break; 1825 } else if (isolate_start_pfn < block_end_pfn) { 1826 /* 1827 * If isolation failed early, do not continue 1828 * needlessly. 1829 */ 1830 break; 1831 } 1832 1833 /* Adjust stride depending on isolation */ 1834 if (nr_isolated) { 1835 stride = 1; 1836 continue; 1837 } 1838 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1); 1839 } 1840 1841 /* 1842 * Record where the free scanner will restart next time. Either we 1843 * broke from the loop and set isolate_start_pfn based on the last 1844 * call to isolate_freepages_block(), or we met the migration scanner 1845 * and the loop terminated due to isolate_start_pfn < low_pfn 1846 */ 1847 cc->free_pfn = isolate_start_pfn; 1848 } 1849 1850 /* 1851 * This is a migrate-callback that "allocates" freepages by taking pages 1852 * from the isolated freelists in the block we are migrating to. 1853 */ 1854 static struct folio *compaction_alloc(struct folio *src, unsigned long data) 1855 { 1856 struct compact_control *cc = (struct compact_control *)data; 1857 struct folio *dst; 1858 int order = folio_order(src); 1859 bool has_isolated_pages = false; 1860 int start_order; 1861 struct page *freepage; 1862 unsigned long size; 1863 1864 again: 1865 for (start_order = order; start_order < NR_PAGE_ORDERS; start_order++) 1866 if (!list_empty(&cc->freepages[start_order])) 1867 break; 1868 1869 /* no free pages in the list */ 1870 if (start_order == NR_PAGE_ORDERS) { 1871 if (has_isolated_pages) 1872 return NULL; 1873 isolate_freepages(cc); 1874 has_isolated_pages = true; 1875 goto again; 1876 } 1877 1878 freepage = list_first_entry(&cc->freepages[start_order], struct page, 1879 lru); 1880 size = 1 << start_order; 1881 1882 list_del(&freepage->lru); 1883 1884 while (start_order > order) { 1885 start_order--; 1886 size >>= 1; 1887 1888 list_add(&freepage[size].lru, &cc->freepages[start_order]); 1889 set_page_private(&freepage[size], start_order); 1890 } 1891 dst = (struct folio *)freepage; 1892 1893 post_alloc_hook(&dst->page, order, __GFP_MOVABLE); 1894 if (order) 1895 prep_compound_page(&dst->page, order); 1896 cc->nr_freepages -= 1 << order; 1897 cc->nr_migratepages -= 1 << order; 1898 return page_rmappable_folio(&dst->page); 1899 } 1900 1901 /* 1902 * This is a migrate-callback that "frees" freepages back to the isolated 1903 * freelist. All pages on the freelist are from the same zone, so there is no 1904 * special handling needed for NUMA. 1905 */ 1906 static void compaction_free(struct folio *dst, unsigned long data) 1907 { 1908 struct compact_control *cc = (struct compact_control *)data; 1909 int order = folio_order(dst); 1910 struct page *page = &dst->page; 1911 1912 if (folio_put_testzero(dst)) { 1913 free_pages_prepare(page, order); 1914 list_add(&dst->lru, &cc->freepages[order]); 1915 cc->nr_freepages += 1 << order; 1916 } 1917 cc->nr_migratepages += 1 << order; 1918 /* 1919 * someone else has referenced the page, we cannot take it back to our 1920 * free list. 1921 */ 1922 } 1923 1924 /* possible outcome of isolate_migratepages */ 1925 typedef enum { 1926 ISOLATE_ABORT, /* Abort compaction now */ 1927 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1928 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1929 } isolate_migrate_t; 1930 1931 /* 1932 * Allow userspace to control policy on scanning the unevictable LRU for 1933 * compactable pages. 1934 */ 1935 static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT; 1936 /* 1937 * Tunable for proactive compaction. It determines how 1938 * aggressively the kernel should compact memory in the 1939 * background. It takes values in the range [0, 100]. 1940 */ 1941 static unsigned int __read_mostly sysctl_compaction_proactiveness = 20; 1942 static int sysctl_extfrag_threshold = 500; 1943 static int __read_mostly sysctl_compact_memory; 1944 1945 static inline void 1946 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn) 1947 { 1948 if (cc->fast_start_pfn == ULONG_MAX) 1949 return; 1950 1951 if (!cc->fast_start_pfn) 1952 cc->fast_start_pfn = pfn; 1953 1954 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn); 1955 } 1956 1957 static inline unsigned long 1958 reinit_migrate_pfn(struct compact_control *cc) 1959 { 1960 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX) 1961 return cc->migrate_pfn; 1962 1963 cc->migrate_pfn = cc->fast_start_pfn; 1964 cc->fast_start_pfn = ULONG_MAX; 1965 1966 return cc->migrate_pfn; 1967 } 1968 1969 /* 1970 * Briefly search the free lists for a migration source that already has 1971 * some free pages to reduce the number of pages that need migration 1972 * before a pageblock is free. 1973 */ 1974 static unsigned long fast_find_migrateblock(struct compact_control *cc) 1975 { 1976 unsigned int limit = freelist_scan_limit(cc); 1977 unsigned int nr_scanned = 0; 1978 unsigned long distance; 1979 unsigned long pfn = cc->migrate_pfn; 1980 unsigned long high_pfn; 1981 int order; 1982 bool found_block = false; 1983 1984 /* Skip hints are relied on to avoid repeats on the fast search */ 1985 if (cc->ignore_skip_hint) 1986 return pfn; 1987 1988 /* 1989 * If the pageblock should be finished then do not select a different 1990 * pageblock. 1991 */ 1992 if (cc->finish_pageblock) 1993 return pfn; 1994 1995 /* 1996 * If the migrate_pfn is not at the start of a zone or the start 1997 * of a pageblock then assume this is a continuation of a previous 1998 * scan restarted due to COMPACT_CLUSTER_MAX. 1999 */ 2000 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn)) 2001 return pfn; 2002 2003 /* 2004 * For smaller orders, just linearly scan as the number of pages 2005 * to migrate should be relatively small and does not necessarily 2006 * justify freeing up a large block for a small allocation. 2007 */ 2008 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER) 2009 return pfn; 2010 2011 /* 2012 * Only allow kcompactd and direct requests for movable pages to 2013 * quickly clear out a MOVABLE pageblock for allocation. This 2014 * reduces the risk that a large movable pageblock is freed for 2015 * an unmovable/reclaimable small allocation. 2016 */ 2017 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE) 2018 return pfn; 2019 2020 /* 2021 * When starting the migration scanner, pick any pageblock within the 2022 * first half of the search space. Otherwise try and pick a pageblock 2023 * within the first eighth to reduce the chances that a migration 2024 * target later becomes a source. 2025 */ 2026 distance = (cc->free_pfn - cc->migrate_pfn) >> 1; 2027 if (cc->migrate_pfn != cc->zone->zone_start_pfn) 2028 distance >>= 2; 2029 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance); 2030 2031 for (order = cc->order - 1; 2032 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit; 2033 order--) { 2034 struct free_area *area = &cc->zone->free_area[order]; 2035 struct list_head *freelist; 2036 unsigned long flags; 2037 struct page *freepage; 2038 2039 if (!area->nr_free) 2040 continue; 2041 2042 spin_lock_irqsave(&cc->zone->lock, flags); 2043 freelist = &area->free_list[MIGRATE_MOVABLE]; 2044 list_for_each_entry(freepage, freelist, buddy_list) { 2045 unsigned long free_pfn; 2046 2047 if (nr_scanned++ >= limit) { 2048 move_freelist_tail(freelist, freepage); 2049 break; 2050 } 2051 2052 free_pfn = page_to_pfn(freepage); 2053 if (free_pfn < high_pfn) { 2054 /* 2055 * Avoid if skipped recently. Ideally it would 2056 * move to the tail but even safe iteration of 2057 * the list assumes an entry is deleted, not 2058 * reordered. 2059 */ 2060 if (get_pageblock_skip(freepage)) 2061 continue; 2062 2063 /* Reorder to so a future search skips recent pages */ 2064 move_freelist_tail(freelist, freepage); 2065 2066 update_fast_start_pfn(cc, free_pfn); 2067 pfn = pageblock_start_pfn(free_pfn); 2068 if (pfn < cc->zone->zone_start_pfn) 2069 pfn = cc->zone->zone_start_pfn; 2070 cc->fast_search_fail = 0; 2071 found_block = true; 2072 break; 2073 } 2074 } 2075 spin_unlock_irqrestore(&cc->zone->lock, flags); 2076 } 2077 2078 cc->total_migrate_scanned += nr_scanned; 2079 2080 /* 2081 * If fast scanning failed then use a cached entry for a page block 2082 * that had free pages as the basis for starting a linear scan. 2083 */ 2084 if (!found_block) { 2085 cc->fast_search_fail++; 2086 pfn = reinit_migrate_pfn(cc); 2087 } 2088 return pfn; 2089 } 2090 2091 /* 2092 * Isolate all pages that can be migrated from the first suitable block, 2093 * starting at the block pointed to by the migrate scanner pfn within 2094 * compact_control. 2095 */ 2096 static isolate_migrate_t isolate_migratepages(struct compact_control *cc) 2097 { 2098 unsigned long block_start_pfn; 2099 unsigned long block_end_pfn; 2100 unsigned long low_pfn; 2101 struct page *page; 2102 const isolate_mode_t isolate_mode = 2103 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 2104 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0); 2105 bool fast_find_block; 2106 2107 /* 2108 * Start at where we last stopped, or beginning of the zone as 2109 * initialized by compact_zone(). The first failure will use 2110 * the lowest PFN as the starting point for linear scanning. 2111 */ 2112 low_pfn = fast_find_migrateblock(cc); 2113 block_start_pfn = pageblock_start_pfn(low_pfn); 2114 if (block_start_pfn < cc->zone->zone_start_pfn) 2115 block_start_pfn = cc->zone->zone_start_pfn; 2116 2117 /* 2118 * fast_find_migrateblock() has already ensured the pageblock is not 2119 * set with a skipped flag, so to avoid the isolation_suitable check 2120 * below again, check whether the fast search was successful. 2121 */ 2122 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail; 2123 2124 /* Only scan within a pageblock boundary */ 2125 block_end_pfn = pageblock_end_pfn(low_pfn); 2126 2127 /* 2128 * Iterate over whole pageblocks until we find the first suitable. 2129 * Do not cross the free scanner. 2130 */ 2131 for (; block_end_pfn <= cc->free_pfn; 2132 fast_find_block = false, 2133 cc->migrate_pfn = low_pfn = block_end_pfn, 2134 block_start_pfn = block_end_pfn, 2135 block_end_pfn += pageblock_nr_pages) { 2136 2137 /* 2138 * This can potentially iterate a massively long zone with 2139 * many pageblocks unsuitable, so periodically check if we 2140 * need to schedule. 2141 */ 2142 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages))) 2143 cond_resched(); 2144 2145 page = pageblock_pfn_to_page(block_start_pfn, 2146 block_end_pfn, cc->zone); 2147 if (!page) { 2148 unsigned long next_pfn; 2149 2150 next_pfn = skip_offline_sections(block_start_pfn); 2151 if (next_pfn) 2152 block_end_pfn = min(next_pfn, cc->free_pfn); 2153 continue; 2154 } 2155 2156 /* 2157 * If isolation recently failed, do not retry. Only check the 2158 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock 2159 * to be visited multiple times. Assume skip was checked 2160 * before making it "skip" so other compaction instances do 2161 * not scan the same block. 2162 */ 2163 if ((pageblock_aligned(low_pfn) || 2164 low_pfn == cc->zone->zone_start_pfn) && 2165 !fast_find_block && !isolation_suitable(cc, page)) 2166 continue; 2167 2168 /* 2169 * For async direct compaction, only scan the pageblocks of the 2170 * same migratetype without huge pages. Async direct compaction 2171 * is optimistic to see if the minimum amount of work satisfies 2172 * the allocation. The cached PFN is updated as it's possible 2173 * that all remaining blocks between source and target are 2174 * unsuitable and the compaction scanners fail to meet. 2175 */ 2176 if (!suitable_migration_source(cc, page)) { 2177 update_cached_migrate(cc, block_end_pfn); 2178 continue; 2179 } 2180 2181 /* Perform the isolation */ 2182 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn, 2183 isolate_mode)) 2184 return ISOLATE_ABORT; 2185 2186 /* 2187 * Either we isolated something and proceed with migration. Or 2188 * we failed and compact_zone should decide if we should 2189 * continue or not. 2190 */ 2191 break; 2192 } 2193 2194 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 2195 } 2196 2197 /* 2198 * Determine whether kswapd is (or recently was!) running on this node. 2199 * 2200 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't 2201 * zero it. 2202 */ 2203 static bool kswapd_is_running(pg_data_t *pgdat) 2204 { 2205 bool running; 2206 2207 pgdat_kswapd_lock(pgdat); 2208 running = pgdat->kswapd && task_is_running(pgdat->kswapd); 2209 pgdat_kswapd_unlock(pgdat); 2210 2211 return running; 2212 } 2213 2214 /* 2215 * A zone's fragmentation score is the external fragmentation wrt to the 2216 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100]. 2217 */ 2218 static unsigned int fragmentation_score_zone(struct zone *zone) 2219 { 2220 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER); 2221 } 2222 2223 /* 2224 * A weighted zone's fragmentation score is the external fragmentation 2225 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It 2226 * returns a value in the range [0, 100]. 2227 * 2228 * The scaling factor ensures that proactive compaction focuses on larger 2229 * zones like ZONE_NORMAL, rather than smaller, specialized zones like 2230 * ZONE_DMA32. For smaller zones, the score value remains close to zero, 2231 * and thus never exceeds the high threshold for proactive compaction. 2232 */ 2233 static unsigned int fragmentation_score_zone_weighted(struct zone *zone) 2234 { 2235 unsigned long score; 2236 2237 score = zone->present_pages * fragmentation_score_zone(zone); 2238 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1); 2239 } 2240 2241 /* 2242 * The per-node proactive (background) compaction process is started by its 2243 * corresponding kcompactd thread when the node's fragmentation score 2244 * exceeds the high threshold. The compaction process remains active till 2245 * the node's score falls below the low threshold, or one of the back-off 2246 * conditions is met. 2247 */ 2248 static unsigned int fragmentation_score_node(pg_data_t *pgdat) 2249 { 2250 unsigned int score = 0; 2251 int zoneid; 2252 2253 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2254 struct zone *zone; 2255 2256 zone = &pgdat->node_zones[zoneid]; 2257 if (!populated_zone(zone)) 2258 continue; 2259 score += fragmentation_score_zone_weighted(zone); 2260 } 2261 2262 return score; 2263 } 2264 2265 static unsigned int fragmentation_score_wmark(bool low) 2266 { 2267 unsigned int wmark_low; 2268 2269 /* 2270 * Cap the low watermark to avoid excessive compaction 2271 * activity in case a user sets the proactiveness tunable 2272 * close to 100 (maximum). 2273 */ 2274 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U); 2275 return low ? wmark_low : min(wmark_low + 10, 100U); 2276 } 2277 2278 static bool should_proactive_compact_node(pg_data_t *pgdat) 2279 { 2280 int wmark_high; 2281 2282 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat)) 2283 return false; 2284 2285 wmark_high = fragmentation_score_wmark(false); 2286 return fragmentation_score_node(pgdat) > wmark_high; 2287 } 2288 2289 static enum compact_result __compact_finished(struct compact_control *cc) 2290 { 2291 unsigned int order; 2292 const int migratetype = cc->migratetype; 2293 int ret; 2294 2295 /* Compaction run completes if the migrate and free scanner meet */ 2296 if (compact_scanners_met(cc)) { 2297 /* Let the next compaction start anew. */ 2298 reset_cached_positions(cc->zone); 2299 2300 /* 2301 * Mark that the PG_migrate_skip information should be cleared 2302 * by kswapd when it goes to sleep. kcompactd does not set the 2303 * flag itself as the decision to be clear should be directly 2304 * based on an allocation request. 2305 */ 2306 if (cc->direct_compaction) 2307 cc->zone->compact_blockskip_flush = true; 2308 2309 if (cc->whole_zone) 2310 return COMPACT_COMPLETE; 2311 else 2312 return COMPACT_PARTIAL_SKIPPED; 2313 } 2314 2315 if (cc->proactive_compaction) { 2316 int score, wmark_low; 2317 pg_data_t *pgdat; 2318 2319 pgdat = cc->zone->zone_pgdat; 2320 if (kswapd_is_running(pgdat)) 2321 return COMPACT_PARTIAL_SKIPPED; 2322 2323 score = fragmentation_score_zone(cc->zone); 2324 wmark_low = fragmentation_score_wmark(true); 2325 2326 if (score > wmark_low) 2327 ret = COMPACT_CONTINUE; 2328 else 2329 ret = COMPACT_SUCCESS; 2330 2331 goto out; 2332 } 2333 2334 if (is_via_compact_memory(cc->order)) 2335 return COMPACT_CONTINUE; 2336 2337 /* 2338 * Always finish scanning a pageblock to reduce the possibility of 2339 * fallbacks in the future. This is particularly important when 2340 * migration source is unmovable/reclaimable but it's not worth 2341 * special casing. 2342 */ 2343 if (!pageblock_aligned(cc->migrate_pfn)) 2344 return COMPACT_CONTINUE; 2345 2346 /* Direct compactor: Is a suitable page free? */ 2347 ret = COMPACT_NO_SUITABLE_PAGE; 2348 for (order = cc->order; order < NR_PAGE_ORDERS; order++) { 2349 struct free_area *area = &cc->zone->free_area[order]; 2350 bool can_steal; 2351 2352 /* Job done if page is free of the right migratetype */ 2353 if (!free_area_empty(area, migratetype)) 2354 return COMPACT_SUCCESS; 2355 2356 #ifdef CONFIG_CMA 2357 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 2358 if (migratetype == MIGRATE_MOVABLE && 2359 !free_area_empty(area, MIGRATE_CMA)) 2360 return COMPACT_SUCCESS; 2361 #endif 2362 /* 2363 * Job done if allocation would steal freepages from 2364 * other migratetype buddy lists. 2365 */ 2366 if (find_suitable_fallback(area, order, migratetype, 2367 true, &can_steal) != -1) 2368 /* 2369 * Movable pages are OK in any pageblock. If we are 2370 * stealing for a non-movable allocation, make sure 2371 * we finish compacting the current pageblock first 2372 * (which is assured by the above migrate_pfn align 2373 * check) so it is as free as possible and we won't 2374 * have to steal another one soon. 2375 */ 2376 return COMPACT_SUCCESS; 2377 } 2378 2379 out: 2380 if (cc->contended || fatal_signal_pending(current)) 2381 ret = COMPACT_CONTENDED; 2382 2383 return ret; 2384 } 2385 2386 static enum compact_result compact_finished(struct compact_control *cc) 2387 { 2388 int ret; 2389 2390 ret = __compact_finished(cc); 2391 trace_mm_compaction_finished(cc->zone, cc->order, ret); 2392 if (ret == COMPACT_NO_SUITABLE_PAGE) 2393 ret = COMPACT_CONTINUE; 2394 2395 return ret; 2396 } 2397 2398 static bool __compaction_suitable(struct zone *zone, int order, 2399 int highest_zoneidx, 2400 unsigned long wmark_target) 2401 { 2402 unsigned long watermark; 2403 /* 2404 * Watermarks for order-0 must be met for compaction to be able to 2405 * isolate free pages for migration targets. This means that the 2406 * watermark and alloc_flags have to match, or be more pessimistic than 2407 * the check in __isolate_free_page(). We don't use the direct 2408 * compactor's alloc_flags, as they are not relevant for freepage 2409 * isolation. We however do use the direct compactor's highest_zoneidx 2410 * to skip over zones where lowmem reserves would prevent allocation 2411 * even if compaction succeeds. 2412 * For costly orders, we require low watermark instead of min for 2413 * compaction to proceed to increase its chances. 2414 * ALLOC_CMA is used, as pages in CMA pageblocks are considered 2415 * suitable migration targets 2416 */ 2417 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ? 2418 low_wmark_pages(zone) : min_wmark_pages(zone); 2419 watermark += compact_gap(order); 2420 return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx, 2421 ALLOC_CMA, wmark_target); 2422 } 2423 2424 /* 2425 * compaction_suitable: Is this suitable to run compaction on this zone now? 2426 */ 2427 bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx) 2428 { 2429 enum compact_result compact_result; 2430 bool suitable; 2431 2432 suitable = __compaction_suitable(zone, order, highest_zoneidx, 2433 zone_page_state(zone, NR_FREE_PAGES)); 2434 /* 2435 * fragmentation index determines if allocation failures are due to 2436 * low memory or external fragmentation 2437 * 2438 * index of -1000 would imply allocations might succeed depending on 2439 * watermarks, but we already failed the high-order watermark check 2440 * index towards 0 implies failure is due to lack of memory 2441 * index towards 1000 implies failure is due to fragmentation 2442 * 2443 * Only compact if a failure would be due to fragmentation. Also 2444 * ignore fragindex for non-costly orders where the alternative to 2445 * a successful reclaim/compaction is OOM. Fragindex and the 2446 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent 2447 * excessive compaction for costly orders, but it should not be at the 2448 * expense of system stability. 2449 */ 2450 if (suitable) { 2451 compact_result = COMPACT_CONTINUE; 2452 if (order > PAGE_ALLOC_COSTLY_ORDER) { 2453 int fragindex = fragmentation_index(zone, order); 2454 2455 if (fragindex >= 0 && 2456 fragindex <= sysctl_extfrag_threshold) { 2457 suitable = false; 2458 compact_result = COMPACT_NOT_SUITABLE_ZONE; 2459 } 2460 } 2461 } else { 2462 compact_result = COMPACT_SKIPPED; 2463 } 2464 2465 trace_mm_compaction_suitable(zone, order, compact_result); 2466 2467 return suitable; 2468 } 2469 2470 bool compaction_zonelist_suitable(struct alloc_context *ac, int order, 2471 int alloc_flags) 2472 { 2473 struct zone *zone; 2474 struct zoneref *z; 2475 2476 /* 2477 * Make sure at least one zone would pass __compaction_suitable if we continue 2478 * retrying the reclaim. 2479 */ 2480 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2481 ac->highest_zoneidx, ac->nodemask) { 2482 unsigned long available; 2483 2484 /* 2485 * Do not consider all the reclaimable memory because we do not 2486 * want to trash just for a single high order allocation which 2487 * is even not guaranteed to appear even if __compaction_suitable 2488 * is happy about the watermark check. 2489 */ 2490 available = zone_reclaimable_pages(zone) / order; 2491 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 2492 if (__compaction_suitable(zone, order, ac->highest_zoneidx, 2493 available)) 2494 return true; 2495 } 2496 2497 return false; 2498 } 2499 2500 /* 2501 * Should we do compaction for target allocation order. 2502 * Return COMPACT_SUCCESS if allocation for target order can be already 2503 * satisfied 2504 * Return COMPACT_SKIPPED if compaction for target order is likely to fail 2505 * Return COMPACT_CONTINUE if compaction for target order should be ran 2506 */ 2507 static enum compact_result 2508 compaction_suit_allocation_order(struct zone *zone, unsigned int order, 2509 int highest_zoneidx, unsigned int alloc_flags) 2510 { 2511 unsigned long watermark; 2512 2513 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 2514 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx, 2515 alloc_flags)) 2516 return COMPACT_SUCCESS; 2517 2518 if (!compaction_suitable(zone, order, highest_zoneidx)) 2519 return COMPACT_SKIPPED; 2520 2521 return COMPACT_CONTINUE; 2522 } 2523 2524 static enum compact_result 2525 compact_zone(struct compact_control *cc, struct capture_control *capc) 2526 { 2527 enum compact_result ret; 2528 unsigned long start_pfn = cc->zone->zone_start_pfn; 2529 unsigned long end_pfn = zone_end_pfn(cc->zone); 2530 unsigned long last_migrated_pfn; 2531 const bool sync = cc->mode != MIGRATE_ASYNC; 2532 bool update_cached; 2533 unsigned int nr_succeeded = 0, nr_migratepages; 2534 int order; 2535 2536 /* 2537 * These counters track activities during zone compaction. Initialize 2538 * them before compacting a new zone. 2539 */ 2540 cc->total_migrate_scanned = 0; 2541 cc->total_free_scanned = 0; 2542 cc->nr_migratepages = 0; 2543 cc->nr_freepages = 0; 2544 for (order = 0; order < NR_PAGE_ORDERS; order++) 2545 INIT_LIST_HEAD(&cc->freepages[order]); 2546 INIT_LIST_HEAD(&cc->migratepages); 2547 2548 cc->migratetype = gfp_migratetype(cc->gfp_mask); 2549 2550 if (!is_via_compact_memory(cc->order)) { 2551 ret = compaction_suit_allocation_order(cc->zone, cc->order, 2552 cc->highest_zoneidx, 2553 cc->alloc_flags); 2554 if (ret != COMPACT_CONTINUE) 2555 return ret; 2556 } 2557 2558 /* 2559 * Clear pageblock skip if there were failures recently and compaction 2560 * is about to be retried after being deferred. 2561 */ 2562 if (compaction_restarting(cc->zone, cc->order)) 2563 __reset_isolation_suitable(cc->zone); 2564 2565 /* 2566 * Setup to move all movable pages to the end of the zone. Used cached 2567 * information on where the scanners should start (unless we explicitly 2568 * want to compact the whole zone), but check that it is initialised 2569 * by ensuring the values are within zone boundaries. 2570 */ 2571 cc->fast_start_pfn = 0; 2572 if (cc->whole_zone) { 2573 cc->migrate_pfn = start_pfn; 2574 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2575 } else { 2576 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync]; 2577 cc->free_pfn = cc->zone->compact_cached_free_pfn; 2578 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 2579 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2580 cc->zone->compact_cached_free_pfn = cc->free_pfn; 2581 } 2582 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 2583 cc->migrate_pfn = start_pfn; 2584 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 2585 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 2586 } 2587 2588 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn) 2589 cc->whole_zone = true; 2590 } 2591 2592 last_migrated_pfn = 0; 2593 2594 /* 2595 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on 2596 * the basis that some migrations will fail in ASYNC mode. However, 2597 * if the cached PFNs match and pageblocks are skipped due to having 2598 * no isolation candidates, then the sync state does not matter. 2599 * Until a pageblock with isolation candidates is found, keep the 2600 * cached PFNs in sync to avoid revisiting the same blocks. 2601 */ 2602 update_cached = !sync && 2603 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1]; 2604 2605 trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync); 2606 2607 /* lru_add_drain_all could be expensive with involving other CPUs */ 2608 lru_add_drain(); 2609 2610 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) { 2611 int err; 2612 unsigned long iteration_start_pfn = cc->migrate_pfn; 2613 2614 /* 2615 * Avoid multiple rescans of the same pageblock which can 2616 * happen if a page cannot be isolated (dirty/writeback in 2617 * async mode) or if the migrated pages are being allocated 2618 * before the pageblock is cleared. The first rescan will 2619 * capture the entire pageblock for migration. If it fails, 2620 * it'll be marked skip and scanning will proceed as normal. 2621 */ 2622 cc->finish_pageblock = false; 2623 if (pageblock_start_pfn(last_migrated_pfn) == 2624 pageblock_start_pfn(iteration_start_pfn)) { 2625 cc->finish_pageblock = true; 2626 } 2627 2628 rescan: 2629 switch (isolate_migratepages(cc)) { 2630 case ISOLATE_ABORT: 2631 ret = COMPACT_CONTENDED; 2632 putback_movable_pages(&cc->migratepages); 2633 cc->nr_migratepages = 0; 2634 goto out; 2635 case ISOLATE_NONE: 2636 if (update_cached) { 2637 cc->zone->compact_cached_migrate_pfn[1] = 2638 cc->zone->compact_cached_migrate_pfn[0]; 2639 } 2640 2641 /* 2642 * We haven't isolated and migrated anything, but 2643 * there might still be unflushed migrations from 2644 * previous cc->order aligned block. 2645 */ 2646 goto check_drain; 2647 case ISOLATE_SUCCESS: 2648 update_cached = false; 2649 last_migrated_pfn = max(cc->zone->zone_start_pfn, 2650 pageblock_start_pfn(cc->migrate_pfn - 1)); 2651 } 2652 2653 /* 2654 * Record the number of pages to migrate since the 2655 * compaction_alloc/free() will update cc->nr_migratepages 2656 * properly. 2657 */ 2658 nr_migratepages = cc->nr_migratepages; 2659 err = migrate_pages(&cc->migratepages, compaction_alloc, 2660 compaction_free, (unsigned long)cc, cc->mode, 2661 MR_COMPACTION, &nr_succeeded); 2662 2663 trace_mm_compaction_migratepages(nr_migratepages, nr_succeeded); 2664 2665 /* All pages were either migrated or will be released */ 2666 cc->nr_migratepages = 0; 2667 if (err) { 2668 putback_movable_pages(&cc->migratepages); 2669 /* 2670 * migrate_pages() may return -ENOMEM when scanners meet 2671 * and we want compact_finished() to detect it 2672 */ 2673 if (err == -ENOMEM && !compact_scanners_met(cc)) { 2674 ret = COMPACT_CONTENDED; 2675 goto out; 2676 } 2677 /* 2678 * If an ASYNC or SYNC_LIGHT fails to migrate a page 2679 * within the pageblock_order-aligned block and 2680 * fast_find_migrateblock may be used then scan the 2681 * remainder of the pageblock. This will mark the 2682 * pageblock "skip" to avoid rescanning in the near 2683 * future. This will isolate more pages than necessary 2684 * for the request but avoid loops due to 2685 * fast_find_migrateblock revisiting blocks that were 2686 * recently partially scanned. 2687 */ 2688 if (!pageblock_aligned(cc->migrate_pfn) && 2689 !cc->ignore_skip_hint && !cc->finish_pageblock && 2690 (cc->mode < MIGRATE_SYNC)) { 2691 cc->finish_pageblock = true; 2692 2693 /* 2694 * Draining pcplists does not help THP if 2695 * any page failed to migrate. Even after 2696 * drain, the pageblock will not be free. 2697 */ 2698 if (cc->order == COMPACTION_HPAGE_ORDER) 2699 last_migrated_pfn = 0; 2700 2701 goto rescan; 2702 } 2703 } 2704 2705 /* Stop if a page has been captured */ 2706 if (capc && capc->page) { 2707 ret = COMPACT_SUCCESS; 2708 break; 2709 } 2710 2711 check_drain: 2712 /* 2713 * Has the migration scanner moved away from the previous 2714 * cc->order aligned block where we migrated from? If yes, 2715 * flush the pages that were freed, so that they can merge and 2716 * compact_finished() can detect immediately if allocation 2717 * would succeed. 2718 */ 2719 if (cc->order > 0 && last_migrated_pfn) { 2720 unsigned long current_block_start = 2721 block_start_pfn(cc->migrate_pfn, cc->order); 2722 2723 if (last_migrated_pfn < current_block_start) { 2724 lru_add_drain_cpu_zone(cc->zone); 2725 /* No more flushing until we migrate again */ 2726 last_migrated_pfn = 0; 2727 } 2728 } 2729 } 2730 2731 out: 2732 /* 2733 * Release free pages and update where the free scanner should restart, 2734 * so we don't leave any returned pages behind in the next attempt. 2735 */ 2736 if (cc->nr_freepages > 0) { 2737 unsigned long free_pfn = release_free_list(cc->freepages); 2738 2739 cc->nr_freepages = 0; 2740 VM_BUG_ON(free_pfn == 0); 2741 /* The cached pfn is always the first in a pageblock */ 2742 free_pfn = pageblock_start_pfn(free_pfn); 2743 /* 2744 * Only go back, not forward. The cached pfn might have been 2745 * already reset to zone end in compact_finished() 2746 */ 2747 if (free_pfn > cc->zone->compact_cached_free_pfn) 2748 cc->zone->compact_cached_free_pfn = free_pfn; 2749 } 2750 2751 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned); 2752 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned); 2753 2754 trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret); 2755 2756 VM_BUG_ON(!list_empty(&cc->migratepages)); 2757 2758 return ret; 2759 } 2760 2761 static enum compact_result compact_zone_order(struct zone *zone, int order, 2762 gfp_t gfp_mask, enum compact_priority prio, 2763 unsigned int alloc_flags, int highest_zoneidx, 2764 struct page **capture) 2765 { 2766 enum compact_result ret; 2767 struct compact_control cc = { 2768 .order = order, 2769 .search_order = order, 2770 .gfp_mask = gfp_mask, 2771 .zone = zone, 2772 .mode = (prio == COMPACT_PRIO_ASYNC) ? 2773 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT, 2774 .alloc_flags = alloc_flags, 2775 .highest_zoneidx = highest_zoneidx, 2776 .direct_compaction = true, 2777 .whole_zone = (prio == MIN_COMPACT_PRIORITY), 2778 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY), 2779 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY) 2780 }; 2781 struct capture_control capc = { 2782 .cc = &cc, 2783 .page = NULL, 2784 }; 2785 2786 /* 2787 * Make sure the structs are really initialized before we expose the 2788 * capture control, in case we are interrupted and the interrupt handler 2789 * frees a page. 2790 */ 2791 barrier(); 2792 WRITE_ONCE(current->capture_control, &capc); 2793 2794 ret = compact_zone(&cc, &capc); 2795 2796 /* 2797 * Make sure we hide capture control first before we read the captured 2798 * page pointer, otherwise an interrupt could free and capture a page 2799 * and we would leak it. 2800 */ 2801 WRITE_ONCE(current->capture_control, NULL); 2802 *capture = READ_ONCE(capc.page); 2803 /* 2804 * Technically, it is also possible that compaction is skipped but 2805 * the page is still captured out of luck(IRQ came and freed the page). 2806 * Returning COMPACT_SUCCESS in such cases helps in properly accounting 2807 * the COMPACT[STALL|FAIL] when compaction is skipped. 2808 */ 2809 if (*capture) 2810 ret = COMPACT_SUCCESS; 2811 2812 return ret; 2813 } 2814 2815 /** 2816 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 2817 * @gfp_mask: The GFP mask of the current allocation 2818 * @order: The order of the current allocation 2819 * @alloc_flags: The allocation flags of the current allocation 2820 * @ac: The context of current allocation 2821 * @prio: Determines how hard direct compaction should try to succeed 2822 * @capture: Pointer to free page created by compaction will be stored here 2823 * 2824 * This is the main entry point for direct page compaction. 2825 */ 2826 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 2827 unsigned int alloc_flags, const struct alloc_context *ac, 2828 enum compact_priority prio, struct page **capture) 2829 { 2830 struct zoneref *z; 2831 struct zone *zone; 2832 enum compact_result rc = COMPACT_SKIPPED; 2833 2834 if (!gfp_compaction_allowed(gfp_mask)) 2835 return COMPACT_SKIPPED; 2836 2837 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio); 2838 2839 /* Compact each zone in the list */ 2840 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2841 ac->highest_zoneidx, ac->nodemask) { 2842 enum compact_result status; 2843 2844 if (prio > MIN_COMPACT_PRIORITY 2845 && compaction_deferred(zone, order)) { 2846 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); 2847 continue; 2848 } 2849 2850 status = compact_zone_order(zone, order, gfp_mask, prio, 2851 alloc_flags, ac->highest_zoneidx, capture); 2852 rc = max(status, rc); 2853 2854 /* The allocation should succeed, stop compacting */ 2855 if (status == COMPACT_SUCCESS) { 2856 /* 2857 * We think the allocation will succeed in this zone, 2858 * but it is not certain, hence the false. The caller 2859 * will repeat this with true if allocation indeed 2860 * succeeds in this zone. 2861 */ 2862 compaction_defer_reset(zone, order, false); 2863 2864 break; 2865 } 2866 2867 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE || 2868 status == COMPACT_PARTIAL_SKIPPED)) 2869 /* 2870 * We think that allocation won't succeed in this zone 2871 * so we defer compaction there. If it ends up 2872 * succeeding after all, it will be reset. 2873 */ 2874 defer_compaction(zone, order); 2875 2876 /* 2877 * We might have stopped compacting due to need_resched() in 2878 * async compaction, or due to a fatal signal detected. In that 2879 * case do not try further zones 2880 */ 2881 if ((prio == COMPACT_PRIO_ASYNC && need_resched()) 2882 || fatal_signal_pending(current)) 2883 break; 2884 } 2885 2886 return rc; 2887 } 2888 2889 /* 2890 * compact_node() - compact all zones within a node 2891 * @pgdat: The node page data 2892 * @proactive: Whether the compaction is proactive 2893 * 2894 * For proactive compaction, compact till each zone's fragmentation score 2895 * reaches within proactive compaction thresholds (as determined by the 2896 * proactiveness tunable), it is possible that the function returns before 2897 * reaching score targets due to various back-off conditions, such as, 2898 * contention on per-node or per-zone locks. 2899 */ 2900 static int compact_node(pg_data_t *pgdat, bool proactive) 2901 { 2902 int zoneid; 2903 struct zone *zone; 2904 struct compact_control cc = { 2905 .order = -1, 2906 .mode = proactive ? MIGRATE_SYNC_LIGHT : MIGRATE_SYNC, 2907 .ignore_skip_hint = true, 2908 .whole_zone = true, 2909 .gfp_mask = GFP_KERNEL, 2910 .proactive_compaction = proactive, 2911 }; 2912 2913 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2914 zone = &pgdat->node_zones[zoneid]; 2915 if (!populated_zone(zone)) 2916 continue; 2917 2918 if (fatal_signal_pending(current)) 2919 return -EINTR; 2920 2921 cc.zone = zone; 2922 2923 compact_zone(&cc, NULL); 2924 2925 if (proactive) { 2926 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 2927 cc.total_migrate_scanned); 2928 count_compact_events(KCOMPACTD_FREE_SCANNED, 2929 cc.total_free_scanned); 2930 } 2931 } 2932 2933 return 0; 2934 } 2935 2936 /* Compact all zones of all nodes in the system */ 2937 static int compact_nodes(void) 2938 { 2939 int ret, nid; 2940 2941 /* Flush pending updates to the LRU lists */ 2942 lru_add_drain_all(); 2943 2944 for_each_online_node(nid) { 2945 ret = compact_node(NODE_DATA(nid), false); 2946 if (ret) 2947 return ret; 2948 } 2949 2950 return 0; 2951 } 2952 2953 static int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write, 2954 void *buffer, size_t *length, loff_t *ppos) 2955 { 2956 int rc, nid; 2957 2958 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 2959 if (rc) 2960 return rc; 2961 2962 if (write && sysctl_compaction_proactiveness) { 2963 for_each_online_node(nid) { 2964 pg_data_t *pgdat = NODE_DATA(nid); 2965 2966 if (pgdat->proactive_compact_trigger) 2967 continue; 2968 2969 pgdat->proactive_compact_trigger = true; 2970 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1, 2971 pgdat->nr_zones - 1); 2972 wake_up_interruptible(&pgdat->kcompactd_wait); 2973 } 2974 } 2975 2976 return 0; 2977 } 2978 2979 /* 2980 * This is the entry point for compacting all nodes via 2981 * /proc/sys/vm/compact_memory 2982 */ 2983 static int sysctl_compaction_handler(struct ctl_table *table, int write, 2984 void *buffer, size_t *length, loff_t *ppos) 2985 { 2986 int ret; 2987 2988 ret = proc_dointvec(table, write, buffer, length, ppos); 2989 if (ret) 2990 return ret; 2991 2992 if (sysctl_compact_memory != 1) 2993 return -EINVAL; 2994 2995 if (write) 2996 ret = compact_nodes(); 2997 2998 return ret; 2999 } 3000 3001 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 3002 static ssize_t compact_store(struct device *dev, 3003 struct device_attribute *attr, 3004 const char *buf, size_t count) 3005 { 3006 int nid = dev->id; 3007 3008 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 3009 /* Flush pending updates to the LRU lists */ 3010 lru_add_drain_all(); 3011 3012 compact_node(NODE_DATA(nid), false); 3013 } 3014 3015 return count; 3016 } 3017 static DEVICE_ATTR_WO(compact); 3018 3019 int compaction_register_node(struct node *node) 3020 { 3021 return device_create_file(&node->dev, &dev_attr_compact); 3022 } 3023 3024 void compaction_unregister_node(struct node *node) 3025 { 3026 device_remove_file(&node->dev, &dev_attr_compact); 3027 } 3028 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 3029 3030 static inline bool kcompactd_work_requested(pg_data_t *pgdat) 3031 { 3032 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() || 3033 pgdat->proactive_compact_trigger; 3034 } 3035 3036 static bool kcompactd_node_suitable(pg_data_t *pgdat) 3037 { 3038 int zoneid; 3039 struct zone *zone; 3040 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx; 3041 enum compact_result ret; 3042 3043 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) { 3044 zone = &pgdat->node_zones[zoneid]; 3045 3046 if (!populated_zone(zone)) 3047 continue; 3048 3049 ret = compaction_suit_allocation_order(zone, 3050 pgdat->kcompactd_max_order, 3051 highest_zoneidx, ALLOC_WMARK_MIN); 3052 if (ret == COMPACT_CONTINUE) 3053 return true; 3054 } 3055 3056 return false; 3057 } 3058 3059 static void kcompactd_do_work(pg_data_t *pgdat) 3060 { 3061 /* 3062 * With no special task, compact all zones so that a page of requested 3063 * order is allocatable. 3064 */ 3065 int zoneid; 3066 struct zone *zone; 3067 struct compact_control cc = { 3068 .order = pgdat->kcompactd_max_order, 3069 .search_order = pgdat->kcompactd_max_order, 3070 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx, 3071 .mode = MIGRATE_SYNC_LIGHT, 3072 .ignore_skip_hint = false, 3073 .gfp_mask = GFP_KERNEL, 3074 }; 3075 enum compact_result ret; 3076 3077 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 3078 cc.highest_zoneidx); 3079 count_compact_event(KCOMPACTD_WAKE); 3080 3081 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) { 3082 int status; 3083 3084 zone = &pgdat->node_zones[zoneid]; 3085 if (!populated_zone(zone)) 3086 continue; 3087 3088 if (compaction_deferred(zone, cc.order)) 3089 continue; 3090 3091 ret = compaction_suit_allocation_order(zone, 3092 cc.order, zoneid, ALLOC_WMARK_MIN); 3093 if (ret != COMPACT_CONTINUE) 3094 continue; 3095 3096 if (kthread_should_stop()) 3097 return; 3098 3099 cc.zone = zone; 3100 status = compact_zone(&cc, NULL); 3101 3102 if (status == COMPACT_SUCCESS) { 3103 compaction_defer_reset(zone, cc.order, false); 3104 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { 3105 /* 3106 * Buddy pages may become stranded on pcps that could 3107 * otherwise coalesce on the zone's free area for 3108 * order >= cc.order. This is ratelimited by the 3109 * upcoming deferral. 3110 */ 3111 drain_all_pages(zone); 3112 3113 /* 3114 * We use sync migration mode here, so we defer like 3115 * sync direct compaction does. 3116 */ 3117 defer_compaction(zone, cc.order); 3118 } 3119 3120 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 3121 cc.total_migrate_scanned); 3122 count_compact_events(KCOMPACTD_FREE_SCANNED, 3123 cc.total_free_scanned); 3124 } 3125 3126 /* 3127 * Regardless of success, we are done until woken up next. But remember 3128 * the requested order/highest_zoneidx in case it was higher/tighter 3129 * than our current ones 3130 */ 3131 if (pgdat->kcompactd_max_order <= cc.order) 3132 pgdat->kcompactd_max_order = 0; 3133 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx) 3134 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 3135 } 3136 3137 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx) 3138 { 3139 if (!order) 3140 return; 3141 3142 if (pgdat->kcompactd_max_order < order) 3143 pgdat->kcompactd_max_order = order; 3144 3145 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx) 3146 pgdat->kcompactd_highest_zoneidx = highest_zoneidx; 3147 3148 /* 3149 * Pairs with implicit barrier in wait_event_freezable() 3150 * such that wakeups are not missed. 3151 */ 3152 if (!wq_has_sleeper(&pgdat->kcompactd_wait)) 3153 return; 3154 3155 if (!kcompactd_node_suitable(pgdat)) 3156 return; 3157 3158 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 3159 highest_zoneidx); 3160 wake_up_interruptible(&pgdat->kcompactd_wait); 3161 } 3162 3163 /* 3164 * The background compaction daemon, started as a kernel thread 3165 * from the init process. 3166 */ 3167 static int kcompactd(void *p) 3168 { 3169 pg_data_t *pgdat = (pg_data_t *)p; 3170 struct task_struct *tsk = current; 3171 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC); 3172 long timeout = default_timeout; 3173 3174 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3175 3176 if (!cpumask_empty(cpumask)) 3177 set_cpus_allowed_ptr(tsk, cpumask); 3178 3179 set_freezable(); 3180 3181 pgdat->kcompactd_max_order = 0; 3182 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 3183 3184 while (!kthread_should_stop()) { 3185 unsigned long pflags; 3186 3187 /* 3188 * Avoid the unnecessary wakeup for proactive compaction 3189 * when it is disabled. 3190 */ 3191 if (!sysctl_compaction_proactiveness) 3192 timeout = MAX_SCHEDULE_TIMEOUT; 3193 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 3194 if (wait_event_freezable_timeout(pgdat->kcompactd_wait, 3195 kcompactd_work_requested(pgdat), timeout) && 3196 !pgdat->proactive_compact_trigger) { 3197 3198 psi_memstall_enter(&pflags); 3199 kcompactd_do_work(pgdat); 3200 psi_memstall_leave(&pflags); 3201 /* 3202 * Reset the timeout value. The defer timeout from 3203 * proactive compaction is lost here but that is fine 3204 * as the condition of the zone changing substantionally 3205 * then carrying on with the previous defer interval is 3206 * not useful. 3207 */ 3208 timeout = default_timeout; 3209 continue; 3210 } 3211 3212 /* 3213 * Start the proactive work with default timeout. Based 3214 * on the fragmentation score, this timeout is updated. 3215 */ 3216 timeout = default_timeout; 3217 if (should_proactive_compact_node(pgdat)) { 3218 unsigned int prev_score, score; 3219 3220 prev_score = fragmentation_score_node(pgdat); 3221 compact_node(pgdat, true); 3222 score = fragmentation_score_node(pgdat); 3223 /* 3224 * Defer proactive compaction if the fragmentation 3225 * score did not go down i.e. no progress made. 3226 */ 3227 if (unlikely(score >= prev_score)) 3228 timeout = 3229 default_timeout << COMPACT_MAX_DEFER_SHIFT; 3230 } 3231 if (unlikely(pgdat->proactive_compact_trigger)) 3232 pgdat->proactive_compact_trigger = false; 3233 } 3234 3235 return 0; 3236 } 3237 3238 /* 3239 * This kcompactd start function will be called by init and node-hot-add. 3240 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 3241 */ 3242 void __meminit kcompactd_run(int nid) 3243 { 3244 pg_data_t *pgdat = NODE_DATA(nid); 3245 3246 if (pgdat->kcompactd) 3247 return; 3248 3249 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); 3250 if (IS_ERR(pgdat->kcompactd)) { 3251 pr_err("Failed to start kcompactd on node %d\n", nid); 3252 pgdat->kcompactd = NULL; 3253 } 3254 } 3255 3256 /* 3257 * Called by memory hotplug when all memory in a node is offlined. Caller must 3258 * be holding mem_hotplug_begin/done(). 3259 */ 3260 void __meminit kcompactd_stop(int nid) 3261 { 3262 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 3263 3264 if (kcompactd) { 3265 kthread_stop(kcompactd); 3266 NODE_DATA(nid)->kcompactd = NULL; 3267 } 3268 } 3269 3270 /* 3271 * It's optimal to keep kcompactd on the same CPUs as their memory, but 3272 * not required for correctness. So if the last cpu in a node goes 3273 * away, we get changed to run anywhere: as the first one comes back, 3274 * restore their cpu bindings. 3275 */ 3276 static int kcompactd_cpu_online(unsigned int cpu) 3277 { 3278 int nid; 3279 3280 for_each_node_state(nid, N_MEMORY) { 3281 pg_data_t *pgdat = NODE_DATA(nid); 3282 const struct cpumask *mask; 3283 3284 mask = cpumask_of_node(pgdat->node_id); 3285 3286 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3287 /* One of our CPUs online: restore mask */ 3288 if (pgdat->kcompactd) 3289 set_cpus_allowed_ptr(pgdat->kcompactd, mask); 3290 } 3291 return 0; 3292 } 3293 3294 static int proc_dointvec_minmax_warn_RT_change(struct ctl_table *table, 3295 int write, void *buffer, size_t *lenp, loff_t *ppos) 3296 { 3297 int ret, old; 3298 3299 if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write) 3300 return proc_dointvec_minmax(table, write, buffer, lenp, ppos); 3301 3302 old = *(int *)table->data; 3303 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 3304 if (ret) 3305 return ret; 3306 if (old != *(int *)table->data) 3307 pr_warn_once("sysctl attribute %s changed by %s[%d]\n", 3308 table->procname, current->comm, 3309 task_pid_nr(current)); 3310 return ret; 3311 } 3312 3313 static struct ctl_table vm_compaction[] = { 3314 { 3315 .procname = "compact_memory", 3316 .data = &sysctl_compact_memory, 3317 .maxlen = sizeof(int), 3318 .mode = 0200, 3319 .proc_handler = sysctl_compaction_handler, 3320 }, 3321 { 3322 .procname = "compaction_proactiveness", 3323 .data = &sysctl_compaction_proactiveness, 3324 .maxlen = sizeof(sysctl_compaction_proactiveness), 3325 .mode = 0644, 3326 .proc_handler = compaction_proactiveness_sysctl_handler, 3327 .extra1 = SYSCTL_ZERO, 3328 .extra2 = SYSCTL_ONE_HUNDRED, 3329 }, 3330 { 3331 .procname = "extfrag_threshold", 3332 .data = &sysctl_extfrag_threshold, 3333 .maxlen = sizeof(int), 3334 .mode = 0644, 3335 .proc_handler = proc_dointvec_minmax, 3336 .extra1 = SYSCTL_ZERO, 3337 .extra2 = SYSCTL_ONE_THOUSAND, 3338 }, 3339 { 3340 .procname = "compact_unevictable_allowed", 3341 .data = &sysctl_compact_unevictable_allowed, 3342 .maxlen = sizeof(int), 3343 .mode = 0644, 3344 .proc_handler = proc_dointvec_minmax_warn_RT_change, 3345 .extra1 = SYSCTL_ZERO, 3346 .extra2 = SYSCTL_ONE, 3347 }, 3348 { } 3349 }; 3350 3351 static int __init kcompactd_init(void) 3352 { 3353 int nid; 3354 int ret; 3355 3356 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 3357 "mm/compaction:online", 3358 kcompactd_cpu_online, NULL); 3359 if (ret < 0) { 3360 pr_err("kcompactd: failed to register hotplug callbacks.\n"); 3361 return ret; 3362 } 3363 3364 for_each_node_state(nid, N_MEMORY) 3365 kcompactd_run(nid); 3366 register_sysctl_init("vm", vm_compaction); 3367 return 0; 3368 } 3369 subsys_initcall(kcompactd_init) 3370 3371 #endif /* CONFIG_COMPACTION */ 3372