1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/compaction.c 4 * 5 * Memory compaction for the reduction of external fragmentation. Note that 6 * this heavily depends upon page migration to do all the real heavy 7 * lifting 8 * 9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 10 */ 11 #include <linux/cpu.h> 12 #include <linux/swap.h> 13 #include <linux/migrate.h> 14 #include <linux/compaction.h> 15 #include <linux/mm_inline.h> 16 #include <linux/sched/signal.h> 17 #include <linux/backing-dev.h> 18 #include <linux/sysctl.h> 19 #include <linux/sysfs.h> 20 #include <linux/page-isolation.h> 21 #include <linux/kasan.h> 22 #include <linux/kthread.h> 23 #include <linux/freezer.h> 24 #include <linux/page_owner.h> 25 #include <linux/psi.h> 26 #include "internal.h" 27 28 #ifdef CONFIG_COMPACTION 29 static inline void count_compact_event(enum vm_event_item item) 30 { 31 count_vm_event(item); 32 } 33 34 static inline void count_compact_events(enum vm_event_item item, long delta) 35 { 36 count_vm_events(item, delta); 37 } 38 #else 39 #define count_compact_event(item) do { } while (0) 40 #define count_compact_events(item, delta) do { } while (0) 41 #endif 42 43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/compaction.h> 47 48 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order)) 49 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order)) 50 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order) 51 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order) 52 53 /* 54 * Fragmentation score check interval for proactive compaction purposes. 55 */ 56 static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500; 57 58 /* 59 * Page order with-respect-to which proactive compaction 60 * calculates external fragmentation, which is used as 61 * the "fragmentation score" of a node/zone. 62 */ 63 #if defined CONFIG_TRANSPARENT_HUGEPAGE 64 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER 65 #elif defined CONFIG_HUGETLBFS 66 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER 67 #else 68 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT) 69 #endif 70 71 static unsigned long release_freepages(struct list_head *freelist) 72 { 73 struct page *page, *next; 74 unsigned long high_pfn = 0; 75 76 list_for_each_entry_safe(page, next, freelist, lru) { 77 unsigned long pfn = page_to_pfn(page); 78 list_del(&page->lru); 79 __free_page(page); 80 if (pfn > high_pfn) 81 high_pfn = pfn; 82 } 83 84 return high_pfn; 85 } 86 87 static void split_map_pages(struct list_head *list) 88 { 89 unsigned int i, order, nr_pages; 90 struct page *page, *next; 91 LIST_HEAD(tmp_list); 92 93 list_for_each_entry_safe(page, next, list, lru) { 94 list_del(&page->lru); 95 96 order = page_private(page); 97 nr_pages = 1 << order; 98 99 post_alloc_hook(page, order, __GFP_MOVABLE); 100 if (order) 101 split_page(page, order); 102 103 for (i = 0; i < nr_pages; i++) { 104 list_add(&page->lru, &tmp_list); 105 page++; 106 } 107 } 108 109 list_splice(&tmp_list, list); 110 } 111 112 #ifdef CONFIG_COMPACTION 113 114 int PageMovable(struct page *page) 115 { 116 struct address_space *mapping; 117 118 VM_BUG_ON_PAGE(!PageLocked(page), page); 119 if (!__PageMovable(page)) 120 return 0; 121 122 mapping = page_mapping(page); 123 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page) 124 return 1; 125 126 return 0; 127 } 128 EXPORT_SYMBOL(PageMovable); 129 130 void __SetPageMovable(struct page *page, struct address_space *mapping) 131 { 132 VM_BUG_ON_PAGE(!PageLocked(page), page); 133 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page); 134 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE); 135 } 136 EXPORT_SYMBOL(__SetPageMovable); 137 138 void __ClearPageMovable(struct page *page) 139 { 140 VM_BUG_ON_PAGE(!PageMovable(page), page); 141 /* 142 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE 143 * flag so that VM can catch up released page by driver after isolation. 144 * With it, VM migration doesn't try to put it back. 145 */ 146 page->mapping = (void *)((unsigned long)page->mapping & 147 PAGE_MAPPING_MOVABLE); 148 } 149 EXPORT_SYMBOL(__ClearPageMovable); 150 151 /* Do not skip compaction more than 64 times */ 152 #define COMPACT_MAX_DEFER_SHIFT 6 153 154 /* 155 * Compaction is deferred when compaction fails to result in a page 156 * allocation success. 1 << compact_defer_shift, compactions are skipped up 157 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 158 */ 159 static void defer_compaction(struct zone *zone, int order) 160 { 161 zone->compact_considered = 0; 162 zone->compact_defer_shift++; 163 164 if (order < zone->compact_order_failed) 165 zone->compact_order_failed = order; 166 167 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 168 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 169 170 trace_mm_compaction_defer_compaction(zone, order); 171 } 172 173 /* Returns true if compaction should be skipped this time */ 174 static bool compaction_deferred(struct zone *zone, int order) 175 { 176 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 177 178 if (order < zone->compact_order_failed) 179 return false; 180 181 /* Avoid possible overflow */ 182 if (++zone->compact_considered >= defer_limit) { 183 zone->compact_considered = defer_limit; 184 return false; 185 } 186 187 trace_mm_compaction_deferred(zone, order); 188 189 return true; 190 } 191 192 /* 193 * Update defer tracking counters after successful compaction of given order, 194 * which means an allocation either succeeded (alloc_success == true) or is 195 * expected to succeed. 196 */ 197 void compaction_defer_reset(struct zone *zone, int order, 198 bool alloc_success) 199 { 200 if (alloc_success) { 201 zone->compact_considered = 0; 202 zone->compact_defer_shift = 0; 203 } 204 if (order >= zone->compact_order_failed) 205 zone->compact_order_failed = order + 1; 206 207 trace_mm_compaction_defer_reset(zone, order); 208 } 209 210 /* Returns true if restarting compaction after many failures */ 211 static bool compaction_restarting(struct zone *zone, int order) 212 { 213 if (order < zone->compact_order_failed) 214 return false; 215 216 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 217 zone->compact_considered >= 1UL << zone->compact_defer_shift; 218 } 219 220 /* Returns true if the pageblock should be scanned for pages to isolate. */ 221 static inline bool isolation_suitable(struct compact_control *cc, 222 struct page *page) 223 { 224 if (cc->ignore_skip_hint) 225 return true; 226 227 return !get_pageblock_skip(page); 228 } 229 230 static void reset_cached_positions(struct zone *zone) 231 { 232 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 233 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 234 zone->compact_cached_free_pfn = 235 pageblock_start_pfn(zone_end_pfn(zone) - 1); 236 } 237 238 /* 239 * Compound pages of >= pageblock_order should consistently be skipped until 240 * released. It is always pointless to compact pages of such order (if they are 241 * migratable), and the pageblocks they occupy cannot contain any free pages. 242 */ 243 static bool pageblock_skip_persistent(struct page *page) 244 { 245 if (!PageCompound(page)) 246 return false; 247 248 page = compound_head(page); 249 250 if (compound_order(page) >= pageblock_order) 251 return true; 252 253 return false; 254 } 255 256 static bool 257 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source, 258 bool check_target) 259 { 260 struct page *page = pfn_to_online_page(pfn); 261 struct page *block_page; 262 struct page *end_page; 263 unsigned long block_pfn; 264 265 if (!page) 266 return false; 267 if (zone != page_zone(page)) 268 return false; 269 if (pageblock_skip_persistent(page)) 270 return false; 271 272 /* 273 * If skip is already cleared do no further checking once the 274 * restart points have been set. 275 */ 276 if (check_source && check_target && !get_pageblock_skip(page)) 277 return true; 278 279 /* 280 * If clearing skip for the target scanner, do not select a 281 * non-movable pageblock as the starting point. 282 */ 283 if (!check_source && check_target && 284 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 285 return false; 286 287 /* Ensure the start of the pageblock or zone is online and valid */ 288 block_pfn = pageblock_start_pfn(pfn); 289 block_pfn = max(block_pfn, zone->zone_start_pfn); 290 block_page = pfn_to_online_page(block_pfn); 291 if (block_page) { 292 page = block_page; 293 pfn = block_pfn; 294 } 295 296 /* Ensure the end of the pageblock or zone is online and valid */ 297 block_pfn = pageblock_end_pfn(pfn) - 1; 298 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1); 299 end_page = pfn_to_online_page(block_pfn); 300 if (!end_page) 301 return false; 302 303 /* 304 * Only clear the hint if a sample indicates there is either a 305 * free page or an LRU page in the block. One or other condition 306 * is necessary for the block to be a migration source/target. 307 */ 308 do { 309 if (check_source && PageLRU(page)) { 310 clear_pageblock_skip(page); 311 return true; 312 } 313 314 if (check_target && PageBuddy(page)) { 315 clear_pageblock_skip(page); 316 return true; 317 } 318 319 page += (1 << PAGE_ALLOC_COSTLY_ORDER); 320 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER); 321 } while (page <= end_page); 322 323 return false; 324 } 325 326 /* 327 * This function is called to clear all cached information on pageblocks that 328 * should be skipped for page isolation when the migrate and free page scanner 329 * meet. 330 */ 331 static void __reset_isolation_suitable(struct zone *zone) 332 { 333 unsigned long migrate_pfn = zone->zone_start_pfn; 334 unsigned long free_pfn = zone_end_pfn(zone) - 1; 335 unsigned long reset_migrate = free_pfn; 336 unsigned long reset_free = migrate_pfn; 337 bool source_set = false; 338 bool free_set = false; 339 340 if (!zone->compact_blockskip_flush) 341 return; 342 343 zone->compact_blockskip_flush = false; 344 345 /* 346 * Walk the zone and update pageblock skip information. Source looks 347 * for PageLRU while target looks for PageBuddy. When the scanner 348 * is found, both PageBuddy and PageLRU are checked as the pageblock 349 * is suitable as both source and target. 350 */ 351 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages, 352 free_pfn -= pageblock_nr_pages) { 353 cond_resched(); 354 355 /* Update the migrate PFN */ 356 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) && 357 migrate_pfn < reset_migrate) { 358 source_set = true; 359 reset_migrate = migrate_pfn; 360 zone->compact_init_migrate_pfn = reset_migrate; 361 zone->compact_cached_migrate_pfn[0] = reset_migrate; 362 zone->compact_cached_migrate_pfn[1] = reset_migrate; 363 } 364 365 /* Update the free PFN */ 366 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) && 367 free_pfn > reset_free) { 368 free_set = true; 369 reset_free = free_pfn; 370 zone->compact_init_free_pfn = reset_free; 371 zone->compact_cached_free_pfn = reset_free; 372 } 373 } 374 375 /* Leave no distance if no suitable block was reset */ 376 if (reset_migrate >= reset_free) { 377 zone->compact_cached_migrate_pfn[0] = migrate_pfn; 378 zone->compact_cached_migrate_pfn[1] = migrate_pfn; 379 zone->compact_cached_free_pfn = free_pfn; 380 } 381 } 382 383 void reset_isolation_suitable(pg_data_t *pgdat) 384 { 385 int zoneid; 386 387 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 388 struct zone *zone = &pgdat->node_zones[zoneid]; 389 if (!populated_zone(zone)) 390 continue; 391 392 /* Only flush if a full compaction finished recently */ 393 if (zone->compact_blockskip_flush) 394 __reset_isolation_suitable(zone); 395 } 396 } 397 398 /* 399 * Sets the pageblock skip bit if it was clear. Note that this is a hint as 400 * locks are not required for read/writers. Returns true if it was already set. 401 */ 402 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 403 unsigned long pfn) 404 { 405 bool skip; 406 407 /* Do no update if skip hint is being ignored */ 408 if (cc->ignore_skip_hint) 409 return false; 410 411 if (!IS_ALIGNED(pfn, pageblock_nr_pages)) 412 return false; 413 414 skip = get_pageblock_skip(page); 415 if (!skip && !cc->no_set_skip_hint) 416 set_pageblock_skip(page); 417 418 return skip; 419 } 420 421 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 422 { 423 struct zone *zone = cc->zone; 424 425 pfn = pageblock_end_pfn(pfn); 426 427 /* Set for isolation rather than compaction */ 428 if (cc->no_set_skip_hint) 429 return; 430 431 if (pfn > zone->compact_cached_migrate_pfn[0]) 432 zone->compact_cached_migrate_pfn[0] = pfn; 433 if (cc->mode != MIGRATE_ASYNC && 434 pfn > zone->compact_cached_migrate_pfn[1]) 435 zone->compact_cached_migrate_pfn[1] = pfn; 436 } 437 438 /* 439 * If no pages were isolated then mark this pageblock to be skipped in the 440 * future. The information is later cleared by __reset_isolation_suitable(). 441 */ 442 static void update_pageblock_skip(struct compact_control *cc, 443 struct page *page, unsigned long pfn) 444 { 445 struct zone *zone = cc->zone; 446 447 if (cc->no_set_skip_hint) 448 return; 449 450 if (!page) 451 return; 452 453 set_pageblock_skip(page); 454 455 /* Update where async and sync compaction should restart */ 456 if (pfn < zone->compact_cached_free_pfn) 457 zone->compact_cached_free_pfn = pfn; 458 } 459 #else 460 static inline bool isolation_suitable(struct compact_control *cc, 461 struct page *page) 462 { 463 return true; 464 } 465 466 static inline bool pageblock_skip_persistent(struct page *page) 467 { 468 return false; 469 } 470 471 static inline void update_pageblock_skip(struct compact_control *cc, 472 struct page *page, unsigned long pfn) 473 { 474 } 475 476 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 477 { 478 } 479 480 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 481 unsigned long pfn) 482 { 483 return false; 484 } 485 #endif /* CONFIG_COMPACTION */ 486 487 /* 488 * Compaction requires the taking of some coarse locks that are potentially 489 * very heavily contended. For async compaction, trylock and record if the 490 * lock is contended. The lock will still be acquired but compaction will 491 * abort when the current block is finished regardless of success rate. 492 * Sync compaction acquires the lock. 493 * 494 * Always returns true which makes it easier to track lock state in callers. 495 */ 496 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags, 497 struct compact_control *cc) 498 __acquires(lock) 499 { 500 /* Track if the lock is contended in async mode */ 501 if (cc->mode == MIGRATE_ASYNC && !cc->contended) { 502 if (spin_trylock_irqsave(lock, *flags)) 503 return true; 504 505 cc->contended = true; 506 } 507 508 spin_lock_irqsave(lock, *flags); 509 return true; 510 } 511 512 /* 513 * Compaction requires the taking of some coarse locks that are potentially 514 * very heavily contended. The lock should be periodically unlocked to avoid 515 * having disabled IRQs for a long time, even when there is nobody waiting on 516 * the lock. It might also be that allowing the IRQs will result in 517 * need_resched() becoming true. If scheduling is needed, async compaction 518 * aborts. Sync compaction schedules. 519 * Either compaction type will also abort if a fatal signal is pending. 520 * In either case if the lock was locked, it is dropped and not regained. 521 * 522 * Returns true if compaction should abort due to fatal signal pending, or 523 * async compaction due to need_resched() 524 * Returns false when compaction can continue (sync compaction might have 525 * scheduled) 526 */ 527 static bool compact_unlock_should_abort(spinlock_t *lock, 528 unsigned long flags, bool *locked, struct compact_control *cc) 529 { 530 if (*locked) { 531 spin_unlock_irqrestore(lock, flags); 532 *locked = false; 533 } 534 535 if (fatal_signal_pending(current)) { 536 cc->contended = true; 537 return true; 538 } 539 540 cond_resched(); 541 542 return false; 543 } 544 545 /* 546 * Isolate free pages onto a private freelist. If @strict is true, will abort 547 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 548 * (even though it may still end up isolating some pages). 549 */ 550 static unsigned long isolate_freepages_block(struct compact_control *cc, 551 unsigned long *start_pfn, 552 unsigned long end_pfn, 553 struct list_head *freelist, 554 unsigned int stride, 555 bool strict) 556 { 557 int nr_scanned = 0, total_isolated = 0; 558 struct page *cursor; 559 unsigned long flags = 0; 560 bool locked = false; 561 unsigned long blockpfn = *start_pfn; 562 unsigned int order; 563 564 /* Strict mode is for isolation, speed is secondary */ 565 if (strict) 566 stride = 1; 567 568 cursor = pfn_to_page(blockpfn); 569 570 /* Isolate free pages. */ 571 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) { 572 int isolated; 573 struct page *page = cursor; 574 575 /* 576 * Periodically drop the lock (if held) regardless of its 577 * contention, to give chance to IRQs. Abort if fatal signal 578 * pending or async compaction detects need_resched() 579 */ 580 if (!(blockpfn % SWAP_CLUSTER_MAX) 581 && compact_unlock_should_abort(&cc->zone->lock, flags, 582 &locked, cc)) 583 break; 584 585 nr_scanned++; 586 587 /* 588 * For compound pages such as THP and hugetlbfs, we can save 589 * potentially a lot of iterations if we skip them at once. 590 * The check is racy, but we can consider only valid values 591 * and the only danger is skipping too much. 592 */ 593 if (PageCompound(page)) { 594 const unsigned int order = compound_order(page); 595 596 if (likely(order < MAX_ORDER)) { 597 blockpfn += (1UL << order) - 1; 598 cursor += (1UL << order) - 1; 599 } 600 goto isolate_fail; 601 } 602 603 if (!PageBuddy(page)) 604 goto isolate_fail; 605 606 /* 607 * If we already hold the lock, we can skip some rechecking. 608 * Note that if we hold the lock now, checked_pageblock was 609 * already set in some previous iteration (or strict is true), 610 * so it is correct to skip the suitable migration target 611 * recheck as well. 612 */ 613 if (!locked) { 614 locked = compact_lock_irqsave(&cc->zone->lock, 615 &flags, cc); 616 617 /* Recheck this is a buddy page under lock */ 618 if (!PageBuddy(page)) 619 goto isolate_fail; 620 } 621 622 /* Found a free page, will break it into order-0 pages */ 623 order = buddy_order(page); 624 isolated = __isolate_free_page(page, order); 625 if (!isolated) 626 break; 627 set_page_private(page, order); 628 629 total_isolated += isolated; 630 cc->nr_freepages += isolated; 631 list_add_tail(&page->lru, freelist); 632 633 if (!strict && cc->nr_migratepages <= cc->nr_freepages) { 634 blockpfn += isolated; 635 break; 636 } 637 /* Advance to the end of split page */ 638 blockpfn += isolated - 1; 639 cursor += isolated - 1; 640 continue; 641 642 isolate_fail: 643 if (strict) 644 break; 645 else 646 continue; 647 648 } 649 650 if (locked) 651 spin_unlock_irqrestore(&cc->zone->lock, flags); 652 653 /* 654 * There is a tiny chance that we have read bogus compound_order(), 655 * so be careful to not go outside of the pageblock. 656 */ 657 if (unlikely(blockpfn > end_pfn)) 658 blockpfn = end_pfn; 659 660 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 661 nr_scanned, total_isolated); 662 663 /* Record how far we have got within the block */ 664 *start_pfn = blockpfn; 665 666 /* 667 * If strict isolation is requested by CMA then check that all the 668 * pages requested were isolated. If there were any failures, 0 is 669 * returned and CMA will fail. 670 */ 671 if (strict && blockpfn < end_pfn) 672 total_isolated = 0; 673 674 cc->total_free_scanned += nr_scanned; 675 if (total_isolated) 676 count_compact_events(COMPACTISOLATED, total_isolated); 677 return total_isolated; 678 } 679 680 /** 681 * isolate_freepages_range() - isolate free pages. 682 * @cc: Compaction control structure. 683 * @start_pfn: The first PFN to start isolating. 684 * @end_pfn: The one-past-last PFN. 685 * 686 * Non-free pages, invalid PFNs, or zone boundaries within the 687 * [start_pfn, end_pfn) range are considered errors, cause function to 688 * undo its actions and return zero. 689 * 690 * Otherwise, function returns one-past-the-last PFN of isolated page 691 * (which may be greater then end_pfn if end fell in a middle of 692 * a free page). 693 */ 694 unsigned long 695 isolate_freepages_range(struct compact_control *cc, 696 unsigned long start_pfn, unsigned long end_pfn) 697 { 698 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 699 LIST_HEAD(freelist); 700 701 pfn = start_pfn; 702 block_start_pfn = pageblock_start_pfn(pfn); 703 if (block_start_pfn < cc->zone->zone_start_pfn) 704 block_start_pfn = cc->zone->zone_start_pfn; 705 block_end_pfn = pageblock_end_pfn(pfn); 706 707 for (; pfn < end_pfn; pfn += isolated, 708 block_start_pfn = block_end_pfn, 709 block_end_pfn += pageblock_nr_pages) { 710 /* Protect pfn from changing by isolate_freepages_block */ 711 unsigned long isolate_start_pfn = pfn; 712 713 block_end_pfn = min(block_end_pfn, end_pfn); 714 715 /* 716 * pfn could pass the block_end_pfn if isolated freepage 717 * is more than pageblock order. In this case, we adjust 718 * scanning range to right one. 719 */ 720 if (pfn >= block_end_pfn) { 721 block_start_pfn = pageblock_start_pfn(pfn); 722 block_end_pfn = pageblock_end_pfn(pfn); 723 block_end_pfn = min(block_end_pfn, end_pfn); 724 } 725 726 if (!pageblock_pfn_to_page(block_start_pfn, 727 block_end_pfn, cc->zone)) 728 break; 729 730 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 731 block_end_pfn, &freelist, 0, true); 732 733 /* 734 * In strict mode, isolate_freepages_block() returns 0 if 735 * there are any holes in the block (ie. invalid PFNs or 736 * non-free pages). 737 */ 738 if (!isolated) 739 break; 740 741 /* 742 * If we managed to isolate pages, it is always (1 << n) * 743 * pageblock_nr_pages for some non-negative n. (Max order 744 * page may span two pageblocks). 745 */ 746 } 747 748 /* __isolate_free_page() does not map the pages */ 749 split_map_pages(&freelist); 750 751 if (pfn < end_pfn) { 752 /* Loop terminated early, cleanup. */ 753 release_freepages(&freelist); 754 return 0; 755 } 756 757 /* We don't use freelists for anything. */ 758 return pfn; 759 } 760 761 /* Similar to reclaim, but different enough that they don't share logic */ 762 static bool too_many_isolated(pg_data_t *pgdat) 763 { 764 bool too_many; 765 766 unsigned long active, inactive, isolated; 767 768 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) + 769 node_page_state(pgdat, NR_INACTIVE_ANON); 770 active = node_page_state(pgdat, NR_ACTIVE_FILE) + 771 node_page_state(pgdat, NR_ACTIVE_ANON); 772 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) + 773 node_page_state(pgdat, NR_ISOLATED_ANON); 774 775 too_many = isolated > (inactive + active) / 2; 776 if (!too_many) 777 wake_throttle_isolated(pgdat); 778 779 return too_many; 780 } 781 782 /** 783 * isolate_migratepages_block() - isolate all migrate-able pages within 784 * a single pageblock 785 * @cc: Compaction control structure. 786 * @low_pfn: The first PFN to isolate 787 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 788 * @mode: Isolation mode to be used. 789 * 790 * Isolate all pages that can be migrated from the range specified by 791 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 792 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion, 793 * -ENOMEM in case we could not allocate a page, or 0. 794 * cc->migrate_pfn will contain the next pfn to scan. 795 * 796 * The pages are isolated on cc->migratepages list (not required to be empty), 797 * and cc->nr_migratepages is updated accordingly. 798 */ 799 static int 800 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 801 unsigned long end_pfn, isolate_mode_t mode) 802 { 803 pg_data_t *pgdat = cc->zone->zone_pgdat; 804 unsigned long nr_scanned = 0, nr_isolated = 0; 805 struct lruvec *lruvec; 806 unsigned long flags = 0; 807 struct lruvec *locked = NULL; 808 struct page *page = NULL, *valid_page = NULL; 809 struct address_space *mapping; 810 unsigned long start_pfn = low_pfn; 811 bool skip_on_failure = false; 812 unsigned long next_skip_pfn = 0; 813 bool skip_updated = false; 814 int ret = 0; 815 816 cc->migrate_pfn = low_pfn; 817 818 /* 819 * Ensure that there are not too many pages isolated from the LRU 820 * list by either parallel reclaimers or compaction. If there are, 821 * delay for some time until fewer pages are isolated 822 */ 823 while (unlikely(too_many_isolated(pgdat))) { 824 /* stop isolation if there are still pages not migrated */ 825 if (cc->nr_migratepages) 826 return -EAGAIN; 827 828 /* async migration should just abort */ 829 if (cc->mode == MIGRATE_ASYNC) 830 return -EAGAIN; 831 832 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 833 834 if (fatal_signal_pending(current)) 835 return -EINTR; 836 } 837 838 cond_resched(); 839 840 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { 841 skip_on_failure = true; 842 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 843 } 844 845 /* Time to isolate some pages for migration */ 846 for (; low_pfn < end_pfn; low_pfn++) { 847 848 if (skip_on_failure && low_pfn >= next_skip_pfn) { 849 /* 850 * We have isolated all migration candidates in the 851 * previous order-aligned block, and did not skip it due 852 * to failure. We should migrate the pages now and 853 * hopefully succeed compaction. 854 */ 855 if (nr_isolated) 856 break; 857 858 /* 859 * We failed to isolate in the previous order-aligned 860 * block. Set the new boundary to the end of the 861 * current block. Note we can't simply increase 862 * next_skip_pfn by 1 << order, as low_pfn might have 863 * been incremented by a higher number due to skipping 864 * a compound or a high-order buddy page in the 865 * previous loop iteration. 866 */ 867 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 868 } 869 870 /* 871 * Periodically drop the lock (if held) regardless of its 872 * contention, to give chance to IRQs. Abort completely if 873 * a fatal signal is pending. 874 */ 875 if (!(low_pfn % SWAP_CLUSTER_MAX)) { 876 if (locked) { 877 unlock_page_lruvec_irqrestore(locked, flags); 878 locked = NULL; 879 } 880 881 if (fatal_signal_pending(current)) { 882 cc->contended = true; 883 ret = -EINTR; 884 885 goto fatal_pending; 886 } 887 888 cond_resched(); 889 } 890 891 nr_scanned++; 892 893 page = pfn_to_page(low_pfn); 894 895 /* 896 * Check if the pageblock has already been marked skipped. 897 * Only the aligned PFN is checked as the caller isolates 898 * COMPACT_CLUSTER_MAX at a time so the second call must 899 * not falsely conclude that the block should be skipped. 900 */ 901 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) { 902 if (!cc->ignore_skip_hint && get_pageblock_skip(page)) { 903 low_pfn = end_pfn; 904 page = NULL; 905 goto isolate_abort; 906 } 907 valid_page = page; 908 } 909 910 if (PageHuge(page) && cc->alloc_contig) { 911 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages); 912 913 /* 914 * Fail isolation in case isolate_or_dissolve_huge_page() 915 * reports an error. In case of -ENOMEM, abort right away. 916 */ 917 if (ret < 0) { 918 /* Do not report -EBUSY down the chain */ 919 if (ret == -EBUSY) 920 ret = 0; 921 low_pfn += (1UL << compound_order(page)) - 1; 922 goto isolate_fail; 923 } 924 925 if (PageHuge(page)) { 926 /* 927 * Hugepage was successfully isolated and placed 928 * on the cc->migratepages list. 929 */ 930 low_pfn += compound_nr(page) - 1; 931 goto isolate_success_no_list; 932 } 933 934 /* 935 * Ok, the hugepage was dissolved. Now these pages are 936 * Buddy and cannot be re-allocated because they are 937 * isolated. Fall-through as the check below handles 938 * Buddy pages. 939 */ 940 } 941 942 /* 943 * Skip if free. We read page order here without zone lock 944 * which is generally unsafe, but the race window is small and 945 * the worst thing that can happen is that we skip some 946 * potential isolation targets. 947 */ 948 if (PageBuddy(page)) { 949 unsigned long freepage_order = buddy_order_unsafe(page); 950 951 /* 952 * Without lock, we cannot be sure that what we got is 953 * a valid page order. Consider only values in the 954 * valid order range to prevent low_pfn overflow. 955 */ 956 if (freepage_order > 0 && freepage_order < MAX_ORDER) 957 low_pfn += (1UL << freepage_order) - 1; 958 continue; 959 } 960 961 /* 962 * Regardless of being on LRU, compound pages such as THP and 963 * hugetlbfs are not to be compacted unless we are attempting 964 * an allocation much larger than the huge page size (eg CMA). 965 * We can potentially save a lot of iterations if we skip them 966 * at once. The check is racy, but we can consider only valid 967 * values and the only danger is skipping too much. 968 */ 969 if (PageCompound(page) && !cc->alloc_contig) { 970 const unsigned int order = compound_order(page); 971 972 if (likely(order < MAX_ORDER)) 973 low_pfn += (1UL << order) - 1; 974 goto isolate_fail; 975 } 976 977 /* 978 * Check may be lockless but that's ok as we recheck later. 979 * It's possible to migrate LRU and non-lru movable pages. 980 * Skip any other type of page 981 */ 982 if (!PageLRU(page)) { 983 /* 984 * __PageMovable can return false positive so we need 985 * to verify it under page_lock. 986 */ 987 if (unlikely(__PageMovable(page)) && 988 !PageIsolated(page)) { 989 if (locked) { 990 unlock_page_lruvec_irqrestore(locked, flags); 991 locked = NULL; 992 } 993 994 if (!isolate_movable_page(page, mode)) 995 goto isolate_success; 996 } 997 998 goto isolate_fail; 999 } 1000 1001 /* 1002 * Migration will fail if an anonymous page is pinned in memory, 1003 * so avoid taking lru_lock and isolating it unnecessarily in an 1004 * admittedly racy check. 1005 */ 1006 mapping = page_mapping(page); 1007 if (!mapping && page_count(page) > page_mapcount(page)) 1008 goto isolate_fail; 1009 1010 /* 1011 * Only allow to migrate anonymous pages in GFP_NOFS context 1012 * because those do not depend on fs locks. 1013 */ 1014 if (!(cc->gfp_mask & __GFP_FS) && mapping) 1015 goto isolate_fail; 1016 1017 /* 1018 * Be careful not to clear PageLRU until after we're 1019 * sure the page is not being freed elsewhere -- the 1020 * page release code relies on it. 1021 */ 1022 if (unlikely(!get_page_unless_zero(page))) 1023 goto isolate_fail; 1024 1025 /* Only take pages on LRU: a check now makes later tests safe */ 1026 if (!PageLRU(page)) 1027 goto isolate_fail_put; 1028 1029 /* Compaction might skip unevictable pages but CMA takes them */ 1030 if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page)) 1031 goto isolate_fail_put; 1032 1033 /* 1034 * To minimise LRU disruption, the caller can indicate with 1035 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages 1036 * it will be able to migrate without blocking - clean pages 1037 * for the most part. PageWriteback would require blocking. 1038 */ 1039 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page)) 1040 goto isolate_fail_put; 1041 1042 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) { 1043 bool migrate_dirty; 1044 1045 /* 1046 * Only pages without mappings or that have a 1047 * ->migratepage callback are possible to migrate 1048 * without blocking. However, we can be racing with 1049 * truncation so it's necessary to lock the page 1050 * to stabilise the mapping as truncation holds 1051 * the page lock until after the page is removed 1052 * from the page cache. 1053 */ 1054 if (!trylock_page(page)) 1055 goto isolate_fail_put; 1056 1057 mapping = page_mapping(page); 1058 migrate_dirty = !mapping || mapping->a_ops->migratepage; 1059 unlock_page(page); 1060 if (!migrate_dirty) 1061 goto isolate_fail_put; 1062 } 1063 1064 /* Try isolate the page */ 1065 if (!TestClearPageLRU(page)) 1066 goto isolate_fail_put; 1067 1068 lruvec = folio_lruvec(page_folio(page)); 1069 1070 /* If we already hold the lock, we can skip some rechecking */ 1071 if (lruvec != locked) { 1072 if (locked) 1073 unlock_page_lruvec_irqrestore(locked, flags); 1074 1075 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc); 1076 locked = lruvec; 1077 1078 lruvec_memcg_debug(lruvec, page_folio(page)); 1079 1080 /* Try get exclusive access under lock */ 1081 if (!skip_updated) { 1082 skip_updated = true; 1083 if (test_and_set_skip(cc, page, low_pfn)) 1084 goto isolate_abort; 1085 } 1086 1087 /* 1088 * Page become compound since the non-locked check, 1089 * and it's on LRU. It can only be a THP so the order 1090 * is safe to read and it's 0 for tail pages. 1091 */ 1092 if (unlikely(PageCompound(page) && !cc->alloc_contig)) { 1093 low_pfn += compound_nr(page) - 1; 1094 SetPageLRU(page); 1095 goto isolate_fail_put; 1096 } 1097 } 1098 1099 /* The whole page is taken off the LRU; skip the tail pages. */ 1100 if (PageCompound(page)) 1101 low_pfn += compound_nr(page) - 1; 1102 1103 /* Successfully isolated */ 1104 del_page_from_lru_list(page, lruvec); 1105 mod_node_page_state(page_pgdat(page), 1106 NR_ISOLATED_ANON + page_is_file_lru(page), 1107 thp_nr_pages(page)); 1108 1109 isolate_success: 1110 list_add(&page->lru, &cc->migratepages); 1111 isolate_success_no_list: 1112 cc->nr_migratepages += compound_nr(page); 1113 nr_isolated += compound_nr(page); 1114 1115 /* 1116 * Avoid isolating too much unless this block is being 1117 * rescanned (e.g. dirty/writeback pages, parallel allocation) 1118 * or a lock is contended. For contention, isolate quickly to 1119 * potentially remove one source of contention. 1120 */ 1121 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX && 1122 !cc->rescan && !cc->contended) { 1123 ++low_pfn; 1124 break; 1125 } 1126 1127 continue; 1128 1129 isolate_fail_put: 1130 /* Avoid potential deadlock in freeing page under lru_lock */ 1131 if (locked) { 1132 unlock_page_lruvec_irqrestore(locked, flags); 1133 locked = NULL; 1134 } 1135 put_page(page); 1136 1137 isolate_fail: 1138 if (!skip_on_failure && ret != -ENOMEM) 1139 continue; 1140 1141 /* 1142 * We have isolated some pages, but then failed. Release them 1143 * instead of migrating, as we cannot form the cc->order buddy 1144 * page anyway. 1145 */ 1146 if (nr_isolated) { 1147 if (locked) { 1148 unlock_page_lruvec_irqrestore(locked, flags); 1149 locked = NULL; 1150 } 1151 putback_movable_pages(&cc->migratepages); 1152 cc->nr_migratepages = 0; 1153 nr_isolated = 0; 1154 } 1155 1156 if (low_pfn < next_skip_pfn) { 1157 low_pfn = next_skip_pfn - 1; 1158 /* 1159 * The check near the loop beginning would have updated 1160 * next_skip_pfn too, but this is a bit simpler. 1161 */ 1162 next_skip_pfn += 1UL << cc->order; 1163 } 1164 1165 if (ret == -ENOMEM) 1166 break; 1167 } 1168 1169 /* 1170 * The PageBuddy() check could have potentially brought us outside 1171 * the range to be scanned. 1172 */ 1173 if (unlikely(low_pfn > end_pfn)) 1174 low_pfn = end_pfn; 1175 1176 page = NULL; 1177 1178 isolate_abort: 1179 if (locked) 1180 unlock_page_lruvec_irqrestore(locked, flags); 1181 if (page) { 1182 SetPageLRU(page); 1183 put_page(page); 1184 } 1185 1186 /* 1187 * Updated the cached scanner pfn once the pageblock has been scanned 1188 * Pages will either be migrated in which case there is no point 1189 * scanning in the near future or migration failed in which case the 1190 * failure reason may persist. The block is marked for skipping if 1191 * there were no pages isolated in the block or if the block is 1192 * rescanned twice in a row. 1193 */ 1194 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) { 1195 if (valid_page && !skip_updated) 1196 set_pageblock_skip(valid_page); 1197 update_cached_migrate(cc, low_pfn); 1198 } 1199 1200 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 1201 nr_scanned, nr_isolated); 1202 1203 fatal_pending: 1204 cc->total_migrate_scanned += nr_scanned; 1205 if (nr_isolated) 1206 count_compact_events(COMPACTISOLATED, nr_isolated); 1207 1208 cc->migrate_pfn = low_pfn; 1209 1210 return ret; 1211 } 1212 1213 /** 1214 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 1215 * @cc: Compaction control structure. 1216 * @start_pfn: The first PFN to start isolating. 1217 * @end_pfn: The one-past-last PFN. 1218 * 1219 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM 1220 * in case we could not allocate a page, or 0. 1221 */ 1222 int 1223 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 1224 unsigned long end_pfn) 1225 { 1226 unsigned long pfn, block_start_pfn, block_end_pfn; 1227 int ret = 0; 1228 1229 /* Scan block by block. First and last block may be incomplete */ 1230 pfn = start_pfn; 1231 block_start_pfn = pageblock_start_pfn(pfn); 1232 if (block_start_pfn < cc->zone->zone_start_pfn) 1233 block_start_pfn = cc->zone->zone_start_pfn; 1234 block_end_pfn = pageblock_end_pfn(pfn); 1235 1236 for (; pfn < end_pfn; pfn = block_end_pfn, 1237 block_start_pfn = block_end_pfn, 1238 block_end_pfn += pageblock_nr_pages) { 1239 1240 block_end_pfn = min(block_end_pfn, end_pfn); 1241 1242 if (!pageblock_pfn_to_page(block_start_pfn, 1243 block_end_pfn, cc->zone)) 1244 continue; 1245 1246 ret = isolate_migratepages_block(cc, pfn, block_end_pfn, 1247 ISOLATE_UNEVICTABLE); 1248 1249 if (ret) 1250 break; 1251 1252 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX) 1253 break; 1254 } 1255 1256 return ret; 1257 } 1258 1259 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 1260 #ifdef CONFIG_COMPACTION 1261 1262 static bool suitable_migration_source(struct compact_control *cc, 1263 struct page *page) 1264 { 1265 int block_mt; 1266 1267 if (pageblock_skip_persistent(page)) 1268 return false; 1269 1270 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction) 1271 return true; 1272 1273 block_mt = get_pageblock_migratetype(page); 1274 1275 if (cc->migratetype == MIGRATE_MOVABLE) 1276 return is_migrate_movable(block_mt); 1277 else 1278 return block_mt == cc->migratetype; 1279 } 1280 1281 /* Returns true if the page is within a block suitable for migration to */ 1282 static bool suitable_migration_target(struct compact_control *cc, 1283 struct page *page) 1284 { 1285 /* If the page is a large free page, then disallow migration */ 1286 if (PageBuddy(page)) { 1287 /* 1288 * We are checking page_order without zone->lock taken. But 1289 * the only small danger is that we skip a potentially suitable 1290 * pageblock, so it's not worth to check order for valid range. 1291 */ 1292 if (buddy_order_unsafe(page) >= pageblock_order) 1293 return false; 1294 } 1295 1296 if (cc->ignore_block_suitable) 1297 return true; 1298 1299 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 1300 if (is_migrate_movable(get_pageblock_migratetype(page))) 1301 return true; 1302 1303 /* Otherwise skip the block */ 1304 return false; 1305 } 1306 1307 static inline unsigned int 1308 freelist_scan_limit(struct compact_control *cc) 1309 { 1310 unsigned short shift = BITS_PER_LONG - 1; 1311 1312 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1; 1313 } 1314 1315 /* 1316 * Test whether the free scanner has reached the same or lower pageblock than 1317 * the migration scanner, and compaction should thus terminate. 1318 */ 1319 static inline bool compact_scanners_met(struct compact_control *cc) 1320 { 1321 return (cc->free_pfn >> pageblock_order) 1322 <= (cc->migrate_pfn >> pageblock_order); 1323 } 1324 1325 /* 1326 * Used when scanning for a suitable migration target which scans freelists 1327 * in reverse. Reorders the list such as the unscanned pages are scanned 1328 * first on the next iteration of the free scanner 1329 */ 1330 static void 1331 move_freelist_head(struct list_head *freelist, struct page *freepage) 1332 { 1333 LIST_HEAD(sublist); 1334 1335 if (!list_is_last(freelist, &freepage->lru)) { 1336 list_cut_before(&sublist, freelist, &freepage->lru); 1337 list_splice_tail(&sublist, freelist); 1338 } 1339 } 1340 1341 /* 1342 * Similar to move_freelist_head except used by the migration scanner 1343 * when scanning forward. It's possible for these list operations to 1344 * move against each other if they search the free list exactly in 1345 * lockstep. 1346 */ 1347 static void 1348 move_freelist_tail(struct list_head *freelist, struct page *freepage) 1349 { 1350 LIST_HEAD(sublist); 1351 1352 if (!list_is_first(freelist, &freepage->lru)) { 1353 list_cut_position(&sublist, freelist, &freepage->lru); 1354 list_splice_tail(&sublist, freelist); 1355 } 1356 } 1357 1358 static void 1359 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated) 1360 { 1361 unsigned long start_pfn, end_pfn; 1362 struct page *page; 1363 1364 /* Do not search around if there are enough pages already */ 1365 if (cc->nr_freepages >= cc->nr_migratepages) 1366 return; 1367 1368 /* Minimise scanning during async compaction */ 1369 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC) 1370 return; 1371 1372 /* Pageblock boundaries */ 1373 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn); 1374 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)); 1375 1376 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone); 1377 if (!page) 1378 return; 1379 1380 /* Scan before */ 1381 if (start_pfn != pfn) { 1382 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false); 1383 if (cc->nr_freepages >= cc->nr_migratepages) 1384 return; 1385 } 1386 1387 /* Scan after */ 1388 start_pfn = pfn + nr_isolated; 1389 if (start_pfn < end_pfn) 1390 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false); 1391 1392 /* Skip this pageblock in the future as it's full or nearly full */ 1393 if (cc->nr_freepages < cc->nr_migratepages) 1394 set_pageblock_skip(page); 1395 } 1396 1397 /* Search orders in round-robin fashion */ 1398 static int next_search_order(struct compact_control *cc, int order) 1399 { 1400 order--; 1401 if (order < 0) 1402 order = cc->order - 1; 1403 1404 /* Search wrapped around? */ 1405 if (order == cc->search_order) { 1406 cc->search_order--; 1407 if (cc->search_order < 0) 1408 cc->search_order = cc->order - 1; 1409 return -1; 1410 } 1411 1412 return order; 1413 } 1414 1415 static unsigned long 1416 fast_isolate_freepages(struct compact_control *cc) 1417 { 1418 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1); 1419 unsigned int nr_scanned = 0; 1420 unsigned long low_pfn, min_pfn, highest = 0; 1421 unsigned long nr_isolated = 0; 1422 unsigned long distance; 1423 struct page *page = NULL; 1424 bool scan_start = false; 1425 int order; 1426 1427 /* Full compaction passes in a negative order */ 1428 if (cc->order <= 0) 1429 return cc->free_pfn; 1430 1431 /* 1432 * If starting the scan, use a deeper search and use the highest 1433 * PFN found if a suitable one is not found. 1434 */ 1435 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) { 1436 limit = pageblock_nr_pages >> 1; 1437 scan_start = true; 1438 } 1439 1440 /* 1441 * Preferred point is in the top quarter of the scan space but take 1442 * a pfn from the top half if the search is problematic. 1443 */ 1444 distance = (cc->free_pfn - cc->migrate_pfn); 1445 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2)); 1446 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1)); 1447 1448 if (WARN_ON_ONCE(min_pfn > low_pfn)) 1449 low_pfn = min_pfn; 1450 1451 /* 1452 * Search starts from the last successful isolation order or the next 1453 * order to search after a previous failure 1454 */ 1455 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order); 1456 1457 for (order = cc->search_order; 1458 !page && order >= 0; 1459 order = next_search_order(cc, order)) { 1460 struct free_area *area = &cc->zone->free_area[order]; 1461 struct list_head *freelist; 1462 struct page *freepage; 1463 unsigned long flags; 1464 unsigned int order_scanned = 0; 1465 unsigned long high_pfn = 0; 1466 1467 if (!area->nr_free) 1468 continue; 1469 1470 spin_lock_irqsave(&cc->zone->lock, flags); 1471 freelist = &area->free_list[MIGRATE_MOVABLE]; 1472 list_for_each_entry_reverse(freepage, freelist, lru) { 1473 unsigned long pfn; 1474 1475 order_scanned++; 1476 nr_scanned++; 1477 pfn = page_to_pfn(freepage); 1478 1479 if (pfn >= highest) 1480 highest = max(pageblock_start_pfn(pfn), 1481 cc->zone->zone_start_pfn); 1482 1483 if (pfn >= low_pfn) { 1484 cc->fast_search_fail = 0; 1485 cc->search_order = order; 1486 page = freepage; 1487 break; 1488 } 1489 1490 if (pfn >= min_pfn && pfn > high_pfn) { 1491 high_pfn = pfn; 1492 1493 /* Shorten the scan if a candidate is found */ 1494 limit >>= 1; 1495 } 1496 1497 if (order_scanned >= limit) 1498 break; 1499 } 1500 1501 /* Use a minimum pfn if a preferred one was not found */ 1502 if (!page && high_pfn) { 1503 page = pfn_to_page(high_pfn); 1504 1505 /* Update freepage for the list reorder below */ 1506 freepage = page; 1507 } 1508 1509 /* Reorder to so a future search skips recent pages */ 1510 move_freelist_head(freelist, freepage); 1511 1512 /* Isolate the page if available */ 1513 if (page) { 1514 if (__isolate_free_page(page, order)) { 1515 set_page_private(page, order); 1516 nr_isolated = 1 << order; 1517 cc->nr_freepages += nr_isolated; 1518 list_add_tail(&page->lru, &cc->freepages); 1519 count_compact_events(COMPACTISOLATED, nr_isolated); 1520 } else { 1521 /* If isolation fails, abort the search */ 1522 order = cc->search_order + 1; 1523 page = NULL; 1524 } 1525 } 1526 1527 spin_unlock_irqrestore(&cc->zone->lock, flags); 1528 1529 /* 1530 * Smaller scan on next order so the total scan is related 1531 * to freelist_scan_limit. 1532 */ 1533 if (order_scanned >= limit) 1534 limit = max(1U, limit >> 1); 1535 } 1536 1537 if (!page) { 1538 cc->fast_search_fail++; 1539 if (scan_start) { 1540 /* 1541 * Use the highest PFN found above min. If one was 1542 * not found, be pessimistic for direct compaction 1543 * and use the min mark. 1544 */ 1545 if (highest) { 1546 page = pfn_to_page(highest); 1547 cc->free_pfn = highest; 1548 } else { 1549 if (cc->direct_compaction && pfn_valid(min_pfn)) { 1550 page = pageblock_pfn_to_page(min_pfn, 1551 min(pageblock_end_pfn(min_pfn), 1552 zone_end_pfn(cc->zone)), 1553 cc->zone); 1554 cc->free_pfn = min_pfn; 1555 } 1556 } 1557 } 1558 } 1559 1560 if (highest && highest >= cc->zone->compact_cached_free_pfn) { 1561 highest -= pageblock_nr_pages; 1562 cc->zone->compact_cached_free_pfn = highest; 1563 } 1564 1565 cc->total_free_scanned += nr_scanned; 1566 if (!page) 1567 return cc->free_pfn; 1568 1569 low_pfn = page_to_pfn(page); 1570 fast_isolate_around(cc, low_pfn, nr_isolated); 1571 return low_pfn; 1572 } 1573 1574 /* 1575 * Based on information in the current compact_control, find blocks 1576 * suitable for isolating free pages from and then isolate them. 1577 */ 1578 static void isolate_freepages(struct compact_control *cc) 1579 { 1580 struct zone *zone = cc->zone; 1581 struct page *page; 1582 unsigned long block_start_pfn; /* start of current pageblock */ 1583 unsigned long isolate_start_pfn; /* exact pfn we start at */ 1584 unsigned long block_end_pfn; /* end of current pageblock */ 1585 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 1586 struct list_head *freelist = &cc->freepages; 1587 unsigned int stride; 1588 1589 /* Try a small search of the free lists for a candidate */ 1590 isolate_start_pfn = fast_isolate_freepages(cc); 1591 if (cc->nr_freepages) 1592 goto splitmap; 1593 1594 /* 1595 * Initialise the free scanner. The starting point is where we last 1596 * successfully isolated from, zone-cached value, or the end of the 1597 * zone when isolating for the first time. For looping we also need 1598 * this pfn aligned down to the pageblock boundary, because we do 1599 * block_start_pfn -= pageblock_nr_pages in the for loop. 1600 * For ending point, take care when isolating in last pageblock of a 1601 * zone which ends in the middle of a pageblock. 1602 * The low boundary is the end of the pageblock the migration scanner 1603 * is using. 1604 */ 1605 isolate_start_pfn = cc->free_pfn; 1606 block_start_pfn = pageblock_start_pfn(isolate_start_pfn); 1607 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 1608 zone_end_pfn(zone)); 1609 low_pfn = pageblock_end_pfn(cc->migrate_pfn); 1610 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1; 1611 1612 /* 1613 * Isolate free pages until enough are available to migrate the 1614 * pages on cc->migratepages. We stop searching if the migrate 1615 * and free page scanners meet or enough free pages are isolated. 1616 */ 1617 for (; block_start_pfn >= low_pfn; 1618 block_end_pfn = block_start_pfn, 1619 block_start_pfn -= pageblock_nr_pages, 1620 isolate_start_pfn = block_start_pfn) { 1621 unsigned long nr_isolated; 1622 1623 /* 1624 * This can iterate a massively long zone without finding any 1625 * suitable migration targets, so periodically check resched. 1626 */ 1627 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))) 1628 cond_resched(); 1629 1630 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1631 zone); 1632 if (!page) 1633 continue; 1634 1635 /* Check the block is suitable for migration */ 1636 if (!suitable_migration_target(cc, page)) 1637 continue; 1638 1639 /* If isolation recently failed, do not retry */ 1640 if (!isolation_suitable(cc, page)) 1641 continue; 1642 1643 /* Found a block suitable for isolating free pages from. */ 1644 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn, 1645 block_end_pfn, freelist, stride, false); 1646 1647 /* Update the skip hint if the full pageblock was scanned */ 1648 if (isolate_start_pfn == block_end_pfn) 1649 update_pageblock_skip(cc, page, block_start_pfn); 1650 1651 /* Are enough freepages isolated? */ 1652 if (cc->nr_freepages >= cc->nr_migratepages) { 1653 if (isolate_start_pfn >= block_end_pfn) { 1654 /* 1655 * Restart at previous pageblock if more 1656 * freepages can be isolated next time. 1657 */ 1658 isolate_start_pfn = 1659 block_start_pfn - pageblock_nr_pages; 1660 } 1661 break; 1662 } else if (isolate_start_pfn < block_end_pfn) { 1663 /* 1664 * If isolation failed early, do not continue 1665 * needlessly. 1666 */ 1667 break; 1668 } 1669 1670 /* Adjust stride depending on isolation */ 1671 if (nr_isolated) { 1672 stride = 1; 1673 continue; 1674 } 1675 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1); 1676 } 1677 1678 /* 1679 * Record where the free scanner will restart next time. Either we 1680 * broke from the loop and set isolate_start_pfn based on the last 1681 * call to isolate_freepages_block(), or we met the migration scanner 1682 * and the loop terminated due to isolate_start_pfn < low_pfn 1683 */ 1684 cc->free_pfn = isolate_start_pfn; 1685 1686 splitmap: 1687 /* __isolate_free_page() does not map the pages */ 1688 split_map_pages(freelist); 1689 } 1690 1691 /* 1692 * This is a migrate-callback that "allocates" freepages by taking pages 1693 * from the isolated freelists in the block we are migrating to. 1694 */ 1695 static struct page *compaction_alloc(struct page *migratepage, 1696 unsigned long data) 1697 { 1698 struct compact_control *cc = (struct compact_control *)data; 1699 struct page *freepage; 1700 1701 if (list_empty(&cc->freepages)) { 1702 isolate_freepages(cc); 1703 1704 if (list_empty(&cc->freepages)) 1705 return NULL; 1706 } 1707 1708 freepage = list_entry(cc->freepages.next, struct page, lru); 1709 list_del(&freepage->lru); 1710 cc->nr_freepages--; 1711 1712 return freepage; 1713 } 1714 1715 /* 1716 * This is a migrate-callback that "frees" freepages back to the isolated 1717 * freelist. All pages on the freelist are from the same zone, so there is no 1718 * special handling needed for NUMA. 1719 */ 1720 static void compaction_free(struct page *page, unsigned long data) 1721 { 1722 struct compact_control *cc = (struct compact_control *)data; 1723 1724 list_add(&page->lru, &cc->freepages); 1725 cc->nr_freepages++; 1726 } 1727 1728 /* possible outcome of isolate_migratepages */ 1729 typedef enum { 1730 ISOLATE_ABORT, /* Abort compaction now */ 1731 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1732 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1733 } isolate_migrate_t; 1734 1735 /* 1736 * Allow userspace to control policy on scanning the unevictable LRU for 1737 * compactable pages. 1738 */ 1739 #ifdef CONFIG_PREEMPT_RT 1740 int sysctl_compact_unevictable_allowed __read_mostly = 0; 1741 #else 1742 int sysctl_compact_unevictable_allowed __read_mostly = 1; 1743 #endif 1744 1745 static inline void 1746 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn) 1747 { 1748 if (cc->fast_start_pfn == ULONG_MAX) 1749 return; 1750 1751 if (!cc->fast_start_pfn) 1752 cc->fast_start_pfn = pfn; 1753 1754 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn); 1755 } 1756 1757 static inline unsigned long 1758 reinit_migrate_pfn(struct compact_control *cc) 1759 { 1760 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX) 1761 return cc->migrate_pfn; 1762 1763 cc->migrate_pfn = cc->fast_start_pfn; 1764 cc->fast_start_pfn = ULONG_MAX; 1765 1766 return cc->migrate_pfn; 1767 } 1768 1769 /* 1770 * Briefly search the free lists for a migration source that already has 1771 * some free pages to reduce the number of pages that need migration 1772 * before a pageblock is free. 1773 */ 1774 static unsigned long fast_find_migrateblock(struct compact_control *cc) 1775 { 1776 unsigned int limit = freelist_scan_limit(cc); 1777 unsigned int nr_scanned = 0; 1778 unsigned long distance; 1779 unsigned long pfn = cc->migrate_pfn; 1780 unsigned long high_pfn; 1781 int order; 1782 bool found_block = false; 1783 1784 /* Skip hints are relied on to avoid repeats on the fast search */ 1785 if (cc->ignore_skip_hint) 1786 return pfn; 1787 1788 /* 1789 * If the migrate_pfn is not at the start of a zone or the start 1790 * of a pageblock then assume this is a continuation of a previous 1791 * scan restarted due to COMPACT_CLUSTER_MAX. 1792 */ 1793 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn)) 1794 return pfn; 1795 1796 /* 1797 * For smaller orders, just linearly scan as the number of pages 1798 * to migrate should be relatively small and does not necessarily 1799 * justify freeing up a large block for a small allocation. 1800 */ 1801 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER) 1802 return pfn; 1803 1804 /* 1805 * Only allow kcompactd and direct requests for movable pages to 1806 * quickly clear out a MOVABLE pageblock for allocation. This 1807 * reduces the risk that a large movable pageblock is freed for 1808 * an unmovable/reclaimable small allocation. 1809 */ 1810 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE) 1811 return pfn; 1812 1813 /* 1814 * When starting the migration scanner, pick any pageblock within the 1815 * first half of the search space. Otherwise try and pick a pageblock 1816 * within the first eighth to reduce the chances that a migration 1817 * target later becomes a source. 1818 */ 1819 distance = (cc->free_pfn - cc->migrate_pfn) >> 1; 1820 if (cc->migrate_pfn != cc->zone->zone_start_pfn) 1821 distance >>= 2; 1822 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance); 1823 1824 for (order = cc->order - 1; 1825 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit; 1826 order--) { 1827 struct free_area *area = &cc->zone->free_area[order]; 1828 struct list_head *freelist; 1829 unsigned long flags; 1830 struct page *freepage; 1831 1832 if (!area->nr_free) 1833 continue; 1834 1835 spin_lock_irqsave(&cc->zone->lock, flags); 1836 freelist = &area->free_list[MIGRATE_MOVABLE]; 1837 list_for_each_entry(freepage, freelist, lru) { 1838 unsigned long free_pfn; 1839 1840 if (nr_scanned++ >= limit) { 1841 move_freelist_tail(freelist, freepage); 1842 break; 1843 } 1844 1845 free_pfn = page_to_pfn(freepage); 1846 if (free_pfn < high_pfn) { 1847 /* 1848 * Avoid if skipped recently. Ideally it would 1849 * move to the tail but even safe iteration of 1850 * the list assumes an entry is deleted, not 1851 * reordered. 1852 */ 1853 if (get_pageblock_skip(freepage)) 1854 continue; 1855 1856 /* Reorder to so a future search skips recent pages */ 1857 move_freelist_tail(freelist, freepage); 1858 1859 update_fast_start_pfn(cc, free_pfn); 1860 pfn = pageblock_start_pfn(free_pfn); 1861 cc->fast_search_fail = 0; 1862 found_block = true; 1863 set_pageblock_skip(freepage); 1864 break; 1865 } 1866 } 1867 spin_unlock_irqrestore(&cc->zone->lock, flags); 1868 } 1869 1870 cc->total_migrate_scanned += nr_scanned; 1871 1872 /* 1873 * If fast scanning failed then use a cached entry for a page block 1874 * that had free pages as the basis for starting a linear scan. 1875 */ 1876 if (!found_block) { 1877 cc->fast_search_fail++; 1878 pfn = reinit_migrate_pfn(cc); 1879 } 1880 return pfn; 1881 } 1882 1883 /* 1884 * Isolate all pages that can be migrated from the first suitable block, 1885 * starting at the block pointed to by the migrate scanner pfn within 1886 * compact_control. 1887 */ 1888 static isolate_migrate_t isolate_migratepages(struct compact_control *cc) 1889 { 1890 unsigned long block_start_pfn; 1891 unsigned long block_end_pfn; 1892 unsigned long low_pfn; 1893 struct page *page; 1894 const isolate_mode_t isolate_mode = 1895 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 1896 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0); 1897 bool fast_find_block; 1898 1899 /* 1900 * Start at where we last stopped, or beginning of the zone as 1901 * initialized by compact_zone(). The first failure will use 1902 * the lowest PFN as the starting point for linear scanning. 1903 */ 1904 low_pfn = fast_find_migrateblock(cc); 1905 block_start_pfn = pageblock_start_pfn(low_pfn); 1906 if (block_start_pfn < cc->zone->zone_start_pfn) 1907 block_start_pfn = cc->zone->zone_start_pfn; 1908 1909 /* 1910 * fast_find_migrateblock marks a pageblock skipped so to avoid 1911 * the isolation_suitable check below, check whether the fast 1912 * search was successful. 1913 */ 1914 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail; 1915 1916 /* Only scan within a pageblock boundary */ 1917 block_end_pfn = pageblock_end_pfn(low_pfn); 1918 1919 /* 1920 * Iterate over whole pageblocks until we find the first suitable. 1921 * Do not cross the free scanner. 1922 */ 1923 for (; block_end_pfn <= cc->free_pfn; 1924 fast_find_block = false, 1925 cc->migrate_pfn = low_pfn = block_end_pfn, 1926 block_start_pfn = block_end_pfn, 1927 block_end_pfn += pageblock_nr_pages) { 1928 1929 /* 1930 * This can potentially iterate a massively long zone with 1931 * many pageblocks unsuitable, so periodically check if we 1932 * need to schedule. 1933 */ 1934 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))) 1935 cond_resched(); 1936 1937 page = pageblock_pfn_to_page(block_start_pfn, 1938 block_end_pfn, cc->zone); 1939 if (!page) 1940 continue; 1941 1942 /* 1943 * If isolation recently failed, do not retry. Only check the 1944 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock 1945 * to be visited multiple times. Assume skip was checked 1946 * before making it "skip" so other compaction instances do 1947 * not scan the same block. 1948 */ 1949 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) && 1950 !fast_find_block && !isolation_suitable(cc, page)) 1951 continue; 1952 1953 /* 1954 * For async compaction, also only scan in MOVABLE blocks 1955 * without huge pages. Async compaction is optimistic to see 1956 * if the minimum amount of work satisfies the allocation. 1957 * The cached PFN is updated as it's possible that all 1958 * remaining blocks between source and target are unsuitable 1959 * and the compaction scanners fail to meet. 1960 */ 1961 if (!suitable_migration_source(cc, page)) { 1962 update_cached_migrate(cc, block_end_pfn); 1963 continue; 1964 } 1965 1966 /* Perform the isolation */ 1967 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn, 1968 isolate_mode)) 1969 return ISOLATE_ABORT; 1970 1971 /* 1972 * Either we isolated something and proceed with migration. Or 1973 * we failed and compact_zone should decide if we should 1974 * continue or not. 1975 */ 1976 break; 1977 } 1978 1979 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 1980 } 1981 1982 /* 1983 * order == -1 is expected when compacting via 1984 * /proc/sys/vm/compact_memory 1985 */ 1986 static inline bool is_via_compact_memory(int order) 1987 { 1988 return order == -1; 1989 } 1990 1991 static bool kswapd_is_running(pg_data_t *pgdat) 1992 { 1993 return pgdat->kswapd && task_is_running(pgdat->kswapd); 1994 } 1995 1996 /* 1997 * A zone's fragmentation score is the external fragmentation wrt to the 1998 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100]. 1999 */ 2000 static unsigned int fragmentation_score_zone(struct zone *zone) 2001 { 2002 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER); 2003 } 2004 2005 /* 2006 * A weighted zone's fragmentation score is the external fragmentation 2007 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It 2008 * returns a value in the range [0, 100]. 2009 * 2010 * The scaling factor ensures that proactive compaction focuses on larger 2011 * zones like ZONE_NORMAL, rather than smaller, specialized zones like 2012 * ZONE_DMA32. For smaller zones, the score value remains close to zero, 2013 * and thus never exceeds the high threshold for proactive compaction. 2014 */ 2015 static unsigned int fragmentation_score_zone_weighted(struct zone *zone) 2016 { 2017 unsigned long score; 2018 2019 score = zone->present_pages * fragmentation_score_zone(zone); 2020 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1); 2021 } 2022 2023 /* 2024 * The per-node proactive (background) compaction process is started by its 2025 * corresponding kcompactd thread when the node's fragmentation score 2026 * exceeds the high threshold. The compaction process remains active till 2027 * the node's score falls below the low threshold, or one of the back-off 2028 * conditions is met. 2029 */ 2030 static unsigned int fragmentation_score_node(pg_data_t *pgdat) 2031 { 2032 unsigned int score = 0; 2033 int zoneid; 2034 2035 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2036 struct zone *zone; 2037 2038 zone = &pgdat->node_zones[zoneid]; 2039 score += fragmentation_score_zone_weighted(zone); 2040 } 2041 2042 return score; 2043 } 2044 2045 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low) 2046 { 2047 unsigned int wmark_low; 2048 2049 /* 2050 * Cap the low watermark to avoid excessive compaction 2051 * activity in case a user sets the proactiveness tunable 2052 * close to 100 (maximum). 2053 */ 2054 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U); 2055 return low ? wmark_low : min(wmark_low + 10, 100U); 2056 } 2057 2058 static bool should_proactive_compact_node(pg_data_t *pgdat) 2059 { 2060 int wmark_high; 2061 2062 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat)) 2063 return false; 2064 2065 wmark_high = fragmentation_score_wmark(pgdat, false); 2066 return fragmentation_score_node(pgdat) > wmark_high; 2067 } 2068 2069 static enum compact_result __compact_finished(struct compact_control *cc) 2070 { 2071 unsigned int order; 2072 const int migratetype = cc->migratetype; 2073 int ret; 2074 2075 /* Compaction run completes if the migrate and free scanner meet */ 2076 if (compact_scanners_met(cc)) { 2077 /* Let the next compaction start anew. */ 2078 reset_cached_positions(cc->zone); 2079 2080 /* 2081 * Mark that the PG_migrate_skip information should be cleared 2082 * by kswapd when it goes to sleep. kcompactd does not set the 2083 * flag itself as the decision to be clear should be directly 2084 * based on an allocation request. 2085 */ 2086 if (cc->direct_compaction) 2087 cc->zone->compact_blockskip_flush = true; 2088 2089 if (cc->whole_zone) 2090 return COMPACT_COMPLETE; 2091 else 2092 return COMPACT_PARTIAL_SKIPPED; 2093 } 2094 2095 if (cc->proactive_compaction) { 2096 int score, wmark_low; 2097 pg_data_t *pgdat; 2098 2099 pgdat = cc->zone->zone_pgdat; 2100 if (kswapd_is_running(pgdat)) 2101 return COMPACT_PARTIAL_SKIPPED; 2102 2103 score = fragmentation_score_zone(cc->zone); 2104 wmark_low = fragmentation_score_wmark(pgdat, true); 2105 2106 if (score > wmark_low) 2107 ret = COMPACT_CONTINUE; 2108 else 2109 ret = COMPACT_SUCCESS; 2110 2111 goto out; 2112 } 2113 2114 if (is_via_compact_memory(cc->order)) 2115 return COMPACT_CONTINUE; 2116 2117 /* 2118 * Always finish scanning a pageblock to reduce the possibility of 2119 * fallbacks in the future. This is particularly important when 2120 * migration source is unmovable/reclaimable but it's not worth 2121 * special casing. 2122 */ 2123 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages)) 2124 return COMPACT_CONTINUE; 2125 2126 /* Direct compactor: Is a suitable page free? */ 2127 ret = COMPACT_NO_SUITABLE_PAGE; 2128 for (order = cc->order; order < MAX_ORDER; order++) { 2129 struct free_area *area = &cc->zone->free_area[order]; 2130 bool can_steal; 2131 2132 /* Job done if page is free of the right migratetype */ 2133 if (!free_area_empty(area, migratetype)) 2134 return COMPACT_SUCCESS; 2135 2136 #ifdef CONFIG_CMA 2137 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 2138 if (migratetype == MIGRATE_MOVABLE && 2139 !free_area_empty(area, MIGRATE_CMA)) 2140 return COMPACT_SUCCESS; 2141 #endif 2142 /* 2143 * Job done if allocation would steal freepages from 2144 * other migratetype buddy lists. 2145 */ 2146 if (find_suitable_fallback(area, order, migratetype, 2147 true, &can_steal) != -1) { 2148 2149 /* movable pages are OK in any pageblock */ 2150 if (migratetype == MIGRATE_MOVABLE) 2151 return COMPACT_SUCCESS; 2152 2153 /* 2154 * We are stealing for a non-movable allocation. Make 2155 * sure we finish compacting the current pageblock 2156 * first so it is as free as possible and we won't 2157 * have to steal another one soon. This only applies 2158 * to sync compaction, as async compaction operates 2159 * on pageblocks of the same migratetype. 2160 */ 2161 if (cc->mode == MIGRATE_ASYNC || 2162 IS_ALIGNED(cc->migrate_pfn, 2163 pageblock_nr_pages)) { 2164 return COMPACT_SUCCESS; 2165 } 2166 2167 ret = COMPACT_CONTINUE; 2168 break; 2169 } 2170 } 2171 2172 out: 2173 if (cc->contended || fatal_signal_pending(current)) 2174 ret = COMPACT_CONTENDED; 2175 2176 return ret; 2177 } 2178 2179 static enum compact_result compact_finished(struct compact_control *cc) 2180 { 2181 int ret; 2182 2183 ret = __compact_finished(cc); 2184 trace_mm_compaction_finished(cc->zone, cc->order, ret); 2185 if (ret == COMPACT_NO_SUITABLE_PAGE) 2186 ret = COMPACT_CONTINUE; 2187 2188 return ret; 2189 } 2190 2191 static enum compact_result __compaction_suitable(struct zone *zone, int order, 2192 unsigned int alloc_flags, 2193 int highest_zoneidx, 2194 unsigned long wmark_target) 2195 { 2196 unsigned long watermark; 2197 2198 if (is_via_compact_memory(order)) 2199 return COMPACT_CONTINUE; 2200 2201 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 2202 /* 2203 * If watermarks for high-order allocation are already met, there 2204 * should be no need for compaction at all. 2205 */ 2206 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx, 2207 alloc_flags)) 2208 return COMPACT_SUCCESS; 2209 2210 /* 2211 * Watermarks for order-0 must be met for compaction to be able to 2212 * isolate free pages for migration targets. This means that the 2213 * watermark and alloc_flags have to match, or be more pessimistic than 2214 * the check in __isolate_free_page(). We don't use the direct 2215 * compactor's alloc_flags, as they are not relevant for freepage 2216 * isolation. We however do use the direct compactor's highest_zoneidx 2217 * to skip over zones where lowmem reserves would prevent allocation 2218 * even if compaction succeeds. 2219 * For costly orders, we require low watermark instead of min for 2220 * compaction to proceed to increase its chances. 2221 * ALLOC_CMA is used, as pages in CMA pageblocks are considered 2222 * suitable migration targets 2223 */ 2224 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ? 2225 low_wmark_pages(zone) : min_wmark_pages(zone); 2226 watermark += compact_gap(order); 2227 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx, 2228 ALLOC_CMA, wmark_target)) 2229 return COMPACT_SKIPPED; 2230 2231 return COMPACT_CONTINUE; 2232 } 2233 2234 /* 2235 * compaction_suitable: Is this suitable to run compaction on this zone now? 2236 * Returns 2237 * COMPACT_SKIPPED - If there are too few free pages for compaction 2238 * COMPACT_SUCCESS - If the allocation would succeed without compaction 2239 * COMPACT_CONTINUE - If compaction should run now 2240 */ 2241 enum compact_result compaction_suitable(struct zone *zone, int order, 2242 unsigned int alloc_flags, 2243 int highest_zoneidx) 2244 { 2245 enum compact_result ret; 2246 int fragindex; 2247 2248 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx, 2249 zone_page_state(zone, NR_FREE_PAGES)); 2250 /* 2251 * fragmentation index determines if allocation failures are due to 2252 * low memory or external fragmentation 2253 * 2254 * index of -1000 would imply allocations might succeed depending on 2255 * watermarks, but we already failed the high-order watermark check 2256 * index towards 0 implies failure is due to lack of memory 2257 * index towards 1000 implies failure is due to fragmentation 2258 * 2259 * Only compact if a failure would be due to fragmentation. Also 2260 * ignore fragindex for non-costly orders where the alternative to 2261 * a successful reclaim/compaction is OOM. Fragindex and the 2262 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent 2263 * excessive compaction for costly orders, but it should not be at the 2264 * expense of system stability. 2265 */ 2266 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) { 2267 fragindex = fragmentation_index(zone, order); 2268 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 2269 ret = COMPACT_NOT_SUITABLE_ZONE; 2270 } 2271 2272 trace_mm_compaction_suitable(zone, order, ret); 2273 if (ret == COMPACT_NOT_SUITABLE_ZONE) 2274 ret = COMPACT_SKIPPED; 2275 2276 return ret; 2277 } 2278 2279 bool compaction_zonelist_suitable(struct alloc_context *ac, int order, 2280 int alloc_flags) 2281 { 2282 struct zone *zone; 2283 struct zoneref *z; 2284 2285 /* 2286 * Make sure at least one zone would pass __compaction_suitable if we continue 2287 * retrying the reclaim. 2288 */ 2289 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2290 ac->highest_zoneidx, ac->nodemask) { 2291 unsigned long available; 2292 enum compact_result compact_result; 2293 2294 /* 2295 * Do not consider all the reclaimable memory because we do not 2296 * want to trash just for a single high order allocation which 2297 * is even not guaranteed to appear even if __compaction_suitable 2298 * is happy about the watermark check. 2299 */ 2300 available = zone_reclaimable_pages(zone) / order; 2301 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 2302 compact_result = __compaction_suitable(zone, order, alloc_flags, 2303 ac->highest_zoneidx, available); 2304 if (compact_result != COMPACT_SKIPPED) 2305 return true; 2306 } 2307 2308 return false; 2309 } 2310 2311 static enum compact_result 2312 compact_zone(struct compact_control *cc, struct capture_control *capc) 2313 { 2314 enum compact_result ret; 2315 unsigned long start_pfn = cc->zone->zone_start_pfn; 2316 unsigned long end_pfn = zone_end_pfn(cc->zone); 2317 unsigned long last_migrated_pfn; 2318 const bool sync = cc->mode != MIGRATE_ASYNC; 2319 bool update_cached; 2320 unsigned int nr_succeeded = 0; 2321 2322 /* 2323 * These counters track activities during zone compaction. Initialize 2324 * them before compacting a new zone. 2325 */ 2326 cc->total_migrate_scanned = 0; 2327 cc->total_free_scanned = 0; 2328 cc->nr_migratepages = 0; 2329 cc->nr_freepages = 0; 2330 INIT_LIST_HEAD(&cc->freepages); 2331 INIT_LIST_HEAD(&cc->migratepages); 2332 2333 cc->migratetype = gfp_migratetype(cc->gfp_mask); 2334 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags, 2335 cc->highest_zoneidx); 2336 /* Compaction is likely to fail */ 2337 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED) 2338 return ret; 2339 2340 /* huh, compaction_suitable is returning something unexpected */ 2341 VM_BUG_ON(ret != COMPACT_CONTINUE); 2342 2343 /* 2344 * Clear pageblock skip if there were failures recently and compaction 2345 * is about to be retried after being deferred. 2346 */ 2347 if (compaction_restarting(cc->zone, cc->order)) 2348 __reset_isolation_suitable(cc->zone); 2349 2350 /* 2351 * Setup to move all movable pages to the end of the zone. Used cached 2352 * information on where the scanners should start (unless we explicitly 2353 * want to compact the whole zone), but check that it is initialised 2354 * by ensuring the values are within zone boundaries. 2355 */ 2356 cc->fast_start_pfn = 0; 2357 if (cc->whole_zone) { 2358 cc->migrate_pfn = start_pfn; 2359 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2360 } else { 2361 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync]; 2362 cc->free_pfn = cc->zone->compact_cached_free_pfn; 2363 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 2364 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2365 cc->zone->compact_cached_free_pfn = cc->free_pfn; 2366 } 2367 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 2368 cc->migrate_pfn = start_pfn; 2369 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 2370 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 2371 } 2372 2373 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn) 2374 cc->whole_zone = true; 2375 } 2376 2377 last_migrated_pfn = 0; 2378 2379 /* 2380 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on 2381 * the basis that some migrations will fail in ASYNC mode. However, 2382 * if the cached PFNs match and pageblocks are skipped due to having 2383 * no isolation candidates, then the sync state does not matter. 2384 * Until a pageblock with isolation candidates is found, keep the 2385 * cached PFNs in sync to avoid revisiting the same blocks. 2386 */ 2387 update_cached = !sync && 2388 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1]; 2389 2390 trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync); 2391 2392 /* lru_add_drain_all could be expensive with involving other CPUs */ 2393 lru_add_drain(); 2394 2395 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) { 2396 int err; 2397 unsigned long iteration_start_pfn = cc->migrate_pfn; 2398 2399 /* 2400 * Avoid multiple rescans which can happen if a page cannot be 2401 * isolated (dirty/writeback in async mode) or if the migrated 2402 * pages are being allocated before the pageblock is cleared. 2403 * The first rescan will capture the entire pageblock for 2404 * migration. If it fails, it'll be marked skip and scanning 2405 * will proceed as normal. 2406 */ 2407 cc->rescan = false; 2408 if (pageblock_start_pfn(last_migrated_pfn) == 2409 pageblock_start_pfn(iteration_start_pfn)) { 2410 cc->rescan = true; 2411 } 2412 2413 switch (isolate_migratepages(cc)) { 2414 case ISOLATE_ABORT: 2415 ret = COMPACT_CONTENDED; 2416 putback_movable_pages(&cc->migratepages); 2417 cc->nr_migratepages = 0; 2418 goto out; 2419 case ISOLATE_NONE: 2420 if (update_cached) { 2421 cc->zone->compact_cached_migrate_pfn[1] = 2422 cc->zone->compact_cached_migrate_pfn[0]; 2423 } 2424 2425 /* 2426 * We haven't isolated and migrated anything, but 2427 * there might still be unflushed migrations from 2428 * previous cc->order aligned block. 2429 */ 2430 goto check_drain; 2431 case ISOLATE_SUCCESS: 2432 update_cached = false; 2433 last_migrated_pfn = iteration_start_pfn; 2434 } 2435 2436 err = migrate_pages(&cc->migratepages, compaction_alloc, 2437 compaction_free, (unsigned long)cc, cc->mode, 2438 MR_COMPACTION, &nr_succeeded); 2439 2440 trace_mm_compaction_migratepages(cc, nr_succeeded); 2441 2442 /* All pages were either migrated or will be released */ 2443 cc->nr_migratepages = 0; 2444 if (err) { 2445 putback_movable_pages(&cc->migratepages); 2446 /* 2447 * migrate_pages() may return -ENOMEM when scanners meet 2448 * and we want compact_finished() to detect it 2449 */ 2450 if (err == -ENOMEM && !compact_scanners_met(cc)) { 2451 ret = COMPACT_CONTENDED; 2452 goto out; 2453 } 2454 /* 2455 * We failed to migrate at least one page in the current 2456 * order-aligned block, so skip the rest of it. 2457 */ 2458 if (cc->direct_compaction && 2459 (cc->mode == MIGRATE_ASYNC)) { 2460 cc->migrate_pfn = block_end_pfn( 2461 cc->migrate_pfn - 1, cc->order); 2462 /* Draining pcplists is useless in this case */ 2463 last_migrated_pfn = 0; 2464 } 2465 } 2466 2467 check_drain: 2468 /* 2469 * Has the migration scanner moved away from the previous 2470 * cc->order aligned block where we migrated from? If yes, 2471 * flush the pages that were freed, so that they can merge and 2472 * compact_finished() can detect immediately if allocation 2473 * would succeed. 2474 */ 2475 if (cc->order > 0 && last_migrated_pfn) { 2476 unsigned long current_block_start = 2477 block_start_pfn(cc->migrate_pfn, cc->order); 2478 2479 if (last_migrated_pfn < current_block_start) { 2480 lru_add_drain_cpu_zone(cc->zone); 2481 /* No more flushing until we migrate again */ 2482 last_migrated_pfn = 0; 2483 } 2484 } 2485 2486 /* Stop if a page has been captured */ 2487 if (capc && capc->page) { 2488 ret = COMPACT_SUCCESS; 2489 break; 2490 } 2491 } 2492 2493 out: 2494 /* 2495 * Release free pages and update where the free scanner should restart, 2496 * so we don't leave any returned pages behind in the next attempt. 2497 */ 2498 if (cc->nr_freepages > 0) { 2499 unsigned long free_pfn = release_freepages(&cc->freepages); 2500 2501 cc->nr_freepages = 0; 2502 VM_BUG_ON(free_pfn == 0); 2503 /* The cached pfn is always the first in a pageblock */ 2504 free_pfn = pageblock_start_pfn(free_pfn); 2505 /* 2506 * Only go back, not forward. The cached pfn might have been 2507 * already reset to zone end in compact_finished() 2508 */ 2509 if (free_pfn > cc->zone->compact_cached_free_pfn) 2510 cc->zone->compact_cached_free_pfn = free_pfn; 2511 } 2512 2513 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned); 2514 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned); 2515 2516 trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret); 2517 2518 return ret; 2519 } 2520 2521 static enum compact_result compact_zone_order(struct zone *zone, int order, 2522 gfp_t gfp_mask, enum compact_priority prio, 2523 unsigned int alloc_flags, int highest_zoneidx, 2524 struct page **capture) 2525 { 2526 enum compact_result ret; 2527 struct compact_control cc = { 2528 .order = order, 2529 .search_order = order, 2530 .gfp_mask = gfp_mask, 2531 .zone = zone, 2532 .mode = (prio == COMPACT_PRIO_ASYNC) ? 2533 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT, 2534 .alloc_flags = alloc_flags, 2535 .highest_zoneidx = highest_zoneidx, 2536 .direct_compaction = true, 2537 .whole_zone = (prio == MIN_COMPACT_PRIORITY), 2538 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY), 2539 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY) 2540 }; 2541 struct capture_control capc = { 2542 .cc = &cc, 2543 .page = NULL, 2544 }; 2545 2546 /* 2547 * Make sure the structs are really initialized before we expose the 2548 * capture control, in case we are interrupted and the interrupt handler 2549 * frees a page. 2550 */ 2551 barrier(); 2552 WRITE_ONCE(current->capture_control, &capc); 2553 2554 ret = compact_zone(&cc, &capc); 2555 2556 VM_BUG_ON(!list_empty(&cc.freepages)); 2557 VM_BUG_ON(!list_empty(&cc.migratepages)); 2558 2559 /* 2560 * Make sure we hide capture control first before we read the captured 2561 * page pointer, otherwise an interrupt could free and capture a page 2562 * and we would leak it. 2563 */ 2564 WRITE_ONCE(current->capture_control, NULL); 2565 *capture = READ_ONCE(capc.page); 2566 /* 2567 * Technically, it is also possible that compaction is skipped but 2568 * the page is still captured out of luck(IRQ came and freed the page). 2569 * Returning COMPACT_SUCCESS in such cases helps in properly accounting 2570 * the COMPACT[STALL|FAIL] when compaction is skipped. 2571 */ 2572 if (*capture) 2573 ret = COMPACT_SUCCESS; 2574 2575 return ret; 2576 } 2577 2578 int sysctl_extfrag_threshold = 500; 2579 2580 /** 2581 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 2582 * @gfp_mask: The GFP mask of the current allocation 2583 * @order: The order of the current allocation 2584 * @alloc_flags: The allocation flags of the current allocation 2585 * @ac: The context of current allocation 2586 * @prio: Determines how hard direct compaction should try to succeed 2587 * @capture: Pointer to free page created by compaction will be stored here 2588 * 2589 * This is the main entry point for direct page compaction. 2590 */ 2591 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 2592 unsigned int alloc_flags, const struct alloc_context *ac, 2593 enum compact_priority prio, struct page **capture) 2594 { 2595 int may_perform_io = gfp_mask & __GFP_IO; 2596 struct zoneref *z; 2597 struct zone *zone; 2598 enum compact_result rc = COMPACT_SKIPPED; 2599 2600 /* 2601 * Check if the GFP flags allow compaction - GFP_NOIO is really 2602 * tricky context because the migration might require IO 2603 */ 2604 if (!may_perform_io) 2605 return COMPACT_SKIPPED; 2606 2607 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio); 2608 2609 /* Compact each zone in the list */ 2610 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2611 ac->highest_zoneidx, ac->nodemask) { 2612 enum compact_result status; 2613 2614 if (prio > MIN_COMPACT_PRIORITY 2615 && compaction_deferred(zone, order)) { 2616 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); 2617 continue; 2618 } 2619 2620 status = compact_zone_order(zone, order, gfp_mask, prio, 2621 alloc_flags, ac->highest_zoneidx, capture); 2622 rc = max(status, rc); 2623 2624 /* The allocation should succeed, stop compacting */ 2625 if (status == COMPACT_SUCCESS) { 2626 /* 2627 * We think the allocation will succeed in this zone, 2628 * but it is not certain, hence the false. The caller 2629 * will repeat this with true if allocation indeed 2630 * succeeds in this zone. 2631 */ 2632 compaction_defer_reset(zone, order, false); 2633 2634 break; 2635 } 2636 2637 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE || 2638 status == COMPACT_PARTIAL_SKIPPED)) 2639 /* 2640 * We think that allocation won't succeed in this zone 2641 * so we defer compaction there. If it ends up 2642 * succeeding after all, it will be reset. 2643 */ 2644 defer_compaction(zone, order); 2645 2646 /* 2647 * We might have stopped compacting due to need_resched() in 2648 * async compaction, or due to a fatal signal detected. In that 2649 * case do not try further zones 2650 */ 2651 if ((prio == COMPACT_PRIO_ASYNC && need_resched()) 2652 || fatal_signal_pending(current)) 2653 break; 2654 } 2655 2656 return rc; 2657 } 2658 2659 /* 2660 * Compact all zones within a node till each zone's fragmentation score 2661 * reaches within proactive compaction thresholds (as determined by the 2662 * proactiveness tunable). 2663 * 2664 * It is possible that the function returns before reaching score targets 2665 * due to various back-off conditions, such as, contention on per-node or 2666 * per-zone locks. 2667 */ 2668 static void proactive_compact_node(pg_data_t *pgdat) 2669 { 2670 int zoneid; 2671 struct zone *zone; 2672 struct compact_control cc = { 2673 .order = -1, 2674 .mode = MIGRATE_SYNC_LIGHT, 2675 .ignore_skip_hint = true, 2676 .whole_zone = true, 2677 .gfp_mask = GFP_KERNEL, 2678 .proactive_compaction = true, 2679 }; 2680 2681 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2682 zone = &pgdat->node_zones[zoneid]; 2683 if (!populated_zone(zone)) 2684 continue; 2685 2686 cc.zone = zone; 2687 2688 compact_zone(&cc, NULL); 2689 2690 VM_BUG_ON(!list_empty(&cc.freepages)); 2691 VM_BUG_ON(!list_empty(&cc.migratepages)); 2692 } 2693 } 2694 2695 /* Compact all zones within a node */ 2696 static void compact_node(int nid) 2697 { 2698 pg_data_t *pgdat = NODE_DATA(nid); 2699 int zoneid; 2700 struct zone *zone; 2701 struct compact_control cc = { 2702 .order = -1, 2703 .mode = MIGRATE_SYNC, 2704 .ignore_skip_hint = true, 2705 .whole_zone = true, 2706 .gfp_mask = GFP_KERNEL, 2707 }; 2708 2709 2710 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2711 2712 zone = &pgdat->node_zones[zoneid]; 2713 if (!populated_zone(zone)) 2714 continue; 2715 2716 cc.zone = zone; 2717 2718 compact_zone(&cc, NULL); 2719 2720 VM_BUG_ON(!list_empty(&cc.freepages)); 2721 VM_BUG_ON(!list_empty(&cc.migratepages)); 2722 } 2723 } 2724 2725 /* Compact all nodes in the system */ 2726 static void compact_nodes(void) 2727 { 2728 int nid; 2729 2730 /* Flush pending updates to the LRU lists */ 2731 lru_add_drain_all(); 2732 2733 for_each_online_node(nid) 2734 compact_node(nid); 2735 } 2736 2737 /* 2738 * Tunable for proactive compaction. It determines how 2739 * aggressively the kernel should compact memory in the 2740 * background. It takes values in the range [0, 100]. 2741 */ 2742 unsigned int __read_mostly sysctl_compaction_proactiveness = 20; 2743 2744 int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write, 2745 void *buffer, size_t *length, loff_t *ppos) 2746 { 2747 int rc, nid; 2748 2749 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 2750 if (rc) 2751 return rc; 2752 2753 if (write && sysctl_compaction_proactiveness) { 2754 for_each_online_node(nid) { 2755 pg_data_t *pgdat = NODE_DATA(nid); 2756 2757 if (pgdat->proactive_compact_trigger) 2758 continue; 2759 2760 pgdat->proactive_compact_trigger = true; 2761 wake_up_interruptible(&pgdat->kcompactd_wait); 2762 } 2763 } 2764 2765 return 0; 2766 } 2767 2768 /* 2769 * This is the entry point for compacting all nodes via 2770 * /proc/sys/vm/compact_memory 2771 */ 2772 int sysctl_compaction_handler(struct ctl_table *table, int write, 2773 void *buffer, size_t *length, loff_t *ppos) 2774 { 2775 if (write) 2776 compact_nodes(); 2777 2778 return 0; 2779 } 2780 2781 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 2782 static ssize_t compact_store(struct device *dev, 2783 struct device_attribute *attr, 2784 const char *buf, size_t count) 2785 { 2786 int nid = dev->id; 2787 2788 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 2789 /* Flush pending updates to the LRU lists */ 2790 lru_add_drain_all(); 2791 2792 compact_node(nid); 2793 } 2794 2795 return count; 2796 } 2797 static DEVICE_ATTR_WO(compact); 2798 2799 int compaction_register_node(struct node *node) 2800 { 2801 return device_create_file(&node->dev, &dev_attr_compact); 2802 } 2803 2804 void compaction_unregister_node(struct node *node) 2805 { 2806 return device_remove_file(&node->dev, &dev_attr_compact); 2807 } 2808 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 2809 2810 static inline bool kcompactd_work_requested(pg_data_t *pgdat) 2811 { 2812 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() || 2813 pgdat->proactive_compact_trigger; 2814 } 2815 2816 static bool kcompactd_node_suitable(pg_data_t *pgdat) 2817 { 2818 int zoneid; 2819 struct zone *zone; 2820 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx; 2821 2822 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) { 2823 zone = &pgdat->node_zones[zoneid]; 2824 2825 if (!populated_zone(zone)) 2826 continue; 2827 2828 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0, 2829 highest_zoneidx) == COMPACT_CONTINUE) 2830 return true; 2831 } 2832 2833 return false; 2834 } 2835 2836 static void kcompactd_do_work(pg_data_t *pgdat) 2837 { 2838 /* 2839 * With no special task, compact all zones so that a page of requested 2840 * order is allocatable. 2841 */ 2842 int zoneid; 2843 struct zone *zone; 2844 struct compact_control cc = { 2845 .order = pgdat->kcompactd_max_order, 2846 .search_order = pgdat->kcompactd_max_order, 2847 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx, 2848 .mode = MIGRATE_SYNC_LIGHT, 2849 .ignore_skip_hint = false, 2850 .gfp_mask = GFP_KERNEL, 2851 }; 2852 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 2853 cc.highest_zoneidx); 2854 count_compact_event(KCOMPACTD_WAKE); 2855 2856 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) { 2857 int status; 2858 2859 zone = &pgdat->node_zones[zoneid]; 2860 if (!populated_zone(zone)) 2861 continue; 2862 2863 if (compaction_deferred(zone, cc.order)) 2864 continue; 2865 2866 if (compaction_suitable(zone, cc.order, 0, zoneid) != 2867 COMPACT_CONTINUE) 2868 continue; 2869 2870 if (kthread_should_stop()) 2871 return; 2872 2873 cc.zone = zone; 2874 status = compact_zone(&cc, NULL); 2875 2876 if (status == COMPACT_SUCCESS) { 2877 compaction_defer_reset(zone, cc.order, false); 2878 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { 2879 /* 2880 * Buddy pages may become stranded on pcps that could 2881 * otherwise coalesce on the zone's free area for 2882 * order >= cc.order. This is ratelimited by the 2883 * upcoming deferral. 2884 */ 2885 drain_all_pages(zone); 2886 2887 /* 2888 * We use sync migration mode here, so we defer like 2889 * sync direct compaction does. 2890 */ 2891 defer_compaction(zone, cc.order); 2892 } 2893 2894 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 2895 cc.total_migrate_scanned); 2896 count_compact_events(KCOMPACTD_FREE_SCANNED, 2897 cc.total_free_scanned); 2898 2899 VM_BUG_ON(!list_empty(&cc.freepages)); 2900 VM_BUG_ON(!list_empty(&cc.migratepages)); 2901 } 2902 2903 /* 2904 * Regardless of success, we are done until woken up next. But remember 2905 * the requested order/highest_zoneidx in case it was higher/tighter 2906 * than our current ones 2907 */ 2908 if (pgdat->kcompactd_max_order <= cc.order) 2909 pgdat->kcompactd_max_order = 0; 2910 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx) 2911 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 2912 } 2913 2914 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx) 2915 { 2916 if (!order) 2917 return; 2918 2919 if (pgdat->kcompactd_max_order < order) 2920 pgdat->kcompactd_max_order = order; 2921 2922 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx) 2923 pgdat->kcompactd_highest_zoneidx = highest_zoneidx; 2924 2925 /* 2926 * Pairs with implicit barrier in wait_event_freezable() 2927 * such that wakeups are not missed. 2928 */ 2929 if (!wq_has_sleeper(&pgdat->kcompactd_wait)) 2930 return; 2931 2932 if (!kcompactd_node_suitable(pgdat)) 2933 return; 2934 2935 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 2936 highest_zoneidx); 2937 wake_up_interruptible(&pgdat->kcompactd_wait); 2938 } 2939 2940 /* 2941 * The background compaction daemon, started as a kernel thread 2942 * from the init process. 2943 */ 2944 static int kcompactd(void *p) 2945 { 2946 pg_data_t *pgdat = (pg_data_t *)p; 2947 struct task_struct *tsk = current; 2948 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC); 2949 long timeout = default_timeout; 2950 2951 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2952 2953 if (!cpumask_empty(cpumask)) 2954 set_cpus_allowed_ptr(tsk, cpumask); 2955 2956 set_freezable(); 2957 2958 pgdat->kcompactd_max_order = 0; 2959 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 2960 2961 while (!kthread_should_stop()) { 2962 unsigned long pflags; 2963 2964 /* 2965 * Avoid the unnecessary wakeup for proactive compaction 2966 * when it is disabled. 2967 */ 2968 if (!sysctl_compaction_proactiveness) 2969 timeout = MAX_SCHEDULE_TIMEOUT; 2970 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 2971 if (wait_event_freezable_timeout(pgdat->kcompactd_wait, 2972 kcompactd_work_requested(pgdat), timeout) && 2973 !pgdat->proactive_compact_trigger) { 2974 2975 psi_memstall_enter(&pflags); 2976 kcompactd_do_work(pgdat); 2977 psi_memstall_leave(&pflags); 2978 /* 2979 * Reset the timeout value. The defer timeout from 2980 * proactive compaction is lost here but that is fine 2981 * as the condition of the zone changing substantionally 2982 * then carrying on with the previous defer interval is 2983 * not useful. 2984 */ 2985 timeout = default_timeout; 2986 continue; 2987 } 2988 2989 /* 2990 * Start the proactive work with default timeout. Based 2991 * on the fragmentation score, this timeout is updated. 2992 */ 2993 timeout = default_timeout; 2994 if (should_proactive_compact_node(pgdat)) { 2995 unsigned int prev_score, score; 2996 2997 prev_score = fragmentation_score_node(pgdat); 2998 proactive_compact_node(pgdat); 2999 score = fragmentation_score_node(pgdat); 3000 /* 3001 * Defer proactive compaction if the fragmentation 3002 * score did not go down i.e. no progress made. 3003 */ 3004 if (unlikely(score >= prev_score)) 3005 timeout = 3006 default_timeout << COMPACT_MAX_DEFER_SHIFT; 3007 } 3008 if (unlikely(pgdat->proactive_compact_trigger)) 3009 pgdat->proactive_compact_trigger = false; 3010 } 3011 3012 return 0; 3013 } 3014 3015 /* 3016 * This kcompactd start function will be called by init and node-hot-add. 3017 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 3018 */ 3019 int kcompactd_run(int nid) 3020 { 3021 pg_data_t *pgdat = NODE_DATA(nid); 3022 int ret = 0; 3023 3024 if (pgdat->kcompactd) 3025 return 0; 3026 3027 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); 3028 if (IS_ERR(pgdat->kcompactd)) { 3029 pr_err("Failed to start kcompactd on node %d\n", nid); 3030 ret = PTR_ERR(pgdat->kcompactd); 3031 pgdat->kcompactd = NULL; 3032 } 3033 return ret; 3034 } 3035 3036 /* 3037 * Called by memory hotplug when all memory in a node is offlined. Caller must 3038 * hold mem_hotplug_begin/end(). 3039 */ 3040 void kcompactd_stop(int nid) 3041 { 3042 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 3043 3044 if (kcompactd) { 3045 kthread_stop(kcompactd); 3046 NODE_DATA(nid)->kcompactd = NULL; 3047 } 3048 } 3049 3050 /* 3051 * It's optimal to keep kcompactd on the same CPUs as their memory, but 3052 * not required for correctness. So if the last cpu in a node goes 3053 * away, we get changed to run anywhere: as the first one comes back, 3054 * restore their cpu bindings. 3055 */ 3056 static int kcompactd_cpu_online(unsigned int cpu) 3057 { 3058 int nid; 3059 3060 for_each_node_state(nid, N_MEMORY) { 3061 pg_data_t *pgdat = NODE_DATA(nid); 3062 const struct cpumask *mask; 3063 3064 mask = cpumask_of_node(pgdat->node_id); 3065 3066 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3067 /* One of our CPUs online: restore mask */ 3068 set_cpus_allowed_ptr(pgdat->kcompactd, mask); 3069 } 3070 return 0; 3071 } 3072 3073 static int __init kcompactd_init(void) 3074 { 3075 int nid; 3076 int ret; 3077 3078 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 3079 "mm/compaction:online", 3080 kcompactd_cpu_online, NULL); 3081 if (ret < 0) { 3082 pr_err("kcompactd: failed to register hotplug callbacks.\n"); 3083 return ret; 3084 } 3085 3086 for_each_node_state(nid, N_MEMORY) 3087 kcompactd_run(nid); 3088 return 0; 3089 } 3090 subsys_initcall(kcompactd_init) 3091 3092 #endif /* CONFIG_COMPACTION */ 3093