1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/compaction.c 4 * 5 * Memory compaction for the reduction of external fragmentation. Note that 6 * this heavily depends upon page migration to do all the real heavy 7 * lifting 8 * 9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 10 */ 11 #include <linux/cpu.h> 12 #include <linux/swap.h> 13 #include <linux/migrate.h> 14 #include <linux/compaction.h> 15 #include <linux/mm_inline.h> 16 #include <linux/sched/signal.h> 17 #include <linux/backing-dev.h> 18 #include <linux/sysctl.h> 19 #include <linux/sysfs.h> 20 #include <linux/page-isolation.h> 21 #include <linux/kasan.h> 22 #include <linux/kthread.h> 23 #include <linux/freezer.h> 24 #include <linux/page_owner.h> 25 #include <linux/psi.h> 26 #include "internal.h" 27 28 #ifdef CONFIG_COMPACTION 29 /* 30 * Fragmentation score check interval for proactive compaction purposes. 31 */ 32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500) 33 34 static inline void count_compact_event(enum vm_event_item item) 35 { 36 count_vm_event(item); 37 } 38 39 static inline void count_compact_events(enum vm_event_item item, long delta) 40 { 41 count_vm_events(item, delta); 42 } 43 #else 44 #define count_compact_event(item) do { } while (0) 45 #define count_compact_events(item, delta) do { } while (0) 46 #endif 47 48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 49 50 #define CREATE_TRACE_POINTS 51 #include <trace/events/compaction.h> 52 53 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order)) 54 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order)) 55 56 /* 57 * Page order with-respect-to which proactive compaction 58 * calculates external fragmentation, which is used as 59 * the "fragmentation score" of a node/zone. 60 */ 61 #if defined CONFIG_TRANSPARENT_HUGEPAGE 62 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER 63 #elif defined CONFIG_HUGETLBFS 64 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER 65 #else 66 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT) 67 #endif 68 69 static unsigned long release_freepages(struct list_head *freelist) 70 { 71 struct page *page, *next; 72 unsigned long high_pfn = 0; 73 74 list_for_each_entry_safe(page, next, freelist, lru) { 75 unsigned long pfn = page_to_pfn(page); 76 list_del(&page->lru); 77 __free_page(page); 78 if (pfn > high_pfn) 79 high_pfn = pfn; 80 } 81 82 return high_pfn; 83 } 84 85 static void split_map_pages(struct list_head *list) 86 { 87 unsigned int i, order, nr_pages; 88 struct page *page, *next; 89 LIST_HEAD(tmp_list); 90 91 list_for_each_entry_safe(page, next, list, lru) { 92 list_del(&page->lru); 93 94 order = page_private(page); 95 nr_pages = 1 << order; 96 97 post_alloc_hook(page, order, __GFP_MOVABLE); 98 if (order) 99 split_page(page, order); 100 101 for (i = 0; i < nr_pages; i++) { 102 list_add(&page->lru, &tmp_list); 103 page++; 104 } 105 } 106 107 list_splice(&tmp_list, list); 108 } 109 110 #ifdef CONFIG_COMPACTION 111 bool PageMovable(struct page *page) 112 { 113 const struct movable_operations *mops; 114 115 VM_BUG_ON_PAGE(!PageLocked(page), page); 116 if (!__PageMovable(page)) 117 return false; 118 119 mops = page_movable_ops(page); 120 if (mops) 121 return true; 122 123 return false; 124 } 125 126 void __SetPageMovable(struct page *page, const struct movable_operations *mops) 127 { 128 VM_BUG_ON_PAGE(!PageLocked(page), page); 129 VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page); 130 page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE); 131 } 132 EXPORT_SYMBOL(__SetPageMovable); 133 134 void __ClearPageMovable(struct page *page) 135 { 136 VM_BUG_ON_PAGE(!PageMovable(page), page); 137 /* 138 * This page still has the type of a movable page, but it's 139 * actually not movable any more. 140 */ 141 page->mapping = (void *)PAGE_MAPPING_MOVABLE; 142 } 143 EXPORT_SYMBOL(__ClearPageMovable); 144 145 /* Do not skip compaction more than 64 times */ 146 #define COMPACT_MAX_DEFER_SHIFT 6 147 148 /* 149 * Compaction is deferred when compaction fails to result in a page 150 * allocation success. 1 << compact_defer_shift, compactions are skipped up 151 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 152 */ 153 static void defer_compaction(struct zone *zone, int order) 154 { 155 zone->compact_considered = 0; 156 zone->compact_defer_shift++; 157 158 if (order < zone->compact_order_failed) 159 zone->compact_order_failed = order; 160 161 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 162 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 163 164 trace_mm_compaction_defer_compaction(zone, order); 165 } 166 167 /* Returns true if compaction should be skipped this time */ 168 static bool compaction_deferred(struct zone *zone, int order) 169 { 170 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 171 172 if (order < zone->compact_order_failed) 173 return false; 174 175 /* Avoid possible overflow */ 176 if (++zone->compact_considered >= defer_limit) { 177 zone->compact_considered = defer_limit; 178 return false; 179 } 180 181 trace_mm_compaction_deferred(zone, order); 182 183 return true; 184 } 185 186 /* 187 * Update defer tracking counters after successful compaction of given order, 188 * which means an allocation either succeeded (alloc_success == true) or is 189 * expected to succeed. 190 */ 191 void compaction_defer_reset(struct zone *zone, int order, 192 bool alloc_success) 193 { 194 if (alloc_success) { 195 zone->compact_considered = 0; 196 zone->compact_defer_shift = 0; 197 } 198 if (order >= zone->compact_order_failed) 199 zone->compact_order_failed = order + 1; 200 201 trace_mm_compaction_defer_reset(zone, order); 202 } 203 204 /* Returns true if restarting compaction after many failures */ 205 static bool compaction_restarting(struct zone *zone, int order) 206 { 207 if (order < zone->compact_order_failed) 208 return false; 209 210 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 211 zone->compact_considered >= 1UL << zone->compact_defer_shift; 212 } 213 214 /* Returns true if the pageblock should be scanned for pages to isolate. */ 215 static inline bool isolation_suitable(struct compact_control *cc, 216 struct page *page) 217 { 218 if (cc->ignore_skip_hint) 219 return true; 220 221 return !get_pageblock_skip(page); 222 } 223 224 static void reset_cached_positions(struct zone *zone) 225 { 226 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 227 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 228 zone->compact_cached_free_pfn = 229 pageblock_start_pfn(zone_end_pfn(zone) - 1); 230 } 231 232 /* 233 * Compound pages of >= pageblock_order should consistently be skipped until 234 * released. It is always pointless to compact pages of such order (if they are 235 * migratable), and the pageblocks they occupy cannot contain any free pages. 236 */ 237 static bool pageblock_skip_persistent(struct page *page) 238 { 239 if (!PageCompound(page)) 240 return false; 241 242 page = compound_head(page); 243 244 if (compound_order(page) >= pageblock_order) 245 return true; 246 247 return false; 248 } 249 250 static bool 251 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source, 252 bool check_target) 253 { 254 struct page *page = pfn_to_online_page(pfn); 255 struct page *block_page; 256 struct page *end_page; 257 unsigned long block_pfn; 258 259 if (!page) 260 return false; 261 if (zone != page_zone(page)) 262 return false; 263 if (pageblock_skip_persistent(page)) 264 return false; 265 266 /* 267 * If skip is already cleared do no further checking once the 268 * restart points have been set. 269 */ 270 if (check_source && check_target && !get_pageblock_skip(page)) 271 return true; 272 273 /* 274 * If clearing skip for the target scanner, do not select a 275 * non-movable pageblock as the starting point. 276 */ 277 if (!check_source && check_target && 278 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 279 return false; 280 281 /* Ensure the start of the pageblock or zone is online and valid */ 282 block_pfn = pageblock_start_pfn(pfn); 283 block_pfn = max(block_pfn, zone->zone_start_pfn); 284 block_page = pfn_to_online_page(block_pfn); 285 if (block_page) { 286 page = block_page; 287 pfn = block_pfn; 288 } 289 290 /* Ensure the end of the pageblock or zone is online and valid */ 291 block_pfn = pageblock_end_pfn(pfn) - 1; 292 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1); 293 end_page = pfn_to_online_page(block_pfn); 294 if (!end_page) 295 return false; 296 297 /* 298 * Only clear the hint if a sample indicates there is either a 299 * free page or an LRU page in the block. One or other condition 300 * is necessary for the block to be a migration source/target. 301 */ 302 do { 303 if (check_source && PageLRU(page)) { 304 clear_pageblock_skip(page); 305 return true; 306 } 307 308 if (check_target && PageBuddy(page)) { 309 clear_pageblock_skip(page); 310 return true; 311 } 312 313 page += (1 << PAGE_ALLOC_COSTLY_ORDER); 314 } while (page <= end_page); 315 316 return false; 317 } 318 319 /* 320 * This function is called to clear all cached information on pageblocks that 321 * should be skipped for page isolation when the migrate and free page scanner 322 * meet. 323 */ 324 static void __reset_isolation_suitable(struct zone *zone) 325 { 326 unsigned long migrate_pfn = zone->zone_start_pfn; 327 unsigned long free_pfn = zone_end_pfn(zone) - 1; 328 unsigned long reset_migrate = free_pfn; 329 unsigned long reset_free = migrate_pfn; 330 bool source_set = false; 331 bool free_set = false; 332 333 if (!zone->compact_blockskip_flush) 334 return; 335 336 zone->compact_blockskip_flush = false; 337 338 /* 339 * Walk the zone and update pageblock skip information. Source looks 340 * for PageLRU while target looks for PageBuddy. When the scanner 341 * is found, both PageBuddy and PageLRU are checked as the pageblock 342 * is suitable as both source and target. 343 */ 344 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages, 345 free_pfn -= pageblock_nr_pages) { 346 cond_resched(); 347 348 /* Update the migrate PFN */ 349 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) && 350 migrate_pfn < reset_migrate) { 351 source_set = true; 352 reset_migrate = migrate_pfn; 353 zone->compact_init_migrate_pfn = reset_migrate; 354 zone->compact_cached_migrate_pfn[0] = reset_migrate; 355 zone->compact_cached_migrate_pfn[1] = reset_migrate; 356 } 357 358 /* Update the free PFN */ 359 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) && 360 free_pfn > reset_free) { 361 free_set = true; 362 reset_free = free_pfn; 363 zone->compact_init_free_pfn = reset_free; 364 zone->compact_cached_free_pfn = reset_free; 365 } 366 } 367 368 /* Leave no distance if no suitable block was reset */ 369 if (reset_migrate >= reset_free) { 370 zone->compact_cached_migrate_pfn[0] = migrate_pfn; 371 zone->compact_cached_migrate_pfn[1] = migrate_pfn; 372 zone->compact_cached_free_pfn = free_pfn; 373 } 374 } 375 376 void reset_isolation_suitable(pg_data_t *pgdat) 377 { 378 int zoneid; 379 380 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 381 struct zone *zone = &pgdat->node_zones[zoneid]; 382 if (!populated_zone(zone)) 383 continue; 384 385 /* Only flush if a full compaction finished recently */ 386 if (zone->compact_blockskip_flush) 387 __reset_isolation_suitable(zone); 388 } 389 } 390 391 /* 392 * Sets the pageblock skip bit if it was clear. Note that this is a hint as 393 * locks are not required for read/writers. Returns true if it was already set. 394 */ 395 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 396 unsigned long pfn) 397 { 398 bool skip; 399 400 /* Do no update if skip hint is being ignored */ 401 if (cc->ignore_skip_hint) 402 return false; 403 404 if (!pageblock_aligned(pfn)) 405 return false; 406 407 skip = get_pageblock_skip(page); 408 if (!skip && !cc->no_set_skip_hint) 409 set_pageblock_skip(page); 410 411 return skip; 412 } 413 414 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 415 { 416 struct zone *zone = cc->zone; 417 418 pfn = pageblock_end_pfn(pfn); 419 420 /* Set for isolation rather than compaction */ 421 if (cc->no_set_skip_hint) 422 return; 423 424 if (pfn > zone->compact_cached_migrate_pfn[0]) 425 zone->compact_cached_migrate_pfn[0] = pfn; 426 if (cc->mode != MIGRATE_ASYNC && 427 pfn > zone->compact_cached_migrate_pfn[1]) 428 zone->compact_cached_migrate_pfn[1] = pfn; 429 } 430 431 /* 432 * If no pages were isolated then mark this pageblock to be skipped in the 433 * future. The information is later cleared by __reset_isolation_suitable(). 434 */ 435 static void update_pageblock_skip(struct compact_control *cc, 436 struct page *page, unsigned long pfn) 437 { 438 struct zone *zone = cc->zone; 439 440 if (cc->no_set_skip_hint) 441 return; 442 443 if (!page) 444 return; 445 446 set_pageblock_skip(page); 447 448 /* Update where async and sync compaction should restart */ 449 if (pfn < zone->compact_cached_free_pfn) 450 zone->compact_cached_free_pfn = pfn; 451 } 452 #else 453 static inline bool isolation_suitable(struct compact_control *cc, 454 struct page *page) 455 { 456 return true; 457 } 458 459 static inline bool pageblock_skip_persistent(struct page *page) 460 { 461 return false; 462 } 463 464 static inline void update_pageblock_skip(struct compact_control *cc, 465 struct page *page, unsigned long pfn) 466 { 467 } 468 469 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 470 { 471 } 472 473 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 474 unsigned long pfn) 475 { 476 return false; 477 } 478 #endif /* CONFIG_COMPACTION */ 479 480 /* 481 * Compaction requires the taking of some coarse locks that are potentially 482 * very heavily contended. For async compaction, trylock and record if the 483 * lock is contended. The lock will still be acquired but compaction will 484 * abort when the current block is finished regardless of success rate. 485 * Sync compaction acquires the lock. 486 * 487 * Always returns true which makes it easier to track lock state in callers. 488 */ 489 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags, 490 struct compact_control *cc) 491 __acquires(lock) 492 { 493 /* Track if the lock is contended in async mode */ 494 if (cc->mode == MIGRATE_ASYNC && !cc->contended) { 495 if (spin_trylock_irqsave(lock, *flags)) 496 return true; 497 498 cc->contended = true; 499 } 500 501 spin_lock_irqsave(lock, *flags); 502 return true; 503 } 504 505 /* 506 * Compaction requires the taking of some coarse locks that are potentially 507 * very heavily contended. The lock should be periodically unlocked to avoid 508 * having disabled IRQs for a long time, even when there is nobody waiting on 509 * the lock. It might also be that allowing the IRQs will result in 510 * need_resched() becoming true. If scheduling is needed, compaction schedules. 511 * Either compaction type will also abort if a fatal signal is pending. 512 * In either case if the lock was locked, it is dropped and not regained. 513 * 514 * Returns true if compaction should abort due to fatal signal pending. 515 * Returns false when compaction can continue. 516 */ 517 static bool compact_unlock_should_abort(spinlock_t *lock, 518 unsigned long flags, bool *locked, struct compact_control *cc) 519 { 520 if (*locked) { 521 spin_unlock_irqrestore(lock, flags); 522 *locked = false; 523 } 524 525 if (fatal_signal_pending(current)) { 526 cc->contended = true; 527 return true; 528 } 529 530 cond_resched(); 531 532 return false; 533 } 534 535 /* 536 * Isolate free pages onto a private freelist. If @strict is true, will abort 537 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 538 * (even though it may still end up isolating some pages). 539 */ 540 static unsigned long isolate_freepages_block(struct compact_control *cc, 541 unsigned long *start_pfn, 542 unsigned long end_pfn, 543 struct list_head *freelist, 544 unsigned int stride, 545 bool strict) 546 { 547 int nr_scanned = 0, total_isolated = 0; 548 struct page *cursor; 549 unsigned long flags = 0; 550 bool locked = false; 551 unsigned long blockpfn = *start_pfn; 552 unsigned int order; 553 554 /* Strict mode is for isolation, speed is secondary */ 555 if (strict) 556 stride = 1; 557 558 cursor = pfn_to_page(blockpfn); 559 560 /* Isolate free pages. */ 561 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) { 562 int isolated; 563 struct page *page = cursor; 564 565 /* 566 * Periodically drop the lock (if held) regardless of its 567 * contention, to give chance to IRQs. Abort if fatal signal 568 * pending. 569 */ 570 if (!(blockpfn % COMPACT_CLUSTER_MAX) 571 && compact_unlock_should_abort(&cc->zone->lock, flags, 572 &locked, cc)) 573 break; 574 575 nr_scanned++; 576 577 /* 578 * For compound pages such as THP and hugetlbfs, we can save 579 * potentially a lot of iterations if we skip them at once. 580 * The check is racy, but we can consider only valid values 581 * and the only danger is skipping too much. 582 */ 583 if (PageCompound(page)) { 584 const unsigned int order = compound_order(page); 585 586 if (likely(order <= MAX_ORDER)) { 587 blockpfn += (1UL << order) - 1; 588 cursor += (1UL << order) - 1; 589 nr_scanned += (1UL << order) - 1; 590 } 591 goto isolate_fail; 592 } 593 594 if (!PageBuddy(page)) 595 goto isolate_fail; 596 597 /* If we already hold the lock, we can skip some rechecking. */ 598 if (!locked) { 599 locked = compact_lock_irqsave(&cc->zone->lock, 600 &flags, cc); 601 602 /* Recheck this is a buddy page under lock */ 603 if (!PageBuddy(page)) 604 goto isolate_fail; 605 } 606 607 /* Found a free page, will break it into order-0 pages */ 608 order = buddy_order(page); 609 isolated = __isolate_free_page(page, order); 610 if (!isolated) 611 break; 612 set_page_private(page, order); 613 614 nr_scanned += isolated - 1; 615 total_isolated += isolated; 616 cc->nr_freepages += isolated; 617 list_add_tail(&page->lru, freelist); 618 619 if (!strict && cc->nr_migratepages <= cc->nr_freepages) { 620 blockpfn += isolated; 621 break; 622 } 623 /* Advance to the end of split page */ 624 blockpfn += isolated - 1; 625 cursor += isolated - 1; 626 continue; 627 628 isolate_fail: 629 if (strict) 630 break; 631 else 632 continue; 633 634 } 635 636 if (locked) 637 spin_unlock_irqrestore(&cc->zone->lock, flags); 638 639 /* 640 * There is a tiny chance that we have read bogus compound_order(), 641 * so be careful to not go outside of the pageblock. 642 */ 643 if (unlikely(blockpfn > end_pfn)) 644 blockpfn = end_pfn; 645 646 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 647 nr_scanned, total_isolated); 648 649 /* Record how far we have got within the block */ 650 *start_pfn = blockpfn; 651 652 /* 653 * If strict isolation is requested by CMA then check that all the 654 * pages requested were isolated. If there were any failures, 0 is 655 * returned and CMA will fail. 656 */ 657 if (strict && blockpfn < end_pfn) 658 total_isolated = 0; 659 660 cc->total_free_scanned += nr_scanned; 661 if (total_isolated) 662 count_compact_events(COMPACTISOLATED, total_isolated); 663 return total_isolated; 664 } 665 666 /** 667 * isolate_freepages_range() - isolate free pages. 668 * @cc: Compaction control structure. 669 * @start_pfn: The first PFN to start isolating. 670 * @end_pfn: The one-past-last PFN. 671 * 672 * Non-free pages, invalid PFNs, or zone boundaries within the 673 * [start_pfn, end_pfn) range are considered errors, cause function to 674 * undo its actions and return zero. 675 * 676 * Otherwise, function returns one-past-the-last PFN of isolated page 677 * (which may be greater then end_pfn if end fell in a middle of 678 * a free page). 679 */ 680 unsigned long 681 isolate_freepages_range(struct compact_control *cc, 682 unsigned long start_pfn, unsigned long end_pfn) 683 { 684 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 685 LIST_HEAD(freelist); 686 687 pfn = start_pfn; 688 block_start_pfn = pageblock_start_pfn(pfn); 689 if (block_start_pfn < cc->zone->zone_start_pfn) 690 block_start_pfn = cc->zone->zone_start_pfn; 691 block_end_pfn = pageblock_end_pfn(pfn); 692 693 for (; pfn < end_pfn; pfn += isolated, 694 block_start_pfn = block_end_pfn, 695 block_end_pfn += pageblock_nr_pages) { 696 /* Protect pfn from changing by isolate_freepages_block */ 697 unsigned long isolate_start_pfn = pfn; 698 699 block_end_pfn = min(block_end_pfn, end_pfn); 700 701 /* 702 * pfn could pass the block_end_pfn if isolated freepage 703 * is more than pageblock order. In this case, we adjust 704 * scanning range to right one. 705 */ 706 if (pfn >= block_end_pfn) { 707 block_start_pfn = pageblock_start_pfn(pfn); 708 block_end_pfn = pageblock_end_pfn(pfn); 709 block_end_pfn = min(block_end_pfn, end_pfn); 710 } 711 712 if (!pageblock_pfn_to_page(block_start_pfn, 713 block_end_pfn, cc->zone)) 714 break; 715 716 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 717 block_end_pfn, &freelist, 0, true); 718 719 /* 720 * In strict mode, isolate_freepages_block() returns 0 if 721 * there are any holes in the block (ie. invalid PFNs or 722 * non-free pages). 723 */ 724 if (!isolated) 725 break; 726 727 /* 728 * If we managed to isolate pages, it is always (1 << n) * 729 * pageblock_nr_pages for some non-negative n. (Max order 730 * page may span two pageblocks). 731 */ 732 } 733 734 /* __isolate_free_page() does not map the pages */ 735 split_map_pages(&freelist); 736 737 if (pfn < end_pfn) { 738 /* Loop terminated early, cleanup. */ 739 release_freepages(&freelist); 740 return 0; 741 } 742 743 /* We don't use freelists for anything. */ 744 return pfn; 745 } 746 747 /* Similar to reclaim, but different enough that they don't share logic */ 748 static bool too_many_isolated(pg_data_t *pgdat) 749 { 750 bool too_many; 751 752 unsigned long active, inactive, isolated; 753 754 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) + 755 node_page_state(pgdat, NR_INACTIVE_ANON); 756 active = node_page_state(pgdat, NR_ACTIVE_FILE) + 757 node_page_state(pgdat, NR_ACTIVE_ANON); 758 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) + 759 node_page_state(pgdat, NR_ISOLATED_ANON); 760 761 too_many = isolated > (inactive + active) / 2; 762 if (!too_many) 763 wake_throttle_isolated(pgdat); 764 765 return too_many; 766 } 767 768 /** 769 * isolate_migratepages_block() - isolate all migrate-able pages within 770 * a single pageblock 771 * @cc: Compaction control structure. 772 * @low_pfn: The first PFN to isolate 773 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 774 * @mode: Isolation mode to be used. 775 * 776 * Isolate all pages that can be migrated from the range specified by 777 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 778 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion, 779 * -ENOMEM in case we could not allocate a page, or 0. 780 * cc->migrate_pfn will contain the next pfn to scan. 781 * 782 * The pages are isolated on cc->migratepages list (not required to be empty), 783 * and cc->nr_migratepages is updated accordingly. 784 */ 785 static int 786 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 787 unsigned long end_pfn, isolate_mode_t mode) 788 { 789 pg_data_t *pgdat = cc->zone->zone_pgdat; 790 unsigned long nr_scanned = 0, nr_isolated = 0; 791 struct lruvec *lruvec; 792 unsigned long flags = 0; 793 struct lruvec *locked = NULL; 794 struct page *page = NULL, *valid_page = NULL; 795 struct address_space *mapping; 796 unsigned long start_pfn = low_pfn; 797 bool skip_on_failure = false; 798 unsigned long next_skip_pfn = 0; 799 bool skip_updated = false; 800 int ret = 0; 801 802 cc->migrate_pfn = low_pfn; 803 804 /* 805 * Ensure that there are not too many pages isolated from the LRU 806 * list by either parallel reclaimers or compaction. If there are, 807 * delay for some time until fewer pages are isolated 808 */ 809 while (unlikely(too_many_isolated(pgdat))) { 810 /* stop isolation if there are still pages not migrated */ 811 if (cc->nr_migratepages) 812 return -EAGAIN; 813 814 /* async migration should just abort */ 815 if (cc->mode == MIGRATE_ASYNC) 816 return -EAGAIN; 817 818 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 819 820 if (fatal_signal_pending(current)) 821 return -EINTR; 822 } 823 824 cond_resched(); 825 826 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { 827 skip_on_failure = true; 828 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 829 } 830 831 /* Time to isolate some pages for migration */ 832 for (; low_pfn < end_pfn; low_pfn++) { 833 834 if (skip_on_failure && low_pfn >= next_skip_pfn) { 835 /* 836 * We have isolated all migration candidates in the 837 * previous order-aligned block, and did not skip it due 838 * to failure. We should migrate the pages now and 839 * hopefully succeed compaction. 840 */ 841 if (nr_isolated) 842 break; 843 844 /* 845 * We failed to isolate in the previous order-aligned 846 * block. Set the new boundary to the end of the 847 * current block. Note we can't simply increase 848 * next_skip_pfn by 1 << order, as low_pfn might have 849 * been incremented by a higher number due to skipping 850 * a compound or a high-order buddy page in the 851 * previous loop iteration. 852 */ 853 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 854 } 855 856 /* 857 * Periodically drop the lock (if held) regardless of its 858 * contention, to give chance to IRQs. Abort completely if 859 * a fatal signal is pending. 860 */ 861 if (!(low_pfn % COMPACT_CLUSTER_MAX)) { 862 if (locked) { 863 unlock_page_lruvec_irqrestore(locked, flags); 864 locked = NULL; 865 } 866 867 if (fatal_signal_pending(current)) { 868 cc->contended = true; 869 ret = -EINTR; 870 871 goto fatal_pending; 872 } 873 874 cond_resched(); 875 } 876 877 nr_scanned++; 878 879 page = pfn_to_page(low_pfn); 880 881 /* 882 * Check if the pageblock has already been marked skipped. 883 * Only the aligned PFN is checked as the caller isolates 884 * COMPACT_CLUSTER_MAX at a time so the second call must 885 * not falsely conclude that the block should be skipped. 886 */ 887 if (!valid_page && pageblock_aligned(low_pfn)) { 888 if (!isolation_suitable(cc, page)) { 889 low_pfn = end_pfn; 890 page = NULL; 891 goto isolate_abort; 892 } 893 valid_page = page; 894 } 895 896 if (PageHuge(page) && cc->alloc_contig) { 897 if (locked) { 898 unlock_page_lruvec_irqrestore(locked, flags); 899 locked = NULL; 900 } 901 902 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages); 903 904 /* 905 * Fail isolation in case isolate_or_dissolve_huge_page() 906 * reports an error. In case of -ENOMEM, abort right away. 907 */ 908 if (ret < 0) { 909 /* Do not report -EBUSY down the chain */ 910 if (ret == -EBUSY) 911 ret = 0; 912 low_pfn += compound_nr(page) - 1; 913 nr_scanned += compound_nr(page) - 1; 914 goto isolate_fail; 915 } 916 917 if (PageHuge(page)) { 918 /* 919 * Hugepage was successfully isolated and placed 920 * on the cc->migratepages list. 921 */ 922 low_pfn += compound_nr(page) - 1; 923 goto isolate_success_no_list; 924 } 925 926 /* 927 * Ok, the hugepage was dissolved. Now these pages are 928 * Buddy and cannot be re-allocated because they are 929 * isolated. Fall-through as the check below handles 930 * Buddy pages. 931 */ 932 } 933 934 /* 935 * Skip if free. We read page order here without zone lock 936 * which is generally unsafe, but the race window is small and 937 * the worst thing that can happen is that we skip some 938 * potential isolation targets. 939 */ 940 if (PageBuddy(page)) { 941 unsigned long freepage_order = buddy_order_unsafe(page); 942 943 /* 944 * Without lock, we cannot be sure that what we got is 945 * a valid page order. Consider only values in the 946 * valid order range to prevent low_pfn overflow. 947 */ 948 if (freepage_order > 0 && freepage_order <= MAX_ORDER) { 949 low_pfn += (1UL << freepage_order) - 1; 950 nr_scanned += (1UL << freepage_order) - 1; 951 } 952 continue; 953 } 954 955 /* 956 * Regardless of being on LRU, compound pages such as THP and 957 * hugetlbfs are not to be compacted unless we are attempting 958 * an allocation much larger than the huge page size (eg CMA). 959 * We can potentially save a lot of iterations if we skip them 960 * at once. The check is racy, but we can consider only valid 961 * values and the only danger is skipping too much. 962 */ 963 if (PageCompound(page) && !cc->alloc_contig) { 964 const unsigned int order = compound_order(page); 965 966 if (likely(order <= MAX_ORDER)) { 967 low_pfn += (1UL << order) - 1; 968 nr_scanned += (1UL << order) - 1; 969 } 970 goto isolate_fail; 971 } 972 973 /* 974 * Check may be lockless but that's ok as we recheck later. 975 * It's possible to migrate LRU and non-lru movable pages. 976 * Skip any other type of page 977 */ 978 if (!PageLRU(page)) { 979 /* 980 * __PageMovable can return false positive so we need 981 * to verify it under page_lock. 982 */ 983 if (unlikely(__PageMovable(page)) && 984 !PageIsolated(page)) { 985 if (locked) { 986 unlock_page_lruvec_irqrestore(locked, flags); 987 locked = NULL; 988 } 989 990 if (isolate_movable_page(page, mode)) 991 goto isolate_success; 992 } 993 994 goto isolate_fail; 995 } 996 997 /* 998 * Be careful not to clear PageLRU until after we're 999 * sure the page is not being freed elsewhere -- the 1000 * page release code relies on it. 1001 */ 1002 if (unlikely(!get_page_unless_zero(page))) 1003 goto isolate_fail; 1004 1005 /* 1006 * Migration will fail if an anonymous page is pinned in memory, 1007 * so avoid taking lru_lock and isolating it unnecessarily in an 1008 * admittedly racy check. 1009 */ 1010 mapping = page_mapping(page); 1011 if (!mapping && (page_count(page) - 1) > total_mapcount(page)) 1012 goto isolate_fail_put; 1013 1014 /* 1015 * Only allow to migrate anonymous pages in GFP_NOFS context 1016 * because those do not depend on fs locks. 1017 */ 1018 if (!(cc->gfp_mask & __GFP_FS) && mapping) 1019 goto isolate_fail_put; 1020 1021 /* Only take pages on LRU: a check now makes later tests safe */ 1022 if (!PageLRU(page)) 1023 goto isolate_fail_put; 1024 1025 /* Compaction might skip unevictable pages but CMA takes them */ 1026 if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page)) 1027 goto isolate_fail_put; 1028 1029 /* 1030 * To minimise LRU disruption, the caller can indicate with 1031 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages 1032 * it will be able to migrate without blocking - clean pages 1033 * for the most part. PageWriteback would require blocking. 1034 */ 1035 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page)) 1036 goto isolate_fail_put; 1037 1038 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) { 1039 bool migrate_dirty; 1040 1041 /* 1042 * Only pages without mappings or that have a 1043 * ->migrate_folio callback are possible to migrate 1044 * without blocking. However, we can be racing with 1045 * truncation so it's necessary to lock the page 1046 * to stabilise the mapping as truncation holds 1047 * the page lock until after the page is removed 1048 * from the page cache. 1049 */ 1050 if (!trylock_page(page)) 1051 goto isolate_fail_put; 1052 1053 mapping = page_mapping(page); 1054 migrate_dirty = !mapping || 1055 mapping->a_ops->migrate_folio; 1056 unlock_page(page); 1057 if (!migrate_dirty) 1058 goto isolate_fail_put; 1059 } 1060 1061 /* Try isolate the page */ 1062 if (!TestClearPageLRU(page)) 1063 goto isolate_fail_put; 1064 1065 lruvec = folio_lruvec(page_folio(page)); 1066 1067 /* If we already hold the lock, we can skip some rechecking */ 1068 if (lruvec != locked) { 1069 if (locked) 1070 unlock_page_lruvec_irqrestore(locked, flags); 1071 1072 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc); 1073 locked = lruvec; 1074 1075 lruvec_memcg_debug(lruvec, page_folio(page)); 1076 1077 /* Try get exclusive access under lock */ 1078 if (!skip_updated) { 1079 skip_updated = true; 1080 if (test_and_set_skip(cc, page, low_pfn)) 1081 goto isolate_abort; 1082 } 1083 1084 /* 1085 * Page become compound since the non-locked check, 1086 * and it's on LRU. It can only be a THP so the order 1087 * is safe to read and it's 0 for tail pages. 1088 */ 1089 if (unlikely(PageCompound(page) && !cc->alloc_contig)) { 1090 low_pfn += compound_nr(page) - 1; 1091 nr_scanned += compound_nr(page) - 1; 1092 SetPageLRU(page); 1093 goto isolate_fail_put; 1094 } 1095 } 1096 1097 /* The whole page is taken off the LRU; skip the tail pages. */ 1098 if (PageCompound(page)) 1099 low_pfn += compound_nr(page) - 1; 1100 1101 /* Successfully isolated */ 1102 del_page_from_lru_list(page, lruvec); 1103 mod_node_page_state(page_pgdat(page), 1104 NR_ISOLATED_ANON + page_is_file_lru(page), 1105 thp_nr_pages(page)); 1106 1107 isolate_success: 1108 list_add(&page->lru, &cc->migratepages); 1109 isolate_success_no_list: 1110 cc->nr_migratepages += compound_nr(page); 1111 nr_isolated += compound_nr(page); 1112 nr_scanned += compound_nr(page) - 1; 1113 1114 /* 1115 * Avoid isolating too much unless this block is being 1116 * fully scanned (e.g. dirty/writeback pages, parallel allocation) 1117 * or a lock is contended. For contention, isolate quickly to 1118 * potentially remove one source of contention. 1119 */ 1120 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX && 1121 !cc->finish_pageblock && !cc->contended) { 1122 ++low_pfn; 1123 break; 1124 } 1125 1126 continue; 1127 1128 isolate_fail_put: 1129 /* Avoid potential deadlock in freeing page under lru_lock */ 1130 if (locked) { 1131 unlock_page_lruvec_irqrestore(locked, flags); 1132 locked = NULL; 1133 } 1134 put_page(page); 1135 1136 isolate_fail: 1137 if (!skip_on_failure && ret != -ENOMEM) 1138 continue; 1139 1140 /* 1141 * We have isolated some pages, but then failed. Release them 1142 * instead of migrating, as we cannot form the cc->order buddy 1143 * page anyway. 1144 */ 1145 if (nr_isolated) { 1146 if (locked) { 1147 unlock_page_lruvec_irqrestore(locked, flags); 1148 locked = NULL; 1149 } 1150 putback_movable_pages(&cc->migratepages); 1151 cc->nr_migratepages = 0; 1152 nr_isolated = 0; 1153 } 1154 1155 if (low_pfn < next_skip_pfn) { 1156 low_pfn = next_skip_pfn - 1; 1157 /* 1158 * The check near the loop beginning would have updated 1159 * next_skip_pfn too, but this is a bit simpler. 1160 */ 1161 next_skip_pfn += 1UL << cc->order; 1162 } 1163 1164 if (ret == -ENOMEM) 1165 break; 1166 } 1167 1168 /* 1169 * The PageBuddy() check could have potentially brought us outside 1170 * the range to be scanned. 1171 */ 1172 if (unlikely(low_pfn > end_pfn)) 1173 low_pfn = end_pfn; 1174 1175 page = NULL; 1176 1177 isolate_abort: 1178 if (locked) 1179 unlock_page_lruvec_irqrestore(locked, flags); 1180 if (page) { 1181 SetPageLRU(page); 1182 put_page(page); 1183 } 1184 1185 /* 1186 * Update the cached scanner pfn once the pageblock has been scanned. 1187 * Pages will either be migrated in which case there is no point 1188 * scanning in the near future or migration failed in which case the 1189 * failure reason may persist. The block is marked for skipping if 1190 * there were no pages isolated in the block or if the block is 1191 * rescanned twice in a row. 1192 */ 1193 if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) { 1194 if (valid_page && !skip_updated) 1195 set_pageblock_skip(valid_page); 1196 update_cached_migrate(cc, low_pfn); 1197 } 1198 1199 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 1200 nr_scanned, nr_isolated); 1201 1202 fatal_pending: 1203 cc->total_migrate_scanned += nr_scanned; 1204 if (nr_isolated) 1205 count_compact_events(COMPACTISOLATED, nr_isolated); 1206 1207 cc->migrate_pfn = low_pfn; 1208 1209 return ret; 1210 } 1211 1212 /** 1213 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 1214 * @cc: Compaction control structure. 1215 * @start_pfn: The first PFN to start isolating. 1216 * @end_pfn: The one-past-last PFN. 1217 * 1218 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM 1219 * in case we could not allocate a page, or 0. 1220 */ 1221 int 1222 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 1223 unsigned long end_pfn) 1224 { 1225 unsigned long pfn, block_start_pfn, block_end_pfn; 1226 int ret = 0; 1227 1228 /* Scan block by block. First and last block may be incomplete */ 1229 pfn = start_pfn; 1230 block_start_pfn = pageblock_start_pfn(pfn); 1231 if (block_start_pfn < cc->zone->zone_start_pfn) 1232 block_start_pfn = cc->zone->zone_start_pfn; 1233 block_end_pfn = pageblock_end_pfn(pfn); 1234 1235 for (; pfn < end_pfn; pfn = block_end_pfn, 1236 block_start_pfn = block_end_pfn, 1237 block_end_pfn += pageblock_nr_pages) { 1238 1239 block_end_pfn = min(block_end_pfn, end_pfn); 1240 1241 if (!pageblock_pfn_to_page(block_start_pfn, 1242 block_end_pfn, cc->zone)) 1243 continue; 1244 1245 ret = isolate_migratepages_block(cc, pfn, block_end_pfn, 1246 ISOLATE_UNEVICTABLE); 1247 1248 if (ret) 1249 break; 1250 1251 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX) 1252 break; 1253 } 1254 1255 return ret; 1256 } 1257 1258 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 1259 #ifdef CONFIG_COMPACTION 1260 1261 static bool suitable_migration_source(struct compact_control *cc, 1262 struct page *page) 1263 { 1264 int block_mt; 1265 1266 if (pageblock_skip_persistent(page)) 1267 return false; 1268 1269 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction) 1270 return true; 1271 1272 block_mt = get_pageblock_migratetype(page); 1273 1274 if (cc->migratetype == MIGRATE_MOVABLE) 1275 return is_migrate_movable(block_mt); 1276 else 1277 return block_mt == cc->migratetype; 1278 } 1279 1280 /* Returns true if the page is within a block suitable for migration to */ 1281 static bool suitable_migration_target(struct compact_control *cc, 1282 struct page *page) 1283 { 1284 /* If the page is a large free page, then disallow migration */ 1285 if (PageBuddy(page)) { 1286 /* 1287 * We are checking page_order without zone->lock taken. But 1288 * the only small danger is that we skip a potentially suitable 1289 * pageblock, so it's not worth to check order for valid range. 1290 */ 1291 if (buddy_order_unsafe(page) >= pageblock_order) 1292 return false; 1293 } 1294 1295 if (cc->ignore_block_suitable) 1296 return true; 1297 1298 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 1299 if (is_migrate_movable(get_pageblock_migratetype(page))) 1300 return true; 1301 1302 /* Otherwise skip the block */ 1303 return false; 1304 } 1305 1306 static inline unsigned int 1307 freelist_scan_limit(struct compact_control *cc) 1308 { 1309 unsigned short shift = BITS_PER_LONG - 1; 1310 1311 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1; 1312 } 1313 1314 /* 1315 * Test whether the free scanner has reached the same or lower pageblock than 1316 * the migration scanner, and compaction should thus terminate. 1317 */ 1318 static inline bool compact_scanners_met(struct compact_control *cc) 1319 { 1320 return (cc->free_pfn >> pageblock_order) 1321 <= (cc->migrate_pfn >> pageblock_order); 1322 } 1323 1324 /* 1325 * Used when scanning for a suitable migration target which scans freelists 1326 * in reverse. Reorders the list such as the unscanned pages are scanned 1327 * first on the next iteration of the free scanner 1328 */ 1329 static void 1330 move_freelist_head(struct list_head *freelist, struct page *freepage) 1331 { 1332 LIST_HEAD(sublist); 1333 1334 if (!list_is_last(freelist, &freepage->lru)) { 1335 list_cut_before(&sublist, freelist, &freepage->lru); 1336 list_splice_tail(&sublist, freelist); 1337 } 1338 } 1339 1340 /* 1341 * Similar to move_freelist_head except used by the migration scanner 1342 * when scanning forward. It's possible for these list operations to 1343 * move against each other if they search the free list exactly in 1344 * lockstep. 1345 */ 1346 static void 1347 move_freelist_tail(struct list_head *freelist, struct page *freepage) 1348 { 1349 LIST_HEAD(sublist); 1350 1351 if (!list_is_first(freelist, &freepage->lru)) { 1352 list_cut_position(&sublist, freelist, &freepage->lru); 1353 list_splice_tail(&sublist, freelist); 1354 } 1355 } 1356 1357 static void 1358 fast_isolate_around(struct compact_control *cc, unsigned long pfn) 1359 { 1360 unsigned long start_pfn, end_pfn; 1361 struct page *page; 1362 1363 /* Do not search around if there are enough pages already */ 1364 if (cc->nr_freepages >= cc->nr_migratepages) 1365 return; 1366 1367 /* Minimise scanning during async compaction */ 1368 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC) 1369 return; 1370 1371 /* Pageblock boundaries */ 1372 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn); 1373 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)); 1374 1375 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone); 1376 if (!page) 1377 return; 1378 1379 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false); 1380 1381 /* Skip this pageblock in the future as it's full or nearly full */ 1382 if (cc->nr_freepages < cc->nr_migratepages) 1383 set_pageblock_skip(page); 1384 1385 return; 1386 } 1387 1388 /* Search orders in round-robin fashion */ 1389 static int next_search_order(struct compact_control *cc, int order) 1390 { 1391 order--; 1392 if (order < 0) 1393 order = cc->order - 1; 1394 1395 /* Search wrapped around? */ 1396 if (order == cc->search_order) { 1397 cc->search_order--; 1398 if (cc->search_order < 0) 1399 cc->search_order = cc->order - 1; 1400 return -1; 1401 } 1402 1403 return order; 1404 } 1405 1406 static unsigned long 1407 fast_isolate_freepages(struct compact_control *cc) 1408 { 1409 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1); 1410 unsigned int nr_scanned = 0; 1411 unsigned long low_pfn, min_pfn, highest = 0; 1412 unsigned long nr_isolated = 0; 1413 unsigned long distance; 1414 struct page *page = NULL; 1415 bool scan_start = false; 1416 int order; 1417 1418 /* Full compaction passes in a negative order */ 1419 if (cc->order <= 0) 1420 return cc->free_pfn; 1421 1422 /* 1423 * If starting the scan, use a deeper search and use the highest 1424 * PFN found if a suitable one is not found. 1425 */ 1426 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) { 1427 limit = pageblock_nr_pages >> 1; 1428 scan_start = true; 1429 } 1430 1431 /* 1432 * Preferred point is in the top quarter of the scan space but take 1433 * a pfn from the top half if the search is problematic. 1434 */ 1435 distance = (cc->free_pfn - cc->migrate_pfn); 1436 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2)); 1437 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1)); 1438 1439 if (WARN_ON_ONCE(min_pfn > low_pfn)) 1440 low_pfn = min_pfn; 1441 1442 /* 1443 * Search starts from the last successful isolation order or the next 1444 * order to search after a previous failure 1445 */ 1446 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order); 1447 1448 for (order = cc->search_order; 1449 !page && order >= 0; 1450 order = next_search_order(cc, order)) { 1451 struct free_area *area = &cc->zone->free_area[order]; 1452 struct list_head *freelist; 1453 struct page *freepage; 1454 unsigned long flags; 1455 unsigned int order_scanned = 0; 1456 unsigned long high_pfn = 0; 1457 1458 if (!area->nr_free) 1459 continue; 1460 1461 spin_lock_irqsave(&cc->zone->lock, flags); 1462 freelist = &area->free_list[MIGRATE_MOVABLE]; 1463 list_for_each_entry_reverse(freepage, freelist, lru) { 1464 unsigned long pfn; 1465 1466 order_scanned++; 1467 nr_scanned++; 1468 pfn = page_to_pfn(freepage); 1469 1470 if (pfn >= highest) 1471 highest = max(pageblock_start_pfn(pfn), 1472 cc->zone->zone_start_pfn); 1473 1474 if (pfn >= low_pfn) { 1475 cc->fast_search_fail = 0; 1476 cc->search_order = order; 1477 page = freepage; 1478 break; 1479 } 1480 1481 if (pfn >= min_pfn && pfn > high_pfn) { 1482 high_pfn = pfn; 1483 1484 /* Shorten the scan if a candidate is found */ 1485 limit >>= 1; 1486 } 1487 1488 if (order_scanned >= limit) 1489 break; 1490 } 1491 1492 /* Use a minimum pfn if a preferred one was not found */ 1493 if (!page && high_pfn) { 1494 page = pfn_to_page(high_pfn); 1495 1496 /* Update freepage for the list reorder below */ 1497 freepage = page; 1498 } 1499 1500 /* Reorder to so a future search skips recent pages */ 1501 move_freelist_head(freelist, freepage); 1502 1503 /* Isolate the page if available */ 1504 if (page) { 1505 if (__isolate_free_page(page, order)) { 1506 set_page_private(page, order); 1507 nr_isolated = 1 << order; 1508 nr_scanned += nr_isolated - 1; 1509 cc->nr_freepages += nr_isolated; 1510 list_add_tail(&page->lru, &cc->freepages); 1511 count_compact_events(COMPACTISOLATED, nr_isolated); 1512 } else { 1513 /* If isolation fails, abort the search */ 1514 order = cc->search_order + 1; 1515 page = NULL; 1516 } 1517 } 1518 1519 spin_unlock_irqrestore(&cc->zone->lock, flags); 1520 1521 /* 1522 * Smaller scan on next order so the total scan is related 1523 * to freelist_scan_limit. 1524 */ 1525 if (order_scanned >= limit) 1526 limit = max(1U, limit >> 1); 1527 } 1528 1529 if (!page) { 1530 cc->fast_search_fail++; 1531 if (scan_start) { 1532 /* 1533 * Use the highest PFN found above min. If one was 1534 * not found, be pessimistic for direct compaction 1535 * and use the min mark. 1536 */ 1537 if (highest >= min_pfn) { 1538 page = pfn_to_page(highest); 1539 cc->free_pfn = highest; 1540 } else { 1541 if (cc->direct_compaction && pfn_valid(min_pfn)) { 1542 page = pageblock_pfn_to_page(min_pfn, 1543 min(pageblock_end_pfn(min_pfn), 1544 zone_end_pfn(cc->zone)), 1545 cc->zone); 1546 cc->free_pfn = min_pfn; 1547 } 1548 } 1549 } 1550 } 1551 1552 if (highest && highest >= cc->zone->compact_cached_free_pfn) { 1553 highest -= pageblock_nr_pages; 1554 cc->zone->compact_cached_free_pfn = highest; 1555 } 1556 1557 cc->total_free_scanned += nr_scanned; 1558 if (!page) 1559 return cc->free_pfn; 1560 1561 low_pfn = page_to_pfn(page); 1562 fast_isolate_around(cc, low_pfn); 1563 return low_pfn; 1564 } 1565 1566 /* 1567 * Based on information in the current compact_control, find blocks 1568 * suitable for isolating free pages from and then isolate them. 1569 */ 1570 static void isolate_freepages(struct compact_control *cc) 1571 { 1572 struct zone *zone = cc->zone; 1573 struct page *page; 1574 unsigned long block_start_pfn; /* start of current pageblock */ 1575 unsigned long isolate_start_pfn; /* exact pfn we start at */ 1576 unsigned long block_end_pfn; /* end of current pageblock */ 1577 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 1578 struct list_head *freelist = &cc->freepages; 1579 unsigned int stride; 1580 1581 /* Try a small search of the free lists for a candidate */ 1582 fast_isolate_freepages(cc); 1583 if (cc->nr_freepages) 1584 goto splitmap; 1585 1586 /* 1587 * Initialise the free scanner. The starting point is where we last 1588 * successfully isolated from, zone-cached value, or the end of the 1589 * zone when isolating for the first time. For looping we also need 1590 * this pfn aligned down to the pageblock boundary, because we do 1591 * block_start_pfn -= pageblock_nr_pages in the for loop. 1592 * For ending point, take care when isolating in last pageblock of a 1593 * zone which ends in the middle of a pageblock. 1594 * The low boundary is the end of the pageblock the migration scanner 1595 * is using. 1596 */ 1597 isolate_start_pfn = cc->free_pfn; 1598 block_start_pfn = pageblock_start_pfn(isolate_start_pfn); 1599 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 1600 zone_end_pfn(zone)); 1601 low_pfn = pageblock_end_pfn(cc->migrate_pfn); 1602 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1; 1603 1604 /* 1605 * Isolate free pages until enough are available to migrate the 1606 * pages on cc->migratepages. We stop searching if the migrate 1607 * and free page scanners meet or enough free pages are isolated. 1608 */ 1609 for (; block_start_pfn >= low_pfn; 1610 block_end_pfn = block_start_pfn, 1611 block_start_pfn -= pageblock_nr_pages, 1612 isolate_start_pfn = block_start_pfn) { 1613 unsigned long nr_isolated; 1614 1615 /* 1616 * This can iterate a massively long zone without finding any 1617 * suitable migration targets, so periodically check resched. 1618 */ 1619 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages))) 1620 cond_resched(); 1621 1622 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1623 zone); 1624 if (!page) 1625 continue; 1626 1627 /* Check the block is suitable for migration */ 1628 if (!suitable_migration_target(cc, page)) 1629 continue; 1630 1631 /* If isolation recently failed, do not retry */ 1632 if (!isolation_suitable(cc, page)) 1633 continue; 1634 1635 /* Found a block suitable for isolating free pages from. */ 1636 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn, 1637 block_end_pfn, freelist, stride, false); 1638 1639 /* Update the skip hint if the full pageblock was scanned */ 1640 if (isolate_start_pfn == block_end_pfn) 1641 update_pageblock_skip(cc, page, block_start_pfn); 1642 1643 /* Are enough freepages isolated? */ 1644 if (cc->nr_freepages >= cc->nr_migratepages) { 1645 if (isolate_start_pfn >= block_end_pfn) { 1646 /* 1647 * Restart at previous pageblock if more 1648 * freepages can be isolated next time. 1649 */ 1650 isolate_start_pfn = 1651 block_start_pfn - pageblock_nr_pages; 1652 } 1653 break; 1654 } else if (isolate_start_pfn < block_end_pfn) { 1655 /* 1656 * If isolation failed early, do not continue 1657 * needlessly. 1658 */ 1659 break; 1660 } 1661 1662 /* Adjust stride depending on isolation */ 1663 if (nr_isolated) { 1664 stride = 1; 1665 continue; 1666 } 1667 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1); 1668 } 1669 1670 /* 1671 * Record where the free scanner will restart next time. Either we 1672 * broke from the loop and set isolate_start_pfn based on the last 1673 * call to isolate_freepages_block(), or we met the migration scanner 1674 * and the loop terminated due to isolate_start_pfn < low_pfn 1675 */ 1676 cc->free_pfn = isolate_start_pfn; 1677 1678 splitmap: 1679 /* __isolate_free_page() does not map the pages */ 1680 split_map_pages(freelist); 1681 } 1682 1683 /* 1684 * This is a migrate-callback that "allocates" freepages by taking pages 1685 * from the isolated freelists in the block we are migrating to. 1686 */ 1687 static struct page *compaction_alloc(struct page *migratepage, 1688 unsigned long data) 1689 { 1690 struct compact_control *cc = (struct compact_control *)data; 1691 struct page *freepage; 1692 1693 if (list_empty(&cc->freepages)) { 1694 isolate_freepages(cc); 1695 1696 if (list_empty(&cc->freepages)) 1697 return NULL; 1698 } 1699 1700 freepage = list_entry(cc->freepages.next, struct page, lru); 1701 list_del(&freepage->lru); 1702 cc->nr_freepages--; 1703 1704 return freepage; 1705 } 1706 1707 /* 1708 * This is a migrate-callback that "frees" freepages back to the isolated 1709 * freelist. All pages on the freelist are from the same zone, so there is no 1710 * special handling needed for NUMA. 1711 */ 1712 static void compaction_free(struct page *page, unsigned long data) 1713 { 1714 struct compact_control *cc = (struct compact_control *)data; 1715 1716 list_add(&page->lru, &cc->freepages); 1717 cc->nr_freepages++; 1718 } 1719 1720 /* possible outcome of isolate_migratepages */ 1721 typedef enum { 1722 ISOLATE_ABORT, /* Abort compaction now */ 1723 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1724 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1725 } isolate_migrate_t; 1726 1727 /* 1728 * Allow userspace to control policy on scanning the unevictable LRU for 1729 * compactable pages. 1730 */ 1731 int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT; 1732 1733 static inline void 1734 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn) 1735 { 1736 if (cc->fast_start_pfn == ULONG_MAX) 1737 return; 1738 1739 if (!cc->fast_start_pfn) 1740 cc->fast_start_pfn = pfn; 1741 1742 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn); 1743 } 1744 1745 static inline unsigned long 1746 reinit_migrate_pfn(struct compact_control *cc) 1747 { 1748 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX) 1749 return cc->migrate_pfn; 1750 1751 cc->migrate_pfn = cc->fast_start_pfn; 1752 cc->fast_start_pfn = ULONG_MAX; 1753 1754 return cc->migrate_pfn; 1755 } 1756 1757 /* 1758 * Briefly search the free lists for a migration source that already has 1759 * some free pages to reduce the number of pages that need migration 1760 * before a pageblock is free. 1761 */ 1762 static unsigned long fast_find_migrateblock(struct compact_control *cc) 1763 { 1764 unsigned int limit = freelist_scan_limit(cc); 1765 unsigned int nr_scanned = 0; 1766 unsigned long distance; 1767 unsigned long pfn = cc->migrate_pfn; 1768 unsigned long high_pfn; 1769 int order; 1770 bool found_block = false; 1771 1772 /* Skip hints are relied on to avoid repeats on the fast search */ 1773 if (cc->ignore_skip_hint) 1774 return pfn; 1775 1776 /* 1777 * If the pageblock should be finished then do not select a different 1778 * pageblock. 1779 */ 1780 if (cc->finish_pageblock) 1781 return pfn; 1782 1783 /* 1784 * If the migrate_pfn is not at the start of a zone or the start 1785 * of a pageblock then assume this is a continuation of a previous 1786 * scan restarted due to COMPACT_CLUSTER_MAX. 1787 */ 1788 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn)) 1789 return pfn; 1790 1791 /* 1792 * For smaller orders, just linearly scan as the number of pages 1793 * to migrate should be relatively small and does not necessarily 1794 * justify freeing up a large block for a small allocation. 1795 */ 1796 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER) 1797 return pfn; 1798 1799 /* 1800 * Only allow kcompactd and direct requests for movable pages to 1801 * quickly clear out a MOVABLE pageblock for allocation. This 1802 * reduces the risk that a large movable pageblock is freed for 1803 * an unmovable/reclaimable small allocation. 1804 */ 1805 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE) 1806 return pfn; 1807 1808 /* 1809 * When starting the migration scanner, pick any pageblock within the 1810 * first half of the search space. Otherwise try and pick a pageblock 1811 * within the first eighth to reduce the chances that a migration 1812 * target later becomes a source. 1813 */ 1814 distance = (cc->free_pfn - cc->migrate_pfn) >> 1; 1815 if (cc->migrate_pfn != cc->zone->zone_start_pfn) 1816 distance >>= 2; 1817 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance); 1818 1819 for (order = cc->order - 1; 1820 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit; 1821 order--) { 1822 struct free_area *area = &cc->zone->free_area[order]; 1823 struct list_head *freelist; 1824 unsigned long flags; 1825 struct page *freepage; 1826 1827 if (!area->nr_free) 1828 continue; 1829 1830 spin_lock_irqsave(&cc->zone->lock, flags); 1831 freelist = &area->free_list[MIGRATE_MOVABLE]; 1832 list_for_each_entry(freepage, freelist, lru) { 1833 unsigned long free_pfn; 1834 1835 if (nr_scanned++ >= limit) { 1836 move_freelist_tail(freelist, freepage); 1837 break; 1838 } 1839 1840 free_pfn = page_to_pfn(freepage); 1841 if (free_pfn < high_pfn) { 1842 /* 1843 * Avoid if skipped recently. Ideally it would 1844 * move to the tail but even safe iteration of 1845 * the list assumes an entry is deleted, not 1846 * reordered. 1847 */ 1848 if (get_pageblock_skip(freepage)) 1849 continue; 1850 1851 /* Reorder to so a future search skips recent pages */ 1852 move_freelist_tail(freelist, freepage); 1853 1854 update_fast_start_pfn(cc, free_pfn); 1855 pfn = pageblock_start_pfn(free_pfn); 1856 if (pfn < cc->zone->zone_start_pfn) 1857 pfn = cc->zone->zone_start_pfn; 1858 cc->fast_search_fail = 0; 1859 found_block = true; 1860 set_pageblock_skip(freepage); 1861 break; 1862 } 1863 } 1864 spin_unlock_irqrestore(&cc->zone->lock, flags); 1865 } 1866 1867 cc->total_migrate_scanned += nr_scanned; 1868 1869 /* 1870 * If fast scanning failed then use a cached entry for a page block 1871 * that had free pages as the basis for starting a linear scan. 1872 */ 1873 if (!found_block) { 1874 cc->fast_search_fail++; 1875 pfn = reinit_migrate_pfn(cc); 1876 } 1877 return pfn; 1878 } 1879 1880 /* 1881 * Isolate all pages that can be migrated from the first suitable block, 1882 * starting at the block pointed to by the migrate scanner pfn within 1883 * compact_control. 1884 */ 1885 static isolate_migrate_t isolate_migratepages(struct compact_control *cc) 1886 { 1887 unsigned long block_start_pfn; 1888 unsigned long block_end_pfn; 1889 unsigned long low_pfn; 1890 struct page *page; 1891 const isolate_mode_t isolate_mode = 1892 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 1893 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0); 1894 bool fast_find_block; 1895 1896 /* 1897 * Start at where we last stopped, or beginning of the zone as 1898 * initialized by compact_zone(). The first failure will use 1899 * the lowest PFN as the starting point for linear scanning. 1900 */ 1901 low_pfn = fast_find_migrateblock(cc); 1902 block_start_pfn = pageblock_start_pfn(low_pfn); 1903 if (block_start_pfn < cc->zone->zone_start_pfn) 1904 block_start_pfn = cc->zone->zone_start_pfn; 1905 1906 /* 1907 * fast_find_migrateblock marks a pageblock skipped so to avoid 1908 * the isolation_suitable check below, check whether the fast 1909 * search was successful. 1910 */ 1911 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail; 1912 1913 /* Only scan within a pageblock boundary */ 1914 block_end_pfn = pageblock_end_pfn(low_pfn); 1915 1916 /* 1917 * Iterate over whole pageblocks until we find the first suitable. 1918 * Do not cross the free scanner. 1919 */ 1920 for (; block_end_pfn <= cc->free_pfn; 1921 fast_find_block = false, 1922 cc->migrate_pfn = low_pfn = block_end_pfn, 1923 block_start_pfn = block_end_pfn, 1924 block_end_pfn += pageblock_nr_pages) { 1925 1926 /* 1927 * This can potentially iterate a massively long zone with 1928 * many pageblocks unsuitable, so periodically check if we 1929 * need to schedule. 1930 */ 1931 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages))) 1932 cond_resched(); 1933 1934 page = pageblock_pfn_to_page(block_start_pfn, 1935 block_end_pfn, cc->zone); 1936 if (!page) 1937 continue; 1938 1939 /* 1940 * If isolation recently failed, do not retry. Only check the 1941 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock 1942 * to be visited multiple times. Assume skip was checked 1943 * before making it "skip" so other compaction instances do 1944 * not scan the same block. 1945 */ 1946 if (pageblock_aligned(low_pfn) && 1947 !fast_find_block && !isolation_suitable(cc, page)) 1948 continue; 1949 1950 /* 1951 * For async direct compaction, only scan the pageblocks of the 1952 * same migratetype without huge pages. Async direct compaction 1953 * is optimistic to see if the minimum amount of work satisfies 1954 * the allocation. The cached PFN is updated as it's possible 1955 * that all remaining blocks between source and target are 1956 * unsuitable and the compaction scanners fail to meet. 1957 */ 1958 if (!suitable_migration_source(cc, page)) { 1959 update_cached_migrate(cc, block_end_pfn); 1960 continue; 1961 } 1962 1963 /* Perform the isolation */ 1964 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn, 1965 isolate_mode)) 1966 return ISOLATE_ABORT; 1967 1968 /* 1969 * Either we isolated something and proceed with migration. Or 1970 * we failed and compact_zone should decide if we should 1971 * continue or not. 1972 */ 1973 break; 1974 } 1975 1976 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 1977 } 1978 1979 /* 1980 * order == -1 is expected when compacting via 1981 * /proc/sys/vm/compact_memory 1982 */ 1983 static inline bool is_via_compact_memory(int order) 1984 { 1985 return order == -1; 1986 } 1987 1988 /* 1989 * Determine whether kswapd is (or recently was!) running on this node. 1990 * 1991 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't 1992 * zero it. 1993 */ 1994 static bool kswapd_is_running(pg_data_t *pgdat) 1995 { 1996 bool running; 1997 1998 pgdat_kswapd_lock(pgdat); 1999 running = pgdat->kswapd && task_is_running(pgdat->kswapd); 2000 pgdat_kswapd_unlock(pgdat); 2001 2002 return running; 2003 } 2004 2005 /* 2006 * A zone's fragmentation score is the external fragmentation wrt to the 2007 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100]. 2008 */ 2009 static unsigned int fragmentation_score_zone(struct zone *zone) 2010 { 2011 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER); 2012 } 2013 2014 /* 2015 * A weighted zone's fragmentation score is the external fragmentation 2016 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It 2017 * returns a value in the range [0, 100]. 2018 * 2019 * The scaling factor ensures that proactive compaction focuses on larger 2020 * zones like ZONE_NORMAL, rather than smaller, specialized zones like 2021 * ZONE_DMA32. For smaller zones, the score value remains close to zero, 2022 * and thus never exceeds the high threshold for proactive compaction. 2023 */ 2024 static unsigned int fragmentation_score_zone_weighted(struct zone *zone) 2025 { 2026 unsigned long score; 2027 2028 score = zone->present_pages * fragmentation_score_zone(zone); 2029 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1); 2030 } 2031 2032 /* 2033 * The per-node proactive (background) compaction process is started by its 2034 * corresponding kcompactd thread when the node's fragmentation score 2035 * exceeds the high threshold. The compaction process remains active till 2036 * the node's score falls below the low threshold, or one of the back-off 2037 * conditions is met. 2038 */ 2039 static unsigned int fragmentation_score_node(pg_data_t *pgdat) 2040 { 2041 unsigned int score = 0; 2042 int zoneid; 2043 2044 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2045 struct zone *zone; 2046 2047 zone = &pgdat->node_zones[zoneid]; 2048 if (!populated_zone(zone)) 2049 continue; 2050 score += fragmentation_score_zone_weighted(zone); 2051 } 2052 2053 return score; 2054 } 2055 2056 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low) 2057 { 2058 unsigned int wmark_low; 2059 2060 /* 2061 * Cap the low watermark to avoid excessive compaction 2062 * activity in case a user sets the proactiveness tunable 2063 * close to 100 (maximum). 2064 */ 2065 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U); 2066 return low ? wmark_low : min(wmark_low + 10, 100U); 2067 } 2068 2069 static bool should_proactive_compact_node(pg_data_t *pgdat) 2070 { 2071 int wmark_high; 2072 2073 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat)) 2074 return false; 2075 2076 wmark_high = fragmentation_score_wmark(pgdat, false); 2077 return fragmentation_score_node(pgdat) > wmark_high; 2078 } 2079 2080 static enum compact_result __compact_finished(struct compact_control *cc) 2081 { 2082 unsigned int order; 2083 const int migratetype = cc->migratetype; 2084 int ret; 2085 2086 /* Compaction run completes if the migrate and free scanner meet */ 2087 if (compact_scanners_met(cc)) { 2088 /* Let the next compaction start anew. */ 2089 reset_cached_positions(cc->zone); 2090 2091 /* 2092 * Mark that the PG_migrate_skip information should be cleared 2093 * by kswapd when it goes to sleep. kcompactd does not set the 2094 * flag itself as the decision to be clear should be directly 2095 * based on an allocation request. 2096 */ 2097 if (cc->direct_compaction) 2098 cc->zone->compact_blockskip_flush = true; 2099 2100 if (cc->whole_zone) 2101 return COMPACT_COMPLETE; 2102 else 2103 return COMPACT_PARTIAL_SKIPPED; 2104 } 2105 2106 if (cc->proactive_compaction) { 2107 int score, wmark_low; 2108 pg_data_t *pgdat; 2109 2110 pgdat = cc->zone->zone_pgdat; 2111 if (kswapd_is_running(pgdat)) 2112 return COMPACT_PARTIAL_SKIPPED; 2113 2114 score = fragmentation_score_zone(cc->zone); 2115 wmark_low = fragmentation_score_wmark(pgdat, true); 2116 2117 if (score > wmark_low) 2118 ret = COMPACT_CONTINUE; 2119 else 2120 ret = COMPACT_SUCCESS; 2121 2122 goto out; 2123 } 2124 2125 if (is_via_compact_memory(cc->order)) 2126 return COMPACT_CONTINUE; 2127 2128 /* 2129 * Always finish scanning a pageblock to reduce the possibility of 2130 * fallbacks in the future. This is particularly important when 2131 * migration source is unmovable/reclaimable but it's not worth 2132 * special casing. 2133 */ 2134 if (!pageblock_aligned(cc->migrate_pfn)) 2135 return COMPACT_CONTINUE; 2136 2137 /* Direct compactor: Is a suitable page free? */ 2138 ret = COMPACT_NO_SUITABLE_PAGE; 2139 for (order = cc->order; order <= MAX_ORDER; order++) { 2140 struct free_area *area = &cc->zone->free_area[order]; 2141 bool can_steal; 2142 2143 /* Job done if page is free of the right migratetype */ 2144 if (!free_area_empty(area, migratetype)) 2145 return COMPACT_SUCCESS; 2146 2147 #ifdef CONFIG_CMA 2148 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 2149 if (migratetype == MIGRATE_MOVABLE && 2150 !free_area_empty(area, MIGRATE_CMA)) 2151 return COMPACT_SUCCESS; 2152 #endif 2153 /* 2154 * Job done if allocation would steal freepages from 2155 * other migratetype buddy lists. 2156 */ 2157 if (find_suitable_fallback(area, order, migratetype, 2158 true, &can_steal) != -1) 2159 /* 2160 * Movable pages are OK in any pageblock. If we are 2161 * stealing for a non-movable allocation, make sure 2162 * we finish compacting the current pageblock first 2163 * (which is assured by the above migrate_pfn align 2164 * check) so it is as free as possible and we won't 2165 * have to steal another one soon. 2166 */ 2167 return COMPACT_SUCCESS; 2168 } 2169 2170 out: 2171 if (cc->contended || fatal_signal_pending(current)) 2172 ret = COMPACT_CONTENDED; 2173 2174 return ret; 2175 } 2176 2177 static enum compact_result compact_finished(struct compact_control *cc) 2178 { 2179 int ret; 2180 2181 ret = __compact_finished(cc); 2182 trace_mm_compaction_finished(cc->zone, cc->order, ret); 2183 if (ret == COMPACT_NO_SUITABLE_PAGE) 2184 ret = COMPACT_CONTINUE; 2185 2186 return ret; 2187 } 2188 2189 static enum compact_result __compaction_suitable(struct zone *zone, int order, 2190 unsigned int alloc_flags, 2191 int highest_zoneidx, 2192 unsigned long wmark_target) 2193 { 2194 unsigned long watermark; 2195 2196 if (is_via_compact_memory(order)) 2197 return COMPACT_CONTINUE; 2198 2199 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 2200 /* 2201 * If watermarks for high-order allocation are already met, there 2202 * should be no need for compaction at all. 2203 */ 2204 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx, 2205 alloc_flags)) 2206 return COMPACT_SUCCESS; 2207 2208 /* 2209 * Watermarks for order-0 must be met for compaction to be able to 2210 * isolate free pages for migration targets. This means that the 2211 * watermark and alloc_flags have to match, or be more pessimistic than 2212 * the check in __isolate_free_page(). We don't use the direct 2213 * compactor's alloc_flags, as they are not relevant for freepage 2214 * isolation. We however do use the direct compactor's highest_zoneidx 2215 * to skip over zones where lowmem reserves would prevent allocation 2216 * even if compaction succeeds. 2217 * For costly orders, we require low watermark instead of min for 2218 * compaction to proceed to increase its chances. 2219 * ALLOC_CMA is used, as pages in CMA pageblocks are considered 2220 * suitable migration targets 2221 */ 2222 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ? 2223 low_wmark_pages(zone) : min_wmark_pages(zone); 2224 watermark += compact_gap(order); 2225 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx, 2226 ALLOC_CMA, wmark_target)) 2227 return COMPACT_SKIPPED; 2228 2229 return COMPACT_CONTINUE; 2230 } 2231 2232 /* 2233 * compaction_suitable: Is this suitable to run compaction on this zone now? 2234 * Returns 2235 * COMPACT_SKIPPED - If there are too few free pages for compaction 2236 * COMPACT_SUCCESS - If the allocation would succeed without compaction 2237 * COMPACT_CONTINUE - If compaction should run now 2238 */ 2239 enum compact_result compaction_suitable(struct zone *zone, int order, 2240 unsigned int alloc_flags, 2241 int highest_zoneidx) 2242 { 2243 enum compact_result ret; 2244 int fragindex; 2245 2246 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx, 2247 zone_page_state(zone, NR_FREE_PAGES)); 2248 /* 2249 * fragmentation index determines if allocation failures are due to 2250 * low memory or external fragmentation 2251 * 2252 * index of -1000 would imply allocations might succeed depending on 2253 * watermarks, but we already failed the high-order watermark check 2254 * index towards 0 implies failure is due to lack of memory 2255 * index towards 1000 implies failure is due to fragmentation 2256 * 2257 * Only compact if a failure would be due to fragmentation. Also 2258 * ignore fragindex for non-costly orders where the alternative to 2259 * a successful reclaim/compaction is OOM. Fragindex and the 2260 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent 2261 * excessive compaction for costly orders, but it should not be at the 2262 * expense of system stability. 2263 */ 2264 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) { 2265 fragindex = fragmentation_index(zone, order); 2266 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 2267 ret = COMPACT_NOT_SUITABLE_ZONE; 2268 } 2269 2270 trace_mm_compaction_suitable(zone, order, ret); 2271 if (ret == COMPACT_NOT_SUITABLE_ZONE) 2272 ret = COMPACT_SKIPPED; 2273 2274 return ret; 2275 } 2276 2277 bool compaction_zonelist_suitable(struct alloc_context *ac, int order, 2278 int alloc_flags) 2279 { 2280 struct zone *zone; 2281 struct zoneref *z; 2282 2283 /* 2284 * Make sure at least one zone would pass __compaction_suitable if we continue 2285 * retrying the reclaim. 2286 */ 2287 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2288 ac->highest_zoneidx, ac->nodemask) { 2289 unsigned long available; 2290 enum compact_result compact_result; 2291 2292 /* 2293 * Do not consider all the reclaimable memory because we do not 2294 * want to trash just for a single high order allocation which 2295 * is even not guaranteed to appear even if __compaction_suitable 2296 * is happy about the watermark check. 2297 */ 2298 available = zone_reclaimable_pages(zone) / order; 2299 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 2300 compact_result = __compaction_suitable(zone, order, alloc_flags, 2301 ac->highest_zoneidx, available); 2302 if (compact_result == COMPACT_CONTINUE) 2303 return true; 2304 } 2305 2306 return false; 2307 } 2308 2309 static enum compact_result 2310 compact_zone(struct compact_control *cc, struct capture_control *capc) 2311 { 2312 enum compact_result ret; 2313 unsigned long start_pfn = cc->zone->zone_start_pfn; 2314 unsigned long end_pfn = zone_end_pfn(cc->zone); 2315 unsigned long last_migrated_pfn; 2316 const bool sync = cc->mode != MIGRATE_ASYNC; 2317 bool update_cached; 2318 unsigned int nr_succeeded = 0; 2319 2320 /* 2321 * These counters track activities during zone compaction. Initialize 2322 * them before compacting a new zone. 2323 */ 2324 cc->total_migrate_scanned = 0; 2325 cc->total_free_scanned = 0; 2326 cc->nr_migratepages = 0; 2327 cc->nr_freepages = 0; 2328 INIT_LIST_HEAD(&cc->freepages); 2329 INIT_LIST_HEAD(&cc->migratepages); 2330 2331 cc->migratetype = gfp_migratetype(cc->gfp_mask); 2332 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags, 2333 cc->highest_zoneidx); 2334 /* Compaction is likely to fail */ 2335 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED) 2336 return ret; 2337 2338 /* 2339 * Clear pageblock skip if there were failures recently and compaction 2340 * is about to be retried after being deferred. 2341 */ 2342 if (compaction_restarting(cc->zone, cc->order)) 2343 __reset_isolation_suitable(cc->zone); 2344 2345 /* 2346 * Setup to move all movable pages to the end of the zone. Used cached 2347 * information on where the scanners should start (unless we explicitly 2348 * want to compact the whole zone), but check that it is initialised 2349 * by ensuring the values are within zone boundaries. 2350 */ 2351 cc->fast_start_pfn = 0; 2352 if (cc->whole_zone) { 2353 cc->migrate_pfn = start_pfn; 2354 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2355 } else { 2356 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync]; 2357 cc->free_pfn = cc->zone->compact_cached_free_pfn; 2358 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 2359 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2360 cc->zone->compact_cached_free_pfn = cc->free_pfn; 2361 } 2362 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 2363 cc->migrate_pfn = start_pfn; 2364 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 2365 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 2366 } 2367 2368 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn) 2369 cc->whole_zone = true; 2370 } 2371 2372 last_migrated_pfn = 0; 2373 2374 /* 2375 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on 2376 * the basis that some migrations will fail in ASYNC mode. However, 2377 * if the cached PFNs match and pageblocks are skipped due to having 2378 * no isolation candidates, then the sync state does not matter. 2379 * Until a pageblock with isolation candidates is found, keep the 2380 * cached PFNs in sync to avoid revisiting the same blocks. 2381 */ 2382 update_cached = !sync && 2383 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1]; 2384 2385 trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync); 2386 2387 /* lru_add_drain_all could be expensive with involving other CPUs */ 2388 lru_add_drain(); 2389 2390 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) { 2391 int err; 2392 unsigned long iteration_start_pfn = cc->migrate_pfn; 2393 2394 /* 2395 * Avoid multiple rescans of the same pageblock which can 2396 * happen if a page cannot be isolated (dirty/writeback in 2397 * async mode) or if the migrated pages are being allocated 2398 * before the pageblock is cleared. The first rescan will 2399 * capture the entire pageblock for migration. If it fails, 2400 * it'll be marked skip and scanning will proceed as normal. 2401 */ 2402 cc->finish_pageblock = false; 2403 if (pageblock_start_pfn(last_migrated_pfn) == 2404 pageblock_start_pfn(iteration_start_pfn)) { 2405 cc->finish_pageblock = true; 2406 } 2407 2408 rescan: 2409 switch (isolate_migratepages(cc)) { 2410 case ISOLATE_ABORT: 2411 ret = COMPACT_CONTENDED; 2412 putback_movable_pages(&cc->migratepages); 2413 cc->nr_migratepages = 0; 2414 goto out; 2415 case ISOLATE_NONE: 2416 if (update_cached) { 2417 cc->zone->compact_cached_migrate_pfn[1] = 2418 cc->zone->compact_cached_migrate_pfn[0]; 2419 } 2420 2421 /* 2422 * We haven't isolated and migrated anything, but 2423 * there might still be unflushed migrations from 2424 * previous cc->order aligned block. 2425 */ 2426 goto check_drain; 2427 case ISOLATE_SUCCESS: 2428 update_cached = false; 2429 last_migrated_pfn = iteration_start_pfn; 2430 } 2431 2432 err = migrate_pages(&cc->migratepages, compaction_alloc, 2433 compaction_free, (unsigned long)cc, cc->mode, 2434 MR_COMPACTION, &nr_succeeded); 2435 2436 trace_mm_compaction_migratepages(cc, nr_succeeded); 2437 2438 /* All pages were either migrated or will be released */ 2439 cc->nr_migratepages = 0; 2440 if (err) { 2441 putback_movable_pages(&cc->migratepages); 2442 /* 2443 * migrate_pages() may return -ENOMEM when scanners meet 2444 * and we want compact_finished() to detect it 2445 */ 2446 if (err == -ENOMEM && !compact_scanners_met(cc)) { 2447 ret = COMPACT_CONTENDED; 2448 goto out; 2449 } 2450 /* 2451 * If an ASYNC or SYNC_LIGHT fails to migrate a page 2452 * within the current order-aligned block, scan the 2453 * remainder of the pageblock. This will mark the 2454 * pageblock "skip" to avoid rescanning in the near 2455 * future. This will isolate more pages than necessary 2456 * for the request but avoid loops due to 2457 * fast_find_migrateblock revisiting blocks that were 2458 * recently partially scanned. 2459 */ 2460 if (cc->direct_compaction && !cc->finish_pageblock && 2461 (cc->mode < MIGRATE_SYNC)) { 2462 cc->finish_pageblock = true; 2463 2464 /* 2465 * Draining pcplists does not help THP if 2466 * any page failed to migrate. Even after 2467 * drain, the pageblock will not be free. 2468 */ 2469 if (cc->order == COMPACTION_HPAGE_ORDER) 2470 last_migrated_pfn = 0; 2471 2472 goto rescan; 2473 } 2474 } 2475 2476 /* Stop if a page has been captured */ 2477 if (capc && capc->page) { 2478 ret = COMPACT_SUCCESS; 2479 break; 2480 } 2481 2482 check_drain: 2483 /* 2484 * Has the migration scanner moved away from the previous 2485 * cc->order aligned block where we migrated from? If yes, 2486 * flush the pages that were freed, so that they can merge and 2487 * compact_finished() can detect immediately if allocation 2488 * would succeed. 2489 */ 2490 if (cc->order > 0 && last_migrated_pfn) { 2491 unsigned long current_block_start = 2492 block_start_pfn(cc->migrate_pfn, cc->order); 2493 2494 if (last_migrated_pfn < current_block_start) { 2495 lru_add_drain_cpu_zone(cc->zone); 2496 /* No more flushing until we migrate again */ 2497 last_migrated_pfn = 0; 2498 } 2499 } 2500 } 2501 2502 out: 2503 /* 2504 * Release free pages and update where the free scanner should restart, 2505 * so we don't leave any returned pages behind in the next attempt. 2506 */ 2507 if (cc->nr_freepages > 0) { 2508 unsigned long free_pfn = release_freepages(&cc->freepages); 2509 2510 cc->nr_freepages = 0; 2511 VM_BUG_ON(free_pfn == 0); 2512 /* The cached pfn is always the first in a pageblock */ 2513 free_pfn = pageblock_start_pfn(free_pfn); 2514 /* 2515 * Only go back, not forward. The cached pfn might have been 2516 * already reset to zone end in compact_finished() 2517 */ 2518 if (free_pfn > cc->zone->compact_cached_free_pfn) 2519 cc->zone->compact_cached_free_pfn = free_pfn; 2520 } 2521 2522 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned); 2523 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned); 2524 2525 trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret); 2526 2527 VM_BUG_ON(!list_empty(&cc->freepages)); 2528 VM_BUG_ON(!list_empty(&cc->migratepages)); 2529 2530 return ret; 2531 } 2532 2533 static enum compact_result compact_zone_order(struct zone *zone, int order, 2534 gfp_t gfp_mask, enum compact_priority prio, 2535 unsigned int alloc_flags, int highest_zoneidx, 2536 struct page **capture) 2537 { 2538 enum compact_result ret; 2539 struct compact_control cc = { 2540 .order = order, 2541 .search_order = order, 2542 .gfp_mask = gfp_mask, 2543 .zone = zone, 2544 .mode = (prio == COMPACT_PRIO_ASYNC) ? 2545 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT, 2546 .alloc_flags = alloc_flags, 2547 .highest_zoneidx = highest_zoneidx, 2548 .direct_compaction = true, 2549 .whole_zone = (prio == MIN_COMPACT_PRIORITY), 2550 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY), 2551 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY) 2552 }; 2553 struct capture_control capc = { 2554 .cc = &cc, 2555 .page = NULL, 2556 }; 2557 2558 /* 2559 * Make sure the structs are really initialized before we expose the 2560 * capture control, in case we are interrupted and the interrupt handler 2561 * frees a page. 2562 */ 2563 barrier(); 2564 WRITE_ONCE(current->capture_control, &capc); 2565 2566 ret = compact_zone(&cc, &capc); 2567 2568 /* 2569 * Make sure we hide capture control first before we read the captured 2570 * page pointer, otherwise an interrupt could free and capture a page 2571 * and we would leak it. 2572 */ 2573 WRITE_ONCE(current->capture_control, NULL); 2574 *capture = READ_ONCE(capc.page); 2575 /* 2576 * Technically, it is also possible that compaction is skipped but 2577 * the page is still captured out of luck(IRQ came and freed the page). 2578 * Returning COMPACT_SUCCESS in such cases helps in properly accounting 2579 * the COMPACT[STALL|FAIL] when compaction is skipped. 2580 */ 2581 if (*capture) 2582 ret = COMPACT_SUCCESS; 2583 2584 return ret; 2585 } 2586 2587 int sysctl_extfrag_threshold = 500; 2588 2589 /** 2590 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 2591 * @gfp_mask: The GFP mask of the current allocation 2592 * @order: The order of the current allocation 2593 * @alloc_flags: The allocation flags of the current allocation 2594 * @ac: The context of current allocation 2595 * @prio: Determines how hard direct compaction should try to succeed 2596 * @capture: Pointer to free page created by compaction will be stored here 2597 * 2598 * This is the main entry point for direct page compaction. 2599 */ 2600 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 2601 unsigned int alloc_flags, const struct alloc_context *ac, 2602 enum compact_priority prio, struct page **capture) 2603 { 2604 int may_perform_io = (__force int)(gfp_mask & __GFP_IO); 2605 struct zoneref *z; 2606 struct zone *zone; 2607 enum compact_result rc = COMPACT_SKIPPED; 2608 2609 /* 2610 * Check if the GFP flags allow compaction - GFP_NOIO is really 2611 * tricky context because the migration might require IO 2612 */ 2613 if (!may_perform_io) 2614 return COMPACT_SKIPPED; 2615 2616 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio); 2617 2618 /* Compact each zone in the list */ 2619 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2620 ac->highest_zoneidx, ac->nodemask) { 2621 enum compact_result status; 2622 2623 if (prio > MIN_COMPACT_PRIORITY 2624 && compaction_deferred(zone, order)) { 2625 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); 2626 continue; 2627 } 2628 2629 status = compact_zone_order(zone, order, gfp_mask, prio, 2630 alloc_flags, ac->highest_zoneidx, capture); 2631 rc = max(status, rc); 2632 2633 /* The allocation should succeed, stop compacting */ 2634 if (status == COMPACT_SUCCESS) { 2635 /* 2636 * We think the allocation will succeed in this zone, 2637 * but it is not certain, hence the false. The caller 2638 * will repeat this with true if allocation indeed 2639 * succeeds in this zone. 2640 */ 2641 compaction_defer_reset(zone, order, false); 2642 2643 break; 2644 } 2645 2646 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE || 2647 status == COMPACT_PARTIAL_SKIPPED)) 2648 /* 2649 * We think that allocation won't succeed in this zone 2650 * so we defer compaction there. If it ends up 2651 * succeeding after all, it will be reset. 2652 */ 2653 defer_compaction(zone, order); 2654 2655 /* 2656 * We might have stopped compacting due to need_resched() in 2657 * async compaction, or due to a fatal signal detected. In that 2658 * case do not try further zones 2659 */ 2660 if ((prio == COMPACT_PRIO_ASYNC && need_resched()) 2661 || fatal_signal_pending(current)) 2662 break; 2663 } 2664 2665 return rc; 2666 } 2667 2668 /* 2669 * Compact all zones within a node till each zone's fragmentation score 2670 * reaches within proactive compaction thresholds (as determined by the 2671 * proactiveness tunable). 2672 * 2673 * It is possible that the function returns before reaching score targets 2674 * due to various back-off conditions, such as, contention on per-node or 2675 * per-zone locks. 2676 */ 2677 static void proactive_compact_node(pg_data_t *pgdat) 2678 { 2679 int zoneid; 2680 struct zone *zone; 2681 struct compact_control cc = { 2682 .order = -1, 2683 .mode = MIGRATE_SYNC_LIGHT, 2684 .ignore_skip_hint = true, 2685 .whole_zone = true, 2686 .gfp_mask = GFP_KERNEL, 2687 .proactive_compaction = true, 2688 }; 2689 2690 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2691 zone = &pgdat->node_zones[zoneid]; 2692 if (!populated_zone(zone)) 2693 continue; 2694 2695 cc.zone = zone; 2696 2697 compact_zone(&cc, NULL); 2698 2699 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 2700 cc.total_migrate_scanned); 2701 count_compact_events(KCOMPACTD_FREE_SCANNED, 2702 cc.total_free_scanned); 2703 } 2704 } 2705 2706 /* Compact all zones within a node */ 2707 static void compact_node(int nid) 2708 { 2709 pg_data_t *pgdat = NODE_DATA(nid); 2710 int zoneid; 2711 struct zone *zone; 2712 struct compact_control cc = { 2713 .order = -1, 2714 .mode = MIGRATE_SYNC, 2715 .ignore_skip_hint = true, 2716 .whole_zone = true, 2717 .gfp_mask = GFP_KERNEL, 2718 }; 2719 2720 2721 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2722 2723 zone = &pgdat->node_zones[zoneid]; 2724 if (!populated_zone(zone)) 2725 continue; 2726 2727 cc.zone = zone; 2728 2729 compact_zone(&cc, NULL); 2730 } 2731 } 2732 2733 /* Compact all nodes in the system */ 2734 static void compact_nodes(void) 2735 { 2736 int nid; 2737 2738 /* Flush pending updates to the LRU lists */ 2739 lru_add_drain_all(); 2740 2741 for_each_online_node(nid) 2742 compact_node(nid); 2743 } 2744 2745 /* 2746 * Tunable for proactive compaction. It determines how 2747 * aggressively the kernel should compact memory in the 2748 * background. It takes values in the range [0, 100]. 2749 */ 2750 unsigned int __read_mostly sysctl_compaction_proactiveness = 20; 2751 2752 int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write, 2753 void *buffer, size_t *length, loff_t *ppos) 2754 { 2755 int rc, nid; 2756 2757 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 2758 if (rc) 2759 return rc; 2760 2761 if (write && sysctl_compaction_proactiveness) { 2762 for_each_online_node(nid) { 2763 pg_data_t *pgdat = NODE_DATA(nid); 2764 2765 if (pgdat->proactive_compact_trigger) 2766 continue; 2767 2768 pgdat->proactive_compact_trigger = true; 2769 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1, 2770 pgdat->nr_zones - 1); 2771 wake_up_interruptible(&pgdat->kcompactd_wait); 2772 } 2773 } 2774 2775 return 0; 2776 } 2777 2778 /* 2779 * This is the entry point for compacting all nodes via 2780 * /proc/sys/vm/compact_memory 2781 */ 2782 int sysctl_compaction_handler(struct ctl_table *table, int write, 2783 void *buffer, size_t *length, loff_t *ppos) 2784 { 2785 if (write) 2786 compact_nodes(); 2787 2788 return 0; 2789 } 2790 2791 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 2792 static ssize_t compact_store(struct device *dev, 2793 struct device_attribute *attr, 2794 const char *buf, size_t count) 2795 { 2796 int nid = dev->id; 2797 2798 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 2799 /* Flush pending updates to the LRU lists */ 2800 lru_add_drain_all(); 2801 2802 compact_node(nid); 2803 } 2804 2805 return count; 2806 } 2807 static DEVICE_ATTR_WO(compact); 2808 2809 int compaction_register_node(struct node *node) 2810 { 2811 return device_create_file(&node->dev, &dev_attr_compact); 2812 } 2813 2814 void compaction_unregister_node(struct node *node) 2815 { 2816 return device_remove_file(&node->dev, &dev_attr_compact); 2817 } 2818 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 2819 2820 static inline bool kcompactd_work_requested(pg_data_t *pgdat) 2821 { 2822 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() || 2823 pgdat->proactive_compact_trigger; 2824 } 2825 2826 static bool kcompactd_node_suitable(pg_data_t *pgdat) 2827 { 2828 int zoneid; 2829 struct zone *zone; 2830 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx; 2831 2832 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) { 2833 zone = &pgdat->node_zones[zoneid]; 2834 2835 if (!populated_zone(zone)) 2836 continue; 2837 2838 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0, 2839 highest_zoneidx) == COMPACT_CONTINUE) 2840 return true; 2841 } 2842 2843 return false; 2844 } 2845 2846 static void kcompactd_do_work(pg_data_t *pgdat) 2847 { 2848 /* 2849 * With no special task, compact all zones so that a page of requested 2850 * order is allocatable. 2851 */ 2852 int zoneid; 2853 struct zone *zone; 2854 struct compact_control cc = { 2855 .order = pgdat->kcompactd_max_order, 2856 .search_order = pgdat->kcompactd_max_order, 2857 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx, 2858 .mode = MIGRATE_SYNC_LIGHT, 2859 .ignore_skip_hint = false, 2860 .gfp_mask = GFP_KERNEL, 2861 }; 2862 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 2863 cc.highest_zoneidx); 2864 count_compact_event(KCOMPACTD_WAKE); 2865 2866 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) { 2867 int status; 2868 2869 zone = &pgdat->node_zones[zoneid]; 2870 if (!populated_zone(zone)) 2871 continue; 2872 2873 if (compaction_deferred(zone, cc.order)) 2874 continue; 2875 2876 if (compaction_suitable(zone, cc.order, 0, zoneid) != 2877 COMPACT_CONTINUE) 2878 continue; 2879 2880 if (kthread_should_stop()) 2881 return; 2882 2883 cc.zone = zone; 2884 status = compact_zone(&cc, NULL); 2885 2886 if (status == COMPACT_SUCCESS) { 2887 compaction_defer_reset(zone, cc.order, false); 2888 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { 2889 /* 2890 * Buddy pages may become stranded on pcps that could 2891 * otherwise coalesce on the zone's free area for 2892 * order >= cc.order. This is ratelimited by the 2893 * upcoming deferral. 2894 */ 2895 drain_all_pages(zone); 2896 2897 /* 2898 * We use sync migration mode here, so we defer like 2899 * sync direct compaction does. 2900 */ 2901 defer_compaction(zone, cc.order); 2902 } 2903 2904 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 2905 cc.total_migrate_scanned); 2906 count_compact_events(KCOMPACTD_FREE_SCANNED, 2907 cc.total_free_scanned); 2908 } 2909 2910 /* 2911 * Regardless of success, we are done until woken up next. But remember 2912 * the requested order/highest_zoneidx in case it was higher/tighter 2913 * than our current ones 2914 */ 2915 if (pgdat->kcompactd_max_order <= cc.order) 2916 pgdat->kcompactd_max_order = 0; 2917 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx) 2918 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 2919 } 2920 2921 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx) 2922 { 2923 if (!order) 2924 return; 2925 2926 if (pgdat->kcompactd_max_order < order) 2927 pgdat->kcompactd_max_order = order; 2928 2929 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx) 2930 pgdat->kcompactd_highest_zoneidx = highest_zoneidx; 2931 2932 /* 2933 * Pairs with implicit barrier in wait_event_freezable() 2934 * such that wakeups are not missed. 2935 */ 2936 if (!wq_has_sleeper(&pgdat->kcompactd_wait)) 2937 return; 2938 2939 if (!kcompactd_node_suitable(pgdat)) 2940 return; 2941 2942 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 2943 highest_zoneidx); 2944 wake_up_interruptible(&pgdat->kcompactd_wait); 2945 } 2946 2947 /* 2948 * The background compaction daemon, started as a kernel thread 2949 * from the init process. 2950 */ 2951 static int kcompactd(void *p) 2952 { 2953 pg_data_t *pgdat = (pg_data_t *)p; 2954 struct task_struct *tsk = current; 2955 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC); 2956 long timeout = default_timeout; 2957 2958 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2959 2960 if (!cpumask_empty(cpumask)) 2961 set_cpus_allowed_ptr(tsk, cpumask); 2962 2963 set_freezable(); 2964 2965 pgdat->kcompactd_max_order = 0; 2966 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 2967 2968 while (!kthread_should_stop()) { 2969 unsigned long pflags; 2970 2971 /* 2972 * Avoid the unnecessary wakeup for proactive compaction 2973 * when it is disabled. 2974 */ 2975 if (!sysctl_compaction_proactiveness) 2976 timeout = MAX_SCHEDULE_TIMEOUT; 2977 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 2978 if (wait_event_freezable_timeout(pgdat->kcompactd_wait, 2979 kcompactd_work_requested(pgdat), timeout) && 2980 !pgdat->proactive_compact_trigger) { 2981 2982 psi_memstall_enter(&pflags); 2983 kcompactd_do_work(pgdat); 2984 psi_memstall_leave(&pflags); 2985 /* 2986 * Reset the timeout value. The defer timeout from 2987 * proactive compaction is lost here but that is fine 2988 * as the condition of the zone changing substantionally 2989 * then carrying on with the previous defer interval is 2990 * not useful. 2991 */ 2992 timeout = default_timeout; 2993 continue; 2994 } 2995 2996 /* 2997 * Start the proactive work with default timeout. Based 2998 * on the fragmentation score, this timeout is updated. 2999 */ 3000 timeout = default_timeout; 3001 if (should_proactive_compact_node(pgdat)) { 3002 unsigned int prev_score, score; 3003 3004 prev_score = fragmentation_score_node(pgdat); 3005 proactive_compact_node(pgdat); 3006 score = fragmentation_score_node(pgdat); 3007 /* 3008 * Defer proactive compaction if the fragmentation 3009 * score did not go down i.e. no progress made. 3010 */ 3011 if (unlikely(score >= prev_score)) 3012 timeout = 3013 default_timeout << COMPACT_MAX_DEFER_SHIFT; 3014 } 3015 if (unlikely(pgdat->proactive_compact_trigger)) 3016 pgdat->proactive_compact_trigger = false; 3017 } 3018 3019 return 0; 3020 } 3021 3022 /* 3023 * This kcompactd start function will be called by init and node-hot-add. 3024 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 3025 */ 3026 void kcompactd_run(int nid) 3027 { 3028 pg_data_t *pgdat = NODE_DATA(nid); 3029 3030 if (pgdat->kcompactd) 3031 return; 3032 3033 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); 3034 if (IS_ERR(pgdat->kcompactd)) { 3035 pr_err("Failed to start kcompactd on node %d\n", nid); 3036 pgdat->kcompactd = NULL; 3037 } 3038 } 3039 3040 /* 3041 * Called by memory hotplug when all memory in a node is offlined. Caller must 3042 * be holding mem_hotplug_begin/done(). 3043 */ 3044 void kcompactd_stop(int nid) 3045 { 3046 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 3047 3048 if (kcompactd) { 3049 kthread_stop(kcompactd); 3050 NODE_DATA(nid)->kcompactd = NULL; 3051 } 3052 } 3053 3054 /* 3055 * It's optimal to keep kcompactd on the same CPUs as their memory, but 3056 * not required for correctness. So if the last cpu in a node goes 3057 * away, we get changed to run anywhere: as the first one comes back, 3058 * restore their cpu bindings. 3059 */ 3060 static int kcompactd_cpu_online(unsigned int cpu) 3061 { 3062 int nid; 3063 3064 for_each_node_state(nid, N_MEMORY) { 3065 pg_data_t *pgdat = NODE_DATA(nid); 3066 const struct cpumask *mask; 3067 3068 mask = cpumask_of_node(pgdat->node_id); 3069 3070 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3071 /* One of our CPUs online: restore mask */ 3072 if (pgdat->kcompactd) 3073 set_cpus_allowed_ptr(pgdat->kcompactd, mask); 3074 } 3075 return 0; 3076 } 3077 3078 static int __init kcompactd_init(void) 3079 { 3080 int nid; 3081 int ret; 3082 3083 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 3084 "mm/compaction:online", 3085 kcompactd_cpu_online, NULL); 3086 if (ret < 0) { 3087 pr_err("kcompactd: failed to register hotplug callbacks.\n"); 3088 return ret; 3089 } 3090 3091 for_each_node_state(nid, N_MEMORY) 3092 kcompactd_run(nid); 3093 return 0; 3094 } 3095 subsys_initcall(kcompactd_init) 3096 3097 #endif /* CONFIG_COMPACTION */ 3098