xref: /linux/mm/compaction.c (revision 3ba84ac69b53e6ee07c31d54554e00793d7b144f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include <linux/cpuset.h>
27 #include "internal.h"
28 
29 #ifdef CONFIG_COMPACTION
30 /*
31  * Fragmentation score check interval for proactive compaction purposes.
32  */
33 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC	(500)
34 
35 static inline void count_compact_event(enum vm_event_item item)
36 {
37 	count_vm_event(item);
38 }
39 
40 static inline void count_compact_events(enum vm_event_item item, long delta)
41 {
42 	count_vm_events(item, delta);
43 }
44 
45 /*
46  * order == -1 is expected when compacting proactively via
47  * 1. /proc/sys/vm/compact_memory
48  * 2. /sys/devices/system/node/nodex/compact
49  * 3. /proc/sys/vm/compaction_proactiveness
50  */
51 static inline bool is_via_compact_memory(int order)
52 {
53 	return order == -1;
54 }
55 
56 #else
57 #define count_compact_event(item) do { } while (0)
58 #define count_compact_events(item, delta) do { } while (0)
59 static inline bool is_via_compact_memory(int order) { return false; }
60 #endif
61 
62 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/compaction.h>
66 
67 #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
68 #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
69 
70 /*
71  * Page order with-respect-to which proactive compaction
72  * calculates external fragmentation, which is used as
73  * the "fragmentation score" of a node/zone.
74  */
75 #if defined CONFIG_TRANSPARENT_HUGEPAGE
76 #define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
77 #elif defined CONFIG_HUGETLBFS
78 #define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
79 #else
80 #define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
81 #endif
82 
83 static struct page *mark_allocated_noprof(struct page *page, unsigned int order, gfp_t gfp_flags)
84 {
85 	post_alloc_hook(page, order, __GFP_MOVABLE);
86 	return page;
87 }
88 #define mark_allocated(...)	alloc_hooks(mark_allocated_noprof(__VA_ARGS__))
89 
90 static unsigned long release_free_list(struct list_head *freepages)
91 {
92 	int order;
93 	unsigned long high_pfn = 0;
94 
95 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
96 		struct page *page, *next;
97 
98 		list_for_each_entry_safe(page, next, &freepages[order], lru) {
99 			unsigned long pfn = page_to_pfn(page);
100 
101 			list_del(&page->lru);
102 			/*
103 			 * Convert free pages into post allocation pages, so
104 			 * that we can free them via __free_page.
105 			 */
106 			mark_allocated(page, order, __GFP_MOVABLE);
107 			__free_pages(page, order);
108 			if (pfn > high_pfn)
109 				high_pfn = pfn;
110 		}
111 	}
112 	return high_pfn;
113 }
114 
115 #ifdef CONFIG_COMPACTION
116 bool PageMovable(struct page *page)
117 {
118 	const struct movable_operations *mops;
119 
120 	VM_BUG_ON_PAGE(!PageLocked(page), page);
121 	if (!__PageMovable(page))
122 		return false;
123 
124 	mops = page_movable_ops(page);
125 	if (mops)
126 		return true;
127 
128 	return false;
129 }
130 
131 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
132 {
133 	VM_BUG_ON_PAGE(!PageLocked(page), page);
134 	VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
135 	page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
136 }
137 EXPORT_SYMBOL(__SetPageMovable);
138 
139 void __ClearPageMovable(struct page *page)
140 {
141 	VM_BUG_ON_PAGE(!PageMovable(page), page);
142 	/*
143 	 * This page still has the type of a movable page, but it's
144 	 * actually not movable any more.
145 	 */
146 	page->mapping = (void *)PAGE_MAPPING_MOVABLE;
147 }
148 EXPORT_SYMBOL(__ClearPageMovable);
149 
150 /* Do not skip compaction more than 64 times */
151 #define COMPACT_MAX_DEFER_SHIFT 6
152 
153 /*
154  * Compaction is deferred when compaction fails to result in a page
155  * allocation success. 1 << compact_defer_shift, compactions are skipped up
156  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
157  */
158 static void defer_compaction(struct zone *zone, int order)
159 {
160 	zone->compact_considered = 0;
161 	zone->compact_defer_shift++;
162 
163 	if (order < zone->compact_order_failed)
164 		zone->compact_order_failed = order;
165 
166 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
167 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
168 
169 	trace_mm_compaction_defer_compaction(zone, order);
170 }
171 
172 /* Returns true if compaction should be skipped this time */
173 static bool compaction_deferred(struct zone *zone, int order)
174 {
175 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
176 
177 	if (order < zone->compact_order_failed)
178 		return false;
179 
180 	/* Avoid possible overflow */
181 	if (++zone->compact_considered >= defer_limit) {
182 		zone->compact_considered = defer_limit;
183 		return false;
184 	}
185 
186 	trace_mm_compaction_deferred(zone, order);
187 
188 	return true;
189 }
190 
191 /*
192  * Update defer tracking counters after successful compaction of given order,
193  * which means an allocation either succeeded (alloc_success == true) or is
194  * expected to succeed.
195  */
196 void compaction_defer_reset(struct zone *zone, int order,
197 		bool alloc_success)
198 {
199 	if (alloc_success) {
200 		zone->compact_considered = 0;
201 		zone->compact_defer_shift = 0;
202 	}
203 	if (order >= zone->compact_order_failed)
204 		zone->compact_order_failed = order + 1;
205 
206 	trace_mm_compaction_defer_reset(zone, order);
207 }
208 
209 /* Returns true if restarting compaction after many failures */
210 static bool compaction_restarting(struct zone *zone, int order)
211 {
212 	if (order < zone->compact_order_failed)
213 		return false;
214 
215 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
216 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
217 }
218 
219 /* Returns true if the pageblock should be scanned for pages to isolate. */
220 static inline bool isolation_suitable(struct compact_control *cc,
221 					struct page *page)
222 {
223 	if (cc->ignore_skip_hint)
224 		return true;
225 
226 	return !get_pageblock_skip(page);
227 }
228 
229 static void reset_cached_positions(struct zone *zone)
230 {
231 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
232 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
233 	zone->compact_cached_free_pfn =
234 				pageblock_start_pfn(zone_end_pfn(zone) - 1);
235 }
236 
237 #ifdef CONFIG_SPARSEMEM
238 /*
239  * If the PFN falls into an offline section, return the start PFN of the
240  * next online section. If the PFN falls into an online section or if
241  * there is no next online section, return 0.
242  */
243 static unsigned long skip_offline_sections(unsigned long start_pfn)
244 {
245 	unsigned long start_nr = pfn_to_section_nr(start_pfn);
246 
247 	if (online_section_nr(start_nr))
248 		return 0;
249 
250 	while (++start_nr <= __highest_present_section_nr) {
251 		if (online_section_nr(start_nr))
252 			return section_nr_to_pfn(start_nr);
253 	}
254 
255 	return 0;
256 }
257 
258 /*
259  * If the PFN falls into an offline section, return the end PFN of the
260  * next online section in reverse. If the PFN falls into an online section
261  * or if there is no next online section in reverse, return 0.
262  */
263 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
264 {
265 	unsigned long start_nr = pfn_to_section_nr(start_pfn);
266 
267 	if (!start_nr || online_section_nr(start_nr))
268 		return 0;
269 
270 	while (start_nr-- > 0) {
271 		if (online_section_nr(start_nr))
272 			return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION;
273 	}
274 
275 	return 0;
276 }
277 #else
278 static unsigned long skip_offline_sections(unsigned long start_pfn)
279 {
280 	return 0;
281 }
282 
283 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
284 {
285 	return 0;
286 }
287 #endif
288 
289 /*
290  * Compound pages of >= pageblock_order should consistently be skipped until
291  * released. It is always pointless to compact pages of such order (if they are
292  * migratable), and the pageblocks they occupy cannot contain any free pages.
293  */
294 static bool pageblock_skip_persistent(struct page *page)
295 {
296 	if (!PageCompound(page))
297 		return false;
298 
299 	page = compound_head(page);
300 
301 	if (compound_order(page) >= pageblock_order)
302 		return true;
303 
304 	return false;
305 }
306 
307 static bool
308 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
309 							bool check_target)
310 {
311 	struct page *page = pfn_to_online_page(pfn);
312 	struct page *block_page;
313 	struct page *end_page;
314 	unsigned long block_pfn;
315 
316 	if (!page)
317 		return false;
318 	if (zone != page_zone(page))
319 		return false;
320 	if (pageblock_skip_persistent(page))
321 		return false;
322 
323 	/*
324 	 * If skip is already cleared do no further checking once the
325 	 * restart points have been set.
326 	 */
327 	if (check_source && check_target && !get_pageblock_skip(page))
328 		return true;
329 
330 	/*
331 	 * If clearing skip for the target scanner, do not select a
332 	 * non-movable pageblock as the starting point.
333 	 */
334 	if (!check_source && check_target &&
335 	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
336 		return false;
337 
338 	/* Ensure the start of the pageblock or zone is online and valid */
339 	block_pfn = pageblock_start_pfn(pfn);
340 	block_pfn = max(block_pfn, zone->zone_start_pfn);
341 	block_page = pfn_to_online_page(block_pfn);
342 	if (block_page) {
343 		page = block_page;
344 		pfn = block_pfn;
345 	}
346 
347 	/* Ensure the end of the pageblock or zone is online and valid */
348 	block_pfn = pageblock_end_pfn(pfn) - 1;
349 	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
350 	end_page = pfn_to_online_page(block_pfn);
351 	if (!end_page)
352 		return false;
353 
354 	/*
355 	 * Only clear the hint if a sample indicates there is either a
356 	 * free page or an LRU page in the block. One or other condition
357 	 * is necessary for the block to be a migration source/target.
358 	 */
359 	do {
360 		if (check_source && PageLRU(page)) {
361 			clear_pageblock_skip(page);
362 			return true;
363 		}
364 
365 		if (check_target && PageBuddy(page)) {
366 			clear_pageblock_skip(page);
367 			return true;
368 		}
369 
370 		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
371 	} while (page <= end_page);
372 
373 	return false;
374 }
375 
376 /*
377  * This function is called to clear all cached information on pageblocks that
378  * should be skipped for page isolation when the migrate and free page scanner
379  * meet.
380  */
381 static void __reset_isolation_suitable(struct zone *zone)
382 {
383 	unsigned long migrate_pfn = zone->zone_start_pfn;
384 	unsigned long free_pfn = zone_end_pfn(zone) - 1;
385 	unsigned long reset_migrate = free_pfn;
386 	unsigned long reset_free = migrate_pfn;
387 	bool source_set = false;
388 	bool free_set = false;
389 
390 	/* Only flush if a full compaction finished recently */
391 	if (!zone->compact_blockskip_flush)
392 		return;
393 
394 	zone->compact_blockskip_flush = false;
395 
396 	/*
397 	 * Walk the zone and update pageblock skip information. Source looks
398 	 * for PageLRU while target looks for PageBuddy. When the scanner
399 	 * is found, both PageBuddy and PageLRU are checked as the pageblock
400 	 * is suitable as both source and target.
401 	 */
402 	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
403 					free_pfn -= pageblock_nr_pages) {
404 		cond_resched();
405 
406 		/* Update the migrate PFN */
407 		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
408 		    migrate_pfn < reset_migrate) {
409 			source_set = true;
410 			reset_migrate = migrate_pfn;
411 			zone->compact_init_migrate_pfn = reset_migrate;
412 			zone->compact_cached_migrate_pfn[0] = reset_migrate;
413 			zone->compact_cached_migrate_pfn[1] = reset_migrate;
414 		}
415 
416 		/* Update the free PFN */
417 		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
418 		    free_pfn > reset_free) {
419 			free_set = true;
420 			reset_free = free_pfn;
421 			zone->compact_init_free_pfn = reset_free;
422 			zone->compact_cached_free_pfn = reset_free;
423 		}
424 	}
425 
426 	/* Leave no distance if no suitable block was reset */
427 	if (reset_migrate >= reset_free) {
428 		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
429 		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
430 		zone->compact_cached_free_pfn = free_pfn;
431 	}
432 }
433 
434 void reset_isolation_suitable(pg_data_t *pgdat)
435 {
436 	int zoneid;
437 
438 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
439 		struct zone *zone = &pgdat->node_zones[zoneid];
440 		if (!populated_zone(zone))
441 			continue;
442 
443 		__reset_isolation_suitable(zone);
444 	}
445 }
446 
447 /*
448  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
449  * locks are not required for read/writers. Returns true if it was already set.
450  */
451 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
452 {
453 	bool skip;
454 
455 	/* Do not update if skip hint is being ignored */
456 	if (cc->ignore_skip_hint)
457 		return false;
458 
459 	skip = get_pageblock_skip(page);
460 	if (!skip && !cc->no_set_skip_hint)
461 		set_pageblock_skip(page);
462 
463 	return skip;
464 }
465 
466 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
467 {
468 	struct zone *zone = cc->zone;
469 
470 	/* Set for isolation rather than compaction */
471 	if (cc->no_set_skip_hint)
472 		return;
473 
474 	pfn = pageblock_end_pfn(pfn);
475 
476 	/* Update where async and sync compaction should restart */
477 	if (pfn > zone->compact_cached_migrate_pfn[0])
478 		zone->compact_cached_migrate_pfn[0] = pfn;
479 	if (cc->mode != MIGRATE_ASYNC &&
480 	    pfn > zone->compact_cached_migrate_pfn[1])
481 		zone->compact_cached_migrate_pfn[1] = pfn;
482 }
483 
484 /*
485  * If no pages were isolated then mark this pageblock to be skipped in the
486  * future. The information is later cleared by __reset_isolation_suitable().
487  */
488 static void update_pageblock_skip(struct compact_control *cc,
489 			struct page *page, unsigned long pfn)
490 {
491 	struct zone *zone = cc->zone;
492 
493 	if (cc->no_set_skip_hint)
494 		return;
495 
496 	set_pageblock_skip(page);
497 
498 	if (pfn < zone->compact_cached_free_pfn)
499 		zone->compact_cached_free_pfn = pfn;
500 }
501 #else
502 static inline bool isolation_suitable(struct compact_control *cc,
503 					struct page *page)
504 {
505 	return true;
506 }
507 
508 static inline bool pageblock_skip_persistent(struct page *page)
509 {
510 	return false;
511 }
512 
513 static inline void update_pageblock_skip(struct compact_control *cc,
514 			struct page *page, unsigned long pfn)
515 {
516 }
517 
518 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
519 {
520 }
521 
522 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
523 {
524 	return false;
525 }
526 #endif /* CONFIG_COMPACTION */
527 
528 /*
529  * Compaction requires the taking of some coarse locks that are potentially
530  * very heavily contended. For async compaction, trylock and record if the
531  * lock is contended. The lock will still be acquired but compaction will
532  * abort when the current block is finished regardless of success rate.
533  * Sync compaction acquires the lock.
534  *
535  * Always returns true which makes it easier to track lock state in callers.
536  */
537 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
538 						struct compact_control *cc)
539 	__acquires(lock)
540 {
541 	/* Track if the lock is contended in async mode */
542 	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
543 		if (spin_trylock_irqsave(lock, *flags))
544 			return true;
545 
546 		cc->contended = true;
547 	}
548 
549 	spin_lock_irqsave(lock, *flags);
550 	return true;
551 }
552 
553 /*
554  * Compaction requires the taking of some coarse locks that are potentially
555  * very heavily contended. The lock should be periodically unlocked to avoid
556  * having disabled IRQs for a long time, even when there is nobody waiting on
557  * the lock. It might also be that allowing the IRQs will result in
558  * need_resched() becoming true. If scheduling is needed, compaction schedules.
559  * Either compaction type will also abort if a fatal signal is pending.
560  * In either case if the lock was locked, it is dropped and not regained.
561  *
562  * Returns true if compaction should abort due to fatal signal pending.
563  * Returns false when compaction can continue.
564  */
565 static bool compact_unlock_should_abort(spinlock_t *lock,
566 		unsigned long flags, bool *locked, struct compact_control *cc)
567 {
568 	if (*locked) {
569 		spin_unlock_irqrestore(lock, flags);
570 		*locked = false;
571 	}
572 
573 	if (fatal_signal_pending(current)) {
574 		cc->contended = true;
575 		return true;
576 	}
577 
578 	cond_resched();
579 
580 	return false;
581 }
582 
583 /*
584  * Isolate free pages onto a private freelist. If @strict is true, will abort
585  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
586  * (even though it may still end up isolating some pages).
587  */
588 static unsigned long isolate_freepages_block(struct compact_control *cc,
589 				unsigned long *start_pfn,
590 				unsigned long end_pfn,
591 				struct list_head *freelist,
592 				unsigned int stride,
593 				bool strict)
594 {
595 	int nr_scanned = 0, total_isolated = 0;
596 	struct page *page;
597 	unsigned long flags = 0;
598 	bool locked = false;
599 	unsigned long blockpfn = *start_pfn;
600 	unsigned int order;
601 
602 	/* Strict mode is for isolation, speed is secondary */
603 	if (strict)
604 		stride = 1;
605 
606 	page = pfn_to_page(blockpfn);
607 
608 	/* Isolate free pages. */
609 	for (; blockpfn < end_pfn; blockpfn += stride, page += stride) {
610 		int isolated;
611 
612 		/*
613 		 * Periodically drop the lock (if held) regardless of its
614 		 * contention, to give chance to IRQs. Abort if fatal signal
615 		 * pending.
616 		 */
617 		if (!(blockpfn % COMPACT_CLUSTER_MAX)
618 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
619 								&locked, cc))
620 			break;
621 
622 		nr_scanned++;
623 
624 		/*
625 		 * For compound pages such as THP and hugetlbfs, we can save
626 		 * potentially a lot of iterations if we skip them at once.
627 		 * The check is racy, but we can consider only valid values
628 		 * and the only danger is skipping too much.
629 		 */
630 		if (PageCompound(page)) {
631 			const unsigned int order = compound_order(page);
632 
633 			if (blockpfn + (1UL << order) <= end_pfn) {
634 				blockpfn += (1UL << order) - 1;
635 				page += (1UL << order) - 1;
636 				nr_scanned += (1UL << order) - 1;
637 			}
638 
639 			goto isolate_fail;
640 		}
641 
642 		if (!PageBuddy(page))
643 			goto isolate_fail;
644 
645 		/* If we already hold the lock, we can skip some rechecking. */
646 		if (!locked) {
647 			locked = compact_lock_irqsave(&cc->zone->lock,
648 								&flags, cc);
649 
650 			/* Recheck this is a buddy page under lock */
651 			if (!PageBuddy(page))
652 				goto isolate_fail;
653 		}
654 
655 		/* Found a free page, will break it into order-0 pages */
656 		order = buddy_order(page);
657 		isolated = __isolate_free_page(page, order);
658 		if (!isolated)
659 			break;
660 		set_page_private(page, order);
661 
662 		nr_scanned += isolated - 1;
663 		total_isolated += isolated;
664 		cc->nr_freepages += isolated;
665 		list_add_tail(&page->lru, &freelist[order]);
666 
667 		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
668 			blockpfn += isolated;
669 			break;
670 		}
671 		/* Advance to the end of split page */
672 		blockpfn += isolated - 1;
673 		page += isolated - 1;
674 		continue;
675 
676 isolate_fail:
677 		if (strict)
678 			break;
679 
680 	}
681 
682 	if (locked)
683 		spin_unlock_irqrestore(&cc->zone->lock, flags);
684 
685 	/*
686 	 * Be careful to not go outside of the pageblock.
687 	 */
688 	if (unlikely(blockpfn > end_pfn))
689 		blockpfn = end_pfn;
690 
691 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
692 					nr_scanned, total_isolated);
693 
694 	/* Record how far we have got within the block */
695 	*start_pfn = blockpfn;
696 
697 	/*
698 	 * If strict isolation is requested by CMA then check that all the
699 	 * pages requested were isolated. If there were any failures, 0 is
700 	 * returned and CMA will fail.
701 	 */
702 	if (strict && blockpfn < end_pfn)
703 		total_isolated = 0;
704 
705 	cc->total_free_scanned += nr_scanned;
706 	if (total_isolated)
707 		count_compact_events(COMPACTISOLATED, total_isolated);
708 	return total_isolated;
709 }
710 
711 /**
712  * isolate_freepages_range() - isolate free pages.
713  * @cc:        Compaction control structure.
714  * @start_pfn: The first PFN to start isolating.
715  * @end_pfn:   The one-past-last PFN.
716  *
717  * Non-free pages, invalid PFNs, or zone boundaries within the
718  * [start_pfn, end_pfn) range are considered errors, cause function to
719  * undo its actions and return zero. cc->freepages[] are empty.
720  *
721  * Otherwise, function returns one-past-the-last PFN of isolated page
722  * (which may be greater then end_pfn if end fell in a middle of
723  * a free page). cc->freepages[] contain free pages isolated.
724  */
725 unsigned long
726 isolate_freepages_range(struct compact_control *cc,
727 			unsigned long start_pfn, unsigned long end_pfn)
728 {
729 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
730 	int order;
731 
732 	for (order = 0; order < NR_PAGE_ORDERS; order++)
733 		INIT_LIST_HEAD(&cc->freepages[order]);
734 
735 	pfn = start_pfn;
736 	block_start_pfn = pageblock_start_pfn(pfn);
737 	if (block_start_pfn < cc->zone->zone_start_pfn)
738 		block_start_pfn = cc->zone->zone_start_pfn;
739 	block_end_pfn = pageblock_end_pfn(pfn);
740 
741 	for (; pfn < end_pfn; pfn += isolated,
742 				block_start_pfn = block_end_pfn,
743 				block_end_pfn += pageblock_nr_pages) {
744 		/* Protect pfn from changing by isolate_freepages_block */
745 		unsigned long isolate_start_pfn = pfn;
746 
747 		/*
748 		 * pfn could pass the block_end_pfn if isolated freepage
749 		 * is more than pageblock order. In this case, we adjust
750 		 * scanning range to right one.
751 		 */
752 		if (pfn >= block_end_pfn) {
753 			block_start_pfn = pageblock_start_pfn(pfn);
754 			block_end_pfn = pageblock_end_pfn(pfn);
755 		}
756 
757 		block_end_pfn = min(block_end_pfn, end_pfn);
758 
759 		if (!pageblock_pfn_to_page(block_start_pfn,
760 					block_end_pfn, cc->zone))
761 			break;
762 
763 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
764 					block_end_pfn, cc->freepages, 0, true);
765 
766 		/*
767 		 * In strict mode, isolate_freepages_block() returns 0 if
768 		 * there are any holes in the block (ie. invalid PFNs or
769 		 * non-free pages).
770 		 */
771 		if (!isolated)
772 			break;
773 
774 		/*
775 		 * If we managed to isolate pages, it is always (1 << n) *
776 		 * pageblock_nr_pages for some non-negative n.  (Max order
777 		 * page may span two pageblocks).
778 		 */
779 	}
780 
781 	if (pfn < end_pfn) {
782 		/* Loop terminated early, cleanup. */
783 		release_free_list(cc->freepages);
784 		return 0;
785 	}
786 
787 	/* We don't use freelists for anything. */
788 	return pfn;
789 }
790 
791 /* Similar to reclaim, but different enough that they don't share logic */
792 static bool too_many_isolated(struct compact_control *cc)
793 {
794 	pg_data_t *pgdat = cc->zone->zone_pgdat;
795 	bool too_many;
796 
797 	unsigned long active, inactive, isolated;
798 
799 	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
800 			node_page_state(pgdat, NR_INACTIVE_ANON);
801 	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
802 			node_page_state(pgdat, NR_ACTIVE_ANON);
803 	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
804 			node_page_state(pgdat, NR_ISOLATED_ANON);
805 
806 	/*
807 	 * Allow GFP_NOFS to isolate past the limit set for regular
808 	 * compaction runs. This prevents an ABBA deadlock when other
809 	 * compactors have already isolated to the limit, but are
810 	 * blocked on filesystem locks held by the GFP_NOFS thread.
811 	 */
812 	if (cc->gfp_mask & __GFP_FS) {
813 		inactive >>= 3;
814 		active >>= 3;
815 	}
816 
817 	too_many = isolated > (inactive + active) / 2;
818 	if (!too_many)
819 		wake_throttle_isolated(pgdat);
820 
821 	return too_many;
822 }
823 
824 /**
825  * skip_isolation_on_order() - determine when to skip folio isolation based on
826  *			       folio order and compaction target order
827  * @order:		to-be-isolated folio order
828  * @target_order:	compaction target order
829  *
830  * This avoids unnecessary folio isolations during compaction.
831  */
832 static bool skip_isolation_on_order(int order, int target_order)
833 {
834 	/*
835 	 * Unless we are performing global compaction (i.e.,
836 	 * is_via_compact_memory), skip any folios that are larger than the
837 	 * target order: we wouldn't be here if we'd have a free folio with
838 	 * the desired target_order, so migrating this folio would likely fail
839 	 * later.
840 	 */
841 	if (!is_via_compact_memory(target_order) && order >= target_order)
842 		return true;
843 	/*
844 	 * We limit memory compaction to pageblocks and won't try
845 	 * creating free blocks of memory that are larger than that.
846 	 */
847 	return order >= pageblock_order;
848 }
849 
850 /**
851  * isolate_migratepages_block() - isolate all migrate-able pages within
852  *				  a single pageblock
853  * @cc:		Compaction control structure.
854  * @low_pfn:	The first PFN to isolate
855  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
856  * @mode:	Isolation mode to be used.
857  *
858  * Isolate all pages that can be migrated from the range specified by
859  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
860  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
861  * -ENOMEM in case we could not allocate a page, or 0.
862  * cc->migrate_pfn will contain the next pfn to scan.
863  *
864  * The pages are isolated on cc->migratepages list (not required to be empty),
865  * and cc->nr_migratepages is updated accordingly.
866  */
867 static int
868 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
869 			unsigned long end_pfn, isolate_mode_t mode)
870 {
871 	pg_data_t *pgdat = cc->zone->zone_pgdat;
872 	unsigned long nr_scanned = 0, nr_isolated = 0;
873 	struct lruvec *lruvec;
874 	unsigned long flags = 0;
875 	struct lruvec *locked = NULL;
876 	struct folio *folio = NULL;
877 	struct page *page = NULL, *valid_page = NULL;
878 	struct address_space *mapping;
879 	unsigned long start_pfn = low_pfn;
880 	bool skip_on_failure = false;
881 	unsigned long next_skip_pfn = 0;
882 	bool skip_updated = false;
883 	int ret = 0;
884 
885 	cc->migrate_pfn = low_pfn;
886 
887 	/*
888 	 * Ensure that there are not too many pages isolated from the LRU
889 	 * list by either parallel reclaimers or compaction. If there are,
890 	 * delay for some time until fewer pages are isolated
891 	 */
892 	while (unlikely(too_many_isolated(cc))) {
893 		/* stop isolation if there are still pages not migrated */
894 		if (cc->nr_migratepages)
895 			return -EAGAIN;
896 
897 		/* async migration should just abort */
898 		if (cc->mode == MIGRATE_ASYNC)
899 			return -EAGAIN;
900 
901 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
902 
903 		if (fatal_signal_pending(current))
904 			return -EINTR;
905 	}
906 
907 	cond_resched();
908 
909 	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
910 		skip_on_failure = true;
911 		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
912 	}
913 
914 	/* Time to isolate some pages for migration */
915 	for (; low_pfn < end_pfn; low_pfn++) {
916 		bool is_dirty, is_unevictable;
917 
918 		if (skip_on_failure && low_pfn >= next_skip_pfn) {
919 			/*
920 			 * We have isolated all migration candidates in the
921 			 * previous order-aligned block, and did not skip it due
922 			 * to failure. We should migrate the pages now and
923 			 * hopefully succeed compaction.
924 			 */
925 			if (nr_isolated)
926 				break;
927 
928 			/*
929 			 * We failed to isolate in the previous order-aligned
930 			 * block. Set the new boundary to the end of the
931 			 * current block. Note we can't simply increase
932 			 * next_skip_pfn by 1 << order, as low_pfn might have
933 			 * been incremented by a higher number due to skipping
934 			 * a compound or a high-order buddy page in the
935 			 * previous loop iteration.
936 			 */
937 			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
938 		}
939 
940 		/*
941 		 * Periodically drop the lock (if held) regardless of its
942 		 * contention, to give chance to IRQs. Abort completely if
943 		 * a fatal signal is pending.
944 		 */
945 		if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
946 			if (locked) {
947 				unlock_page_lruvec_irqrestore(locked, flags);
948 				locked = NULL;
949 			}
950 
951 			if (fatal_signal_pending(current)) {
952 				cc->contended = true;
953 				ret = -EINTR;
954 
955 				goto fatal_pending;
956 			}
957 
958 			cond_resched();
959 		}
960 
961 		nr_scanned++;
962 
963 		page = pfn_to_page(low_pfn);
964 
965 		/*
966 		 * Check if the pageblock has already been marked skipped.
967 		 * Only the first PFN is checked as the caller isolates
968 		 * COMPACT_CLUSTER_MAX at a time so the second call must
969 		 * not falsely conclude that the block should be skipped.
970 		 */
971 		if (!valid_page && (pageblock_aligned(low_pfn) ||
972 				    low_pfn == cc->zone->zone_start_pfn)) {
973 			if (!isolation_suitable(cc, page)) {
974 				low_pfn = end_pfn;
975 				folio = NULL;
976 				goto isolate_abort;
977 			}
978 			valid_page = page;
979 		}
980 
981 		if (PageHuge(page)) {
982 			/*
983 			 * skip hugetlbfs if we are not compacting for pages
984 			 * bigger than its order. THPs and other compound pages
985 			 * are handled below.
986 			 */
987 			if (!cc->alloc_contig) {
988 				const unsigned int order = compound_order(page);
989 
990 				if (order <= MAX_PAGE_ORDER) {
991 					low_pfn += (1UL << order) - 1;
992 					nr_scanned += (1UL << order) - 1;
993 				}
994 				goto isolate_fail;
995 			}
996 			/* for alloc_contig case */
997 			if (locked) {
998 				unlock_page_lruvec_irqrestore(locked, flags);
999 				locked = NULL;
1000 			}
1001 
1002 			ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
1003 
1004 			/*
1005 			 * Fail isolation in case isolate_or_dissolve_huge_page()
1006 			 * reports an error. In case of -ENOMEM, abort right away.
1007 			 */
1008 			if (ret < 0) {
1009 				 /* Do not report -EBUSY down the chain */
1010 				if (ret == -EBUSY)
1011 					ret = 0;
1012 				low_pfn += compound_nr(page) - 1;
1013 				nr_scanned += compound_nr(page) - 1;
1014 				goto isolate_fail;
1015 			}
1016 
1017 			if (PageHuge(page)) {
1018 				/*
1019 				 * Hugepage was successfully isolated and placed
1020 				 * on the cc->migratepages list.
1021 				 */
1022 				folio = page_folio(page);
1023 				low_pfn += folio_nr_pages(folio) - 1;
1024 				goto isolate_success_no_list;
1025 			}
1026 
1027 			/*
1028 			 * Ok, the hugepage was dissolved. Now these pages are
1029 			 * Buddy and cannot be re-allocated because they are
1030 			 * isolated. Fall-through as the check below handles
1031 			 * Buddy pages.
1032 			 */
1033 		}
1034 
1035 		/*
1036 		 * Skip if free. We read page order here without zone lock
1037 		 * which is generally unsafe, but the race window is small and
1038 		 * the worst thing that can happen is that we skip some
1039 		 * potential isolation targets.
1040 		 */
1041 		if (PageBuddy(page)) {
1042 			unsigned long freepage_order = buddy_order_unsafe(page);
1043 
1044 			/*
1045 			 * Without lock, we cannot be sure that what we got is
1046 			 * a valid page order. Consider only values in the
1047 			 * valid order range to prevent low_pfn overflow.
1048 			 */
1049 			if (freepage_order > 0 && freepage_order <= MAX_PAGE_ORDER) {
1050 				low_pfn += (1UL << freepage_order) - 1;
1051 				nr_scanned += (1UL << freepage_order) - 1;
1052 			}
1053 			continue;
1054 		}
1055 
1056 		/*
1057 		 * Regardless of being on LRU, compound pages such as THP
1058 		 * (hugetlbfs is handled above) are not to be compacted unless
1059 		 * we are attempting an allocation larger than the compound
1060 		 * page size. We can potentially save a lot of iterations if we
1061 		 * skip them at once. The check is racy, but we can consider
1062 		 * only valid values and the only danger is skipping too much.
1063 		 */
1064 		if (PageCompound(page) && !cc->alloc_contig) {
1065 			const unsigned int order = compound_order(page);
1066 
1067 			/* Skip based on page order and compaction target order. */
1068 			if (skip_isolation_on_order(order, cc->order)) {
1069 				if (order <= MAX_PAGE_ORDER) {
1070 					low_pfn += (1UL << order) - 1;
1071 					nr_scanned += (1UL << order) - 1;
1072 				}
1073 				goto isolate_fail;
1074 			}
1075 		}
1076 
1077 		/*
1078 		 * Check may be lockless but that's ok as we recheck later.
1079 		 * It's possible to migrate LRU and non-lru movable pages.
1080 		 * Skip any other type of page
1081 		 */
1082 		if (!PageLRU(page)) {
1083 			/*
1084 			 * __PageMovable can return false positive so we need
1085 			 * to verify it under page_lock.
1086 			 */
1087 			if (unlikely(__PageMovable(page)) &&
1088 					!PageIsolated(page)) {
1089 				if (locked) {
1090 					unlock_page_lruvec_irqrestore(locked, flags);
1091 					locked = NULL;
1092 				}
1093 
1094 				if (isolate_movable_page(page, mode)) {
1095 					folio = page_folio(page);
1096 					goto isolate_success;
1097 				}
1098 			}
1099 
1100 			goto isolate_fail;
1101 		}
1102 
1103 		/*
1104 		 * Be careful not to clear PageLRU until after we're
1105 		 * sure the page is not being freed elsewhere -- the
1106 		 * page release code relies on it.
1107 		 */
1108 		folio = folio_get_nontail_page(page);
1109 		if (unlikely(!folio))
1110 			goto isolate_fail;
1111 
1112 		/*
1113 		 * Migration will fail if an anonymous page is pinned in memory,
1114 		 * so avoid taking lru_lock and isolating it unnecessarily in an
1115 		 * admittedly racy check.
1116 		 */
1117 		mapping = folio_mapping(folio);
1118 		if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio))
1119 			goto isolate_fail_put;
1120 
1121 		/*
1122 		 * Only allow to migrate anonymous pages in GFP_NOFS context
1123 		 * because those do not depend on fs locks.
1124 		 */
1125 		if (!(cc->gfp_mask & __GFP_FS) && mapping)
1126 			goto isolate_fail_put;
1127 
1128 		/* Only take pages on LRU: a check now makes later tests safe */
1129 		if (!folio_test_lru(folio))
1130 			goto isolate_fail_put;
1131 
1132 		is_unevictable = folio_test_unevictable(folio);
1133 
1134 		/* Compaction might skip unevictable pages but CMA takes them */
1135 		if (!(mode & ISOLATE_UNEVICTABLE) && is_unevictable)
1136 			goto isolate_fail_put;
1137 
1138 		/*
1139 		 * To minimise LRU disruption, the caller can indicate with
1140 		 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1141 		 * it will be able to migrate without blocking - clean pages
1142 		 * for the most part.  PageWriteback would require blocking.
1143 		 */
1144 		if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio))
1145 			goto isolate_fail_put;
1146 
1147 		is_dirty = folio_test_dirty(folio);
1148 
1149 		if (((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) ||
1150 		    (mapping && is_unevictable)) {
1151 			bool migrate_dirty = true;
1152 			bool is_inaccessible;
1153 
1154 			/*
1155 			 * Only folios without mappings or that have
1156 			 * a ->migrate_folio callback are possible to migrate
1157 			 * without blocking.
1158 			 *
1159 			 * Folios from inaccessible mappings are not migratable.
1160 			 *
1161 			 * However, we can be racing with truncation, which can
1162 			 * free the mapping that we need to check. Truncation
1163 			 * holds the folio lock until after the folio is removed
1164 			 * from the page so holding it ourselves is sufficient.
1165 			 *
1166 			 * To avoid locking the folio just to check inaccessible,
1167 			 * assume every inaccessible folio is also unevictable,
1168 			 * which is a cheaper test.  If our assumption goes
1169 			 * wrong, it's not a correctness bug, just potentially
1170 			 * wasted cycles.
1171 			 */
1172 			if (!folio_trylock(folio))
1173 				goto isolate_fail_put;
1174 
1175 			mapping = folio_mapping(folio);
1176 			if ((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) {
1177 				migrate_dirty = !mapping ||
1178 						mapping->a_ops->migrate_folio;
1179 			}
1180 			is_inaccessible = mapping && mapping_inaccessible(mapping);
1181 			folio_unlock(folio);
1182 			if (!migrate_dirty || is_inaccessible)
1183 				goto isolate_fail_put;
1184 		}
1185 
1186 		/* Try isolate the folio */
1187 		if (!folio_test_clear_lru(folio))
1188 			goto isolate_fail_put;
1189 
1190 		lruvec = folio_lruvec(folio);
1191 
1192 		/* If we already hold the lock, we can skip some rechecking */
1193 		if (lruvec != locked) {
1194 			if (locked)
1195 				unlock_page_lruvec_irqrestore(locked, flags);
1196 
1197 			compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1198 			locked = lruvec;
1199 
1200 			lruvec_memcg_debug(lruvec, folio);
1201 
1202 			/*
1203 			 * Try get exclusive access under lock. If marked for
1204 			 * skip, the scan is aborted unless the current context
1205 			 * is a rescan to reach the end of the pageblock.
1206 			 */
1207 			if (!skip_updated && valid_page) {
1208 				skip_updated = true;
1209 				if (test_and_set_skip(cc, valid_page) &&
1210 				    !cc->finish_pageblock) {
1211 					low_pfn = end_pfn;
1212 					goto isolate_abort;
1213 				}
1214 			}
1215 
1216 			/*
1217 			 * Check LRU folio order under the lock
1218 			 */
1219 			if (unlikely(skip_isolation_on_order(folio_order(folio),
1220 							     cc->order) &&
1221 				     !cc->alloc_contig)) {
1222 				low_pfn += folio_nr_pages(folio) - 1;
1223 				nr_scanned += folio_nr_pages(folio) - 1;
1224 				folio_set_lru(folio);
1225 				goto isolate_fail_put;
1226 			}
1227 		}
1228 
1229 		/* The folio is taken off the LRU */
1230 		if (folio_test_large(folio))
1231 			low_pfn += folio_nr_pages(folio) - 1;
1232 
1233 		/* Successfully isolated */
1234 		lruvec_del_folio(lruvec, folio);
1235 		node_stat_mod_folio(folio,
1236 				NR_ISOLATED_ANON + folio_is_file_lru(folio),
1237 				folio_nr_pages(folio));
1238 
1239 isolate_success:
1240 		list_add(&folio->lru, &cc->migratepages);
1241 isolate_success_no_list:
1242 		cc->nr_migratepages += folio_nr_pages(folio);
1243 		nr_isolated += folio_nr_pages(folio);
1244 		nr_scanned += folio_nr_pages(folio) - 1;
1245 
1246 		/*
1247 		 * Avoid isolating too much unless this block is being
1248 		 * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1249 		 * or a lock is contended. For contention, isolate quickly to
1250 		 * potentially remove one source of contention.
1251 		 */
1252 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1253 		    !cc->finish_pageblock && !cc->contended) {
1254 			++low_pfn;
1255 			break;
1256 		}
1257 
1258 		continue;
1259 
1260 isolate_fail_put:
1261 		/* Avoid potential deadlock in freeing page under lru_lock */
1262 		if (locked) {
1263 			unlock_page_lruvec_irqrestore(locked, flags);
1264 			locked = NULL;
1265 		}
1266 		folio_put(folio);
1267 
1268 isolate_fail:
1269 		if (!skip_on_failure && ret != -ENOMEM)
1270 			continue;
1271 
1272 		/*
1273 		 * We have isolated some pages, but then failed. Release them
1274 		 * instead of migrating, as we cannot form the cc->order buddy
1275 		 * page anyway.
1276 		 */
1277 		if (nr_isolated) {
1278 			if (locked) {
1279 				unlock_page_lruvec_irqrestore(locked, flags);
1280 				locked = NULL;
1281 			}
1282 			putback_movable_pages(&cc->migratepages);
1283 			cc->nr_migratepages = 0;
1284 			nr_isolated = 0;
1285 		}
1286 
1287 		if (low_pfn < next_skip_pfn) {
1288 			low_pfn = next_skip_pfn - 1;
1289 			/*
1290 			 * The check near the loop beginning would have updated
1291 			 * next_skip_pfn too, but this is a bit simpler.
1292 			 */
1293 			next_skip_pfn += 1UL << cc->order;
1294 		}
1295 
1296 		if (ret == -ENOMEM)
1297 			break;
1298 	}
1299 
1300 	/*
1301 	 * The PageBuddy() check could have potentially brought us outside
1302 	 * the range to be scanned.
1303 	 */
1304 	if (unlikely(low_pfn > end_pfn))
1305 		low_pfn = end_pfn;
1306 
1307 	folio = NULL;
1308 
1309 isolate_abort:
1310 	if (locked)
1311 		unlock_page_lruvec_irqrestore(locked, flags);
1312 	if (folio) {
1313 		folio_set_lru(folio);
1314 		folio_put(folio);
1315 	}
1316 
1317 	/*
1318 	 * Update the cached scanner pfn once the pageblock has been scanned.
1319 	 * Pages will either be migrated in which case there is no point
1320 	 * scanning in the near future or migration failed in which case the
1321 	 * failure reason may persist. The block is marked for skipping if
1322 	 * there were no pages isolated in the block or if the block is
1323 	 * rescanned twice in a row.
1324 	 */
1325 	if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1326 		if (!cc->no_set_skip_hint && valid_page && !skip_updated)
1327 			set_pageblock_skip(valid_page);
1328 		update_cached_migrate(cc, low_pfn);
1329 	}
1330 
1331 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1332 						nr_scanned, nr_isolated);
1333 
1334 fatal_pending:
1335 	cc->total_migrate_scanned += nr_scanned;
1336 	if (nr_isolated)
1337 		count_compact_events(COMPACTISOLATED, nr_isolated);
1338 
1339 	cc->migrate_pfn = low_pfn;
1340 
1341 	return ret;
1342 }
1343 
1344 /**
1345  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1346  * @cc:        Compaction control structure.
1347  * @start_pfn: The first PFN to start isolating.
1348  * @end_pfn:   The one-past-last PFN.
1349  *
1350  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1351  * in case we could not allocate a page, or 0.
1352  */
1353 int
1354 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1355 							unsigned long end_pfn)
1356 {
1357 	unsigned long pfn, block_start_pfn, block_end_pfn;
1358 	int ret = 0;
1359 
1360 	/* Scan block by block. First and last block may be incomplete */
1361 	pfn = start_pfn;
1362 	block_start_pfn = pageblock_start_pfn(pfn);
1363 	if (block_start_pfn < cc->zone->zone_start_pfn)
1364 		block_start_pfn = cc->zone->zone_start_pfn;
1365 	block_end_pfn = pageblock_end_pfn(pfn);
1366 
1367 	for (; pfn < end_pfn; pfn = block_end_pfn,
1368 				block_start_pfn = block_end_pfn,
1369 				block_end_pfn += pageblock_nr_pages) {
1370 
1371 		block_end_pfn = min(block_end_pfn, end_pfn);
1372 
1373 		if (!pageblock_pfn_to_page(block_start_pfn,
1374 					block_end_pfn, cc->zone))
1375 			continue;
1376 
1377 		ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1378 						 ISOLATE_UNEVICTABLE);
1379 
1380 		if (ret)
1381 			break;
1382 
1383 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1384 			break;
1385 	}
1386 
1387 	return ret;
1388 }
1389 
1390 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1391 #ifdef CONFIG_COMPACTION
1392 
1393 static bool suitable_migration_source(struct compact_control *cc,
1394 							struct page *page)
1395 {
1396 	int block_mt;
1397 
1398 	if (pageblock_skip_persistent(page))
1399 		return false;
1400 
1401 	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1402 		return true;
1403 
1404 	block_mt = get_pageblock_migratetype(page);
1405 
1406 	if (cc->migratetype == MIGRATE_MOVABLE)
1407 		return is_migrate_movable(block_mt);
1408 	else
1409 		return block_mt == cc->migratetype;
1410 }
1411 
1412 /* Returns true if the page is within a block suitable for migration to */
1413 static bool suitable_migration_target(struct compact_control *cc,
1414 							struct page *page)
1415 {
1416 	/* If the page is a large free page, then disallow migration */
1417 	if (PageBuddy(page)) {
1418 		int order = cc->order > 0 ? cc->order : pageblock_order;
1419 
1420 		/*
1421 		 * We are checking page_order without zone->lock taken. But
1422 		 * the only small danger is that we skip a potentially suitable
1423 		 * pageblock, so it's not worth to check order for valid range.
1424 		 */
1425 		if (buddy_order_unsafe(page) >= order)
1426 			return false;
1427 	}
1428 
1429 	if (cc->ignore_block_suitable)
1430 		return true;
1431 
1432 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1433 	if (is_migrate_movable(get_pageblock_migratetype(page)))
1434 		return true;
1435 
1436 	/* Otherwise skip the block */
1437 	return false;
1438 }
1439 
1440 static inline unsigned int
1441 freelist_scan_limit(struct compact_control *cc)
1442 {
1443 	unsigned short shift = BITS_PER_LONG - 1;
1444 
1445 	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1446 }
1447 
1448 /*
1449  * Test whether the free scanner has reached the same or lower pageblock than
1450  * the migration scanner, and compaction should thus terminate.
1451  */
1452 static inline bool compact_scanners_met(struct compact_control *cc)
1453 {
1454 	return (cc->free_pfn >> pageblock_order)
1455 		<= (cc->migrate_pfn >> pageblock_order);
1456 }
1457 
1458 /*
1459  * Used when scanning for a suitable migration target which scans freelists
1460  * in reverse. Reorders the list such as the unscanned pages are scanned
1461  * first on the next iteration of the free scanner
1462  */
1463 static void
1464 move_freelist_head(struct list_head *freelist, struct page *freepage)
1465 {
1466 	LIST_HEAD(sublist);
1467 
1468 	if (!list_is_first(&freepage->buddy_list, freelist)) {
1469 		list_cut_before(&sublist, freelist, &freepage->buddy_list);
1470 		list_splice_tail(&sublist, freelist);
1471 	}
1472 }
1473 
1474 /*
1475  * Similar to move_freelist_head except used by the migration scanner
1476  * when scanning forward. It's possible for these list operations to
1477  * move against each other if they search the free list exactly in
1478  * lockstep.
1479  */
1480 static void
1481 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1482 {
1483 	LIST_HEAD(sublist);
1484 
1485 	if (!list_is_last(&freepage->buddy_list, freelist)) {
1486 		list_cut_position(&sublist, freelist, &freepage->buddy_list);
1487 		list_splice_tail(&sublist, freelist);
1488 	}
1489 }
1490 
1491 static void
1492 fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1493 {
1494 	unsigned long start_pfn, end_pfn;
1495 	struct page *page;
1496 
1497 	/* Do not search around if there are enough pages already */
1498 	if (cc->nr_freepages >= cc->nr_migratepages)
1499 		return;
1500 
1501 	/* Minimise scanning during async compaction */
1502 	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1503 		return;
1504 
1505 	/* Pageblock boundaries */
1506 	start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1507 	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1508 
1509 	page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1510 	if (!page)
1511 		return;
1512 
1513 	isolate_freepages_block(cc, &start_pfn, end_pfn, cc->freepages, 1, false);
1514 
1515 	/* Skip this pageblock in the future as it's full or nearly full */
1516 	if (start_pfn == end_pfn && !cc->no_set_skip_hint)
1517 		set_pageblock_skip(page);
1518 }
1519 
1520 /* Search orders in round-robin fashion */
1521 static int next_search_order(struct compact_control *cc, int order)
1522 {
1523 	order--;
1524 	if (order < 0)
1525 		order = cc->order - 1;
1526 
1527 	/* Search wrapped around? */
1528 	if (order == cc->search_order) {
1529 		cc->search_order--;
1530 		if (cc->search_order < 0)
1531 			cc->search_order = cc->order - 1;
1532 		return -1;
1533 	}
1534 
1535 	return order;
1536 }
1537 
1538 static void fast_isolate_freepages(struct compact_control *cc)
1539 {
1540 	unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1541 	unsigned int nr_scanned = 0, total_isolated = 0;
1542 	unsigned long low_pfn, min_pfn, highest = 0;
1543 	unsigned long nr_isolated = 0;
1544 	unsigned long distance;
1545 	struct page *page = NULL;
1546 	bool scan_start = false;
1547 	int order;
1548 
1549 	/* Full compaction passes in a negative order */
1550 	if (cc->order <= 0)
1551 		return;
1552 
1553 	/*
1554 	 * If starting the scan, use a deeper search and use the highest
1555 	 * PFN found if a suitable one is not found.
1556 	 */
1557 	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1558 		limit = pageblock_nr_pages >> 1;
1559 		scan_start = true;
1560 	}
1561 
1562 	/*
1563 	 * Preferred point is in the top quarter of the scan space but take
1564 	 * a pfn from the top half if the search is problematic.
1565 	 */
1566 	distance = (cc->free_pfn - cc->migrate_pfn);
1567 	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1568 	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1569 
1570 	if (WARN_ON_ONCE(min_pfn > low_pfn))
1571 		low_pfn = min_pfn;
1572 
1573 	/*
1574 	 * Search starts from the last successful isolation order or the next
1575 	 * order to search after a previous failure
1576 	 */
1577 	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1578 
1579 	for (order = cc->search_order;
1580 	     !page && order >= 0;
1581 	     order = next_search_order(cc, order)) {
1582 		struct free_area *area = &cc->zone->free_area[order];
1583 		struct list_head *freelist;
1584 		struct page *freepage;
1585 		unsigned long flags;
1586 		unsigned int order_scanned = 0;
1587 		unsigned long high_pfn = 0;
1588 
1589 		if (!area->nr_free)
1590 			continue;
1591 
1592 		spin_lock_irqsave(&cc->zone->lock, flags);
1593 		freelist = &area->free_list[MIGRATE_MOVABLE];
1594 		list_for_each_entry_reverse(freepage, freelist, buddy_list) {
1595 			unsigned long pfn;
1596 
1597 			order_scanned++;
1598 			nr_scanned++;
1599 			pfn = page_to_pfn(freepage);
1600 
1601 			if (pfn >= highest)
1602 				highest = max(pageblock_start_pfn(pfn),
1603 					      cc->zone->zone_start_pfn);
1604 
1605 			if (pfn >= low_pfn) {
1606 				cc->fast_search_fail = 0;
1607 				cc->search_order = order;
1608 				page = freepage;
1609 				break;
1610 			}
1611 
1612 			if (pfn >= min_pfn && pfn > high_pfn) {
1613 				high_pfn = pfn;
1614 
1615 				/* Shorten the scan if a candidate is found */
1616 				limit >>= 1;
1617 			}
1618 
1619 			if (order_scanned >= limit)
1620 				break;
1621 		}
1622 
1623 		/* Use a maximum candidate pfn if a preferred one was not found */
1624 		if (!page && high_pfn) {
1625 			page = pfn_to_page(high_pfn);
1626 
1627 			/* Update freepage for the list reorder below */
1628 			freepage = page;
1629 		}
1630 
1631 		/* Reorder to so a future search skips recent pages */
1632 		move_freelist_head(freelist, freepage);
1633 
1634 		/* Isolate the page if available */
1635 		if (page) {
1636 			if (__isolate_free_page(page, order)) {
1637 				set_page_private(page, order);
1638 				nr_isolated = 1 << order;
1639 				nr_scanned += nr_isolated - 1;
1640 				total_isolated += nr_isolated;
1641 				cc->nr_freepages += nr_isolated;
1642 				list_add_tail(&page->lru, &cc->freepages[order]);
1643 				count_compact_events(COMPACTISOLATED, nr_isolated);
1644 			} else {
1645 				/* If isolation fails, abort the search */
1646 				order = cc->search_order + 1;
1647 				page = NULL;
1648 			}
1649 		}
1650 
1651 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1652 
1653 		/* Skip fast search if enough freepages isolated */
1654 		if (cc->nr_freepages >= cc->nr_migratepages)
1655 			break;
1656 
1657 		/*
1658 		 * Smaller scan on next order so the total scan is related
1659 		 * to freelist_scan_limit.
1660 		 */
1661 		if (order_scanned >= limit)
1662 			limit = max(1U, limit >> 1);
1663 	}
1664 
1665 	trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn,
1666 						   nr_scanned, total_isolated);
1667 
1668 	if (!page) {
1669 		cc->fast_search_fail++;
1670 		if (scan_start) {
1671 			/*
1672 			 * Use the highest PFN found above min. If one was
1673 			 * not found, be pessimistic for direct compaction
1674 			 * and use the min mark.
1675 			 */
1676 			if (highest >= min_pfn) {
1677 				page = pfn_to_page(highest);
1678 				cc->free_pfn = highest;
1679 			} else {
1680 				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1681 					page = pageblock_pfn_to_page(min_pfn,
1682 						min(pageblock_end_pfn(min_pfn),
1683 						    zone_end_pfn(cc->zone)),
1684 						cc->zone);
1685 					if (page && !suitable_migration_target(cc, page))
1686 						page = NULL;
1687 
1688 					cc->free_pfn = min_pfn;
1689 				}
1690 			}
1691 		}
1692 	}
1693 
1694 	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1695 		highest -= pageblock_nr_pages;
1696 		cc->zone->compact_cached_free_pfn = highest;
1697 	}
1698 
1699 	cc->total_free_scanned += nr_scanned;
1700 	if (!page)
1701 		return;
1702 
1703 	low_pfn = page_to_pfn(page);
1704 	fast_isolate_around(cc, low_pfn);
1705 }
1706 
1707 /*
1708  * Based on information in the current compact_control, find blocks
1709  * suitable for isolating free pages from and then isolate them.
1710  */
1711 static void isolate_freepages(struct compact_control *cc)
1712 {
1713 	struct zone *zone = cc->zone;
1714 	struct page *page;
1715 	unsigned long block_start_pfn;	/* start of current pageblock */
1716 	unsigned long isolate_start_pfn; /* exact pfn we start at */
1717 	unsigned long block_end_pfn;	/* end of current pageblock */
1718 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1719 	unsigned int stride;
1720 
1721 	/* Try a small search of the free lists for a candidate */
1722 	fast_isolate_freepages(cc);
1723 	if (cc->nr_freepages)
1724 		return;
1725 
1726 	/*
1727 	 * Initialise the free scanner. The starting point is where we last
1728 	 * successfully isolated from, zone-cached value, or the end of the
1729 	 * zone when isolating for the first time. For looping we also need
1730 	 * this pfn aligned down to the pageblock boundary, because we do
1731 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1732 	 * For ending point, take care when isolating in last pageblock of a
1733 	 * zone which ends in the middle of a pageblock.
1734 	 * The low boundary is the end of the pageblock the migration scanner
1735 	 * is using.
1736 	 */
1737 	isolate_start_pfn = cc->free_pfn;
1738 	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1739 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1740 						zone_end_pfn(zone));
1741 	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1742 	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1743 
1744 	/*
1745 	 * Isolate free pages until enough are available to migrate the
1746 	 * pages on cc->migratepages. We stop searching if the migrate
1747 	 * and free page scanners meet or enough free pages are isolated.
1748 	 */
1749 	for (; block_start_pfn >= low_pfn;
1750 				block_end_pfn = block_start_pfn,
1751 				block_start_pfn -= pageblock_nr_pages,
1752 				isolate_start_pfn = block_start_pfn) {
1753 		unsigned long nr_isolated;
1754 
1755 		/*
1756 		 * This can iterate a massively long zone without finding any
1757 		 * suitable migration targets, so periodically check resched.
1758 		 */
1759 		if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1760 			cond_resched();
1761 
1762 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1763 									zone);
1764 		if (!page) {
1765 			unsigned long next_pfn;
1766 
1767 			next_pfn = skip_offline_sections_reverse(block_start_pfn);
1768 			if (next_pfn)
1769 				block_start_pfn = max(next_pfn, low_pfn);
1770 
1771 			continue;
1772 		}
1773 
1774 		/* Check the block is suitable for migration */
1775 		if (!suitable_migration_target(cc, page))
1776 			continue;
1777 
1778 		/* If isolation recently failed, do not retry */
1779 		if (!isolation_suitable(cc, page))
1780 			continue;
1781 
1782 		/* Found a block suitable for isolating free pages from. */
1783 		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1784 					block_end_pfn, cc->freepages, stride, false);
1785 
1786 		/* Update the skip hint if the full pageblock was scanned */
1787 		if (isolate_start_pfn == block_end_pfn)
1788 			update_pageblock_skip(cc, page, block_start_pfn -
1789 					      pageblock_nr_pages);
1790 
1791 		/* Are enough freepages isolated? */
1792 		if (cc->nr_freepages >= cc->nr_migratepages) {
1793 			if (isolate_start_pfn >= block_end_pfn) {
1794 				/*
1795 				 * Restart at previous pageblock if more
1796 				 * freepages can be isolated next time.
1797 				 */
1798 				isolate_start_pfn =
1799 					block_start_pfn - pageblock_nr_pages;
1800 			}
1801 			break;
1802 		} else if (isolate_start_pfn < block_end_pfn) {
1803 			/*
1804 			 * If isolation failed early, do not continue
1805 			 * needlessly.
1806 			 */
1807 			break;
1808 		}
1809 
1810 		/* Adjust stride depending on isolation */
1811 		if (nr_isolated) {
1812 			stride = 1;
1813 			continue;
1814 		}
1815 		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1816 	}
1817 
1818 	/*
1819 	 * Record where the free scanner will restart next time. Either we
1820 	 * broke from the loop and set isolate_start_pfn based on the last
1821 	 * call to isolate_freepages_block(), or we met the migration scanner
1822 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1823 	 */
1824 	cc->free_pfn = isolate_start_pfn;
1825 }
1826 
1827 /*
1828  * This is a migrate-callback that "allocates" freepages by taking pages
1829  * from the isolated freelists in the block we are migrating to.
1830  */
1831 static struct folio *compaction_alloc_noprof(struct folio *src, unsigned long data)
1832 {
1833 	struct compact_control *cc = (struct compact_control *)data;
1834 	struct folio *dst;
1835 	int order = folio_order(src);
1836 	bool has_isolated_pages = false;
1837 	int start_order;
1838 	struct page *freepage;
1839 	unsigned long size;
1840 
1841 again:
1842 	for (start_order = order; start_order < NR_PAGE_ORDERS; start_order++)
1843 		if (!list_empty(&cc->freepages[start_order]))
1844 			break;
1845 
1846 	/* no free pages in the list */
1847 	if (start_order == NR_PAGE_ORDERS) {
1848 		if (has_isolated_pages)
1849 			return NULL;
1850 		isolate_freepages(cc);
1851 		has_isolated_pages = true;
1852 		goto again;
1853 	}
1854 
1855 	freepage = list_first_entry(&cc->freepages[start_order], struct page,
1856 				lru);
1857 	size = 1 << start_order;
1858 
1859 	list_del(&freepage->lru);
1860 
1861 	while (start_order > order) {
1862 		start_order--;
1863 		size >>= 1;
1864 
1865 		list_add(&freepage[size].lru, &cc->freepages[start_order]);
1866 		set_page_private(&freepage[size], start_order);
1867 	}
1868 	dst = (struct folio *)freepage;
1869 
1870 	post_alloc_hook(&dst->page, order, __GFP_MOVABLE);
1871 	if (order)
1872 		prep_compound_page(&dst->page, order);
1873 	cc->nr_freepages -= 1 << order;
1874 	cc->nr_migratepages -= 1 << order;
1875 	return page_rmappable_folio(&dst->page);
1876 }
1877 
1878 static struct folio *compaction_alloc(struct folio *src, unsigned long data)
1879 {
1880 	return alloc_hooks(compaction_alloc_noprof(src, data));
1881 }
1882 
1883 /*
1884  * This is a migrate-callback that "frees" freepages back to the isolated
1885  * freelist.  All pages on the freelist are from the same zone, so there is no
1886  * special handling needed for NUMA.
1887  */
1888 static void compaction_free(struct folio *dst, unsigned long data)
1889 {
1890 	struct compact_control *cc = (struct compact_control *)data;
1891 	int order = folio_order(dst);
1892 	struct page *page = &dst->page;
1893 
1894 	if (folio_put_testzero(dst)) {
1895 		free_pages_prepare(page, order);
1896 		list_add(&dst->lru, &cc->freepages[order]);
1897 		cc->nr_freepages += 1 << order;
1898 	}
1899 	cc->nr_migratepages += 1 << order;
1900 	/*
1901 	 * someone else has referenced the page, we cannot take it back to our
1902 	 * free list.
1903 	 */
1904 }
1905 
1906 /* possible outcome of isolate_migratepages */
1907 typedef enum {
1908 	ISOLATE_ABORT,		/* Abort compaction now */
1909 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1910 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1911 } isolate_migrate_t;
1912 
1913 /*
1914  * Allow userspace to control policy on scanning the unevictable LRU for
1915  * compactable pages.
1916  */
1917 static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1918 /*
1919  * Tunable for proactive compaction. It determines how
1920  * aggressively the kernel should compact memory in the
1921  * background. It takes values in the range [0, 100].
1922  */
1923 static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1924 static int sysctl_extfrag_threshold = 500;
1925 static int __read_mostly sysctl_compact_memory;
1926 
1927 static inline void
1928 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1929 {
1930 	if (cc->fast_start_pfn == ULONG_MAX)
1931 		return;
1932 
1933 	if (!cc->fast_start_pfn)
1934 		cc->fast_start_pfn = pfn;
1935 
1936 	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1937 }
1938 
1939 static inline unsigned long
1940 reinit_migrate_pfn(struct compact_control *cc)
1941 {
1942 	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1943 		return cc->migrate_pfn;
1944 
1945 	cc->migrate_pfn = cc->fast_start_pfn;
1946 	cc->fast_start_pfn = ULONG_MAX;
1947 
1948 	return cc->migrate_pfn;
1949 }
1950 
1951 /*
1952  * Briefly search the free lists for a migration source that already has
1953  * some free pages to reduce the number of pages that need migration
1954  * before a pageblock is free.
1955  */
1956 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1957 {
1958 	unsigned int limit = freelist_scan_limit(cc);
1959 	unsigned int nr_scanned = 0;
1960 	unsigned long distance;
1961 	unsigned long pfn = cc->migrate_pfn;
1962 	unsigned long high_pfn;
1963 	int order;
1964 	bool found_block = false;
1965 
1966 	/* Skip hints are relied on to avoid repeats on the fast search */
1967 	if (cc->ignore_skip_hint)
1968 		return pfn;
1969 
1970 	/*
1971 	 * If the pageblock should be finished then do not select a different
1972 	 * pageblock.
1973 	 */
1974 	if (cc->finish_pageblock)
1975 		return pfn;
1976 
1977 	/*
1978 	 * If the migrate_pfn is not at the start of a zone or the start
1979 	 * of a pageblock then assume this is a continuation of a previous
1980 	 * scan restarted due to COMPACT_CLUSTER_MAX.
1981 	 */
1982 	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1983 		return pfn;
1984 
1985 	/*
1986 	 * For smaller orders, just linearly scan as the number of pages
1987 	 * to migrate should be relatively small and does not necessarily
1988 	 * justify freeing up a large block for a small allocation.
1989 	 */
1990 	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1991 		return pfn;
1992 
1993 	/*
1994 	 * Only allow kcompactd and direct requests for movable pages to
1995 	 * quickly clear out a MOVABLE pageblock for allocation. This
1996 	 * reduces the risk that a large movable pageblock is freed for
1997 	 * an unmovable/reclaimable small allocation.
1998 	 */
1999 	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
2000 		return pfn;
2001 
2002 	/*
2003 	 * When starting the migration scanner, pick any pageblock within the
2004 	 * first half of the search space. Otherwise try and pick a pageblock
2005 	 * within the first eighth to reduce the chances that a migration
2006 	 * target later becomes a source.
2007 	 */
2008 	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
2009 	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
2010 		distance >>= 2;
2011 	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
2012 
2013 	for (order = cc->order - 1;
2014 	     order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
2015 	     order--) {
2016 		struct free_area *area = &cc->zone->free_area[order];
2017 		struct list_head *freelist;
2018 		unsigned long flags;
2019 		struct page *freepage;
2020 
2021 		if (!area->nr_free)
2022 			continue;
2023 
2024 		spin_lock_irqsave(&cc->zone->lock, flags);
2025 		freelist = &area->free_list[MIGRATE_MOVABLE];
2026 		list_for_each_entry(freepage, freelist, buddy_list) {
2027 			unsigned long free_pfn;
2028 
2029 			if (nr_scanned++ >= limit) {
2030 				move_freelist_tail(freelist, freepage);
2031 				break;
2032 			}
2033 
2034 			free_pfn = page_to_pfn(freepage);
2035 			if (free_pfn < high_pfn) {
2036 				/*
2037 				 * Avoid if skipped recently. Ideally it would
2038 				 * move to the tail but even safe iteration of
2039 				 * the list assumes an entry is deleted, not
2040 				 * reordered.
2041 				 */
2042 				if (get_pageblock_skip(freepage))
2043 					continue;
2044 
2045 				/* Reorder to so a future search skips recent pages */
2046 				move_freelist_tail(freelist, freepage);
2047 
2048 				update_fast_start_pfn(cc, free_pfn);
2049 				pfn = pageblock_start_pfn(free_pfn);
2050 				if (pfn < cc->zone->zone_start_pfn)
2051 					pfn = cc->zone->zone_start_pfn;
2052 				cc->fast_search_fail = 0;
2053 				found_block = true;
2054 				break;
2055 			}
2056 		}
2057 		spin_unlock_irqrestore(&cc->zone->lock, flags);
2058 	}
2059 
2060 	cc->total_migrate_scanned += nr_scanned;
2061 
2062 	/*
2063 	 * If fast scanning failed then use a cached entry for a page block
2064 	 * that had free pages as the basis for starting a linear scan.
2065 	 */
2066 	if (!found_block) {
2067 		cc->fast_search_fail++;
2068 		pfn = reinit_migrate_pfn(cc);
2069 	}
2070 	return pfn;
2071 }
2072 
2073 /*
2074  * Isolate all pages that can be migrated from the first suitable block,
2075  * starting at the block pointed to by the migrate scanner pfn within
2076  * compact_control.
2077  */
2078 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
2079 {
2080 	unsigned long block_start_pfn;
2081 	unsigned long block_end_pfn;
2082 	unsigned long low_pfn;
2083 	struct page *page;
2084 	const isolate_mode_t isolate_mode =
2085 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
2086 		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
2087 	bool fast_find_block;
2088 
2089 	/*
2090 	 * Start at where we last stopped, or beginning of the zone as
2091 	 * initialized by compact_zone(). The first failure will use
2092 	 * the lowest PFN as the starting point for linear scanning.
2093 	 */
2094 	low_pfn = fast_find_migrateblock(cc);
2095 	block_start_pfn = pageblock_start_pfn(low_pfn);
2096 	if (block_start_pfn < cc->zone->zone_start_pfn)
2097 		block_start_pfn = cc->zone->zone_start_pfn;
2098 
2099 	/*
2100 	 * fast_find_migrateblock() has already ensured the pageblock is not
2101 	 * set with a skipped flag, so to avoid the isolation_suitable check
2102 	 * below again, check whether the fast search was successful.
2103 	 */
2104 	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
2105 
2106 	/* Only scan within a pageblock boundary */
2107 	block_end_pfn = pageblock_end_pfn(low_pfn);
2108 
2109 	/*
2110 	 * Iterate over whole pageblocks until we find the first suitable.
2111 	 * Do not cross the free scanner.
2112 	 */
2113 	for (; block_end_pfn <= cc->free_pfn;
2114 			fast_find_block = false,
2115 			cc->migrate_pfn = low_pfn = block_end_pfn,
2116 			block_start_pfn = block_end_pfn,
2117 			block_end_pfn += pageblock_nr_pages) {
2118 
2119 		/*
2120 		 * This can potentially iterate a massively long zone with
2121 		 * many pageblocks unsuitable, so periodically check if we
2122 		 * need to schedule.
2123 		 */
2124 		if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
2125 			cond_resched();
2126 
2127 		page = pageblock_pfn_to_page(block_start_pfn,
2128 						block_end_pfn, cc->zone);
2129 		if (!page) {
2130 			unsigned long next_pfn;
2131 
2132 			next_pfn = skip_offline_sections(block_start_pfn);
2133 			if (next_pfn)
2134 				block_end_pfn = min(next_pfn, cc->free_pfn);
2135 			continue;
2136 		}
2137 
2138 		/*
2139 		 * If isolation recently failed, do not retry. Only check the
2140 		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
2141 		 * to be visited multiple times. Assume skip was checked
2142 		 * before making it "skip" so other compaction instances do
2143 		 * not scan the same block.
2144 		 */
2145 		if ((pageblock_aligned(low_pfn) ||
2146 		     low_pfn == cc->zone->zone_start_pfn) &&
2147 		    !fast_find_block && !isolation_suitable(cc, page))
2148 			continue;
2149 
2150 		/*
2151 		 * For async direct compaction, only scan the pageblocks of the
2152 		 * same migratetype without huge pages. Async direct compaction
2153 		 * is optimistic to see if the minimum amount of work satisfies
2154 		 * the allocation. The cached PFN is updated as it's possible
2155 		 * that all remaining blocks between source and target are
2156 		 * unsuitable and the compaction scanners fail to meet.
2157 		 */
2158 		if (!suitable_migration_source(cc, page)) {
2159 			update_cached_migrate(cc, block_end_pfn);
2160 			continue;
2161 		}
2162 
2163 		/* Perform the isolation */
2164 		if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
2165 						isolate_mode))
2166 			return ISOLATE_ABORT;
2167 
2168 		/*
2169 		 * Either we isolated something and proceed with migration. Or
2170 		 * we failed and compact_zone should decide if we should
2171 		 * continue or not.
2172 		 */
2173 		break;
2174 	}
2175 
2176 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
2177 }
2178 
2179 /*
2180  * Determine whether kswapd is (or recently was!) running on this node.
2181  *
2182  * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
2183  * zero it.
2184  */
2185 static bool kswapd_is_running(pg_data_t *pgdat)
2186 {
2187 	bool running;
2188 
2189 	pgdat_kswapd_lock(pgdat);
2190 	running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2191 	pgdat_kswapd_unlock(pgdat);
2192 
2193 	return running;
2194 }
2195 
2196 /*
2197  * A zone's fragmentation score is the external fragmentation wrt to the
2198  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2199  */
2200 static unsigned int fragmentation_score_zone(struct zone *zone)
2201 {
2202 	return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2203 }
2204 
2205 /*
2206  * A weighted zone's fragmentation score is the external fragmentation
2207  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2208  * returns a value in the range [0, 100].
2209  *
2210  * The scaling factor ensures that proactive compaction focuses on larger
2211  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2212  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2213  * and thus never exceeds the high threshold for proactive compaction.
2214  */
2215 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2216 {
2217 	unsigned long score;
2218 
2219 	score = zone->present_pages * fragmentation_score_zone(zone);
2220 	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2221 }
2222 
2223 /*
2224  * The per-node proactive (background) compaction process is started by its
2225  * corresponding kcompactd thread when the node's fragmentation score
2226  * exceeds the high threshold. The compaction process remains active till
2227  * the node's score falls below the low threshold, or one of the back-off
2228  * conditions is met.
2229  */
2230 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2231 {
2232 	unsigned int score = 0;
2233 	int zoneid;
2234 
2235 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2236 		struct zone *zone;
2237 
2238 		zone = &pgdat->node_zones[zoneid];
2239 		if (!populated_zone(zone))
2240 			continue;
2241 		score += fragmentation_score_zone_weighted(zone);
2242 	}
2243 
2244 	return score;
2245 }
2246 
2247 static unsigned int fragmentation_score_wmark(bool low)
2248 {
2249 	unsigned int wmark_low;
2250 
2251 	/*
2252 	 * Cap the low watermark to avoid excessive compaction
2253 	 * activity in case a user sets the proactiveness tunable
2254 	 * close to 100 (maximum).
2255 	 */
2256 	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2257 	return low ? wmark_low : min(wmark_low + 10, 100U);
2258 }
2259 
2260 static bool should_proactive_compact_node(pg_data_t *pgdat)
2261 {
2262 	int wmark_high;
2263 
2264 	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2265 		return false;
2266 
2267 	wmark_high = fragmentation_score_wmark(false);
2268 	return fragmentation_score_node(pgdat) > wmark_high;
2269 }
2270 
2271 static enum compact_result __compact_finished(struct compact_control *cc)
2272 {
2273 	unsigned int order;
2274 	const int migratetype = cc->migratetype;
2275 	int ret;
2276 
2277 	/* Compaction run completes if the migrate and free scanner meet */
2278 	if (compact_scanners_met(cc)) {
2279 		/* Let the next compaction start anew. */
2280 		reset_cached_positions(cc->zone);
2281 
2282 		/*
2283 		 * Mark that the PG_migrate_skip information should be cleared
2284 		 * by kswapd when it goes to sleep. kcompactd does not set the
2285 		 * flag itself as the decision to be clear should be directly
2286 		 * based on an allocation request.
2287 		 */
2288 		if (cc->direct_compaction)
2289 			cc->zone->compact_blockskip_flush = true;
2290 
2291 		if (cc->whole_zone)
2292 			return COMPACT_COMPLETE;
2293 		else
2294 			return COMPACT_PARTIAL_SKIPPED;
2295 	}
2296 
2297 	if (cc->proactive_compaction) {
2298 		int score, wmark_low;
2299 		pg_data_t *pgdat;
2300 
2301 		pgdat = cc->zone->zone_pgdat;
2302 		if (kswapd_is_running(pgdat))
2303 			return COMPACT_PARTIAL_SKIPPED;
2304 
2305 		score = fragmentation_score_zone(cc->zone);
2306 		wmark_low = fragmentation_score_wmark(true);
2307 
2308 		if (score > wmark_low)
2309 			ret = COMPACT_CONTINUE;
2310 		else
2311 			ret = COMPACT_SUCCESS;
2312 
2313 		goto out;
2314 	}
2315 
2316 	if (is_via_compact_memory(cc->order))
2317 		return COMPACT_CONTINUE;
2318 
2319 	/*
2320 	 * Always finish scanning a pageblock to reduce the possibility of
2321 	 * fallbacks in the future. This is particularly important when
2322 	 * migration source is unmovable/reclaimable but it's not worth
2323 	 * special casing.
2324 	 */
2325 	if (!pageblock_aligned(cc->migrate_pfn))
2326 		return COMPACT_CONTINUE;
2327 
2328 	/* Direct compactor: Is a suitable page free? */
2329 	ret = COMPACT_NO_SUITABLE_PAGE;
2330 	for (order = cc->order; order < NR_PAGE_ORDERS; order++) {
2331 		struct free_area *area = &cc->zone->free_area[order];
2332 		bool can_steal;
2333 
2334 		/* Job done if page is free of the right migratetype */
2335 		if (!free_area_empty(area, migratetype))
2336 			return COMPACT_SUCCESS;
2337 
2338 #ifdef CONFIG_CMA
2339 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2340 		if (migratetype == MIGRATE_MOVABLE &&
2341 			!free_area_empty(area, MIGRATE_CMA))
2342 			return COMPACT_SUCCESS;
2343 #endif
2344 		/*
2345 		 * Job done if allocation would steal freepages from
2346 		 * other migratetype buddy lists.
2347 		 */
2348 		if (find_suitable_fallback(area, order, migratetype,
2349 						true, &can_steal) != -1)
2350 			/*
2351 			 * Movable pages are OK in any pageblock. If we are
2352 			 * stealing for a non-movable allocation, make sure
2353 			 * we finish compacting the current pageblock first
2354 			 * (which is assured by the above migrate_pfn align
2355 			 * check) so it is as free as possible and we won't
2356 			 * have to steal another one soon.
2357 			 */
2358 			return COMPACT_SUCCESS;
2359 	}
2360 
2361 out:
2362 	if (cc->contended || fatal_signal_pending(current))
2363 		ret = COMPACT_CONTENDED;
2364 
2365 	return ret;
2366 }
2367 
2368 static enum compact_result compact_finished(struct compact_control *cc)
2369 {
2370 	int ret;
2371 
2372 	ret = __compact_finished(cc);
2373 	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2374 	if (ret == COMPACT_NO_SUITABLE_PAGE)
2375 		ret = COMPACT_CONTINUE;
2376 
2377 	return ret;
2378 }
2379 
2380 static bool __compaction_suitable(struct zone *zone, int order,
2381 				  int highest_zoneidx,
2382 				  unsigned long wmark_target)
2383 {
2384 	unsigned long watermark;
2385 	/*
2386 	 * Watermarks for order-0 must be met for compaction to be able to
2387 	 * isolate free pages for migration targets. This means that the
2388 	 * watermark and alloc_flags have to match, or be more pessimistic than
2389 	 * the check in __isolate_free_page(). We don't use the direct
2390 	 * compactor's alloc_flags, as they are not relevant for freepage
2391 	 * isolation. We however do use the direct compactor's highest_zoneidx
2392 	 * to skip over zones where lowmem reserves would prevent allocation
2393 	 * even if compaction succeeds.
2394 	 * For costly orders, we require low watermark instead of min for
2395 	 * compaction to proceed to increase its chances.
2396 	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2397 	 * suitable migration targets
2398 	 */
2399 	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2400 				low_wmark_pages(zone) : min_wmark_pages(zone);
2401 	watermark += compact_gap(order);
2402 	return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2403 				   ALLOC_CMA, wmark_target);
2404 }
2405 
2406 /*
2407  * compaction_suitable: Is this suitable to run compaction on this zone now?
2408  */
2409 bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx)
2410 {
2411 	enum compact_result compact_result;
2412 	bool suitable;
2413 
2414 	suitable = __compaction_suitable(zone, order, highest_zoneidx,
2415 					 zone_page_state(zone, NR_FREE_PAGES));
2416 	/*
2417 	 * fragmentation index determines if allocation failures are due to
2418 	 * low memory or external fragmentation
2419 	 *
2420 	 * index of -1000 would imply allocations might succeed depending on
2421 	 * watermarks, but we already failed the high-order watermark check
2422 	 * index towards 0 implies failure is due to lack of memory
2423 	 * index towards 1000 implies failure is due to fragmentation
2424 	 *
2425 	 * Only compact if a failure would be due to fragmentation. Also
2426 	 * ignore fragindex for non-costly orders where the alternative to
2427 	 * a successful reclaim/compaction is OOM. Fragindex and the
2428 	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2429 	 * excessive compaction for costly orders, but it should not be at the
2430 	 * expense of system stability.
2431 	 */
2432 	if (suitable) {
2433 		compact_result = COMPACT_CONTINUE;
2434 		if (order > PAGE_ALLOC_COSTLY_ORDER) {
2435 			int fragindex = fragmentation_index(zone, order);
2436 
2437 			if (fragindex >= 0 &&
2438 			    fragindex <= sysctl_extfrag_threshold) {
2439 				suitable = false;
2440 				compact_result = COMPACT_NOT_SUITABLE_ZONE;
2441 			}
2442 		}
2443 	} else {
2444 		compact_result = COMPACT_SKIPPED;
2445 	}
2446 
2447 	trace_mm_compaction_suitable(zone, order, compact_result);
2448 
2449 	return suitable;
2450 }
2451 
2452 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2453 		int alloc_flags)
2454 {
2455 	struct zone *zone;
2456 	struct zoneref *z;
2457 
2458 	/*
2459 	 * Make sure at least one zone would pass __compaction_suitable if we continue
2460 	 * retrying the reclaim.
2461 	 */
2462 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2463 				ac->highest_zoneidx, ac->nodemask) {
2464 		unsigned long available;
2465 
2466 		/*
2467 		 * Do not consider all the reclaimable memory because we do not
2468 		 * want to trash just for a single high order allocation which
2469 		 * is even not guaranteed to appear even if __compaction_suitable
2470 		 * is happy about the watermark check.
2471 		 */
2472 		available = zone_reclaimable_pages(zone) / order;
2473 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2474 		if (__compaction_suitable(zone, order, ac->highest_zoneidx,
2475 					  available))
2476 			return true;
2477 	}
2478 
2479 	return false;
2480 }
2481 
2482 /*
2483  * Should we do compaction for target allocation order.
2484  * Return COMPACT_SUCCESS if allocation for target order can be already
2485  * satisfied
2486  * Return COMPACT_SKIPPED if compaction for target order is likely to fail
2487  * Return COMPACT_CONTINUE if compaction for target order should be ran
2488  */
2489 static enum compact_result
2490 compaction_suit_allocation_order(struct zone *zone, unsigned int order,
2491 				 int highest_zoneidx, unsigned int alloc_flags)
2492 {
2493 	unsigned long watermark;
2494 
2495 	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2496 	if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2497 			      alloc_flags))
2498 		return COMPACT_SUCCESS;
2499 
2500 	if (!compaction_suitable(zone, order, highest_zoneidx))
2501 		return COMPACT_SKIPPED;
2502 
2503 	return COMPACT_CONTINUE;
2504 }
2505 
2506 static enum compact_result
2507 compact_zone(struct compact_control *cc, struct capture_control *capc)
2508 {
2509 	enum compact_result ret;
2510 	unsigned long start_pfn = cc->zone->zone_start_pfn;
2511 	unsigned long end_pfn = zone_end_pfn(cc->zone);
2512 	unsigned long last_migrated_pfn;
2513 	const bool sync = cc->mode != MIGRATE_ASYNC;
2514 	bool update_cached;
2515 	unsigned int nr_succeeded = 0, nr_migratepages;
2516 	int order;
2517 
2518 	/*
2519 	 * These counters track activities during zone compaction.  Initialize
2520 	 * them before compacting a new zone.
2521 	 */
2522 	cc->total_migrate_scanned = 0;
2523 	cc->total_free_scanned = 0;
2524 	cc->nr_migratepages = 0;
2525 	cc->nr_freepages = 0;
2526 	for (order = 0; order < NR_PAGE_ORDERS; order++)
2527 		INIT_LIST_HEAD(&cc->freepages[order]);
2528 	INIT_LIST_HEAD(&cc->migratepages);
2529 
2530 	cc->migratetype = gfp_migratetype(cc->gfp_mask);
2531 
2532 	if (!is_via_compact_memory(cc->order)) {
2533 		ret = compaction_suit_allocation_order(cc->zone, cc->order,
2534 						       cc->highest_zoneidx,
2535 						       cc->alloc_flags);
2536 		if (ret != COMPACT_CONTINUE)
2537 			return ret;
2538 	}
2539 
2540 	/*
2541 	 * Clear pageblock skip if there were failures recently and compaction
2542 	 * is about to be retried after being deferred.
2543 	 */
2544 	if (compaction_restarting(cc->zone, cc->order))
2545 		__reset_isolation_suitable(cc->zone);
2546 
2547 	/*
2548 	 * Setup to move all movable pages to the end of the zone. Used cached
2549 	 * information on where the scanners should start (unless we explicitly
2550 	 * want to compact the whole zone), but check that it is initialised
2551 	 * by ensuring the values are within zone boundaries.
2552 	 */
2553 	cc->fast_start_pfn = 0;
2554 	if (cc->whole_zone) {
2555 		cc->migrate_pfn = start_pfn;
2556 		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2557 	} else {
2558 		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2559 		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2560 		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2561 			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2562 			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2563 		}
2564 		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2565 			cc->migrate_pfn = start_pfn;
2566 			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2567 			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2568 		}
2569 
2570 		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2571 			cc->whole_zone = true;
2572 	}
2573 
2574 	last_migrated_pfn = 0;
2575 
2576 	/*
2577 	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2578 	 * the basis that some migrations will fail in ASYNC mode. However,
2579 	 * if the cached PFNs match and pageblocks are skipped due to having
2580 	 * no isolation candidates, then the sync state does not matter.
2581 	 * Until a pageblock with isolation candidates is found, keep the
2582 	 * cached PFNs in sync to avoid revisiting the same blocks.
2583 	 */
2584 	update_cached = !sync &&
2585 		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2586 
2587 	trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2588 
2589 	/* lru_add_drain_all could be expensive with involving other CPUs */
2590 	lru_add_drain();
2591 
2592 	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2593 		int err;
2594 		unsigned long iteration_start_pfn = cc->migrate_pfn;
2595 
2596 		/*
2597 		 * Avoid multiple rescans of the same pageblock which can
2598 		 * happen if a page cannot be isolated (dirty/writeback in
2599 		 * async mode) or if the migrated pages are being allocated
2600 		 * before the pageblock is cleared.  The first rescan will
2601 		 * capture the entire pageblock for migration. If it fails,
2602 		 * it'll be marked skip and scanning will proceed as normal.
2603 		 */
2604 		cc->finish_pageblock = false;
2605 		if (pageblock_start_pfn(last_migrated_pfn) ==
2606 		    pageblock_start_pfn(iteration_start_pfn)) {
2607 			cc->finish_pageblock = true;
2608 		}
2609 
2610 rescan:
2611 		switch (isolate_migratepages(cc)) {
2612 		case ISOLATE_ABORT:
2613 			ret = COMPACT_CONTENDED;
2614 			putback_movable_pages(&cc->migratepages);
2615 			cc->nr_migratepages = 0;
2616 			goto out;
2617 		case ISOLATE_NONE:
2618 			if (update_cached) {
2619 				cc->zone->compact_cached_migrate_pfn[1] =
2620 					cc->zone->compact_cached_migrate_pfn[0];
2621 			}
2622 
2623 			/*
2624 			 * We haven't isolated and migrated anything, but
2625 			 * there might still be unflushed migrations from
2626 			 * previous cc->order aligned block.
2627 			 */
2628 			goto check_drain;
2629 		case ISOLATE_SUCCESS:
2630 			update_cached = false;
2631 			last_migrated_pfn = max(cc->zone->zone_start_pfn,
2632 				pageblock_start_pfn(cc->migrate_pfn - 1));
2633 		}
2634 
2635 		/*
2636 		 * Record the number of pages to migrate since the
2637 		 * compaction_alloc/free() will update cc->nr_migratepages
2638 		 * properly.
2639 		 */
2640 		nr_migratepages = cc->nr_migratepages;
2641 		err = migrate_pages(&cc->migratepages, compaction_alloc,
2642 				compaction_free, (unsigned long)cc, cc->mode,
2643 				MR_COMPACTION, &nr_succeeded);
2644 
2645 		trace_mm_compaction_migratepages(nr_migratepages, nr_succeeded);
2646 
2647 		/* All pages were either migrated or will be released */
2648 		cc->nr_migratepages = 0;
2649 		if (err) {
2650 			putback_movable_pages(&cc->migratepages);
2651 			/*
2652 			 * migrate_pages() may return -ENOMEM when scanners meet
2653 			 * and we want compact_finished() to detect it
2654 			 */
2655 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2656 				ret = COMPACT_CONTENDED;
2657 				goto out;
2658 			}
2659 			/*
2660 			 * If an ASYNC or SYNC_LIGHT fails to migrate a page
2661 			 * within the pageblock_order-aligned block and
2662 			 * fast_find_migrateblock may be used then scan the
2663 			 * remainder of the pageblock. This will mark the
2664 			 * pageblock "skip" to avoid rescanning in the near
2665 			 * future. This will isolate more pages than necessary
2666 			 * for the request but avoid loops due to
2667 			 * fast_find_migrateblock revisiting blocks that were
2668 			 * recently partially scanned.
2669 			 */
2670 			if (!pageblock_aligned(cc->migrate_pfn) &&
2671 			    !cc->ignore_skip_hint && !cc->finish_pageblock &&
2672 			    (cc->mode < MIGRATE_SYNC)) {
2673 				cc->finish_pageblock = true;
2674 
2675 				/*
2676 				 * Draining pcplists does not help THP if
2677 				 * any page failed to migrate. Even after
2678 				 * drain, the pageblock will not be free.
2679 				 */
2680 				if (cc->order == COMPACTION_HPAGE_ORDER)
2681 					last_migrated_pfn = 0;
2682 
2683 				goto rescan;
2684 			}
2685 		}
2686 
2687 		/* Stop if a page has been captured */
2688 		if (capc && capc->page) {
2689 			ret = COMPACT_SUCCESS;
2690 			break;
2691 		}
2692 
2693 check_drain:
2694 		/*
2695 		 * Has the migration scanner moved away from the previous
2696 		 * cc->order aligned block where we migrated from? If yes,
2697 		 * flush the pages that were freed, so that they can merge and
2698 		 * compact_finished() can detect immediately if allocation
2699 		 * would succeed.
2700 		 */
2701 		if (cc->order > 0 && last_migrated_pfn) {
2702 			unsigned long current_block_start =
2703 				block_start_pfn(cc->migrate_pfn, cc->order);
2704 
2705 			if (last_migrated_pfn < current_block_start) {
2706 				lru_add_drain_cpu_zone(cc->zone);
2707 				/* No more flushing until we migrate again */
2708 				last_migrated_pfn = 0;
2709 			}
2710 		}
2711 	}
2712 
2713 out:
2714 	/*
2715 	 * Release free pages and update where the free scanner should restart,
2716 	 * so we don't leave any returned pages behind in the next attempt.
2717 	 */
2718 	if (cc->nr_freepages > 0) {
2719 		unsigned long free_pfn = release_free_list(cc->freepages);
2720 
2721 		cc->nr_freepages = 0;
2722 		VM_BUG_ON(free_pfn == 0);
2723 		/* The cached pfn is always the first in a pageblock */
2724 		free_pfn = pageblock_start_pfn(free_pfn);
2725 		/*
2726 		 * Only go back, not forward. The cached pfn might have been
2727 		 * already reset to zone end in compact_finished()
2728 		 */
2729 		if (free_pfn > cc->zone->compact_cached_free_pfn)
2730 			cc->zone->compact_cached_free_pfn = free_pfn;
2731 	}
2732 
2733 	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2734 	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2735 
2736 	trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2737 
2738 	VM_BUG_ON(!list_empty(&cc->migratepages));
2739 
2740 	return ret;
2741 }
2742 
2743 static enum compact_result compact_zone_order(struct zone *zone, int order,
2744 		gfp_t gfp_mask, enum compact_priority prio,
2745 		unsigned int alloc_flags, int highest_zoneidx,
2746 		struct page **capture)
2747 {
2748 	enum compact_result ret;
2749 	struct compact_control cc = {
2750 		.order = order,
2751 		.search_order = order,
2752 		.gfp_mask = gfp_mask,
2753 		.zone = zone,
2754 		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2755 					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2756 		.alloc_flags = alloc_flags,
2757 		.highest_zoneidx = highest_zoneidx,
2758 		.direct_compaction = true,
2759 		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2760 		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2761 		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2762 	};
2763 	struct capture_control capc = {
2764 		.cc = &cc,
2765 		.page = NULL,
2766 	};
2767 
2768 	/*
2769 	 * Make sure the structs are really initialized before we expose the
2770 	 * capture control, in case we are interrupted and the interrupt handler
2771 	 * frees a page.
2772 	 */
2773 	barrier();
2774 	WRITE_ONCE(current->capture_control, &capc);
2775 
2776 	ret = compact_zone(&cc, &capc);
2777 
2778 	/*
2779 	 * Make sure we hide capture control first before we read the captured
2780 	 * page pointer, otherwise an interrupt could free and capture a page
2781 	 * and we would leak it.
2782 	 */
2783 	WRITE_ONCE(current->capture_control, NULL);
2784 	*capture = READ_ONCE(capc.page);
2785 	/*
2786 	 * Technically, it is also possible that compaction is skipped but
2787 	 * the page is still captured out of luck(IRQ came and freed the page).
2788 	 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2789 	 * the COMPACT[STALL|FAIL] when compaction is skipped.
2790 	 */
2791 	if (*capture)
2792 		ret = COMPACT_SUCCESS;
2793 
2794 	return ret;
2795 }
2796 
2797 /**
2798  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2799  * @gfp_mask: The GFP mask of the current allocation
2800  * @order: The order of the current allocation
2801  * @alloc_flags: The allocation flags of the current allocation
2802  * @ac: The context of current allocation
2803  * @prio: Determines how hard direct compaction should try to succeed
2804  * @capture: Pointer to free page created by compaction will be stored here
2805  *
2806  * This is the main entry point for direct page compaction.
2807  */
2808 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2809 		unsigned int alloc_flags, const struct alloc_context *ac,
2810 		enum compact_priority prio, struct page **capture)
2811 {
2812 	struct zoneref *z;
2813 	struct zone *zone;
2814 	enum compact_result rc = COMPACT_SKIPPED;
2815 
2816 	if (!gfp_compaction_allowed(gfp_mask))
2817 		return COMPACT_SKIPPED;
2818 
2819 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2820 
2821 	/* Compact each zone in the list */
2822 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2823 					ac->highest_zoneidx, ac->nodemask) {
2824 		enum compact_result status;
2825 
2826 		if (cpusets_enabled() &&
2827 			(alloc_flags & ALLOC_CPUSET) &&
2828 			!__cpuset_zone_allowed(zone, gfp_mask))
2829 				continue;
2830 
2831 		if (prio > MIN_COMPACT_PRIORITY
2832 					&& compaction_deferred(zone, order)) {
2833 			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2834 			continue;
2835 		}
2836 
2837 		status = compact_zone_order(zone, order, gfp_mask, prio,
2838 				alloc_flags, ac->highest_zoneidx, capture);
2839 		rc = max(status, rc);
2840 
2841 		/* The allocation should succeed, stop compacting */
2842 		if (status == COMPACT_SUCCESS) {
2843 			/*
2844 			 * We think the allocation will succeed in this zone,
2845 			 * but it is not certain, hence the false. The caller
2846 			 * will repeat this with true if allocation indeed
2847 			 * succeeds in this zone.
2848 			 */
2849 			compaction_defer_reset(zone, order, false);
2850 
2851 			break;
2852 		}
2853 
2854 		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2855 					status == COMPACT_PARTIAL_SKIPPED))
2856 			/*
2857 			 * We think that allocation won't succeed in this zone
2858 			 * so we defer compaction there. If it ends up
2859 			 * succeeding after all, it will be reset.
2860 			 */
2861 			defer_compaction(zone, order);
2862 
2863 		/*
2864 		 * We might have stopped compacting due to need_resched() in
2865 		 * async compaction, or due to a fatal signal detected. In that
2866 		 * case do not try further zones
2867 		 */
2868 		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2869 					|| fatal_signal_pending(current))
2870 			break;
2871 	}
2872 
2873 	return rc;
2874 }
2875 
2876 /*
2877  * compact_node() - compact all zones within a node
2878  * @pgdat: The node page data
2879  * @proactive: Whether the compaction is proactive
2880  *
2881  * For proactive compaction, compact till each zone's fragmentation score
2882  * reaches within proactive compaction thresholds (as determined by the
2883  * proactiveness tunable), it is possible that the function returns before
2884  * reaching score targets due to various back-off conditions, such as,
2885  * contention on per-node or per-zone locks.
2886  */
2887 static int compact_node(pg_data_t *pgdat, bool proactive)
2888 {
2889 	int zoneid;
2890 	struct zone *zone;
2891 	struct compact_control cc = {
2892 		.order = -1,
2893 		.mode = proactive ? MIGRATE_SYNC_LIGHT : MIGRATE_SYNC,
2894 		.ignore_skip_hint = true,
2895 		.whole_zone = true,
2896 		.gfp_mask = GFP_KERNEL,
2897 		.proactive_compaction = proactive,
2898 	};
2899 
2900 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2901 		zone = &pgdat->node_zones[zoneid];
2902 		if (!populated_zone(zone))
2903 			continue;
2904 
2905 		if (fatal_signal_pending(current))
2906 			return -EINTR;
2907 
2908 		cc.zone = zone;
2909 
2910 		compact_zone(&cc, NULL);
2911 
2912 		if (proactive) {
2913 			count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2914 					     cc.total_migrate_scanned);
2915 			count_compact_events(KCOMPACTD_FREE_SCANNED,
2916 					     cc.total_free_scanned);
2917 		}
2918 	}
2919 
2920 	return 0;
2921 }
2922 
2923 /* Compact all zones of all nodes in the system */
2924 static int compact_nodes(void)
2925 {
2926 	int ret, nid;
2927 
2928 	/* Flush pending updates to the LRU lists */
2929 	lru_add_drain_all();
2930 
2931 	for_each_online_node(nid) {
2932 		ret = compact_node(NODE_DATA(nid), false);
2933 		if (ret)
2934 			return ret;
2935 	}
2936 
2937 	return 0;
2938 }
2939 
2940 static int compaction_proactiveness_sysctl_handler(const struct ctl_table *table, int write,
2941 		void *buffer, size_t *length, loff_t *ppos)
2942 {
2943 	int rc, nid;
2944 
2945 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2946 	if (rc)
2947 		return rc;
2948 
2949 	if (write && sysctl_compaction_proactiveness) {
2950 		for_each_online_node(nid) {
2951 			pg_data_t *pgdat = NODE_DATA(nid);
2952 
2953 			if (pgdat->proactive_compact_trigger)
2954 				continue;
2955 
2956 			pgdat->proactive_compact_trigger = true;
2957 			trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2958 							     pgdat->nr_zones - 1);
2959 			wake_up_interruptible(&pgdat->kcompactd_wait);
2960 		}
2961 	}
2962 
2963 	return 0;
2964 }
2965 
2966 /*
2967  * This is the entry point for compacting all nodes via
2968  * /proc/sys/vm/compact_memory
2969  */
2970 static int sysctl_compaction_handler(const struct ctl_table *table, int write,
2971 			void *buffer, size_t *length, loff_t *ppos)
2972 {
2973 	int ret;
2974 
2975 	ret = proc_dointvec(table, write, buffer, length, ppos);
2976 	if (ret)
2977 		return ret;
2978 
2979 	if (sysctl_compact_memory != 1)
2980 		return -EINVAL;
2981 
2982 	if (write)
2983 		ret = compact_nodes();
2984 
2985 	return ret;
2986 }
2987 
2988 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2989 static ssize_t compact_store(struct device *dev,
2990 			     struct device_attribute *attr,
2991 			     const char *buf, size_t count)
2992 {
2993 	int nid = dev->id;
2994 
2995 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2996 		/* Flush pending updates to the LRU lists */
2997 		lru_add_drain_all();
2998 
2999 		compact_node(NODE_DATA(nid), false);
3000 	}
3001 
3002 	return count;
3003 }
3004 static DEVICE_ATTR_WO(compact);
3005 
3006 int compaction_register_node(struct node *node)
3007 {
3008 	return device_create_file(&node->dev, &dev_attr_compact);
3009 }
3010 
3011 void compaction_unregister_node(struct node *node)
3012 {
3013 	device_remove_file(&node->dev, &dev_attr_compact);
3014 }
3015 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
3016 
3017 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
3018 {
3019 	return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
3020 		pgdat->proactive_compact_trigger;
3021 }
3022 
3023 static bool kcompactd_node_suitable(pg_data_t *pgdat)
3024 {
3025 	int zoneid;
3026 	struct zone *zone;
3027 	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
3028 	enum compact_result ret;
3029 
3030 	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
3031 		zone = &pgdat->node_zones[zoneid];
3032 
3033 		if (!populated_zone(zone))
3034 			continue;
3035 
3036 		ret = compaction_suit_allocation_order(zone,
3037 				pgdat->kcompactd_max_order,
3038 				highest_zoneidx, ALLOC_WMARK_MIN);
3039 		if (ret == COMPACT_CONTINUE)
3040 			return true;
3041 	}
3042 
3043 	return false;
3044 }
3045 
3046 static void kcompactd_do_work(pg_data_t *pgdat)
3047 {
3048 	/*
3049 	 * With no special task, compact all zones so that a page of requested
3050 	 * order is allocatable.
3051 	 */
3052 	int zoneid;
3053 	struct zone *zone;
3054 	struct compact_control cc = {
3055 		.order = pgdat->kcompactd_max_order,
3056 		.search_order = pgdat->kcompactd_max_order,
3057 		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
3058 		.mode = MIGRATE_SYNC_LIGHT,
3059 		.ignore_skip_hint = false,
3060 		.gfp_mask = GFP_KERNEL,
3061 	};
3062 	enum compact_result ret;
3063 
3064 	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
3065 							cc.highest_zoneidx);
3066 	count_compact_event(KCOMPACTD_WAKE);
3067 
3068 	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
3069 		int status;
3070 
3071 		zone = &pgdat->node_zones[zoneid];
3072 		if (!populated_zone(zone))
3073 			continue;
3074 
3075 		if (compaction_deferred(zone, cc.order))
3076 			continue;
3077 
3078 		ret = compaction_suit_allocation_order(zone,
3079 				cc.order, zoneid, ALLOC_WMARK_MIN);
3080 		if (ret != COMPACT_CONTINUE)
3081 			continue;
3082 
3083 		if (kthread_should_stop())
3084 			return;
3085 
3086 		cc.zone = zone;
3087 		status = compact_zone(&cc, NULL);
3088 
3089 		if (status == COMPACT_SUCCESS) {
3090 			compaction_defer_reset(zone, cc.order, false);
3091 		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
3092 			/*
3093 			 * Buddy pages may become stranded on pcps that could
3094 			 * otherwise coalesce on the zone's free area for
3095 			 * order >= cc.order.  This is ratelimited by the
3096 			 * upcoming deferral.
3097 			 */
3098 			drain_all_pages(zone);
3099 
3100 			/*
3101 			 * We use sync migration mode here, so we defer like
3102 			 * sync direct compaction does.
3103 			 */
3104 			defer_compaction(zone, cc.order);
3105 		}
3106 
3107 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
3108 				     cc.total_migrate_scanned);
3109 		count_compact_events(KCOMPACTD_FREE_SCANNED,
3110 				     cc.total_free_scanned);
3111 	}
3112 
3113 	/*
3114 	 * Regardless of success, we are done until woken up next. But remember
3115 	 * the requested order/highest_zoneidx in case it was higher/tighter
3116 	 * than our current ones
3117 	 */
3118 	if (pgdat->kcompactd_max_order <= cc.order)
3119 		pgdat->kcompactd_max_order = 0;
3120 	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
3121 		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3122 }
3123 
3124 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
3125 {
3126 	if (!order)
3127 		return;
3128 
3129 	if (pgdat->kcompactd_max_order < order)
3130 		pgdat->kcompactd_max_order = order;
3131 
3132 	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
3133 		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
3134 
3135 	/*
3136 	 * Pairs with implicit barrier in wait_event_freezable()
3137 	 * such that wakeups are not missed.
3138 	 */
3139 	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
3140 		return;
3141 
3142 	if (!kcompactd_node_suitable(pgdat))
3143 		return;
3144 
3145 	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
3146 							highest_zoneidx);
3147 	wake_up_interruptible(&pgdat->kcompactd_wait);
3148 }
3149 
3150 /*
3151  * The background compaction daemon, started as a kernel thread
3152  * from the init process.
3153  */
3154 static int kcompactd(void *p)
3155 {
3156 	pg_data_t *pgdat = (pg_data_t *)p;
3157 	struct task_struct *tsk = current;
3158 	long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
3159 	long timeout = default_timeout;
3160 
3161 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3162 
3163 	if (!cpumask_empty(cpumask))
3164 		set_cpus_allowed_ptr(tsk, cpumask);
3165 
3166 	set_freezable();
3167 
3168 	pgdat->kcompactd_max_order = 0;
3169 	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3170 
3171 	while (!kthread_should_stop()) {
3172 		unsigned long pflags;
3173 
3174 		/*
3175 		 * Avoid the unnecessary wakeup for proactive compaction
3176 		 * when it is disabled.
3177 		 */
3178 		if (!sysctl_compaction_proactiveness)
3179 			timeout = MAX_SCHEDULE_TIMEOUT;
3180 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
3181 		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
3182 			kcompactd_work_requested(pgdat), timeout) &&
3183 			!pgdat->proactive_compact_trigger) {
3184 
3185 			psi_memstall_enter(&pflags);
3186 			kcompactd_do_work(pgdat);
3187 			psi_memstall_leave(&pflags);
3188 			/*
3189 			 * Reset the timeout value. The defer timeout from
3190 			 * proactive compaction is lost here but that is fine
3191 			 * as the condition of the zone changing substantionally
3192 			 * then carrying on with the previous defer interval is
3193 			 * not useful.
3194 			 */
3195 			timeout = default_timeout;
3196 			continue;
3197 		}
3198 
3199 		/*
3200 		 * Start the proactive work with default timeout. Based
3201 		 * on the fragmentation score, this timeout is updated.
3202 		 */
3203 		timeout = default_timeout;
3204 		if (should_proactive_compact_node(pgdat)) {
3205 			unsigned int prev_score, score;
3206 
3207 			prev_score = fragmentation_score_node(pgdat);
3208 			compact_node(pgdat, true);
3209 			score = fragmentation_score_node(pgdat);
3210 			/*
3211 			 * Defer proactive compaction if the fragmentation
3212 			 * score did not go down i.e. no progress made.
3213 			 */
3214 			if (unlikely(score >= prev_score))
3215 				timeout =
3216 				   default_timeout << COMPACT_MAX_DEFER_SHIFT;
3217 		}
3218 		if (unlikely(pgdat->proactive_compact_trigger))
3219 			pgdat->proactive_compact_trigger = false;
3220 	}
3221 
3222 	return 0;
3223 }
3224 
3225 /*
3226  * This kcompactd start function will be called by init and node-hot-add.
3227  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3228  */
3229 void __meminit kcompactd_run(int nid)
3230 {
3231 	pg_data_t *pgdat = NODE_DATA(nid);
3232 
3233 	if (pgdat->kcompactd)
3234 		return;
3235 
3236 	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3237 	if (IS_ERR(pgdat->kcompactd)) {
3238 		pr_err("Failed to start kcompactd on node %d\n", nid);
3239 		pgdat->kcompactd = NULL;
3240 	}
3241 }
3242 
3243 /*
3244  * Called by memory hotplug when all memory in a node is offlined. Caller must
3245  * be holding mem_hotplug_begin/done().
3246  */
3247 void __meminit kcompactd_stop(int nid)
3248 {
3249 	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3250 
3251 	if (kcompactd) {
3252 		kthread_stop(kcompactd);
3253 		NODE_DATA(nid)->kcompactd = NULL;
3254 	}
3255 }
3256 
3257 /*
3258  * It's optimal to keep kcompactd on the same CPUs as their memory, but
3259  * not required for correctness. So if the last cpu in a node goes
3260  * away, we get changed to run anywhere: as the first one comes back,
3261  * restore their cpu bindings.
3262  */
3263 static int kcompactd_cpu_online(unsigned int cpu)
3264 {
3265 	int nid;
3266 
3267 	for_each_node_state(nid, N_MEMORY) {
3268 		pg_data_t *pgdat = NODE_DATA(nid);
3269 		const struct cpumask *mask;
3270 
3271 		mask = cpumask_of_node(pgdat->node_id);
3272 
3273 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3274 			/* One of our CPUs online: restore mask */
3275 			if (pgdat->kcompactd)
3276 				set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3277 	}
3278 	return 0;
3279 }
3280 
3281 static int proc_dointvec_minmax_warn_RT_change(const struct ctl_table *table,
3282 		int write, void *buffer, size_t *lenp, loff_t *ppos)
3283 {
3284 	int ret, old;
3285 
3286 	if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3287 		return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3288 
3289 	old = *(int *)table->data;
3290 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3291 	if (ret)
3292 		return ret;
3293 	if (old != *(int *)table->data)
3294 		pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3295 			     table->procname, current->comm,
3296 			     task_pid_nr(current));
3297 	return ret;
3298 }
3299 
3300 static struct ctl_table vm_compaction[] = {
3301 	{
3302 		.procname	= "compact_memory",
3303 		.data		= &sysctl_compact_memory,
3304 		.maxlen		= sizeof(int),
3305 		.mode		= 0200,
3306 		.proc_handler	= sysctl_compaction_handler,
3307 	},
3308 	{
3309 		.procname	= "compaction_proactiveness",
3310 		.data		= &sysctl_compaction_proactiveness,
3311 		.maxlen		= sizeof(sysctl_compaction_proactiveness),
3312 		.mode		= 0644,
3313 		.proc_handler	= compaction_proactiveness_sysctl_handler,
3314 		.extra1		= SYSCTL_ZERO,
3315 		.extra2		= SYSCTL_ONE_HUNDRED,
3316 	},
3317 	{
3318 		.procname	= "extfrag_threshold",
3319 		.data		= &sysctl_extfrag_threshold,
3320 		.maxlen		= sizeof(int),
3321 		.mode		= 0644,
3322 		.proc_handler	= proc_dointvec_minmax,
3323 		.extra1		= SYSCTL_ZERO,
3324 		.extra2		= SYSCTL_ONE_THOUSAND,
3325 	},
3326 	{
3327 		.procname	= "compact_unevictable_allowed",
3328 		.data		= &sysctl_compact_unevictable_allowed,
3329 		.maxlen		= sizeof(int),
3330 		.mode		= 0644,
3331 		.proc_handler	= proc_dointvec_minmax_warn_RT_change,
3332 		.extra1		= SYSCTL_ZERO,
3333 		.extra2		= SYSCTL_ONE,
3334 	},
3335 };
3336 
3337 static int __init kcompactd_init(void)
3338 {
3339 	int nid;
3340 	int ret;
3341 
3342 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3343 					"mm/compaction:online",
3344 					kcompactd_cpu_online, NULL);
3345 	if (ret < 0) {
3346 		pr_err("kcompactd: failed to register hotplug callbacks.\n");
3347 		return ret;
3348 	}
3349 
3350 	for_each_node_state(nid, N_MEMORY)
3351 		kcompactd_run(nid);
3352 	register_sysctl_init("vm", vm_compaction);
3353 	return 0;
3354 }
3355 subsys_initcall(kcompactd_init)
3356 
3357 #endif /* CONFIG_COMPACTION */
3358