xref: /linux/mm/compaction.c (revision 394d83c17fac2b7bcf05cb99d1e945135767bb6b)
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include "internal.h"
18 
19 #define CREATE_TRACE_POINTS
20 #include <trace/events/compaction.h>
21 
22 /*
23  * compact_control is used to track pages being migrated and the free pages
24  * they are being migrated to during memory compaction. The free_pfn starts
25  * at the end of a zone and migrate_pfn begins at the start. Movable pages
26  * are moved to the end of a zone during a compaction run and the run
27  * completes when free_pfn <= migrate_pfn
28  */
29 struct compact_control {
30 	struct list_head freepages;	/* List of free pages to migrate to */
31 	struct list_head migratepages;	/* List of pages being migrated */
32 	unsigned long nr_freepages;	/* Number of isolated free pages */
33 	unsigned long nr_migratepages;	/* Number of pages to migrate */
34 	unsigned long free_pfn;		/* isolate_freepages search base */
35 	unsigned long migrate_pfn;	/* isolate_migratepages search base */
36 	bool sync;			/* Synchronous migration */
37 
38 	/* Account for isolated anon and file pages */
39 	unsigned long nr_anon;
40 	unsigned long nr_file;
41 
42 	unsigned int order;		/* order a direct compactor needs */
43 	int migratetype;		/* MOVABLE, RECLAIMABLE etc */
44 	struct zone *zone;
45 
46 	int compact_mode;
47 };
48 
49 static unsigned long release_freepages(struct list_head *freelist)
50 {
51 	struct page *page, *next;
52 	unsigned long count = 0;
53 
54 	list_for_each_entry_safe(page, next, freelist, lru) {
55 		list_del(&page->lru);
56 		__free_page(page);
57 		count++;
58 	}
59 
60 	return count;
61 }
62 
63 /* Isolate free pages onto a private freelist. Must hold zone->lock */
64 static unsigned long isolate_freepages_block(struct zone *zone,
65 				unsigned long blockpfn,
66 				struct list_head *freelist)
67 {
68 	unsigned long zone_end_pfn, end_pfn;
69 	int nr_scanned = 0, total_isolated = 0;
70 	struct page *cursor;
71 
72 	/* Get the last PFN we should scan for free pages at */
73 	zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
74 	end_pfn = min(blockpfn + pageblock_nr_pages, zone_end_pfn);
75 
76 	/* Find the first usable PFN in the block to initialse page cursor */
77 	for (; blockpfn < end_pfn; blockpfn++) {
78 		if (pfn_valid_within(blockpfn))
79 			break;
80 	}
81 	cursor = pfn_to_page(blockpfn);
82 
83 	/* Isolate free pages. This assumes the block is valid */
84 	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
85 		int isolated, i;
86 		struct page *page = cursor;
87 
88 		if (!pfn_valid_within(blockpfn))
89 			continue;
90 		nr_scanned++;
91 
92 		if (!PageBuddy(page))
93 			continue;
94 
95 		/* Found a free page, break it into order-0 pages */
96 		isolated = split_free_page(page);
97 		total_isolated += isolated;
98 		for (i = 0; i < isolated; i++) {
99 			list_add(&page->lru, freelist);
100 			page++;
101 		}
102 
103 		/* If a page was split, advance to the end of it */
104 		if (isolated) {
105 			blockpfn += isolated - 1;
106 			cursor += isolated - 1;
107 		}
108 	}
109 
110 	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
111 	return total_isolated;
112 }
113 
114 /* Returns true if the page is within a block suitable for migration to */
115 static bool suitable_migration_target(struct page *page)
116 {
117 
118 	int migratetype = get_pageblock_migratetype(page);
119 
120 	/* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
121 	if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
122 		return false;
123 
124 	/* If the page is a large free page, then allow migration */
125 	if (PageBuddy(page) && page_order(page) >= pageblock_order)
126 		return true;
127 
128 	/* If the block is MIGRATE_MOVABLE, allow migration */
129 	if (migratetype == MIGRATE_MOVABLE)
130 		return true;
131 
132 	/* Otherwise skip the block */
133 	return false;
134 }
135 
136 /*
137  * Based on information in the current compact_control, find blocks
138  * suitable for isolating free pages from and then isolate them.
139  */
140 static void isolate_freepages(struct zone *zone,
141 				struct compact_control *cc)
142 {
143 	struct page *page;
144 	unsigned long high_pfn, low_pfn, pfn;
145 	unsigned long flags;
146 	int nr_freepages = cc->nr_freepages;
147 	struct list_head *freelist = &cc->freepages;
148 
149 	pfn = cc->free_pfn;
150 	low_pfn = cc->migrate_pfn + pageblock_nr_pages;
151 	high_pfn = low_pfn;
152 
153 	/*
154 	 * Isolate free pages until enough are available to migrate the
155 	 * pages on cc->migratepages. We stop searching if the migrate
156 	 * and free page scanners meet or enough free pages are isolated.
157 	 */
158 	spin_lock_irqsave(&zone->lock, flags);
159 	for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
160 					pfn -= pageblock_nr_pages) {
161 		unsigned long isolated;
162 
163 		if (!pfn_valid(pfn))
164 			continue;
165 
166 		/*
167 		 * Check for overlapping nodes/zones. It's possible on some
168 		 * configurations to have a setup like
169 		 * node0 node1 node0
170 		 * i.e. it's possible that all pages within a zones range of
171 		 * pages do not belong to a single zone.
172 		 */
173 		page = pfn_to_page(pfn);
174 		if (page_zone(page) != zone)
175 			continue;
176 
177 		/* Check the block is suitable for migration */
178 		if (!suitable_migration_target(page))
179 			continue;
180 
181 		/* Found a block suitable for isolating free pages from */
182 		isolated = isolate_freepages_block(zone, pfn, freelist);
183 		nr_freepages += isolated;
184 
185 		/*
186 		 * Record the highest PFN we isolated pages from. When next
187 		 * looking for free pages, the search will restart here as
188 		 * page migration may have returned some pages to the allocator
189 		 */
190 		if (isolated)
191 			high_pfn = max(high_pfn, pfn);
192 	}
193 	spin_unlock_irqrestore(&zone->lock, flags);
194 
195 	/* split_free_page does not map the pages */
196 	list_for_each_entry(page, freelist, lru) {
197 		arch_alloc_page(page, 0);
198 		kernel_map_pages(page, 1, 1);
199 	}
200 
201 	cc->free_pfn = high_pfn;
202 	cc->nr_freepages = nr_freepages;
203 }
204 
205 /* Update the number of anon and file isolated pages in the zone */
206 static void acct_isolated(struct zone *zone, struct compact_control *cc)
207 {
208 	struct page *page;
209 	unsigned int count[NR_LRU_LISTS] = { 0, };
210 
211 	list_for_each_entry(page, &cc->migratepages, lru) {
212 		int lru = page_lru_base_type(page);
213 		count[lru]++;
214 	}
215 
216 	cc->nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
217 	cc->nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
218 	__mod_zone_page_state(zone, NR_ISOLATED_ANON, cc->nr_anon);
219 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, cc->nr_file);
220 }
221 
222 /* Similar to reclaim, but different enough that they don't share logic */
223 static bool too_many_isolated(struct zone *zone)
224 {
225 	unsigned long active, inactive, isolated;
226 
227 	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
228 					zone_page_state(zone, NR_INACTIVE_ANON);
229 	active = zone_page_state(zone, NR_ACTIVE_FILE) +
230 					zone_page_state(zone, NR_ACTIVE_ANON);
231 	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
232 					zone_page_state(zone, NR_ISOLATED_ANON);
233 
234 	return isolated > (inactive + active) / 2;
235 }
236 
237 /*
238  * Isolate all pages that can be migrated from the block pointed to by
239  * the migrate scanner within compact_control.
240  */
241 static unsigned long isolate_migratepages(struct zone *zone,
242 					struct compact_control *cc)
243 {
244 	unsigned long low_pfn, end_pfn;
245 	unsigned long last_pageblock_nr = 0, pageblock_nr;
246 	unsigned long nr_scanned = 0, nr_isolated = 0;
247 	struct list_head *migratelist = &cc->migratepages;
248 
249 	/* Do not scan outside zone boundaries */
250 	low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
251 
252 	/* Only scan within a pageblock boundary */
253 	end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
254 
255 	/* Do not cross the free scanner or scan within a memory hole */
256 	if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
257 		cc->migrate_pfn = end_pfn;
258 		return 0;
259 	}
260 
261 	/*
262 	 * Ensure that there are not too many pages isolated from the LRU
263 	 * list by either parallel reclaimers or compaction. If there are,
264 	 * delay for some time until fewer pages are isolated
265 	 */
266 	while (unlikely(too_many_isolated(zone))) {
267 		congestion_wait(BLK_RW_ASYNC, HZ/10);
268 
269 		if (fatal_signal_pending(current))
270 			return 0;
271 	}
272 
273 	/* Time to isolate some pages for migration */
274 	spin_lock_irq(&zone->lru_lock);
275 	for (; low_pfn < end_pfn; low_pfn++) {
276 		struct page *page;
277 		if (!pfn_valid_within(low_pfn))
278 			continue;
279 		nr_scanned++;
280 
281 		/* Get the page and skip if free */
282 		page = pfn_to_page(low_pfn);
283 		if (PageBuddy(page))
284 			continue;
285 
286 		/*
287 		 * For async migration, also only scan in MOVABLE blocks. Async
288 		 * migration is optimistic to see if the minimum amount of work
289 		 * satisfies the allocation
290 		 */
291 		pageblock_nr = low_pfn >> pageblock_order;
292 		if (!cc->sync && last_pageblock_nr != pageblock_nr &&
293 				get_pageblock_migratetype(page) != MIGRATE_MOVABLE) {
294 			low_pfn += pageblock_nr_pages;
295 			low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
296 			last_pageblock_nr = pageblock_nr;
297 			continue;
298 		}
299 
300 		if (!PageLRU(page))
301 			continue;
302 
303 		/*
304 		 * PageLRU is set, and lru_lock excludes isolation,
305 		 * splitting and collapsing (collapsing has already
306 		 * happened if PageLRU is set).
307 		 */
308 		if (PageTransHuge(page)) {
309 			low_pfn += (1 << compound_order(page)) - 1;
310 			continue;
311 		}
312 
313 		/* Try isolate the page */
314 		if (__isolate_lru_page(page, ISOLATE_BOTH, 0) != 0)
315 			continue;
316 
317 		VM_BUG_ON(PageTransCompound(page));
318 
319 		/* Successfully isolated */
320 		del_page_from_lru_list(zone, page, page_lru(page));
321 		list_add(&page->lru, migratelist);
322 		cc->nr_migratepages++;
323 		nr_isolated++;
324 
325 		/* Avoid isolating too much */
326 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
327 			break;
328 	}
329 
330 	acct_isolated(zone, cc);
331 
332 	spin_unlock_irq(&zone->lru_lock);
333 	cc->migrate_pfn = low_pfn;
334 
335 	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
336 
337 	return cc->nr_migratepages;
338 }
339 
340 /*
341  * This is a migrate-callback that "allocates" freepages by taking pages
342  * from the isolated freelists in the block we are migrating to.
343  */
344 static struct page *compaction_alloc(struct page *migratepage,
345 					unsigned long data,
346 					int **result)
347 {
348 	struct compact_control *cc = (struct compact_control *)data;
349 	struct page *freepage;
350 
351 	/* Isolate free pages if necessary */
352 	if (list_empty(&cc->freepages)) {
353 		isolate_freepages(cc->zone, cc);
354 
355 		if (list_empty(&cc->freepages))
356 			return NULL;
357 	}
358 
359 	freepage = list_entry(cc->freepages.next, struct page, lru);
360 	list_del(&freepage->lru);
361 	cc->nr_freepages--;
362 
363 	return freepage;
364 }
365 
366 /*
367  * We cannot control nr_migratepages and nr_freepages fully when migration is
368  * running as migrate_pages() has no knowledge of compact_control. When
369  * migration is complete, we count the number of pages on the lists by hand.
370  */
371 static void update_nr_listpages(struct compact_control *cc)
372 {
373 	int nr_migratepages = 0;
374 	int nr_freepages = 0;
375 	struct page *page;
376 
377 	list_for_each_entry(page, &cc->migratepages, lru)
378 		nr_migratepages++;
379 	list_for_each_entry(page, &cc->freepages, lru)
380 		nr_freepages++;
381 
382 	cc->nr_migratepages = nr_migratepages;
383 	cc->nr_freepages = nr_freepages;
384 }
385 
386 static int compact_finished(struct zone *zone,
387 			    struct compact_control *cc)
388 {
389 	unsigned int order;
390 	unsigned long watermark;
391 
392 	if (fatal_signal_pending(current))
393 		return COMPACT_PARTIAL;
394 
395 	/* Compaction run completes if the migrate and free scanner meet */
396 	if (cc->free_pfn <= cc->migrate_pfn)
397 		return COMPACT_COMPLETE;
398 
399 	/* Compaction run is not finished if the watermark is not met */
400 	if (cc->compact_mode != COMPACT_MODE_KSWAPD)
401 		watermark = low_wmark_pages(zone);
402 	else
403 		watermark = high_wmark_pages(zone);
404 	watermark += (1 << cc->order);
405 
406 	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
407 		return COMPACT_CONTINUE;
408 
409 	if (cc->order == -1)
410 		return COMPACT_CONTINUE;
411 
412 	/*
413 	 * Generating only one page of the right order is not enough
414 	 * for kswapd, we must continue until we're above the high
415 	 * watermark as a pool for high order GFP_ATOMIC allocations
416 	 * too.
417 	 */
418 	if (cc->compact_mode == COMPACT_MODE_KSWAPD)
419 		return COMPACT_CONTINUE;
420 
421 	/* Direct compactor: Is a suitable page free? */
422 	for (order = cc->order; order < MAX_ORDER; order++) {
423 		/* Job done if page is free of the right migratetype */
424 		if (!list_empty(&zone->free_area[order].free_list[cc->migratetype]))
425 			return COMPACT_PARTIAL;
426 
427 		/* Job done if allocation would set block type */
428 		if (order >= pageblock_order && zone->free_area[order].nr_free)
429 			return COMPACT_PARTIAL;
430 	}
431 
432 	return COMPACT_CONTINUE;
433 }
434 
435 /*
436  * compaction_suitable: Is this suitable to run compaction on this zone now?
437  * Returns
438  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
439  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
440  *   COMPACT_CONTINUE - If compaction should run now
441  */
442 unsigned long compaction_suitable(struct zone *zone, int order)
443 {
444 	int fragindex;
445 	unsigned long watermark;
446 
447 	/*
448 	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
449 	 * This is because during migration, copies of pages need to be
450 	 * allocated and for a short time, the footprint is higher
451 	 */
452 	watermark = low_wmark_pages(zone) + (2UL << order);
453 	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
454 		return COMPACT_SKIPPED;
455 
456 	/*
457 	 * fragmentation index determines if allocation failures are due to
458 	 * low memory or external fragmentation
459 	 *
460 	 * index of -1 implies allocations might succeed dependingon watermarks
461 	 * index towards 0 implies failure is due to lack of memory
462 	 * index towards 1000 implies failure is due to fragmentation
463 	 *
464 	 * Only compact if a failure would be due to fragmentation.
465 	 */
466 	fragindex = fragmentation_index(zone, order);
467 	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
468 		return COMPACT_SKIPPED;
469 
470 	if (fragindex == -1 && zone_watermark_ok(zone, order, watermark, 0, 0))
471 		return COMPACT_PARTIAL;
472 
473 	return COMPACT_CONTINUE;
474 }
475 
476 static int compact_zone(struct zone *zone, struct compact_control *cc)
477 {
478 	int ret;
479 
480 	ret = compaction_suitable(zone, cc->order);
481 	switch (ret) {
482 	case COMPACT_PARTIAL:
483 	case COMPACT_SKIPPED:
484 		/* Compaction is likely to fail */
485 		return ret;
486 	case COMPACT_CONTINUE:
487 		/* Fall through to compaction */
488 		;
489 	}
490 
491 	/* Setup to move all movable pages to the end of the zone */
492 	cc->migrate_pfn = zone->zone_start_pfn;
493 	cc->free_pfn = cc->migrate_pfn + zone->spanned_pages;
494 	cc->free_pfn &= ~(pageblock_nr_pages-1);
495 
496 	migrate_prep_local();
497 
498 	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
499 		unsigned long nr_migrate, nr_remaining;
500 
501 		if (!isolate_migratepages(zone, cc))
502 			continue;
503 
504 		nr_migrate = cc->nr_migratepages;
505 		migrate_pages(&cc->migratepages, compaction_alloc,
506 				(unsigned long)cc, false,
507 				cc->sync);
508 		update_nr_listpages(cc);
509 		nr_remaining = cc->nr_migratepages;
510 
511 		count_vm_event(COMPACTBLOCKS);
512 		count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
513 		if (nr_remaining)
514 			count_vm_events(COMPACTPAGEFAILED, nr_remaining);
515 		trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
516 						nr_remaining);
517 
518 		/* Release LRU pages not migrated */
519 		if (!list_empty(&cc->migratepages)) {
520 			putback_lru_pages(&cc->migratepages);
521 			cc->nr_migratepages = 0;
522 		}
523 
524 	}
525 
526 	/* Release free pages and check accounting */
527 	cc->nr_freepages -= release_freepages(&cc->freepages);
528 	VM_BUG_ON(cc->nr_freepages != 0);
529 
530 	return ret;
531 }
532 
533 unsigned long compact_zone_order(struct zone *zone,
534 				 int order, gfp_t gfp_mask,
535 				 bool sync,
536 				 int compact_mode)
537 {
538 	struct compact_control cc = {
539 		.nr_freepages = 0,
540 		.nr_migratepages = 0,
541 		.order = order,
542 		.migratetype = allocflags_to_migratetype(gfp_mask),
543 		.zone = zone,
544 		.sync = sync,
545 		.compact_mode = compact_mode,
546 	};
547 	INIT_LIST_HEAD(&cc.freepages);
548 	INIT_LIST_HEAD(&cc.migratepages);
549 
550 	return compact_zone(zone, &cc);
551 }
552 
553 int sysctl_extfrag_threshold = 500;
554 
555 /**
556  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
557  * @zonelist: The zonelist used for the current allocation
558  * @order: The order of the current allocation
559  * @gfp_mask: The GFP mask of the current allocation
560  * @nodemask: The allowed nodes to allocate from
561  * @sync: Whether migration is synchronous or not
562  *
563  * This is the main entry point for direct page compaction.
564  */
565 unsigned long try_to_compact_pages(struct zonelist *zonelist,
566 			int order, gfp_t gfp_mask, nodemask_t *nodemask,
567 			bool sync)
568 {
569 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
570 	int may_enter_fs = gfp_mask & __GFP_FS;
571 	int may_perform_io = gfp_mask & __GFP_IO;
572 	struct zoneref *z;
573 	struct zone *zone;
574 	int rc = COMPACT_SKIPPED;
575 
576 	/*
577 	 * Check whether it is worth even starting compaction. The order check is
578 	 * made because an assumption is made that the page allocator can satisfy
579 	 * the "cheaper" orders without taking special steps
580 	 */
581 	if (!order || !may_enter_fs || !may_perform_io)
582 		return rc;
583 
584 	count_vm_event(COMPACTSTALL);
585 
586 	/* Compact each zone in the list */
587 	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
588 								nodemask) {
589 		int status;
590 
591 		status = compact_zone_order(zone, order, gfp_mask, sync,
592 					    COMPACT_MODE_DIRECT_RECLAIM);
593 		rc = max(status, rc);
594 
595 		/* If a normal allocation would succeed, stop compacting */
596 		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
597 			break;
598 	}
599 
600 	return rc;
601 }
602 
603 
604 /* Compact all zones within a node */
605 static int compact_node(int nid)
606 {
607 	int zoneid;
608 	pg_data_t *pgdat;
609 	struct zone *zone;
610 
611 	if (nid < 0 || nid >= nr_node_ids || !node_online(nid))
612 		return -EINVAL;
613 	pgdat = NODE_DATA(nid);
614 
615 	/* Flush pending updates to the LRU lists */
616 	lru_add_drain_all();
617 
618 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
619 		struct compact_control cc = {
620 			.nr_freepages = 0,
621 			.nr_migratepages = 0,
622 			.order = -1,
623 			.compact_mode = COMPACT_MODE_DIRECT_RECLAIM,
624 		};
625 
626 		zone = &pgdat->node_zones[zoneid];
627 		if (!populated_zone(zone))
628 			continue;
629 
630 		cc.zone = zone;
631 		INIT_LIST_HEAD(&cc.freepages);
632 		INIT_LIST_HEAD(&cc.migratepages);
633 
634 		compact_zone(zone, &cc);
635 
636 		VM_BUG_ON(!list_empty(&cc.freepages));
637 		VM_BUG_ON(!list_empty(&cc.migratepages));
638 	}
639 
640 	return 0;
641 }
642 
643 /* Compact all nodes in the system */
644 static int compact_nodes(void)
645 {
646 	int nid;
647 
648 	for_each_online_node(nid)
649 		compact_node(nid);
650 
651 	return COMPACT_COMPLETE;
652 }
653 
654 /* The written value is actually unused, all memory is compacted */
655 int sysctl_compact_memory;
656 
657 /* This is the entry point for compacting all nodes via /proc/sys/vm */
658 int sysctl_compaction_handler(struct ctl_table *table, int write,
659 			void __user *buffer, size_t *length, loff_t *ppos)
660 {
661 	if (write)
662 		return compact_nodes();
663 
664 	return 0;
665 }
666 
667 int sysctl_extfrag_handler(struct ctl_table *table, int write,
668 			void __user *buffer, size_t *length, loff_t *ppos)
669 {
670 	proc_dointvec_minmax(table, write, buffer, length, ppos);
671 
672 	return 0;
673 }
674 
675 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
676 ssize_t sysfs_compact_node(struct sys_device *dev,
677 			struct sysdev_attribute *attr,
678 			const char *buf, size_t count)
679 {
680 	compact_node(dev->id);
681 
682 	return count;
683 }
684 static SYSDEV_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
685 
686 int compaction_register_node(struct node *node)
687 {
688 	return sysdev_create_file(&node->sysdev, &attr_compact);
689 }
690 
691 void compaction_unregister_node(struct node *node)
692 {
693 	return sysdev_remove_file(&node->sysdev, &attr_compact);
694 }
695 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
696