1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/compaction.c 4 * 5 * Memory compaction for the reduction of external fragmentation. Note that 6 * this heavily depends upon page migration to do all the real heavy 7 * lifting 8 * 9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 10 */ 11 #include <linux/cpu.h> 12 #include <linux/swap.h> 13 #include <linux/migrate.h> 14 #include <linux/compaction.h> 15 #include <linux/mm_inline.h> 16 #include <linux/sched/signal.h> 17 #include <linux/backing-dev.h> 18 #include <linux/sysctl.h> 19 #include <linux/sysfs.h> 20 #include <linux/page-isolation.h> 21 #include <linux/kasan.h> 22 #include <linux/kthread.h> 23 #include <linux/freezer.h> 24 #include <linux/page_owner.h> 25 #include <linux/psi.h> 26 #include <linux/cpuset.h> 27 #include "internal.h" 28 29 #ifdef CONFIG_COMPACTION 30 /* 31 * Fragmentation score check interval for proactive compaction purposes. 32 */ 33 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500) 34 35 static inline void count_compact_event(enum vm_event_item item) 36 { 37 count_vm_event(item); 38 } 39 40 static inline void count_compact_events(enum vm_event_item item, long delta) 41 { 42 count_vm_events(item, delta); 43 } 44 45 /* 46 * order == -1 is expected when compacting proactively via 47 * 1. /proc/sys/vm/compact_memory 48 * 2. /sys/devices/system/node/nodex/compact 49 * 3. /proc/sys/vm/compaction_proactiveness 50 */ 51 static inline bool is_via_compact_memory(int order) 52 { 53 return order == -1; 54 } 55 56 #else 57 #define count_compact_event(item) do { } while (0) 58 #define count_compact_events(item, delta) do { } while (0) 59 static inline bool is_via_compact_memory(int order) { return false; } 60 #endif 61 62 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 63 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/compaction.h> 66 67 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order)) 68 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order)) 69 70 /* 71 * Page order with-respect-to which proactive compaction 72 * calculates external fragmentation, which is used as 73 * the "fragmentation score" of a node/zone. 74 */ 75 #if defined CONFIG_TRANSPARENT_HUGEPAGE 76 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER 77 #elif defined CONFIG_HUGETLBFS 78 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER 79 #else 80 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT) 81 #endif 82 83 static struct page *mark_allocated_noprof(struct page *page, unsigned int order, gfp_t gfp_flags) 84 { 85 post_alloc_hook(page, order, __GFP_MOVABLE); 86 return page; 87 } 88 #define mark_allocated(...) alloc_hooks(mark_allocated_noprof(__VA_ARGS__)) 89 90 static unsigned long release_free_list(struct list_head *freepages) 91 { 92 int order; 93 unsigned long high_pfn = 0; 94 95 for (order = 0; order < NR_PAGE_ORDERS; order++) { 96 struct page *page, *next; 97 98 list_for_each_entry_safe(page, next, &freepages[order], lru) { 99 unsigned long pfn = page_to_pfn(page); 100 101 list_del(&page->lru); 102 /* 103 * Convert free pages into post allocation pages, so 104 * that we can free them via __free_page. 105 */ 106 mark_allocated(page, order, __GFP_MOVABLE); 107 __free_pages(page, order); 108 if (pfn > high_pfn) 109 high_pfn = pfn; 110 } 111 } 112 return high_pfn; 113 } 114 115 #ifdef CONFIG_COMPACTION 116 bool PageMovable(struct page *page) 117 { 118 const struct movable_operations *mops; 119 120 VM_BUG_ON_PAGE(!PageLocked(page), page); 121 if (!__PageMovable(page)) 122 return false; 123 124 mops = page_movable_ops(page); 125 if (mops) 126 return true; 127 128 return false; 129 } 130 131 void __SetPageMovable(struct page *page, const struct movable_operations *mops) 132 { 133 VM_BUG_ON_PAGE(!PageLocked(page), page); 134 VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page); 135 page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE); 136 } 137 EXPORT_SYMBOL(__SetPageMovable); 138 139 void __ClearPageMovable(struct page *page) 140 { 141 VM_BUG_ON_PAGE(!PageMovable(page), page); 142 /* 143 * This page still has the type of a movable page, but it's 144 * actually not movable any more. 145 */ 146 page->mapping = (void *)PAGE_MAPPING_MOVABLE; 147 } 148 EXPORT_SYMBOL(__ClearPageMovable); 149 150 /* Do not skip compaction more than 64 times */ 151 #define COMPACT_MAX_DEFER_SHIFT 6 152 153 /* 154 * Compaction is deferred when compaction fails to result in a page 155 * allocation success. 1 << compact_defer_shift, compactions are skipped up 156 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 157 */ 158 static void defer_compaction(struct zone *zone, int order) 159 { 160 zone->compact_considered = 0; 161 zone->compact_defer_shift++; 162 163 if (order < zone->compact_order_failed) 164 zone->compact_order_failed = order; 165 166 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 167 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 168 169 trace_mm_compaction_defer_compaction(zone, order); 170 } 171 172 /* Returns true if compaction should be skipped this time */ 173 static bool compaction_deferred(struct zone *zone, int order) 174 { 175 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 176 177 if (order < zone->compact_order_failed) 178 return false; 179 180 /* Avoid possible overflow */ 181 if (++zone->compact_considered >= defer_limit) { 182 zone->compact_considered = defer_limit; 183 return false; 184 } 185 186 trace_mm_compaction_deferred(zone, order); 187 188 return true; 189 } 190 191 /* 192 * Update defer tracking counters after successful compaction of given order, 193 * which means an allocation either succeeded (alloc_success == true) or is 194 * expected to succeed. 195 */ 196 void compaction_defer_reset(struct zone *zone, int order, 197 bool alloc_success) 198 { 199 if (alloc_success) { 200 zone->compact_considered = 0; 201 zone->compact_defer_shift = 0; 202 } 203 if (order >= zone->compact_order_failed) 204 zone->compact_order_failed = order + 1; 205 206 trace_mm_compaction_defer_reset(zone, order); 207 } 208 209 /* Returns true if restarting compaction after many failures */ 210 static bool compaction_restarting(struct zone *zone, int order) 211 { 212 if (order < zone->compact_order_failed) 213 return false; 214 215 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 216 zone->compact_considered >= 1UL << zone->compact_defer_shift; 217 } 218 219 /* Returns true if the pageblock should be scanned for pages to isolate. */ 220 static inline bool isolation_suitable(struct compact_control *cc, 221 struct page *page) 222 { 223 if (cc->ignore_skip_hint) 224 return true; 225 226 return !get_pageblock_skip(page); 227 } 228 229 static void reset_cached_positions(struct zone *zone) 230 { 231 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 232 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 233 zone->compact_cached_free_pfn = 234 pageblock_start_pfn(zone_end_pfn(zone) - 1); 235 } 236 237 #ifdef CONFIG_SPARSEMEM 238 /* 239 * If the PFN falls into an offline section, return the start PFN of the 240 * next online section. If the PFN falls into an online section or if 241 * there is no next online section, return 0. 242 */ 243 static unsigned long skip_offline_sections(unsigned long start_pfn) 244 { 245 unsigned long start_nr = pfn_to_section_nr(start_pfn); 246 247 if (online_section_nr(start_nr)) 248 return 0; 249 250 while (++start_nr <= __highest_present_section_nr) { 251 if (online_section_nr(start_nr)) 252 return section_nr_to_pfn(start_nr); 253 } 254 255 return 0; 256 } 257 258 /* 259 * If the PFN falls into an offline section, return the end PFN of the 260 * next online section in reverse. If the PFN falls into an online section 261 * or if there is no next online section in reverse, return 0. 262 */ 263 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn) 264 { 265 unsigned long start_nr = pfn_to_section_nr(start_pfn); 266 267 if (!start_nr || online_section_nr(start_nr)) 268 return 0; 269 270 while (start_nr-- > 0) { 271 if (online_section_nr(start_nr)) 272 return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION; 273 } 274 275 return 0; 276 } 277 #else 278 static unsigned long skip_offline_sections(unsigned long start_pfn) 279 { 280 return 0; 281 } 282 283 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn) 284 { 285 return 0; 286 } 287 #endif 288 289 /* 290 * Compound pages of >= pageblock_order should consistently be skipped until 291 * released. It is always pointless to compact pages of such order (if they are 292 * migratable), and the pageblocks they occupy cannot contain any free pages. 293 */ 294 static bool pageblock_skip_persistent(struct page *page) 295 { 296 if (!PageCompound(page)) 297 return false; 298 299 page = compound_head(page); 300 301 if (compound_order(page) >= pageblock_order) 302 return true; 303 304 return false; 305 } 306 307 static bool 308 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source, 309 bool check_target) 310 { 311 struct page *page = pfn_to_online_page(pfn); 312 struct page *block_page; 313 struct page *end_page; 314 unsigned long block_pfn; 315 316 if (!page) 317 return false; 318 if (zone != page_zone(page)) 319 return false; 320 if (pageblock_skip_persistent(page)) 321 return false; 322 323 /* 324 * If skip is already cleared do no further checking once the 325 * restart points have been set. 326 */ 327 if (check_source && check_target && !get_pageblock_skip(page)) 328 return true; 329 330 /* 331 * If clearing skip for the target scanner, do not select a 332 * non-movable pageblock as the starting point. 333 */ 334 if (!check_source && check_target && 335 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 336 return false; 337 338 /* Ensure the start of the pageblock or zone is online and valid */ 339 block_pfn = pageblock_start_pfn(pfn); 340 block_pfn = max(block_pfn, zone->zone_start_pfn); 341 block_page = pfn_to_online_page(block_pfn); 342 if (block_page) { 343 page = block_page; 344 pfn = block_pfn; 345 } 346 347 /* Ensure the end of the pageblock or zone is online and valid */ 348 block_pfn = pageblock_end_pfn(pfn) - 1; 349 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1); 350 end_page = pfn_to_online_page(block_pfn); 351 if (!end_page) 352 return false; 353 354 /* 355 * Only clear the hint if a sample indicates there is either a 356 * free page or an LRU page in the block. One or other condition 357 * is necessary for the block to be a migration source/target. 358 */ 359 do { 360 if (check_source && PageLRU(page)) { 361 clear_pageblock_skip(page); 362 return true; 363 } 364 365 if (check_target && PageBuddy(page)) { 366 clear_pageblock_skip(page); 367 return true; 368 } 369 370 page += (1 << PAGE_ALLOC_COSTLY_ORDER); 371 } while (page <= end_page); 372 373 return false; 374 } 375 376 /* 377 * This function is called to clear all cached information on pageblocks that 378 * should be skipped for page isolation when the migrate and free page scanner 379 * meet. 380 */ 381 static void __reset_isolation_suitable(struct zone *zone) 382 { 383 unsigned long migrate_pfn = zone->zone_start_pfn; 384 unsigned long free_pfn = zone_end_pfn(zone) - 1; 385 unsigned long reset_migrate = free_pfn; 386 unsigned long reset_free = migrate_pfn; 387 bool source_set = false; 388 bool free_set = false; 389 390 /* Only flush if a full compaction finished recently */ 391 if (!zone->compact_blockskip_flush) 392 return; 393 394 zone->compact_blockskip_flush = false; 395 396 /* 397 * Walk the zone and update pageblock skip information. Source looks 398 * for PageLRU while target looks for PageBuddy. When the scanner 399 * is found, both PageBuddy and PageLRU are checked as the pageblock 400 * is suitable as both source and target. 401 */ 402 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages, 403 free_pfn -= pageblock_nr_pages) { 404 cond_resched(); 405 406 /* Update the migrate PFN */ 407 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) && 408 migrate_pfn < reset_migrate) { 409 source_set = true; 410 reset_migrate = migrate_pfn; 411 zone->compact_init_migrate_pfn = reset_migrate; 412 zone->compact_cached_migrate_pfn[0] = reset_migrate; 413 zone->compact_cached_migrate_pfn[1] = reset_migrate; 414 } 415 416 /* Update the free PFN */ 417 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) && 418 free_pfn > reset_free) { 419 free_set = true; 420 reset_free = free_pfn; 421 zone->compact_init_free_pfn = reset_free; 422 zone->compact_cached_free_pfn = reset_free; 423 } 424 } 425 426 /* Leave no distance if no suitable block was reset */ 427 if (reset_migrate >= reset_free) { 428 zone->compact_cached_migrate_pfn[0] = migrate_pfn; 429 zone->compact_cached_migrate_pfn[1] = migrate_pfn; 430 zone->compact_cached_free_pfn = free_pfn; 431 } 432 } 433 434 void reset_isolation_suitable(pg_data_t *pgdat) 435 { 436 int zoneid; 437 438 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 439 struct zone *zone = &pgdat->node_zones[zoneid]; 440 if (!populated_zone(zone)) 441 continue; 442 443 __reset_isolation_suitable(zone); 444 } 445 } 446 447 /* 448 * Sets the pageblock skip bit if it was clear. Note that this is a hint as 449 * locks are not required for read/writers. Returns true if it was already set. 450 */ 451 static bool test_and_set_skip(struct compact_control *cc, struct page *page) 452 { 453 bool skip; 454 455 /* Do not update if skip hint is being ignored */ 456 if (cc->ignore_skip_hint) 457 return false; 458 459 skip = get_pageblock_skip(page); 460 if (!skip && !cc->no_set_skip_hint) 461 set_pageblock_skip(page); 462 463 return skip; 464 } 465 466 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 467 { 468 struct zone *zone = cc->zone; 469 470 /* Set for isolation rather than compaction */ 471 if (cc->no_set_skip_hint) 472 return; 473 474 pfn = pageblock_end_pfn(pfn); 475 476 /* Update where async and sync compaction should restart */ 477 if (pfn > zone->compact_cached_migrate_pfn[0]) 478 zone->compact_cached_migrate_pfn[0] = pfn; 479 if (cc->mode != MIGRATE_ASYNC && 480 pfn > zone->compact_cached_migrate_pfn[1]) 481 zone->compact_cached_migrate_pfn[1] = pfn; 482 } 483 484 /* 485 * If no pages were isolated then mark this pageblock to be skipped in the 486 * future. The information is later cleared by __reset_isolation_suitable(). 487 */ 488 static void update_pageblock_skip(struct compact_control *cc, 489 struct page *page, unsigned long pfn) 490 { 491 struct zone *zone = cc->zone; 492 493 if (cc->no_set_skip_hint) 494 return; 495 496 set_pageblock_skip(page); 497 498 if (pfn < zone->compact_cached_free_pfn) 499 zone->compact_cached_free_pfn = pfn; 500 } 501 #else 502 static inline bool isolation_suitable(struct compact_control *cc, 503 struct page *page) 504 { 505 return true; 506 } 507 508 static inline bool pageblock_skip_persistent(struct page *page) 509 { 510 return false; 511 } 512 513 static inline void update_pageblock_skip(struct compact_control *cc, 514 struct page *page, unsigned long pfn) 515 { 516 } 517 518 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 519 { 520 } 521 522 static bool test_and_set_skip(struct compact_control *cc, struct page *page) 523 { 524 return false; 525 } 526 #endif /* CONFIG_COMPACTION */ 527 528 /* 529 * Compaction requires the taking of some coarse locks that are potentially 530 * very heavily contended. For async compaction, trylock and record if the 531 * lock is contended. The lock will still be acquired but compaction will 532 * abort when the current block is finished regardless of success rate. 533 * Sync compaction acquires the lock. 534 * 535 * Always returns true which makes it easier to track lock state in callers. 536 */ 537 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags, 538 struct compact_control *cc) 539 __acquires(lock) 540 { 541 /* Track if the lock is contended in async mode */ 542 if (cc->mode == MIGRATE_ASYNC && !cc->contended) { 543 if (spin_trylock_irqsave(lock, *flags)) 544 return true; 545 546 cc->contended = true; 547 } 548 549 spin_lock_irqsave(lock, *flags); 550 return true; 551 } 552 553 /* 554 * Compaction requires the taking of some coarse locks that are potentially 555 * very heavily contended. The lock should be periodically unlocked to avoid 556 * having disabled IRQs for a long time, even when there is nobody waiting on 557 * the lock. It might also be that allowing the IRQs will result in 558 * need_resched() becoming true. If scheduling is needed, compaction schedules. 559 * Either compaction type will also abort if a fatal signal is pending. 560 * In either case if the lock was locked, it is dropped and not regained. 561 * 562 * Returns true if compaction should abort due to fatal signal pending. 563 * Returns false when compaction can continue. 564 */ 565 static bool compact_unlock_should_abort(spinlock_t *lock, 566 unsigned long flags, bool *locked, struct compact_control *cc) 567 { 568 if (*locked) { 569 spin_unlock_irqrestore(lock, flags); 570 *locked = false; 571 } 572 573 if (fatal_signal_pending(current)) { 574 cc->contended = true; 575 return true; 576 } 577 578 cond_resched(); 579 580 return false; 581 } 582 583 /* 584 * Isolate free pages onto a private freelist. If @strict is true, will abort 585 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 586 * (even though it may still end up isolating some pages). 587 */ 588 static unsigned long isolate_freepages_block(struct compact_control *cc, 589 unsigned long *start_pfn, 590 unsigned long end_pfn, 591 struct list_head *freelist, 592 unsigned int stride, 593 bool strict) 594 { 595 int nr_scanned = 0, total_isolated = 0; 596 struct page *page; 597 unsigned long flags = 0; 598 bool locked = false; 599 unsigned long blockpfn = *start_pfn; 600 unsigned int order; 601 602 /* Strict mode is for isolation, speed is secondary */ 603 if (strict) 604 stride = 1; 605 606 page = pfn_to_page(blockpfn); 607 608 /* Isolate free pages. */ 609 for (; blockpfn < end_pfn; blockpfn += stride, page += stride) { 610 int isolated; 611 612 /* 613 * Periodically drop the lock (if held) regardless of its 614 * contention, to give chance to IRQs. Abort if fatal signal 615 * pending. 616 */ 617 if (!(blockpfn % COMPACT_CLUSTER_MAX) 618 && compact_unlock_should_abort(&cc->zone->lock, flags, 619 &locked, cc)) 620 break; 621 622 nr_scanned++; 623 624 /* 625 * For compound pages such as THP and hugetlbfs, we can save 626 * potentially a lot of iterations if we skip them at once. 627 * The check is racy, but we can consider only valid values 628 * and the only danger is skipping too much. 629 */ 630 if (PageCompound(page)) { 631 const unsigned int order = compound_order(page); 632 633 if (blockpfn + (1UL << order) <= end_pfn) { 634 blockpfn += (1UL << order) - 1; 635 page += (1UL << order) - 1; 636 nr_scanned += (1UL << order) - 1; 637 } 638 639 goto isolate_fail; 640 } 641 642 if (!PageBuddy(page)) 643 goto isolate_fail; 644 645 /* If we already hold the lock, we can skip some rechecking. */ 646 if (!locked) { 647 locked = compact_lock_irqsave(&cc->zone->lock, 648 &flags, cc); 649 650 /* Recheck this is a buddy page under lock */ 651 if (!PageBuddy(page)) 652 goto isolate_fail; 653 } 654 655 /* Found a free page, will break it into order-0 pages */ 656 order = buddy_order(page); 657 isolated = __isolate_free_page(page, order); 658 if (!isolated) 659 break; 660 set_page_private(page, order); 661 662 nr_scanned += isolated - 1; 663 total_isolated += isolated; 664 cc->nr_freepages += isolated; 665 list_add_tail(&page->lru, &freelist[order]); 666 667 if (!strict && cc->nr_migratepages <= cc->nr_freepages) { 668 blockpfn += isolated; 669 break; 670 } 671 /* Advance to the end of split page */ 672 blockpfn += isolated - 1; 673 page += isolated - 1; 674 continue; 675 676 isolate_fail: 677 if (strict) 678 break; 679 680 } 681 682 if (locked) 683 spin_unlock_irqrestore(&cc->zone->lock, flags); 684 685 /* 686 * Be careful to not go outside of the pageblock. 687 */ 688 if (unlikely(blockpfn > end_pfn)) 689 blockpfn = end_pfn; 690 691 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 692 nr_scanned, total_isolated); 693 694 /* Record how far we have got within the block */ 695 *start_pfn = blockpfn; 696 697 /* 698 * If strict isolation is requested by CMA then check that all the 699 * pages requested were isolated. If there were any failures, 0 is 700 * returned and CMA will fail. 701 */ 702 if (strict && blockpfn < end_pfn) 703 total_isolated = 0; 704 705 cc->total_free_scanned += nr_scanned; 706 if (total_isolated) 707 count_compact_events(COMPACTISOLATED, total_isolated); 708 return total_isolated; 709 } 710 711 /** 712 * isolate_freepages_range() - isolate free pages. 713 * @cc: Compaction control structure. 714 * @start_pfn: The first PFN to start isolating. 715 * @end_pfn: The one-past-last PFN. 716 * 717 * Non-free pages, invalid PFNs, or zone boundaries within the 718 * [start_pfn, end_pfn) range are considered errors, cause function to 719 * undo its actions and return zero. cc->freepages[] are empty. 720 * 721 * Otherwise, function returns one-past-the-last PFN of isolated page 722 * (which may be greater then end_pfn if end fell in a middle of 723 * a free page). cc->freepages[] contain free pages isolated. 724 */ 725 unsigned long 726 isolate_freepages_range(struct compact_control *cc, 727 unsigned long start_pfn, unsigned long end_pfn) 728 { 729 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 730 int order; 731 732 for (order = 0; order < NR_PAGE_ORDERS; order++) 733 INIT_LIST_HEAD(&cc->freepages[order]); 734 735 pfn = start_pfn; 736 block_start_pfn = pageblock_start_pfn(pfn); 737 if (block_start_pfn < cc->zone->zone_start_pfn) 738 block_start_pfn = cc->zone->zone_start_pfn; 739 block_end_pfn = pageblock_end_pfn(pfn); 740 741 for (; pfn < end_pfn; pfn += isolated, 742 block_start_pfn = block_end_pfn, 743 block_end_pfn += pageblock_nr_pages) { 744 /* Protect pfn from changing by isolate_freepages_block */ 745 unsigned long isolate_start_pfn = pfn; 746 747 /* 748 * pfn could pass the block_end_pfn if isolated freepage 749 * is more than pageblock order. In this case, we adjust 750 * scanning range to right one. 751 */ 752 if (pfn >= block_end_pfn) { 753 block_start_pfn = pageblock_start_pfn(pfn); 754 block_end_pfn = pageblock_end_pfn(pfn); 755 } 756 757 block_end_pfn = min(block_end_pfn, end_pfn); 758 759 if (!pageblock_pfn_to_page(block_start_pfn, 760 block_end_pfn, cc->zone)) 761 break; 762 763 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 764 block_end_pfn, cc->freepages, 0, true); 765 766 /* 767 * In strict mode, isolate_freepages_block() returns 0 if 768 * there are any holes in the block (ie. invalid PFNs or 769 * non-free pages). 770 */ 771 if (!isolated) 772 break; 773 774 /* 775 * If we managed to isolate pages, it is always (1 << n) * 776 * pageblock_nr_pages for some non-negative n. (Max order 777 * page may span two pageblocks). 778 */ 779 } 780 781 if (pfn < end_pfn) { 782 /* Loop terminated early, cleanup. */ 783 release_free_list(cc->freepages); 784 return 0; 785 } 786 787 /* We don't use freelists for anything. */ 788 return pfn; 789 } 790 791 /* Similar to reclaim, but different enough that they don't share logic */ 792 static bool too_many_isolated(struct compact_control *cc) 793 { 794 pg_data_t *pgdat = cc->zone->zone_pgdat; 795 bool too_many; 796 797 unsigned long active, inactive, isolated; 798 799 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) + 800 node_page_state(pgdat, NR_INACTIVE_ANON); 801 active = node_page_state(pgdat, NR_ACTIVE_FILE) + 802 node_page_state(pgdat, NR_ACTIVE_ANON); 803 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) + 804 node_page_state(pgdat, NR_ISOLATED_ANON); 805 806 /* 807 * Allow GFP_NOFS to isolate past the limit set for regular 808 * compaction runs. This prevents an ABBA deadlock when other 809 * compactors have already isolated to the limit, but are 810 * blocked on filesystem locks held by the GFP_NOFS thread. 811 */ 812 if (cc->gfp_mask & __GFP_FS) { 813 inactive >>= 3; 814 active >>= 3; 815 } 816 817 too_many = isolated > (inactive + active) / 2; 818 if (!too_many) 819 wake_throttle_isolated(pgdat); 820 821 return too_many; 822 } 823 824 /** 825 * skip_isolation_on_order() - determine when to skip folio isolation based on 826 * folio order and compaction target order 827 * @order: to-be-isolated folio order 828 * @target_order: compaction target order 829 * 830 * This avoids unnecessary folio isolations during compaction. 831 */ 832 static bool skip_isolation_on_order(int order, int target_order) 833 { 834 /* 835 * Unless we are performing global compaction (i.e., 836 * is_via_compact_memory), skip any folios that are larger than the 837 * target order: we wouldn't be here if we'd have a free folio with 838 * the desired target_order, so migrating this folio would likely fail 839 * later. 840 */ 841 if (!is_via_compact_memory(target_order) && order >= target_order) 842 return true; 843 /* 844 * We limit memory compaction to pageblocks and won't try 845 * creating free blocks of memory that are larger than that. 846 */ 847 return order >= pageblock_order; 848 } 849 850 /** 851 * isolate_migratepages_block() - isolate all migrate-able pages within 852 * a single pageblock 853 * @cc: Compaction control structure. 854 * @low_pfn: The first PFN to isolate 855 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 856 * @mode: Isolation mode to be used. 857 * 858 * Isolate all pages that can be migrated from the range specified by 859 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 860 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion, 861 * -ENOMEM in case we could not allocate a page, or 0. 862 * cc->migrate_pfn will contain the next pfn to scan. 863 * 864 * The pages are isolated on cc->migratepages list (not required to be empty), 865 * and cc->nr_migratepages is updated accordingly. 866 */ 867 static int 868 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 869 unsigned long end_pfn, isolate_mode_t mode) 870 { 871 pg_data_t *pgdat = cc->zone->zone_pgdat; 872 unsigned long nr_scanned = 0, nr_isolated = 0; 873 struct lruvec *lruvec; 874 unsigned long flags = 0; 875 struct lruvec *locked = NULL; 876 struct folio *folio = NULL; 877 struct page *page = NULL, *valid_page = NULL; 878 struct address_space *mapping; 879 unsigned long start_pfn = low_pfn; 880 bool skip_on_failure = false; 881 unsigned long next_skip_pfn = 0; 882 bool skip_updated = false; 883 int ret = 0; 884 885 cc->migrate_pfn = low_pfn; 886 887 /* 888 * Ensure that there are not too many pages isolated from the LRU 889 * list by either parallel reclaimers or compaction. If there are, 890 * delay for some time until fewer pages are isolated 891 */ 892 while (unlikely(too_many_isolated(cc))) { 893 /* stop isolation if there are still pages not migrated */ 894 if (cc->nr_migratepages) 895 return -EAGAIN; 896 897 /* async migration should just abort */ 898 if (cc->mode == MIGRATE_ASYNC) 899 return -EAGAIN; 900 901 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 902 903 if (fatal_signal_pending(current)) 904 return -EINTR; 905 } 906 907 cond_resched(); 908 909 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { 910 skip_on_failure = true; 911 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 912 } 913 914 /* Time to isolate some pages for migration */ 915 for (; low_pfn < end_pfn; low_pfn++) { 916 bool is_dirty, is_unevictable; 917 918 if (skip_on_failure && low_pfn >= next_skip_pfn) { 919 /* 920 * We have isolated all migration candidates in the 921 * previous order-aligned block, and did not skip it due 922 * to failure. We should migrate the pages now and 923 * hopefully succeed compaction. 924 */ 925 if (nr_isolated) 926 break; 927 928 /* 929 * We failed to isolate in the previous order-aligned 930 * block. Set the new boundary to the end of the 931 * current block. Note we can't simply increase 932 * next_skip_pfn by 1 << order, as low_pfn might have 933 * been incremented by a higher number due to skipping 934 * a compound or a high-order buddy page in the 935 * previous loop iteration. 936 */ 937 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 938 } 939 940 /* 941 * Periodically drop the lock (if held) regardless of its 942 * contention, to give chance to IRQs. Abort completely if 943 * a fatal signal is pending. 944 */ 945 if (!(low_pfn % COMPACT_CLUSTER_MAX)) { 946 if (locked) { 947 unlock_page_lruvec_irqrestore(locked, flags); 948 locked = NULL; 949 } 950 951 if (fatal_signal_pending(current)) { 952 cc->contended = true; 953 ret = -EINTR; 954 955 goto fatal_pending; 956 } 957 958 cond_resched(); 959 } 960 961 nr_scanned++; 962 963 page = pfn_to_page(low_pfn); 964 965 /* 966 * Check if the pageblock has already been marked skipped. 967 * Only the first PFN is checked as the caller isolates 968 * COMPACT_CLUSTER_MAX at a time so the second call must 969 * not falsely conclude that the block should be skipped. 970 */ 971 if (!valid_page && (pageblock_aligned(low_pfn) || 972 low_pfn == cc->zone->zone_start_pfn)) { 973 if (!isolation_suitable(cc, page)) { 974 low_pfn = end_pfn; 975 folio = NULL; 976 goto isolate_abort; 977 } 978 valid_page = page; 979 } 980 981 if (PageHuge(page)) { 982 /* 983 * skip hugetlbfs if we are not compacting for pages 984 * bigger than its order. THPs and other compound pages 985 * are handled below. 986 */ 987 if (!cc->alloc_contig) { 988 const unsigned int order = compound_order(page); 989 990 if (order <= MAX_PAGE_ORDER) { 991 low_pfn += (1UL << order) - 1; 992 nr_scanned += (1UL << order) - 1; 993 } 994 goto isolate_fail; 995 } 996 /* for alloc_contig case */ 997 if (locked) { 998 unlock_page_lruvec_irqrestore(locked, flags); 999 locked = NULL; 1000 } 1001 1002 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages); 1003 1004 /* 1005 * Fail isolation in case isolate_or_dissolve_huge_page() 1006 * reports an error. In case of -ENOMEM, abort right away. 1007 */ 1008 if (ret < 0) { 1009 /* Do not report -EBUSY down the chain */ 1010 if (ret == -EBUSY) 1011 ret = 0; 1012 low_pfn += compound_nr(page) - 1; 1013 nr_scanned += compound_nr(page) - 1; 1014 goto isolate_fail; 1015 } 1016 1017 if (PageHuge(page)) { 1018 /* 1019 * Hugepage was successfully isolated and placed 1020 * on the cc->migratepages list. 1021 */ 1022 folio = page_folio(page); 1023 low_pfn += folio_nr_pages(folio) - 1; 1024 goto isolate_success_no_list; 1025 } 1026 1027 /* 1028 * Ok, the hugepage was dissolved. Now these pages are 1029 * Buddy and cannot be re-allocated because they are 1030 * isolated. Fall-through as the check below handles 1031 * Buddy pages. 1032 */ 1033 } 1034 1035 /* 1036 * Skip if free. We read page order here without zone lock 1037 * which is generally unsafe, but the race window is small and 1038 * the worst thing that can happen is that we skip some 1039 * potential isolation targets. 1040 */ 1041 if (PageBuddy(page)) { 1042 unsigned long freepage_order = buddy_order_unsafe(page); 1043 1044 /* 1045 * Without lock, we cannot be sure that what we got is 1046 * a valid page order. Consider only values in the 1047 * valid order range to prevent low_pfn overflow. 1048 */ 1049 if (freepage_order > 0 && freepage_order <= MAX_PAGE_ORDER) { 1050 low_pfn += (1UL << freepage_order) - 1; 1051 nr_scanned += (1UL << freepage_order) - 1; 1052 } 1053 continue; 1054 } 1055 1056 /* 1057 * Regardless of being on LRU, compound pages such as THP 1058 * (hugetlbfs is handled above) are not to be compacted unless 1059 * we are attempting an allocation larger than the compound 1060 * page size. We can potentially save a lot of iterations if we 1061 * skip them at once. The check is racy, but we can consider 1062 * only valid values and the only danger is skipping too much. 1063 */ 1064 if (PageCompound(page) && !cc->alloc_contig) { 1065 const unsigned int order = compound_order(page); 1066 1067 /* Skip based on page order and compaction target order. */ 1068 if (skip_isolation_on_order(order, cc->order)) { 1069 if (order <= MAX_PAGE_ORDER) { 1070 low_pfn += (1UL << order) - 1; 1071 nr_scanned += (1UL << order) - 1; 1072 } 1073 goto isolate_fail; 1074 } 1075 } 1076 1077 /* 1078 * Check may be lockless but that's ok as we recheck later. 1079 * It's possible to migrate LRU and non-lru movable pages. 1080 * Skip any other type of page 1081 */ 1082 if (!PageLRU(page)) { 1083 /* 1084 * __PageMovable can return false positive so we need 1085 * to verify it under page_lock. 1086 */ 1087 if (unlikely(__PageMovable(page)) && 1088 !PageIsolated(page)) { 1089 if (locked) { 1090 unlock_page_lruvec_irqrestore(locked, flags); 1091 locked = NULL; 1092 } 1093 1094 if (isolate_movable_page(page, mode)) { 1095 folio = page_folio(page); 1096 goto isolate_success; 1097 } 1098 } 1099 1100 goto isolate_fail; 1101 } 1102 1103 /* 1104 * Be careful not to clear PageLRU until after we're 1105 * sure the page is not being freed elsewhere -- the 1106 * page release code relies on it. 1107 */ 1108 folio = folio_get_nontail_page(page); 1109 if (unlikely(!folio)) 1110 goto isolate_fail; 1111 1112 /* 1113 * Migration will fail if an anonymous page is pinned in memory, 1114 * so avoid taking lru_lock and isolating it unnecessarily in an 1115 * admittedly racy check. 1116 */ 1117 mapping = folio_mapping(folio); 1118 if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio)) 1119 goto isolate_fail_put; 1120 1121 /* 1122 * Only allow to migrate anonymous pages in GFP_NOFS context 1123 * because those do not depend on fs locks. 1124 */ 1125 if (!(cc->gfp_mask & __GFP_FS) && mapping) 1126 goto isolate_fail_put; 1127 1128 /* Only take pages on LRU: a check now makes later tests safe */ 1129 if (!folio_test_lru(folio)) 1130 goto isolate_fail_put; 1131 1132 is_unevictable = folio_test_unevictable(folio); 1133 1134 /* Compaction might skip unevictable pages but CMA takes them */ 1135 if (!(mode & ISOLATE_UNEVICTABLE) && is_unevictable) 1136 goto isolate_fail_put; 1137 1138 /* 1139 * To minimise LRU disruption, the caller can indicate with 1140 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages 1141 * it will be able to migrate without blocking - clean pages 1142 * for the most part. PageWriteback would require blocking. 1143 */ 1144 if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio)) 1145 goto isolate_fail_put; 1146 1147 is_dirty = folio_test_dirty(folio); 1148 1149 if (((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) || 1150 (mapping && is_unevictable)) { 1151 bool migrate_dirty = true; 1152 bool is_inaccessible; 1153 1154 /* 1155 * Only folios without mappings or that have 1156 * a ->migrate_folio callback are possible to migrate 1157 * without blocking. 1158 * 1159 * Folios from inaccessible mappings are not migratable. 1160 * 1161 * However, we can be racing with truncation, which can 1162 * free the mapping that we need to check. Truncation 1163 * holds the folio lock until after the folio is removed 1164 * from the page so holding it ourselves is sufficient. 1165 * 1166 * To avoid locking the folio just to check inaccessible, 1167 * assume every inaccessible folio is also unevictable, 1168 * which is a cheaper test. If our assumption goes 1169 * wrong, it's not a correctness bug, just potentially 1170 * wasted cycles. 1171 */ 1172 if (!folio_trylock(folio)) 1173 goto isolate_fail_put; 1174 1175 mapping = folio_mapping(folio); 1176 if ((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) { 1177 migrate_dirty = !mapping || 1178 mapping->a_ops->migrate_folio; 1179 } 1180 is_inaccessible = mapping && mapping_inaccessible(mapping); 1181 folio_unlock(folio); 1182 if (!migrate_dirty || is_inaccessible) 1183 goto isolate_fail_put; 1184 } 1185 1186 /* Try isolate the folio */ 1187 if (!folio_test_clear_lru(folio)) 1188 goto isolate_fail_put; 1189 1190 lruvec = folio_lruvec(folio); 1191 1192 /* If we already hold the lock, we can skip some rechecking */ 1193 if (lruvec != locked) { 1194 if (locked) 1195 unlock_page_lruvec_irqrestore(locked, flags); 1196 1197 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc); 1198 locked = lruvec; 1199 1200 lruvec_memcg_debug(lruvec, folio); 1201 1202 /* 1203 * Try get exclusive access under lock. If marked for 1204 * skip, the scan is aborted unless the current context 1205 * is a rescan to reach the end of the pageblock. 1206 */ 1207 if (!skip_updated && valid_page) { 1208 skip_updated = true; 1209 if (test_and_set_skip(cc, valid_page) && 1210 !cc->finish_pageblock) { 1211 low_pfn = end_pfn; 1212 goto isolate_abort; 1213 } 1214 } 1215 1216 /* 1217 * Check LRU folio order under the lock 1218 */ 1219 if (unlikely(skip_isolation_on_order(folio_order(folio), 1220 cc->order) && 1221 !cc->alloc_contig)) { 1222 low_pfn += folio_nr_pages(folio) - 1; 1223 nr_scanned += folio_nr_pages(folio) - 1; 1224 folio_set_lru(folio); 1225 goto isolate_fail_put; 1226 } 1227 } 1228 1229 /* The folio is taken off the LRU */ 1230 if (folio_test_large(folio)) 1231 low_pfn += folio_nr_pages(folio) - 1; 1232 1233 /* Successfully isolated */ 1234 lruvec_del_folio(lruvec, folio); 1235 node_stat_mod_folio(folio, 1236 NR_ISOLATED_ANON + folio_is_file_lru(folio), 1237 folio_nr_pages(folio)); 1238 1239 isolate_success: 1240 list_add(&folio->lru, &cc->migratepages); 1241 isolate_success_no_list: 1242 cc->nr_migratepages += folio_nr_pages(folio); 1243 nr_isolated += folio_nr_pages(folio); 1244 nr_scanned += folio_nr_pages(folio) - 1; 1245 1246 /* 1247 * Avoid isolating too much unless this block is being 1248 * fully scanned (e.g. dirty/writeback pages, parallel allocation) 1249 * or a lock is contended. For contention, isolate quickly to 1250 * potentially remove one source of contention. 1251 */ 1252 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX && 1253 !cc->finish_pageblock && !cc->contended) { 1254 ++low_pfn; 1255 break; 1256 } 1257 1258 continue; 1259 1260 isolate_fail_put: 1261 /* Avoid potential deadlock in freeing page under lru_lock */ 1262 if (locked) { 1263 unlock_page_lruvec_irqrestore(locked, flags); 1264 locked = NULL; 1265 } 1266 folio_put(folio); 1267 1268 isolate_fail: 1269 if (!skip_on_failure && ret != -ENOMEM) 1270 continue; 1271 1272 /* 1273 * We have isolated some pages, but then failed. Release them 1274 * instead of migrating, as we cannot form the cc->order buddy 1275 * page anyway. 1276 */ 1277 if (nr_isolated) { 1278 if (locked) { 1279 unlock_page_lruvec_irqrestore(locked, flags); 1280 locked = NULL; 1281 } 1282 putback_movable_pages(&cc->migratepages); 1283 cc->nr_migratepages = 0; 1284 nr_isolated = 0; 1285 } 1286 1287 if (low_pfn < next_skip_pfn) { 1288 low_pfn = next_skip_pfn - 1; 1289 /* 1290 * The check near the loop beginning would have updated 1291 * next_skip_pfn too, but this is a bit simpler. 1292 */ 1293 next_skip_pfn += 1UL << cc->order; 1294 } 1295 1296 if (ret == -ENOMEM) 1297 break; 1298 } 1299 1300 /* 1301 * The PageBuddy() check could have potentially brought us outside 1302 * the range to be scanned. 1303 */ 1304 if (unlikely(low_pfn > end_pfn)) 1305 low_pfn = end_pfn; 1306 1307 folio = NULL; 1308 1309 isolate_abort: 1310 if (locked) 1311 unlock_page_lruvec_irqrestore(locked, flags); 1312 if (folio) { 1313 folio_set_lru(folio); 1314 folio_put(folio); 1315 } 1316 1317 /* 1318 * Update the cached scanner pfn once the pageblock has been scanned. 1319 * Pages will either be migrated in which case there is no point 1320 * scanning in the near future or migration failed in which case the 1321 * failure reason may persist. The block is marked for skipping if 1322 * there were no pages isolated in the block or if the block is 1323 * rescanned twice in a row. 1324 */ 1325 if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) { 1326 if (!cc->no_set_skip_hint && valid_page && !skip_updated) 1327 set_pageblock_skip(valid_page); 1328 update_cached_migrate(cc, low_pfn); 1329 } 1330 1331 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 1332 nr_scanned, nr_isolated); 1333 1334 fatal_pending: 1335 cc->total_migrate_scanned += nr_scanned; 1336 if (nr_isolated) 1337 count_compact_events(COMPACTISOLATED, nr_isolated); 1338 1339 cc->migrate_pfn = low_pfn; 1340 1341 return ret; 1342 } 1343 1344 /** 1345 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 1346 * @cc: Compaction control structure. 1347 * @start_pfn: The first PFN to start isolating. 1348 * @end_pfn: The one-past-last PFN. 1349 * 1350 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM 1351 * in case we could not allocate a page, or 0. 1352 */ 1353 int 1354 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 1355 unsigned long end_pfn) 1356 { 1357 unsigned long pfn, block_start_pfn, block_end_pfn; 1358 int ret = 0; 1359 1360 /* Scan block by block. First and last block may be incomplete */ 1361 pfn = start_pfn; 1362 block_start_pfn = pageblock_start_pfn(pfn); 1363 if (block_start_pfn < cc->zone->zone_start_pfn) 1364 block_start_pfn = cc->zone->zone_start_pfn; 1365 block_end_pfn = pageblock_end_pfn(pfn); 1366 1367 for (; pfn < end_pfn; pfn = block_end_pfn, 1368 block_start_pfn = block_end_pfn, 1369 block_end_pfn += pageblock_nr_pages) { 1370 1371 block_end_pfn = min(block_end_pfn, end_pfn); 1372 1373 if (!pageblock_pfn_to_page(block_start_pfn, 1374 block_end_pfn, cc->zone)) 1375 continue; 1376 1377 ret = isolate_migratepages_block(cc, pfn, block_end_pfn, 1378 ISOLATE_UNEVICTABLE); 1379 1380 if (ret) 1381 break; 1382 1383 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX) 1384 break; 1385 } 1386 1387 return ret; 1388 } 1389 1390 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 1391 #ifdef CONFIG_COMPACTION 1392 1393 static bool suitable_migration_source(struct compact_control *cc, 1394 struct page *page) 1395 { 1396 int block_mt; 1397 1398 if (pageblock_skip_persistent(page)) 1399 return false; 1400 1401 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction) 1402 return true; 1403 1404 block_mt = get_pageblock_migratetype(page); 1405 1406 if (cc->migratetype == MIGRATE_MOVABLE) 1407 return is_migrate_movable(block_mt); 1408 else 1409 return block_mt == cc->migratetype; 1410 } 1411 1412 /* Returns true if the page is within a block suitable for migration to */ 1413 static bool suitable_migration_target(struct compact_control *cc, 1414 struct page *page) 1415 { 1416 /* If the page is a large free page, then disallow migration */ 1417 if (PageBuddy(page)) { 1418 int order = cc->order > 0 ? cc->order : pageblock_order; 1419 1420 /* 1421 * We are checking page_order without zone->lock taken. But 1422 * the only small danger is that we skip a potentially suitable 1423 * pageblock, so it's not worth to check order for valid range. 1424 */ 1425 if (buddy_order_unsafe(page) >= order) 1426 return false; 1427 } 1428 1429 if (cc->ignore_block_suitable) 1430 return true; 1431 1432 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 1433 if (is_migrate_movable(get_pageblock_migratetype(page))) 1434 return true; 1435 1436 /* Otherwise skip the block */ 1437 return false; 1438 } 1439 1440 static inline unsigned int 1441 freelist_scan_limit(struct compact_control *cc) 1442 { 1443 unsigned short shift = BITS_PER_LONG - 1; 1444 1445 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1; 1446 } 1447 1448 /* 1449 * Test whether the free scanner has reached the same or lower pageblock than 1450 * the migration scanner, and compaction should thus terminate. 1451 */ 1452 static inline bool compact_scanners_met(struct compact_control *cc) 1453 { 1454 return (cc->free_pfn >> pageblock_order) 1455 <= (cc->migrate_pfn >> pageblock_order); 1456 } 1457 1458 /* 1459 * Used when scanning for a suitable migration target which scans freelists 1460 * in reverse. Reorders the list such as the unscanned pages are scanned 1461 * first on the next iteration of the free scanner 1462 */ 1463 static void 1464 move_freelist_head(struct list_head *freelist, struct page *freepage) 1465 { 1466 LIST_HEAD(sublist); 1467 1468 if (!list_is_first(&freepage->buddy_list, freelist)) { 1469 list_cut_before(&sublist, freelist, &freepage->buddy_list); 1470 list_splice_tail(&sublist, freelist); 1471 } 1472 } 1473 1474 /* 1475 * Similar to move_freelist_head except used by the migration scanner 1476 * when scanning forward. It's possible for these list operations to 1477 * move against each other if they search the free list exactly in 1478 * lockstep. 1479 */ 1480 static void 1481 move_freelist_tail(struct list_head *freelist, struct page *freepage) 1482 { 1483 LIST_HEAD(sublist); 1484 1485 if (!list_is_last(&freepage->buddy_list, freelist)) { 1486 list_cut_position(&sublist, freelist, &freepage->buddy_list); 1487 list_splice_tail(&sublist, freelist); 1488 } 1489 } 1490 1491 static void 1492 fast_isolate_around(struct compact_control *cc, unsigned long pfn) 1493 { 1494 unsigned long start_pfn, end_pfn; 1495 struct page *page; 1496 1497 /* Do not search around if there are enough pages already */ 1498 if (cc->nr_freepages >= cc->nr_migratepages) 1499 return; 1500 1501 /* Minimise scanning during async compaction */ 1502 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC) 1503 return; 1504 1505 /* Pageblock boundaries */ 1506 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn); 1507 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)); 1508 1509 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone); 1510 if (!page) 1511 return; 1512 1513 isolate_freepages_block(cc, &start_pfn, end_pfn, cc->freepages, 1, false); 1514 1515 /* Skip this pageblock in the future as it's full or nearly full */ 1516 if (start_pfn == end_pfn && !cc->no_set_skip_hint) 1517 set_pageblock_skip(page); 1518 } 1519 1520 /* Search orders in round-robin fashion */ 1521 static int next_search_order(struct compact_control *cc, int order) 1522 { 1523 order--; 1524 if (order < 0) 1525 order = cc->order - 1; 1526 1527 /* Search wrapped around? */ 1528 if (order == cc->search_order) { 1529 cc->search_order--; 1530 if (cc->search_order < 0) 1531 cc->search_order = cc->order - 1; 1532 return -1; 1533 } 1534 1535 return order; 1536 } 1537 1538 static void fast_isolate_freepages(struct compact_control *cc) 1539 { 1540 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1); 1541 unsigned int nr_scanned = 0, total_isolated = 0; 1542 unsigned long low_pfn, min_pfn, highest = 0; 1543 unsigned long nr_isolated = 0; 1544 unsigned long distance; 1545 struct page *page = NULL; 1546 bool scan_start = false; 1547 int order; 1548 1549 /* Full compaction passes in a negative order */ 1550 if (cc->order <= 0) 1551 return; 1552 1553 /* 1554 * If starting the scan, use a deeper search and use the highest 1555 * PFN found if a suitable one is not found. 1556 */ 1557 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) { 1558 limit = pageblock_nr_pages >> 1; 1559 scan_start = true; 1560 } 1561 1562 /* 1563 * Preferred point is in the top quarter of the scan space but take 1564 * a pfn from the top half if the search is problematic. 1565 */ 1566 distance = (cc->free_pfn - cc->migrate_pfn); 1567 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2)); 1568 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1)); 1569 1570 if (WARN_ON_ONCE(min_pfn > low_pfn)) 1571 low_pfn = min_pfn; 1572 1573 /* 1574 * Search starts from the last successful isolation order or the next 1575 * order to search after a previous failure 1576 */ 1577 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order); 1578 1579 for (order = cc->search_order; 1580 !page && order >= 0; 1581 order = next_search_order(cc, order)) { 1582 struct free_area *area = &cc->zone->free_area[order]; 1583 struct list_head *freelist; 1584 struct page *freepage; 1585 unsigned long flags; 1586 unsigned int order_scanned = 0; 1587 unsigned long high_pfn = 0; 1588 1589 if (!area->nr_free) 1590 continue; 1591 1592 spin_lock_irqsave(&cc->zone->lock, flags); 1593 freelist = &area->free_list[MIGRATE_MOVABLE]; 1594 list_for_each_entry_reverse(freepage, freelist, buddy_list) { 1595 unsigned long pfn; 1596 1597 order_scanned++; 1598 nr_scanned++; 1599 pfn = page_to_pfn(freepage); 1600 1601 if (pfn >= highest) 1602 highest = max(pageblock_start_pfn(pfn), 1603 cc->zone->zone_start_pfn); 1604 1605 if (pfn >= low_pfn) { 1606 cc->fast_search_fail = 0; 1607 cc->search_order = order; 1608 page = freepage; 1609 break; 1610 } 1611 1612 if (pfn >= min_pfn && pfn > high_pfn) { 1613 high_pfn = pfn; 1614 1615 /* Shorten the scan if a candidate is found */ 1616 limit >>= 1; 1617 } 1618 1619 if (order_scanned >= limit) 1620 break; 1621 } 1622 1623 /* Use a maximum candidate pfn if a preferred one was not found */ 1624 if (!page && high_pfn) { 1625 page = pfn_to_page(high_pfn); 1626 1627 /* Update freepage for the list reorder below */ 1628 freepage = page; 1629 } 1630 1631 /* Reorder to so a future search skips recent pages */ 1632 move_freelist_head(freelist, freepage); 1633 1634 /* Isolate the page if available */ 1635 if (page) { 1636 if (__isolate_free_page(page, order)) { 1637 set_page_private(page, order); 1638 nr_isolated = 1 << order; 1639 nr_scanned += nr_isolated - 1; 1640 total_isolated += nr_isolated; 1641 cc->nr_freepages += nr_isolated; 1642 list_add_tail(&page->lru, &cc->freepages[order]); 1643 count_compact_events(COMPACTISOLATED, nr_isolated); 1644 } else { 1645 /* If isolation fails, abort the search */ 1646 order = cc->search_order + 1; 1647 page = NULL; 1648 } 1649 } 1650 1651 spin_unlock_irqrestore(&cc->zone->lock, flags); 1652 1653 /* Skip fast search if enough freepages isolated */ 1654 if (cc->nr_freepages >= cc->nr_migratepages) 1655 break; 1656 1657 /* 1658 * Smaller scan on next order so the total scan is related 1659 * to freelist_scan_limit. 1660 */ 1661 if (order_scanned >= limit) 1662 limit = max(1U, limit >> 1); 1663 } 1664 1665 trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn, 1666 nr_scanned, total_isolated); 1667 1668 if (!page) { 1669 cc->fast_search_fail++; 1670 if (scan_start) { 1671 /* 1672 * Use the highest PFN found above min. If one was 1673 * not found, be pessimistic for direct compaction 1674 * and use the min mark. 1675 */ 1676 if (highest >= min_pfn) { 1677 page = pfn_to_page(highest); 1678 cc->free_pfn = highest; 1679 } else { 1680 if (cc->direct_compaction && pfn_valid(min_pfn)) { 1681 page = pageblock_pfn_to_page(min_pfn, 1682 min(pageblock_end_pfn(min_pfn), 1683 zone_end_pfn(cc->zone)), 1684 cc->zone); 1685 if (page && !suitable_migration_target(cc, page)) 1686 page = NULL; 1687 1688 cc->free_pfn = min_pfn; 1689 } 1690 } 1691 } 1692 } 1693 1694 if (highest && highest >= cc->zone->compact_cached_free_pfn) { 1695 highest -= pageblock_nr_pages; 1696 cc->zone->compact_cached_free_pfn = highest; 1697 } 1698 1699 cc->total_free_scanned += nr_scanned; 1700 if (!page) 1701 return; 1702 1703 low_pfn = page_to_pfn(page); 1704 fast_isolate_around(cc, low_pfn); 1705 } 1706 1707 /* 1708 * Based on information in the current compact_control, find blocks 1709 * suitable for isolating free pages from and then isolate them. 1710 */ 1711 static void isolate_freepages(struct compact_control *cc) 1712 { 1713 struct zone *zone = cc->zone; 1714 struct page *page; 1715 unsigned long block_start_pfn; /* start of current pageblock */ 1716 unsigned long isolate_start_pfn; /* exact pfn we start at */ 1717 unsigned long block_end_pfn; /* end of current pageblock */ 1718 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 1719 unsigned int stride; 1720 1721 /* Try a small search of the free lists for a candidate */ 1722 fast_isolate_freepages(cc); 1723 if (cc->nr_freepages) 1724 return; 1725 1726 /* 1727 * Initialise the free scanner. The starting point is where we last 1728 * successfully isolated from, zone-cached value, or the end of the 1729 * zone when isolating for the first time. For looping we also need 1730 * this pfn aligned down to the pageblock boundary, because we do 1731 * block_start_pfn -= pageblock_nr_pages in the for loop. 1732 * For ending point, take care when isolating in last pageblock of a 1733 * zone which ends in the middle of a pageblock. 1734 * The low boundary is the end of the pageblock the migration scanner 1735 * is using. 1736 */ 1737 isolate_start_pfn = cc->free_pfn; 1738 block_start_pfn = pageblock_start_pfn(isolate_start_pfn); 1739 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 1740 zone_end_pfn(zone)); 1741 low_pfn = pageblock_end_pfn(cc->migrate_pfn); 1742 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1; 1743 1744 /* 1745 * Isolate free pages until enough are available to migrate the 1746 * pages on cc->migratepages. We stop searching if the migrate 1747 * and free page scanners meet or enough free pages are isolated. 1748 */ 1749 for (; block_start_pfn >= low_pfn; 1750 block_end_pfn = block_start_pfn, 1751 block_start_pfn -= pageblock_nr_pages, 1752 isolate_start_pfn = block_start_pfn) { 1753 unsigned long nr_isolated; 1754 1755 /* 1756 * This can iterate a massively long zone without finding any 1757 * suitable migration targets, so periodically check resched. 1758 */ 1759 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages))) 1760 cond_resched(); 1761 1762 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1763 zone); 1764 if (!page) { 1765 unsigned long next_pfn; 1766 1767 next_pfn = skip_offline_sections_reverse(block_start_pfn); 1768 if (next_pfn) 1769 block_start_pfn = max(next_pfn, low_pfn); 1770 1771 continue; 1772 } 1773 1774 /* Check the block is suitable for migration */ 1775 if (!suitable_migration_target(cc, page)) 1776 continue; 1777 1778 /* If isolation recently failed, do not retry */ 1779 if (!isolation_suitable(cc, page)) 1780 continue; 1781 1782 /* Found a block suitable for isolating free pages from. */ 1783 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn, 1784 block_end_pfn, cc->freepages, stride, false); 1785 1786 /* Update the skip hint if the full pageblock was scanned */ 1787 if (isolate_start_pfn == block_end_pfn) 1788 update_pageblock_skip(cc, page, block_start_pfn - 1789 pageblock_nr_pages); 1790 1791 /* Are enough freepages isolated? */ 1792 if (cc->nr_freepages >= cc->nr_migratepages) { 1793 if (isolate_start_pfn >= block_end_pfn) { 1794 /* 1795 * Restart at previous pageblock if more 1796 * freepages can be isolated next time. 1797 */ 1798 isolate_start_pfn = 1799 block_start_pfn - pageblock_nr_pages; 1800 } 1801 break; 1802 } else if (isolate_start_pfn < block_end_pfn) { 1803 /* 1804 * If isolation failed early, do not continue 1805 * needlessly. 1806 */ 1807 break; 1808 } 1809 1810 /* Adjust stride depending on isolation */ 1811 if (nr_isolated) { 1812 stride = 1; 1813 continue; 1814 } 1815 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1); 1816 } 1817 1818 /* 1819 * Record where the free scanner will restart next time. Either we 1820 * broke from the loop and set isolate_start_pfn based on the last 1821 * call to isolate_freepages_block(), or we met the migration scanner 1822 * and the loop terminated due to isolate_start_pfn < low_pfn 1823 */ 1824 cc->free_pfn = isolate_start_pfn; 1825 } 1826 1827 /* 1828 * This is a migrate-callback that "allocates" freepages by taking pages 1829 * from the isolated freelists in the block we are migrating to. 1830 */ 1831 static struct folio *compaction_alloc_noprof(struct folio *src, unsigned long data) 1832 { 1833 struct compact_control *cc = (struct compact_control *)data; 1834 struct folio *dst; 1835 int order = folio_order(src); 1836 bool has_isolated_pages = false; 1837 int start_order; 1838 struct page *freepage; 1839 unsigned long size; 1840 1841 again: 1842 for (start_order = order; start_order < NR_PAGE_ORDERS; start_order++) 1843 if (!list_empty(&cc->freepages[start_order])) 1844 break; 1845 1846 /* no free pages in the list */ 1847 if (start_order == NR_PAGE_ORDERS) { 1848 if (has_isolated_pages) 1849 return NULL; 1850 isolate_freepages(cc); 1851 has_isolated_pages = true; 1852 goto again; 1853 } 1854 1855 freepage = list_first_entry(&cc->freepages[start_order], struct page, 1856 lru); 1857 size = 1 << start_order; 1858 1859 list_del(&freepage->lru); 1860 1861 while (start_order > order) { 1862 start_order--; 1863 size >>= 1; 1864 1865 list_add(&freepage[size].lru, &cc->freepages[start_order]); 1866 set_page_private(&freepage[size], start_order); 1867 } 1868 dst = (struct folio *)freepage; 1869 1870 post_alloc_hook(&dst->page, order, __GFP_MOVABLE); 1871 if (order) 1872 prep_compound_page(&dst->page, order); 1873 cc->nr_freepages -= 1 << order; 1874 cc->nr_migratepages -= 1 << order; 1875 return page_rmappable_folio(&dst->page); 1876 } 1877 1878 static struct folio *compaction_alloc(struct folio *src, unsigned long data) 1879 { 1880 return alloc_hooks(compaction_alloc_noprof(src, data)); 1881 } 1882 1883 /* 1884 * This is a migrate-callback that "frees" freepages back to the isolated 1885 * freelist. All pages on the freelist are from the same zone, so there is no 1886 * special handling needed for NUMA. 1887 */ 1888 static void compaction_free(struct folio *dst, unsigned long data) 1889 { 1890 struct compact_control *cc = (struct compact_control *)data; 1891 int order = folio_order(dst); 1892 struct page *page = &dst->page; 1893 1894 if (folio_put_testzero(dst)) { 1895 free_pages_prepare(page, order); 1896 list_add(&dst->lru, &cc->freepages[order]); 1897 cc->nr_freepages += 1 << order; 1898 } 1899 cc->nr_migratepages += 1 << order; 1900 /* 1901 * someone else has referenced the page, we cannot take it back to our 1902 * free list. 1903 */ 1904 } 1905 1906 /* possible outcome of isolate_migratepages */ 1907 typedef enum { 1908 ISOLATE_ABORT, /* Abort compaction now */ 1909 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1910 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1911 } isolate_migrate_t; 1912 1913 /* 1914 * Allow userspace to control policy on scanning the unevictable LRU for 1915 * compactable pages. 1916 */ 1917 static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT; 1918 /* 1919 * Tunable for proactive compaction. It determines how 1920 * aggressively the kernel should compact memory in the 1921 * background. It takes values in the range [0, 100]. 1922 */ 1923 static unsigned int __read_mostly sysctl_compaction_proactiveness = 20; 1924 static int sysctl_extfrag_threshold = 500; 1925 static int __read_mostly sysctl_compact_memory; 1926 1927 static inline void 1928 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn) 1929 { 1930 if (cc->fast_start_pfn == ULONG_MAX) 1931 return; 1932 1933 if (!cc->fast_start_pfn) 1934 cc->fast_start_pfn = pfn; 1935 1936 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn); 1937 } 1938 1939 static inline unsigned long 1940 reinit_migrate_pfn(struct compact_control *cc) 1941 { 1942 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX) 1943 return cc->migrate_pfn; 1944 1945 cc->migrate_pfn = cc->fast_start_pfn; 1946 cc->fast_start_pfn = ULONG_MAX; 1947 1948 return cc->migrate_pfn; 1949 } 1950 1951 /* 1952 * Briefly search the free lists for a migration source that already has 1953 * some free pages to reduce the number of pages that need migration 1954 * before a pageblock is free. 1955 */ 1956 static unsigned long fast_find_migrateblock(struct compact_control *cc) 1957 { 1958 unsigned int limit = freelist_scan_limit(cc); 1959 unsigned int nr_scanned = 0; 1960 unsigned long distance; 1961 unsigned long pfn = cc->migrate_pfn; 1962 unsigned long high_pfn; 1963 int order; 1964 bool found_block = false; 1965 1966 /* Skip hints are relied on to avoid repeats on the fast search */ 1967 if (cc->ignore_skip_hint) 1968 return pfn; 1969 1970 /* 1971 * If the pageblock should be finished then do not select a different 1972 * pageblock. 1973 */ 1974 if (cc->finish_pageblock) 1975 return pfn; 1976 1977 /* 1978 * If the migrate_pfn is not at the start of a zone or the start 1979 * of a pageblock then assume this is a continuation of a previous 1980 * scan restarted due to COMPACT_CLUSTER_MAX. 1981 */ 1982 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn)) 1983 return pfn; 1984 1985 /* 1986 * For smaller orders, just linearly scan as the number of pages 1987 * to migrate should be relatively small and does not necessarily 1988 * justify freeing up a large block for a small allocation. 1989 */ 1990 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER) 1991 return pfn; 1992 1993 /* 1994 * Only allow kcompactd and direct requests for movable pages to 1995 * quickly clear out a MOVABLE pageblock for allocation. This 1996 * reduces the risk that a large movable pageblock is freed for 1997 * an unmovable/reclaimable small allocation. 1998 */ 1999 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE) 2000 return pfn; 2001 2002 /* 2003 * When starting the migration scanner, pick any pageblock within the 2004 * first half of the search space. Otherwise try and pick a pageblock 2005 * within the first eighth to reduce the chances that a migration 2006 * target later becomes a source. 2007 */ 2008 distance = (cc->free_pfn - cc->migrate_pfn) >> 1; 2009 if (cc->migrate_pfn != cc->zone->zone_start_pfn) 2010 distance >>= 2; 2011 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance); 2012 2013 for (order = cc->order - 1; 2014 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit; 2015 order--) { 2016 struct free_area *area = &cc->zone->free_area[order]; 2017 struct list_head *freelist; 2018 unsigned long flags; 2019 struct page *freepage; 2020 2021 if (!area->nr_free) 2022 continue; 2023 2024 spin_lock_irqsave(&cc->zone->lock, flags); 2025 freelist = &area->free_list[MIGRATE_MOVABLE]; 2026 list_for_each_entry(freepage, freelist, buddy_list) { 2027 unsigned long free_pfn; 2028 2029 if (nr_scanned++ >= limit) { 2030 move_freelist_tail(freelist, freepage); 2031 break; 2032 } 2033 2034 free_pfn = page_to_pfn(freepage); 2035 if (free_pfn < high_pfn) { 2036 /* 2037 * Avoid if skipped recently. Ideally it would 2038 * move to the tail but even safe iteration of 2039 * the list assumes an entry is deleted, not 2040 * reordered. 2041 */ 2042 if (get_pageblock_skip(freepage)) 2043 continue; 2044 2045 /* Reorder to so a future search skips recent pages */ 2046 move_freelist_tail(freelist, freepage); 2047 2048 update_fast_start_pfn(cc, free_pfn); 2049 pfn = pageblock_start_pfn(free_pfn); 2050 if (pfn < cc->zone->zone_start_pfn) 2051 pfn = cc->zone->zone_start_pfn; 2052 cc->fast_search_fail = 0; 2053 found_block = true; 2054 break; 2055 } 2056 } 2057 spin_unlock_irqrestore(&cc->zone->lock, flags); 2058 } 2059 2060 cc->total_migrate_scanned += nr_scanned; 2061 2062 /* 2063 * If fast scanning failed then use a cached entry for a page block 2064 * that had free pages as the basis for starting a linear scan. 2065 */ 2066 if (!found_block) { 2067 cc->fast_search_fail++; 2068 pfn = reinit_migrate_pfn(cc); 2069 } 2070 return pfn; 2071 } 2072 2073 /* 2074 * Isolate all pages that can be migrated from the first suitable block, 2075 * starting at the block pointed to by the migrate scanner pfn within 2076 * compact_control. 2077 */ 2078 static isolate_migrate_t isolate_migratepages(struct compact_control *cc) 2079 { 2080 unsigned long block_start_pfn; 2081 unsigned long block_end_pfn; 2082 unsigned long low_pfn; 2083 struct page *page; 2084 const isolate_mode_t isolate_mode = 2085 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 2086 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0); 2087 bool fast_find_block; 2088 2089 /* 2090 * Start at where we last stopped, or beginning of the zone as 2091 * initialized by compact_zone(). The first failure will use 2092 * the lowest PFN as the starting point for linear scanning. 2093 */ 2094 low_pfn = fast_find_migrateblock(cc); 2095 block_start_pfn = pageblock_start_pfn(low_pfn); 2096 if (block_start_pfn < cc->zone->zone_start_pfn) 2097 block_start_pfn = cc->zone->zone_start_pfn; 2098 2099 /* 2100 * fast_find_migrateblock() has already ensured the pageblock is not 2101 * set with a skipped flag, so to avoid the isolation_suitable check 2102 * below again, check whether the fast search was successful. 2103 */ 2104 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail; 2105 2106 /* Only scan within a pageblock boundary */ 2107 block_end_pfn = pageblock_end_pfn(low_pfn); 2108 2109 /* 2110 * Iterate over whole pageblocks until we find the first suitable. 2111 * Do not cross the free scanner. 2112 */ 2113 for (; block_end_pfn <= cc->free_pfn; 2114 fast_find_block = false, 2115 cc->migrate_pfn = low_pfn = block_end_pfn, 2116 block_start_pfn = block_end_pfn, 2117 block_end_pfn += pageblock_nr_pages) { 2118 2119 /* 2120 * This can potentially iterate a massively long zone with 2121 * many pageblocks unsuitable, so periodically check if we 2122 * need to schedule. 2123 */ 2124 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages))) 2125 cond_resched(); 2126 2127 page = pageblock_pfn_to_page(block_start_pfn, 2128 block_end_pfn, cc->zone); 2129 if (!page) { 2130 unsigned long next_pfn; 2131 2132 next_pfn = skip_offline_sections(block_start_pfn); 2133 if (next_pfn) 2134 block_end_pfn = min(next_pfn, cc->free_pfn); 2135 continue; 2136 } 2137 2138 /* 2139 * If isolation recently failed, do not retry. Only check the 2140 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock 2141 * to be visited multiple times. Assume skip was checked 2142 * before making it "skip" so other compaction instances do 2143 * not scan the same block. 2144 */ 2145 if ((pageblock_aligned(low_pfn) || 2146 low_pfn == cc->zone->zone_start_pfn) && 2147 !fast_find_block && !isolation_suitable(cc, page)) 2148 continue; 2149 2150 /* 2151 * For async direct compaction, only scan the pageblocks of the 2152 * same migratetype without huge pages. Async direct compaction 2153 * is optimistic to see if the minimum amount of work satisfies 2154 * the allocation. The cached PFN is updated as it's possible 2155 * that all remaining blocks between source and target are 2156 * unsuitable and the compaction scanners fail to meet. 2157 */ 2158 if (!suitable_migration_source(cc, page)) { 2159 update_cached_migrate(cc, block_end_pfn); 2160 continue; 2161 } 2162 2163 /* Perform the isolation */ 2164 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn, 2165 isolate_mode)) 2166 return ISOLATE_ABORT; 2167 2168 /* 2169 * Either we isolated something and proceed with migration. Or 2170 * we failed and compact_zone should decide if we should 2171 * continue or not. 2172 */ 2173 break; 2174 } 2175 2176 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 2177 } 2178 2179 /* 2180 * Determine whether kswapd is (or recently was!) running on this node. 2181 * 2182 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't 2183 * zero it. 2184 */ 2185 static bool kswapd_is_running(pg_data_t *pgdat) 2186 { 2187 bool running; 2188 2189 pgdat_kswapd_lock(pgdat); 2190 running = pgdat->kswapd && task_is_running(pgdat->kswapd); 2191 pgdat_kswapd_unlock(pgdat); 2192 2193 return running; 2194 } 2195 2196 /* 2197 * A zone's fragmentation score is the external fragmentation wrt to the 2198 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100]. 2199 */ 2200 static unsigned int fragmentation_score_zone(struct zone *zone) 2201 { 2202 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER); 2203 } 2204 2205 /* 2206 * A weighted zone's fragmentation score is the external fragmentation 2207 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It 2208 * returns a value in the range [0, 100]. 2209 * 2210 * The scaling factor ensures that proactive compaction focuses on larger 2211 * zones like ZONE_NORMAL, rather than smaller, specialized zones like 2212 * ZONE_DMA32. For smaller zones, the score value remains close to zero, 2213 * and thus never exceeds the high threshold for proactive compaction. 2214 */ 2215 static unsigned int fragmentation_score_zone_weighted(struct zone *zone) 2216 { 2217 unsigned long score; 2218 2219 score = zone->present_pages * fragmentation_score_zone(zone); 2220 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1); 2221 } 2222 2223 /* 2224 * The per-node proactive (background) compaction process is started by its 2225 * corresponding kcompactd thread when the node's fragmentation score 2226 * exceeds the high threshold. The compaction process remains active till 2227 * the node's score falls below the low threshold, or one of the back-off 2228 * conditions is met. 2229 */ 2230 static unsigned int fragmentation_score_node(pg_data_t *pgdat) 2231 { 2232 unsigned int score = 0; 2233 int zoneid; 2234 2235 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2236 struct zone *zone; 2237 2238 zone = &pgdat->node_zones[zoneid]; 2239 if (!populated_zone(zone)) 2240 continue; 2241 score += fragmentation_score_zone_weighted(zone); 2242 } 2243 2244 return score; 2245 } 2246 2247 static unsigned int fragmentation_score_wmark(bool low) 2248 { 2249 unsigned int wmark_low; 2250 2251 /* 2252 * Cap the low watermark to avoid excessive compaction 2253 * activity in case a user sets the proactiveness tunable 2254 * close to 100 (maximum). 2255 */ 2256 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U); 2257 return low ? wmark_low : min(wmark_low + 10, 100U); 2258 } 2259 2260 static bool should_proactive_compact_node(pg_data_t *pgdat) 2261 { 2262 int wmark_high; 2263 2264 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat)) 2265 return false; 2266 2267 wmark_high = fragmentation_score_wmark(false); 2268 return fragmentation_score_node(pgdat) > wmark_high; 2269 } 2270 2271 static enum compact_result __compact_finished(struct compact_control *cc) 2272 { 2273 unsigned int order; 2274 const int migratetype = cc->migratetype; 2275 int ret; 2276 2277 /* Compaction run completes if the migrate and free scanner meet */ 2278 if (compact_scanners_met(cc)) { 2279 /* Let the next compaction start anew. */ 2280 reset_cached_positions(cc->zone); 2281 2282 /* 2283 * Mark that the PG_migrate_skip information should be cleared 2284 * by kswapd when it goes to sleep. kcompactd does not set the 2285 * flag itself as the decision to be clear should be directly 2286 * based on an allocation request. 2287 */ 2288 if (cc->direct_compaction) 2289 cc->zone->compact_blockskip_flush = true; 2290 2291 if (cc->whole_zone) 2292 return COMPACT_COMPLETE; 2293 else 2294 return COMPACT_PARTIAL_SKIPPED; 2295 } 2296 2297 if (cc->proactive_compaction) { 2298 int score, wmark_low; 2299 pg_data_t *pgdat; 2300 2301 pgdat = cc->zone->zone_pgdat; 2302 if (kswapd_is_running(pgdat)) 2303 return COMPACT_PARTIAL_SKIPPED; 2304 2305 score = fragmentation_score_zone(cc->zone); 2306 wmark_low = fragmentation_score_wmark(true); 2307 2308 if (score > wmark_low) 2309 ret = COMPACT_CONTINUE; 2310 else 2311 ret = COMPACT_SUCCESS; 2312 2313 goto out; 2314 } 2315 2316 if (is_via_compact_memory(cc->order)) 2317 return COMPACT_CONTINUE; 2318 2319 /* 2320 * Always finish scanning a pageblock to reduce the possibility of 2321 * fallbacks in the future. This is particularly important when 2322 * migration source is unmovable/reclaimable but it's not worth 2323 * special casing. 2324 */ 2325 if (!pageblock_aligned(cc->migrate_pfn)) 2326 return COMPACT_CONTINUE; 2327 2328 /* Direct compactor: Is a suitable page free? */ 2329 ret = COMPACT_NO_SUITABLE_PAGE; 2330 for (order = cc->order; order < NR_PAGE_ORDERS; order++) { 2331 struct free_area *area = &cc->zone->free_area[order]; 2332 bool can_steal; 2333 2334 /* Job done if page is free of the right migratetype */ 2335 if (!free_area_empty(area, migratetype)) 2336 return COMPACT_SUCCESS; 2337 2338 #ifdef CONFIG_CMA 2339 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 2340 if (migratetype == MIGRATE_MOVABLE && 2341 !free_area_empty(area, MIGRATE_CMA)) 2342 return COMPACT_SUCCESS; 2343 #endif 2344 /* 2345 * Job done if allocation would steal freepages from 2346 * other migratetype buddy lists. 2347 */ 2348 if (find_suitable_fallback(area, order, migratetype, 2349 true, &can_steal) != -1) 2350 /* 2351 * Movable pages are OK in any pageblock. If we are 2352 * stealing for a non-movable allocation, make sure 2353 * we finish compacting the current pageblock first 2354 * (which is assured by the above migrate_pfn align 2355 * check) so it is as free as possible and we won't 2356 * have to steal another one soon. 2357 */ 2358 return COMPACT_SUCCESS; 2359 } 2360 2361 out: 2362 if (cc->contended || fatal_signal_pending(current)) 2363 ret = COMPACT_CONTENDED; 2364 2365 return ret; 2366 } 2367 2368 static enum compact_result compact_finished(struct compact_control *cc) 2369 { 2370 int ret; 2371 2372 ret = __compact_finished(cc); 2373 trace_mm_compaction_finished(cc->zone, cc->order, ret); 2374 if (ret == COMPACT_NO_SUITABLE_PAGE) 2375 ret = COMPACT_CONTINUE; 2376 2377 return ret; 2378 } 2379 2380 static bool __compaction_suitable(struct zone *zone, int order, 2381 int highest_zoneidx, 2382 unsigned long wmark_target) 2383 { 2384 unsigned long watermark; 2385 /* 2386 * Watermarks for order-0 must be met for compaction to be able to 2387 * isolate free pages for migration targets. This means that the 2388 * watermark and alloc_flags have to match, or be more pessimistic than 2389 * the check in __isolate_free_page(). We don't use the direct 2390 * compactor's alloc_flags, as they are not relevant for freepage 2391 * isolation. We however do use the direct compactor's highest_zoneidx 2392 * to skip over zones where lowmem reserves would prevent allocation 2393 * even if compaction succeeds. 2394 * For costly orders, we require low watermark instead of min for 2395 * compaction to proceed to increase its chances. 2396 * ALLOC_CMA is used, as pages in CMA pageblocks are considered 2397 * suitable migration targets 2398 */ 2399 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ? 2400 low_wmark_pages(zone) : min_wmark_pages(zone); 2401 watermark += compact_gap(order); 2402 return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx, 2403 ALLOC_CMA, wmark_target); 2404 } 2405 2406 /* 2407 * compaction_suitable: Is this suitable to run compaction on this zone now? 2408 */ 2409 bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx) 2410 { 2411 enum compact_result compact_result; 2412 bool suitable; 2413 2414 suitable = __compaction_suitable(zone, order, highest_zoneidx, 2415 zone_page_state(zone, NR_FREE_PAGES)); 2416 /* 2417 * fragmentation index determines if allocation failures are due to 2418 * low memory or external fragmentation 2419 * 2420 * index of -1000 would imply allocations might succeed depending on 2421 * watermarks, but we already failed the high-order watermark check 2422 * index towards 0 implies failure is due to lack of memory 2423 * index towards 1000 implies failure is due to fragmentation 2424 * 2425 * Only compact if a failure would be due to fragmentation. Also 2426 * ignore fragindex for non-costly orders where the alternative to 2427 * a successful reclaim/compaction is OOM. Fragindex and the 2428 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent 2429 * excessive compaction for costly orders, but it should not be at the 2430 * expense of system stability. 2431 */ 2432 if (suitable) { 2433 compact_result = COMPACT_CONTINUE; 2434 if (order > PAGE_ALLOC_COSTLY_ORDER) { 2435 int fragindex = fragmentation_index(zone, order); 2436 2437 if (fragindex >= 0 && 2438 fragindex <= sysctl_extfrag_threshold) { 2439 suitable = false; 2440 compact_result = COMPACT_NOT_SUITABLE_ZONE; 2441 } 2442 } 2443 } else { 2444 compact_result = COMPACT_SKIPPED; 2445 } 2446 2447 trace_mm_compaction_suitable(zone, order, compact_result); 2448 2449 return suitable; 2450 } 2451 2452 bool compaction_zonelist_suitable(struct alloc_context *ac, int order, 2453 int alloc_flags) 2454 { 2455 struct zone *zone; 2456 struct zoneref *z; 2457 2458 /* 2459 * Make sure at least one zone would pass __compaction_suitable if we continue 2460 * retrying the reclaim. 2461 */ 2462 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2463 ac->highest_zoneidx, ac->nodemask) { 2464 unsigned long available; 2465 2466 /* 2467 * Do not consider all the reclaimable memory because we do not 2468 * want to trash just for a single high order allocation which 2469 * is even not guaranteed to appear even if __compaction_suitable 2470 * is happy about the watermark check. 2471 */ 2472 available = zone_reclaimable_pages(zone) / order; 2473 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 2474 if (__compaction_suitable(zone, order, ac->highest_zoneidx, 2475 available)) 2476 return true; 2477 } 2478 2479 return false; 2480 } 2481 2482 /* 2483 * Should we do compaction for target allocation order. 2484 * Return COMPACT_SUCCESS if allocation for target order can be already 2485 * satisfied 2486 * Return COMPACT_SKIPPED if compaction for target order is likely to fail 2487 * Return COMPACT_CONTINUE if compaction for target order should be ran 2488 */ 2489 static enum compact_result 2490 compaction_suit_allocation_order(struct zone *zone, unsigned int order, 2491 int highest_zoneidx, unsigned int alloc_flags) 2492 { 2493 unsigned long watermark; 2494 2495 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 2496 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx, 2497 alloc_flags)) 2498 return COMPACT_SUCCESS; 2499 2500 if (!compaction_suitable(zone, order, highest_zoneidx)) 2501 return COMPACT_SKIPPED; 2502 2503 return COMPACT_CONTINUE; 2504 } 2505 2506 static enum compact_result 2507 compact_zone(struct compact_control *cc, struct capture_control *capc) 2508 { 2509 enum compact_result ret; 2510 unsigned long start_pfn = cc->zone->zone_start_pfn; 2511 unsigned long end_pfn = zone_end_pfn(cc->zone); 2512 unsigned long last_migrated_pfn; 2513 const bool sync = cc->mode != MIGRATE_ASYNC; 2514 bool update_cached; 2515 unsigned int nr_succeeded = 0, nr_migratepages; 2516 int order; 2517 2518 /* 2519 * These counters track activities during zone compaction. Initialize 2520 * them before compacting a new zone. 2521 */ 2522 cc->total_migrate_scanned = 0; 2523 cc->total_free_scanned = 0; 2524 cc->nr_migratepages = 0; 2525 cc->nr_freepages = 0; 2526 for (order = 0; order < NR_PAGE_ORDERS; order++) 2527 INIT_LIST_HEAD(&cc->freepages[order]); 2528 INIT_LIST_HEAD(&cc->migratepages); 2529 2530 cc->migratetype = gfp_migratetype(cc->gfp_mask); 2531 2532 if (!is_via_compact_memory(cc->order)) { 2533 ret = compaction_suit_allocation_order(cc->zone, cc->order, 2534 cc->highest_zoneidx, 2535 cc->alloc_flags); 2536 if (ret != COMPACT_CONTINUE) 2537 return ret; 2538 } 2539 2540 /* 2541 * Clear pageblock skip if there were failures recently and compaction 2542 * is about to be retried after being deferred. 2543 */ 2544 if (compaction_restarting(cc->zone, cc->order)) 2545 __reset_isolation_suitable(cc->zone); 2546 2547 /* 2548 * Setup to move all movable pages to the end of the zone. Used cached 2549 * information on where the scanners should start (unless we explicitly 2550 * want to compact the whole zone), but check that it is initialised 2551 * by ensuring the values are within zone boundaries. 2552 */ 2553 cc->fast_start_pfn = 0; 2554 if (cc->whole_zone) { 2555 cc->migrate_pfn = start_pfn; 2556 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2557 } else { 2558 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync]; 2559 cc->free_pfn = cc->zone->compact_cached_free_pfn; 2560 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 2561 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2562 cc->zone->compact_cached_free_pfn = cc->free_pfn; 2563 } 2564 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 2565 cc->migrate_pfn = start_pfn; 2566 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 2567 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 2568 } 2569 2570 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn) 2571 cc->whole_zone = true; 2572 } 2573 2574 last_migrated_pfn = 0; 2575 2576 /* 2577 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on 2578 * the basis that some migrations will fail in ASYNC mode. However, 2579 * if the cached PFNs match and pageblocks are skipped due to having 2580 * no isolation candidates, then the sync state does not matter. 2581 * Until a pageblock with isolation candidates is found, keep the 2582 * cached PFNs in sync to avoid revisiting the same blocks. 2583 */ 2584 update_cached = !sync && 2585 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1]; 2586 2587 trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync); 2588 2589 /* lru_add_drain_all could be expensive with involving other CPUs */ 2590 lru_add_drain(); 2591 2592 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) { 2593 int err; 2594 unsigned long iteration_start_pfn = cc->migrate_pfn; 2595 2596 /* 2597 * Avoid multiple rescans of the same pageblock which can 2598 * happen if a page cannot be isolated (dirty/writeback in 2599 * async mode) or if the migrated pages are being allocated 2600 * before the pageblock is cleared. The first rescan will 2601 * capture the entire pageblock for migration. If it fails, 2602 * it'll be marked skip and scanning will proceed as normal. 2603 */ 2604 cc->finish_pageblock = false; 2605 if (pageblock_start_pfn(last_migrated_pfn) == 2606 pageblock_start_pfn(iteration_start_pfn)) { 2607 cc->finish_pageblock = true; 2608 } 2609 2610 rescan: 2611 switch (isolate_migratepages(cc)) { 2612 case ISOLATE_ABORT: 2613 ret = COMPACT_CONTENDED; 2614 putback_movable_pages(&cc->migratepages); 2615 cc->nr_migratepages = 0; 2616 goto out; 2617 case ISOLATE_NONE: 2618 if (update_cached) { 2619 cc->zone->compact_cached_migrate_pfn[1] = 2620 cc->zone->compact_cached_migrate_pfn[0]; 2621 } 2622 2623 /* 2624 * We haven't isolated and migrated anything, but 2625 * there might still be unflushed migrations from 2626 * previous cc->order aligned block. 2627 */ 2628 goto check_drain; 2629 case ISOLATE_SUCCESS: 2630 update_cached = false; 2631 last_migrated_pfn = max(cc->zone->zone_start_pfn, 2632 pageblock_start_pfn(cc->migrate_pfn - 1)); 2633 } 2634 2635 /* 2636 * Record the number of pages to migrate since the 2637 * compaction_alloc/free() will update cc->nr_migratepages 2638 * properly. 2639 */ 2640 nr_migratepages = cc->nr_migratepages; 2641 err = migrate_pages(&cc->migratepages, compaction_alloc, 2642 compaction_free, (unsigned long)cc, cc->mode, 2643 MR_COMPACTION, &nr_succeeded); 2644 2645 trace_mm_compaction_migratepages(nr_migratepages, nr_succeeded); 2646 2647 /* All pages were either migrated or will be released */ 2648 cc->nr_migratepages = 0; 2649 if (err) { 2650 putback_movable_pages(&cc->migratepages); 2651 /* 2652 * migrate_pages() may return -ENOMEM when scanners meet 2653 * and we want compact_finished() to detect it 2654 */ 2655 if (err == -ENOMEM && !compact_scanners_met(cc)) { 2656 ret = COMPACT_CONTENDED; 2657 goto out; 2658 } 2659 /* 2660 * If an ASYNC or SYNC_LIGHT fails to migrate a page 2661 * within the pageblock_order-aligned block and 2662 * fast_find_migrateblock may be used then scan the 2663 * remainder of the pageblock. This will mark the 2664 * pageblock "skip" to avoid rescanning in the near 2665 * future. This will isolate more pages than necessary 2666 * for the request but avoid loops due to 2667 * fast_find_migrateblock revisiting blocks that were 2668 * recently partially scanned. 2669 */ 2670 if (!pageblock_aligned(cc->migrate_pfn) && 2671 !cc->ignore_skip_hint && !cc->finish_pageblock && 2672 (cc->mode < MIGRATE_SYNC)) { 2673 cc->finish_pageblock = true; 2674 2675 /* 2676 * Draining pcplists does not help THP if 2677 * any page failed to migrate. Even after 2678 * drain, the pageblock will not be free. 2679 */ 2680 if (cc->order == COMPACTION_HPAGE_ORDER) 2681 last_migrated_pfn = 0; 2682 2683 goto rescan; 2684 } 2685 } 2686 2687 /* Stop if a page has been captured */ 2688 if (capc && capc->page) { 2689 ret = COMPACT_SUCCESS; 2690 break; 2691 } 2692 2693 check_drain: 2694 /* 2695 * Has the migration scanner moved away from the previous 2696 * cc->order aligned block where we migrated from? If yes, 2697 * flush the pages that were freed, so that they can merge and 2698 * compact_finished() can detect immediately if allocation 2699 * would succeed. 2700 */ 2701 if (cc->order > 0 && last_migrated_pfn) { 2702 unsigned long current_block_start = 2703 block_start_pfn(cc->migrate_pfn, cc->order); 2704 2705 if (last_migrated_pfn < current_block_start) { 2706 lru_add_drain_cpu_zone(cc->zone); 2707 /* No more flushing until we migrate again */ 2708 last_migrated_pfn = 0; 2709 } 2710 } 2711 } 2712 2713 out: 2714 /* 2715 * Release free pages and update where the free scanner should restart, 2716 * so we don't leave any returned pages behind in the next attempt. 2717 */ 2718 if (cc->nr_freepages > 0) { 2719 unsigned long free_pfn = release_free_list(cc->freepages); 2720 2721 cc->nr_freepages = 0; 2722 VM_BUG_ON(free_pfn == 0); 2723 /* The cached pfn is always the first in a pageblock */ 2724 free_pfn = pageblock_start_pfn(free_pfn); 2725 /* 2726 * Only go back, not forward. The cached pfn might have been 2727 * already reset to zone end in compact_finished() 2728 */ 2729 if (free_pfn > cc->zone->compact_cached_free_pfn) 2730 cc->zone->compact_cached_free_pfn = free_pfn; 2731 } 2732 2733 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned); 2734 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned); 2735 2736 trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret); 2737 2738 VM_BUG_ON(!list_empty(&cc->migratepages)); 2739 2740 return ret; 2741 } 2742 2743 static enum compact_result compact_zone_order(struct zone *zone, int order, 2744 gfp_t gfp_mask, enum compact_priority prio, 2745 unsigned int alloc_flags, int highest_zoneidx, 2746 struct page **capture) 2747 { 2748 enum compact_result ret; 2749 struct compact_control cc = { 2750 .order = order, 2751 .search_order = order, 2752 .gfp_mask = gfp_mask, 2753 .zone = zone, 2754 .mode = (prio == COMPACT_PRIO_ASYNC) ? 2755 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT, 2756 .alloc_flags = alloc_flags, 2757 .highest_zoneidx = highest_zoneidx, 2758 .direct_compaction = true, 2759 .whole_zone = (prio == MIN_COMPACT_PRIORITY), 2760 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY), 2761 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY) 2762 }; 2763 struct capture_control capc = { 2764 .cc = &cc, 2765 .page = NULL, 2766 }; 2767 2768 /* 2769 * Make sure the structs are really initialized before we expose the 2770 * capture control, in case we are interrupted and the interrupt handler 2771 * frees a page. 2772 */ 2773 barrier(); 2774 WRITE_ONCE(current->capture_control, &capc); 2775 2776 ret = compact_zone(&cc, &capc); 2777 2778 /* 2779 * Make sure we hide capture control first before we read the captured 2780 * page pointer, otherwise an interrupt could free and capture a page 2781 * and we would leak it. 2782 */ 2783 WRITE_ONCE(current->capture_control, NULL); 2784 *capture = READ_ONCE(capc.page); 2785 /* 2786 * Technically, it is also possible that compaction is skipped but 2787 * the page is still captured out of luck(IRQ came and freed the page). 2788 * Returning COMPACT_SUCCESS in such cases helps in properly accounting 2789 * the COMPACT[STALL|FAIL] when compaction is skipped. 2790 */ 2791 if (*capture) 2792 ret = COMPACT_SUCCESS; 2793 2794 return ret; 2795 } 2796 2797 /** 2798 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 2799 * @gfp_mask: The GFP mask of the current allocation 2800 * @order: The order of the current allocation 2801 * @alloc_flags: The allocation flags of the current allocation 2802 * @ac: The context of current allocation 2803 * @prio: Determines how hard direct compaction should try to succeed 2804 * @capture: Pointer to free page created by compaction will be stored here 2805 * 2806 * This is the main entry point for direct page compaction. 2807 */ 2808 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 2809 unsigned int alloc_flags, const struct alloc_context *ac, 2810 enum compact_priority prio, struct page **capture) 2811 { 2812 struct zoneref *z; 2813 struct zone *zone; 2814 enum compact_result rc = COMPACT_SKIPPED; 2815 2816 if (!gfp_compaction_allowed(gfp_mask)) 2817 return COMPACT_SKIPPED; 2818 2819 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio); 2820 2821 /* Compact each zone in the list */ 2822 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2823 ac->highest_zoneidx, ac->nodemask) { 2824 enum compact_result status; 2825 2826 if (cpusets_enabled() && 2827 (alloc_flags & ALLOC_CPUSET) && 2828 !__cpuset_zone_allowed(zone, gfp_mask)) 2829 continue; 2830 2831 if (prio > MIN_COMPACT_PRIORITY 2832 && compaction_deferred(zone, order)) { 2833 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); 2834 continue; 2835 } 2836 2837 status = compact_zone_order(zone, order, gfp_mask, prio, 2838 alloc_flags, ac->highest_zoneidx, capture); 2839 rc = max(status, rc); 2840 2841 /* The allocation should succeed, stop compacting */ 2842 if (status == COMPACT_SUCCESS) { 2843 /* 2844 * We think the allocation will succeed in this zone, 2845 * but it is not certain, hence the false. The caller 2846 * will repeat this with true if allocation indeed 2847 * succeeds in this zone. 2848 */ 2849 compaction_defer_reset(zone, order, false); 2850 2851 break; 2852 } 2853 2854 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE || 2855 status == COMPACT_PARTIAL_SKIPPED)) 2856 /* 2857 * We think that allocation won't succeed in this zone 2858 * so we defer compaction there. If it ends up 2859 * succeeding after all, it will be reset. 2860 */ 2861 defer_compaction(zone, order); 2862 2863 /* 2864 * We might have stopped compacting due to need_resched() in 2865 * async compaction, or due to a fatal signal detected. In that 2866 * case do not try further zones 2867 */ 2868 if ((prio == COMPACT_PRIO_ASYNC && need_resched()) 2869 || fatal_signal_pending(current)) 2870 break; 2871 } 2872 2873 return rc; 2874 } 2875 2876 /* 2877 * compact_node() - compact all zones within a node 2878 * @pgdat: The node page data 2879 * @proactive: Whether the compaction is proactive 2880 * 2881 * For proactive compaction, compact till each zone's fragmentation score 2882 * reaches within proactive compaction thresholds (as determined by the 2883 * proactiveness tunable), it is possible that the function returns before 2884 * reaching score targets due to various back-off conditions, such as, 2885 * contention on per-node or per-zone locks. 2886 */ 2887 static int compact_node(pg_data_t *pgdat, bool proactive) 2888 { 2889 int zoneid; 2890 struct zone *zone; 2891 struct compact_control cc = { 2892 .order = -1, 2893 .mode = proactive ? MIGRATE_SYNC_LIGHT : MIGRATE_SYNC, 2894 .ignore_skip_hint = true, 2895 .whole_zone = true, 2896 .gfp_mask = GFP_KERNEL, 2897 .proactive_compaction = proactive, 2898 }; 2899 2900 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2901 zone = &pgdat->node_zones[zoneid]; 2902 if (!populated_zone(zone)) 2903 continue; 2904 2905 if (fatal_signal_pending(current)) 2906 return -EINTR; 2907 2908 cc.zone = zone; 2909 2910 compact_zone(&cc, NULL); 2911 2912 if (proactive) { 2913 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 2914 cc.total_migrate_scanned); 2915 count_compact_events(KCOMPACTD_FREE_SCANNED, 2916 cc.total_free_scanned); 2917 } 2918 } 2919 2920 return 0; 2921 } 2922 2923 /* Compact all zones of all nodes in the system */ 2924 static int compact_nodes(void) 2925 { 2926 int ret, nid; 2927 2928 /* Flush pending updates to the LRU lists */ 2929 lru_add_drain_all(); 2930 2931 for_each_online_node(nid) { 2932 ret = compact_node(NODE_DATA(nid), false); 2933 if (ret) 2934 return ret; 2935 } 2936 2937 return 0; 2938 } 2939 2940 static int compaction_proactiveness_sysctl_handler(const struct ctl_table *table, int write, 2941 void *buffer, size_t *length, loff_t *ppos) 2942 { 2943 int rc, nid; 2944 2945 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 2946 if (rc) 2947 return rc; 2948 2949 if (write && sysctl_compaction_proactiveness) { 2950 for_each_online_node(nid) { 2951 pg_data_t *pgdat = NODE_DATA(nid); 2952 2953 if (pgdat->proactive_compact_trigger) 2954 continue; 2955 2956 pgdat->proactive_compact_trigger = true; 2957 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1, 2958 pgdat->nr_zones - 1); 2959 wake_up_interruptible(&pgdat->kcompactd_wait); 2960 } 2961 } 2962 2963 return 0; 2964 } 2965 2966 /* 2967 * This is the entry point for compacting all nodes via 2968 * /proc/sys/vm/compact_memory 2969 */ 2970 static int sysctl_compaction_handler(const struct ctl_table *table, int write, 2971 void *buffer, size_t *length, loff_t *ppos) 2972 { 2973 int ret; 2974 2975 ret = proc_dointvec(table, write, buffer, length, ppos); 2976 if (ret) 2977 return ret; 2978 2979 if (sysctl_compact_memory != 1) 2980 return -EINVAL; 2981 2982 if (write) 2983 ret = compact_nodes(); 2984 2985 return ret; 2986 } 2987 2988 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 2989 static ssize_t compact_store(struct device *dev, 2990 struct device_attribute *attr, 2991 const char *buf, size_t count) 2992 { 2993 int nid = dev->id; 2994 2995 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 2996 /* Flush pending updates to the LRU lists */ 2997 lru_add_drain_all(); 2998 2999 compact_node(NODE_DATA(nid), false); 3000 } 3001 3002 return count; 3003 } 3004 static DEVICE_ATTR_WO(compact); 3005 3006 int compaction_register_node(struct node *node) 3007 { 3008 return device_create_file(&node->dev, &dev_attr_compact); 3009 } 3010 3011 void compaction_unregister_node(struct node *node) 3012 { 3013 device_remove_file(&node->dev, &dev_attr_compact); 3014 } 3015 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 3016 3017 static inline bool kcompactd_work_requested(pg_data_t *pgdat) 3018 { 3019 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() || 3020 pgdat->proactive_compact_trigger; 3021 } 3022 3023 static bool kcompactd_node_suitable(pg_data_t *pgdat) 3024 { 3025 int zoneid; 3026 struct zone *zone; 3027 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx; 3028 enum compact_result ret; 3029 3030 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) { 3031 zone = &pgdat->node_zones[zoneid]; 3032 3033 if (!populated_zone(zone)) 3034 continue; 3035 3036 ret = compaction_suit_allocation_order(zone, 3037 pgdat->kcompactd_max_order, 3038 highest_zoneidx, ALLOC_WMARK_MIN); 3039 if (ret == COMPACT_CONTINUE) 3040 return true; 3041 } 3042 3043 return false; 3044 } 3045 3046 static void kcompactd_do_work(pg_data_t *pgdat) 3047 { 3048 /* 3049 * With no special task, compact all zones so that a page of requested 3050 * order is allocatable. 3051 */ 3052 int zoneid; 3053 struct zone *zone; 3054 struct compact_control cc = { 3055 .order = pgdat->kcompactd_max_order, 3056 .search_order = pgdat->kcompactd_max_order, 3057 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx, 3058 .mode = MIGRATE_SYNC_LIGHT, 3059 .ignore_skip_hint = false, 3060 .gfp_mask = GFP_KERNEL, 3061 }; 3062 enum compact_result ret; 3063 3064 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 3065 cc.highest_zoneidx); 3066 count_compact_event(KCOMPACTD_WAKE); 3067 3068 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) { 3069 int status; 3070 3071 zone = &pgdat->node_zones[zoneid]; 3072 if (!populated_zone(zone)) 3073 continue; 3074 3075 if (compaction_deferred(zone, cc.order)) 3076 continue; 3077 3078 ret = compaction_suit_allocation_order(zone, 3079 cc.order, zoneid, ALLOC_WMARK_MIN); 3080 if (ret != COMPACT_CONTINUE) 3081 continue; 3082 3083 if (kthread_should_stop()) 3084 return; 3085 3086 cc.zone = zone; 3087 status = compact_zone(&cc, NULL); 3088 3089 if (status == COMPACT_SUCCESS) { 3090 compaction_defer_reset(zone, cc.order, false); 3091 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { 3092 /* 3093 * Buddy pages may become stranded on pcps that could 3094 * otherwise coalesce on the zone's free area for 3095 * order >= cc.order. This is ratelimited by the 3096 * upcoming deferral. 3097 */ 3098 drain_all_pages(zone); 3099 3100 /* 3101 * We use sync migration mode here, so we defer like 3102 * sync direct compaction does. 3103 */ 3104 defer_compaction(zone, cc.order); 3105 } 3106 3107 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 3108 cc.total_migrate_scanned); 3109 count_compact_events(KCOMPACTD_FREE_SCANNED, 3110 cc.total_free_scanned); 3111 } 3112 3113 /* 3114 * Regardless of success, we are done until woken up next. But remember 3115 * the requested order/highest_zoneidx in case it was higher/tighter 3116 * than our current ones 3117 */ 3118 if (pgdat->kcompactd_max_order <= cc.order) 3119 pgdat->kcompactd_max_order = 0; 3120 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx) 3121 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 3122 } 3123 3124 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx) 3125 { 3126 if (!order) 3127 return; 3128 3129 if (pgdat->kcompactd_max_order < order) 3130 pgdat->kcompactd_max_order = order; 3131 3132 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx) 3133 pgdat->kcompactd_highest_zoneidx = highest_zoneidx; 3134 3135 /* 3136 * Pairs with implicit barrier in wait_event_freezable() 3137 * such that wakeups are not missed. 3138 */ 3139 if (!wq_has_sleeper(&pgdat->kcompactd_wait)) 3140 return; 3141 3142 if (!kcompactd_node_suitable(pgdat)) 3143 return; 3144 3145 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 3146 highest_zoneidx); 3147 wake_up_interruptible(&pgdat->kcompactd_wait); 3148 } 3149 3150 /* 3151 * The background compaction daemon, started as a kernel thread 3152 * from the init process. 3153 */ 3154 static int kcompactd(void *p) 3155 { 3156 pg_data_t *pgdat = (pg_data_t *)p; 3157 struct task_struct *tsk = current; 3158 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC); 3159 long timeout = default_timeout; 3160 3161 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3162 3163 if (!cpumask_empty(cpumask)) 3164 set_cpus_allowed_ptr(tsk, cpumask); 3165 3166 set_freezable(); 3167 3168 pgdat->kcompactd_max_order = 0; 3169 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 3170 3171 while (!kthread_should_stop()) { 3172 unsigned long pflags; 3173 3174 /* 3175 * Avoid the unnecessary wakeup for proactive compaction 3176 * when it is disabled. 3177 */ 3178 if (!sysctl_compaction_proactiveness) 3179 timeout = MAX_SCHEDULE_TIMEOUT; 3180 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 3181 if (wait_event_freezable_timeout(pgdat->kcompactd_wait, 3182 kcompactd_work_requested(pgdat), timeout) && 3183 !pgdat->proactive_compact_trigger) { 3184 3185 psi_memstall_enter(&pflags); 3186 kcompactd_do_work(pgdat); 3187 psi_memstall_leave(&pflags); 3188 /* 3189 * Reset the timeout value. The defer timeout from 3190 * proactive compaction is lost here but that is fine 3191 * as the condition of the zone changing substantionally 3192 * then carrying on with the previous defer interval is 3193 * not useful. 3194 */ 3195 timeout = default_timeout; 3196 continue; 3197 } 3198 3199 /* 3200 * Start the proactive work with default timeout. Based 3201 * on the fragmentation score, this timeout is updated. 3202 */ 3203 timeout = default_timeout; 3204 if (should_proactive_compact_node(pgdat)) { 3205 unsigned int prev_score, score; 3206 3207 prev_score = fragmentation_score_node(pgdat); 3208 compact_node(pgdat, true); 3209 score = fragmentation_score_node(pgdat); 3210 /* 3211 * Defer proactive compaction if the fragmentation 3212 * score did not go down i.e. no progress made. 3213 */ 3214 if (unlikely(score >= prev_score)) 3215 timeout = 3216 default_timeout << COMPACT_MAX_DEFER_SHIFT; 3217 } 3218 if (unlikely(pgdat->proactive_compact_trigger)) 3219 pgdat->proactive_compact_trigger = false; 3220 } 3221 3222 return 0; 3223 } 3224 3225 /* 3226 * This kcompactd start function will be called by init and node-hot-add. 3227 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 3228 */ 3229 void __meminit kcompactd_run(int nid) 3230 { 3231 pg_data_t *pgdat = NODE_DATA(nid); 3232 3233 if (pgdat->kcompactd) 3234 return; 3235 3236 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); 3237 if (IS_ERR(pgdat->kcompactd)) { 3238 pr_err("Failed to start kcompactd on node %d\n", nid); 3239 pgdat->kcompactd = NULL; 3240 } 3241 } 3242 3243 /* 3244 * Called by memory hotplug when all memory in a node is offlined. Caller must 3245 * be holding mem_hotplug_begin/done(). 3246 */ 3247 void __meminit kcompactd_stop(int nid) 3248 { 3249 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 3250 3251 if (kcompactd) { 3252 kthread_stop(kcompactd); 3253 NODE_DATA(nid)->kcompactd = NULL; 3254 } 3255 } 3256 3257 /* 3258 * It's optimal to keep kcompactd on the same CPUs as their memory, but 3259 * not required for correctness. So if the last cpu in a node goes 3260 * away, we get changed to run anywhere: as the first one comes back, 3261 * restore their cpu bindings. 3262 */ 3263 static int kcompactd_cpu_online(unsigned int cpu) 3264 { 3265 int nid; 3266 3267 for_each_node_state(nid, N_MEMORY) { 3268 pg_data_t *pgdat = NODE_DATA(nid); 3269 const struct cpumask *mask; 3270 3271 mask = cpumask_of_node(pgdat->node_id); 3272 3273 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3274 /* One of our CPUs online: restore mask */ 3275 if (pgdat->kcompactd) 3276 set_cpus_allowed_ptr(pgdat->kcompactd, mask); 3277 } 3278 return 0; 3279 } 3280 3281 static int proc_dointvec_minmax_warn_RT_change(const struct ctl_table *table, 3282 int write, void *buffer, size_t *lenp, loff_t *ppos) 3283 { 3284 int ret, old; 3285 3286 if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write) 3287 return proc_dointvec_minmax(table, write, buffer, lenp, ppos); 3288 3289 old = *(int *)table->data; 3290 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 3291 if (ret) 3292 return ret; 3293 if (old != *(int *)table->data) 3294 pr_warn_once("sysctl attribute %s changed by %s[%d]\n", 3295 table->procname, current->comm, 3296 task_pid_nr(current)); 3297 return ret; 3298 } 3299 3300 static struct ctl_table vm_compaction[] = { 3301 { 3302 .procname = "compact_memory", 3303 .data = &sysctl_compact_memory, 3304 .maxlen = sizeof(int), 3305 .mode = 0200, 3306 .proc_handler = sysctl_compaction_handler, 3307 }, 3308 { 3309 .procname = "compaction_proactiveness", 3310 .data = &sysctl_compaction_proactiveness, 3311 .maxlen = sizeof(sysctl_compaction_proactiveness), 3312 .mode = 0644, 3313 .proc_handler = compaction_proactiveness_sysctl_handler, 3314 .extra1 = SYSCTL_ZERO, 3315 .extra2 = SYSCTL_ONE_HUNDRED, 3316 }, 3317 { 3318 .procname = "extfrag_threshold", 3319 .data = &sysctl_extfrag_threshold, 3320 .maxlen = sizeof(int), 3321 .mode = 0644, 3322 .proc_handler = proc_dointvec_minmax, 3323 .extra1 = SYSCTL_ZERO, 3324 .extra2 = SYSCTL_ONE_THOUSAND, 3325 }, 3326 { 3327 .procname = "compact_unevictable_allowed", 3328 .data = &sysctl_compact_unevictable_allowed, 3329 .maxlen = sizeof(int), 3330 .mode = 0644, 3331 .proc_handler = proc_dointvec_minmax_warn_RT_change, 3332 .extra1 = SYSCTL_ZERO, 3333 .extra2 = SYSCTL_ONE, 3334 }, 3335 }; 3336 3337 static int __init kcompactd_init(void) 3338 { 3339 int nid; 3340 int ret; 3341 3342 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 3343 "mm/compaction:online", 3344 kcompactd_cpu_online, NULL); 3345 if (ret < 0) { 3346 pr_err("kcompactd: failed to register hotplug callbacks.\n"); 3347 return ret; 3348 } 3349 3350 for_each_node_state(nid, N_MEMORY) 3351 kcompactd_run(nid); 3352 register_sysctl_init("vm", vm_compaction); 3353 return 0; 3354 } 3355 subsys_initcall(kcompactd_init) 3356 3357 #endif /* CONFIG_COMPACTION */ 3358