1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/compaction.c 4 * 5 * Memory compaction for the reduction of external fragmentation. Note that 6 * this heavily depends upon page migration to do all the real heavy 7 * lifting 8 * 9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 10 */ 11 #include <linux/cpu.h> 12 #include <linux/swap.h> 13 #include <linux/migrate.h> 14 #include <linux/compaction.h> 15 #include <linux/mm_inline.h> 16 #include <linux/sched/signal.h> 17 #include <linux/backing-dev.h> 18 #include <linux/sysctl.h> 19 #include <linux/sysfs.h> 20 #include <linux/page-isolation.h> 21 #include <linux/kasan.h> 22 #include <linux/kthread.h> 23 #include <linux/freezer.h> 24 #include <linux/page_owner.h> 25 #include <linux/psi.h> 26 #include "internal.h" 27 28 #ifdef CONFIG_COMPACTION 29 /* 30 * Fragmentation score check interval for proactive compaction purposes. 31 */ 32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500) 33 34 static inline void count_compact_event(enum vm_event_item item) 35 { 36 count_vm_event(item); 37 } 38 39 static inline void count_compact_events(enum vm_event_item item, long delta) 40 { 41 count_vm_events(item, delta); 42 } 43 #else 44 #define count_compact_event(item) do { } while (0) 45 #define count_compact_events(item, delta) do { } while (0) 46 #endif 47 48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 49 50 #define CREATE_TRACE_POINTS 51 #include <trace/events/compaction.h> 52 53 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order)) 54 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order)) 55 56 /* 57 * Page order with-respect-to which proactive compaction 58 * calculates external fragmentation, which is used as 59 * the "fragmentation score" of a node/zone. 60 */ 61 #if defined CONFIG_TRANSPARENT_HUGEPAGE 62 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER 63 #elif defined CONFIG_HUGETLBFS 64 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER 65 #else 66 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT) 67 #endif 68 69 static unsigned long release_freepages(struct list_head *freelist) 70 { 71 struct page *page, *next; 72 unsigned long high_pfn = 0; 73 74 list_for_each_entry_safe(page, next, freelist, lru) { 75 unsigned long pfn = page_to_pfn(page); 76 list_del(&page->lru); 77 __free_page(page); 78 if (pfn > high_pfn) 79 high_pfn = pfn; 80 } 81 82 return high_pfn; 83 } 84 85 static void split_map_pages(struct list_head *list) 86 { 87 unsigned int i, order, nr_pages; 88 struct page *page, *next; 89 LIST_HEAD(tmp_list); 90 91 list_for_each_entry_safe(page, next, list, lru) { 92 list_del(&page->lru); 93 94 order = page_private(page); 95 nr_pages = 1 << order; 96 97 post_alloc_hook(page, order, __GFP_MOVABLE); 98 if (order) 99 split_page(page, order); 100 101 for (i = 0; i < nr_pages; i++) { 102 list_add(&page->lru, &tmp_list); 103 page++; 104 } 105 } 106 107 list_splice(&tmp_list, list); 108 } 109 110 #ifdef CONFIG_COMPACTION 111 bool PageMovable(struct page *page) 112 { 113 const struct movable_operations *mops; 114 115 VM_BUG_ON_PAGE(!PageLocked(page), page); 116 if (!__PageMovable(page)) 117 return false; 118 119 mops = page_movable_ops(page); 120 if (mops) 121 return true; 122 123 return false; 124 } 125 126 void __SetPageMovable(struct page *page, const struct movable_operations *mops) 127 { 128 VM_BUG_ON_PAGE(!PageLocked(page), page); 129 VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page); 130 page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE); 131 } 132 EXPORT_SYMBOL(__SetPageMovable); 133 134 void __ClearPageMovable(struct page *page) 135 { 136 VM_BUG_ON_PAGE(!PageMovable(page), page); 137 /* 138 * This page still has the type of a movable page, but it's 139 * actually not movable any more. 140 */ 141 page->mapping = (void *)PAGE_MAPPING_MOVABLE; 142 } 143 EXPORT_SYMBOL(__ClearPageMovable); 144 145 /* Do not skip compaction more than 64 times */ 146 #define COMPACT_MAX_DEFER_SHIFT 6 147 148 /* 149 * Compaction is deferred when compaction fails to result in a page 150 * allocation success. 1 << compact_defer_shift, compactions are skipped up 151 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 152 */ 153 static void defer_compaction(struct zone *zone, int order) 154 { 155 zone->compact_considered = 0; 156 zone->compact_defer_shift++; 157 158 if (order < zone->compact_order_failed) 159 zone->compact_order_failed = order; 160 161 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 162 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 163 164 trace_mm_compaction_defer_compaction(zone, order); 165 } 166 167 /* Returns true if compaction should be skipped this time */ 168 static bool compaction_deferred(struct zone *zone, int order) 169 { 170 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 171 172 if (order < zone->compact_order_failed) 173 return false; 174 175 /* Avoid possible overflow */ 176 if (++zone->compact_considered >= defer_limit) { 177 zone->compact_considered = defer_limit; 178 return false; 179 } 180 181 trace_mm_compaction_deferred(zone, order); 182 183 return true; 184 } 185 186 /* 187 * Update defer tracking counters after successful compaction of given order, 188 * which means an allocation either succeeded (alloc_success == true) or is 189 * expected to succeed. 190 */ 191 void compaction_defer_reset(struct zone *zone, int order, 192 bool alloc_success) 193 { 194 if (alloc_success) { 195 zone->compact_considered = 0; 196 zone->compact_defer_shift = 0; 197 } 198 if (order >= zone->compact_order_failed) 199 zone->compact_order_failed = order + 1; 200 201 trace_mm_compaction_defer_reset(zone, order); 202 } 203 204 /* Returns true if restarting compaction after many failures */ 205 static bool compaction_restarting(struct zone *zone, int order) 206 { 207 if (order < zone->compact_order_failed) 208 return false; 209 210 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 211 zone->compact_considered >= 1UL << zone->compact_defer_shift; 212 } 213 214 /* Returns true if the pageblock should be scanned for pages to isolate. */ 215 static inline bool isolation_suitable(struct compact_control *cc, 216 struct page *page) 217 { 218 if (cc->ignore_skip_hint) 219 return true; 220 221 return !get_pageblock_skip(page); 222 } 223 224 static void reset_cached_positions(struct zone *zone) 225 { 226 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 227 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 228 zone->compact_cached_free_pfn = 229 pageblock_start_pfn(zone_end_pfn(zone) - 1); 230 } 231 232 #ifdef CONFIG_SPARSEMEM 233 /* 234 * If the PFN falls into an offline section, return the start PFN of the 235 * next online section. If the PFN falls into an online section or if 236 * there is no next online section, return 0. 237 */ 238 static unsigned long skip_offline_sections(unsigned long start_pfn) 239 { 240 unsigned long start_nr = pfn_to_section_nr(start_pfn); 241 242 if (online_section_nr(start_nr)) 243 return 0; 244 245 while (++start_nr <= __highest_present_section_nr) { 246 if (online_section_nr(start_nr)) 247 return section_nr_to_pfn(start_nr); 248 } 249 250 return 0; 251 } 252 253 /* 254 * If the PFN falls into an offline section, return the end PFN of the 255 * next online section in reverse. If the PFN falls into an online section 256 * or if there is no next online section in reverse, return 0. 257 */ 258 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn) 259 { 260 unsigned long start_nr = pfn_to_section_nr(start_pfn); 261 262 if (!start_nr || online_section_nr(start_nr)) 263 return 0; 264 265 while (start_nr-- > 0) { 266 if (online_section_nr(start_nr)) 267 return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION; 268 } 269 270 return 0; 271 } 272 #else 273 static unsigned long skip_offline_sections(unsigned long start_pfn) 274 { 275 return 0; 276 } 277 278 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn) 279 { 280 return 0; 281 } 282 #endif 283 284 /* 285 * Compound pages of >= pageblock_order should consistently be skipped until 286 * released. It is always pointless to compact pages of such order (if they are 287 * migratable), and the pageblocks they occupy cannot contain any free pages. 288 */ 289 static bool pageblock_skip_persistent(struct page *page) 290 { 291 if (!PageCompound(page)) 292 return false; 293 294 page = compound_head(page); 295 296 if (compound_order(page) >= pageblock_order) 297 return true; 298 299 return false; 300 } 301 302 static bool 303 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source, 304 bool check_target) 305 { 306 struct page *page = pfn_to_online_page(pfn); 307 struct page *block_page; 308 struct page *end_page; 309 unsigned long block_pfn; 310 311 if (!page) 312 return false; 313 if (zone != page_zone(page)) 314 return false; 315 if (pageblock_skip_persistent(page)) 316 return false; 317 318 /* 319 * If skip is already cleared do no further checking once the 320 * restart points have been set. 321 */ 322 if (check_source && check_target && !get_pageblock_skip(page)) 323 return true; 324 325 /* 326 * If clearing skip for the target scanner, do not select a 327 * non-movable pageblock as the starting point. 328 */ 329 if (!check_source && check_target && 330 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 331 return false; 332 333 /* Ensure the start of the pageblock or zone is online and valid */ 334 block_pfn = pageblock_start_pfn(pfn); 335 block_pfn = max(block_pfn, zone->zone_start_pfn); 336 block_page = pfn_to_online_page(block_pfn); 337 if (block_page) { 338 page = block_page; 339 pfn = block_pfn; 340 } 341 342 /* Ensure the end of the pageblock or zone is online and valid */ 343 block_pfn = pageblock_end_pfn(pfn) - 1; 344 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1); 345 end_page = pfn_to_online_page(block_pfn); 346 if (!end_page) 347 return false; 348 349 /* 350 * Only clear the hint if a sample indicates there is either a 351 * free page or an LRU page in the block. One or other condition 352 * is necessary for the block to be a migration source/target. 353 */ 354 do { 355 if (check_source && PageLRU(page)) { 356 clear_pageblock_skip(page); 357 return true; 358 } 359 360 if (check_target && PageBuddy(page)) { 361 clear_pageblock_skip(page); 362 return true; 363 } 364 365 page += (1 << PAGE_ALLOC_COSTLY_ORDER); 366 } while (page <= end_page); 367 368 return false; 369 } 370 371 /* 372 * This function is called to clear all cached information on pageblocks that 373 * should be skipped for page isolation when the migrate and free page scanner 374 * meet. 375 */ 376 static void __reset_isolation_suitable(struct zone *zone) 377 { 378 unsigned long migrate_pfn = zone->zone_start_pfn; 379 unsigned long free_pfn = zone_end_pfn(zone) - 1; 380 unsigned long reset_migrate = free_pfn; 381 unsigned long reset_free = migrate_pfn; 382 bool source_set = false; 383 bool free_set = false; 384 385 /* Only flush if a full compaction finished recently */ 386 if (!zone->compact_blockskip_flush) 387 return; 388 389 zone->compact_blockskip_flush = false; 390 391 /* 392 * Walk the zone and update pageblock skip information. Source looks 393 * for PageLRU while target looks for PageBuddy. When the scanner 394 * is found, both PageBuddy and PageLRU are checked as the pageblock 395 * is suitable as both source and target. 396 */ 397 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages, 398 free_pfn -= pageblock_nr_pages) { 399 cond_resched(); 400 401 /* Update the migrate PFN */ 402 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) && 403 migrate_pfn < reset_migrate) { 404 source_set = true; 405 reset_migrate = migrate_pfn; 406 zone->compact_init_migrate_pfn = reset_migrate; 407 zone->compact_cached_migrate_pfn[0] = reset_migrate; 408 zone->compact_cached_migrate_pfn[1] = reset_migrate; 409 } 410 411 /* Update the free PFN */ 412 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) && 413 free_pfn > reset_free) { 414 free_set = true; 415 reset_free = free_pfn; 416 zone->compact_init_free_pfn = reset_free; 417 zone->compact_cached_free_pfn = reset_free; 418 } 419 } 420 421 /* Leave no distance if no suitable block was reset */ 422 if (reset_migrate >= reset_free) { 423 zone->compact_cached_migrate_pfn[0] = migrate_pfn; 424 zone->compact_cached_migrate_pfn[1] = migrate_pfn; 425 zone->compact_cached_free_pfn = free_pfn; 426 } 427 } 428 429 void reset_isolation_suitable(pg_data_t *pgdat) 430 { 431 int zoneid; 432 433 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 434 struct zone *zone = &pgdat->node_zones[zoneid]; 435 if (!populated_zone(zone)) 436 continue; 437 438 __reset_isolation_suitable(zone); 439 } 440 } 441 442 /* 443 * Sets the pageblock skip bit if it was clear. Note that this is a hint as 444 * locks are not required for read/writers. Returns true if it was already set. 445 */ 446 static bool test_and_set_skip(struct compact_control *cc, struct page *page) 447 { 448 bool skip; 449 450 /* Do not update if skip hint is being ignored */ 451 if (cc->ignore_skip_hint) 452 return false; 453 454 skip = get_pageblock_skip(page); 455 if (!skip && !cc->no_set_skip_hint) 456 set_pageblock_skip(page); 457 458 return skip; 459 } 460 461 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 462 { 463 struct zone *zone = cc->zone; 464 465 /* Set for isolation rather than compaction */ 466 if (cc->no_set_skip_hint) 467 return; 468 469 pfn = pageblock_end_pfn(pfn); 470 471 /* Update where async and sync compaction should restart */ 472 if (pfn > zone->compact_cached_migrate_pfn[0]) 473 zone->compact_cached_migrate_pfn[0] = pfn; 474 if (cc->mode != MIGRATE_ASYNC && 475 pfn > zone->compact_cached_migrate_pfn[1]) 476 zone->compact_cached_migrate_pfn[1] = pfn; 477 } 478 479 /* 480 * If no pages were isolated then mark this pageblock to be skipped in the 481 * future. The information is later cleared by __reset_isolation_suitable(). 482 */ 483 static void update_pageblock_skip(struct compact_control *cc, 484 struct page *page, unsigned long pfn) 485 { 486 struct zone *zone = cc->zone; 487 488 if (cc->no_set_skip_hint) 489 return; 490 491 set_pageblock_skip(page); 492 493 if (pfn < zone->compact_cached_free_pfn) 494 zone->compact_cached_free_pfn = pfn; 495 } 496 #else 497 static inline bool isolation_suitable(struct compact_control *cc, 498 struct page *page) 499 { 500 return true; 501 } 502 503 static inline bool pageblock_skip_persistent(struct page *page) 504 { 505 return false; 506 } 507 508 static inline void update_pageblock_skip(struct compact_control *cc, 509 struct page *page, unsigned long pfn) 510 { 511 } 512 513 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 514 { 515 } 516 517 static bool test_and_set_skip(struct compact_control *cc, struct page *page) 518 { 519 return false; 520 } 521 #endif /* CONFIG_COMPACTION */ 522 523 /* 524 * Compaction requires the taking of some coarse locks that are potentially 525 * very heavily contended. For async compaction, trylock and record if the 526 * lock is contended. The lock will still be acquired but compaction will 527 * abort when the current block is finished regardless of success rate. 528 * Sync compaction acquires the lock. 529 * 530 * Always returns true which makes it easier to track lock state in callers. 531 */ 532 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags, 533 struct compact_control *cc) 534 __acquires(lock) 535 { 536 /* Track if the lock is contended in async mode */ 537 if (cc->mode == MIGRATE_ASYNC && !cc->contended) { 538 if (spin_trylock_irqsave(lock, *flags)) 539 return true; 540 541 cc->contended = true; 542 } 543 544 spin_lock_irqsave(lock, *flags); 545 return true; 546 } 547 548 /* 549 * Compaction requires the taking of some coarse locks that are potentially 550 * very heavily contended. The lock should be periodically unlocked to avoid 551 * having disabled IRQs for a long time, even when there is nobody waiting on 552 * the lock. It might also be that allowing the IRQs will result in 553 * need_resched() becoming true. If scheduling is needed, compaction schedules. 554 * Either compaction type will also abort if a fatal signal is pending. 555 * In either case if the lock was locked, it is dropped and not regained. 556 * 557 * Returns true if compaction should abort due to fatal signal pending. 558 * Returns false when compaction can continue. 559 */ 560 static bool compact_unlock_should_abort(spinlock_t *lock, 561 unsigned long flags, bool *locked, struct compact_control *cc) 562 { 563 if (*locked) { 564 spin_unlock_irqrestore(lock, flags); 565 *locked = false; 566 } 567 568 if (fatal_signal_pending(current)) { 569 cc->contended = true; 570 return true; 571 } 572 573 cond_resched(); 574 575 return false; 576 } 577 578 /* 579 * Isolate free pages onto a private freelist. If @strict is true, will abort 580 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 581 * (even though it may still end up isolating some pages). 582 */ 583 static unsigned long isolate_freepages_block(struct compact_control *cc, 584 unsigned long *start_pfn, 585 unsigned long end_pfn, 586 struct list_head *freelist, 587 unsigned int stride, 588 bool strict) 589 { 590 int nr_scanned = 0, total_isolated = 0; 591 struct page *page; 592 unsigned long flags = 0; 593 bool locked = false; 594 unsigned long blockpfn = *start_pfn; 595 unsigned int order; 596 597 /* Strict mode is for isolation, speed is secondary */ 598 if (strict) 599 stride = 1; 600 601 page = pfn_to_page(blockpfn); 602 603 /* Isolate free pages. */ 604 for (; blockpfn < end_pfn; blockpfn += stride, page += stride) { 605 int isolated; 606 607 /* 608 * Periodically drop the lock (if held) regardless of its 609 * contention, to give chance to IRQs. Abort if fatal signal 610 * pending. 611 */ 612 if (!(blockpfn % COMPACT_CLUSTER_MAX) 613 && compact_unlock_should_abort(&cc->zone->lock, flags, 614 &locked, cc)) 615 break; 616 617 nr_scanned++; 618 619 /* 620 * For compound pages such as THP and hugetlbfs, we can save 621 * potentially a lot of iterations if we skip them at once. 622 * The check is racy, but we can consider only valid values 623 * and the only danger is skipping too much. 624 */ 625 if (PageCompound(page)) { 626 const unsigned int order = compound_order(page); 627 628 if (blockpfn + (1UL << order) <= end_pfn) { 629 blockpfn += (1UL << order) - 1; 630 page += (1UL << order) - 1; 631 nr_scanned += (1UL << order) - 1; 632 } 633 634 goto isolate_fail; 635 } 636 637 if (!PageBuddy(page)) 638 goto isolate_fail; 639 640 /* If we already hold the lock, we can skip some rechecking. */ 641 if (!locked) { 642 locked = compact_lock_irqsave(&cc->zone->lock, 643 &flags, cc); 644 645 /* Recheck this is a buddy page under lock */ 646 if (!PageBuddy(page)) 647 goto isolate_fail; 648 } 649 650 /* Found a free page, will break it into order-0 pages */ 651 order = buddy_order(page); 652 isolated = __isolate_free_page(page, order); 653 if (!isolated) 654 break; 655 set_page_private(page, order); 656 657 nr_scanned += isolated - 1; 658 total_isolated += isolated; 659 cc->nr_freepages += isolated; 660 list_add_tail(&page->lru, freelist); 661 662 if (!strict && cc->nr_migratepages <= cc->nr_freepages) { 663 blockpfn += isolated; 664 break; 665 } 666 /* Advance to the end of split page */ 667 blockpfn += isolated - 1; 668 page += isolated - 1; 669 continue; 670 671 isolate_fail: 672 if (strict) 673 break; 674 675 } 676 677 if (locked) 678 spin_unlock_irqrestore(&cc->zone->lock, flags); 679 680 /* 681 * Be careful to not go outside of the pageblock. 682 */ 683 if (unlikely(blockpfn > end_pfn)) 684 blockpfn = end_pfn; 685 686 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 687 nr_scanned, total_isolated); 688 689 /* Record how far we have got within the block */ 690 *start_pfn = blockpfn; 691 692 /* 693 * If strict isolation is requested by CMA then check that all the 694 * pages requested were isolated. If there were any failures, 0 is 695 * returned and CMA will fail. 696 */ 697 if (strict && blockpfn < end_pfn) 698 total_isolated = 0; 699 700 cc->total_free_scanned += nr_scanned; 701 if (total_isolated) 702 count_compact_events(COMPACTISOLATED, total_isolated); 703 return total_isolated; 704 } 705 706 /** 707 * isolate_freepages_range() - isolate free pages. 708 * @cc: Compaction control structure. 709 * @start_pfn: The first PFN to start isolating. 710 * @end_pfn: The one-past-last PFN. 711 * 712 * Non-free pages, invalid PFNs, or zone boundaries within the 713 * [start_pfn, end_pfn) range are considered errors, cause function to 714 * undo its actions and return zero. 715 * 716 * Otherwise, function returns one-past-the-last PFN of isolated page 717 * (which may be greater then end_pfn if end fell in a middle of 718 * a free page). 719 */ 720 unsigned long 721 isolate_freepages_range(struct compact_control *cc, 722 unsigned long start_pfn, unsigned long end_pfn) 723 { 724 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 725 LIST_HEAD(freelist); 726 727 pfn = start_pfn; 728 block_start_pfn = pageblock_start_pfn(pfn); 729 if (block_start_pfn < cc->zone->zone_start_pfn) 730 block_start_pfn = cc->zone->zone_start_pfn; 731 block_end_pfn = pageblock_end_pfn(pfn); 732 733 for (; pfn < end_pfn; pfn += isolated, 734 block_start_pfn = block_end_pfn, 735 block_end_pfn += pageblock_nr_pages) { 736 /* Protect pfn from changing by isolate_freepages_block */ 737 unsigned long isolate_start_pfn = pfn; 738 739 /* 740 * pfn could pass the block_end_pfn if isolated freepage 741 * is more than pageblock order. In this case, we adjust 742 * scanning range to right one. 743 */ 744 if (pfn >= block_end_pfn) { 745 block_start_pfn = pageblock_start_pfn(pfn); 746 block_end_pfn = pageblock_end_pfn(pfn); 747 } 748 749 block_end_pfn = min(block_end_pfn, end_pfn); 750 751 if (!pageblock_pfn_to_page(block_start_pfn, 752 block_end_pfn, cc->zone)) 753 break; 754 755 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 756 block_end_pfn, &freelist, 0, true); 757 758 /* 759 * In strict mode, isolate_freepages_block() returns 0 if 760 * there are any holes in the block (ie. invalid PFNs or 761 * non-free pages). 762 */ 763 if (!isolated) 764 break; 765 766 /* 767 * If we managed to isolate pages, it is always (1 << n) * 768 * pageblock_nr_pages for some non-negative n. (Max order 769 * page may span two pageblocks). 770 */ 771 } 772 773 /* __isolate_free_page() does not map the pages */ 774 split_map_pages(&freelist); 775 776 if (pfn < end_pfn) { 777 /* Loop terminated early, cleanup. */ 778 release_freepages(&freelist); 779 return 0; 780 } 781 782 /* We don't use freelists for anything. */ 783 return pfn; 784 } 785 786 /* Similar to reclaim, but different enough that they don't share logic */ 787 static bool too_many_isolated(struct compact_control *cc) 788 { 789 pg_data_t *pgdat = cc->zone->zone_pgdat; 790 bool too_many; 791 792 unsigned long active, inactive, isolated; 793 794 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) + 795 node_page_state(pgdat, NR_INACTIVE_ANON); 796 active = node_page_state(pgdat, NR_ACTIVE_FILE) + 797 node_page_state(pgdat, NR_ACTIVE_ANON); 798 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) + 799 node_page_state(pgdat, NR_ISOLATED_ANON); 800 801 /* 802 * Allow GFP_NOFS to isolate past the limit set for regular 803 * compaction runs. This prevents an ABBA deadlock when other 804 * compactors have already isolated to the limit, but are 805 * blocked on filesystem locks held by the GFP_NOFS thread. 806 */ 807 if (cc->gfp_mask & __GFP_FS) { 808 inactive >>= 3; 809 active >>= 3; 810 } 811 812 too_many = isolated > (inactive + active) / 2; 813 if (!too_many) 814 wake_throttle_isolated(pgdat); 815 816 return too_many; 817 } 818 819 /** 820 * isolate_migratepages_block() - isolate all migrate-able pages within 821 * a single pageblock 822 * @cc: Compaction control structure. 823 * @low_pfn: The first PFN to isolate 824 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 825 * @mode: Isolation mode to be used. 826 * 827 * Isolate all pages that can be migrated from the range specified by 828 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 829 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion, 830 * -ENOMEM in case we could not allocate a page, or 0. 831 * cc->migrate_pfn will contain the next pfn to scan. 832 * 833 * The pages are isolated on cc->migratepages list (not required to be empty), 834 * and cc->nr_migratepages is updated accordingly. 835 */ 836 static int 837 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 838 unsigned long end_pfn, isolate_mode_t mode) 839 { 840 pg_data_t *pgdat = cc->zone->zone_pgdat; 841 unsigned long nr_scanned = 0, nr_isolated = 0; 842 struct lruvec *lruvec; 843 unsigned long flags = 0; 844 struct lruvec *locked = NULL; 845 struct folio *folio = NULL; 846 struct page *page = NULL, *valid_page = NULL; 847 struct address_space *mapping; 848 unsigned long start_pfn = low_pfn; 849 bool skip_on_failure = false; 850 unsigned long next_skip_pfn = 0; 851 bool skip_updated = false; 852 int ret = 0; 853 854 cc->migrate_pfn = low_pfn; 855 856 /* 857 * Ensure that there are not too many pages isolated from the LRU 858 * list by either parallel reclaimers or compaction. If there are, 859 * delay for some time until fewer pages are isolated 860 */ 861 while (unlikely(too_many_isolated(cc))) { 862 /* stop isolation if there are still pages not migrated */ 863 if (cc->nr_migratepages) 864 return -EAGAIN; 865 866 /* async migration should just abort */ 867 if (cc->mode == MIGRATE_ASYNC) 868 return -EAGAIN; 869 870 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 871 872 if (fatal_signal_pending(current)) 873 return -EINTR; 874 } 875 876 cond_resched(); 877 878 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { 879 skip_on_failure = true; 880 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 881 } 882 883 /* Time to isolate some pages for migration */ 884 for (; low_pfn < end_pfn; low_pfn++) { 885 bool is_dirty, is_unevictable; 886 887 if (skip_on_failure && low_pfn >= next_skip_pfn) { 888 /* 889 * We have isolated all migration candidates in the 890 * previous order-aligned block, and did not skip it due 891 * to failure. We should migrate the pages now and 892 * hopefully succeed compaction. 893 */ 894 if (nr_isolated) 895 break; 896 897 /* 898 * We failed to isolate in the previous order-aligned 899 * block. Set the new boundary to the end of the 900 * current block. Note we can't simply increase 901 * next_skip_pfn by 1 << order, as low_pfn might have 902 * been incremented by a higher number due to skipping 903 * a compound or a high-order buddy page in the 904 * previous loop iteration. 905 */ 906 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 907 } 908 909 /* 910 * Periodically drop the lock (if held) regardless of its 911 * contention, to give chance to IRQs. Abort completely if 912 * a fatal signal is pending. 913 */ 914 if (!(low_pfn % COMPACT_CLUSTER_MAX)) { 915 if (locked) { 916 unlock_page_lruvec_irqrestore(locked, flags); 917 locked = NULL; 918 } 919 920 if (fatal_signal_pending(current)) { 921 cc->contended = true; 922 ret = -EINTR; 923 924 goto fatal_pending; 925 } 926 927 cond_resched(); 928 } 929 930 nr_scanned++; 931 932 page = pfn_to_page(low_pfn); 933 934 /* 935 * Check if the pageblock has already been marked skipped. 936 * Only the first PFN is checked as the caller isolates 937 * COMPACT_CLUSTER_MAX at a time so the second call must 938 * not falsely conclude that the block should be skipped. 939 */ 940 if (!valid_page && (pageblock_aligned(low_pfn) || 941 low_pfn == cc->zone->zone_start_pfn)) { 942 if (!isolation_suitable(cc, page)) { 943 low_pfn = end_pfn; 944 folio = NULL; 945 goto isolate_abort; 946 } 947 valid_page = page; 948 } 949 950 if (PageHuge(page) && cc->alloc_contig) { 951 if (locked) { 952 unlock_page_lruvec_irqrestore(locked, flags); 953 locked = NULL; 954 } 955 956 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages); 957 958 /* 959 * Fail isolation in case isolate_or_dissolve_huge_page() 960 * reports an error. In case of -ENOMEM, abort right away. 961 */ 962 if (ret < 0) { 963 /* Do not report -EBUSY down the chain */ 964 if (ret == -EBUSY) 965 ret = 0; 966 low_pfn += compound_nr(page) - 1; 967 nr_scanned += compound_nr(page) - 1; 968 goto isolate_fail; 969 } 970 971 if (PageHuge(page)) { 972 /* 973 * Hugepage was successfully isolated and placed 974 * on the cc->migratepages list. 975 */ 976 folio = page_folio(page); 977 low_pfn += folio_nr_pages(folio) - 1; 978 goto isolate_success_no_list; 979 } 980 981 /* 982 * Ok, the hugepage was dissolved. Now these pages are 983 * Buddy and cannot be re-allocated because they are 984 * isolated. Fall-through as the check below handles 985 * Buddy pages. 986 */ 987 } 988 989 /* 990 * Skip if free. We read page order here without zone lock 991 * which is generally unsafe, but the race window is small and 992 * the worst thing that can happen is that we skip some 993 * potential isolation targets. 994 */ 995 if (PageBuddy(page)) { 996 unsigned long freepage_order = buddy_order_unsafe(page); 997 998 /* 999 * Without lock, we cannot be sure that what we got is 1000 * a valid page order. Consider only values in the 1001 * valid order range to prevent low_pfn overflow. 1002 */ 1003 if (freepage_order > 0 && freepage_order <= MAX_PAGE_ORDER) { 1004 low_pfn += (1UL << freepage_order) - 1; 1005 nr_scanned += (1UL << freepage_order) - 1; 1006 } 1007 continue; 1008 } 1009 1010 /* 1011 * Regardless of being on LRU, compound pages such as THP and 1012 * hugetlbfs are not to be compacted unless we are attempting 1013 * an allocation much larger than the huge page size (eg CMA). 1014 * We can potentially save a lot of iterations if we skip them 1015 * at once. The check is racy, but we can consider only valid 1016 * values and the only danger is skipping too much. 1017 */ 1018 if (PageCompound(page) && !cc->alloc_contig) { 1019 const unsigned int order = compound_order(page); 1020 1021 if (likely(order <= MAX_PAGE_ORDER)) { 1022 low_pfn += (1UL << order) - 1; 1023 nr_scanned += (1UL << order) - 1; 1024 } 1025 goto isolate_fail; 1026 } 1027 1028 /* 1029 * Check may be lockless but that's ok as we recheck later. 1030 * It's possible to migrate LRU and non-lru movable pages. 1031 * Skip any other type of page 1032 */ 1033 if (!PageLRU(page)) { 1034 /* 1035 * __PageMovable can return false positive so we need 1036 * to verify it under page_lock. 1037 */ 1038 if (unlikely(__PageMovable(page)) && 1039 !PageIsolated(page)) { 1040 if (locked) { 1041 unlock_page_lruvec_irqrestore(locked, flags); 1042 locked = NULL; 1043 } 1044 1045 if (isolate_movable_page(page, mode)) { 1046 folio = page_folio(page); 1047 goto isolate_success; 1048 } 1049 } 1050 1051 goto isolate_fail; 1052 } 1053 1054 /* 1055 * Be careful not to clear PageLRU until after we're 1056 * sure the page is not being freed elsewhere -- the 1057 * page release code relies on it. 1058 */ 1059 folio = folio_get_nontail_page(page); 1060 if (unlikely(!folio)) 1061 goto isolate_fail; 1062 1063 /* 1064 * Migration will fail if an anonymous page is pinned in memory, 1065 * so avoid taking lru_lock and isolating it unnecessarily in an 1066 * admittedly racy check. 1067 */ 1068 mapping = folio_mapping(folio); 1069 if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio)) 1070 goto isolate_fail_put; 1071 1072 /* 1073 * Only allow to migrate anonymous pages in GFP_NOFS context 1074 * because those do not depend on fs locks. 1075 */ 1076 if (!(cc->gfp_mask & __GFP_FS) && mapping) 1077 goto isolate_fail_put; 1078 1079 /* Only take pages on LRU: a check now makes later tests safe */ 1080 if (!folio_test_lru(folio)) 1081 goto isolate_fail_put; 1082 1083 is_unevictable = folio_test_unevictable(folio); 1084 1085 /* Compaction might skip unevictable pages but CMA takes them */ 1086 if (!(mode & ISOLATE_UNEVICTABLE) && is_unevictable) 1087 goto isolate_fail_put; 1088 1089 /* 1090 * To minimise LRU disruption, the caller can indicate with 1091 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages 1092 * it will be able to migrate without blocking - clean pages 1093 * for the most part. PageWriteback would require blocking. 1094 */ 1095 if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio)) 1096 goto isolate_fail_put; 1097 1098 is_dirty = folio_test_dirty(folio); 1099 1100 if (((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) || 1101 (mapping && is_unevictable)) { 1102 bool migrate_dirty = true; 1103 bool is_unmovable; 1104 1105 /* 1106 * Only folios without mappings or that have 1107 * a ->migrate_folio callback are possible to migrate 1108 * without blocking. 1109 * 1110 * Folios from unmovable mappings are not migratable. 1111 * 1112 * However, we can be racing with truncation, which can 1113 * free the mapping that we need to check. Truncation 1114 * holds the folio lock until after the folio is removed 1115 * from the page so holding it ourselves is sufficient. 1116 * 1117 * To avoid locking the folio just to check unmovable, 1118 * assume every unmovable folio is also unevictable, 1119 * which is a cheaper test. If our assumption goes 1120 * wrong, it's not a correctness bug, just potentially 1121 * wasted cycles. 1122 */ 1123 if (!folio_trylock(folio)) 1124 goto isolate_fail_put; 1125 1126 mapping = folio_mapping(folio); 1127 if ((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) { 1128 migrate_dirty = !mapping || 1129 mapping->a_ops->migrate_folio; 1130 } 1131 is_unmovable = mapping && mapping_unmovable(mapping); 1132 folio_unlock(folio); 1133 if (!migrate_dirty || is_unmovable) 1134 goto isolate_fail_put; 1135 } 1136 1137 /* Try isolate the folio */ 1138 if (!folio_test_clear_lru(folio)) 1139 goto isolate_fail_put; 1140 1141 lruvec = folio_lruvec(folio); 1142 1143 /* If we already hold the lock, we can skip some rechecking */ 1144 if (lruvec != locked) { 1145 if (locked) 1146 unlock_page_lruvec_irqrestore(locked, flags); 1147 1148 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc); 1149 locked = lruvec; 1150 1151 lruvec_memcg_debug(lruvec, folio); 1152 1153 /* 1154 * Try get exclusive access under lock. If marked for 1155 * skip, the scan is aborted unless the current context 1156 * is a rescan to reach the end of the pageblock. 1157 */ 1158 if (!skip_updated && valid_page) { 1159 skip_updated = true; 1160 if (test_and_set_skip(cc, valid_page) && 1161 !cc->finish_pageblock) { 1162 low_pfn = end_pfn; 1163 goto isolate_abort; 1164 } 1165 } 1166 1167 /* 1168 * folio become large since the non-locked check, 1169 * and it's on LRU. 1170 */ 1171 if (unlikely(folio_test_large(folio) && !cc->alloc_contig)) { 1172 low_pfn += folio_nr_pages(folio) - 1; 1173 nr_scanned += folio_nr_pages(folio) - 1; 1174 folio_set_lru(folio); 1175 goto isolate_fail_put; 1176 } 1177 } 1178 1179 /* The folio is taken off the LRU */ 1180 if (folio_test_large(folio)) 1181 low_pfn += folio_nr_pages(folio) - 1; 1182 1183 /* Successfully isolated */ 1184 lruvec_del_folio(lruvec, folio); 1185 node_stat_mod_folio(folio, 1186 NR_ISOLATED_ANON + folio_is_file_lru(folio), 1187 folio_nr_pages(folio)); 1188 1189 isolate_success: 1190 list_add(&folio->lru, &cc->migratepages); 1191 isolate_success_no_list: 1192 cc->nr_migratepages += folio_nr_pages(folio); 1193 nr_isolated += folio_nr_pages(folio); 1194 nr_scanned += folio_nr_pages(folio) - 1; 1195 1196 /* 1197 * Avoid isolating too much unless this block is being 1198 * fully scanned (e.g. dirty/writeback pages, parallel allocation) 1199 * or a lock is contended. For contention, isolate quickly to 1200 * potentially remove one source of contention. 1201 */ 1202 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX && 1203 !cc->finish_pageblock && !cc->contended) { 1204 ++low_pfn; 1205 break; 1206 } 1207 1208 continue; 1209 1210 isolate_fail_put: 1211 /* Avoid potential deadlock in freeing page under lru_lock */ 1212 if (locked) { 1213 unlock_page_lruvec_irqrestore(locked, flags); 1214 locked = NULL; 1215 } 1216 folio_put(folio); 1217 1218 isolate_fail: 1219 if (!skip_on_failure && ret != -ENOMEM) 1220 continue; 1221 1222 /* 1223 * We have isolated some pages, but then failed. Release them 1224 * instead of migrating, as we cannot form the cc->order buddy 1225 * page anyway. 1226 */ 1227 if (nr_isolated) { 1228 if (locked) { 1229 unlock_page_lruvec_irqrestore(locked, flags); 1230 locked = NULL; 1231 } 1232 putback_movable_pages(&cc->migratepages); 1233 cc->nr_migratepages = 0; 1234 nr_isolated = 0; 1235 } 1236 1237 if (low_pfn < next_skip_pfn) { 1238 low_pfn = next_skip_pfn - 1; 1239 /* 1240 * The check near the loop beginning would have updated 1241 * next_skip_pfn too, but this is a bit simpler. 1242 */ 1243 next_skip_pfn += 1UL << cc->order; 1244 } 1245 1246 if (ret == -ENOMEM) 1247 break; 1248 } 1249 1250 /* 1251 * The PageBuddy() check could have potentially brought us outside 1252 * the range to be scanned. 1253 */ 1254 if (unlikely(low_pfn > end_pfn)) 1255 low_pfn = end_pfn; 1256 1257 folio = NULL; 1258 1259 isolate_abort: 1260 if (locked) 1261 unlock_page_lruvec_irqrestore(locked, flags); 1262 if (folio) { 1263 folio_set_lru(folio); 1264 folio_put(folio); 1265 } 1266 1267 /* 1268 * Update the cached scanner pfn once the pageblock has been scanned. 1269 * Pages will either be migrated in which case there is no point 1270 * scanning in the near future or migration failed in which case the 1271 * failure reason may persist. The block is marked for skipping if 1272 * there were no pages isolated in the block or if the block is 1273 * rescanned twice in a row. 1274 */ 1275 if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) { 1276 if (!cc->no_set_skip_hint && valid_page && !skip_updated) 1277 set_pageblock_skip(valid_page); 1278 update_cached_migrate(cc, low_pfn); 1279 } 1280 1281 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 1282 nr_scanned, nr_isolated); 1283 1284 fatal_pending: 1285 cc->total_migrate_scanned += nr_scanned; 1286 if (nr_isolated) 1287 count_compact_events(COMPACTISOLATED, nr_isolated); 1288 1289 cc->migrate_pfn = low_pfn; 1290 1291 return ret; 1292 } 1293 1294 /** 1295 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 1296 * @cc: Compaction control structure. 1297 * @start_pfn: The first PFN to start isolating. 1298 * @end_pfn: The one-past-last PFN. 1299 * 1300 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM 1301 * in case we could not allocate a page, or 0. 1302 */ 1303 int 1304 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 1305 unsigned long end_pfn) 1306 { 1307 unsigned long pfn, block_start_pfn, block_end_pfn; 1308 int ret = 0; 1309 1310 /* Scan block by block. First and last block may be incomplete */ 1311 pfn = start_pfn; 1312 block_start_pfn = pageblock_start_pfn(pfn); 1313 if (block_start_pfn < cc->zone->zone_start_pfn) 1314 block_start_pfn = cc->zone->zone_start_pfn; 1315 block_end_pfn = pageblock_end_pfn(pfn); 1316 1317 for (; pfn < end_pfn; pfn = block_end_pfn, 1318 block_start_pfn = block_end_pfn, 1319 block_end_pfn += pageblock_nr_pages) { 1320 1321 block_end_pfn = min(block_end_pfn, end_pfn); 1322 1323 if (!pageblock_pfn_to_page(block_start_pfn, 1324 block_end_pfn, cc->zone)) 1325 continue; 1326 1327 ret = isolate_migratepages_block(cc, pfn, block_end_pfn, 1328 ISOLATE_UNEVICTABLE); 1329 1330 if (ret) 1331 break; 1332 1333 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX) 1334 break; 1335 } 1336 1337 return ret; 1338 } 1339 1340 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 1341 #ifdef CONFIG_COMPACTION 1342 1343 static bool suitable_migration_source(struct compact_control *cc, 1344 struct page *page) 1345 { 1346 int block_mt; 1347 1348 if (pageblock_skip_persistent(page)) 1349 return false; 1350 1351 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction) 1352 return true; 1353 1354 block_mt = get_pageblock_migratetype(page); 1355 1356 if (cc->migratetype == MIGRATE_MOVABLE) 1357 return is_migrate_movable(block_mt); 1358 else 1359 return block_mt == cc->migratetype; 1360 } 1361 1362 /* Returns true if the page is within a block suitable for migration to */ 1363 static bool suitable_migration_target(struct compact_control *cc, 1364 struct page *page) 1365 { 1366 /* If the page is a large free page, then disallow migration */ 1367 if (PageBuddy(page)) { 1368 /* 1369 * We are checking page_order without zone->lock taken. But 1370 * the only small danger is that we skip a potentially suitable 1371 * pageblock, so it's not worth to check order for valid range. 1372 */ 1373 if (buddy_order_unsafe(page) >= pageblock_order) 1374 return false; 1375 } 1376 1377 if (cc->ignore_block_suitable) 1378 return true; 1379 1380 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 1381 if (is_migrate_movable(get_pageblock_migratetype(page))) 1382 return true; 1383 1384 /* Otherwise skip the block */ 1385 return false; 1386 } 1387 1388 static inline unsigned int 1389 freelist_scan_limit(struct compact_control *cc) 1390 { 1391 unsigned short shift = BITS_PER_LONG - 1; 1392 1393 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1; 1394 } 1395 1396 /* 1397 * Test whether the free scanner has reached the same or lower pageblock than 1398 * the migration scanner, and compaction should thus terminate. 1399 */ 1400 static inline bool compact_scanners_met(struct compact_control *cc) 1401 { 1402 return (cc->free_pfn >> pageblock_order) 1403 <= (cc->migrate_pfn >> pageblock_order); 1404 } 1405 1406 /* 1407 * Used when scanning for a suitable migration target which scans freelists 1408 * in reverse. Reorders the list such as the unscanned pages are scanned 1409 * first on the next iteration of the free scanner 1410 */ 1411 static void 1412 move_freelist_head(struct list_head *freelist, struct page *freepage) 1413 { 1414 LIST_HEAD(sublist); 1415 1416 if (!list_is_first(&freepage->buddy_list, freelist)) { 1417 list_cut_before(&sublist, freelist, &freepage->buddy_list); 1418 list_splice_tail(&sublist, freelist); 1419 } 1420 } 1421 1422 /* 1423 * Similar to move_freelist_head except used by the migration scanner 1424 * when scanning forward. It's possible for these list operations to 1425 * move against each other if they search the free list exactly in 1426 * lockstep. 1427 */ 1428 static void 1429 move_freelist_tail(struct list_head *freelist, struct page *freepage) 1430 { 1431 LIST_HEAD(sublist); 1432 1433 if (!list_is_last(&freepage->buddy_list, freelist)) { 1434 list_cut_position(&sublist, freelist, &freepage->buddy_list); 1435 list_splice_tail(&sublist, freelist); 1436 } 1437 } 1438 1439 static void 1440 fast_isolate_around(struct compact_control *cc, unsigned long pfn) 1441 { 1442 unsigned long start_pfn, end_pfn; 1443 struct page *page; 1444 1445 /* Do not search around if there are enough pages already */ 1446 if (cc->nr_freepages >= cc->nr_migratepages) 1447 return; 1448 1449 /* Minimise scanning during async compaction */ 1450 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC) 1451 return; 1452 1453 /* Pageblock boundaries */ 1454 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn); 1455 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)); 1456 1457 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone); 1458 if (!page) 1459 return; 1460 1461 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false); 1462 1463 /* Skip this pageblock in the future as it's full or nearly full */ 1464 if (start_pfn == end_pfn && !cc->no_set_skip_hint) 1465 set_pageblock_skip(page); 1466 } 1467 1468 /* Search orders in round-robin fashion */ 1469 static int next_search_order(struct compact_control *cc, int order) 1470 { 1471 order--; 1472 if (order < 0) 1473 order = cc->order - 1; 1474 1475 /* Search wrapped around? */ 1476 if (order == cc->search_order) { 1477 cc->search_order--; 1478 if (cc->search_order < 0) 1479 cc->search_order = cc->order - 1; 1480 return -1; 1481 } 1482 1483 return order; 1484 } 1485 1486 static void fast_isolate_freepages(struct compact_control *cc) 1487 { 1488 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1); 1489 unsigned int nr_scanned = 0, total_isolated = 0; 1490 unsigned long low_pfn, min_pfn, highest = 0; 1491 unsigned long nr_isolated = 0; 1492 unsigned long distance; 1493 struct page *page = NULL; 1494 bool scan_start = false; 1495 int order; 1496 1497 /* Full compaction passes in a negative order */ 1498 if (cc->order <= 0) 1499 return; 1500 1501 /* 1502 * If starting the scan, use a deeper search and use the highest 1503 * PFN found if a suitable one is not found. 1504 */ 1505 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) { 1506 limit = pageblock_nr_pages >> 1; 1507 scan_start = true; 1508 } 1509 1510 /* 1511 * Preferred point is in the top quarter of the scan space but take 1512 * a pfn from the top half if the search is problematic. 1513 */ 1514 distance = (cc->free_pfn - cc->migrate_pfn); 1515 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2)); 1516 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1)); 1517 1518 if (WARN_ON_ONCE(min_pfn > low_pfn)) 1519 low_pfn = min_pfn; 1520 1521 /* 1522 * Search starts from the last successful isolation order or the next 1523 * order to search after a previous failure 1524 */ 1525 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order); 1526 1527 for (order = cc->search_order; 1528 !page && order >= 0; 1529 order = next_search_order(cc, order)) { 1530 struct free_area *area = &cc->zone->free_area[order]; 1531 struct list_head *freelist; 1532 struct page *freepage; 1533 unsigned long flags; 1534 unsigned int order_scanned = 0; 1535 unsigned long high_pfn = 0; 1536 1537 if (!area->nr_free) 1538 continue; 1539 1540 spin_lock_irqsave(&cc->zone->lock, flags); 1541 freelist = &area->free_list[MIGRATE_MOVABLE]; 1542 list_for_each_entry_reverse(freepage, freelist, buddy_list) { 1543 unsigned long pfn; 1544 1545 order_scanned++; 1546 nr_scanned++; 1547 pfn = page_to_pfn(freepage); 1548 1549 if (pfn >= highest) 1550 highest = max(pageblock_start_pfn(pfn), 1551 cc->zone->zone_start_pfn); 1552 1553 if (pfn >= low_pfn) { 1554 cc->fast_search_fail = 0; 1555 cc->search_order = order; 1556 page = freepage; 1557 break; 1558 } 1559 1560 if (pfn >= min_pfn && pfn > high_pfn) { 1561 high_pfn = pfn; 1562 1563 /* Shorten the scan if a candidate is found */ 1564 limit >>= 1; 1565 } 1566 1567 if (order_scanned >= limit) 1568 break; 1569 } 1570 1571 /* Use a maximum candidate pfn if a preferred one was not found */ 1572 if (!page && high_pfn) { 1573 page = pfn_to_page(high_pfn); 1574 1575 /* Update freepage for the list reorder below */ 1576 freepage = page; 1577 } 1578 1579 /* Reorder to so a future search skips recent pages */ 1580 move_freelist_head(freelist, freepage); 1581 1582 /* Isolate the page if available */ 1583 if (page) { 1584 if (__isolate_free_page(page, order)) { 1585 set_page_private(page, order); 1586 nr_isolated = 1 << order; 1587 nr_scanned += nr_isolated - 1; 1588 total_isolated += nr_isolated; 1589 cc->nr_freepages += nr_isolated; 1590 list_add_tail(&page->lru, &cc->freepages); 1591 count_compact_events(COMPACTISOLATED, nr_isolated); 1592 } else { 1593 /* If isolation fails, abort the search */ 1594 order = cc->search_order + 1; 1595 page = NULL; 1596 } 1597 } 1598 1599 spin_unlock_irqrestore(&cc->zone->lock, flags); 1600 1601 /* Skip fast search if enough freepages isolated */ 1602 if (cc->nr_freepages >= cc->nr_migratepages) 1603 break; 1604 1605 /* 1606 * Smaller scan on next order so the total scan is related 1607 * to freelist_scan_limit. 1608 */ 1609 if (order_scanned >= limit) 1610 limit = max(1U, limit >> 1); 1611 } 1612 1613 trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn, 1614 nr_scanned, total_isolated); 1615 1616 if (!page) { 1617 cc->fast_search_fail++; 1618 if (scan_start) { 1619 /* 1620 * Use the highest PFN found above min. If one was 1621 * not found, be pessimistic for direct compaction 1622 * and use the min mark. 1623 */ 1624 if (highest >= min_pfn) { 1625 page = pfn_to_page(highest); 1626 cc->free_pfn = highest; 1627 } else { 1628 if (cc->direct_compaction && pfn_valid(min_pfn)) { 1629 page = pageblock_pfn_to_page(min_pfn, 1630 min(pageblock_end_pfn(min_pfn), 1631 zone_end_pfn(cc->zone)), 1632 cc->zone); 1633 if (page && !suitable_migration_target(cc, page)) 1634 page = NULL; 1635 1636 cc->free_pfn = min_pfn; 1637 } 1638 } 1639 } 1640 } 1641 1642 if (highest && highest >= cc->zone->compact_cached_free_pfn) { 1643 highest -= pageblock_nr_pages; 1644 cc->zone->compact_cached_free_pfn = highest; 1645 } 1646 1647 cc->total_free_scanned += nr_scanned; 1648 if (!page) 1649 return; 1650 1651 low_pfn = page_to_pfn(page); 1652 fast_isolate_around(cc, low_pfn); 1653 } 1654 1655 /* 1656 * Based on information in the current compact_control, find blocks 1657 * suitable for isolating free pages from and then isolate them. 1658 */ 1659 static void isolate_freepages(struct compact_control *cc) 1660 { 1661 struct zone *zone = cc->zone; 1662 struct page *page; 1663 unsigned long block_start_pfn; /* start of current pageblock */ 1664 unsigned long isolate_start_pfn; /* exact pfn we start at */ 1665 unsigned long block_end_pfn; /* end of current pageblock */ 1666 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 1667 struct list_head *freelist = &cc->freepages; 1668 unsigned int stride; 1669 1670 /* Try a small search of the free lists for a candidate */ 1671 fast_isolate_freepages(cc); 1672 if (cc->nr_freepages) 1673 goto splitmap; 1674 1675 /* 1676 * Initialise the free scanner. The starting point is where we last 1677 * successfully isolated from, zone-cached value, or the end of the 1678 * zone when isolating for the first time. For looping we also need 1679 * this pfn aligned down to the pageblock boundary, because we do 1680 * block_start_pfn -= pageblock_nr_pages in the for loop. 1681 * For ending point, take care when isolating in last pageblock of a 1682 * zone which ends in the middle of a pageblock. 1683 * The low boundary is the end of the pageblock the migration scanner 1684 * is using. 1685 */ 1686 isolate_start_pfn = cc->free_pfn; 1687 block_start_pfn = pageblock_start_pfn(isolate_start_pfn); 1688 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 1689 zone_end_pfn(zone)); 1690 low_pfn = pageblock_end_pfn(cc->migrate_pfn); 1691 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1; 1692 1693 /* 1694 * Isolate free pages until enough are available to migrate the 1695 * pages on cc->migratepages. We stop searching if the migrate 1696 * and free page scanners meet or enough free pages are isolated. 1697 */ 1698 for (; block_start_pfn >= low_pfn; 1699 block_end_pfn = block_start_pfn, 1700 block_start_pfn -= pageblock_nr_pages, 1701 isolate_start_pfn = block_start_pfn) { 1702 unsigned long nr_isolated; 1703 1704 /* 1705 * This can iterate a massively long zone without finding any 1706 * suitable migration targets, so periodically check resched. 1707 */ 1708 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages))) 1709 cond_resched(); 1710 1711 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1712 zone); 1713 if (!page) { 1714 unsigned long next_pfn; 1715 1716 next_pfn = skip_offline_sections_reverse(block_start_pfn); 1717 if (next_pfn) 1718 block_start_pfn = max(next_pfn, low_pfn); 1719 1720 continue; 1721 } 1722 1723 /* Check the block is suitable for migration */ 1724 if (!suitable_migration_target(cc, page)) 1725 continue; 1726 1727 /* If isolation recently failed, do not retry */ 1728 if (!isolation_suitable(cc, page)) 1729 continue; 1730 1731 /* Found a block suitable for isolating free pages from. */ 1732 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn, 1733 block_end_pfn, freelist, stride, false); 1734 1735 /* Update the skip hint if the full pageblock was scanned */ 1736 if (isolate_start_pfn == block_end_pfn) 1737 update_pageblock_skip(cc, page, block_start_pfn - 1738 pageblock_nr_pages); 1739 1740 /* Are enough freepages isolated? */ 1741 if (cc->nr_freepages >= cc->nr_migratepages) { 1742 if (isolate_start_pfn >= block_end_pfn) { 1743 /* 1744 * Restart at previous pageblock if more 1745 * freepages can be isolated next time. 1746 */ 1747 isolate_start_pfn = 1748 block_start_pfn - pageblock_nr_pages; 1749 } 1750 break; 1751 } else if (isolate_start_pfn < block_end_pfn) { 1752 /* 1753 * If isolation failed early, do not continue 1754 * needlessly. 1755 */ 1756 break; 1757 } 1758 1759 /* Adjust stride depending on isolation */ 1760 if (nr_isolated) { 1761 stride = 1; 1762 continue; 1763 } 1764 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1); 1765 } 1766 1767 /* 1768 * Record where the free scanner will restart next time. Either we 1769 * broke from the loop and set isolate_start_pfn based on the last 1770 * call to isolate_freepages_block(), or we met the migration scanner 1771 * and the loop terminated due to isolate_start_pfn < low_pfn 1772 */ 1773 cc->free_pfn = isolate_start_pfn; 1774 1775 splitmap: 1776 /* __isolate_free_page() does not map the pages */ 1777 split_map_pages(freelist); 1778 } 1779 1780 /* 1781 * This is a migrate-callback that "allocates" freepages by taking pages 1782 * from the isolated freelists in the block we are migrating to. 1783 */ 1784 static struct folio *compaction_alloc(struct folio *src, unsigned long data) 1785 { 1786 struct compact_control *cc = (struct compact_control *)data; 1787 struct folio *dst; 1788 1789 if (list_empty(&cc->freepages)) { 1790 isolate_freepages(cc); 1791 1792 if (list_empty(&cc->freepages)) 1793 return NULL; 1794 } 1795 1796 dst = list_entry(cc->freepages.next, struct folio, lru); 1797 list_del(&dst->lru); 1798 cc->nr_freepages--; 1799 1800 return dst; 1801 } 1802 1803 /* 1804 * This is a migrate-callback that "frees" freepages back to the isolated 1805 * freelist. All pages on the freelist are from the same zone, so there is no 1806 * special handling needed for NUMA. 1807 */ 1808 static void compaction_free(struct folio *dst, unsigned long data) 1809 { 1810 struct compact_control *cc = (struct compact_control *)data; 1811 1812 list_add(&dst->lru, &cc->freepages); 1813 cc->nr_freepages++; 1814 } 1815 1816 /* possible outcome of isolate_migratepages */ 1817 typedef enum { 1818 ISOLATE_ABORT, /* Abort compaction now */ 1819 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1820 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1821 } isolate_migrate_t; 1822 1823 /* 1824 * Allow userspace to control policy on scanning the unevictable LRU for 1825 * compactable pages. 1826 */ 1827 static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT; 1828 /* 1829 * Tunable for proactive compaction. It determines how 1830 * aggressively the kernel should compact memory in the 1831 * background. It takes values in the range [0, 100]. 1832 */ 1833 static unsigned int __read_mostly sysctl_compaction_proactiveness = 20; 1834 static int sysctl_extfrag_threshold = 500; 1835 static int __read_mostly sysctl_compact_memory; 1836 1837 static inline void 1838 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn) 1839 { 1840 if (cc->fast_start_pfn == ULONG_MAX) 1841 return; 1842 1843 if (!cc->fast_start_pfn) 1844 cc->fast_start_pfn = pfn; 1845 1846 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn); 1847 } 1848 1849 static inline unsigned long 1850 reinit_migrate_pfn(struct compact_control *cc) 1851 { 1852 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX) 1853 return cc->migrate_pfn; 1854 1855 cc->migrate_pfn = cc->fast_start_pfn; 1856 cc->fast_start_pfn = ULONG_MAX; 1857 1858 return cc->migrate_pfn; 1859 } 1860 1861 /* 1862 * Briefly search the free lists for a migration source that already has 1863 * some free pages to reduce the number of pages that need migration 1864 * before a pageblock is free. 1865 */ 1866 static unsigned long fast_find_migrateblock(struct compact_control *cc) 1867 { 1868 unsigned int limit = freelist_scan_limit(cc); 1869 unsigned int nr_scanned = 0; 1870 unsigned long distance; 1871 unsigned long pfn = cc->migrate_pfn; 1872 unsigned long high_pfn; 1873 int order; 1874 bool found_block = false; 1875 1876 /* Skip hints are relied on to avoid repeats on the fast search */ 1877 if (cc->ignore_skip_hint) 1878 return pfn; 1879 1880 /* 1881 * If the pageblock should be finished then do not select a different 1882 * pageblock. 1883 */ 1884 if (cc->finish_pageblock) 1885 return pfn; 1886 1887 /* 1888 * If the migrate_pfn is not at the start of a zone or the start 1889 * of a pageblock then assume this is a continuation of a previous 1890 * scan restarted due to COMPACT_CLUSTER_MAX. 1891 */ 1892 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn)) 1893 return pfn; 1894 1895 /* 1896 * For smaller orders, just linearly scan as the number of pages 1897 * to migrate should be relatively small and does not necessarily 1898 * justify freeing up a large block for a small allocation. 1899 */ 1900 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER) 1901 return pfn; 1902 1903 /* 1904 * Only allow kcompactd and direct requests for movable pages to 1905 * quickly clear out a MOVABLE pageblock for allocation. This 1906 * reduces the risk that a large movable pageblock is freed for 1907 * an unmovable/reclaimable small allocation. 1908 */ 1909 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE) 1910 return pfn; 1911 1912 /* 1913 * When starting the migration scanner, pick any pageblock within the 1914 * first half of the search space. Otherwise try and pick a pageblock 1915 * within the first eighth to reduce the chances that a migration 1916 * target later becomes a source. 1917 */ 1918 distance = (cc->free_pfn - cc->migrate_pfn) >> 1; 1919 if (cc->migrate_pfn != cc->zone->zone_start_pfn) 1920 distance >>= 2; 1921 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance); 1922 1923 for (order = cc->order - 1; 1924 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit; 1925 order--) { 1926 struct free_area *area = &cc->zone->free_area[order]; 1927 struct list_head *freelist; 1928 unsigned long flags; 1929 struct page *freepage; 1930 1931 if (!area->nr_free) 1932 continue; 1933 1934 spin_lock_irqsave(&cc->zone->lock, flags); 1935 freelist = &area->free_list[MIGRATE_MOVABLE]; 1936 list_for_each_entry(freepage, freelist, buddy_list) { 1937 unsigned long free_pfn; 1938 1939 if (nr_scanned++ >= limit) { 1940 move_freelist_tail(freelist, freepage); 1941 break; 1942 } 1943 1944 free_pfn = page_to_pfn(freepage); 1945 if (free_pfn < high_pfn) { 1946 /* 1947 * Avoid if skipped recently. Ideally it would 1948 * move to the tail but even safe iteration of 1949 * the list assumes an entry is deleted, not 1950 * reordered. 1951 */ 1952 if (get_pageblock_skip(freepage)) 1953 continue; 1954 1955 /* Reorder to so a future search skips recent pages */ 1956 move_freelist_tail(freelist, freepage); 1957 1958 update_fast_start_pfn(cc, free_pfn); 1959 pfn = pageblock_start_pfn(free_pfn); 1960 if (pfn < cc->zone->zone_start_pfn) 1961 pfn = cc->zone->zone_start_pfn; 1962 cc->fast_search_fail = 0; 1963 found_block = true; 1964 break; 1965 } 1966 } 1967 spin_unlock_irqrestore(&cc->zone->lock, flags); 1968 } 1969 1970 cc->total_migrate_scanned += nr_scanned; 1971 1972 /* 1973 * If fast scanning failed then use a cached entry for a page block 1974 * that had free pages as the basis for starting a linear scan. 1975 */ 1976 if (!found_block) { 1977 cc->fast_search_fail++; 1978 pfn = reinit_migrate_pfn(cc); 1979 } 1980 return pfn; 1981 } 1982 1983 /* 1984 * Isolate all pages that can be migrated from the first suitable block, 1985 * starting at the block pointed to by the migrate scanner pfn within 1986 * compact_control. 1987 */ 1988 static isolate_migrate_t isolate_migratepages(struct compact_control *cc) 1989 { 1990 unsigned long block_start_pfn; 1991 unsigned long block_end_pfn; 1992 unsigned long low_pfn; 1993 struct page *page; 1994 const isolate_mode_t isolate_mode = 1995 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 1996 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0); 1997 bool fast_find_block; 1998 1999 /* 2000 * Start at where we last stopped, or beginning of the zone as 2001 * initialized by compact_zone(). The first failure will use 2002 * the lowest PFN as the starting point for linear scanning. 2003 */ 2004 low_pfn = fast_find_migrateblock(cc); 2005 block_start_pfn = pageblock_start_pfn(low_pfn); 2006 if (block_start_pfn < cc->zone->zone_start_pfn) 2007 block_start_pfn = cc->zone->zone_start_pfn; 2008 2009 /* 2010 * fast_find_migrateblock() has already ensured the pageblock is not 2011 * set with a skipped flag, so to avoid the isolation_suitable check 2012 * below again, check whether the fast search was successful. 2013 */ 2014 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail; 2015 2016 /* Only scan within a pageblock boundary */ 2017 block_end_pfn = pageblock_end_pfn(low_pfn); 2018 2019 /* 2020 * Iterate over whole pageblocks until we find the first suitable. 2021 * Do not cross the free scanner. 2022 */ 2023 for (; block_end_pfn <= cc->free_pfn; 2024 fast_find_block = false, 2025 cc->migrate_pfn = low_pfn = block_end_pfn, 2026 block_start_pfn = block_end_pfn, 2027 block_end_pfn += pageblock_nr_pages) { 2028 2029 /* 2030 * This can potentially iterate a massively long zone with 2031 * many pageblocks unsuitable, so periodically check if we 2032 * need to schedule. 2033 */ 2034 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages))) 2035 cond_resched(); 2036 2037 page = pageblock_pfn_to_page(block_start_pfn, 2038 block_end_pfn, cc->zone); 2039 if (!page) { 2040 unsigned long next_pfn; 2041 2042 next_pfn = skip_offline_sections(block_start_pfn); 2043 if (next_pfn) 2044 block_end_pfn = min(next_pfn, cc->free_pfn); 2045 continue; 2046 } 2047 2048 /* 2049 * If isolation recently failed, do not retry. Only check the 2050 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock 2051 * to be visited multiple times. Assume skip was checked 2052 * before making it "skip" so other compaction instances do 2053 * not scan the same block. 2054 */ 2055 if ((pageblock_aligned(low_pfn) || 2056 low_pfn == cc->zone->zone_start_pfn) && 2057 !fast_find_block && !isolation_suitable(cc, page)) 2058 continue; 2059 2060 /* 2061 * For async direct compaction, only scan the pageblocks of the 2062 * same migratetype without huge pages. Async direct compaction 2063 * is optimistic to see if the minimum amount of work satisfies 2064 * the allocation. The cached PFN is updated as it's possible 2065 * that all remaining blocks between source and target are 2066 * unsuitable and the compaction scanners fail to meet. 2067 */ 2068 if (!suitable_migration_source(cc, page)) { 2069 update_cached_migrate(cc, block_end_pfn); 2070 continue; 2071 } 2072 2073 /* Perform the isolation */ 2074 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn, 2075 isolate_mode)) 2076 return ISOLATE_ABORT; 2077 2078 /* 2079 * Either we isolated something and proceed with migration. Or 2080 * we failed and compact_zone should decide if we should 2081 * continue or not. 2082 */ 2083 break; 2084 } 2085 2086 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 2087 } 2088 2089 /* 2090 * order == -1 is expected when compacting proactively via 2091 * 1. /proc/sys/vm/compact_memory 2092 * 2. /sys/devices/system/node/nodex/compact 2093 * 3. /proc/sys/vm/compaction_proactiveness 2094 */ 2095 static inline bool is_via_compact_memory(int order) 2096 { 2097 return order == -1; 2098 } 2099 2100 /* 2101 * Determine whether kswapd is (or recently was!) running on this node. 2102 * 2103 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't 2104 * zero it. 2105 */ 2106 static bool kswapd_is_running(pg_data_t *pgdat) 2107 { 2108 bool running; 2109 2110 pgdat_kswapd_lock(pgdat); 2111 running = pgdat->kswapd && task_is_running(pgdat->kswapd); 2112 pgdat_kswapd_unlock(pgdat); 2113 2114 return running; 2115 } 2116 2117 /* 2118 * A zone's fragmentation score is the external fragmentation wrt to the 2119 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100]. 2120 */ 2121 static unsigned int fragmentation_score_zone(struct zone *zone) 2122 { 2123 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER); 2124 } 2125 2126 /* 2127 * A weighted zone's fragmentation score is the external fragmentation 2128 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It 2129 * returns a value in the range [0, 100]. 2130 * 2131 * The scaling factor ensures that proactive compaction focuses on larger 2132 * zones like ZONE_NORMAL, rather than smaller, specialized zones like 2133 * ZONE_DMA32. For smaller zones, the score value remains close to zero, 2134 * and thus never exceeds the high threshold for proactive compaction. 2135 */ 2136 static unsigned int fragmentation_score_zone_weighted(struct zone *zone) 2137 { 2138 unsigned long score; 2139 2140 score = zone->present_pages * fragmentation_score_zone(zone); 2141 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1); 2142 } 2143 2144 /* 2145 * The per-node proactive (background) compaction process is started by its 2146 * corresponding kcompactd thread when the node's fragmentation score 2147 * exceeds the high threshold. The compaction process remains active till 2148 * the node's score falls below the low threshold, or one of the back-off 2149 * conditions is met. 2150 */ 2151 static unsigned int fragmentation_score_node(pg_data_t *pgdat) 2152 { 2153 unsigned int score = 0; 2154 int zoneid; 2155 2156 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2157 struct zone *zone; 2158 2159 zone = &pgdat->node_zones[zoneid]; 2160 if (!populated_zone(zone)) 2161 continue; 2162 score += fragmentation_score_zone_weighted(zone); 2163 } 2164 2165 return score; 2166 } 2167 2168 static unsigned int fragmentation_score_wmark(bool low) 2169 { 2170 unsigned int wmark_low; 2171 2172 /* 2173 * Cap the low watermark to avoid excessive compaction 2174 * activity in case a user sets the proactiveness tunable 2175 * close to 100 (maximum). 2176 */ 2177 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U); 2178 return low ? wmark_low : min(wmark_low + 10, 100U); 2179 } 2180 2181 static bool should_proactive_compact_node(pg_data_t *pgdat) 2182 { 2183 int wmark_high; 2184 2185 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat)) 2186 return false; 2187 2188 wmark_high = fragmentation_score_wmark(false); 2189 return fragmentation_score_node(pgdat) > wmark_high; 2190 } 2191 2192 static enum compact_result __compact_finished(struct compact_control *cc) 2193 { 2194 unsigned int order; 2195 const int migratetype = cc->migratetype; 2196 int ret; 2197 2198 /* Compaction run completes if the migrate and free scanner meet */ 2199 if (compact_scanners_met(cc)) { 2200 /* Let the next compaction start anew. */ 2201 reset_cached_positions(cc->zone); 2202 2203 /* 2204 * Mark that the PG_migrate_skip information should be cleared 2205 * by kswapd when it goes to sleep. kcompactd does not set the 2206 * flag itself as the decision to be clear should be directly 2207 * based on an allocation request. 2208 */ 2209 if (cc->direct_compaction) 2210 cc->zone->compact_blockskip_flush = true; 2211 2212 if (cc->whole_zone) 2213 return COMPACT_COMPLETE; 2214 else 2215 return COMPACT_PARTIAL_SKIPPED; 2216 } 2217 2218 if (cc->proactive_compaction) { 2219 int score, wmark_low; 2220 pg_data_t *pgdat; 2221 2222 pgdat = cc->zone->zone_pgdat; 2223 if (kswapd_is_running(pgdat)) 2224 return COMPACT_PARTIAL_SKIPPED; 2225 2226 score = fragmentation_score_zone(cc->zone); 2227 wmark_low = fragmentation_score_wmark(true); 2228 2229 if (score > wmark_low) 2230 ret = COMPACT_CONTINUE; 2231 else 2232 ret = COMPACT_SUCCESS; 2233 2234 goto out; 2235 } 2236 2237 if (is_via_compact_memory(cc->order)) 2238 return COMPACT_CONTINUE; 2239 2240 /* 2241 * Always finish scanning a pageblock to reduce the possibility of 2242 * fallbacks in the future. This is particularly important when 2243 * migration source is unmovable/reclaimable but it's not worth 2244 * special casing. 2245 */ 2246 if (!pageblock_aligned(cc->migrate_pfn)) 2247 return COMPACT_CONTINUE; 2248 2249 /* Direct compactor: Is a suitable page free? */ 2250 ret = COMPACT_NO_SUITABLE_PAGE; 2251 for (order = cc->order; order < NR_PAGE_ORDERS; order++) { 2252 struct free_area *area = &cc->zone->free_area[order]; 2253 bool can_steal; 2254 2255 /* Job done if page is free of the right migratetype */ 2256 if (!free_area_empty(area, migratetype)) 2257 return COMPACT_SUCCESS; 2258 2259 #ifdef CONFIG_CMA 2260 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 2261 if (migratetype == MIGRATE_MOVABLE && 2262 !free_area_empty(area, MIGRATE_CMA)) 2263 return COMPACT_SUCCESS; 2264 #endif 2265 /* 2266 * Job done if allocation would steal freepages from 2267 * other migratetype buddy lists. 2268 */ 2269 if (find_suitable_fallback(area, order, migratetype, 2270 true, &can_steal) != -1) 2271 /* 2272 * Movable pages are OK in any pageblock. If we are 2273 * stealing for a non-movable allocation, make sure 2274 * we finish compacting the current pageblock first 2275 * (which is assured by the above migrate_pfn align 2276 * check) so it is as free as possible and we won't 2277 * have to steal another one soon. 2278 */ 2279 return COMPACT_SUCCESS; 2280 } 2281 2282 out: 2283 if (cc->contended || fatal_signal_pending(current)) 2284 ret = COMPACT_CONTENDED; 2285 2286 return ret; 2287 } 2288 2289 static enum compact_result compact_finished(struct compact_control *cc) 2290 { 2291 int ret; 2292 2293 ret = __compact_finished(cc); 2294 trace_mm_compaction_finished(cc->zone, cc->order, ret); 2295 if (ret == COMPACT_NO_SUITABLE_PAGE) 2296 ret = COMPACT_CONTINUE; 2297 2298 return ret; 2299 } 2300 2301 static bool __compaction_suitable(struct zone *zone, int order, 2302 int highest_zoneidx, 2303 unsigned long wmark_target) 2304 { 2305 unsigned long watermark; 2306 /* 2307 * Watermarks for order-0 must be met for compaction to be able to 2308 * isolate free pages for migration targets. This means that the 2309 * watermark and alloc_flags have to match, or be more pessimistic than 2310 * the check in __isolate_free_page(). We don't use the direct 2311 * compactor's alloc_flags, as they are not relevant for freepage 2312 * isolation. We however do use the direct compactor's highest_zoneidx 2313 * to skip over zones where lowmem reserves would prevent allocation 2314 * even if compaction succeeds. 2315 * For costly orders, we require low watermark instead of min for 2316 * compaction to proceed to increase its chances. 2317 * ALLOC_CMA is used, as pages in CMA pageblocks are considered 2318 * suitable migration targets 2319 */ 2320 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ? 2321 low_wmark_pages(zone) : min_wmark_pages(zone); 2322 watermark += compact_gap(order); 2323 return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx, 2324 ALLOC_CMA, wmark_target); 2325 } 2326 2327 /* 2328 * compaction_suitable: Is this suitable to run compaction on this zone now? 2329 */ 2330 bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx) 2331 { 2332 enum compact_result compact_result; 2333 bool suitable; 2334 2335 suitable = __compaction_suitable(zone, order, highest_zoneidx, 2336 zone_page_state(zone, NR_FREE_PAGES)); 2337 /* 2338 * fragmentation index determines if allocation failures are due to 2339 * low memory or external fragmentation 2340 * 2341 * index of -1000 would imply allocations might succeed depending on 2342 * watermarks, but we already failed the high-order watermark check 2343 * index towards 0 implies failure is due to lack of memory 2344 * index towards 1000 implies failure is due to fragmentation 2345 * 2346 * Only compact if a failure would be due to fragmentation. Also 2347 * ignore fragindex for non-costly orders where the alternative to 2348 * a successful reclaim/compaction is OOM. Fragindex and the 2349 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent 2350 * excessive compaction for costly orders, but it should not be at the 2351 * expense of system stability. 2352 */ 2353 if (suitable) { 2354 compact_result = COMPACT_CONTINUE; 2355 if (order > PAGE_ALLOC_COSTLY_ORDER) { 2356 int fragindex = fragmentation_index(zone, order); 2357 2358 if (fragindex >= 0 && 2359 fragindex <= sysctl_extfrag_threshold) { 2360 suitable = false; 2361 compact_result = COMPACT_NOT_SUITABLE_ZONE; 2362 } 2363 } 2364 } else { 2365 compact_result = COMPACT_SKIPPED; 2366 } 2367 2368 trace_mm_compaction_suitable(zone, order, compact_result); 2369 2370 return suitable; 2371 } 2372 2373 bool compaction_zonelist_suitable(struct alloc_context *ac, int order, 2374 int alloc_flags) 2375 { 2376 struct zone *zone; 2377 struct zoneref *z; 2378 2379 /* 2380 * Make sure at least one zone would pass __compaction_suitable if we continue 2381 * retrying the reclaim. 2382 */ 2383 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2384 ac->highest_zoneidx, ac->nodemask) { 2385 unsigned long available; 2386 2387 /* 2388 * Do not consider all the reclaimable memory because we do not 2389 * want to trash just for a single high order allocation which 2390 * is even not guaranteed to appear even if __compaction_suitable 2391 * is happy about the watermark check. 2392 */ 2393 available = zone_reclaimable_pages(zone) / order; 2394 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 2395 if (__compaction_suitable(zone, order, ac->highest_zoneidx, 2396 available)) 2397 return true; 2398 } 2399 2400 return false; 2401 } 2402 2403 /* 2404 * Should we do compaction for target allocation order. 2405 * Return COMPACT_SUCCESS if allocation for target order can be already 2406 * satisfied 2407 * Return COMPACT_SKIPPED if compaction for target order is likely to fail 2408 * Return COMPACT_CONTINUE if compaction for target order should be ran 2409 */ 2410 static enum compact_result 2411 compaction_suit_allocation_order(struct zone *zone, unsigned int order, 2412 int highest_zoneidx, unsigned int alloc_flags) 2413 { 2414 unsigned long watermark; 2415 2416 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 2417 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx, 2418 alloc_flags)) 2419 return COMPACT_SUCCESS; 2420 2421 if (!compaction_suitable(zone, order, highest_zoneidx)) 2422 return COMPACT_SKIPPED; 2423 2424 return COMPACT_CONTINUE; 2425 } 2426 2427 static enum compact_result 2428 compact_zone(struct compact_control *cc, struct capture_control *capc) 2429 { 2430 enum compact_result ret; 2431 unsigned long start_pfn = cc->zone->zone_start_pfn; 2432 unsigned long end_pfn = zone_end_pfn(cc->zone); 2433 unsigned long last_migrated_pfn; 2434 const bool sync = cc->mode != MIGRATE_ASYNC; 2435 bool update_cached; 2436 unsigned int nr_succeeded = 0; 2437 2438 /* 2439 * These counters track activities during zone compaction. Initialize 2440 * them before compacting a new zone. 2441 */ 2442 cc->total_migrate_scanned = 0; 2443 cc->total_free_scanned = 0; 2444 cc->nr_migratepages = 0; 2445 cc->nr_freepages = 0; 2446 INIT_LIST_HEAD(&cc->freepages); 2447 INIT_LIST_HEAD(&cc->migratepages); 2448 2449 cc->migratetype = gfp_migratetype(cc->gfp_mask); 2450 2451 if (!is_via_compact_memory(cc->order)) { 2452 ret = compaction_suit_allocation_order(cc->zone, cc->order, 2453 cc->highest_zoneidx, 2454 cc->alloc_flags); 2455 if (ret != COMPACT_CONTINUE) 2456 return ret; 2457 } 2458 2459 /* 2460 * Clear pageblock skip if there were failures recently and compaction 2461 * is about to be retried after being deferred. 2462 */ 2463 if (compaction_restarting(cc->zone, cc->order)) 2464 __reset_isolation_suitable(cc->zone); 2465 2466 /* 2467 * Setup to move all movable pages to the end of the zone. Used cached 2468 * information on where the scanners should start (unless we explicitly 2469 * want to compact the whole zone), but check that it is initialised 2470 * by ensuring the values are within zone boundaries. 2471 */ 2472 cc->fast_start_pfn = 0; 2473 if (cc->whole_zone) { 2474 cc->migrate_pfn = start_pfn; 2475 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2476 } else { 2477 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync]; 2478 cc->free_pfn = cc->zone->compact_cached_free_pfn; 2479 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 2480 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2481 cc->zone->compact_cached_free_pfn = cc->free_pfn; 2482 } 2483 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 2484 cc->migrate_pfn = start_pfn; 2485 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 2486 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 2487 } 2488 2489 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn) 2490 cc->whole_zone = true; 2491 } 2492 2493 last_migrated_pfn = 0; 2494 2495 /* 2496 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on 2497 * the basis that some migrations will fail in ASYNC mode. However, 2498 * if the cached PFNs match and pageblocks are skipped due to having 2499 * no isolation candidates, then the sync state does not matter. 2500 * Until a pageblock with isolation candidates is found, keep the 2501 * cached PFNs in sync to avoid revisiting the same blocks. 2502 */ 2503 update_cached = !sync && 2504 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1]; 2505 2506 trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync); 2507 2508 /* lru_add_drain_all could be expensive with involving other CPUs */ 2509 lru_add_drain(); 2510 2511 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) { 2512 int err; 2513 unsigned long iteration_start_pfn = cc->migrate_pfn; 2514 2515 /* 2516 * Avoid multiple rescans of the same pageblock which can 2517 * happen if a page cannot be isolated (dirty/writeback in 2518 * async mode) or if the migrated pages are being allocated 2519 * before the pageblock is cleared. The first rescan will 2520 * capture the entire pageblock for migration. If it fails, 2521 * it'll be marked skip and scanning will proceed as normal. 2522 */ 2523 cc->finish_pageblock = false; 2524 if (pageblock_start_pfn(last_migrated_pfn) == 2525 pageblock_start_pfn(iteration_start_pfn)) { 2526 cc->finish_pageblock = true; 2527 } 2528 2529 rescan: 2530 switch (isolate_migratepages(cc)) { 2531 case ISOLATE_ABORT: 2532 ret = COMPACT_CONTENDED; 2533 putback_movable_pages(&cc->migratepages); 2534 cc->nr_migratepages = 0; 2535 goto out; 2536 case ISOLATE_NONE: 2537 if (update_cached) { 2538 cc->zone->compact_cached_migrate_pfn[1] = 2539 cc->zone->compact_cached_migrate_pfn[0]; 2540 } 2541 2542 /* 2543 * We haven't isolated and migrated anything, but 2544 * there might still be unflushed migrations from 2545 * previous cc->order aligned block. 2546 */ 2547 goto check_drain; 2548 case ISOLATE_SUCCESS: 2549 update_cached = false; 2550 last_migrated_pfn = max(cc->zone->zone_start_pfn, 2551 pageblock_start_pfn(cc->migrate_pfn - 1)); 2552 } 2553 2554 err = migrate_pages(&cc->migratepages, compaction_alloc, 2555 compaction_free, (unsigned long)cc, cc->mode, 2556 MR_COMPACTION, &nr_succeeded); 2557 2558 trace_mm_compaction_migratepages(cc, nr_succeeded); 2559 2560 /* All pages were either migrated or will be released */ 2561 cc->nr_migratepages = 0; 2562 if (err) { 2563 putback_movable_pages(&cc->migratepages); 2564 /* 2565 * migrate_pages() may return -ENOMEM when scanners meet 2566 * and we want compact_finished() to detect it 2567 */ 2568 if (err == -ENOMEM && !compact_scanners_met(cc)) { 2569 ret = COMPACT_CONTENDED; 2570 goto out; 2571 } 2572 /* 2573 * If an ASYNC or SYNC_LIGHT fails to migrate a page 2574 * within the pageblock_order-aligned block and 2575 * fast_find_migrateblock may be used then scan the 2576 * remainder of the pageblock. This will mark the 2577 * pageblock "skip" to avoid rescanning in the near 2578 * future. This will isolate more pages than necessary 2579 * for the request but avoid loops due to 2580 * fast_find_migrateblock revisiting blocks that were 2581 * recently partially scanned. 2582 */ 2583 if (!pageblock_aligned(cc->migrate_pfn) && 2584 !cc->ignore_skip_hint && !cc->finish_pageblock && 2585 (cc->mode < MIGRATE_SYNC)) { 2586 cc->finish_pageblock = true; 2587 2588 /* 2589 * Draining pcplists does not help THP if 2590 * any page failed to migrate. Even after 2591 * drain, the pageblock will not be free. 2592 */ 2593 if (cc->order == COMPACTION_HPAGE_ORDER) 2594 last_migrated_pfn = 0; 2595 2596 goto rescan; 2597 } 2598 } 2599 2600 /* Stop if a page has been captured */ 2601 if (capc && capc->page) { 2602 ret = COMPACT_SUCCESS; 2603 break; 2604 } 2605 2606 check_drain: 2607 /* 2608 * Has the migration scanner moved away from the previous 2609 * cc->order aligned block where we migrated from? If yes, 2610 * flush the pages that were freed, so that they can merge and 2611 * compact_finished() can detect immediately if allocation 2612 * would succeed. 2613 */ 2614 if (cc->order > 0 && last_migrated_pfn) { 2615 unsigned long current_block_start = 2616 block_start_pfn(cc->migrate_pfn, cc->order); 2617 2618 if (last_migrated_pfn < current_block_start) { 2619 lru_add_drain_cpu_zone(cc->zone); 2620 /* No more flushing until we migrate again */ 2621 last_migrated_pfn = 0; 2622 } 2623 } 2624 } 2625 2626 out: 2627 /* 2628 * Release free pages and update where the free scanner should restart, 2629 * so we don't leave any returned pages behind in the next attempt. 2630 */ 2631 if (cc->nr_freepages > 0) { 2632 unsigned long free_pfn = release_freepages(&cc->freepages); 2633 2634 cc->nr_freepages = 0; 2635 VM_BUG_ON(free_pfn == 0); 2636 /* The cached pfn is always the first in a pageblock */ 2637 free_pfn = pageblock_start_pfn(free_pfn); 2638 /* 2639 * Only go back, not forward. The cached pfn might have been 2640 * already reset to zone end in compact_finished() 2641 */ 2642 if (free_pfn > cc->zone->compact_cached_free_pfn) 2643 cc->zone->compact_cached_free_pfn = free_pfn; 2644 } 2645 2646 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned); 2647 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned); 2648 2649 trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret); 2650 2651 VM_BUG_ON(!list_empty(&cc->freepages)); 2652 VM_BUG_ON(!list_empty(&cc->migratepages)); 2653 2654 return ret; 2655 } 2656 2657 static enum compact_result compact_zone_order(struct zone *zone, int order, 2658 gfp_t gfp_mask, enum compact_priority prio, 2659 unsigned int alloc_flags, int highest_zoneidx, 2660 struct page **capture) 2661 { 2662 enum compact_result ret; 2663 struct compact_control cc = { 2664 .order = order, 2665 .search_order = order, 2666 .gfp_mask = gfp_mask, 2667 .zone = zone, 2668 .mode = (prio == COMPACT_PRIO_ASYNC) ? 2669 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT, 2670 .alloc_flags = alloc_flags, 2671 .highest_zoneidx = highest_zoneidx, 2672 .direct_compaction = true, 2673 .whole_zone = (prio == MIN_COMPACT_PRIORITY), 2674 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY), 2675 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY) 2676 }; 2677 struct capture_control capc = { 2678 .cc = &cc, 2679 .page = NULL, 2680 }; 2681 2682 /* 2683 * Make sure the structs are really initialized before we expose the 2684 * capture control, in case we are interrupted and the interrupt handler 2685 * frees a page. 2686 */ 2687 barrier(); 2688 WRITE_ONCE(current->capture_control, &capc); 2689 2690 ret = compact_zone(&cc, &capc); 2691 2692 /* 2693 * Make sure we hide capture control first before we read the captured 2694 * page pointer, otherwise an interrupt could free and capture a page 2695 * and we would leak it. 2696 */ 2697 WRITE_ONCE(current->capture_control, NULL); 2698 *capture = READ_ONCE(capc.page); 2699 /* 2700 * Technically, it is also possible that compaction is skipped but 2701 * the page is still captured out of luck(IRQ came and freed the page). 2702 * Returning COMPACT_SUCCESS in such cases helps in properly accounting 2703 * the COMPACT[STALL|FAIL] when compaction is skipped. 2704 */ 2705 if (*capture) 2706 ret = COMPACT_SUCCESS; 2707 2708 return ret; 2709 } 2710 2711 /** 2712 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 2713 * @gfp_mask: The GFP mask of the current allocation 2714 * @order: The order of the current allocation 2715 * @alloc_flags: The allocation flags of the current allocation 2716 * @ac: The context of current allocation 2717 * @prio: Determines how hard direct compaction should try to succeed 2718 * @capture: Pointer to free page created by compaction will be stored here 2719 * 2720 * This is the main entry point for direct page compaction. 2721 */ 2722 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 2723 unsigned int alloc_flags, const struct alloc_context *ac, 2724 enum compact_priority prio, struct page **capture) 2725 { 2726 int may_perform_io = (__force int)(gfp_mask & __GFP_IO); 2727 struct zoneref *z; 2728 struct zone *zone; 2729 enum compact_result rc = COMPACT_SKIPPED; 2730 2731 /* 2732 * Check if the GFP flags allow compaction - GFP_NOIO is really 2733 * tricky context because the migration might require IO 2734 */ 2735 if (!may_perform_io) 2736 return COMPACT_SKIPPED; 2737 2738 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio); 2739 2740 /* Compact each zone in the list */ 2741 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2742 ac->highest_zoneidx, ac->nodemask) { 2743 enum compact_result status; 2744 2745 if (prio > MIN_COMPACT_PRIORITY 2746 && compaction_deferred(zone, order)) { 2747 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); 2748 continue; 2749 } 2750 2751 status = compact_zone_order(zone, order, gfp_mask, prio, 2752 alloc_flags, ac->highest_zoneidx, capture); 2753 rc = max(status, rc); 2754 2755 /* The allocation should succeed, stop compacting */ 2756 if (status == COMPACT_SUCCESS) { 2757 /* 2758 * We think the allocation will succeed in this zone, 2759 * but it is not certain, hence the false. The caller 2760 * will repeat this with true if allocation indeed 2761 * succeeds in this zone. 2762 */ 2763 compaction_defer_reset(zone, order, false); 2764 2765 break; 2766 } 2767 2768 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE || 2769 status == COMPACT_PARTIAL_SKIPPED)) 2770 /* 2771 * We think that allocation won't succeed in this zone 2772 * so we defer compaction there. If it ends up 2773 * succeeding after all, it will be reset. 2774 */ 2775 defer_compaction(zone, order); 2776 2777 /* 2778 * We might have stopped compacting due to need_resched() in 2779 * async compaction, or due to a fatal signal detected. In that 2780 * case do not try further zones 2781 */ 2782 if ((prio == COMPACT_PRIO_ASYNC && need_resched()) 2783 || fatal_signal_pending(current)) 2784 break; 2785 } 2786 2787 return rc; 2788 } 2789 2790 /* 2791 * Compact all zones within a node till each zone's fragmentation score 2792 * reaches within proactive compaction thresholds (as determined by the 2793 * proactiveness tunable). 2794 * 2795 * It is possible that the function returns before reaching score targets 2796 * due to various back-off conditions, such as, contention on per-node or 2797 * per-zone locks. 2798 */ 2799 static void proactive_compact_node(pg_data_t *pgdat) 2800 { 2801 int zoneid; 2802 struct zone *zone; 2803 struct compact_control cc = { 2804 .order = -1, 2805 .mode = MIGRATE_SYNC_LIGHT, 2806 .ignore_skip_hint = true, 2807 .whole_zone = true, 2808 .gfp_mask = GFP_KERNEL, 2809 .proactive_compaction = true, 2810 }; 2811 2812 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2813 zone = &pgdat->node_zones[zoneid]; 2814 if (!populated_zone(zone)) 2815 continue; 2816 2817 cc.zone = zone; 2818 2819 compact_zone(&cc, NULL); 2820 2821 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 2822 cc.total_migrate_scanned); 2823 count_compact_events(KCOMPACTD_FREE_SCANNED, 2824 cc.total_free_scanned); 2825 } 2826 } 2827 2828 /* Compact all zones within a node */ 2829 static void compact_node(int nid) 2830 { 2831 pg_data_t *pgdat = NODE_DATA(nid); 2832 int zoneid; 2833 struct zone *zone; 2834 struct compact_control cc = { 2835 .order = -1, 2836 .mode = MIGRATE_SYNC, 2837 .ignore_skip_hint = true, 2838 .whole_zone = true, 2839 .gfp_mask = GFP_KERNEL, 2840 }; 2841 2842 2843 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2844 2845 zone = &pgdat->node_zones[zoneid]; 2846 if (!populated_zone(zone)) 2847 continue; 2848 2849 cc.zone = zone; 2850 2851 compact_zone(&cc, NULL); 2852 } 2853 } 2854 2855 /* Compact all nodes in the system */ 2856 static void compact_nodes(void) 2857 { 2858 int nid; 2859 2860 /* Flush pending updates to the LRU lists */ 2861 lru_add_drain_all(); 2862 2863 for_each_online_node(nid) 2864 compact_node(nid); 2865 } 2866 2867 static int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write, 2868 void *buffer, size_t *length, loff_t *ppos) 2869 { 2870 int rc, nid; 2871 2872 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 2873 if (rc) 2874 return rc; 2875 2876 if (write && sysctl_compaction_proactiveness) { 2877 for_each_online_node(nid) { 2878 pg_data_t *pgdat = NODE_DATA(nid); 2879 2880 if (pgdat->proactive_compact_trigger) 2881 continue; 2882 2883 pgdat->proactive_compact_trigger = true; 2884 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1, 2885 pgdat->nr_zones - 1); 2886 wake_up_interruptible(&pgdat->kcompactd_wait); 2887 } 2888 } 2889 2890 return 0; 2891 } 2892 2893 /* 2894 * This is the entry point for compacting all nodes via 2895 * /proc/sys/vm/compact_memory 2896 */ 2897 static int sysctl_compaction_handler(struct ctl_table *table, int write, 2898 void *buffer, size_t *length, loff_t *ppos) 2899 { 2900 int ret; 2901 2902 ret = proc_dointvec(table, write, buffer, length, ppos); 2903 if (ret) 2904 return ret; 2905 2906 if (sysctl_compact_memory != 1) 2907 return -EINVAL; 2908 2909 if (write) 2910 compact_nodes(); 2911 2912 return 0; 2913 } 2914 2915 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 2916 static ssize_t compact_store(struct device *dev, 2917 struct device_attribute *attr, 2918 const char *buf, size_t count) 2919 { 2920 int nid = dev->id; 2921 2922 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 2923 /* Flush pending updates to the LRU lists */ 2924 lru_add_drain_all(); 2925 2926 compact_node(nid); 2927 } 2928 2929 return count; 2930 } 2931 static DEVICE_ATTR_WO(compact); 2932 2933 int compaction_register_node(struct node *node) 2934 { 2935 return device_create_file(&node->dev, &dev_attr_compact); 2936 } 2937 2938 void compaction_unregister_node(struct node *node) 2939 { 2940 device_remove_file(&node->dev, &dev_attr_compact); 2941 } 2942 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 2943 2944 static inline bool kcompactd_work_requested(pg_data_t *pgdat) 2945 { 2946 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() || 2947 pgdat->proactive_compact_trigger; 2948 } 2949 2950 static bool kcompactd_node_suitable(pg_data_t *pgdat) 2951 { 2952 int zoneid; 2953 struct zone *zone; 2954 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx; 2955 enum compact_result ret; 2956 2957 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) { 2958 zone = &pgdat->node_zones[zoneid]; 2959 2960 if (!populated_zone(zone)) 2961 continue; 2962 2963 ret = compaction_suit_allocation_order(zone, 2964 pgdat->kcompactd_max_order, 2965 highest_zoneidx, ALLOC_WMARK_MIN); 2966 if (ret == COMPACT_CONTINUE) 2967 return true; 2968 } 2969 2970 return false; 2971 } 2972 2973 static void kcompactd_do_work(pg_data_t *pgdat) 2974 { 2975 /* 2976 * With no special task, compact all zones so that a page of requested 2977 * order is allocatable. 2978 */ 2979 int zoneid; 2980 struct zone *zone; 2981 struct compact_control cc = { 2982 .order = pgdat->kcompactd_max_order, 2983 .search_order = pgdat->kcompactd_max_order, 2984 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx, 2985 .mode = MIGRATE_SYNC_LIGHT, 2986 .ignore_skip_hint = false, 2987 .gfp_mask = GFP_KERNEL, 2988 }; 2989 enum compact_result ret; 2990 2991 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 2992 cc.highest_zoneidx); 2993 count_compact_event(KCOMPACTD_WAKE); 2994 2995 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) { 2996 int status; 2997 2998 zone = &pgdat->node_zones[zoneid]; 2999 if (!populated_zone(zone)) 3000 continue; 3001 3002 if (compaction_deferred(zone, cc.order)) 3003 continue; 3004 3005 ret = compaction_suit_allocation_order(zone, 3006 cc.order, zoneid, ALLOC_WMARK_MIN); 3007 if (ret != COMPACT_CONTINUE) 3008 continue; 3009 3010 if (kthread_should_stop()) 3011 return; 3012 3013 cc.zone = zone; 3014 status = compact_zone(&cc, NULL); 3015 3016 if (status == COMPACT_SUCCESS) { 3017 compaction_defer_reset(zone, cc.order, false); 3018 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { 3019 /* 3020 * Buddy pages may become stranded on pcps that could 3021 * otherwise coalesce on the zone's free area for 3022 * order >= cc.order. This is ratelimited by the 3023 * upcoming deferral. 3024 */ 3025 drain_all_pages(zone); 3026 3027 /* 3028 * We use sync migration mode here, so we defer like 3029 * sync direct compaction does. 3030 */ 3031 defer_compaction(zone, cc.order); 3032 } 3033 3034 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 3035 cc.total_migrate_scanned); 3036 count_compact_events(KCOMPACTD_FREE_SCANNED, 3037 cc.total_free_scanned); 3038 } 3039 3040 /* 3041 * Regardless of success, we are done until woken up next. But remember 3042 * the requested order/highest_zoneidx in case it was higher/tighter 3043 * than our current ones 3044 */ 3045 if (pgdat->kcompactd_max_order <= cc.order) 3046 pgdat->kcompactd_max_order = 0; 3047 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx) 3048 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 3049 } 3050 3051 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx) 3052 { 3053 if (!order) 3054 return; 3055 3056 if (pgdat->kcompactd_max_order < order) 3057 pgdat->kcompactd_max_order = order; 3058 3059 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx) 3060 pgdat->kcompactd_highest_zoneidx = highest_zoneidx; 3061 3062 /* 3063 * Pairs with implicit barrier in wait_event_freezable() 3064 * such that wakeups are not missed. 3065 */ 3066 if (!wq_has_sleeper(&pgdat->kcompactd_wait)) 3067 return; 3068 3069 if (!kcompactd_node_suitable(pgdat)) 3070 return; 3071 3072 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 3073 highest_zoneidx); 3074 wake_up_interruptible(&pgdat->kcompactd_wait); 3075 } 3076 3077 /* 3078 * The background compaction daemon, started as a kernel thread 3079 * from the init process. 3080 */ 3081 static int kcompactd(void *p) 3082 { 3083 pg_data_t *pgdat = (pg_data_t *)p; 3084 struct task_struct *tsk = current; 3085 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC); 3086 long timeout = default_timeout; 3087 3088 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3089 3090 if (!cpumask_empty(cpumask)) 3091 set_cpus_allowed_ptr(tsk, cpumask); 3092 3093 set_freezable(); 3094 3095 pgdat->kcompactd_max_order = 0; 3096 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 3097 3098 while (!kthread_should_stop()) { 3099 unsigned long pflags; 3100 3101 /* 3102 * Avoid the unnecessary wakeup for proactive compaction 3103 * when it is disabled. 3104 */ 3105 if (!sysctl_compaction_proactiveness) 3106 timeout = MAX_SCHEDULE_TIMEOUT; 3107 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 3108 if (wait_event_freezable_timeout(pgdat->kcompactd_wait, 3109 kcompactd_work_requested(pgdat), timeout) && 3110 !pgdat->proactive_compact_trigger) { 3111 3112 psi_memstall_enter(&pflags); 3113 kcompactd_do_work(pgdat); 3114 psi_memstall_leave(&pflags); 3115 /* 3116 * Reset the timeout value. The defer timeout from 3117 * proactive compaction is lost here but that is fine 3118 * as the condition of the zone changing substantionally 3119 * then carrying on with the previous defer interval is 3120 * not useful. 3121 */ 3122 timeout = default_timeout; 3123 continue; 3124 } 3125 3126 /* 3127 * Start the proactive work with default timeout. Based 3128 * on the fragmentation score, this timeout is updated. 3129 */ 3130 timeout = default_timeout; 3131 if (should_proactive_compact_node(pgdat)) { 3132 unsigned int prev_score, score; 3133 3134 prev_score = fragmentation_score_node(pgdat); 3135 proactive_compact_node(pgdat); 3136 score = fragmentation_score_node(pgdat); 3137 /* 3138 * Defer proactive compaction if the fragmentation 3139 * score did not go down i.e. no progress made. 3140 */ 3141 if (unlikely(score >= prev_score)) 3142 timeout = 3143 default_timeout << COMPACT_MAX_DEFER_SHIFT; 3144 } 3145 if (unlikely(pgdat->proactive_compact_trigger)) 3146 pgdat->proactive_compact_trigger = false; 3147 } 3148 3149 return 0; 3150 } 3151 3152 /* 3153 * This kcompactd start function will be called by init and node-hot-add. 3154 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 3155 */ 3156 void __meminit kcompactd_run(int nid) 3157 { 3158 pg_data_t *pgdat = NODE_DATA(nid); 3159 3160 if (pgdat->kcompactd) 3161 return; 3162 3163 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); 3164 if (IS_ERR(pgdat->kcompactd)) { 3165 pr_err("Failed to start kcompactd on node %d\n", nid); 3166 pgdat->kcompactd = NULL; 3167 } 3168 } 3169 3170 /* 3171 * Called by memory hotplug when all memory in a node is offlined. Caller must 3172 * be holding mem_hotplug_begin/done(). 3173 */ 3174 void __meminit kcompactd_stop(int nid) 3175 { 3176 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 3177 3178 if (kcompactd) { 3179 kthread_stop(kcompactd); 3180 NODE_DATA(nid)->kcompactd = NULL; 3181 } 3182 } 3183 3184 /* 3185 * It's optimal to keep kcompactd on the same CPUs as their memory, but 3186 * not required for correctness. So if the last cpu in a node goes 3187 * away, we get changed to run anywhere: as the first one comes back, 3188 * restore their cpu bindings. 3189 */ 3190 static int kcompactd_cpu_online(unsigned int cpu) 3191 { 3192 int nid; 3193 3194 for_each_node_state(nid, N_MEMORY) { 3195 pg_data_t *pgdat = NODE_DATA(nid); 3196 const struct cpumask *mask; 3197 3198 mask = cpumask_of_node(pgdat->node_id); 3199 3200 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3201 /* One of our CPUs online: restore mask */ 3202 if (pgdat->kcompactd) 3203 set_cpus_allowed_ptr(pgdat->kcompactd, mask); 3204 } 3205 return 0; 3206 } 3207 3208 static int proc_dointvec_minmax_warn_RT_change(struct ctl_table *table, 3209 int write, void *buffer, size_t *lenp, loff_t *ppos) 3210 { 3211 int ret, old; 3212 3213 if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write) 3214 return proc_dointvec_minmax(table, write, buffer, lenp, ppos); 3215 3216 old = *(int *)table->data; 3217 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 3218 if (ret) 3219 return ret; 3220 if (old != *(int *)table->data) 3221 pr_warn_once("sysctl attribute %s changed by %s[%d]\n", 3222 table->procname, current->comm, 3223 task_pid_nr(current)); 3224 return ret; 3225 } 3226 3227 static struct ctl_table vm_compaction[] = { 3228 { 3229 .procname = "compact_memory", 3230 .data = &sysctl_compact_memory, 3231 .maxlen = sizeof(int), 3232 .mode = 0200, 3233 .proc_handler = sysctl_compaction_handler, 3234 }, 3235 { 3236 .procname = "compaction_proactiveness", 3237 .data = &sysctl_compaction_proactiveness, 3238 .maxlen = sizeof(sysctl_compaction_proactiveness), 3239 .mode = 0644, 3240 .proc_handler = compaction_proactiveness_sysctl_handler, 3241 .extra1 = SYSCTL_ZERO, 3242 .extra2 = SYSCTL_ONE_HUNDRED, 3243 }, 3244 { 3245 .procname = "extfrag_threshold", 3246 .data = &sysctl_extfrag_threshold, 3247 .maxlen = sizeof(int), 3248 .mode = 0644, 3249 .proc_handler = proc_dointvec_minmax, 3250 .extra1 = SYSCTL_ZERO, 3251 .extra2 = SYSCTL_ONE_THOUSAND, 3252 }, 3253 { 3254 .procname = "compact_unevictable_allowed", 3255 .data = &sysctl_compact_unevictable_allowed, 3256 .maxlen = sizeof(int), 3257 .mode = 0644, 3258 .proc_handler = proc_dointvec_minmax_warn_RT_change, 3259 .extra1 = SYSCTL_ZERO, 3260 .extra2 = SYSCTL_ONE, 3261 }, 3262 { } 3263 }; 3264 3265 static int __init kcompactd_init(void) 3266 { 3267 int nid; 3268 int ret; 3269 3270 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 3271 "mm/compaction:online", 3272 kcompactd_cpu_online, NULL); 3273 if (ret < 0) { 3274 pr_err("kcompactd: failed to register hotplug callbacks.\n"); 3275 return ret; 3276 } 3277 3278 for_each_node_state(nid, N_MEMORY) 3279 kcompactd_run(nid); 3280 register_sysctl_init("vm", vm_compaction); 3281 return 0; 3282 } 3283 subsys_initcall(kcompactd_init) 3284 3285 #endif /* CONFIG_COMPACTION */ 3286