xref: /linux/mm/compaction.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27 
28 #ifdef CONFIG_COMPACTION
29 static inline void count_compact_event(enum vm_event_item item)
30 {
31 	count_vm_event(item);
32 }
33 
34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36 	count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42 
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47 
48 #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)
52 
53 static unsigned long release_freepages(struct list_head *freelist)
54 {
55 	struct page *page, *next;
56 	unsigned long high_pfn = 0;
57 
58 	list_for_each_entry_safe(page, next, freelist, lru) {
59 		unsigned long pfn = page_to_pfn(page);
60 		list_del(&page->lru);
61 		__free_page(page);
62 		if (pfn > high_pfn)
63 			high_pfn = pfn;
64 	}
65 
66 	return high_pfn;
67 }
68 
69 static void split_map_pages(struct list_head *list)
70 {
71 	unsigned int i, order, nr_pages;
72 	struct page *page, *next;
73 	LIST_HEAD(tmp_list);
74 
75 	list_for_each_entry_safe(page, next, list, lru) {
76 		list_del(&page->lru);
77 
78 		order = page_private(page);
79 		nr_pages = 1 << order;
80 
81 		post_alloc_hook(page, order, __GFP_MOVABLE);
82 		if (order)
83 			split_page(page, order);
84 
85 		for (i = 0; i < nr_pages; i++) {
86 			list_add(&page->lru, &tmp_list);
87 			page++;
88 		}
89 	}
90 
91 	list_splice(&tmp_list, list);
92 }
93 
94 #ifdef CONFIG_COMPACTION
95 
96 int PageMovable(struct page *page)
97 {
98 	struct address_space *mapping;
99 
100 	VM_BUG_ON_PAGE(!PageLocked(page), page);
101 	if (!__PageMovable(page))
102 		return 0;
103 
104 	mapping = page_mapping(page);
105 	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
106 		return 1;
107 
108 	return 0;
109 }
110 EXPORT_SYMBOL(PageMovable);
111 
112 void __SetPageMovable(struct page *page, struct address_space *mapping)
113 {
114 	VM_BUG_ON_PAGE(!PageLocked(page), page);
115 	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
116 	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
117 }
118 EXPORT_SYMBOL(__SetPageMovable);
119 
120 void __ClearPageMovable(struct page *page)
121 {
122 	VM_BUG_ON_PAGE(!PageLocked(page), page);
123 	VM_BUG_ON_PAGE(!PageMovable(page), page);
124 	/*
125 	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
126 	 * flag so that VM can catch up released page by driver after isolation.
127 	 * With it, VM migration doesn't try to put it back.
128 	 */
129 	page->mapping = (void *)((unsigned long)page->mapping &
130 				PAGE_MAPPING_MOVABLE);
131 }
132 EXPORT_SYMBOL(__ClearPageMovable);
133 
134 /* Do not skip compaction more than 64 times */
135 #define COMPACT_MAX_DEFER_SHIFT 6
136 
137 /*
138  * Compaction is deferred when compaction fails to result in a page
139  * allocation success. 1 << compact_defer_limit compactions are skipped up
140  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
141  */
142 void defer_compaction(struct zone *zone, int order)
143 {
144 	zone->compact_considered = 0;
145 	zone->compact_defer_shift++;
146 
147 	if (order < zone->compact_order_failed)
148 		zone->compact_order_failed = order;
149 
150 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
151 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
152 
153 	trace_mm_compaction_defer_compaction(zone, order);
154 }
155 
156 /* Returns true if compaction should be skipped this time */
157 bool compaction_deferred(struct zone *zone, int order)
158 {
159 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
160 
161 	if (order < zone->compact_order_failed)
162 		return false;
163 
164 	/* Avoid possible overflow */
165 	if (++zone->compact_considered > defer_limit)
166 		zone->compact_considered = defer_limit;
167 
168 	if (zone->compact_considered >= defer_limit)
169 		return false;
170 
171 	trace_mm_compaction_deferred(zone, order);
172 
173 	return true;
174 }
175 
176 /*
177  * Update defer tracking counters after successful compaction of given order,
178  * which means an allocation either succeeded (alloc_success == true) or is
179  * expected to succeed.
180  */
181 void compaction_defer_reset(struct zone *zone, int order,
182 		bool alloc_success)
183 {
184 	if (alloc_success) {
185 		zone->compact_considered = 0;
186 		zone->compact_defer_shift = 0;
187 	}
188 	if (order >= zone->compact_order_failed)
189 		zone->compact_order_failed = order + 1;
190 
191 	trace_mm_compaction_defer_reset(zone, order);
192 }
193 
194 /* Returns true if restarting compaction after many failures */
195 bool compaction_restarting(struct zone *zone, int order)
196 {
197 	if (order < zone->compact_order_failed)
198 		return false;
199 
200 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
201 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
202 }
203 
204 /* Returns true if the pageblock should be scanned for pages to isolate. */
205 static inline bool isolation_suitable(struct compact_control *cc,
206 					struct page *page)
207 {
208 	if (cc->ignore_skip_hint)
209 		return true;
210 
211 	return !get_pageblock_skip(page);
212 }
213 
214 static void reset_cached_positions(struct zone *zone)
215 {
216 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
217 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
218 	zone->compact_cached_free_pfn =
219 				pageblock_start_pfn(zone_end_pfn(zone) - 1);
220 }
221 
222 /*
223  * Compound pages of >= pageblock_order should consistenly be skipped until
224  * released. It is always pointless to compact pages of such order (if they are
225  * migratable), and the pageblocks they occupy cannot contain any free pages.
226  */
227 static bool pageblock_skip_persistent(struct page *page)
228 {
229 	if (!PageCompound(page))
230 		return false;
231 
232 	page = compound_head(page);
233 
234 	if (compound_order(page) >= pageblock_order)
235 		return true;
236 
237 	return false;
238 }
239 
240 static bool
241 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
242 							bool check_target)
243 {
244 	struct page *page = pfn_to_online_page(pfn);
245 	struct page *block_page;
246 	struct page *end_page;
247 	unsigned long block_pfn;
248 
249 	if (!page)
250 		return false;
251 	if (zone != page_zone(page))
252 		return false;
253 	if (pageblock_skip_persistent(page))
254 		return false;
255 
256 	/*
257 	 * If skip is already cleared do no further checking once the
258 	 * restart points have been set.
259 	 */
260 	if (check_source && check_target && !get_pageblock_skip(page))
261 		return true;
262 
263 	/*
264 	 * If clearing skip for the target scanner, do not select a
265 	 * non-movable pageblock as the starting point.
266 	 */
267 	if (!check_source && check_target &&
268 	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
269 		return false;
270 
271 	/* Ensure the start of the pageblock or zone is online and valid */
272 	block_pfn = pageblock_start_pfn(pfn);
273 	block_pfn = max(block_pfn, zone->zone_start_pfn);
274 	block_page = pfn_to_online_page(block_pfn);
275 	if (block_page) {
276 		page = block_page;
277 		pfn = block_pfn;
278 	}
279 
280 	/* Ensure the end of the pageblock or zone is online and valid */
281 	block_pfn = pageblock_end_pfn(pfn) - 1;
282 	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
283 	end_page = pfn_to_online_page(block_pfn);
284 	if (!end_page)
285 		return false;
286 
287 	/*
288 	 * Only clear the hint if a sample indicates there is either a
289 	 * free page or an LRU page in the block. One or other condition
290 	 * is necessary for the block to be a migration source/target.
291 	 */
292 	do {
293 		if (pfn_valid_within(pfn)) {
294 			if (check_source && PageLRU(page)) {
295 				clear_pageblock_skip(page);
296 				return true;
297 			}
298 
299 			if (check_target && PageBuddy(page)) {
300 				clear_pageblock_skip(page);
301 				return true;
302 			}
303 		}
304 
305 		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
306 		pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
307 	} while (page <= end_page);
308 
309 	return false;
310 }
311 
312 /*
313  * This function is called to clear all cached information on pageblocks that
314  * should be skipped for page isolation when the migrate and free page scanner
315  * meet.
316  */
317 static void __reset_isolation_suitable(struct zone *zone)
318 {
319 	unsigned long migrate_pfn = zone->zone_start_pfn;
320 	unsigned long free_pfn = zone_end_pfn(zone) - 1;
321 	unsigned long reset_migrate = free_pfn;
322 	unsigned long reset_free = migrate_pfn;
323 	bool source_set = false;
324 	bool free_set = false;
325 
326 	if (!zone->compact_blockskip_flush)
327 		return;
328 
329 	zone->compact_blockskip_flush = false;
330 
331 	/*
332 	 * Walk the zone and update pageblock skip information. Source looks
333 	 * for PageLRU while target looks for PageBuddy. When the scanner
334 	 * is found, both PageBuddy and PageLRU are checked as the pageblock
335 	 * is suitable as both source and target.
336 	 */
337 	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
338 					free_pfn -= pageblock_nr_pages) {
339 		cond_resched();
340 
341 		/* Update the migrate PFN */
342 		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
343 		    migrate_pfn < reset_migrate) {
344 			source_set = true;
345 			reset_migrate = migrate_pfn;
346 			zone->compact_init_migrate_pfn = reset_migrate;
347 			zone->compact_cached_migrate_pfn[0] = reset_migrate;
348 			zone->compact_cached_migrate_pfn[1] = reset_migrate;
349 		}
350 
351 		/* Update the free PFN */
352 		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
353 		    free_pfn > reset_free) {
354 			free_set = true;
355 			reset_free = free_pfn;
356 			zone->compact_init_free_pfn = reset_free;
357 			zone->compact_cached_free_pfn = reset_free;
358 		}
359 	}
360 
361 	/* Leave no distance if no suitable block was reset */
362 	if (reset_migrate >= reset_free) {
363 		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
364 		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
365 		zone->compact_cached_free_pfn = free_pfn;
366 	}
367 }
368 
369 void reset_isolation_suitable(pg_data_t *pgdat)
370 {
371 	int zoneid;
372 
373 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
374 		struct zone *zone = &pgdat->node_zones[zoneid];
375 		if (!populated_zone(zone))
376 			continue;
377 
378 		/* Only flush if a full compaction finished recently */
379 		if (zone->compact_blockskip_flush)
380 			__reset_isolation_suitable(zone);
381 	}
382 }
383 
384 /*
385  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
386  * locks are not required for read/writers. Returns true if it was already set.
387  */
388 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
389 							unsigned long pfn)
390 {
391 	bool skip;
392 
393 	/* Do no update if skip hint is being ignored */
394 	if (cc->ignore_skip_hint)
395 		return false;
396 
397 	if (!IS_ALIGNED(pfn, pageblock_nr_pages))
398 		return false;
399 
400 	skip = get_pageblock_skip(page);
401 	if (!skip && !cc->no_set_skip_hint)
402 		set_pageblock_skip(page);
403 
404 	return skip;
405 }
406 
407 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
408 {
409 	struct zone *zone = cc->zone;
410 
411 	pfn = pageblock_end_pfn(pfn);
412 
413 	/* Set for isolation rather than compaction */
414 	if (cc->no_set_skip_hint)
415 		return;
416 
417 	if (pfn > zone->compact_cached_migrate_pfn[0])
418 		zone->compact_cached_migrate_pfn[0] = pfn;
419 	if (cc->mode != MIGRATE_ASYNC &&
420 	    pfn > zone->compact_cached_migrate_pfn[1])
421 		zone->compact_cached_migrate_pfn[1] = pfn;
422 }
423 
424 /*
425  * If no pages were isolated then mark this pageblock to be skipped in the
426  * future. The information is later cleared by __reset_isolation_suitable().
427  */
428 static void update_pageblock_skip(struct compact_control *cc,
429 			struct page *page, unsigned long pfn)
430 {
431 	struct zone *zone = cc->zone;
432 
433 	if (cc->no_set_skip_hint)
434 		return;
435 
436 	if (!page)
437 		return;
438 
439 	set_pageblock_skip(page);
440 
441 	/* Update where async and sync compaction should restart */
442 	if (pfn < zone->compact_cached_free_pfn)
443 		zone->compact_cached_free_pfn = pfn;
444 }
445 #else
446 static inline bool isolation_suitable(struct compact_control *cc,
447 					struct page *page)
448 {
449 	return true;
450 }
451 
452 static inline bool pageblock_skip_persistent(struct page *page)
453 {
454 	return false;
455 }
456 
457 static inline void update_pageblock_skip(struct compact_control *cc,
458 			struct page *page, unsigned long pfn)
459 {
460 }
461 
462 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
463 {
464 }
465 
466 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
467 							unsigned long pfn)
468 {
469 	return false;
470 }
471 #endif /* CONFIG_COMPACTION */
472 
473 /*
474  * Compaction requires the taking of some coarse locks that are potentially
475  * very heavily contended. For async compaction, trylock and record if the
476  * lock is contended. The lock will still be acquired but compaction will
477  * abort when the current block is finished regardless of success rate.
478  * Sync compaction acquires the lock.
479  *
480  * Always returns true which makes it easier to track lock state in callers.
481  */
482 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
483 						struct compact_control *cc)
484 {
485 	/* Track if the lock is contended in async mode */
486 	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
487 		if (spin_trylock_irqsave(lock, *flags))
488 			return true;
489 
490 		cc->contended = true;
491 	}
492 
493 	spin_lock_irqsave(lock, *flags);
494 	return true;
495 }
496 
497 /*
498  * Compaction requires the taking of some coarse locks that are potentially
499  * very heavily contended. The lock should be periodically unlocked to avoid
500  * having disabled IRQs for a long time, even when there is nobody waiting on
501  * the lock. It might also be that allowing the IRQs will result in
502  * need_resched() becoming true. If scheduling is needed, async compaction
503  * aborts. Sync compaction schedules.
504  * Either compaction type will also abort if a fatal signal is pending.
505  * In either case if the lock was locked, it is dropped and not regained.
506  *
507  * Returns true if compaction should abort due to fatal signal pending, or
508  *		async compaction due to need_resched()
509  * Returns false when compaction can continue (sync compaction might have
510  *		scheduled)
511  */
512 static bool compact_unlock_should_abort(spinlock_t *lock,
513 		unsigned long flags, bool *locked, struct compact_control *cc)
514 {
515 	if (*locked) {
516 		spin_unlock_irqrestore(lock, flags);
517 		*locked = false;
518 	}
519 
520 	if (fatal_signal_pending(current)) {
521 		cc->contended = true;
522 		return true;
523 	}
524 
525 	cond_resched();
526 
527 	return false;
528 }
529 
530 /*
531  * Isolate free pages onto a private freelist. If @strict is true, will abort
532  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
533  * (even though it may still end up isolating some pages).
534  */
535 static unsigned long isolate_freepages_block(struct compact_control *cc,
536 				unsigned long *start_pfn,
537 				unsigned long end_pfn,
538 				struct list_head *freelist,
539 				unsigned int stride,
540 				bool strict)
541 {
542 	int nr_scanned = 0, total_isolated = 0;
543 	struct page *cursor;
544 	unsigned long flags = 0;
545 	bool locked = false;
546 	unsigned long blockpfn = *start_pfn;
547 	unsigned int order;
548 
549 	/* Strict mode is for isolation, speed is secondary */
550 	if (strict)
551 		stride = 1;
552 
553 	cursor = pfn_to_page(blockpfn);
554 
555 	/* Isolate free pages. */
556 	for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
557 		int isolated;
558 		struct page *page = cursor;
559 
560 		/*
561 		 * Periodically drop the lock (if held) regardless of its
562 		 * contention, to give chance to IRQs. Abort if fatal signal
563 		 * pending or async compaction detects need_resched()
564 		 */
565 		if (!(blockpfn % SWAP_CLUSTER_MAX)
566 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
567 								&locked, cc))
568 			break;
569 
570 		nr_scanned++;
571 		if (!pfn_valid_within(blockpfn))
572 			goto isolate_fail;
573 
574 		/*
575 		 * For compound pages such as THP and hugetlbfs, we can save
576 		 * potentially a lot of iterations if we skip them at once.
577 		 * The check is racy, but we can consider only valid values
578 		 * and the only danger is skipping too much.
579 		 */
580 		if (PageCompound(page)) {
581 			const unsigned int order = compound_order(page);
582 
583 			if (likely(order < MAX_ORDER)) {
584 				blockpfn += (1UL << order) - 1;
585 				cursor += (1UL << order) - 1;
586 			}
587 			goto isolate_fail;
588 		}
589 
590 		if (!PageBuddy(page))
591 			goto isolate_fail;
592 
593 		/*
594 		 * If we already hold the lock, we can skip some rechecking.
595 		 * Note that if we hold the lock now, checked_pageblock was
596 		 * already set in some previous iteration (or strict is true),
597 		 * so it is correct to skip the suitable migration target
598 		 * recheck as well.
599 		 */
600 		if (!locked) {
601 			locked = compact_lock_irqsave(&cc->zone->lock,
602 								&flags, cc);
603 
604 			/* Recheck this is a buddy page under lock */
605 			if (!PageBuddy(page))
606 				goto isolate_fail;
607 		}
608 
609 		/* Found a free page, will break it into order-0 pages */
610 		order = page_order(page);
611 		isolated = __isolate_free_page(page, order);
612 		if (!isolated)
613 			break;
614 		set_page_private(page, order);
615 
616 		total_isolated += isolated;
617 		cc->nr_freepages += isolated;
618 		list_add_tail(&page->lru, freelist);
619 
620 		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
621 			blockpfn += isolated;
622 			break;
623 		}
624 		/* Advance to the end of split page */
625 		blockpfn += isolated - 1;
626 		cursor += isolated - 1;
627 		continue;
628 
629 isolate_fail:
630 		if (strict)
631 			break;
632 		else
633 			continue;
634 
635 	}
636 
637 	if (locked)
638 		spin_unlock_irqrestore(&cc->zone->lock, flags);
639 
640 	/*
641 	 * There is a tiny chance that we have read bogus compound_order(),
642 	 * so be careful to not go outside of the pageblock.
643 	 */
644 	if (unlikely(blockpfn > end_pfn))
645 		blockpfn = end_pfn;
646 
647 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
648 					nr_scanned, total_isolated);
649 
650 	/* Record how far we have got within the block */
651 	*start_pfn = blockpfn;
652 
653 	/*
654 	 * If strict isolation is requested by CMA then check that all the
655 	 * pages requested were isolated. If there were any failures, 0 is
656 	 * returned and CMA will fail.
657 	 */
658 	if (strict && blockpfn < end_pfn)
659 		total_isolated = 0;
660 
661 	cc->total_free_scanned += nr_scanned;
662 	if (total_isolated)
663 		count_compact_events(COMPACTISOLATED, total_isolated);
664 	return total_isolated;
665 }
666 
667 /**
668  * isolate_freepages_range() - isolate free pages.
669  * @cc:        Compaction control structure.
670  * @start_pfn: The first PFN to start isolating.
671  * @end_pfn:   The one-past-last PFN.
672  *
673  * Non-free pages, invalid PFNs, or zone boundaries within the
674  * [start_pfn, end_pfn) range are considered errors, cause function to
675  * undo its actions and return zero.
676  *
677  * Otherwise, function returns one-past-the-last PFN of isolated page
678  * (which may be greater then end_pfn if end fell in a middle of
679  * a free page).
680  */
681 unsigned long
682 isolate_freepages_range(struct compact_control *cc,
683 			unsigned long start_pfn, unsigned long end_pfn)
684 {
685 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
686 	LIST_HEAD(freelist);
687 
688 	pfn = start_pfn;
689 	block_start_pfn = pageblock_start_pfn(pfn);
690 	if (block_start_pfn < cc->zone->zone_start_pfn)
691 		block_start_pfn = cc->zone->zone_start_pfn;
692 	block_end_pfn = pageblock_end_pfn(pfn);
693 
694 	for (; pfn < end_pfn; pfn += isolated,
695 				block_start_pfn = block_end_pfn,
696 				block_end_pfn += pageblock_nr_pages) {
697 		/* Protect pfn from changing by isolate_freepages_block */
698 		unsigned long isolate_start_pfn = pfn;
699 
700 		block_end_pfn = min(block_end_pfn, end_pfn);
701 
702 		/*
703 		 * pfn could pass the block_end_pfn if isolated freepage
704 		 * is more than pageblock order. In this case, we adjust
705 		 * scanning range to right one.
706 		 */
707 		if (pfn >= block_end_pfn) {
708 			block_start_pfn = pageblock_start_pfn(pfn);
709 			block_end_pfn = pageblock_end_pfn(pfn);
710 			block_end_pfn = min(block_end_pfn, end_pfn);
711 		}
712 
713 		if (!pageblock_pfn_to_page(block_start_pfn,
714 					block_end_pfn, cc->zone))
715 			break;
716 
717 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
718 					block_end_pfn, &freelist, 0, true);
719 
720 		/*
721 		 * In strict mode, isolate_freepages_block() returns 0 if
722 		 * there are any holes in the block (ie. invalid PFNs or
723 		 * non-free pages).
724 		 */
725 		if (!isolated)
726 			break;
727 
728 		/*
729 		 * If we managed to isolate pages, it is always (1 << n) *
730 		 * pageblock_nr_pages for some non-negative n.  (Max order
731 		 * page may span two pageblocks).
732 		 */
733 	}
734 
735 	/* __isolate_free_page() does not map the pages */
736 	split_map_pages(&freelist);
737 
738 	if (pfn < end_pfn) {
739 		/* Loop terminated early, cleanup. */
740 		release_freepages(&freelist);
741 		return 0;
742 	}
743 
744 	/* We don't use freelists for anything. */
745 	return pfn;
746 }
747 
748 /* Similar to reclaim, but different enough that they don't share logic */
749 static bool too_many_isolated(pg_data_t *pgdat)
750 {
751 	unsigned long active, inactive, isolated;
752 
753 	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
754 			node_page_state(pgdat, NR_INACTIVE_ANON);
755 	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
756 			node_page_state(pgdat, NR_ACTIVE_ANON);
757 	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
758 			node_page_state(pgdat, NR_ISOLATED_ANON);
759 
760 	return isolated > (inactive + active) / 2;
761 }
762 
763 /**
764  * isolate_migratepages_block() - isolate all migrate-able pages within
765  *				  a single pageblock
766  * @cc:		Compaction control structure.
767  * @low_pfn:	The first PFN to isolate
768  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
769  * @isolate_mode: Isolation mode to be used.
770  *
771  * Isolate all pages that can be migrated from the range specified by
772  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
773  * Returns zero if there is a fatal signal pending, otherwise PFN of the
774  * first page that was not scanned (which may be both less, equal to or more
775  * than end_pfn).
776  *
777  * The pages are isolated on cc->migratepages list (not required to be empty),
778  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
779  * is neither read nor updated.
780  */
781 static unsigned long
782 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
783 			unsigned long end_pfn, isolate_mode_t isolate_mode)
784 {
785 	pg_data_t *pgdat = cc->zone->zone_pgdat;
786 	unsigned long nr_scanned = 0, nr_isolated = 0;
787 	struct lruvec *lruvec;
788 	unsigned long flags = 0;
789 	bool locked = false;
790 	struct page *page = NULL, *valid_page = NULL;
791 	unsigned long start_pfn = low_pfn;
792 	bool skip_on_failure = false;
793 	unsigned long next_skip_pfn = 0;
794 	bool skip_updated = false;
795 
796 	/*
797 	 * Ensure that there are not too many pages isolated from the LRU
798 	 * list by either parallel reclaimers or compaction. If there are,
799 	 * delay for some time until fewer pages are isolated
800 	 */
801 	while (unlikely(too_many_isolated(pgdat))) {
802 		/* async migration should just abort */
803 		if (cc->mode == MIGRATE_ASYNC)
804 			return 0;
805 
806 		congestion_wait(BLK_RW_ASYNC, HZ/10);
807 
808 		if (fatal_signal_pending(current))
809 			return 0;
810 	}
811 
812 	cond_resched();
813 
814 	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
815 		skip_on_failure = true;
816 		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
817 	}
818 
819 	/* Time to isolate some pages for migration */
820 	for (; low_pfn < end_pfn; low_pfn++) {
821 
822 		if (skip_on_failure && low_pfn >= next_skip_pfn) {
823 			/*
824 			 * We have isolated all migration candidates in the
825 			 * previous order-aligned block, and did not skip it due
826 			 * to failure. We should migrate the pages now and
827 			 * hopefully succeed compaction.
828 			 */
829 			if (nr_isolated)
830 				break;
831 
832 			/*
833 			 * We failed to isolate in the previous order-aligned
834 			 * block. Set the new boundary to the end of the
835 			 * current block. Note we can't simply increase
836 			 * next_skip_pfn by 1 << order, as low_pfn might have
837 			 * been incremented by a higher number due to skipping
838 			 * a compound or a high-order buddy page in the
839 			 * previous loop iteration.
840 			 */
841 			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
842 		}
843 
844 		/*
845 		 * Periodically drop the lock (if held) regardless of its
846 		 * contention, to give chance to IRQs. Abort completely if
847 		 * a fatal signal is pending.
848 		 */
849 		if (!(low_pfn % SWAP_CLUSTER_MAX)
850 		    && compact_unlock_should_abort(&pgdat->lru_lock,
851 					    flags, &locked, cc)) {
852 			low_pfn = 0;
853 			goto fatal_pending;
854 		}
855 
856 		if (!pfn_valid_within(low_pfn))
857 			goto isolate_fail;
858 		nr_scanned++;
859 
860 		page = pfn_to_page(low_pfn);
861 
862 		/*
863 		 * Check if the pageblock has already been marked skipped.
864 		 * Only the aligned PFN is checked as the caller isolates
865 		 * COMPACT_CLUSTER_MAX at a time so the second call must
866 		 * not falsely conclude that the block should be skipped.
867 		 */
868 		if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
869 			if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
870 				low_pfn = end_pfn;
871 				goto isolate_abort;
872 			}
873 			valid_page = page;
874 		}
875 
876 		/*
877 		 * Skip if free. We read page order here without zone lock
878 		 * which is generally unsafe, but the race window is small and
879 		 * the worst thing that can happen is that we skip some
880 		 * potential isolation targets.
881 		 */
882 		if (PageBuddy(page)) {
883 			unsigned long freepage_order = page_order_unsafe(page);
884 
885 			/*
886 			 * Without lock, we cannot be sure that what we got is
887 			 * a valid page order. Consider only values in the
888 			 * valid order range to prevent low_pfn overflow.
889 			 */
890 			if (freepage_order > 0 && freepage_order < MAX_ORDER)
891 				low_pfn += (1UL << freepage_order) - 1;
892 			continue;
893 		}
894 
895 		/*
896 		 * Regardless of being on LRU, compound pages such as THP and
897 		 * hugetlbfs are not to be compacted. We can potentially save
898 		 * a lot of iterations if we skip them at once. The check is
899 		 * racy, but we can consider only valid values and the only
900 		 * danger is skipping too much.
901 		 */
902 		if (PageCompound(page)) {
903 			const unsigned int order = compound_order(page);
904 
905 			if (likely(order < MAX_ORDER))
906 				low_pfn += (1UL << order) - 1;
907 			goto isolate_fail;
908 		}
909 
910 		/*
911 		 * Check may be lockless but that's ok as we recheck later.
912 		 * It's possible to migrate LRU and non-lru movable pages.
913 		 * Skip any other type of page
914 		 */
915 		if (!PageLRU(page)) {
916 			/*
917 			 * __PageMovable can return false positive so we need
918 			 * to verify it under page_lock.
919 			 */
920 			if (unlikely(__PageMovable(page)) &&
921 					!PageIsolated(page)) {
922 				if (locked) {
923 					spin_unlock_irqrestore(&pgdat->lru_lock,
924 									flags);
925 					locked = false;
926 				}
927 
928 				if (!isolate_movable_page(page, isolate_mode))
929 					goto isolate_success;
930 			}
931 
932 			goto isolate_fail;
933 		}
934 
935 		/*
936 		 * Migration will fail if an anonymous page is pinned in memory,
937 		 * so avoid taking lru_lock and isolating it unnecessarily in an
938 		 * admittedly racy check.
939 		 */
940 		if (!page_mapping(page) &&
941 		    page_count(page) > page_mapcount(page))
942 			goto isolate_fail;
943 
944 		/*
945 		 * Only allow to migrate anonymous pages in GFP_NOFS context
946 		 * because those do not depend on fs locks.
947 		 */
948 		if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
949 			goto isolate_fail;
950 
951 		/* If we already hold the lock, we can skip some rechecking */
952 		if (!locked) {
953 			locked = compact_lock_irqsave(&pgdat->lru_lock,
954 								&flags, cc);
955 
956 			/* Try get exclusive access under lock */
957 			if (!skip_updated) {
958 				skip_updated = true;
959 				if (test_and_set_skip(cc, page, low_pfn))
960 					goto isolate_abort;
961 			}
962 
963 			/* Recheck PageLRU and PageCompound under lock */
964 			if (!PageLRU(page))
965 				goto isolate_fail;
966 
967 			/*
968 			 * Page become compound since the non-locked check,
969 			 * and it's on LRU. It can only be a THP so the order
970 			 * is safe to read and it's 0 for tail pages.
971 			 */
972 			if (unlikely(PageCompound(page))) {
973 				low_pfn += compound_nr(page) - 1;
974 				goto isolate_fail;
975 			}
976 		}
977 
978 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
979 
980 		/* Try isolate the page */
981 		if (__isolate_lru_page(page, isolate_mode) != 0)
982 			goto isolate_fail;
983 
984 		VM_BUG_ON_PAGE(PageCompound(page), page);
985 
986 		/* Successfully isolated */
987 		del_page_from_lru_list(page, lruvec, page_lru(page));
988 		inc_node_page_state(page,
989 				NR_ISOLATED_ANON + page_is_file_cache(page));
990 
991 isolate_success:
992 		list_add(&page->lru, &cc->migratepages);
993 		cc->nr_migratepages++;
994 		nr_isolated++;
995 
996 		/*
997 		 * Avoid isolating too much unless this block is being
998 		 * rescanned (e.g. dirty/writeback pages, parallel allocation)
999 		 * or a lock is contended. For contention, isolate quickly to
1000 		 * potentially remove one source of contention.
1001 		 */
1002 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX &&
1003 		    !cc->rescan && !cc->contended) {
1004 			++low_pfn;
1005 			break;
1006 		}
1007 
1008 		continue;
1009 isolate_fail:
1010 		if (!skip_on_failure)
1011 			continue;
1012 
1013 		/*
1014 		 * We have isolated some pages, but then failed. Release them
1015 		 * instead of migrating, as we cannot form the cc->order buddy
1016 		 * page anyway.
1017 		 */
1018 		if (nr_isolated) {
1019 			if (locked) {
1020 				spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1021 				locked = false;
1022 			}
1023 			putback_movable_pages(&cc->migratepages);
1024 			cc->nr_migratepages = 0;
1025 			nr_isolated = 0;
1026 		}
1027 
1028 		if (low_pfn < next_skip_pfn) {
1029 			low_pfn = next_skip_pfn - 1;
1030 			/*
1031 			 * The check near the loop beginning would have updated
1032 			 * next_skip_pfn too, but this is a bit simpler.
1033 			 */
1034 			next_skip_pfn += 1UL << cc->order;
1035 		}
1036 	}
1037 
1038 	/*
1039 	 * The PageBuddy() check could have potentially brought us outside
1040 	 * the range to be scanned.
1041 	 */
1042 	if (unlikely(low_pfn > end_pfn))
1043 		low_pfn = end_pfn;
1044 
1045 isolate_abort:
1046 	if (locked)
1047 		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1048 
1049 	/*
1050 	 * Updated the cached scanner pfn once the pageblock has been scanned
1051 	 * Pages will either be migrated in which case there is no point
1052 	 * scanning in the near future or migration failed in which case the
1053 	 * failure reason may persist. The block is marked for skipping if
1054 	 * there were no pages isolated in the block or if the block is
1055 	 * rescanned twice in a row.
1056 	 */
1057 	if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1058 		if (valid_page && !skip_updated)
1059 			set_pageblock_skip(valid_page);
1060 		update_cached_migrate(cc, low_pfn);
1061 	}
1062 
1063 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1064 						nr_scanned, nr_isolated);
1065 
1066 fatal_pending:
1067 	cc->total_migrate_scanned += nr_scanned;
1068 	if (nr_isolated)
1069 		count_compact_events(COMPACTISOLATED, nr_isolated);
1070 
1071 	return low_pfn;
1072 }
1073 
1074 /**
1075  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1076  * @cc:        Compaction control structure.
1077  * @start_pfn: The first PFN to start isolating.
1078  * @end_pfn:   The one-past-last PFN.
1079  *
1080  * Returns zero if isolation fails fatally due to e.g. pending signal.
1081  * Otherwise, function returns one-past-the-last PFN of isolated page
1082  * (which may be greater than end_pfn if end fell in a middle of a THP page).
1083  */
1084 unsigned long
1085 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1086 							unsigned long end_pfn)
1087 {
1088 	unsigned long pfn, block_start_pfn, block_end_pfn;
1089 
1090 	/* Scan block by block. First and last block may be incomplete */
1091 	pfn = start_pfn;
1092 	block_start_pfn = pageblock_start_pfn(pfn);
1093 	if (block_start_pfn < cc->zone->zone_start_pfn)
1094 		block_start_pfn = cc->zone->zone_start_pfn;
1095 	block_end_pfn = pageblock_end_pfn(pfn);
1096 
1097 	for (; pfn < end_pfn; pfn = block_end_pfn,
1098 				block_start_pfn = block_end_pfn,
1099 				block_end_pfn += pageblock_nr_pages) {
1100 
1101 		block_end_pfn = min(block_end_pfn, end_pfn);
1102 
1103 		if (!pageblock_pfn_to_page(block_start_pfn,
1104 					block_end_pfn, cc->zone))
1105 			continue;
1106 
1107 		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1108 							ISOLATE_UNEVICTABLE);
1109 
1110 		if (!pfn)
1111 			break;
1112 
1113 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
1114 			break;
1115 	}
1116 
1117 	return pfn;
1118 }
1119 
1120 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1121 #ifdef CONFIG_COMPACTION
1122 
1123 static bool suitable_migration_source(struct compact_control *cc,
1124 							struct page *page)
1125 {
1126 	int block_mt;
1127 
1128 	if (pageblock_skip_persistent(page))
1129 		return false;
1130 
1131 	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1132 		return true;
1133 
1134 	block_mt = get_pageblock_migratetype(page);
1135 
1136 	if (cc->migratetype == MIGRATE_MOVABLE)
1137 		return is_migrate_movable(block_mt);
1138 	else
1139 		return block_mt == cc->migratetype;
1140 }
1141 
1142 /* Returns true if the page is within a block suitable for migration to */
1143 static bool suitable_migration_target(struct compact_control *cc,
1144 							struct page *page)
1145 {
1146 	/* If the page is a large free page, then disallow migration */
1147 	if (PageBuddy(page)) {
1148 		/*
1149 		 * We are checking page_order without zone->lock taken. But
1150 		 * the only small danger is that we skip a potentially suitable
1151 		 * pageblock, so it's not worth to check order for valid range.
1152 		 */
1153 		if (page_order_unsafe(page) >= pageblock_order)
1154 			return false;
1155 	}
1156 
1157 	if (cc->ignore_block_suitable)
1158 		return true;
1159 
1160 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1161 	if (is_migrate_movable(get_pageblock_migratetype(page)))
1162 		return true;
1163 
1164 	/* Otherwise skip the block */
1165 	return false;
1166 }
1167 
1168 static inline unsigned int
1169 freelist_scan_limit(struct compact_control *cc)
1170 {
1171 	unsigned short shift = BITS_PER_LONG - 1;
1172 
1173 	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1174 }
1175 
1176 /*
1177  * Test whether the free scanner has reached the same or lower pageblock than
1178  * the migration scanner, and compaction should thus terminate.
1179  */
1180 static inline bool compact_scanners_met(struct compact_control *cc)
1181 {
1182 	return (cc->free_pfn >> pageblock_order)
1183 		<= (cc->migrate_pfn >> pageblock_order);
1184 }
1185 
1186 /*
1187  * Used when scanning for a suitable migration target which scans freelists
1188  * in reverse. Reorders the list such as the unscanned pages are scanned
1189  * first on the next iteration of the free scanner
1190  */
1191 static void
1192 move_freelist_head(struct list_head *freelist, struct page *freepage)
1193 {
1194 	LIST_HEAD(sublist);
1195 
1196 	if (!list_is_last(freelist, &freepage->lru)) {
1197 		list_cut_before(&sublist, freelist, &freepage->lru);
1198 		if (!list_empty(&sublist))
1199 			list_splice_tail(&sublist, freelist);
1200 	}
1201 }
1202 
1203 /*
1204  * Similar to move_freelist_head except used by the migration scanner
1205  * when scanning forward. It's possible for these list operations to
1206  * move against each other if they search the free list exactly in
1207  * lockstep.
1208  */
1209 static void
1210 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1211 {
1212 	LIST_HEAD(sublist);
1213 
1214 	if (!list_is_first(freelist, &freepage->lru)) {
1215 		list_cut_position(&sublist, freelist, &freepage->lru);
1216 		if (!list_empty(&sublist))
1217 			list_splice_tail(&sublist, freelist);
1218 	}
1219 }
1220 
1221 static void
1222 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1223 {
1224 	unsigned long start_pfn, end_pfn;
1225 	struct page *page = pfn_to_page(pfn);
1226 
1227 	/* Do not search around if there are enough pages already */
1228 	if (cc->nr_freepages >= cc->nr_migratepages)
1229 		return;
1230 
1231 	/* Minimise scanning during async compaction */
1232 	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1233 		return;
1234 
1235 	/* Pageblock boundaries */
1236 	start_pfn = pageblock_start_pfn(pfn);
1237 	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1;
1238 
1239 	/* Scan before */
1240 	if (start_pfn != pfn) {
1241 		isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1242 		if (cc->nr_freepages >= cc->nr_migratepages)
1243 			return;
1244 	}
1245 
1246 	/* Scan after */
1247 	start_pfn = pfn + nr_isolated;
1248 	if (start_pfn < end_pfn)
1249 		isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1250 
1251 	/* Skip this pageblock in the future as it's full or nearly full */
1252 	if (cc->nr_freepages < cc->nr_migratepages)
1253 		set_pageblock_skip(page);
1254 }
1255 
1256 /* Search orders in round-robin fashion */
1257 static int next_search_order(struct compact_control *cc, int order)
1258 {
1259 	order--;
1260 	if (order < 0)
1261 		order = cc->order - 1;
1262 
1263 	/* Search wrapped around? */
1264 	if (order == cc->search_order) {
1265 		cc->search_order--;
1266 		if (cc->search_order < 0)
1267 			cc->search_order = cc->order - 1;
1268 		return -1;
1269 	}
1270 
1271 	return order;
1272 }
1273 
1274 static unsigned long
1275 fast_isolate_freepages(struct compact_control *cc)
1276 {
1277 	unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1278 	unsigned int nr_scanned = 0;
1279 	unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0;
1280 	unsigned long nr_isolated = 0;
1281 	unsigned long distance;
1282 	struct page *page = NULL;
1283 	bool scan_start = false;
1284 	int order;
1285 
1286 	/* Full compaction passes in a negative order */
1287 	if (cc->order <= 0)
1288 		return cc->free_pfn;
1289 
1290 	/*
1291 	 * If starting the scan, use a deeper search and use the highest
1292 	 * PFN found if a suitable one is not found.
1293 	 */
1294 	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1295 		limit = pageblock_nr_pages >> 1;
1296 		scan_start = true;
1297 	}
1298 
1299 	/*
1300 	 * Preferred point is in the top quarter of the scan space but take
1301 	 * a pfn from the top half if the search is problematic.
1302 	 */
1303 	distance = (cc->free_pfn - cc->migrate_pfn);
1304 	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1305 	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1306 
1307 	if (WARN_ON_ONCE(min_pfn > low_pfn))
1308 		low_pfn = min_pfn;
1309 
1310 	/*
1311 	 * Search starts from the last successful isolation order or the next
1312 	 * order to search after a previous failure
1313 	 */
1314 	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1315 
1316 	for (order = cc->search_order;
1317 	     !page && order >= 0;
1318 	     order = next_search_order(cc, order)) {
1319 		struct free_area *area = &cc->zone->free_area[order];
1320 		struct list_head *freelist;
1321 		struct page *freepage;
1322 		unsigned long flags;
1323 		unsigned int order_scanned = 0;
1324 
1325 		if (!area->nr_free)
1326 			continue;
1327 
1328 		spin_lock_irqsave(&cc->zone->lock, flags);
1329 		freelist = &area->free_list[MIGRATE_MOVABLE];
1330 		list_for_each_entry_reverse(freepage, freelist, lru) {
1331 			unsigned long pfn;
1332 
1333 			order_scanned++;
1334 			nr_scanned++;
1335 			pfn = page_to_pfn(freepage);
1336 
1337 			if (pfn >= highest)
1338 				highest = pageblock_start_pfn(pfn);
1339 
1340 			if (pfn >= low_pfn) {
1341 				cc->fast_search_fail = 0;
1342 				cc->search_order = order;
1343 				page = freepage;
1344 				break;
1345 			}
1346 
1347 			if (pfn >= min_pfn && pfn > high_pfn) {
1348 				high_pfn = pfn;
1349 
1350 				/* Shorten the scan if a candidate is found */
1351 				limit >>= 1;
1352 			}
1353 
1354 			if (order_scanned >= limit)
1355 				break;
1356 		}
1357 
1358 		/* Use a minimum pfn if a preferred one was not found */
1359 		if (!page && high_pfn) {
1360 			page = pfn_to_page(high_pfn);
1361 
1362 			/* Update freepage for the list reorder below */
1363 			freepage = page;
1364 		}
1365 
1366 		/* Reorder to so a future search skips recent pages */
1367 		move_freelist_head(freelist, freepage);
1368 
1369 		/* Isolate the page if available */
1370 		if (page) {
1371 			if (__isolate_free_page(page, order)) {
1372 				set_page_private(page, order);
1373 				nr_isolated = 1 << order;
1374 				cc->nr_freepages += nr_isolated;
1375 				list_add_tail(&page->lru, &cc->freepages);
1376 				count_compact_events(COMPACTISOLATED, nr_isolated);
1377 			} else {
1378 				/* If isolation fails, abort the search */
1379 				order = cc->search_order + 1;
1380 				page = NULL;
1381 			}
1382 		}
1383 
1384 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1385 
1386 		/*
1387 		 * Smaller scan on next order so the total scan ig related
1388 		 * to freelist_scan_limit.
1389 		 */
1390 		if (order_scanned >= limit)
1391 			limit = min(1U, limit >> 1);
1392 	}
1393 
1394 	if (!page) {
1395 		cc->fast_search_fail++;
1396 		if (scan_start) {
1397 			/*
1398 			 * Use the highest PFN found above min. If one was
1399 			 * not found, be pessemistic for direct compaction
1400 			 * and use the min mark.
1401 			 */
1402 			if (highest) {
1403 				page = pfn_to_page(highest);
1404 				cc->free_pfn = highest;
1405 			} else {
1406 				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1407 					page = pfn_to_page(min_pfn);
1408 					cc->free_pfn = min_pfn;
1409 				}
1410 			}
1411 		}
1412 	}
1413 
1414 	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1415 		highest -= pageblock_nr_pages;
1416 		cc->zone->compact_cached_free_pfn = highest;
1417 	}
1418 
1419 	cc->total_free_scanned += nr_scanned;
1420 	if (!page)
1421 		return cc->free_pfn;
1422 
1423 	low_pfn = page_to_pfn(page);
1424 	fast_isolate_around(cc, low_pfn, nr_isolated);
1425 	return low_pfn;
1426 }
1427 
1428 /*
1429  * Based on information in the current compact_control, find blocks
1430  * suitable for isolating free pages from and then isolate them.
1431  */
1432 static void isolate_freepages(struct compact_control *cc)
1433 {
1434 	struct zone *zone = cc->zone;
1435 	struct page *page;
1436 	unsigned long block_start_pfn;	/* start of current pageblock */
1437 	unsigned long isolate_start_pfn; /* exact pfn we start at */
1438 	unsigned long block_end_pfn;	/* end of current pageblock */
1439 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1440 	struct list_head *freelist = &cc->freepages;
1441 	unsigned int stride;
1442 
1443 	/* Try a small search of the free lists for a candidate */
1444 	isolate_start_pfn = fast_isolate_freepages(cc);
1445 	if (cc->nr_freepages)
1446 		goto splitmap;
1447 
1448 	/*
1449 	 * Initialise the free scanner. The starting point is where we last
1450 	 * successfully isolated from, zone-cached value, or the end of the
1451 	 * zone when isolating for the first time. For looping we also need
1452 	 * this pfn aligned down to the pageblock boundary, because we do
1453 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1454 	 * For ending point, take care when isolating in last pageblock of a
1455 	 * a zone which ends in the middle of a pageblock.
1456 	 * The low boundary is the end of the pageblock the migration scanner
1457 	 * is using.
1458 	 */
1459 	isolate_start_pfn = cc->free_pfn;
1460 	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1461 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1462 						zone_end_pfn(zone));
1463 	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1464 	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1465 
1466 	/*
1467 	 * Isolate free pages until enough are available to migrate the
1468 	 * pages on cc->migratepages. We stop searching if the migrate
1469 	 * and free page scanners meet or enough free pages are isolated.
1470 	 */
1471 	for (; block_start_pfn >= low_pfn;
1472 				block_end_pfn = block_start_pfn,
1473 				block_start_pfn -= pageblock_nr_pages,
1474 				isolate_start_pfn = block_start_pfn) {
1475 		unsigned long nr_isolated;
1476 
1477 		/*
1478 		 * This can iterate a massively long zone without finding any
1479 		 * suitable migration targets, so periodically check resched.
1480 		 */
1481 		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1482 			cond_resched();
1483 
1484 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1485 									zone);
1486 		if (!page)
1487 			continue;
1488 
1489 		/* Check the block is suitable for migration */
1490 		if (!suitable_migration_target(cc, page))
1491 			continue;
1492 
1493 		/* If isolation recently failed, do not retry */
1494 		if (!isolation_suitable(cc, page))
1495 			continue;
1496 
1497 		/* Found a block suitable for isolating free pages from. */
1498 		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1499 					block_end_pfn, freelist, stride, false);
1500 
1501 		/* Update the skip hint if the full pageblock was scanned */
1502 		if (isolate_start_pfn == block_end_pfn)
1503 			update_pageblock_skip(cc, page, block_start_pfn);
1504 
1505 		/* Are enough freepages isolated? */
1506 		if (cc->nr_freepages >= cc->nr_migratepages) {
1507 			if (isolate_start_pfn >= block_end_pfn) {
1508 				/*
1509 				 * Restart at previous pageblock if more
1510 				 * freepages can be isolated next time.
1511 				 */
1512 				isolate_start_pfn =
1513 					block_start_pfn - pageblock_nr_pages;
1514 			}
1515 			break;
1516 		} else if (isolate_start_pfn < block_end_pfn) {
1517 			/*
1518 			 * If isolation failed early, do not continue
1519 			 * needlessly.
1520 			 */
1521 			break;
1522 		}
1523 
1524 		/* Adjust stride depending on isolation */
1525 		if (nr_isolated) {
1526 			stride = 1;
1527 			continue;
1528 		}
1529 		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1530 	}
1531 
1532 	/*
1533 	 * Record where the free scanner will restart next time. Either we
1534 	 * broke from the loop and set isolate_start_pfn based on the last
1535 	 * call to isolate_freepages_block(), or we met the migration scanner
1536 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1537 	 */
1538 	cc->free_pfn = isolate_start_pfn;
1539 
1540 splitmap:
1541 	/* __isolate_free_page() does not map the pages */
1542 	split_map_pages(freelist);
1543 }
1544 
1545 /*
1546  * This is a migrate-callback that "allocates" freepages by taking pages
1547  * from the isolated freelists in the block we are migrating to.
1548  */
1549 static struct page *compaction_alloc(struct page *migratepage,
1550 					unsigned long data)
1551 {
1552 	struct compact_control *cc = (struct compact_control *)data;
1553 	struct page *freepage;
1554 
1555 	if (list_empty(&cc->freepages)) {
1556 		isolate_freepages(cc);
1557 
1558 		if (list_empty(&cc->freepages))
1559 			return NULL;
1560 	}
1561 
1562 	freepage = list_entry(cc->freepages.next, struct page, lru);
1563 	list_del(&freepage->lru);
1564 	cc->nr_freepages--;
1565 
1566 	return freepage;
1567 }
1568 
1569 /*
1570  * This is a migrate-callback that "frees" freepages back to the isolated
1571  * freelist.  All pages on the freelist are from the same zone, so there is no
1572  * special handling needed for NUMA.
1573  */
1574 static void compaction_free(struct page *page, unsigned long data)
1575 {
1576 	struct compact_control *cc = (struct compact_control *)data;
1577 
1578 	list_add(&page->lru, &cc->freepages);
1579 	cc->nr_freepages++;
1580 }
1581 
1582 /* possible outcome of isolate_migratepages */
1583 typedef enum {
1584 	ISOLATE_ABORT,		/* Abort compaction now */
1585 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1586 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1587 } isolate_migrate_t;
1588 
1589 /*
1590  * Allow userspace to control policy on scanning the unevictable LRU for
1591  * compactable pages.
1592  */
1593 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1594 
1595 static inline void
1596 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1597 {
1598 	if (cc->fast_start_pfn == ULONG_MAX)
1599 		return;
1600 
1601 	if (!cc->fast_start_pfn)
1602 		cc->fast_start_pfn = pfn;
1603 
1604 	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1605 }
1606 
1607 static inline unsigned long
1608 reinit_migrate_pfn(struct compact_control *cc)
1609 {
1610 	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1611 		return cc->migrate_pfn;
1612 
1613 	cc->migrate_pfn = cc->fast_start_pfn;
1614 	cc->fast_start_pfn = ULONG_MAX;
1615 
1616 	return cc->migrate_pfn;
1617 }
1618 
1619 /*
1620  * Briefly search the free lists for a migration source that already has
1621  * some free pages to reduce the number of pages that need migration
1622  * before a pageblock is free.
1623  */
1624 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1625 {
1626 	unsigned int limit = freelist_scan_limit(cc);
1627 	unsigned int nr_scanned = 0;
1628 	unsigned long distance;
1629 	unsigned long pfn = cc->migrate_pfn;
1630 	unsigned long high_pfn;
1631 	int order;
1632 
1633 	/* Skip hints are relied on to avoid repeats on the fast search */
1634 	if (cc->ignore_skip_hint)
1635 		return pfn;
1636 
1637 	/*
1638 	 * If the migrate_pfn is not at the start of a zone or the start
1639 	 * of a pageblock then assume this is a continuation of a previous
1640 	 * scan restarted due to COMPACT_CLUSTER_MAX.
1641 	 */
1642 	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1643 		return pfn;
1644 
1645 	/*
1646 	 * For smaller orders, just linearly scan as the number of pages
1647 	 * to migrate should be relatively small and does not necessarily
1648 	 * justify freeing up a large block for a small allocation.
1649 	 */
1650 	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1651 		return pfn;
1652 
1653 	/*
1654 	 * Only allow kcompactd and direct requests for movable pages to
1655 	 * quickly clear out a MOVABLE pageblock for allocation. This
1656 	 * reduces the risk that a large movable pageblock is freed for
1657 	 * an unmovable/reclaimable small allocation.
1658 	 */
1659 	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1660 		return pfn;
1661 
1662 	/*
1663 	 * When starting the migration scanner, pick any pageblock within the
1664 	 * first half of the search space. Otherwise try and pick a pageblock
1665 	 * within the first eighth to reduce the chances that a migration
1666 	 * target later becomes a source.
1667 	 */
1668 	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1669 	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1670 		distance >>= 2;
1671 	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1672 
1673 	for (order = cc->order - 1;
1674 	     order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit;
1675 	     order--) {
1676 		struct free_area *area = &cc->zone->free_area[order];
1677 		struct list_head *freelist;
1678 		unsigned long flags;
1679 		struct page *freepage;
1680 
1681 		if (!area->nr_free)
1682 			continue;
1683 
1684 		spin_lock_irqsave(&cc->zone->lock, flags);
1685 		freelist = &area->free_list[MIGRATE_MOVABLE];
1686 		list_for_each_entry(freepage, freelist, lru) {
1687 			unsigned long free_pfn;
1688 
1689 			nr_scanned++;
1690 			free_pfn = page_to_pfn(freepage);
1691 			if (free_pfn < high_pfn) {
1692 				/*
1693 				 * Avoid if skipped recently. Ideally it would
1694 				 * move to the tail but even safe iteration of
1695 				 * the list assumes an entry is deleted, not
1696 				 * reordered.
1697 				 */
1698 				if (get_pageblock_skip(freepage)) {
1699 					if (list_is_last(freelist, &freepage->lru))
1700 						break;
1701 
1702 					continue;
1703 				}
1704 
1705 				/* Reorder to so a future search skips recent pages */
1706 				move_freelist_tail(freelist, freepage);
1707 
1708 				update_fast_start_pfn(cc, free_pfn);
1709 				pfn = pageblock_start_pfn(free_pfn);
1710 				cc->fast_search_fail = 0;
1711 				set_pageblock_skip(freepage);
1712 				break;
1713 			}
1714 
1715 			if (nr_scanned >= limit) {
1716 				cc->fast_search_fail++;
1717 				move_freelist_tail(freelist, freepage);
1718 				break;
1719 			}
1720 		}
1721 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1722 	}
1723 
1724 	cc->total_migrate_scanned += nr_scanned;
1725 
1726 	/*
1727 	 * If fast scanning failed then use a cached entry for a page block
1728 	 * that had free pages as the basis for starting a linear scan.
1729 	 */
1730 	if (pfn == cc->migrate_pfn)
1731 		pfn = reinit_migrate_pfn(cc);
1732 
1733 	return pfn;
1734 }
1735 
1736 /*
1737  * Isolate all pages that can be migrated from the first suitable block,
1738  * starting at the block pointed to by the migrate scanner pfn within
1739  * compact_control.
1740  */
1741 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1742 {
1743 	unsigned long block_start_pfn;
1744 	unsigned long block_end_pfn;
1745 	unsigned long low_pfn;
1746 	struct page *page;
1747 	const isolate_mode_t isolate_mode =
1748 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1749 		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1750 	bool fast_find_block;
1751 
1752 	/*
1753 	 * Start at where we last stopped, or beginning of the zone as
1754 	 * initialized by compact_zone(). The first failure will use
1755 	 * the lowest PFN as the starting point for linear scanning.
1756 	 */
1757 	low_pfn = fast_find_migrateblock(cc);
1758 	block_start_pfn = pageblock_start_pfn(low_pfn);
1759 	if (block_start_pfn < cc->zone->zone_start_pfn)
1760 		block_start_pfn = cc->zone->zone_start_pfn;
1761 
1762 	/*
1763 	 * fast_find_migrateblock marks a pageblock skipped so to avoid
1764 	 * the isolation_suitable check below, check whether the fast
1765 	 * search was successful.
1766 	 */
1767 	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1768 
1769 	/* Only scan within a pageblock boundary */
1770 	block_end_pfn = pageblock_end_pfn(low_pfn);
1771 
1772 	/*
1773 	 * Iterate over whole pageblocks until we find the first suitable.
1774 	 * Do not cross the free scanner.
1775 	 */
1776 	for (; block_end_pfn <= cc->free_pfn;
1777 			fast_find_block = false,
1778 			low_pfn = block_end_pfn,
1779 			block_start_pfn = block_end_pfn,
1780 			block_end_pfn += pageblock_nr_pages) {
1781 
1782 		/*
1783 		 * This can potentially iterate a massively long zone with
1784 		 * many pageblocks unsuitable, so periodically check if we
1785 		 * need to schedule.
1786 		 */
1787 		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1788 			cond_resched();
1789 
1790 		page = pageblock_pfn_to_page(block_start_pfn,
1791 						block_end_pfn, cc->zone);
1792 		if (!page)
1793 			continue;
1794 
1795 		/*
1796 		 * If isolation recently failed, do not retry. Only check the
1797 		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1798 		 * to be visited multiple times. Assume skip was checked
1799 		 * before making it "skip" so other compaction instances do
1800 		 * not scan the same block.
1801 		 */
1802 		if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1803 		    !fast_find_block && !isolation_suitable(cc, page))
1804 			continue;
1805 
1806 		/*
1807 		 * For async compaction, also only scan in MOVABLE blocks
1808 		 * without huge pages. Async compaction is optimistic to see
1809 		 * if the minimum amount of work satisfies the allocation.
1810 		 * The cached PFN is updated as it's possible that all
1811 		 * remaining blocks between source and target are unsuitable
1812 		 * and the compaction scanners fail to meet.
1813 		 */
1814 		if (!suitable_migration_source(cc, page)) {
1815 			update_cached_migrate(cc, block_end_pfn);
1816 			continue;
1817 		}
1818 
1819 		/* Perform the isolation */
1820 		low_pfn = isolate_migratepages_block(cc, low_pfn,
1821 						block_end_pfn, isolate_mode);
1822 
1823 		if (!low_pfn)
1824 			return ISOLATE_ABORT;
1825 
1826 		/*
1827 		 * Either we isolated something and proceed with migration. Or
1828 		 * we failed and compact_zone should decide if we should
1829 		 * continue or not.
1830 		 */
1831 		break;
1832 	}
1833 
1834 	/* Record where migration scanner will be restarted. */
1835 	cc->migrate_pfn = low_pfn;
1836 
1837 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1838 }
1839 
1840 /*
1841  * order == -1 is expected when compacting via
1842  * /proc/sys/vm/compact_memory
1843  */
1844 static inline bool is_via_compact_memory(int order)
1845 {
1846 	return order == -1;
1847 }
1848 
1849 static enum compact_result __compact_finished(struct compact_control *cc)
1850 {
1851 	unsigned int order;
1852 	const int migratetype = cc->migratetype;
1853 	int ret;
1854 
1855 	/* Compaction run completes if the migrate and free scanner meet */
1856 	if (compact_scanners_met(cc)) {
1857 		/* Let the next compaction start anew. */
1858 		reset_cached_positions(cc->zone);
1859 
1860 		/*
1861 		 * Mark that the PG_migrate_skip information should be cleared
1862 		 * by kswapd when it goes to sleep. kcompactd does not set the
1863 		 * flag itself as the decision to be clear should be directly
1864 		 * based on an allocation request.
1865 		 */
1866 		if (cc->direct_compaction)
1867 			cc->zone->compact_blockskip_flush = true;
1868 
1869 		if (cc->whole_zone)
1870 			return COMPACT_COMPLETE;
1871 		else
1872 			return COMPACT_PARTIAL_SKIPPED;
1873 	}
1874 
1875 	if (is_via_compact_memory(cc->order))
1876 		return COMPACT_CONTINUE;
1877 
1878 	/*
1879 	 * Always finish scanning a pageblock to reduce the possibility of
1880 	 * fallbacks in the future. This is particularly important when
1881 	 * migration source is unmovable/reclaimable but it's not worth
1882 	 * special casing.
1883 	 */
1884 	if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
1885 		return COMPACT_CONTINUE;
1886 
1887 	/* Direct compactor: Is a suitable page free? */
1888 	ret = COMPACT_NO_SUITABLE_PAGE;
1889 	for (order = cc->order; order < MAX_ORDER; order++) {
1890 		struct free_area *area = &cc->zone->free_area[order];
1891 		bool can_steal;
1892 
1893 		/* Job done if page is free of the right migratetype */
1894 		if (!free_area_empty(area, migratetype))
1895 			return COMPACT_SUCCESS;
1896 
1897 #ifdef CONFIG_CMA
1898 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1899 		if (migratetype == MIGRATE_MOVABLE &&
1900 			!free_area_empty(area, MIGRATE_CMA))
1901 			return COMPACT_SUCCESS;
1902 #endif
1903 		/*
1904 		 * Job done if allocation would steal freepages from
1905 		 * other migratetype buddy lists.
1906 		 */
1907 		if (find_suitable_fallback(area, order, migratetype,
1908 						true, &can_steal) != -1) {
1909 
1910 			/* movable pages are OK in any pageblock */
1911 			if (migratetype == MIGRATE_MOVABLE)
1912 				return COMPACT_SUCCESS;
1913 
1914 			/*
1915 			 * We are stealing for a non-movable allocation. Make
1916 			 * sure we finish compacting the current pageblock
1917 			 * first so it is as free as possible and we won't
1918 			 * have to steal another one soon. This only applies
1919 			 * to sync compaction, as async compaction operates
1920 			 * on pageblocks of the same migratetype.
1921 			 */
1922 			if (cc->mode == MIGRATE_ASYNC ||
1923 					IS_ALIGNED(cc->migrate_pfn,
1924 							pageblock_nr_pages)) {
1925 				return COMPACT_SUCCESS;
1926 			}
1927 
1928 			ret = COMPACT_CONTINUE;
1929 			break;
1930 		}
1931 	}
1932 
1933 	if (cc->contended || fatal_signal_pending(current))
1934 		ret = COMPACT_CONTENDED;
1935 
1936 	return ret;
1937 }
1938 
1939 static enum compact_result compact_finished(struct compact_control *cc)
1940 {
1941 	int ret;
1942 
1943 	ret = __compact_finished(cc);
1944 	trace_mm_compaction_finished(cc->zone, cc->order, ret);
1945 	if (ret == COMPACT_NO_SUITABLE_PAGE)
1946 		ret = COMPACT_CONTINUE;
1947 
1948 	return ret;
1949 }
1950 
1951 /*
1952  * compaction_suitable: Is this suitable to run compaction on this zone now?
1953  * Returns
1954  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1955  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
1956  *   COMPACT_CONTINUE - If compaction should run now
1957  */
1958 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1959 					unsigned int alloc_flags,
1960 					int classzone_idx,
1961 					unsigned long wmark_target)
1962 {
1963 	unsigned long watermark;
1964 
1965 	if (is_via_compact_memory(order))
1966 		return COMPACT_CONTINUE;
1967 
1968 	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
1969 	/*
1970 	 * If watermarks for high-order allocation are already met, there
1971 	 * should be no need for compaction at all.
1972 	 */
1973 	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1974 								alloc_flags))
1975 		return COMPACT_SUCCESS;
1976 
1977 	/*
1978 	 * Watermarks for order-0 must be met for compaction to be able to
1979 	 * isolate free pages for migration targets. This means that the
1980 	 * watermark and alloc_flags have to match, or be more pessimistic than
1981 	 * the check in __isolate_free_page(). We don't use the direct
1982 	 * compactor's alloc_flags, as they are not relevant for freepage
1983 	 * isolation. We however do use the direct compactor's classzone_idx to
1984 	 * skip over zones where lowmem reserves would prevent allocation even
1985 	 * if compaction succeeds.
1986 	 * For costly orders, we require low watermark instead of min for
1987 	 * compaction to proceed to increase its chances.
1988 	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1989 	 * suitable migration targets
1990 	 */
1991 	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1992 				low_wmark_pages(zone) : min_wmark_pages(zone);
1993 	watermark += compact_gap(order);
1994 	if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1995 						ALLOC_CMA, wmark_target))
1996 		return COMPACT_SKIPPED;
1997 
1998 	return COMPACT_CONTINUE;
1999 }
2000 
2001 enum compact_result compaction_suitable(struct zone *zone, int order,
2002 					unsigned int alloc_flags,
2003 					int classzone_idx)
2004 {
2005 	enum compact_result ret;
2006 	int fragindex;
2007 
2008 	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
2009 				    zone_page_state(zone, NR_FREE_PAGES));
2010 	/*
2011 	 * fragmentation index determines if allocation failures are due to
2012 	 * low memory or external fragmentation
2013 	 *
2014 	 * index of -1000 would imply allocations might succeed depending on
2015 	 * watermarks, but we already failed the high-order watermark check
2016 	 * index towards 0 implies failure is due to lack of memory
2017 	 * index towards 1000 implies failure is due to fragmentation
2018 	 *
2019 	 * Only compact if a failure would be due to fragmentation. Also
2020 	 * ignore fragindex for non-costly orders where the alternative to
2021 	 * a successful reclaim/compaction is OOM. Fragindex and the
2022 	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2023 	 * excessive compaction for costly orders, but it should not be at the
2024 	 * expense of system stability.
2025 	 */
2026 	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2027 		fragindex = fragmentation_index(zone, order);
2028 		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2029 			ret = COMPACT_NOT_SUITABLE_ZONE;
2030 	}
2031 
2032 	trace_mm_compaction_suitable(zone, order, ret);
2033 	if (ret == COMPACT_NOT_SUITABLE_ZONE)
2034 		ret = COMPACT_SKIPPED;
2035 
2036 	return ret;
2037 }
2038 
2039 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2040 		int alloc_flags)
2041 {
2042 	struct zone *zone;
2043 	struct zoneref *z;
2044 
2045 	/*
2046 	 * Make sure at least one zone would pass __compaction_suitable if we continue
2047 	 * retrying the reclaim.
2048 	 */
2049 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2050 					ac->nodemask) {
2051 		unsigned long available;
2052 		enum compact_result compact_result;
2053 
2054 		/*
2055 		 * Do not consider all the reclaimable memory because we do not
2056 		 * want to trash just for a single high order allocation which
2057 		 * is even not guaranteed to appear even if __compaction_suitable
2058 		 * is happy about the watermark check.
2059 		 */
2060 		available = zone_reclaimable_pages(zone) / order;
2061 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2062 		compact_result = __compaction_suitable(zone, order, alloc_flags,
2063 				ac_classzone_idx(ac), available);
2064 		if (compact_result != COMPACT_SKIPPED)
2065 			return true;
2066 	}
2067 
2068 	return false;
2069 }
2070 
2071 static enum compact_result
2072 compact_zone(struct compact_control *cc, struct capture_control *capc)
2073 {
2074 	enum compact_result ret;
2075 	unsigned long start_pfn = cc->zone->zone_start_pfn;
2076 	unsigned long end_pfn = zone_end_pfn(cc->zone);
2077 	unsigned long last_migrated_pfn;
2078 	const bool sync = cc->mode != MIGRATE_ASYNC;
2079 	bool update_cached;
2080 
2081 	/*
2082 	 * These counters track activities during zone compaction.  Initialize
2083 	 * them before compacting a new zone.
2084 	 */
2085 	cc->total_migrate_scanned = 0;
2086 	cc->total_free_scanned = 0;
2087 	cc->nr_migratepages = 0;
2088 	cc->nr_freepages = 0;
2089 	INIT_LIST_HEAD(&cc->freepages);
2090 	INIT_LIST_HEAD(&cc->migratepages);
2091 
2092 	cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
2093 	ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2094 							cc->classzone_idx);
2095 	/* Compaction is likely to fail */
2096 	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2097 		return ret;
2098 
2099 	/* huh, compaction_suitable is returning something unexpected */
2100 	VM_BUG_ON(ret != COMPACT_CONTINUE);
2101 
2102 	/*
2103 	 * Clear pageblock skip if there were failures recently and compaction
2104 	 * is about to be retried after being deferred.
2105 	 */
2106 	if (compaction_restarting(cc->zone, cc->order))
2107 		__reset_isolation_suitable(cc->zone);
2108 
2109 	/*
2110 	 * Setup to move all movable pages to the end of the zone. Used cached
2111 	 * information on where the scanners should start (unless we explicitly
2112 	 * want to compact the whole zone), but check that it is initialised
2113 	 * by ensuring the values are within zone boundaries.
2114 	 */
2115 	cc->fast_start_pfn = 0;
2116 	if (cc->whole_zone) {
2117 		cc->migrate_pfn = start_pfn;
2118 		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2119 	} else {
2120 		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2121 		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2122 		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2123 			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2124 			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2125 		}
2126 		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2127 			cc->migrate_pfn = start_pfn;
2128 			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2129 			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2130 		}
2131 
2132 		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2133 			cc->whole_zone = true;
2134 	}
2135 
2136 	last_migrated_pfn = 0;
2137 
2138 	/*
2139 	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2140 	 * the basis that some migrations will fail in ASYNC mode. However,
2141 	 * if the cached PFNs match and pageblocks are skipped due to having
2142 	 * no isolation candidates, then the sync state does not matter.
2143 	 * Until a pageblock with isolation candidates is found, keep the
2144 	 * cached PFNs in sync to avoid revisiting the same blocks.
2145 	 */
2146 	update_cached = !sync &&
2147 		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2148 
2149 	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2150 				cc->free_pfn, end_pfn, sync);
2151 
2152 	migrate_prep_local();
2153 
2154 	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2155 		int err;
2156 		unsigned long start_pfn = cc->migrate_pfn;
2157 
2158 		/*
2159 		 * Avoid multiple rescans which can happen if a page cannot be
2160 		 * isolated (dirty/writeback in async mode) or if the migrated
2161 		 * pages are being allocated before the pageblock is cleared.
2162 		 * The first rescan will capture the entire pageblock for
2163 		 * migration. If it fails, it'll be marked skip and scanning
2164 		 * will proceed as normal.
2165 		 */
2166 		cc->rescan = false;
2167 		if (pageblock_start_pfn(last_migrated_pfn) ==
2168 		    pageblock_start_pfn(start_pfn)) {
2169 			cc->rescan = true;
2170 		}
2171 
2172 		switch (isolate_migratepages(cc)) {
2173 		case ISOLATE_ABORT:
2174 			ret = COMPACT_CONTENDED;
2175 			putback_movable_pages(&cc->migratepages);
2176 			cc->nr_migratepages = 0;
2177 			last_migrated_pfn = 0;
2178 			goto out;
2179 		case ISOLATE_NONE:
2180 			if (update_cached) {
2181 				cc->zone->compact_cached_migrate_pfn[1] =
2182 					cc->zone->compact_cached_migrate_pfn[0];
2183 			}
2184 
2185 			/*
2186 			 * We haven't isolated and migrated anything, but
2187 			 * there might still be unflushed migrations from
2188 			 * previous cc->order aligned block.
2189 			 */
2190 			goto check_drain;
2191 		case ISOLATE_SUCCESS:
2192 			update_cached = false;
2193 			last_migrated_pfn = start_pfn;
2194 			;
2195 		}
2196 
2197 		err = migrate_pages(&cc->migratepages, compaction_alloc,
2198 				compaction_free, (unsigned long)cc, cc->mode,
2199 				MR_COMPACTION);
2200 
2201 		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2202 							&cc->migratepages);
2203 
2204 		/* All pages were either migrated or will be released */
2205 		cc->nr_migratepages = 0;
2206 		if (err) {
2207 			putback_movable_pages(&cc->migratepages);
2208 			/*
2209 			 * migrate_pages() may return -ENOMEM when scanners meet
2210 			 * and we want compact_finished() to detect it
2211 			 */
2212 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2213 				ret = COMPACT_CONTENDED;
2214 				goto out;
2215 			}
2216 			/*
2217 			 * We failed to migrate at least one page in the current
2218 			 * order-aligned block, so skip the rest of it.
2219 			 */
2220 			if (cc->direct_compaction &&
2221 						(cc->mode == MIGRATE_ASYNC)) {
2222 				cc->migrate_pfn = block_end_pfn(
2223 						cc->migrate_pfn - 1, cc->order);
2224 				/* Draining pcplists is useless in this case */
2225 				last_migrated_pfn = 0;
2226 			}
2227 		}
2228 
2229 check_drain:
2230 		/*
2231 		 * Has the migration scanner moved away from the previous
2232 		 * cc->order aligned block where we migrated from? If yes,
2233 		 * flush the pages that were freed, so that they can merge and
2234 		 * compact_finished() can detect immediately if allocation
2235 		 * would succeed.
2236 		 */
2237 		if (cc->order > 0 && last_migrated_pfn) {
2238 			int cpu;
2239 			unsigned long current_block_start =
2240 				block_start_pfn(cc->migrate_pfn, cc->order);
2241 
2242 			if (last_migrated_pfn < current_block_start) {
2243 				cpu = get_cpu();
2244 				lru_add_drain_cpu(cpu);
2245 				drain_local_pages(cc->zone);
2246 				put_cpu();
2247 				/* No more flushing until we migrate again */
2248 				last_migrated_pfn = 0;
2249 			}
2250 		}
2251 
2252 		/* Stop if a page has been captured */
2253 		if (capc && capc->page) {
2254 			ret = COMPACT_SUCCESS;
2255 			break;
2256 		}
2257 	}
2258 
2259 out:
2260 	/*
2261 	 * Release free pages and update where the free scanner should restart,
2262 	 * so we don't leave any returned pages behind in the next attempt.
2263 	 */
2264 	if (cc->nr_freepages > 0) {
2265 		unsigned long free_pfn = release_freepages(&cc->freepages);
2266 
2267 		cc->nr_freepages = 0;
2268 		VM_BUG_ON(free_pfn == 0);
2269 		/* The cached pfn is always the first in a pageblock */
2270 		free_pfn = pageblock_start_pfn(free_pfn);
2271 		/*
2272 		 * Only go back, not forward. The cached pfn might have been
2273 		 * already reset to zone end in compact_finished()
2274 		 */
2275 		if (free_pfn > cc->zone->compact_cached_free_pfn)
2276 			cc->zone->compact_cached_free_pfn = free_pfn;
2277 	}
2278 
2279 	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2280 	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2281 
2282 	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2283 				cc->free_pfn, end_pfn, sync, ret);
2284 
2285 	return ret;
2286 }
2287 
2288 static enum compact_result compact_zone_order(struct zone *zone, int order,
2289 		gfp_t gfp_mask, enum compact_priority prio,
2290 		unsigned int alloc_flags, int classzone_idx,
2291 		struct page **capture)
2292 {
2293 	enum compact_result ret;
2294 	struct compact_control cc = {
2295 		.order = order,
2296 		.search_order = order,
2297 		.gfp_mask = gfp_mask,
2298 		.zone = zone,
2299 		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2300 					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2301 		.alloc_flags = alloc_flags,
2302 		.classzone_idx = classzone_idx,
2303 		.direct_compaction = true,
2304 		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2305 		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2306 		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2307 	};
2308 	struct capture_control capc = {
2309 		.cc = &cc,
2310 		.page = NULL,
2311 	};
2312 
2313 	if (capture)
2314 		current->capture_control = &capc;
2315 
2316 	ret = compact_zone(&cc, &capc);
2317 
2318 	VM_BUG_ON(!list_empty(&cc.freepages));
2319 	VM_BUG_ON(!list_empty(&cc.migratepages));
2320 
2321 	*capture = capc.page;
2322 	current->capture_control = NULL;
2323 
2324 	return ret;
2325 }
2326 
2327 int sysctl_extfrag_threshold = 500;
2328 
2329 /**
2330  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2331  * @gfp_mask: The GFP mask of the current allocation
2332  * @order: The order of the current allocation
2333  * @alloc_flags: The allocation flags of the current allocation
2334  * @ac: The context of current allocation
2335  * @prio: Determines how hard direct compaction should try to succeed
2336  *
2337  * This is the main entry point for direct page compaction.
2338  */
2339 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2340 		unsigned int alloc_flags, const struct alloc_context *ac,
2341 		enum compact_priority prio, struct page **capture)
2342 {
2343 	int may_perform_io = gfp_mask & __GFP_IO;
2344 	struct zoneref *z;
2345 	struct zone *zone;
2346 	enum compact_result rc = COMPACT_SKIPPED;
2347 
2348 	/*
2349 	 * Check if the GFP flags allow compaction - GFP_NOIO is really
2350 	 * tricky context because the migration might require IO
2351 	 */
2352 	if (!may_perform_io)
2353 		return COMPACT_SKIPPED;
2354 
2355 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2356 
2357 	/* Compact each zone in the list */
2358 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2359 								ac->nodemask) {
2360 		enum compact_result status;
2361 
2362 		if (prio > MIN_COMPACT_PRIORITY
2363 					&& compaction_deferred(zone, order)) {
2364 			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2365 			continue;
2366 		}
2367 
2368 		status = compact_zone_order(zone, order, gfp_mask, prio,
2369 				alloc_flags, ac_classzone_idx(ac), capture);
2370 		rc = max(status, rc);
2371 
2372 		/* The allocation should succeed, stop compacting */
2373 		if (status == COMPACT_SUCCESS) {
2374 			/*
2375 			 * We think the allocation will succeed in this zone,
2376 			 * but it is not certain, hence the false. The caller
2377 			 * will repeat this with true if allocation indeed
2378 			 * succeeds in this zone.
2379 			 */
2380 			compaction_defer_reset(zone, order, false);
2381 
2382 			break;
2383 		}
2384 
2385 		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2386 					status == COMPACT_PARTIAL_SKIPPED))
2387 			/*
2388 			 * We think that allocation won't succeed in this zone
2389 			 * so we defer compaction there. If it ends up
2390 			 * succeeding after all, it will be reset.
2391 			 */
2392 			defer_compaction(zone, order);
2393 
2394 		/*
2395 		 * We might have stopped compacting due to need_resched() in
2396 		 * async compaction, or due to a fatal signal detected. In that
2397 		 * case do not try further zones
2398 		 */
2399 		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2400 					|| fatal_signal_pending(current))
2401 			break;
2402 	}
2403 
2404 	return rc;
2405 }
2406 
2407 
2408 /* Compact all zones within a node */
2409 static void compact_node(int nid)
2410 {
2411 	pg_data_t *pgdat = NODE_DATA(nid);
2412 	int zoneid;
2413 	struct zone *zone;
2414 	struct compact_control cc = {
2415 		.order = -1,
2416 		.mode = MIGRATE_SYNC,
2417 		.ignore_skip_hint = true,
2418 		.whole_zone = true,
2419 		.gfp_mask = GFP_KERNEL,
2420 	};
2421 
2422 
2423 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2424 
2425 		zone = &pgdat->node_zones[zoneid];
2426 		if (!populated_zone(zone))
2427 			continue;
2428 
2429 		cc.zone = zone;
2430 
2431 		compact_zone(&cc, NULL);
2432 
2433 		VM_BUG_ON(!list_empty(&cc.freepages));
2434 		VM_BUG_ON(!list_empty(&cc.migratepages));
2435 	}
2436 }
2437 
2438 /* Compact all nodes in the system */
2439 static void compact_nodes(void)
2440 {
2441 	int nid;
2442 
2443 	/* Flush pending updates to the LRU lists */
2444 	lru_add_drain_all();
2445 
2446 	for_each_online_node(nid)
2447 		compact_node(nid);
2448 }
2449 
2450 /* The written value is actually unused, all memory is compacted */
2451 int sysctl_compact_memory;
2452 
2453 /*
2454  * This is the entry point for compacting all nodes via
2455  * /proc/sys/vm/compact_memory
2456  */
2457 int sysctl_compaction_handler(struct ctl_table *table, int write,
2458 			void __user *buffer, size_t *length, loff_t *ppos)
2459 {
2460 	if (write)
2461 		compact_nodes();
2462 
2463 	return 0;
2464 }
2465 
2466 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2467 static ssize_t sysfs_compact_node(struct device *dev,
2468 			struct device_attribute *attr,
2469 			const char *buf, size_t count)
2470 {
2471 	int nid = dev->id;
2472 
2473 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2474 		/* Flush pending updates to the LRU lists */
2475 		lru_add_drain_all();
2476 
2477 		compact_node(nid);
2478 	}
2479 
2480 	return count;
2481 }
2482 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2483 
2484 int compaction_register_node(struct node *node)
2485 {
2486 	return device_create_file(&node->dev, &dev_attr_compact);
2487 }
2488 
2489 void compaction_unregister_node(struct node *node)
2490 {
2491 	return device_remove_file(&node->dev, &dev_attr_compact);
2492 }
2493 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2494 
2495 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2496 {
2497 	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
2498 }
2499 
2500 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2501 {
2502 	int zoneid;
2503 	struct zone *zone;
2504 	enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
2505 
2506 	for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
2507 		zone = &pgdat->node_zones[zoneid];
2508 
2509 		if (!populated_zone(zone))
2510 			continue;
2511 
2512 		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2513 					classzone_idx) == COMPACT_CONTINUE)
2514 			return true;
2515 	}
2516 
2517 	return false;
2518 }
2519 
2520 static void kcompactd_do_work(pg_data_t *pgdat)
2521 {
2522 	/*
2523 	 * With no special task, compact all zones so that a page of requested
2524 	 * order is allocatable.
2525 	 */
2526 	int zoneid;
2527 	struct zone *zone;
2528 	struct compact_control cc = {
2529 		.order = pgdat->kcompactd_max_order,
2530 		.search_order = pgdat->kcompactd_max_order,
2531 		.classzone_idx = pgdat->kcompactd_classzone_idx,
2532 		.mode = MIGRATE_SYNC_LIGHT,
2533 		.ignore_skip_hint = false,
2534 		.gfp_mask = GFP_KERNEL,
2535 	};
2536 	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2537 							cc.classzone_idx);
2538 	count_compact_event(KCOMPACTD_WAKE);
2539 
2540 	for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
2541 		int status;
2542 
2543 		zone = &pgdat->node_zones[zoneid];
2544 		if (!populated_zone(zone))
2545 			continue;
2546 
2547 		if (compaction_deferred(zone, cc.order))
2548 			continue;
2549 
2550 		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2551 							COMPACT_CONTINUE)
2552 			continue;
2553 
2554 		if (kthread_should_stop())
2555 			return;
2556 
2557 		cc.zone = zone;
2558 		status = compact_zone(&cc, NULL);
2559 
2560 		if (status == COMPACT_SUCCESS) {
2561 			compaction_defer_reset(zone, cc.order, false);
2562 		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2563 			/*
2564 			 * Buddy pages may become stranded on pcps that could
2565 			 * otherwise coalesce on the zone's free area for
2566 			 * order >= cc.order.  This is ratelimited by the
2567 			 * upcoming deferral.
2568 			 */
2569 			drain_all_pages(zone);
2570 
2571 			/*
2572 			 * We use sync migration mode here, so we defer like
2573 			 * sync direct compaction does.
2574 			 */
2575 			defer_compaction(zone, cc.order);
2576 		}
2577 
2578 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2579 				     cc.total_migrate_scanned);
2580 		count_compact_events(KCOMPACTD_FREE_SCANNED,
2581 				     cc.total_free_scanned);
2582 
2583 		VM_BUG_ON(!list_empty(&cc.freepages));
2584 		VM_BUG_ON(!list_empty(&cc.migratepages));
2585 	}
2586 
2587 	/*
2588 	 * Regardless of success, we are done until woken up next. But remember
2589 	 * the requested order/classzone_idx in case it was higher/tighter than
2590 	 * our current ones
2591 	 */
2592 	if (pgdat->kcompactd_max_order <= cc.order)
2593 		pgdat->kcompactd_max_order = 0;
2594 	if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
2595 		pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2596 }
2597 
2598 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
2599 {
2600 	if (!order)
2601 		return;
2602 
2603 	if (pgdat->kcompactd_max_order < order)
2604 		pgdat->kcompactd_max_order = order;
2605 
2606 	if (pgdat->kcompactd_classzone_idx > classzone_idx)
2607 		pgdat->kcompactd_classzone_idx = classzone_idx;
2608 
2609 	/*
2610 	 * Pairs with implicit barrier in wait_event_freezable()
2611 	 * such that wakeups are not missed.
2612 	 */
2613 	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2614 		return;
2615 
2616 	if (!kcompactd_node_suitable(pgdat))
2617 		return;
2618 
2619 	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2620 							classzone_idx);
2621 	wake_up_interruptible(&pgdat->kcompactd_wait);
2622 }
2623 
2624 /*
2625  * The background compaction daemon, started as a kernel thread
2626  * from the init process.
2627  */
2628 static int kcompactd(void *p)
2629 {
2630 	pg_data_t *pgdat = (pg_data_t*)p;
2631 	struct task_struct *tsk = current;
2632 
2633 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2634 
2635 	if (!cpumask_empty(cpumask))
2636 		set_cpus_allowed_ptr(tsk, cpumask);
2637 
2638 	set_freezable();
2639 
2640 	pgdat->kcompactd_max_order = 0;
2641 	pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2642 
2643 	while (!kthread_should_stop()) {
2644 		unsigned long pflags;
2645 
2646 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2647 		wait_event_freezable(pgdat->kcompactd_wait,
2648 				kcompactd_work_requested(pgdat));
2649 
2650 		psi_memstall_enter(&pflags);
2651 		kcompactd_do_work(pgdat);
2652 		psi_memstall_leave(&pflags);
2653 	}
2654 
2655 	return 0;
2656 }
2657 
2658 /*
2659  * This kcompactd start function will be called by init and node-hot-add.
2660  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2661  */
2662 int kcompactd_run(int nid)
2663 {
2664 	pg_data_t *pgdat = NODE_DATA(nid);
2665 	int ret = 0;
2666 
2667 	if (pgdat->kcompactd)
2668 		return 0;
2669 
2670 	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2671 	if (IS_ERR(pgdat->kcompactd)) {
2672 		pr_err("Failed to start kcompactd on node %d\n", nid);
2673 		ret = PTR_ERR(pgdat->kcompactd);
2674 		pgdat->kcompactd = NULL;
2675 	}
2676 	return ret;
2677 }
2678 
2679 /*
2680  * Called by memory hotplug when all memory in a node is offlined. Caller must
2681  * hold mem_hotplug_begin/end().
2682  */
2683 void kcompactd_stop(int nid)
2684 {
2685 	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2686 
2687 	if (kcompactd) {
2688 		kthread_stop(kcompactd);
2689 		NODE_DATA(nid)->kcompactd = NULL;
2690 	}
2691 }
2692 
2693 /*
2694  * It's optimal to keep kcompactd on the same CPUs as their memory, but
2695  * not required for correctness. So if the last cpu in a node goes
2696  * away, we get changed to run anywhere: as the first one comes back,
2697  * restore their cpu bindings.
2698  */
2699 static int kcompactd_cpu_online(unsigned int cpu)
2700 {
2701 	int nid;
2702 
2703 	for_each_node_state(nid, N_MEMORY) {
2704 		pg_data_t *pgdat = NODE_DATA(nid);
2705 		const struct cpumask *mask;
2706 
2707 		mask = cpumask_of_node(pgdat->node_id);
2708 
2709 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2710 			/* One of our CPUs online: restore mask */
2711 			set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2712 	}
2713 	return 0;
2714 }
2715 
2716 static int __init kcompactd_init(void)
2717 {
2718 	int nid;
2719 	int ret;
2720 
2721 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2722 					"mm/compaction:online",
2723 					kcompactd_cpu_online, NULL);
2724 	if (ret < 0) {
2725 		pr_err("kcompactd: failed to register hotplug callbacks.\n");
2726 		return ret;
2727 	}
2728 
2729 	for_each_node_state(nid, N_MEMORY)
2730 		kcompactd_run(nid);
2731 	return 0;
2732 }
2733 subsys_initcall(kcompactd_init)
2734 
2735 #endif /* CONFIG_COMPACTION */
2736