xref: /linux/mm/compaction.c (revision a1ff5a7d78a036d6c2178ee5acd6ba4946243800)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27 
28 #ifdef CONFIG_COMPACTION
29 /*
30  * Fragmentation score check interval for proactive compaction purposes.
31  */
32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC	(500)
33 
34 static inline void count_compact_event(enum vm_event_item item)
35 {
36 	count_vm_event(item);
37 }
38 
39 static inline void count_compact_events(enum vm_event_item item, long delta)
40 {
41 	count_vm_events(item, delta);
42 }
43 
44 /*
45  * order == -1 is expected when compacting proactively via
46  * 1. /proc/sys/vm/compact_memory
47  * 2. /sys/devices/system/node/nodex/compact
48  * 3. /proc/sys/vm/compaction_proactiveness
49  */
50 static inline bool is_via_compact_memory(int order)
51 {
52 	return order == -1;
53 }
54 
55 #else
56 #define count_compact_event(item) do { } while (0)
57 #define count_compact_events(item, delta) do { } while (0)
58 static inline bool is_via_compact_memory(int order) { return false; }
59 #endif
60 
61 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/compaction.h>
65 
66 #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
67 #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
68 
69 /*
70  * Page order with-respect-to which proactive compaction
71  * calculates external fragmentation, which is used as
72  * the "fragmentation score" of a node/zone.
73  */
74 #if defined CONFIG_TRANSPARENT_HUGEPAGE
75 #define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
76 #elif defined CONFIG_HUGETLBFS
77 #define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
78 #else
79 #define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
80 #endif
81 
82 static struct page *mark_allocated_noprof(struct page *page, unsigned int order, gfp_t gfp_flags)
83 {
84 	post_alloc_hook(page, order, __GFP_MOVABLE);
85 	return page;
86 }
87 #define mark_allocated(...)	alloc_hooks(mark_allocated_noprof(__VA_ARGS__))
88 
89 static void split_map_pages(struct list_head *freepages)
90 {
91 	unsigned int i, order;
92 	struct page *page, *next;
93 	LIST_HEAD(tmp_list);
94 
95 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
96 		list_for_each_entry_safe(page, next, &freepages[order], lru) {
97 			unsigned int nr_pages;
98 
99 			list_del(&page->lru);
100 
101 			nr_pages = 1 << order;
102 
103 			mark_allocated(page, order, __GFP_MOVABLE);
104 			if (order)
105 				split_page(page, order);
106 
107 			for (i = 0; i < nr_pages; i++) {
108 				list_add(&page->lru, &tmp_list);
109 				page++;
110 			}
111 		}
112 		list_splice_init(&tmp_list, &freepages[0]);
113 	}
114 }
115 
116 static unsigned long release_free_list(struct list_head *freepages)
117 {
118 	int order;
119 	unsigned long high_pfn = 0;
120 
121 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
122 		struct page *page, *next;
123 
124 		list_for_each_entry_safe(page, next, &freepages[order], lru) {
125 			unsigned long pfn = page_to_pfn(page);
126 
127 			list_del(&page->lru);
128 			/*
129 			 * Convert free pages into post allocation pages, so
130 			 * that we can free them via __free_page.
131 			 */
132 			mark_allocated(page, order, __GFP_MOVABLE);
133 			__free_pages(page, order);
134 			if (pfn > high_pfn)
135 				high_pfn = pfn;
136 		}
137 	}
138 	return high_pfn;
139 }
140 
141 #ifdef CONFIG_COMPACTION
142 bool PageMovable(struct page *page)
143 {
144 	const struct movable_operations *mops;
145 
146 	VM_BUG_ON_PAGE(!PageLocked(page), page);
147 	if (!__PageMovable(page))
148 		return false;
149 
150 	mops = page_movable_ops(page);
151 	if (mops)
152 		return true;
153 
154 	return false;
155 }
156 
157 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
158 {
159 	VM_BUG_ON_PAGE(!PageLocked(page), page);
160 	VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
161 	page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
162 }
163 EXPORT_SYMBOL(__SetPageMovable);
164 
165 void __ClearPageMovable(struct page *page)
166 {
167 	VM_BUG_ON_PAGE(!PageMovable(page), page);
168 	/*
169 	 * This page still has the type of a movable page, but it's
170 	 * actually not movable any more.
171 	 */
172 	page->mapping = (void *)PAGE_MAPPING_MOVABLE;
173 }
174 EXPORT_SYMBOL(__ClearPageMovable);
175 
176 /* Do not skip compaction more than 64 times */
177 #define COMPACT_MAX_DEFER_SHIFT 6
178 
179 /*
180  * Compaction is deferred when compaction fails to result in a page
181  * allocation success. 1 << compact_defer_shift, compactions are skipped up
182  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
183  */
184 static void defer_compaction(struct zone *zone, int order)
185 {
186 	zone->compact_considered = 0;
187 	zone->compact_defer_shift++;
188 
189 	if (order < zone->compact_order_failed)
190 		zone->compact_order_failed = order;
191 
192 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
193 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
194 
195 	trace_mm_compaction_defer_compaction(zone, order);
196 }
197 
198 /* Returns true if compaction should be skipped this time */
199 static bool compaction_deferred(struct zone *zone, int order)
200 {
201 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
202 
203 	if (order < zone->compact_order_failed)
204 		return false;
205 
206 	/* Avoid possible overflow */
207 	if (++zone->compact_considered >= defer_limit) {
208 		zone->compact_considered = defer_limit;
209 		return false;
210 	}
211 
212 	trace_mm_compaction_deferred(zone, order);
213 
214 	return true;
215 }
216 
217 /*
218  * Update defer tracking counters after successful compaction of given order,
219  * which means an allocation either succeeded (alloc_success == true) or is
220  * expected to succeed.
221  */
222 void compaction_defer_reset(struct zone *zone, int order,
223 		bool alloc_success)
224 {
225 	if (alloc_success) {
226 		zone->compact_considered = 0;
227 		zone->compact_defer_shift = 0;
228 	}
229 	if (order >= zone->compact_order_failed)
230 		zone->compact_order_failed = order + 1;
231 
232 	trace_mm_compaction_defer_reset(zone, order);
233 }
234 
235 /* Returns true if restarting compaction after many failures */
236 static bool compaction_restarting(struct zone *zone, int order)
237 {
238 	if (order < zone->compact_order_failed)
239 		return false;
240 
241 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
242 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
243 }
244 
245 /* Returns true if the pageblock should be scanned for pages to isolate. */
246 static inline bool isolation_suitable(struct compact_control *cc,
247 					struct page *page)
248 {
249 	if (cc->ignore_skip_hint)
250 		return true;
251 
252 	return !get_pageblock_skip(page);
253 }
254 
255 static void reset_cached_positions(struct zone *zone)
256 {
257 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
258 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
259 	zone->compact_cached_free_pfn =
260 				pageblock_start_pfn(zone_end_pfn(zone) - 1);
261 }
262 
263 #ifdef CONFIG_SPARSEMEM
264 /*
265  * If the PFN falls into an offline section, return the start PFN of the
266  * next online section. If the PFN falls into an online section or if
267  * there is no next online section, return 0.
268  */
269 static unsigned long skip_offline_sections(unsigned long start_pfn)
270 {
271 	unsigned long start_nr = pfn_to_section_nr(start_pfn);
272 
273 	if (online_section_nr(start_nr))
274 		return 0;
275 
276 	while (++start_nr <= __highest_present_section_nr) {
277 		if (online_section_nr(start_nr))
278 			return section_nr_to_pfn(start_nr);
279 	}
280 
281 	return 0;
282 }
283 
284 /*
285  * If the PFN falls into an offline section, return the end PFN of the
286  * next online section in reverse. If the PFN falls into an online section
287  * or if there is no next online section in reverse, return 0.
288  */
289 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
290 {
291 	unsigned long start_nr = pfn_to_section_nr(start_pfn);
292 
293 	if (!start_nr || online_section_nr(start_nr))
294 		return 0;
295 
296 	while (start_nr-- > 0) {
297 		if (online_section_nr(start_nr))
298 			return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION;
299 	}
300 
301 	return 0;
302 }
303 #else
304 static unsigned long skip_offline_sections(unsigned long start_pfn)
305 {
306 	return 0;
307 }
308 
309 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
310 {
311 	return 0;
312 }
313 #endif
314 
315 /*
316  * Compound pages of >= pageblock_order should consistently be skipped until
317  * released. It is always pointless to compact pages of such order (if they are
318  * migratable), and the pageblocks they occupy cannot contain any free pages.
319  */
320 static bool pageblock_skip_persistent(struct page *page)
321 {
322 	if (!PageCompound(page))
323 		return false;
324 
325 	page = compound_head(page);
326 
327 	if (compound_order(page) >= pageblock_order)
328 		return true;
329 
330 	return false;
331 }
332 
333 static bool
334 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
335 							bool check_target)
336 {
337 	struct page *page = pfn_to_online_page(pfn);
338 	struct page *block_page;
339 	struct page *end_page;
340 	unsigned long block_pfn;
341 
342 	if (!page)
343 		return false;
344 	if (zone != page_zone(page))
345 		return false;
346 	if (pageblock_skip_persistent(page))
347 		return false;
348 
349 	/*
350 	 * If skip is already cleared do no further checking once the
351 	 * restart points have been set.
352 	 */
353 	if (check_source && check_target && !get_pageblock_skip(page))
354 		return true;
355 
356 	/*
357 	 * If clearing skip for the target scanner, do not select a
358 	 * non-movable pageblock as the starting point.
359 	 */
360 	if (!check_source && check_target &&
361 	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
362 		return false;
363 
364 	/* Ensure the start of the pageblock or zone is online and valid */
365 	block_pfn = pageblock_start_pfn(pfn);
366 	block_pfn = max(block_pfn, zone->zone_start_pfn);
367 	block_page = pfn_to_online_page(block_pfn);
368 	if (block_page) {
369 		page = block_page;
370 		pfn = block_pfn;
371 	}
372 
373 	/* Ensure the end of the pageblock or zone is online and valid */
374 	block_pfn = pageblock_end_pfn(pfn) - 1;
375 	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
376 	end_page = pfn_to_online_page(block_pfn);
377 	if (!end_page)
378 		return false;
379 
380 	/*
381 	 * Only clear the hint if a sample indicates there is either a
382 	 * free page or an LRU page in the block. One or other condition
383 	 * is necessary for the block to be a migration source/target.
384 	 */
385 	do {
386 		if (check_source && PageLRU(page)) {
387 			clear_pageblock_skip(page);
388 			return true;
389 		}
390 
391 		if (check_target && PageBuddy(page)) {
392 			clear_pageblock_skip(page);
393 			return true;
394 		}
395 
396 		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
397 	} while (page <= end_page);
398 
399 	return false;
400 }
401 
402 /*
403  * This function is called to clear all cached information on pageblocks that
404  * should be skipped for page isolation when the migrate and free page scanner
405  * meet.
406  */
407 static void __reset_isolation_suitable(struct zone *zone)
408 {
409 	unsigned long migrate_pfn = zone->zone_start_pfn;
410 	unsigned long free_pfn = zone_end_pfn(zone) - 1;
411 	unsigned long reset_migrate = free_pfn;
412 	unsigned long reset_free = migrate_pfn;
413 	bool source_set = false;
414 	bool free_set = false;
415 
416 	/* Only flush if a full compaction finished recently */
417 	if (!zone->compact_blockskip_flush)
418 		return;
419 
420 	zone->compact_blockskip_flush = false;
421 
422 	/*
423 	 * Walk the zone and update pageblock skip information. Source looks
424 	 * for PageLRU while target looks for PageBuddy. When the scanner
425 	 * is found, both PageBuddy and PageLRU are checked as the pageblock
426 	 * is suitable as both source and target.
427 	 */
428 	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
429 					free_pfn -= pageblock_nr_pages) {
430 		cond_resched();
431 
432 		/* Update the migrate PFN */
433 		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
434 		    migrate_pfn < reset_migrate) {
435 			source_set = true;
436 			reset_migrate = migrate_pfn;
437 			zone->compact_init_migrate_pfn = reset_migrate;
438 			zone->compact_cached_migrate_pfn[0] = reset_migrate;
439 			zone->compact_cached_migrate_pfn[1] = reset_migrate;
440 		}
441 
442 		/* Update the free PFN */
443 		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
444 		    free_pfn > reset_free) {
445 			free_set = true;
446 			reset_free = free_pfn;
447 			zone->compact_init_free_pfn = reset_free;
448 			zone->compact_cached_free_pfn = reset_free;
449 		}
450 	}
451 
452 	/* Leave no distance if no suitable block was reset */
453 	if (reset_migrate >= reset_free) {
454 		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
455 		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
456 		zone->compact_cached_free_pfn = free_pfn;
457 	}
458 }
459 
460 void reset_isolation_suitable(pg_data_t *pgdat)
461 {
462 	int zoneid;
463 
464 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
465 		struct zone *zone = &pgdat->node_zones[zoneid];
466 		if (!populated_zone(zone))
467 			continue;
468 
469 		__reset_isolation_suitable(zone);
470 	}
471 }
472 
473 /*
474  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
475  * locks are not required for read/writers. Returns true if it was already set.
476  */
477 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
478 {
479 	bool skip;
480 
481 	/* Do not update if skip hint is being ignored */
482 	if (cc->ignore_skip_hint)
483 		return false;
484 
485 	skip = get_pageblock_skip(page);
486 	if (!skip && !cc->no_set_skip_hint)
487 		set_pageblock_skip(page);
488 
489 	return skip;
490 }
491 
492 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
493 {
494 	struct zone *zone = cc->zone;
495 
496 	/* Set for isolation rather than compaction */
497 	if (cc->no_set_skip_hint)
498 		return;
499 
500 	pfn = pageblock_end_pfn(pfn);
501 
502 	/* Update where async and sync compaction should restart */
503 	if (pfn > zone->compact_cached_migrate_pfn[0])
504 		zone->compact_cached_migrate_pfn[0] = pfn;
505 	if (cc->mode != MIGRATE_ASYNC &&
506 	    pfn > zone->compact_cached_migrate_pfn[1])
507 		zone->compact_cached_migrate_pfn[1] = pfn;
508 }
509 
510 /*
511  * If no pages were isolated then mark this pageblock to be skipped in the
512  * future. The information is later cleared by __reset_isolation_suitable().
513  */
514 static void update_pageblock_skip(struct compact_control *cc,
515 			struct page *page, unsigned long pfn)
516 {
517 	struct zone *zone = cc->zone;
518 
519 	if (cc->no_set_skip_hint)
520 		return;
521 
522 	set_pageblock_skip(page);
523 
524 	if (pfn < zone->compact_cached_free_pfn)
525 		zone->compact_cached_free_pfn = pfn;
526 }
527 #else
528 static inline bool isolation_suitable(struct compact_control *cc,
529 					struct page *page)
530 {
531 	return true;
532 }
533 
534 static inline bool pageblock_skip_persistent(struct page *page)
535 {
536 	return false;
537 }
538 
539 static inline void update_pageblock_skip(struct compact_control *cc,
540 			struct page *page, unsigned long pfn)
541 {
542 }
543 
544 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
545 {
546 }
547 
548 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
549 {
550 	return false;
551 }
552 #endif /* CONFIG_COMPACTION */
553 
554 /*
555  * Compaction requires the taking of some coarse locks that are potentially
556  * very heavily contended. For async compaction, trylock and record if the
557  * lock is contended. The lock will still be acquired but compaction will
558  * abort when the current block is finished regardless of success rate.
559  * Sync compaction acquires the lock.
560  *
561  * Always returns true which makes it easier to track lock state in callers.
562  */
563 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
564 						struct compact_control *cc)
565 	__acquires(lock)
566 {
567 	/* Track if the lock is contended in async mode */
568 	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
569 		if (spin_trylock_irqsave(lock, *flags))
570 			return true;
571 
572 		cc->contended = true;
573 	}
574 
575 	spin_lock_irqsave(lock, *flags);
576 	return true;
577 }
578 
579 /*
580  * Compaction requires the taking of some coarse locks that are potentially
581  * very heavily contended. The lock should be periodically unlocked to avoid
582  * having disabled IRQs for a long time, even when there is nobody waiting on
583  * the lock. It might also be that allowing the IRQs will result in
584  * need_resched() becoming true. If scheduling is needed, compaction schedules.
585  * Either compaction type will also abort if a fatal signal is pending.
586  * In either case if the lock was locked, it is dropped and not regained.
587  *
588  * Returns true if compaction should abort due to fatal signal pending.
589  * Returns false when compaction can continue.
590  */
591 static bool compact_unlock_should_abort(spinlock_t *lock,
592 		unsigned long flags, bool *locked, struct compact_control *cc)
593 {
594 	if (*locked) {
595 		spin_unlock_irqrestore(lock, flags);
596 		*locked = false;
597 	}
598 
599 	if (fatal_signal_pending(current)) {
600 		cc->contended = true;
601 		return true;
602 	}
603 
604 	cond_resched();
605 
606 	return false;
607 }
608 
609 /*
610  * Isolate free pages onto a private freelist. If @strict is true, will abort
611  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
612  * (even though it may still end up isolating some pages).
613  */
614 static unsigned long isolate_freepages_block(struct compact_control *cc,
615 				unsigned long *start_pfn,
616 				unsigned long end_pfn,
617 				struct list_head *freelist,
618 				unsigned int stride,
619 				bool strict)
620 {
621 	int nr_scanned = 0, total_isolated = 0;
622 	struct page *page;
623 	unsigned long flags = 0;
624 	bool locked = false;
625 	unsigned long blockpfn = *start_pfn;
626 	unsigned int order;
627 
628 	/* Strict mode is for isolation, speed is secondary */
629 	if (strict)
630 		stride = 1;
631 
632 	page = pfn_to_page(blockpfn);
633 
634 	/* Isolate free pages. */
635 	for (; blockpfn < end_pfn; blockpfn += stride, page += stride) {
636 		int isolated;
637 
638 		/*
639 		 * Periodically drop the lock (if held) regardless of its
640 		 * contention, to give chance to IRQs. Abort if fatal signal
641 		 * pending.
642 		 */
643 		if (!(blockpfn % COMPACT_CLUSTER_MAX)
644 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
645 								&locked, cc))
646 			break;
647 
648 		nr_scanned++;
649 
650 		/*
651 		 * For compound pages such as THP and hugetlbfs, we can save
652 		 * potentially a lot of iterations if we skip them at once.
653 		 * The check is racy, but we can consider only valid values
654 		 * and the only danger is skipping too much.
655 		 */
656 		if (PageCompound(page)) {
657 			const unsigned int order = compound_order(page);
658 
659 			if (blockpfn + (1UL << order) <= end_pfn) {
660 				blockpfn += (1UL << order) - 1;
661 				page += (1UL << order) - 1;
662 				nr_scanned += (1UL << order) - 1;
663 			}
664 
665 			goto isolate_fail;
666 		}
667 
668 		if (!PageBuddy(page))
669 			goto isolate_fail;
670 
671 		/* If we already hold the lock, we can skip some rechecking. */
672 		if (!locked) {
673 			locked = compact_lock_irqsave(&cc->zone->lock,
674 								&flags, cc);
675 
676 			/* Recheck this is a buddy page under lock */
677 			if (!PageBuddy(page))
678 				goto isolate_fail;
679 		}
680 
681 		/* Found a free page, will break it into order-0 pages */
682 		order = buddy_order(page);
683 		isolated = __isolate_free_page(page, order);
684 		if (!isolated)
685 			break;
686 		set_page_private(page, order);
687 
688 		nr_scanned += isolated - 1;
689 		total_isolated += isolated;
690 		cc->nr_freepages += isolated;
691 		list_add_tail(&page->lru, &freelist[order]);
692 
693 		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
694 			blockpfn += isolated;
695 			break;
696 		}
697 		/* Advance to the end of split page */
698 		blockpfn += isolated - 1;
699 		page += isolated - 1;
700 		continue;
701 
702 isolate_fail:
703 		if (strict)
704 			break;
705 
706 	}
707 
708 	if (locked)
709 		spin_unlock_irqrestore(&cc->zone->lock, flags);
710 
711 	/*
712 	 * Be careful to not go outside of the pageblock.
713 	 */
714 	if (unlikely(blockpfn > end_pfn))
715 		blockpfn = end_pfn;
716 
717 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
718 					nr_scanned, total_isolated);
719 
720 	/* Record how far we have got within the block */
721 	*start_pfn = blockpfn;
722 
723 	/*
724 	 * If strict isolation is requested by CMA then check that all the
725 	 * pages requested were isolated. If there were any failures, 0 is
726 	 * returned and CMA will fail.
727 	 */
728 	if (strict && blockpfn < end_pfn)
729 		total_isolated = 0;
730 
731 	cc->total_free_scanned += nr_scanned;
732 	if (total_isolated)
733 		count_compact_events(COMPACTISOLATED, total_isolated);
734 	return total_isolated;
735 }
736 
737 /**
738  * isolate_freepages_range() - isolate free pages.
739  * @cc:        Compaction control structure.
740  * @start_pfn: The first PFN to start isolating.
741  * @end_pfn:   The one-past-last PFN.
742  *
743  * Non-free pages, invalid PFNs, or zone boundaries within the
744  * [start_pfn, end_pfn) range are considered errors, cause function to
745  * undo its actions and return zero.
746  *
747  * Otherwise, function returns one-past-the-last PFN of isolated page
748  * (which may be greater then end_pfn if end fell in a middle of
749  * a free page).
750  */
751 unsigned long
752 isolate_freepages_range(struct compact_control *cc,
753 			unsigned long start_pfn, unsigned long end_pfn)
754 {
755 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
756 	int order;
757 	struct list_head tmp_freepages[NR_PAGE_ORDERS];
758 
759 	for (order = 0; order < NR_PAGE_ORDERS; order++)
760 		INIT_LIST_HEAD(&tmp_freepages[order]);
761 
762 	pfn = start_pfn;
763 	block_start_pfn = pageblock_start_pfn(pfn);
764 	if (block_start_pfn < cc->zone->zone_start_pfn)
765 		block_start_pfn = cc->zone->zone_start_pfn;
766 	block_end_pfn = pageblock_end_pfn(pfn);
767 
768 	for (; pfn < end_pfn; pfn += isolated,
769 				block_start_pfn = block_end_pfn,
770 				block_end_pfn += pageblock_nr_pages) {
771 		/* Protect pfn from changing by isolate_freepages_block */
772 		unsigned long isolate_start_pfn = pfn;
773 
774 		/*
775 		 * pfn could pass the block_end_pfn if isolated freepage
776 		 * is more than pageblock order. In this case, we adjust
777 		 * scanning range to right one.
778 		 */
779 		if (pfn >= block_end_pfn) {
780 			block_start_pfn = pageblock_start_pfn(pfn);
781 			block_end_pfn = pageblock_end_pfn(pfn);
782 		}
783 
784 		block_end_pfn = min(block_end_pfn, end_pfn);
785 
786 		if (!pageblock_pfn_to_page(block_start_pfn,
787 					block_end_pfn, cc->zone))
788 			break;
789 
790 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
791 					block_end_pfn, tmp_freepages, 0, true);
792 
793 		/*
794 		 * In strict mode, isolate_freepages_block() returns 0 if
795 		 * there are any holes in the block (ie. invalid PFNs or
796 		 * non-free pages).
797 		 */
798 		if (!isolated)
799 			break;
800 
801 		/*
802 		 * If we managed to isolate pages, it is always (1 << n) *
803 		 * pageblock_nr_pages for some non-negative n.  (Max order
804 		 * page may span two pageblocks).
805 		 */
806 	}
807 
808 	if (pfn < end_pfn) {
809 		/* Loop terminated early, cleanup. */
810 		release_free_list(tmp_freepages);
811 		return 0;
812 	}
813 
814 	/* __isolate_free_page() does not map the pages */
815 	split_map_pages(tmp_freepages);
816 
817 	/* We don't use freelists for anything. */
818 	return pfn;
819 }
820 
821 /* Similar to reclaim, but different enough that they don't share logic */
822 static bool too_many_isolated(struct compact_control *cc)
823 {
824 	pg_data_t *pgdat = cc->zone->zone_pgdat;
825 	bool too_many;
826 
827 	unsigned long active, inactive, isolated;
828 
829 	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
830 			node_page_state(pgdat, NR_INACTIVE_ANON);
831 	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
832 			node_page_state(pgdat, NR_ACTIVE_ANON);
833 	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
834 			node_page_state(pgdat, NR_ISOLATED_ANON);
835 
836 	/*
837 	 * Allow GFP_NOFS to isolate past the limit set for regular
838 	 * compaction runs. This prevents an ABBA deadlock when other
839 	 * compactors have already isolated to the limit, but are
840 	 * blocked on filesystem locks held by the GFP_NOFS thread.
841 	 */
842 	if (cc->gfp_mask & __GFP_FS) {
843 		inactive >>= 3;
844 		active >>= 3;
845 	}
846 
847 	too_many = isolated > (inactive + active) / 2;
848 	if (!too_many)
849 		wake_throttle_isolated(pgdat);
850 
851 	return too_many;
852 }
853 
854 /**
855  * skip_isolation_on_order() - determine when to skip folio isolation based on
856  *			       folio order and compaction target order
857  * @order:		to-be-isolated folio order
858  * @target_order:	compaction target order
859  *
860  * This avoids unnecessary folio isolations during compaction.
861  */
862 static bool skip_isolation_on_order(int order, int target_order)
863 {
864 	/*
865 	 * Unless we are performing global compaction (i.e.,
866 	 * is_via_compact_memory), skip any folios that are larger than the
867 	 * target order: we wouldn't be here if we'd have a free folio with
868 	 * the desired target_order, so migrating this folio would likely fail
869 	 * later.
870 	 */
871 	if (!is_via_compact_memory(target_order) && order >= target_order)
872 		return true;
873 	/*
874 	 * We limit memory compaction to pageblocks and won't try
875 	 * creating free blocks of memory that are larger than that.
876 	 */
877 	return order >= pageblock_order;
878 }
879 
880 /**
881  * isolate_migratepages_block() - isolate all migrate-able pages within
882  *				  a single pageblock
883  * @cc:		Compaction control structure.
884  * @low_pfn:	The first PFN to isolate
885  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
886  * @mode:	Isolation mode to be used.
887  *
888  * Isolate all pages that can be migrated from the range specified by
889  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
890  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
891  * -ENOMEM in case we could not allocate a page, or 0.
892  * cc->migrate_pfn will contain the next pfn to scan.
893  *
894  * The pages are isolated on cc->migratepages list (not required to be empty),
895  * and cc->nr_migratepages is updated accordingly.
896  */
897 static int
898 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
899 			unsigned long end_pfn, isolate_mode_t mode)
900 {
901 	pg_data_t *pgdat = cc->zone->zone_pgdat;
902 	unsigned long nr_scanned = 0, nr_isolated = 0;
903 	struct lruvec *lruvec;
904 	unsigned long flags = 0;
905 	struct lruvec *locked = NULL;
906 	struct folio *folio = NULL;
907 	struct page *page = NULL, *valid_page = NULL;
908 	struct address_space *mapping;
909 	unsigned long start_pfn = low_pfn;
910 	bool skip_on_failure = false;
911 	unsigned long next_skip_pfn = 0;
912 	bool skip_updated = false;
913 	int ret = 0;
914 
915 	cc->migrate_pfn = low_pfn;
916 
917 	/*
918 	 * Ensure that there are not too many pages isolated from the LRU
919 	 * list by either parallel reclaimers or compaction. If there are,
920 	 * delay for some time until fewer pages are isolated
921 	 */
922 	while (unlikely(too_many_isolated(cc))) {
923 		/* stop isolation if there are still pages not migrated */
924 		if (cc->nr_migratepages)
925 			return -EAGAIN;
926 
927 		/* async migration should just abort */
928 		if (cc->mode == MIGRATE_ASYNC)
929 			return -EAGAIN;
930 
931 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
932 
933 		if (fatal_signal_pending(current))
934 			return -EINTR;
935 	}
936 
937 	cond_resched();
938 
939 	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
940 		skip_on_failure = true;
941 		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
942 	}
943 
944 	/* Time to isolate some pages for migration */
945 	for (; low_pfn < end_pfn; low_pfn++) {
946 		bool is_dirty, is_unevictable;
947 
948 		if (skip_on_failure && low_pfn >= next_skip_pfn) {
949 			/*
950 			 * We have isolated all migration candidates in the
951 			 * previous order-aligned block, and did not skip it due
952 			 * to failure. We should migrate the pages now and
953 			 * hopefully succeed compaction.
954 			 */
955 			if (nr_isolated)
956 				break;
957 
958 			/*
959 			 * We failed to isolate in the previous order-aligned
960 			 * block. Set the new boundary to the end of the
961 			 * current block. Note we can't simply increase
962 			 * next_skip_pfn by 1 << order, as low_pfn might have
963 			 * been incremented by a higher number due to skipping
964 			 * a compound or a high-order buddy page in the
965 			 * previous loop iteration.
966 			 */
967 			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
968 		}
969 
970 		/*
971 		 * Periodically drop the lock (if held) regardless of its
972 		 * contention, to give chance to IRQs. Abort completely if
973 		 * a fatal signal is pending.
974 		 */
975 		if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
976 			if (locked) {
977 				unlock_page_lruvec_irqrestore(locked, flags);
978 				locked = NULL;
979 			}
980 
981 			if (fatal_signal_pending(current)) {
982 				cc->contended = true;
983 				ret = -EINTR;
984 
985 				goto fatal_pending;
986 			}
987 
988 			cond_resched();
989 		}
990 
991 		nr_scanned++;
992 
993 		page = pfn_to_page(low_pfn);
994 
995 		/*
996 		 * Check if the pageblock has already been marked skipped.
997 		 * Only the first PFN is checked as the caller isolates
998 		 * COMPACT_CLUSTER_MAX at a time so the second call must
999 		 * not falsely conclude that the block should be skipped.
1000 		 */
1001 		if (!valid_page && (pageblock_aligned(low_pfn) ||
1002 				    low_pfn == cc->zone->zone_start_pfn)) {
1003 			if (!isolation_suitable(cc, page)) {
1004 				low_pfn = end_pfn;
1005 				folio = NULL;
1006 				goto isolate_abort;
1007 			}
1008 			valid_page = page;
1009 		}
1010 
1011 		if (PageHuge(page)) {
1012 			/*
1013 			 * skip hugetlbfs if we are not compacting for pages
1014 			 * bigger than its order. THPs and other compound pages
1015 			 * are handled below.
1016 			 */
1017 			if (!cc->alloc_contig) {
1018 				const unsigned int order = compound_order(page);
1019 
1020 				if (order <= MAX_PAGE_ORDER) {
1021 					low_pfn += (1UL << order) - 1;
1022 					nr_scanned += (1UL << order) - 1;
1023 				}
1024 				goto isolate_fail;
1025 			}
1026 			/* for alloc_contig case */
1027 			if (locked) {
1028 				unlock_page_lruvec_irqrestore(locked, flags);
1029 				locked = NULL;
1030 			}
1031 
1032 			ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
1033 
1034 			/*
1035 			 * Fail isolation in case isolate_or_dissolve_huge_page()
1036 			 * reports an error. In case of -ENOMEM, abort right away.
1037 			 */
1038 			if (ret < 0) {
1039 				 /* Do not report -EBUSY down the chain */
1040 				if (ret == -EBUSY)
1041 					ret = 0;
1042 				low_pfn += compound_nr(page) - 1;
1043 				nr_scanned += compound_nr(page) - 1;
1044 				goto isolate_fail;
1045 			}
1046 
1047 			if (PageHuge(page)) {
1048 				/*
1049 				 * Hugepage was successfully isolated and placed
1050 				 * on the cc->migratepages list.
1051 				 */
1052 				folio = page_folio(page);
1053 				low_pfn += folio_nr_pages(folio) - 1;
1054 				goto isolate_success_no_list;
1055 			}
1056 
1057 			/*
1058 			 * Ok, the hugepage was dissolved. Now these pages are
1059 			 * Buddy and cannot be re-allocated because they are
1060 			 * isolated. Fall-through as the check below handles
1061 			 * Buddy pages.
1062 			 */
1063 		}
1064 
1065 		/*
1066 		 * Skip if free. We read page order here without zone lock
1067 		 * which is generally unsafe, but the race window is small and
1068 		 * the worst thing that can happen is that we skip some
1069 		 * potential isolation targets.
1070 		 */
1071 		if (PageBuddy(page)) {
1072 			unsigned long freepage_order = buddy_order_unsafe(page);
1073 
1074 			/*
1075 			 * Without lock, we cannot be sure that what we got is
1076 			 * a valid page order. Consider only values in the
1077 			 * valid order range to prevent low_pfn overflow.
1078 			 */
1079 			if (freepage_order > 0 && freepage_order <= MAX_PAGE_ORDER) {
1080 				low_pfn += (1UL << freepage_order) - 1;
1081 				nr_scanned += (1UL << freepage_order) - 1;
1082 			}
1083 			continue;
1084 		}
1085 
1086 		/*
1087 		 * Regardless of being on LRU, compound pages such as THP
1088 		 * (hugetlbfs is handled above) are not to be compacted unless
1089 		 * we are attempting an allocation larger than the compound
1090 		 * page size. We can potentially save a lot of iterations if we
1091 		 * skip them at once. The check is racy, but we can consider
1092 		 * only valid values and the only danger is skipping too much.
1093 		 */
1094 		if (PageCompound(page) && !cc->alloc_contig) {
1095 			const unsigned int order = compound_order(page);
1096 
1097 			/* Skip based on page order and compaction target order. */
1098 			if (skip_isolation_on_order(order, cc->order)) {
1099 				if (order <= MAX_PAGE_ORDER) {
1100 					low_pfn += (1UL << order) - 1;
1101 					nr_scanned += (1UL << order) - 1;
1102 				}
1103 				goto isolate_fail;
1104 			}
1105 		}
1106 
1107 		/*
1108 		 * Check may be lockless but that's ok as we recheck later.
1109 		 * It's possible to migrate LRU and non-lru movable pages.
1110 		 * Skip any other type of page
1111 		 */
1112 		if (!PageLRU(page)) {
1113 			/*
1114 			 * __PageMovable can return false positive so we need
1115 			 * to verify it under page_lock.
1116 			 */
1117 			if (unlikely(__PageMovable(page)) &&
1118 					!PageIsolated(page)) {
1119 				if (locked) {
1120 					unlock_page_lruvec_irqrestore(locked, flags);
1121 					locked = NULL;
1122 				}
1123 
1124 				if (isolate_movable_page(page, mode)) {
1125 					folio = page_folio(page);
1126 					goto isolate_success;
1127 				}
1128 			}
1129 
1130 			goto isolate_fail;
1131 		}
1132 
1133 		/*
1134 		 * Be careful not to clear PageLRU until after we're
1135 		 * sure the page is not being freed elsewhere -- the
1136 		 * page release code relies on it.
1137 		 */
1138 		folio = folio_get_nontail_page(page);
1139 		if (unlikely(!folio))
1140 			goto isolate_fail;
1141 
1142 		/*
1143 		 * Migration will fail if an anonymous page is pinned in memory,
1144 		 * so avoid taking lru_lock and isolating it unnecessarily in an
1145 		 * admittedly racy check.
1146 		 */
1147 		mapping = folio_mapping(folio);
1148 		if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio))
1149 			goto isolate_fail_put;
1150 
1151 		/*
1152 		 * Only allow to migrate anonymous pages in GFP_NOFS context
1153 		 * because those do not depend on fs locks.
1154 		 */
1155 		if (!(cc->gfp_mask & __GFP_FS) && mapping)
1156 			goto isolate_fail_put;
1157 
1158 		/* Only take pages on LRU: a check now makes later tests safe */
1159 		if (!folio_test_lru(folio))
1160 			goto isolate_fail_put;
1161 
1162 		is_unevictable = folio_test_unevictable(folio);
1163 
1164 		/* Compaction might skip unevictable pages but CMA takes them */
1165 		if (!(mode & ISOLATE_UNEVICTABLE) && is_unevictable)
1166 			goto isolate_fail_put;
1167 
1168 		/*
1169 		 * To minimise LRU disruption, the caller can indicate with
1170 		 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1171 		 * it will be able to migrate without blocking - clean pages
1172 		 * for the most part.  PageWriteback would require blocking.
1173 		 */
1174 		if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio))
1175 			goto isolate_fail_put;
1176 
1177 		is_dirty = folio_test_dirty(folio);
1178 
1179 		if (((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) ||
1180 		    (mapping && is_unevictable)) {
1181 			bool migrate_dirty = true;
1182 			bool is_inaccessible;
1183 
1184 			/*
1185 			 * Only folios without mappings or that have
1186 			 * a ->migrate_folio callback are possible to migrate
1187 			 * without blocking.
1188 			 *
1189 			 * Folios from inaccessible mappings are not migratable.
1190 			 *
1191 			 * However, we can be racing with truncation, which can
1192 			 * free the mapping that we need to check. Truncation
1193 			 * holds the folio lock until after the folio is removed
1194 			 * from the page so holding it ourselves is sufficient.
1195 			 *
1196 			 * To avoid locking the folio just to check inaccessible,
1197 			 * assume every inaccessible folio is also unevictable,
1198 			 * which is a cheaper test.  If our assumption goes
1199 			 * wrong, it's not a correctness bug, just potentially
1200 			 * wasted cycles.
1201 			 */
1202 			if (!folio_trylock(folio))
1203 				goto isolate_fail_put;
1204 
1205 			mapping = folio_mapping(folio);
1206 			if ((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) {
1207 				migrate_dirty = !mapping ||
1208 						mapping->a_ops->migrate_folio;
1209 			}
1210 			is_inaccessible = mapping && mapping_inaccessible(mapping);
1211 			folio_unlock(folio);
1212 			if (!migrate_dirty || is_inaccessible)
1213 				goto isolate_fail_put;
1214 		}
1215 
1216 		/* Try isolate the folio */
1217 		if (!folio_test_clear_lru(folio))
1218 			goto isolate_fail_put;
1219 
1220 		lruvec = folio_lruvec(folio);
1221 
1222 		/* If we already hold the lock, we can skip some rechecking */
1223 		if (lruvec != locked) {
1224 			if (locked)
1225 				unlock_page_lruvec_irqrestore(locked, flags);
1226 
1227 			compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1228 			locked = lruvec;
1229 
1230 			lruvec_memcg_debug(lruvec, folio);
1231 
1232 			/*
1233 			 * Try get exclusive access under lock. If marked for
1234 			 * skip, the scan is aborted unless the current context
1235 			 * is a rescan to reach the end of the pageblock.
1236 			 */
1237 			if (!skip_updated && valid_page) {
1238 				skip_updated = true;
1239 				if (test_and_set_skip(cc, valid_page) &&
1240 				    !cc->finish_pageblock) {
1241 					low_pfn = end_pfn;
1242 					goto isolate_abort;
1243 				}
1244 			}
1245 
1246 			/*
1247 			 * Check LRU folio order under the lock
1248 			 */
1249 			if (unlikely(skip_isolation_on_order(folio_order(folio),
1250 							     cc->order) &&
1251 				     !cc->alloc_contig)) {
1252 				low_pfn += folio_nr_pages(folio) - 1;
1253 				nr_scanned += folio_nr_pages(folio) - 1;
1254 				folio_set_lru(folio);
1255 				goto isolate_fail_put;
1256 			}
1257 		}
1258 
1259 		/* The folio is taken off the LRU */
1260 		if (folio_test_large(folio))
1261 			low_pfn += folio_nr_pages(folio) - 1;
1262 
1263 		/* Successfully isolated */
1264 		lruvec_del_folio(lruvec, folio);
1265 		node_stat_mod_folio(folio,
1266 				NR_ISOLATED_ANON + folio_is_file_lru(folio),
1267 				folio_nr_pages(folio));
1268 
1269 isolate_success:
1270 		list_add(&folio->lru, &cc->migratepages);
1271 isolate_success_no_list:
1272 		cc->nr_migratepages += folio_nr_pages(folio);
1273 		nr_isolated += folio_nr_pages(folio);
1274 		nr_scanned += folio_nr_pages(folio) - 1;
1275 
1276 		/*
1277 		 * Avoid isolating too much unless this block is being
1278 		 * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1279 		 * or a lock is contended. For contention, isolate quickly to
1280 		 * potentially remove one source of contention.
1281 		 */
1282 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1283 		    !cc->finish_pageblock && !cc->contended) {
1284 			++low_pfn;
1285 			break;
1286 		}
1287 
1288 		continue;
1289 
1290 isolate_fail_put:
1291 		/* Avoid potential deadlock in freeing page under lru_lock */
1292 		if (locked) {
1293 			unlock_page_lruvec_irqrestore(locked, flags);
1294 			locked = NULL;
1295 		}
1296 		folio_put(folio);
1297 
1298 isolate_fail:
1299 		if (!skip_on_failure && ret != -ENOMEM)
1300 			continue;
1301 
1302 		/*
1303 		 * We have isolated some pages, but then failed. Release them
1304 		 * instead of migrating, as we cannot form the cc->order buddy
1305 		 * page anyway.
1306 		 */
1307 		if (nr_isolated) {
1308 			if (locked) {
1309 				unlock_page_lruvec_irqrestore(locked, flags);
1310 				locked = NULL;
1311 			}
1312 			putback_movable_pages(&cc->migratepages);
1313 			cc->nr_migratepages = 0;
1314 			nr_isolated = 0;
1315 		}
1316 
1317 		if (low_pfn < next_skip_pfn) {
1318 			low_pfn = next_skip_pfn - 1;
1319 			/*
1320 			 * The check near the loop beginning would have updated
1321 			 * next_skip_pfn too, but this is a bit simpler.
1322 			 */
1323 			next_skip_pfn += 1UL << cc->order;
1324 		}
1325 
1326 		if (ret == -ENOMEM)
1327 			break;
1328 	}
1329 
1330 	/*
1331 	 * The PageBuddy() check could have potentially brought us outside
1332 	 * the range to be scanned.
1333 	 */
1334 	if (unlikely(low_pfn > end_pfn))
1335 		low_pfn = end_pfn;
1336 
1337 	folio = NULL;
1338 
1339 isolate_abort:
1340 	if (locked)
1341 		unlock_page_lruvec_irqrestore(locked, flags);
1342 	if (folio) {
1343 		folio_set_lru(folio);
1344 		folio_put(folio);
1345 	}
1346 
1347 	/*
1348 	 * Update the cached scanner pfn once the pageblock has been scanned.
1349 	 * Pages will either be migrated in which case there is no point
1350 	 * scanning in the near future or migration failed in which case the
1351 	 * failure reason may persist. The block is marked for skipping if
1352 	 * there were no pages isolated in the block or if the block is
1353 	 * rescanned twice in a row.
1354 	 */
1355 	if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1356 		if (!cc->no_set_skip_hint && valid_page && !skip_updated)
1357 			set_pageblock_skip(valid_page);
1358 		update_cached_migrate(cc, low_pfn);
1359 	}
1360 
1361 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1362 						nr_scanned, nr_isolated);
1363 
1364 fatal_pending:
1365 	cc->total_migrate_scanned += nr_scanned;
1366 	if (nr_isolated)
1367 		count_compact_events(COMPACTISOLATED, nr_isolated);
1368 
1369 	cc->migrate_pfn = low_pfn;
1370 
1371 	return ret;
1372 }
1373 
1374 /**
1375  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1376  * @cc:        Compaction control structure.
1377  * @start_pfn: The first PFN to start isolating.
1378  * @end_pfn:   The one-past-last PFN.
1379  *
1380  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1381  * in case we could not allocate a page, or 0.
1382  */
1383 int
1384 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1385 							unsigned long end_pfn)
1386 {
1387 	unsigned long pfn, block_start_pfn, block_end_pfn;
1388 	int ret = 0;
1389 
1390 	/* Scan block by block. First and last block may be incomplete */
1391 	pfn = start_pfn;
1392 	block_start_pfn = pageblock_start_pfn(pfn);
1393 	if (block_start_pfn < cc->zone->zone_start_pfn)
1394 		block_start_pfn = cc->zone->zone_start_pfn;
1395 	block_end_pfn = pageblock_end_pfn(pfn);
1396 
1397 	for (; pfn < end_pfn; pfn = block_end_pfn,
1398 				block_start_pfn = block_end_pfn,
1399 				block_end_pfn += pageblock_nr_pages) {
1400 
1401 		block_end_pfn = min(block_end_pfn, end_pfn);
1402 
1403 		if (!pageblock_pfn_to_page(block_start_pfn,
1404 					block_end_pfn, cc->zone))
1405 			continue;
1406 
1407 		ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1408 						 ISOLATE_UNEVICTABLE);
1409 
1410 		if (ret)
1411 			break;
1412 
1413 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1414 			break;
1415 	}
1416 
1417 	return ret;
1418 }
1419 
1420 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1421 #ifdef CONFIG_COMPACTION
1422 
1423 static bool suitable_migration_source(struct compact_control *cc,
1424 							struct page *page)
1425 {
1426 	int block_mt;
1427 
1428 	if (pageblock_skip_persistent(page))
1429 		return false;
1430 
1431 	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1432 		return true;
1433 
1434 	block_mt = get_pageblock_migratetype(page);
1435 
1436 	if (cc->migratetype == MIGRATE_MOVABLE)
1437 		return is_migrate_movable(block_mt);
1438 	else
1439 		return block_mt == cc->migratetype;
1440 }
1441 
1442 /* Returns true if the page is within a block suitable for migration to */
1443 static bool suitable_migration_target(struct compact_control *cc,
1444 							struct page *page)
1445 {
1446 	/* If the page is a large free page, then disallow migration */
1447 	if (PageBuddy(page)) {
1448 		int order = cc->order > 0 ? cc->order : pageblock_order;
1449 
1450 		/*
1451 		 * We are checking page_order without zone->lock taken. But
1452 		 * the only small danger is that we skip a potentially suitable
1453 		 * pageblock, so it's not worth to check order for valid range.
1454 		 */
1455 		if (buddy_order_unsafe(page) >= order)
1456 			return false;
1457 	}
1458 
1459 	if (cc->ignore_block_suitable)
1460 		return true;
1461 
1462 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1463 	if (is_migrate_movable(get_pageblock_migratetype(page)))
1464 		return true;
1465 
1466 	/* Otherwise skip the block */
1467 	return false;
1468 }
1469 
1470 static inline unsigned int
1471 freelist_scan_limit(struct compact_control *cc)
1472 {
1473 	unsigned short shift = BITS_PER_LONG - 1;
1474 
1475 	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1476 }
1477 
1478 /*
1479  * Test whether the free scanner has reached the same or lower pageblock than
1480  * the migration scanner, and compaction should thus terminate.
1481  */
1482 static inline bool compact_scanners_met(struct compact_control *cc)
1483 {
1484 	return (cc->free_pfn >> pageblock_order)
1485 		<= (cc->migrate_pfn >> pageblock_order);
1486 }
1487 
1488 /*
1489  * Used when scanning for a suitable migration target which scans freelists
1490  * in reverse. Reorders the list such as the unscanned pages are scanned
1491  * first on the next iteration of the free scanner
1492  */
1493 static void
1494 move_freelist_head(struct list_head *freelist, struct page *freepage)
1495 {
1496 	LIST_HEAD(sublist);
1497 
1498 	if (!list_is_first(&freepage->buddy_list, freelist)) {
1499 		list_cut_before(&sublist, freelist, &freepage->buddy_list);
1500 		list_splice_tail(&sublist, freelist);
1501 	}
1502 }
1503 
1504 /*
1505  * Similar to move_freelist_head except used by the migration scanner
1506  * when scanning forward. It's possible for these list operations to
1507  * move against each other if they search the free list exactly in
1508  * lockstep.
1509  */
1510 static void
1511 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1512 {
1513 	LIST_HEAD(sublist);
1514 
1515 	if (!list_is_last(&freepage->buddy_list, freelist)) {
1516 		list_cut_position(&sublist, freelist, &freepage->buddy_list);
1517 		list_splice_tail(&sublist, freelist);
1518 	}
1519 }
1520 
1521 static void
1522 fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1523 {
1524 	unsigned long start_pfn, end_pfn;
1525 	struct page *page;
1526 
1527 	/* Do not search around if there are enough pages already */
1528 	if (cc->nr_freepages >= cc->nr_migratepages)
1529 		return;
1530 
1531 	/* Minimise scanning during async compaction */
1532 	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1533 		return;
1534 
1535 	/* Pageblock boundaries */
1536 	start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1537 	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1538 
1539 	page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1540 	if (!page)
1541 		return;
1542 
1543 	isolate_freepages_block(cc, &start_pfn, end_pfn, cc->freepages, 1, false);
1544 
1545 	/* Skip this pageblock in the future as it's full or nearly full */
1546 	if (start_pfn == end_pfn && !cc->no_set_skip_hint)
1547 		set_pageblock_skip(page);
1548 }
1549 
1550 /* Search orders in round-robin fashion */
1551 static int next_search_order(struct compact_control *cc, int order)
1552 {
1553 	order--;
1554 	if (order < 0)
1555 		order = cc->order - 1;
1556 
1557 	/* Search wrapped around? */
1558 	if (order == cc->search_order) {
1559 		cc->search_order--;
1560 		if (cc->search_order < 0)
1561 			cc->search_order = cc->order - 1;
1562 		return -1;
1563 	}
1564 
1565 	return order;
1566 }
1567 
1568 static void fast_isolate_freepages(struct compact_control *cc)
1569 {
1570 	unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1571 	unsigned int nr_scanned = 0, total_isolated = 0;
1572 	unsigned long low_pfn, min_pfn, highest = 0;
1573 	unsigned long nr_isolated = 0;
1574 	unsigned long distance;
1575 	struct page *page = NULL;
1576 	bool scan_start = false;
1577 	int order;
1578 
1579 	/* Full compaction passes in a negative order */
1580 	if (cc->order <= 0)
1581 		return;
1582 
1583 	/*
1584 	 * If starting the scan, use a deeper search and use the highest
1585 	 * PFN found if a suitable one is not found.
1586 	 */
1587 	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1588 		limit = pageblock_nr_pages >> 1;
1589 		scan_start = true;
1590 	}
1591 
1592 	/*
1593 	 * Preferred point is in the top quarter of the scan space but take
1594 	 * a pfn from the top half if the search is problematic.
1595 	 */
1596 	distance = (cc->free_pfn - cc->migrate_pfn);
1597 	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1598 	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1599 
1600 	if (WARN_ON_ONCE(min_pfn > low_pfn))
1601 		low_pfn = min_pfn;
1602 
1603 	/*
1604 	 * Search starts from the last successful isolation order or the next
1605 	 * order to search after a previous failure
1606 	 */
1607 	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1608 
1609 	for (order = cc->search_order;
1610 	     !page && order >= 0;
1611 	     order = next_search_order(cc, order)) {
1612 		struct free_area *area = &cc->zone->free_area[order];
1613 		struct list_head *freelist;
1614 		struct page *freepage;
1615 		unsigned long flags;
1616 		unsigned int order_scanned = 0;
1617 		unsigned long high_pfn = 0;
1618 
1619 		if (!area->nr_free)
1620 			continue;
1621 
1622 		spin_lock_irqsave(&cc->zone->lock, flags);
1623 		freelist = &area->free_list[MIGRATE_MOVABLE];
1624 		list_for_each_entry_reverse(freepage, freelist, buddy_list) {
1625 			unsigned long pfn;
1626 
1627 			order_scanned++;
1628 			nr_scanned++;
1629 			pfn = page_to_pfn(freepage);
1630 
1631 			if (pfn >= highest)
1632 				highest = max(pageblock_start_pfn(pfn),
1633 					      cc->zone->zone_start_pfn);
1634 
1635 			if (pfn >= low_pfn) {
1636 				cc->fast_search_fail = 0;
1637 				cc->search_order = order;
1638 				page = freepage;
1639 				break;
1640 			}
1641 
1642 			if (pfn >= min_pfn && pfn > high_pfn) {
1643 				high_pfn = pfn;
1644 
1645 				/* Shorten the scan if a candidate is found */
1646 				limit >>= 1;
1647 			}
1648 
1649 			if (order_scanned >= limit)
1650 				break;
1651 		}
1652 
1653 		/* Use a maximum candidate pfn if a preferred one was not found */
1654 		if (!page && high_pfn) {
1655 			page = pfn_to_page(high_pfn);
1656 
1657 			/* Update freepage for the list reorder below */
1658 			freepage = page;
1659 		}
1660 
1661 		/* Reorder to so a future search skips recent pages */
1662 		move_freelist_head(freelist, freepage);
1663 
1664 		/* Isolate the page if available */
1665 		if (page) {
1666 			if (__isolate_free_page(page, order)) {
1667 				set_page_private(page, order);
1668 				nr_isolated = 1 << order;
1669 				nr_scanned += nr_isolated - 1;
1670 				total_isolated += nr_isolated;
1671 				cc->nr_freepages += nr_isolated;
1672 				list_add_tail(&page->lru, &cc->freepages[order]);
1673 				count_compact_events(COMPACTISOLATED, nr_isolated);
1674 			} else {
1675 				/* If isolation fails, abort the search */
1676 				order = cc->search_order + 1;
1677 				page = NULL;
1678 			}
1679 		}
1680 
1681 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1682 
1683 		/* Skip fast search if enough freepages isolated */
1684 		if (cc->nr_freepages >= cc->nr_migratepages)
1685 			break;
1686 
1687 		/*
1688 		 * Smaller scan on next order so the total scan is related
1689 		 * to freelist_scan_limit.
1690 		 */
1691 		if (order_scanned >= limit)
1692 			limit = max(1U, limit >> 1);
1693 	}
1694 
1695 	trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn,
1696 						   nr_scanned, total_isolated);
1697 
1698 	if (!page) {
1699 		cc->fast_search_fail++;
1700 		if (scan_start) {
1701 			/*
1702 			 * Use the highest PFN found above min. If one was
1703 			 * not found, be pessimistic for direct compaction
1704 			 * and use the min mark.
1705 			 */
1706 			if (highest >= min_pfn) {
1707 				page = pfn_to_page(highest);
1708 				cc->free_pfn = highest;
1709 			} else {
1710 				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1711 					page = pageblock_pfn_to_page(min_pfn,
1712 						min(pageblock_end_pfn(min_pfn),
1713 						    zone_end_pfn(cc->zone)),
1714 						cc->zone);
1715 					if (page && !suitable_migration_target(cc, page))
1716 						page = NULL;
1717 
1718 					cc->free_pfn = min_pfn;
1719 				}
1720 			}
1721 		}
1722 	}
1723 
1724 	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1725 		highest -= pageblock_nr_pages;
1726 		cc->zone->compact_cached_free_pfn = highest;
1727 	}
1728 
1729 	cc->total_free_scanned += nr_scanned;
1730 	if (!page)
1731 		return;
1732 
1733 	low_pfn = page_to_pfn(page);
1734 	fast_isolate_around(cc, low_pfn);
1735 }
1736 
1737 /*
1738  * Based on information in the current compact_control, find blocks
1739  * suitable for isolating free pages from and then isolate them.
1740  */
1741 static void isolate_freepages(struct compact_control *cc)
1742 {
1743 	struct zone *zone = cc->zone;
1744 	struct page *page;
1745 	unsigned long block_start_pfn;	/* start of current pageblock */
1746 	unsigned long isolate_start_pfn; /* exact pfn we start at */
1747 	unsigned long block_end_pfn;	/* end of current pageblock */
1748 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1749 	unsigned int stride;
1750 
1751 	/* Try a small search of the free lists for a candidate */
1752 	fast_isolate_freepages(cc);
1753 	if (cc->nr_freepages)
1754 		return;
1755 
1756 	/*
1757 	 * Initialise the free scanner. The starting point is where we last
1758 	 * successfully isolated from, zone-cached value, or the end of the
1759 	 * zone when isolating for the first time. For looping we also need
1760 	 * this pfn aligned down to the pageblock boundary, because we do
1761 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1762 	 * For ending point, take care when isolating in last pageblock of a
1763 	 * zone which ends in the middle of a pageblock.
1764 	 * The low boundary is the end of the pageblock the migration scanner
1765 	 * is using.
1766 	 */
1767 	isolate_start_pfn = cc->free_pfn;
1768 	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1769 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1770 						zone_end_pfn(zone));
1771 	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1772 	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1773 
1774 	/*
1775 	 * Isolate free pages until enough are available to migrate the
1776 	 * pages on cc->migratepages. We stop searching if the migrate
1777 	 * and free page scanners meet or enough free pages are isolated.
1778 	 */
1779 	for (; block_start_pfn >= low_pfn;
1780 				block_end_pfn = block_start_pfn,
1781 				block_start_pfn -= pageblock_nr_pages,
1782 				isolate_start_pfn = block_start_pfn) {
1783 		unsigned long nr_isolated;
1784 
1785 		/*
1786 		 * This can iterate a massively long zone without finding any
1787 		 * suitable migration targets, so periodically check resched.
1788 		 */
1789 		if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1790 			cond_resched();
1791 
1792 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1793 									zone);
1794 		if (!page) {
1795 			unsigned long next_pfn;
1796 
1797 			next_pfn = skip_offline_sections_reverse(block_start_pfn);
1798 			if (next_pfn)
1799 				block_start_pfn = max(next_pfn, low_pfn);
1800 
1801 			continue;
1802 		}
1803 
1804 		/* Check the block is suitable for migration */
1805 		if (!suitable_migration_target(cc, page))
1806 			continue;
1807 
1808 		/* If isolation recently failed, do not retry */
1809 		if (!isolation_suitable(cc, page))
1810 			continue;
1811 
1812 		/* Found a block suitable for isolating free pages from. */
1813 		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1814 					block_end_pfn, cc->freepages, stride, false);
1815 
1816 		/* Update the skip hint if the full pageblock was scanned */
1817 		if (isolate_start_pfn == block_end_pfn)
1818 			update_pageblock_skip(cc, page, block_start_pfn -
1819 					      pageblock_nr_pages);
1820 
1821 		/* Are enough freepages isolated? */
1822 		if (cc->nr_freepages >= cc->nr_migratepages) {
1823 			if (isolate_start_pfn >= block_end_pfn) {
1824 				/*
1825 				 * Restart at previous pageblock if more
1826 				 * freepages can be isolated next time.
1827 				 */
1828 				isolate_start_pfn =
1829 					block_start_pfn - pageblock_nr_pages;
1830 			}
1831 			break;
1832 		} else if (isolate_start_pfn < block_end_pfn) {
1833 			/*
1834 			 * If isolation failed early, do not continue
1835 			 * needlessly.
1836 			 */
1837 			break;
1838 		}
1839 
1840 		/* Adjust stride depending on isolation */
1841 		if (nr_isolated) {
1842 			stride = 1;
1843 			continue;
1844 		}
1845 		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1846 	}
1847 
1848 	/*
1849 	 * Record where the free scanner will restart next time. Either we
1850 	 * broke from the loop and set isolate_start_pfn based on the last
1851 	 * call to isolate_freepages_block(), or we met the migration scanner
1852 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1853 	 */
1854 	cc->free_pfn = isolate_start_pfn;
1855 }
1856 
1857 /*
1858  * This is a migrate-callback that "allocates" freepages by taking pages
1859  * from the isolated freelists in the block we are migrating to.
1860  */
1861 static struct folio *compaction_alloc_noprof(struct folio *src, unsigned long data)
1862 {
1863 	struct compact_control *cc = (struct compact_control *)data;
1864 	struct folio *dst;
1865 	int order = folio_order(src);
1866 	bool has_isolated_pages = false;
1867 	int start_order;
1868 	struct page *freepage;
1869 	unsigned long size;
1870 
1871 again:
1872 	for (start_order = order; start_order < NR_PAGE_ORDERS; start_order++)
1873 		if (!list_empty(&cc->freepages[start_order]))
1874 			break;
1875 
1876 	/* no free pages in the list */
1877 	if (start_order == NR_PAGE_ORDERS) {
1878 		if (has_isolated_pages)
1879 			return NULL;
1880 		isolate_freepages(cc);
1881 		has_isolated_pages = true;
1882 		goto again;
1883 	}
1884 
1885 	freepage = list_first_entry(&cc->freepages[start_order], struct page,
1886 				lru);
1887 	size = 1 << start_order;
1888 
1889 	list_del(&freepage->lru);
1890 
1891 	while (start_order > order) {
1892 		start_order--;
1893 		size >>= 1;
1894 
1895 		list_add(&freepage[size].lru, &cc->freepages[start_order]);
1896 		set_page_private(&freepage[size], start_order);
1897 	}
1898 	dst = (struct folio *)freepage;
1899 
1900 	post_alloc_hook(&dst->page, order, __GFP_MOVABLE);
1901 	if (order)
1902 		prep_compound_page(&dst->page, order);
1903 	cc->nr_freepages -= 1 << order;
1904 	cc->nr_migratepages -= 1 << order;
1905 	return page_rmappable_folio(&dst->page);
1906 }
1907 
1908 static struct folio *compaction_alloc(struct folio *src, unsigned long data)
1909 {
1910 	return alloc_hooks(compaction_alloc_noprof(src, data));
1911 }
1912 
1913 /*
1914  * This is a migrate-callback that "frees" freepages back to the isolated
1915  * freelist.  All pages on the freelist are from the same zone, so there is no
1916  * special handling needed for NUMA.
1917  */
1918 static void compaction_free(struct folio *dst, unsigned long data)
1919 {
1920 	struct compact_control *cc = (struct compact_control *)data;
1921 	int order = folio_order(dst);
1922 	struct page *page = &dst->page;
1923 
1924 	if (folio_put_testzero(dst)) {
1925 		free_pages_prepare(page, order);
1926 		list_add(&dst->lru, &cc->freepages[order]);
1927 		cc->nr_freepages += 1 << order;
1928 	}
1929 	cc->nr_migratepages += 1 << order;
1930 	/*
1931 	 * someone else has referenced the page, we cannot take it back to our
1932 	 * free list.
1933 	 */
1934 }
1935 
1936 /* possible outcome of isolate_migratepages */
1937 typedef enum {
1938 	ISOLATE_ABORT,		/* Abort compaction now */
1939 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1940 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1941 } isolate_migrate_t;
1942 
1943 /*
1944  * Allow userspace to control policy on scanning the unevictable LRU for
1945  * compactable pages.
1946  */
1947 static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1948 /*
1949  * Tunable for proactive compaction. It determines how
1950  * aggressively the kernel should compact memory in the
1951  * background. It takes values in the range [0, 100].
1952  */
1953 static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1954 static int sysctl_extfrag_threshold = 500;
1955 static int __read_mostly sysctl_compact_memory;
1956 
1957 static inline void
1958 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1959 {
1960 	if (cc->fast_start_pfn == ULONG_MAX)
1961 		return;
1962 
1963 	if (!cc->fast_start_pfn)
1964 		cc->fast_start_pfn = pfn;
1965 
1966 	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1967 }
1968 
1969 static inline unsigned long
1970 reinit_migrate_pfn(struct compact_control *cc)
1971 {
1972 	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1973 		return cc->migrate_pfn;
1974 
1975 	cc->migrate_pfn = cc->fast_start_pfn;
1976 	cc->fast_start_pfn = ULONG_MAX;
1977 
1978 	return cc->migrate_pfn;
1979 }
1980 
1981 /*
1982  * Briefly search the free lists for a migration source that already has
1983  * some free pages to reduce the number of pages that need migration
1984  * before a pageblock is free.
1985  */
1986 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1987 {
1988 	unsigned int limit = freelist_scan_limit(cc);
1989 	unsigned int nr_scanned = 0;
1990 	unsigned long distance;
1991 	unsigned long pfn = cc->migrate_pfn;
1992 	unsigned long high_pfn;
1993 	int order;
1994 	bool found_block = false;
1995 
1996 	/* Skip hints are relied on to avoid repeats on the fast search */
1997 	if (cc->ignore_skip_hint)
1998 		return pfn;
1999 
2000 	/*
2001 	 * If the pageblock should be finished then do not select a different
2002 	 * pageblock.
2003 	 */
2004 	if (cc->finish_pageblock)
2005 		return pfn;
2006 
2007 	/*
2008 	 * If the migrate_pfn is not at the start of a zone or the start
2009 	 * of a pageblock then assume this is a continuation of a previous
2010 	 * scan restarted due to COMPACT_CLUSTER_MAX.
2011 	 */
2012 	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
2013 		return pfn;
2014 
2015 	/*
2016 	 * For smaller orders, just linearly scan as the number of pages
2017 	 * to migrate should be relatively small and does not necessarily
2018 	 * justify freeing up a large block for a small allocation.
2019 	 */
2020 	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
2021 		return pfn;
2022 
2023 	/*
2024 	 * Only allow kcompactd and direct requests for movable pages to
2025 	 * quickly clear out a MOVABLE pageblock for allocation. This
2026 	 * reduces the risk that a large movable pageblock is freed for
2027 	 * an unmovable/reclaimable small allocation.
2028 	 */
2029 	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
2030 		return pfn;
2031 
2032 	/*
2033 	 * When starting the migration scanner, pick any pageblock within the
2034 	 * first half of the search space. Otherwise try and pick a pageblock
2035 	 * within the first eighth to reduce the chances that a migration
2036 	 * target later becomes a source.
2037 	 */
2038 	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
2039 	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
2040 		distance >>= 2;
2041 	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
2042 
2043 	for (order = cc->order - 1;
2044 	     order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
2045 	     order--) {
2046 		struct free_area *area = &cc->zone->free_area[order];
2047 		struct list_head *freelist;
2048 		unsigned long flags;
2049 		struct page *freepage;
2050 
2051 		if (!area->nr_free)
2052 			continue;
2053 
2054 		spin_lock_irqsave(&cc->zone->lock, flags);
2055 		freelist = &area->free_list[MIGRATE_MOVABLE];
2056 		list_for_each_entry(freepage, freelist, buddy_list) {
2057 			unsigned long free_pfn;
2058 
2059 			if (nr_scanned++ >= limit) {
2060 				move_freelist_tail(freelist, freepage);
2061 				break;
2062 			}
2063 
2064 			free_pfn = page_to_pfn(freepage);
2065 			if (free_pfn < high_pfn) {
2066 				/*
2067 				 * Avoid if skipped recently. Ideally it would
2068 				 * move to the tail but even safe iteration of
2069 				 * the list assumes an entry is deleted, not
2070 				 * reordered.
2071 				 */
2072 				if (get_pageblock_skip(freepage))
2073 					continue;
2074 
2075 				/* Reorder to so a future search skips recent pages */
2076 				move_freelist_tail(freelist, freepage);
2077 
2078 				update_fast_start_pfn(cc, free_pfn);
2079 				pfn = pageblock_start_pfn(free_pfn);
2080 				if (pfn < cc->zone->zone_start_pfn)
2081 					pfn = cc->zone->zone_start_pfn;
2082 				cc->fast_search_fail = 0;
2083 				found_block = true;
2084 				break;
2085 			}
2086 		}
2087 		spin_unlock_irqrestore(&cc->zone->lock, flags);
2088 	}
2089 
2090 	cc->total_migrate_scanned += nr_scanned;
2091 
2092 	/*
2093 	 * If fast scanning failed then use a cached entry for a page block
2094 	 * that had free pages as the basis for starting a linear scan.
2095 	 */
2096 	if (!found_block) {
2097 		cc->fast_search_fail++;
2098 		pfn = reinit_migrate_pfn(cc);
2099 	}
2100 	return pfn;
2101 }
2102 
2103 /*
2104  * Isolate all pages that can be migrated from the first suitable block,
2105  * starting at the block pointed to by the migrate scanner pfn within
2106  * compact_control.
2107  */
2108 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
2109 {
2110 	unsigned long block_start_pfn;
2111 	unsigned long block_end_pfn;
2112 	unsigned long low_pfn;
2113 	struct page *page;
2114 	const isolate_mode_t isolate_mode =
2115 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
2116 		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
2117 	bool fast_find_block;
2118 
2119 	/*
2120 	 * Start at where we last stopped, or beginning of the zone as
2121 	 * initialized by compact_zone(). The first failure will use
2122 	 * the lowest PFN as the starting point for linear scanning.
2123 	 */
2124 	low_pfn = fast_find_migrateblock(cc);
2125 	block_start_pfn = pageblock_start_pfn(low_pfn);
2126 	if (block_start_pfn < cc->zone->zone_start_pfn)
2127 		block_start_pfn = cc->zone->zone_start_pfn;
2128 
2129 	/*
2130 	 * fast_find_migrateblock() has already ensured the pageblock is not
2131 	 * set with a skipped flag, so to avoid the isolation_suitable check
2132 	 * below again, check whether the fast search was successful.
2133 	 */
2134 	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
2135 
2136 	/* Only scan within a pageblock boundary */
2137 	block_end_pfn = pageblock_end_pfn(low_pfn);
2138 
2139 	/*
2140 	 * Iterate over whole pageblocks until we find the first suitable.
2141 	 * Do not cross the free scanner.
2142 	 */
2143 	for (; block_end_pfn <= cc->free_pfn;
2144 			fast_find_block = false,
2145 			cc->migrate_pfn = low_pfn = block_end_pfn,
2146 			block_start_pfn = block_end_pfn,
2147 			block_end_pfn += pageblock_nr_pages) {
2148 
2149 		/*
2150 		 * This can potentially iterate a massively long zone with
2151 		 * many pageblocks unsuitable, so periodically check if we
2152 		 * need to schedule.
2153 		 */
2154 		if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
2155 			cond_resched();
2156 
2157 		page = pageblock_pfn_to_page(block_start_pfn,
2158 						block_end_pfn, cc->zone);
2159 		if (!page) {
2160 			unsigned long next_pfn;
2161 
2162 			next_pfn = skip_offline_sections(block_start_pfn);
2163 			if (next_pfn)
2164 				block_end_pfn = min(next_pfn, cc->free_pfn);
2165 			continue;
2166 		}
2167 
2168 		/*
2169 		 * If isolation recently failed, do not retry. Only check the
2170 		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
2171 		 * to be visited multiple times. Assume skip was checked
2172 		 * before making it "skip" so other compaction instances do
2173 		 * not scan the same block.
2174 		 */
2175 		if ((pageblock_aligned(low_pfn) ||
2176 		     low_pfn == cc->zone->zone_start_pfn) &&
2177 		    !fast_find_block && !isolation_suitable(cc, page))
2178 			continue;
2179 
2180 		/*
2181 		 * For async direct compaction, only scan the pageblocks of the
2182 		 * same migratetype without huge pages. Async direct compaction
2183 		 * is optimistic to see if the minimum amount of work satisfies
2184 		 * the allocation. The cached PFN is updated as it's possible
2185 		 * that all remaining blocks between source and target are
2186 		 * unsuitable and the compaction scanners fail to meet.
2187 		 */
2188 		if (!suitable_migration_source(cc, page)) {
2189 			update_cached_migrate(cc, block_end_pfn);
2190 			continue;
2191 		}
2192 
2193 		/* Perform the isolation */
2194 		if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
2195 						isolate_mode))
2196 			return ISOLATE_ABORT;
2197 
2198 		/*
2199 		 * Either we isolated something and proceed with migration. Or
2200 		 * we failed and compact_zone should decide if we should
2201 		 * continue or not.
2202 		 */
2203 		break;
2204 	}
2205 
2206 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
2207 }
2208 
2209 /*
2210  * Determine whether kswapd is (or recently was!) running on this node.
2211  *
2212  * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
2213  * zero it.
2214  */
2215 static bool kswapd_is_running(pg_data_t *pgdat)
2216 {
2217 	bool running;
2218 
2219 	pgdat_kswapd_lock(pgdat);
2220 	running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2221 	pgdat_kswapd_unlock(pgdat);
2222 
2223 	return running;
2224 }
2225 
2226 /*
2227  * A zone's fragmentation score is the external fragmentation wrt to the
2228  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2229  */
2230 static unsigned int fragmentation_score_zone(struct zone *zone)
2231 {
2232 	return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2233 }
2234 
2235 /*
2236  * A weighted zone's fragmentation score is the external fragmentation
2237  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2238  * returns a value in the range [0, 100].
2239  *
2240  * The scaling factor ensures that proactive compaction focuses on larger
2241  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2242  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2243  * and thus never exceeds the high threshold for proactive compaction.
2244  */
2245 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2246 {
2247 	unsigned long score;
2248 
2249 	score = zone->present_pages * fragmentation_score_zone(zone);
2250 	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2251 }
2252 
2253 /*
2254  * The per-node proactive (background) compaction process is started by its
2255  * corresponding kcompactd thread when the node's fragmentation score
2256  * exceeds the high threshold. The compaction process remains active till
2257  * the node's score falls below the low threshold, or one of the back-off
2258  * conditions is met.
2259  */
2260 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2261 {
2262 	unsigned int score = 0;
2263 	int zoneid;
2264 
2265 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2266 		struct zone *zone;
2267 
2268 		zone = &pgdat->node_zones[zoneid];
2269 		if (!populated_zone(zone))
2270 			continue;
2271 		score += fragmentation_score_zone_weighted(zone);
2272 	}
2273 
2274 	return score;
2275 }
2276 
2277 static unsigned int fragmentation_score_wmark(bool low)
2278 {
2279 	unsigned int wmark_low;
2280 
2281 	/*
2282 	 * Cap the low watermark to avoid excessive compaction
2283 	 * activity in case a user sets the proactiveness tunable
2284 	 * close to 100 (maximum).
2285 	 */
2286 	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2287 	return low ? wmark_low : min(wmark_low + 10, 100U);
2288 }
2289 
2290 static bool should_proactive_compact_node(pg_data_t *pgdat)
2291 {
2292 	int wmark_high;
2293 
2294 	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2295 		return false;
2296 
2297 	wmark_high = fragmentation_score_wmark(false);
2298 	return fragmentation_score_node(pgdat) > wmark_high;
2299 }
2300 
2301 static enum compact_result __compact_finished(struct compact_control *cc)
2302 {
2303 	unsigned int order;
2304 	const int migratetype = cc->migratetype;
2305 	int ret;
2306 
2307 	/* Compaction run completes if the migrate and free scanner meet */
2308 	if (compact_scanners_met(cc)) {
2309 		/* Let the next compaction start anew. */
2310 		reset_cached_positions(cc->zone);
2311 
2312 		/*
2313 		 * Mark that the PG_migrate_skip information should be cleared
2314 		 * by kswapd when it goes to sleep. kcompactd does not set the
2315 		 * flag itself as the decision to be clear should be directly
2316 		 * based on an allocation request.
2317 		 */
2318 		if (cc->direct_compaction)
2319 			cc->zone->compact_blockskip_flush = true;
2320 
2321 		if (cc->whole_zone)
2322 			return COMPACT_COMPLETE;
2323 		else
2324 			return COMPACT_PARTIAL_SKIPPED;
2325 	}
2326 
2327 	if (cc->proactive_compaction) {
2328 		int score, wmark_low;
2329 		pg_data_t *pgdat;
2330 
2331 		pgdat = cc->zone->zone_pgdat;
2332 		if (kswapd_is_running(pgdat))
2333 			return COMPACT_PARTIAL_SKIPPED;
2334 
2335 		score = fragmentation_score_zone(cc->zone);
2336 		wmark_low = fragmentation_score_wmark(true);
2337 
2338 		if (score > wmark_low)
2339 			ret = COMPACT_CONTINUE;
2340 		else
2341 			ret = COMPACT_SUCCESS;
2342 
2343 		goto out;
2344 	}
2345 
2346 	if (is_via_compact_memory(cc->order))
2347 		return COMPACT_CONTINUE;
2348 
2349 	/*
2350 	 * Always finish scanning a pageblock to reduce the possibility of
2351 	 * fallbacks in the future. This is particularly important when
2352 	 * migration source is unmovable/reclaimable but it's not worth
2353 	 * special casing.
2354 	 */
2355 	if (!pageblock_aligned(cc->migrate_pfn))
2356 		return COMPACT_CONTINUE;
2357 
2358 	/* Direct compactor: Is a suitable page free? */
2359 	ret = COMPACT_NO_SUITABLE_PAGE;
2360 	for (order = cc->order; order < NR_PAGE_ORDERS; order++) {
2361 		struct free_area *area = &cc->zone->free_area[order];
2362 		bool can_steal;
2363 
2364 		/* Job done if page is free of the right migratetype */
2365 		if (!free_area_empty(area, migratetype))
2366 			return COMPACT_SUCCESS;
2367 
2368 #ifdef CONFIG_CMA
2369 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2370 		if (migratetype == MIGRATE_MOVABLE &&
2371 			!free_area_empty(area, MIGRATE_CMA))
2372 			return COMPACT_SUCCESS;
2373 #endif
2374 		/*
2375 		 * Job done if allocation would steal freepages from
2376 		 * other migratetype buddy lists.
2377 		 */
2378 		if (find_suitable_fallback(area, order, migratetype,
2379 						true, &can_steal) != -1)
2380 			/*
2381 			 * Movable pages are OK in any pageblock. If we are
2382 			 * stealing for a non-movable allocation, make sure
2383 			 * we finish compacting the current pageblock first
2384 			 * (which is assured by the above migrate_pfn align
2385 			 * check) so it is as free as possible and we won't
2386 			 * have to steal another one soon.
2387 			 */
2388 			return COMPACT_SUCCESS;
2389 	}
2390 
2391 out:
2392 	if (cc->contended || fatal_signal_pending(current))
2393 		ret = COMPACT_CONTENDED;
2394 
2395 	return ret;
2396 }
2397 
2398 static enum compact_result compact_finished(struct compact_control *cc)
2399 {
2400 	int ret;
2401 
2402 	ret = __compact_finished(cc);
2403 	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2404 	if (ret == COMPACT_NO_SUITABLE_PAGE)
2405 		ret = COMPACT_CONTINUE;
2406 
2407 	return ret;
2408 }
2409 
2410 static bool __compaction_suitable(struct zone *zone, int order,
2411 				  int highest_zoneidx,
2412 				  unsigned long wmark_target)
2413 {
2414 	unsigned long watermark;
2415 	/*
2416 	 * Watermarks for order-0 must be met for compaction to be able to
2417 	 * isolate free pages for migration targets. This means that the
2418 	 * watermark and alloc_flags have to match, or be more pessimistic than
2419 	 * the check in __isolate_free_page(). We don't use the direct
2420 	 * compactor's alloc_flags, as they are not relevant for freepage
2421 	 * isolation. We however do use the direct compactor's highest_zoneidx
2422 	 * to skip over zones where lowmem reserves would prevent allocation
2423 	 * even if compaction succeeds.
2424 	 * For costly orders, we require low watermark instead of min for
2425 	 * compaction to proceed to increase its chances.
2426 	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2427 	 * suitable migration targets
2428 	 */
2429 	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2430 				low_wmark_pages(zone) : min_wmark_pages(zone);
2431 	watermark += compact_gap(order);
2432 	return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2433 				   ALLOC_CMA, wmark_target);
2434 }
2435 
2436 /*
2437  * compaction_suitable: Is this suitable to run compaction on this zone now?
2438  */
2439 bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx)
2440 {
2441 	enum compact_result compact_result;
2442 	bool suitable;
2443 
2444 	suitable = __compaction_suitable(zone, order, highest_zoneidx,
2445 					 zone_page_state(zone, NR_FREE_PAGES));
2446 	/*
2447 	 * fragmentation index determines if allocation failures are due to
2448 	 * low memory or external fragmentation
2449 	 *
2450 	 * index of -1000 would imply allocations might succeed depending on
2451 	 * watermarks, but we already failed the high-order watermark check
2452 	 * index towards 0 implies failure is due to lack of memory
2453 	 * index towards 1000 implies failure is due to fragmentation
2454 	 *
2455 	 * Only compact if a failure would be due to fragmentation. Also
2456 	 * ignore fragindex for non-costly orders where the alternative to
2457 	 * a successful reclaim/compaction is OOM. Fragindex and the
2458 	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2459 	 * excessive compaction for costly orders, but it should not be at the
2460 	 * expense of system stability.
2461 	 */
2462 	if (suitable) {
2463 		compact_result = COMPACT_CONTINUE;
2464 		if (order > PAGE_ALLOC_COSTLY_ORDER) {
2465 			int fragindex = fragmentation_index(zone, order);
2466 
2467 			if (fragindex >= 0 &&
2468 			    fragindex <= sysctl_extfrag_threshold) {
2469 				suitable = false;
2470 				compact_result = COMPACT_NOT_SUITABLE_ZONE;
2471 			}
2472 		}
2473 	} else {
2474 		compact_result = COMPACT_SKIPPED;
2475 	}
2476 
2477 	trace_mm_compaction_suitable(zone, order, compact_result);
2478 
2479 	return suitable;
2480 }
2481 
2482 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2483 		int alloc_flags)
2484 {
2485 	struct zone *zone;
2486 	struct zoneref *z;
2487 
2488 	/*
2489 	 * Make sure at least one zone would pass __compaction_suitable if we continue
2490 	 * retrying the reclaim.
2491 	 */
2492 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2493 				ac->highest_zoneidx, ac->nodemask) {
2494 		unsigned long available;
2495 
2496 		/*
2497 		 * Do not consider all the reclaimable memory because we do not
2498 		 * want to trash just for a single high order allocation which
2499 		 * is even not guaranteed to appear even if __compaction_suitable
2500 		 * is happy about the watermark check.
2501 		 */
2502 		available = zone_reclaimable_pages(zone) / order;
2503 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2504 		if (__compaction_suitable(zone, order, ac->highest_zoneidx,
2505 					  available))
2506 			return true;
2507 	}
2508 
2509 	return false;
2510 }
2511 
2512 /*
2513  * Should we do compaction for target allocation order.
2514  * Return COMPACT_SUCCESS if allocation for target order can be already
2515  * satisfied
2516  * Return COMPACT_SKIPPED if compaction for target order is likely to fail
2517  * Return COMPACT_CONTINUE if compaction for target order should be ran
2518  */
2519 static enum compact_result
2520 compaction_suit_allocation_order(struct zone *zone, unsigned int order,
2521 				 int highest_zoneidx, unsigned int alloc_flags)
2522 {
2523 	unsigned long watermark;
2524 
2525 	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2526 	if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2527 			      alloc_flags))
2528 		return COMPACT_SUCCESS;
2529 
2530 	if (!compaction_suitable(zone, order, highest_zoneidx))
2531 		return COMPACT_SKIPPED;
2532 
2533 	return COMPACT_CONTINUE;
2534 }
2535 
2536 static enum compact_result
2537 compact_zone(struct compact_control *cc, struct capture_control *capc)
2538 {
2539 	enum compact_result ret;
2540 	unsigned long start_pfn = cc->zone->zone_start_pfn;
2541 	unsigned long end_pfn = zone_end_pfn(cc->zone);
2542 	unsigned long last_migrated_pfn;
2543 	const bool sync = cc->mode != MIGRATE_ASYNC;
2544 	bool update_cached;
2545 	unsigned int nr_succeeded = 0, nr_migratepages;
2546 	int order;
2547 
2548 	/*
2549 	 * These counters track activities during zone compaction.  Initialize
2550 	 * them before compacting a new zone.
2551 	 */
2552 	cc->total_migrate_scanned = 0;
2553 	cc->total_free_scanned = 0;
2554 	cc->nr_migratepages = 0;
2555 	cc->nr_freepages = 0;
2556 	for (order = 0; order < NR_PAGE_ORDERS; order++)
2557 		INIT_LIST_HEAD(&cc->freepages[order]);
2558 	INIT_LIST_HEAD(&cc->migratepages);
2559 
2560 	cc->migratetype = gfp_migratetype(cc->gfp_mask);
2561 
2562 	if (!is_via_compact_memory(cc->order)) {
2563 		ret = compaction_suit_allocation_order(cc->zone, cc->order,
2564 						       cc->highest_zoneidx,
2565 						       cc->alloc_flags);
2566 		if (ret != COMPACT_CONTINUE)
2567 			return ret;
2568 	}
2569 
2570 	/*
2571 	 * Clear pageblock skip if there were failures recently and compaction
2572 	 * is about to be retried after being deferred.
2573 	 */
2574 	if (compaction_restarting(cc->zone, cc->order))
2575 		__reset_isolation_suitable(cc->zone);
2576 
2577 	/*
2578 	 * Setup to move all movable pages to the end of the zone. Used cached
2579 	 * information on where the scanners should start (unless we explicitly
2580 	 * want to compact the whole zone), but check that it is initialised
2581 	 * by ensuring the values are within zone boundaries.
2582 	 */
2583 	cc->fast_start_pfn = 0;
2584 	if (cc->whole_zone) {
2585 		cc->migrate_pfn = start_pfn;
2586 		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2587 	} else {
2588 		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2589 		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2590 		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2591 			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2592 			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2593 		}
2594 		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2595 			cc->migrate_pfn = start_pfn;
2596 			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2597 			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2598 		}
2599 
2600 		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2601 			cc->whole_zone = true;
2602 	}
2603 
2604 	last_migrated_pfn = 0;
2605 
2606 	/*
2607 	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2608 	 * the basis that some migrations will fail in ASYNC mode. However,
2609 	 * if the cached PFNs match and pageblocks are skipped due to having
2610 	 * no isolation candidates, then the sync state does not matter.
2611 	 * Until a pageblock with isolation candidates is found, keep the
2612 	 * cached PFNs in sync to avoid revisiting the same blocks.
2613 	 */
2614 	update_cached = !sync &&
2615 		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2616 
2617 	trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2618 
2619 	/* lru_add_drain_all could be expensive with involving other CPUs */
2620 	lru_add_drain();
2621 
2622 	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2623 		int err;
2624 		unsigned long iteration_start_pfn = cc->migrate_pfn;
2625 
2626 		/*
2627 		 * Avoid multiple rescans of the same pageblock which can
2628 		 * happen if a page cannot be isolated (dirty/writeback in
2629 		 * async mode) or if the migrated pages are being allocated
2630 		 * before the pageblock is cleared.  The first rescan will
2631 		 * capture the entire pageblock for migration. If it fails,
2632 		 * it'll be marked skip and scanning will proceed as normal.
2633 		 */
2634 		cc->finish_pageblock = false;
2635 		if (pageblock_start_pfn(last_migrated_pfn) ==
2636 		    pageblock_start_pfn(iteration_start_pfn)) {
2637 			cc->finish_pageblock = true;
2638 		}
2639 
2640 rescan:
2641 		switch (isolate_migratepages(cc)) {
2642 		case ISOLATE_ABORT:
2643 			ret = COMPACT_CONTENDED;
2644 			putback_movable_pages(&cc->migratepages);
2645 			cc->nr_migratepages = 0;
2646 			goto out;
2647 		case ISOLATE_NONE:
2648 			if (update_cached) {
2649 				cc->zone->compact_cached_migrate_pfn[1] =
2650 					cc->zone->compact_cached_migrate_pfn[0];
2651 			}
2652 
2653 			/*
2654 			 * We haven't isolated and migrated anything, but
2655 			 * there might still be unflushed migrations from
2656 			 * previous cc->order aligned block.
2657 			 */
2658 			goto check_drain;
2659 		case ISOLATE_SUCCESS:
2660 			update_cached = false;
2661 			last_migrated_pfn = max(cc->zone->zone_start_pfn,
2662 				pageblock_start_pfn(cc->migrate_pfn - 1));
2663 		}
2664 
2665 		/*
2666 		 * Record the number of pages to migrate since the
2667 		 * compaction_alloc/free() will update cc->nr_migratepages
2668 		 * properly.
2669 		 */
2670 		nr_migratepages = cc->nr_migratepages;
2671 		err = migrate_pages(&cc->migratepages, compaction_alloc,
2672 				compaction_free, (unsigned long)cc, cc->mode,
2673 				MR_COMPACTION, &nr_succeeded);
2674 
2675 		trace_mm_compaction_migratepages(nr_migratepages, nr_succeeded);
2676 
2677 		/* All pages were either migrated or will be released */
2678 		cc->nr_migratepages = 0;
2679 		if (err) {
2680 			putback_movable_pages(&cc->migratepages);
2681 			/*
2682 			 * migrate_pages() may return -ENOMEM when scanners meet
2683 			 * and we want compact_finished() to detect it
2684 			 */
2685 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2686 				ret = COMPACT_CONTENDED;
2687 				goto out;
2688 			}
2689 			/*
2690 			 * If an ASYNC or SYNC_LIGHT fails to migrate a page
2691 			 * within the pageblock_order-aligned block and
2692 			 * fast_find_migrateblock may be used then scan the
2693 			 * remainder of the pageblock. This will mark the
2694 			 * pageblock "skip" to avoid rescanning in the near
2695 			 * future. This will isolate more pages than necessary
2696 			 * for the request but avoid loops due to
2697 			 * fast_find_migrateblock revisiting blocks that were
2698 			 * recently partially scanned.
2699 			 */
2700 			if (!pageblock_aligned(cc->migrate_pfn) &&
2701 			    !cc->ignore_skip_hint && !cc->finish_pageblock &&
2702 			    (cc->mode < MIGRATE_SYNC)) {
2703 				cc->finish_pageblock = true;
2704 
2705 				/*
2706 				 * Draining pcplists does not help THP if
2707 				 * any page failed to migrate. Even after
2708 				 * drain, the pageblock will not be free.
2709 				 */
2710 				if (cc->order == COMPACTION_HPAGE_ORDER)
2711 					last_migrated_pfn = 0;
2712 
2713 				goto rescan;
2714 			}
2715 		}
2716 
2717 		/* Stop if a page has been captured */
2718 		if (capc && capc->page) {
2719 			ret = COMPACT_SUCCESS;
2720 			break;
2721 		}
2722 
2723 check_drain:
2724 		/*
2725 		 * Has the migration scanner moved away from the previous
2726 		 * cc->order aligned block where we migrated from? If yes,
2727 		 * flush the pages that were freed, so that they can merge and
2728 		 * compact_finished() can detect immediately if allocation
2729 		 * would succeed.
2730 		 */
2731 		if (cc->order > 0 && last_migrated_pfn) {
2732 			unsigned long current_block_start =
2733 				block_start_pfn(cc->migrate_pfn, cc->order);
2734 
2735 			if (last_migrated_pfn < current_block_start) {
2736 				lru_add_drain_cpu_zone(cc->zone);
2737 				/* No more flushing until we migrate again */
2738 				last_migrated_pfn = 0;
2739 			}
2740 		}
2741 	}
2742 
2743 out:
2744 	/*
2745 	 * Release free pages and update where the free scanner should restart,
2746 	 * so we don't leave any returned pages behind in the next attempt.
2747 	 */
2748 	if (cc->nr_freepages > 0) {
2749 		unsigned long free_pfn = release_free_list(cc->freepages);
2750 
2751 		cc->nr_freepages = 0;
2752 		VM_BUG_ON(free_pfn == 0);
2753 		/* The cached pfn is always the first in a pageblock */
2754 		free_pfn = pageblock_start_pfn(free_pfn);
2755 		/*
2756 		 * Only go back, not forward. The cached pfn might have been
2757 		 * already reset to zone end in compact_finished()
2758 		 */
2759 		if (free_pfn > cc->zone->compact_cached_free_pfn)
2760 			cc->zone->compact_cached_free_pfn = free_pfn;
2761 	}
2762 
2763 	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2764 	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2765 
2766 	trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2767 
2768 	VM_BUG_ON(!list_empty(&cc->migratepages));
2769 
2770 	return ret;
2771 }
2772 
2773 static enum compact_result compact_zone_order(struct zone *zone, int order,
2774 		gfp_t gfp_mask, enum compact_priority prio,
2775 		unsigned int alloc_flags, int highest_zoneidx,
2776 		struct page **capture)
2777 {
2778 	enum compact_result ret;
2779 	struct compact_control cc = {
2780 		.order = order,
2781 		.search_order = order,
2782 		.gfp_mask = gfp_mask,
2783 		.zone = zone,
2784 		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2785 					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2786 		.alloc_flags = alloc_flags,
2787 		.highest_zoneidx = highest_zoneidx,
2788 		.direct_compaction = true,
2789 		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2790 		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2791 		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2792 	};
2793 	struct capture_control capc = {
2794 		.cc = &cc,
2795 		.page = NULL,
2796 	};
2797 
2798 	/*
2799 	 * Make sure the structs are really initialized before we expose the
2800 	 * capture control, in case we are interrupted and the interrupt handler
2801 	 * frees a page.
2802 	 */
2803 	barrier();
2804 	WRITE_ONCE(current->capture_control, &capc);
2805 
2806 	ret = compact_zone(&cc, &capc);
2807 
2808 	/*
2809 	 * Make sure we hide capture control first before we read the captured
2810 	 * page pointer, otherwise an interrupt could free and capture a page
2811 	 * and we would leak it.
2812 	 */
2813 	WRITE_ONCE(current->capture_control, NULL);
2814 	*capture = READ_ONCE(capc.page);
2815 	/*
2816 	 * Technically, it is also possible that compaction is skipped but
2817 	 * the page is still captured out of luck(IRQ came and freed the page).
2818 	 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2819 	 * the COMPACT[STALL|FAIL] when compaction is skipped.
2820 	 */
2821 	if (*capture)
2822 		ret = COMPACT_SUCCESS;
2823 
2824 	return ret;
2825 }
2826 
2827 /**
2828  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2829  * @gfp_mask: The GFP mask of the current allocation
2830  * @order: The order of the current allocation
2831  * @alloc_flags: The allocation flags of the current allocation
2832  * @ac: The context of current allocation
2833  * @prio: Determines how hard direct compaction should try to succeed
2834  * @capture: Pointer to free page created by compaction will be stored here
2835  *
2836  * This is the main entry point for direct page compaction.
2837  */
2838 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2839 		unsigned int alloc_flags, const struct alloc_context *ac,
2840 		enum compact_priority prio, struct page **capture)
2841 {
2842 	struct zoneref *z;
2843 	struct zone *zone;
2844 	enum compact_result rc = COMPACT_SKIPPED;
2845 
2846 	if (!gfp_compaction_allowed(gfp_mask))
2847 		return COMPACT_SKIPPED;
2848 
2849 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2850 
2851 	/* Compact each zone in the list */
2852 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2853 					ac->highest_zoneidx, ac->nodemask) {
2854 		enum compact_result status;
2855 
2856 		if (prio > MIN_COMPACT_PRIORITY
2857 					&& compaction_deferred(zone, order)) {
2858 			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2859 			continue;
2860 		}
2861 
2862 		status = compact_zone_order(zone, order, gfp_mask, prio,
2863 				alloc_flags, ac->highest_zoneidx, capture);
2864 		rc = max(status, rc);
2865 
2866 		/* The allocation should succeed, stop compacting */
2867 		if (status == COMPACT_SUCCESS) {
2868 			/*
2869 			 * We think the allocation will succeed in this zone,
2870 			 * but it is not certain, hence the false. The caller
2871 			 * will repeat this with true if allocation indeed
2872 			 * succeeds in this zone.
2873 			 */
2874 			compaction_defer_reset(zone, order, false);
2875 
2876 			break;
2877 		}
2878 
2879 		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2880 					status == COMPACT_PARTIAL_SKIPPED))
2881 			/*
2882 			 * We think that allocation won't succeed in this zone
2883 			 * so we defer compaction there. If it ends up
2884 			 * succeeding after all, it will be reset.
2885 			 */
2886 			defer_compaction(zone, order);
2887 
2888 		/*
2889 		 * We might have stopped compacting due to need_resched() in
2890 		 * async compaction, or due to a fatal signal detected. In that
2891 		 * case do not try further zones
2892 		 */
2893 		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2894 					|| fatal_signal_pending(current))
2895 			break;
2896 	}
2897 
2898 	return rc;
2899 }
2900 
2901 /*
2902  * compact_node() - compact all zones within a node
2903  * @pgdat: The node page data
2904  * @proactive: Whether the compaction is proactive
2905  *
2906  * For proactive compaction, compact till each zone's fragmentation score
2907  * reaches within proactive compaction thresholds (as determined by the
2908  * proactiveness tunable), it is possible that the function returns before
2909  * reaching score targets due to various back-off conditions, such as,
2910  * contention on per-node or per-zone locks.
2911  */
2912 static int compact_node(pg_data_t *pgdat, bool proactive)
2913 {
2914 	int zoneid;
2915 	struct zone *zone;
2916 	struct compact_control cc = {
2917 		.order = -1,
2918 		.mode = proactive ? MIGRATE_SYNC_LIGHT : MIGRATE_SYNC,
2919 		.ignore_skip_hint = true,
2920 		.whole_zone = true,
2921 		.gfp_mask = GFP_KERNEL,
2922 		.proactive_compaction = proactive,
2923 	};
2924 
2925 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2926 		zone = &pgdat->node_zones[zoneid];
2927 		if (!populated_zone(zone))
2928 			continue;
2929 
2930 		if (fatal_signal_pending(current))
2931 			return -EINTR;
2932 
2933 		cc.zone = zone;
2934 
2935 		compact_zone(&cc, NULL);
2936 
2937 		if (proactive) {
2938 			count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2939 					     cc.total_migrate_scanned);
2940 			count_compact_events(KCOMPACTD_FREE_SCANNED,
2941 					     cc.total_free_scanned);
2942 		}
2943 	}
2944 
2945 	return 0;
2946 }
2947 
2948 /* Compact all zones of all nodes in the system */
2949 static int compact_nodes(void)
2950 {
2951 	int ret, nid;
2952 
2953 	/* Flush pending updates to the LRU lists */
2954 	lru_add_drain_all();
2955 
2956 	for_each_online_node(nid) {
2957 		ret = compact_node(NODE_DATA(nid), false);
2958 		if (ret)
2959 			return ret;
2960 	}
2961 
2962 	return 0;
2963 }
2964 
2965 static int compaction_proactiveness_sysctl_handler(const struct ctl_table *table, int write,
2966 		void *buffer, size_t *length, loff_t *ppos)
2967 {
2968 	int rc, nid;
2969 
2970 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2971 	if (rc)
2972 		return rc;
2973 
2974 	if (write && sysctl_compaction_proactiveness) {
2975 		for_each_online_node(nid) {
2976 			pg_data_t *pgdat = NODE_DATA(nid);
2977 
2978 			if (pgdat->proactive_compact_trigger)
2979 				continue;
2980 
2981 			pgdat->proactive_compact_trigger = true;
2982 			trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2983 							     pgdat->nr_zones - 1);
2984 			wake_up_interruptible(&pgdat->kcompactd_wait);
2985 		}
2986 	}
2987 
2988 	return 0;
2989 }
2990 
2991 /*
2992  * This is the entry point for compacting all nodes via
2993  * /proc/sys/vm/compact_memory
2994  */
2995 static int sysctl_compaction_handler(const struct ctl_table *table, int write,
2996 			void *buffer, size_t *length, loff_t *ppos)
2997 {
2998 	int ret;
2999 
3000 	ret = proc_dointvec(table, write, buffer, length, ppos);
3001 	if (ret)
3002 		return ret;
3003 
3004 	if (sysctl_compact_memory != 1)
3005 		return -EINVAL;
3006 
3007 	if (write)
3008 		ret = compact_nodes();
3009 
3010 	return ret;
3011 }
3012 
3013 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
3014 static ssize_t compact_store(struct device *dev,
3015 			     struct device_attribute *attr,
3016 			     const char *buf, size_t count)
3017 {
3018 	int nid = dev->id;
3019 
3020 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
3021 		/* Flush pending updates to the LRU lists */
3022 		lru_add_drain_all();
3023 
3024 		compact_node(NODE_DATA(nid), false);
3025 	}
3026 
3027 	return count;
3028 }
3029 static DEVICE_ATTR_WO(compact);
3030 
3031 int compaction_register_node(struct node *node)
3032 {
3033 	return device_create_file(&node->dev, &dev_attr_compact);
3034 }
3035 
3036 void compaction_unregister_node(struct node *node)
3037 {
3038 	device_remove_file(&node->dev, &dev_attr_compact);
3039 }
3040 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
3041 
3042 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
3043 {
3044 	return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
3045 		pgdat->proactive_compact_trigger;
3046 }
3047 
3048 static bool kcompactd_node_suitable(pg_data_t *pgdat)
3049 {
3050 	int zoneid;
3051 	struct zone *zone;
3052 	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
3053 	enum compact_result ret;
3054 
3055 	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
3056 		zone = &pgdat->node_zones[zoneid];
3057 
3058 		if (!populated_zone(zone))
3059 			continue;
3060 
3061 		ret = compaction_suit_allocation_order(zone,
3062 				pgdat->kcompactd_max_order,
3063 				highest_zoneidx, ALLOC_WMARK_MIN);
3064 		if (ret == COMPACT_CONTINUE)
3065 			return true;
3066 	}
3067 
3068 	return false;
3069 }
3070 
3071 static void kcompactd_do_work(pg_data_t *pgdat)
3072 {
3073 	/*
3074 	 * With no special task, compact all zones so that a page of requested
3075 	 * order is allocatable.
3076 	 */
3077 	int zoneid;
3078 	struct zone *zone;
3079 	struct compact_control cc = {
3080 		.order = pgdat->kcompactd_max_order,
3081 		.search_order = pgdat->kcompactd_max_order,
3082 		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
3083 		.mode = MIGRATE_SYNC_LIGHT,
3084 		.ignore_skip_hint = false,
3085 		.gfp_mask = GFP_KERNEL,
3086 	};
3087 	enum compact_result ret;
3088 
3089 	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
3090 							cc.highest_zoneidx);
3091 	count_compact_event(KCOMPACTD_WAKE);
3092 
3093 	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
3094 		int status;
3095 
3096 		zone = &pgdat->node_zones[zoneid];
3097 		if (!populated_zone(zone))
3098 			continue;
3099 
3100 		if (compaction_deferred(zone, cc.order))
3101 			continue;
3102 
3103 		ret = compaction_suit_allocation_order(zone,
3104 				cc.order, zoneid, ALLOC_WMARK_MIN);
3105 		if (ret != COMPACT_CONTINUE)
3106 			continue;
3107 
3108 		if (kthread_should_stop())
3109 			return;
3110 
3111 		cc.zone = zone;
3112 		status = compact_zone(&cc, NULL);
3113 
3114 		if (status == COMPACT_SUCCESS) {
3115 			compaction_defer_reset(zone, cc.order, false);
3116 		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
3117 			/*
3118 			 * Buddy pages may become stranded on pcps that could
3119 			 * otherwise coalesce on the zone's free area for
3120 			 * order >= cc.order.  This is ratelimited by the
3121 			 * upcoming deferral.
3122 			 */
3123 			drain_all_pages(zone);
3124 
3125 			/*
3126 			 * We use sync migration mode here, so we defer like
3127 			 * sync direct compaction does.
3128 			 */
3129 			defer_compaction(zone, cc.order);
3130 		}
3131 
3132 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
3133 				     cc.total_migrate_scanned);
3134 		count_compact_events(KCOMPACTD_FREE_SCANNED,
3135 				     cc.total_free_scanned);
3136 	}
3137 
3138 	/*
3139 	 * Regardless of success, we are done until woken up next. But remember
3140 	 * the requested order/highest_zoneidx in case it was higher/tighter
3141 	 * than our current ones
3142 	 */
3143 	if (pgdat->kcompactd_max_order <= cc.order)
3144 		pgdat->kcompactd_max_order = 0;
3145 	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
3146 		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3147 }
3148 
3149 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
3150 {
3151 	if (!order)
3152 		return;
3153 
3154 	if (pgdat->kcompactd_max_order < order)
3155 		pgdat->kcompactd_max_order = order;
3156 
3157 	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
3158 		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
3159 
3160 	/*
3161 	 * Pairs with implicit barrier in wait_event_freezable()
3162 	 * such that wakeups are not missed.
3163 	 */
3164 	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
3165 		return;
3166 
3167 	if (!kcompactd_node_suitable(pgdat))
3168 		return;
3169 
3170 	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
3171 							highest_zoneidx);
3172 	wake_up_interruptible(&pgdat->kcompactd_wait);
3173 }
3174 
3175 /*
3176  * The background compaction daemon, started as a kernel thread
3177  * from the init process.
3178  */
3179 static int kcompactd(void *p)
3180 {
3181 	pg_data_t *pgdat = (pg_data_t *)p;
3182 	struct task_struct *tsk = current;
3183 	long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
3184 	long timeout = default_timeout;
3185 
3186 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3187 
3188 	if (!cpumask_empty(cpumask))
3189 		set_cpus_allowed_ptr(tsk, cpumask);
3190 
3191 	set_freezable();
3192 
3193 	pgdat->kcompactd_max_order = 0;
3194 	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3195 
3196 	while (!kthread_should_stop()) {
3197 		unsigned long pflags;
3198 
3199 		/*
3200 		 * Avoid the unnecessary wakeup for proactive compaction
3201 		 * when it is disabled.
3202 		 */
3203 		if (!sysctl_compaction_proactiveness)
3204 			timeout = MAX_SCHEDULE_TIMEOUT;
3205 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
3206 		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
3207 			kcompactd_work_requested(pgdat), timeout) &&
3208 			!pgdat->proactive_compact_trigger) {
3209 
3210 			psi_memstall_enter(&pflags);
3211 			kcompactd_do_work(pgdat);
3212 			psi_memstall_leave(&pflags);
3213 			/*
3214 			 * Reset the timeout value. The defer timeout from
3215 			 * proactive compaction is lost here but that is fine
3216 			 * as the condition of the zone changing substantionally
3217 			 * then carrying on with the previous defer interval is
3218 			 * not useful.
3219 			 */
3220 			timeout = default_timeout;
3221 			continue;
3222 		}
3223 
3224 		/*
3225 		 * Start the proactive work with default timeout. Based
3226 		 * on the fragmentation score, this timeout is updated.
3227 		 */
3228 		timeout = default_timeout;
3229 		if (should_proactive_compact_node(pgdat)) {
3230 			unsigned int prev_score, score;
3231 
3232 			prev_score = fragmentation_score_node(pgdat);
3233 			compact_node(pgdat, true);
3234 			score = fragmentation_score_node(pgdat);
3235 			/*
3236 			 * Defer proactive compaction if the fragmentation
3237 			 * score did not go down i.e. no progress made.
3238 			 */
3239 			if (unlikely(score >= prev_score))
3240 				timeout =
3241 				   default_timeout << COMPACT_MAX_DEFER_SHIFT;
3242 		}
3243 		if (unlikely(pgdat->proactive_compact_trigger))
3244 			pgdat->proactive_compact_trigger = false;
3245 	}
3246 
3247 	return 0;
3248 }
3249 
3250 /*
3251  * This kcompactd start function will be called by init and node-hot-add.
3252  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3253  */
3254 void __meminit kcompactd_run(int nid)
3255 {
3256 	pg_data_t *pgdat = NODE_DATA(nid);
3257 
3258 	if (pgdat->kcompactd)
3259 		return;
3260 
3261 	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3262 	if (IS_ERR(pgdat->kcompactd)) {
3263 		pr_err("Failed to start kcompactd on node %d\n", nid);
3264 		pgdat->kcompactd = NULL;
3265 	}
3266 }
3267 
3268 /*
3269  * Called by memory hotplug when all memory in a node is offlined. Caller must
3270  * be holding mem_hotplug_begin/done().
3271  */
3272 void __meminit kcompactd_stop(int nid)
3273 {
3274 	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3275 
3276 	if (kcompactd) {
3277 		kthread_stop(kcompactd);
3278 		NODE_DATA(nid)->kcompactd = NULL;
3279 	}
3280 }
3281 
3282 /*
3283  * It's optimal to keep kcompactd on the same CPUs as their memory, but
3284  * not required for correctness. So if the last cpu in a node goes
3285  * away, we get changed to run anywhere: as the first one comes back,
3286  * restore their cpu bindings.
3287  */
3288 static int kcompactd_cpu_online(unsigned int cpu)
3289 {
3290 	int nid;
3291 
3292 	for_each_node_state(nid, N_MEMORY) {
3293 		pg_data_t *pgdat = NODE_DATA(nid);
3294 		const struct cpumask *mask;
3295 
3296 		mask = cpumask_of_node(pgdat->node_id);
3297 
3298 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3299 			/* One of our CPUs online: restore mask */
3300 			if (pgdat->kcompactd)
3301 				set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3302 	}
3303 	return 0;
3304 }
3305 
3306 static int proc_dointvec_minmax_warn_RT_change(const struct ctl_table *table,
3307 		int write, void *buffer, size_t *lenp, loff_t *ppos)
3308 {
3309 	int ret, old;
3310 
3311 	if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3312 		return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3313 
3314 	old = *(int *)table->data;
3315 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3316 	if (ret)
3317 		return ret;
3318 	if (old != *(int *)table->data)
3319 		pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3320 			     table->procname, current->comm,
3321 			     task_pid_nr(current));
3322 	return ret;
3323 }
3324 
3325 static struct ctl_table vm_compaction[] = {
3326 	{
3327 		.procname	= "compact_memory",
3328 		.data		= &sysctl_compact_memory,
3329 		.maxlen		= sizeof(int),
3330 		.mode		= 0200,
3331 		.proc_handler	= sysctl_compaction_handler,
3332 	},
3333 	{
3334 		.procname	= "compaction_proactiveness",
3335 		.data		= &sysctl_compaction_proactiveness,
3336 		.maxlen		= sizeof(sysctl_compaction_proactiveness),
3337 		.mode		= 0644,
3338 		.proc_handler	= compaction_proactiveness_sysctl_handler,
3339 		.extra1		= SYSCTL_ZERO,
3340 		.extra2		= SYSCTL_ONE_HUNDRED,
3341 	},
3342 	{
3343 		.procname	= "extfrag_threshold",
3344 		.data		= &sysctl_extfrag_threshold,
3345 		.maxlen		= sizeof(int),
3346 		.mode		= 0644,
3347 		.proc_handler	= proc_dointvec_minmax,
3348 		.extra1		= SYSCTL_ZERO,
3349 		.extra2		= SYSCTL_ONE_THOUSAND,
3350 	},
3351 	{
3352 		.procname	= "compact_unevictable_allowed",
3353 		.data		= &sysctl_compact_unevictable_allowed,
3354 		.maxlen		= sizeof(int),
3355 		.mode		= 0644,
3356 		.proc_handler	= proc_dointvec_minmax_warn_RT_change,
3357 		.extra1		= SYSCTL_ZERO,
3358 		.extra2		= SYSCTL_ONE,
3359 	},
3360 };
3361 
3362 static int __init kcompactd_init(void)
3363 {
3364 	int nid;
3365 	int ret;
3366 
3367 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3368 					"mm/compaction:online",
3369 					kcompactd_cpu_online, NULL);
3370 	if (ret < 0) {
3371 		pr_err("kcompactd: failed to register hotplug callbacks.\n");
3372 		return ret;
3373 	}
3374 
3375 	for_each_node_state(nid, N_MEMORY)
3376 		kcompactd_run(nid);
3377 	register_sysctl_init("vm", vm_compaction);
3378 	return 0;
3379 }
3380 subsys_initcall(kcompactd_init)
3381 
3382 #endif /* CONFIG_COMPACTION */
3383